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Abstract

This article introduces and analyzes a new explicit, easily implementable, and full discrete
accelerated exponential Euler-type approximation scheme for additive space-time white noise
driven stochastic partial differential equations (SPDEs) with possibly non-globally monotone
nonlinearities such as stochastic Kuramoto-Sivashinsky equations. The main result of this article
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proves that the proposed approximation scheme converges strongly and numerically weakly to
the solution process of such an SPDE. Key ingredients in the proof of our convergence result are
a suitable generalized coercivity-type condition, the specific design of the accelerated exponential
Euler-type approximation scheme, and an application of Fernique’s theorem.

1 Introduction

For strong L2-convergence of a sequence of approximations it is necessary that the the L?-norms of
the approximations are uniformly bounded. In the case of finite-dimensional stochastic differential
equations (SDEs) this is ensured by the well-known coercivity condition. If d € N is the dimension
of the SDE, u: R? — R? is the drift coefficient and o € R%? is the diffusion coefficient, then the
coercivity condition is satisfied if there exists ¢ € R such that for all z € R? it holds that

(@, n(@)re + 3o (@) [fis@epey < 1+ [[2llza)- (1)

In an infinite-dimensional separable Hilbert space H, this coercivity condition requires the diffusion
coefficient o to satisfy ||o(0)||us(mu,m)y < co. In particular, the coercivity condition is not satisfied in
the important case of additive space-time white noise where the diffusion coefficient is constantly
equal to the identity operator or a non-zero multiple hereof (note for every d € N that the Hilbert-
Schmidt norm of the identity operator Igs is equal to ||Iga|lagmdre) = V/d). This is one central
reason why almost all temporal strong convergence results in the literature (see the discussion in
the next paragraph) apply only to trace-class noise. In particular, to the best of our knowledge,
there exists no strong approximation result for stochastic Kuramoto-Sivashinsky (K-S) equations
with space-time white noise in the scientific literature. The key contribution of this work is to impose
an appropriately generalized coercivity-type condition in which the coercivity constant may depend
on the noise process (cf. (6), Theorem 4.6, and Corollary 5.10 below) and to introduce a suitable new
explicit approximation scheme which is, roughly speaking, designed in a way so that it respects this
generalized coercivity-type condition (see (6)—(8) and Proposition 2.5 below). This new coercivity-
type condition allows us to analyse a number of additive space-time white noise driven SEEs with
superlinearly growing nonlinearities which could not be handled before. In particular, it enables us
to prove strong convergence of the proposed scheme in the case of stochastic K-S equations (see
Theorem 4.6 and Corollary 5.10 below). The analysis of further SEEs is subject to future research.
Next we review the literature on strongly converging approximations of additive noise-driven
stochastic evolution equations (SEEs) with superlinearly growing nonlinearities. It was shown that
the explicit Euler scheme and the linear-implicit Euler scheme do, in general, not converge strongly
and numerically weakly in the case of such SEEs; cf., e.g., Theorem 2.1 in [16], Theorem 2.1 in [18],
and Section 5.1 in Kurniawan [26]. Fully drift-implicit Euler methods, by contrast, converge strongly
for some SEEs with superlinearly growing nonlinearities; see, e.g., Theorem 2.4 in Hu [13], Theo-
rem 2.10 in Gyongy & Millet [10], Theorem 7.1 in Brzezniak [4], and Theorem 1.1 in Kovéacs et
al. [25]. However, to implement these methods a nonlinear equation has to be solved in each time
step approximatively and this results in an additional computational cost (especially, when the state
space of the considered SEE is high dimensional, see, e.g., Figure 4 in [17]). Moreover, it is not
yet known whether this approximate implementation of fully drift-implicit Euler schemes converge
strongly. Recently, a series of appropriately modified versions of the explicit Euler scheme have
been proposed and shown to converge strongly for some SEEs with superlinearly growing nonlinear-
ities; cf., e.g., Hutzenthaler et al. [17], Wang & Gan [34], Hutzenthaler & Jentzen [15], Tretyakov



& Zhang [33], and Sabanis [30, 31] in the case of finite dimensional SEEs and cf., e.g., Gyongy et
al. [11], Kurniawan [26], Jentzen & Pusnik [23], and Becker & Jentzen [1] in the case of infinite
dimensional SEEs. These methods are explicit, easily realizable, and somehow tame/truncate su-
perlinearly growing nonlinearities to prevent from strong divergence. However, except of Becker &
Jentzen [1], each of the above mentioned temporal strong convergence results for implicit (see, e.g.,
[13, 10, 4, 25]) or explicit (see, e.g., [17, 34, 15, 33, 30, 31, 11, 26, 23, 1]) schemes applies merely
to trace class noise driven SEEs and excludes the important case of the more irregular space-time
white noise. In Becker & Jentzen [1] a coercivity/Lyapunov-type condition has been imposed and
used to establish strong convergence rates in the case of stochastic Ginzburg-Landau equations with
additive space-time white noise; cf. (85) in [1], Lemma 6.2 in [1], and Corollaries 6.16-6.17 in [1].
However, the machinery in [1] does not exploit the powerful negativity of the linear operator (cf. (85)
in [1] with (6) below where the H; ,-norm appears on the right-hand side) and thereby applies merely
to stochastic Ginzburg-Landau equations but excludes most of the challenging additive space-time
white noise driven SEEs with superlinearly growing nonlinearities such as stochastic K-S equations.

In the following we illustrate the main result of this article (see Theorem 4.6 in Section 4 be-
low) by means of an application of this result in the case of stochastic K-S equations (see Corol-
lary 5.10 in Section 5 below). More formally, let T € (0,00), £ € H5((0,1),R), H = L*((0,1); R),
let F: L*((0,1);R) — H~*((0,1),R) be the function with the property that for all v € L*((0,1);R)
it holds that F(v) = v — /2 (v?)’, let A: D(A) C H — H be the Laplacian with periodic boundary
conditions on H, let A: D(A) C H — H be the linear operator which satisfies for all v € D(A) that
D(A) = D(A?) and Av = —A%v — Av — v, let B € L(H, H*((0,1),R)) be the linear operator with
the property that for all v € H it holds that Bv = v/, let (Q, F,P) be a probability space with a
normal filtration (F)ico,r), and let (Wy)icpo,r) be an Idg-cylindrical (F)iecpo,r-Wiener process. The
above assumptions ensure that there exists an up to indistinguishability unique (F;)cjo,r-adapted
stochastic process X: [0,7] x © — L*((0,1); R) with continuous sample paths which satisfies that
for all ¢ € [0, 7] it holds P-a.s. that

t t
X, =eA¢+ / eI F(X,) ds + / =4 B AW, (2)
0 0

(cf., e.g., Duan & Ervin [8]). The stochastic process X is thus a mild solution of the stochastic K-S
equation

= 2 X,(2) — 2 X(x) — Xi(2) - ZX,(2) + 2 Wi(x) (3)
with X,(0) = X,(1), X/(0) = X/(1), X/(0) = X'(1), XP(0) = xP(1), and Xo(z) = &(x) for
xz € (0,1), t € [0,7]. Note that the noise in (2) and (3) is quite rough in the sense that %Wt(x),
x € (0,1), t € [0,T], is the distributional space derivative of the space-time white noise %V[/t(x),
z € (0,1), t € [0,T]. In this article we introduce the following nonlinearity-truncated accelerated
exponential Euler-type scheme to approximate the solution process X of the SPDE (3). Let (e,,)nez C
H, (P)nen € L(H), (hp)nen € (0,00), 0 € (Y16,3/32), x € (0,92 — /32| satisfy for all n € N,
v € H that eg = 1, e,(-) = v2cos(2nm(+)), e_n(-) = V2sin(2n7(")), Pu(v) = Y, {ex, )y e,
limsupy,_, . b = 0, let ||, R — R, h € (0,00), be the mappings which satisfy for all h € (0, c0),
t € R that [t]|, = max((—o0,t] N {0, h, —h,2h, —2h,...}), and let O™: [0,T] x Q@ — P,(H), n € N,
and X": [0,T]xQ — P,(H), n € N, be stochastic processes which satisfy that for alln € N, ¢ € [0, T]]



it holds P-a.s. that OF = fot P, et=9)4 B dW, and

(4)

In Corollary 5.10 in Section 5 below we demonstrate that the approximation scheme (4) converges
strongly to the solution of the SPDE (3). More precisely, Corollary 5.10 (with 8 =3/16, n = K = 1,
0=o0 b, =0, b, =2km, X" = X", O" = O", X = X for k € Z, n € N it the notation of
Corollary 5.10) proves that for all p € (0, 00) it holds that

t
X'=P, e e+ / P, elt=94 1

; (I=A2x7, ), Na+I(=A)2[07, ), +Paet*ine] | <|hn| =X}

lim Sup, o0 SUPyefo 1y E X — 73] = 0. (5)

Corollary 5.10 follows from an application of Theorem 4.6 below, which is the main result of this
paper. Theorem 4.6 establishes strong convergence for a more general class of SPDEs as well as for
a more general type of approximation schemes.

We now add a few comments on the approximation scheme (4) and on key ideas in the proof
of Corollary 5.10 and Theorem 4.6, respectively. First, we note that the approximation scheme (4)
does not temporally discretize the semigroup (etA)te[Opo) appearing in (2) and is thus an appropriate
modification of the accelerated exponential Euler scheme in Section 3 in Jentzen & Kloeden [21]
(cf., e.g., also Section 4 in Jentzen & Kloeden [20] for an overview and e.g., Lord & Tambue [27]
and Wang & Qi [35] for further results on accelerated exponential Euler approximations). This
lack of discretization of the semigroup in the stochastic integral (2) has been proposed in Jentzen
& Kloeden [21] to obtain an approximation scheme which converges under suitable assumptions
with a significant higher convergence rate than previously analyzed approximation schemes such as
the linear implicit Euler scheme or the exponential Euler scheme (cf., e.g., Theorem 3.1 in Jentzen
& Kloeden [21], Theorem 1 in [22], Theorem 3.1 in Wang & Qi [35], and Theorem 3.1 in Qi &
Wang [29]). In this article the lack of discretization of the semigroup in the non-stochastic integral
in (2) is employed for a different purpose, that is, here this lack of discretization is used to obtain a
scheme that inherits an appropriate a priori estimate from the exact solution process of the SPDE (3).
More specifically, we observe that the nonlinearity F': L*((0,1);R) — H~'((0,1),R) appearing in (2)
satisfies that there exist suitable measurable functions ¢, ®: C'([0,1],R) — [0, 00) and a real number
¢ €10, 1) such that for all v,w € H; it holds that

(v, F(v+w))y < ¢(w)llvllf +ellvll, , + 2(w) (6)

(see Lemma 5.2 for the proof of (6) and see also the proof of Corollary 5.10 for the specific choice of ¢,
®, and ). Inequality (6), in turn, ensures that for every continuous stochastic process O: [0, T]xQ —
C([0,1],R) with Vu € [0,T]: P(O, = [;' e 4 BdW,) = 1 and every ¢ € [0, 7] it holds P-a.s. that

t
[ Xel [ < Ol + \/6f0t2¢(05)d8 €11 + 2/ el 2000w 9(0,) ds. (7)
0
Note that (6) is an appropriate generalized coercivity-type condition for the SPDE under consider-
ation (cf., e.g., Chapter 4 in Prévot & Rockner [28]). A key contribution of this paper is to reveal
that the approximation scheme (4) inherits (7) in the sense that there exists 6 € (0, 00) such that for
all t € [0,7], n € N it holds P-a.s. that

E1r

t n s t t n m
HthHH < ’|O?||H+\/€fo2¢(OLthn)d ’|§H%{+2/ efs 2¢(OLthn)d CI)(O” )+8‘hn‘l/e ds (8)
0



(see Proposition 2.5 for the proof of (8)). Strong convergence results for explicit (see, e.g., [17, 34,
15, 33, 30, 31, 11, 26, 23, 1]) and implicit (see, e.g., [13, 10, 4, 25]) numerical approximation schemes
for SEEs in the literature impose coercivity-type assumptions in which ¢ and ® are constants (cf.,
e.g., Assumption (B)’ in Hu [13], (C2) in Gyongy & Millet [10], Section 1 in Hutzenthaler et al. [17],
Assumption 2.1 in Wang & Gan [34], (2.11) in Hutzenthaler & Jentzen [15], Assumption 2.1 in
Tretyakov & Zhang [33], Section 7 in Brzezniak [4], (A-1) in Sabanis [30], (A-4) in Sabanis [31],
Assumption 1 in Gyongy et al. [11], (4.79) in Kurniawan [26], Section 7.4 in Jentzen & Pusnik [23],
Section 3.1 in Kovécs et al. [25], and (85) in Becker & Jentzen [1]). Such a coercivity-type condition
is not fulfilled in the case of a number of nonlinear SPDEs with rough noise such as (3). In particular,
none of the above mentioned references applies to the stochastic K-S equation (3) and Theorem 4.6 and
Corollary 5.10 below, respectively, are — to the best of our knowledge — the first strong approximation
results for the stochastic K-S equation (3). We would also like to add that in the above mentioned
articles on accelerated exponential Euler approximations it was crucial to avoid the discretization of
the semigroup in the stochastic integral while our analysis exploits the fact that the semigroup in
the non-stochastic integral in (2) is not discretized but allows discretizations of the semigroup in the
stochastic integral (cf. Theorem 4.6 in Section 4). Next we observe that the approximation scheme (4)
can be easily realized on a computer. More formally, note that for all n € N, k € NN (—o0, T/h, — 1]
it holds P-a.s. that
(k+1)hy,

(esvn, = €O, + / P, e+ Dhn=94 B gy
khnp,

Xlipayn, = €, + P A7 = 1du) Ly ajen, ul-a)2(0g,, + Paektnagl <l F(Xin,)
+ Olitiyh, — A0,

(9)
and (9) can be used directly in an implementation. We illustrate this in Figures 1 and 2 where
three realizations of Xr(w), w € €, are calculated approximatively with the numerical approximation
method (4) in the case where T' = 1, n = 10000, h,, = 1/v/n, 0 = 5/64, x = Y128, and & = 0. The
MATLAB code used to generate Figure 1 can be found in Figure 2 below. The approximation scheme
(4) is thus an easily implementable strongly convergent approximation method for the SPDE (3). In
particular, to the best of our knowledge, the scheme (4) is the first approximation method in the
scientific literature that has been shown to converge strongly to the solution of the stochastic K-S
equation (3).

The remainder of this article is organized as follows. In Section 2 the required a priori moment
bounds for the nonlinearity-truncated approximation schemes are established and in Section 3 the
error analysis is performed in the pathwise sense under the hypothesis of suitable a priori bounds for
the approximation processes. Section 4 combines the results of Section 2 and Section 3 and thereby
establishes strong convergence in Theorem 4.6, which is the main result of this article. The analysis
in Sections 2—4 is carried out for abstract stochastic evolution equations on separable Banach and
Hilbert spaces, respectively. Section 5 then verifies that the assumptions of Theorem 4.6 in Section 4
are satisfied in the case of concrete stochastic partial differential equations of the type (3) and, in
particular, establishes Corollary 5.10.

1.1 Notation

Throughout this article the following notation is used. We denote by N = {1,2,3,...} the set of
all natural numbers. For two sets A and B we denote by M(A, B) the set of all mappings from A
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Figure 1: Result of a call of the MATLAB code in Figure 2.

rng(’default’);

N = 10000; h = 1/sqrt(N); chi = 1/128; varrho = 5/64;

A = -(-N:N). 4.%x16*pi~4+(-N:N). 2.*%4xpi~2-1;

S = sqrt((exp(2*h*A)-1)./A/2)*2*pi.*x(-N:N); X = zeros(3,2*xN+1);

for m = 1:3

zeros (1,2%xN+1) ; 0_old = zeros(1,2xN+1);

for n = 1:sqrt(N)
O_new = exp(A*h).*0_o0ld+S.*xrandn (1,2*N+1);
y = [Y(N+1) ,1i*Y(N:-1:1)*sqrt(2)+Y(N+2:end)*sqrt(2),zeros(1,N)];
y = real(fft(y)); yi1 = ifft(y."2);
y2 = [imag(yl1(N+1:-1:2))*sqrt(2) ,real(y1(1)),real(y1(2:N+1))*sqrt(2)];
FY = (Y-pixfliplr(y2).*x(-N:N))...

.k (norm((-A). varrho.*Y)+norm((-A). varrho.*0_o0ld)<=h~(-chi));

=<
1]

Y exp(A*h) .xY+A."(-1) . *(exp(A*h)-1) .*FY+0_new-exp(Axh).*0_old;
0_old = O_new;
end
X(m,:) = [Y(N+1),1i*Y(N:-1:1)*sqrt(2)+Y(N+2:end)*sqrt(2),zeros(1,N)];
X(m,:) = real(fft(X(m,:)));
end

figure (1); subplot(1,3,1);

plot ((1:2xN+1)/(2xN+2) ,X(1,:),’k’,’LineWidth’,0.3); ylim([-1 1]1);
subplot(1,3,2);

plot ((1:2%N+1)/(2*N+2) ,X(2,:),’k’,’LineWidth’ ,0.3); ylim([-1 1]);
subplot(1,3,3);

plot ((1:2%N+1)/(2*N+2) ,X(3,:),’k’,’LineWidth’,0.3); ylim([-1 1]);

Figure 2: MATLAB code for Figure 1.



to B. For a set A we denote by P(A) the power set of A, we denote by #4: P(A) — [0,00] the
counting measure on A, and we denote by Py(A) the set given by Py(A) = {B € P(A): #4(B) < o0}.
For two measurable spaces (A, .A) and (B, B) we denote by M(A, B) the set of all A/B-measurable
mappings. Let I': (0,00) — (0,00) be the function with the property that for all x € (0,00) it
holds that I'(z) = [t Y e"dt (Gamma function). Let E,: [0,00) — [0,00), 7 € (0,00), be the
functions with the property that for all » € (0,00), € [0,00) it holds that E,[z] = > 7 %
(cf. Chapter 7 in Henry [12] and see, e.g., Definition 1.3.1 in [19]). For a topological space (X, 7)
we denote by B(X) the Borel sigma-algebra of (X, 7). For a set A we denote by Ids: A — A the
mapping with the property that for all a € A it holds that Id4(a) = a (identity mapping on A). For
a set A € B(R) we denote by As: B(B) — [0, 00] the Lebesgue-Borel measure on A. For a measure
space (§2, F, j1), a measurable space (5,S), aset R C 5, and a function f: €2 — S we denote by [f] ,

the set given by [f], ¢ = {9 € M(F,S): (3A € F: ,u(A) =0and {w e Q: f(w) #g(w)} € A)}. We
denote by [-]n: R = R, h € (0,00), and [-]5: R = R, h € (0,00), the mappings with the property
that for all t € R, h € (0,00) it holds that [¢]; = max((—o0,t] N {0, h, —h,2h, —2h,...}) and [t], =
min([t,00),{0, h, —h,2h,—2h,...}). For real numbers p € [1,00), # € (0,1) and a B((0,1))/B(R)-
measurable function v: (O 1) = R we denote by ||v||,ye.e(0,1),r) the extended real number given by

v p
||’UHW9p(01 |:/ |U |pdx—i—// “x_ |1+9p d dy| . (10)

2 A priori bounds

In this section we accomplish in Proposition 2.5 and Corollary 2.6 below appropriate a priori bounds
for our approximation scheme. Before we establish Proposition 2.5 and Corollary 2.6 below, we
present in Lemma 2.1, Lemma 2.2, Lemma 2.3, and Lemma 2.4 a few elementary auxiliary results
for Proposition 2.5 and Corollary 2.6.

2.1 Regularity of the numerical approximations

The following elementary and well-known lemma is a slight generalization of Lemma 3.3 in Becker &
Jentzen [1]. In particular, the proof of Lemma 2.1 is a slight adaptation of the proof of Lemma 3.3
in Becker & Jentzen [1].

Lemma 2.1. Let (V. ||-||;) be an R-Banach space, let A: D(A) CV — V be a generator of a strongly
continuous analytic semigroup with spectrum(A) C {z € C: Re(z) < 0}, and let T,h € (0, 00),
Y, Z € M([0,T],V) satisfy for all t € [0,T] that Y; = f; e=947, ds. Then

(1) it holds for allt € [0,T] that Y; € D(A),

(i1) it holds that the function [0,T] >t — Y, € D(A) is continuous,

(111) it holds that the function [0,T] >t — Y, € V is Lipschitz continuous,

(iv) it holds that the function [0,T]\{0, h,2h,...} >t Y; € V is continuously differentiable,
(v) it holds for all't € [0, T\{0, h,2h,...} that Bt = AY, + Z},),, and

(vi) it holds for all t € [0,T] that Y; = [, [AY; + Z),] ds.

7



Lemma 2.2. Let (V,|||\,) be an R-Banach space, let A: D(A) C V. — V be a generator of a
strongly continuous semigroup, and let T € (0,00), Y € M([0,T1,V), Z € M(B([0,T1]), B(V)) satisfy
for-all t € [0,T] that supeo 1) | Zs|lv < 00 and Y; = fot =94 Z ds. Then it holds that Y is right-
continuous.

Proof of Lemma 2.2. Note that for all t € [0,T),h € (0,7 — t] it holds that

t+h t
/ etHh=)A 7 qs — / =304 7 ds
0 0

t t+h
< [t =) g s [ 4 2 )
0 t

Yion— Yillv = \

\%

t
< [ = ) Z | ds b (st e ) (upcon 12:])-

Combining Lebesgue’s theorem of dominated convergence with the assumption that A: D(A) CV —
V' is a generator of a strongly continuous semigroup and the assumption that supe o r) | Zs|lv < oo
hence yields that for all ¢t € [0,7") it holds that

limsup [Yien — Yillv = 0. (12)
A\
The proof of Lemma 2.2 is thus completed. O

Lemma 2.3. Let (V,|[|,;) be a separable R-Banach space, let (2, F,P) be a probability space, let
A€ D(A) CV — V be a generator of a strongly continuous semigroup, let O: [0,T] x Q@ — V be
a stochastic process, and let T)h € (0,00), Y € M([0,T] x Q,V), F € M(B(V?),B(V)) satisfy for
all t € [0,T] that Y; = fot eI F(Yy),,0(s,) ds + O, Then it holds that Y: [0,T) x Q — V is a
stochastic process and it holds that Y —O: [0, T| xQ — V is a stochastic process with right-continuous

sample paths.
Proof of Lemma 2.3. First, we claim that for all £ € Ny it holds that

vVt e [0,min{T, kh}]: Y; € M(F,B(V)). (13)

In the following we prove (13) by induction on k € Ny. The base case k = 0 follows from the fact
that Yy = Oy € M(F,B(V)). Next observe that the fact that V¢ € [0,7]: O, € M(F,B(V)) shows
that for all £ € Ny, ¢ € [min{7", kh}, min{7T, (k + 1)h}| with Vs € [0, min{T, kh}]: Y, € M(F,B(V))
it holds that

t
Y, = e(t—min{T,kh})A Ymin{T,kh} +/ e(t—S)A F(YLSJM O|_£Jh) ds
min{7,kh}

+ Ot . e(t—min{T,kh})A Omin{T,kh}

| : (14)
— (t—min{T'kh})A Ymin{T,kh} —|—/. P elt=s)A F(Ymin{LTJh,k:h}a Omin{\_TJh,kh}) ds

+ Ot - e(t—min{T,kh})A Omin{T,kh} € M(Ia B(V))

The induction step Ny 3 k& — k + 1 € N follows from (14) and the induction hypothesis. Induction
hence proves (13). In the next step we observe that (13) together with the assumption that O: [0, 7] x
2 — V is a stochastic process ensures that Y — O: [0,T] x 2 — V is also a stochastic process. This
and Lemma 2.2 show that Y —O: [0,7] x Q — V is a stochastic process with right-continuous sample
paths. The proof of Lemma 2.3 is thus completed. O



2.2 Semi-globally Lipschitz continuous functions

Lemma 2.4. Let (V.| [ly,), V. \-lv), WV l-llw), and OV, |I-ll\y) be normed R-vector spaces with
V CV continuously and W C W continuously and let €,0 € [0,00), €,9 € (0,00), F € M(V,W)
satisfy for all v,w € V that ||[F(v) — F(w)||lw < e (1 + ||v|l5 + [Jw]|$) [Jlv — w|ly, ¥ = 2¢, and

G:max{?)e?[ sup |:M [1 v sup ::H(l | guslae-10)),
ueW\{0} ueV\{0} "V

8¢2 + 2||F(0)|2 1 Jlly ™ 15
( € + H ( )HW) max ) Sup ” ||2+2e . ( )
weV\{0}

Then it holds for all v,w € V that | F(v)||3, < 0 max{1, ||v|3"} and
1F(v) = F(w)[Fy < 0 max{1, o]y }Hlv —wl + 6 [lv — w]5. (16)
Proof of Lemma 2.4. Combining the fact that Va,b,c € R: (a+b+c)? < 3(a® +1? +¢?) and the fact

that Va,b,z € [0,00): (a + b)* < 2ma{z=10}(4= 1 p¥) with the triangle inequality proves that for all
v,w € V it holds that

IP@) = Py < | s fbe 1 G) - Pl

72

<3| sup e (g g ) o - wil
Lue W\{0} i

72

<3¢ sup fubu | (14 (14 gm0 o)t 4 gm0y — ) o — w}
LueW\{0}

12 2¢e
<3¢ sup [ Q+[$m Mﬂ 0+T“%*WMﬂ%+TM%*%w—w$)W—w@
LueW\{0}

ueV\{0}

12 2¢e
<se| sup Bl (1 sup ] ) (1 20 Cana, Bl + o = i) o ol
Luew\{0} weV\{0}

< fmax{L, [v[y} Hv —wlf, + 0 flv — w5
(17)

Moreover, the fact that Va,b € R: (a+b)* < 2(a® + b*) and the triangle inequality imply that for all
v € U it holds that

2
IF )% < (IF(v) = FO)lw + [[FO)lw)” < 2(1F(v) = FO)[[5 + |1 F(0)I5)
< 2(E 1+ [0l + IFO0)5) < 46 (1 + [0l vl + 20 F(0)5
< (8¢ + 21 FO)lffy) max{L, v]3"*} %)
Jully |+ 2426 249
< (8¢ +2[[F(0)1%) max{l, [SupuGV\{O} IIullv] }max{l ]|} < Omax{1,||v]|;"}.
This and (17) complete the proof of Lemma 2.4. O



2.3 A priori bounds

Proposition 2.5 (A priori bounds). Let (H, (-,-)y, |||l;) be a separable R-Hilbert space, let (2, F,P)
be a probability space, let A € L(H) be a diagonal linear operator with sup(ap(A)) < 0 (see, e.g.,
Definition 3.4.5 in [19]), let (H,,{-,) 5, I 7.), 7 € R, be a family of interpolation spaces associated
to —A (see, e.q., Definition 8.5.25 in [19]), and let Y, O: [O,T] x Q0 — H be stochastic processes, and
let F € C(H, H), 6,® € M(B(H), 5(0,00))), ¢ € [0,1), & € 0,12, p € 0,1~ a), 0 € [p.p + 1,

0,9 €[0,00), T € (0, 00), X eR, he(0,1] satzsfyfor allv,we Hy, t € [0,T)] that (v, F(v+w))y <
so()|oll + ellvl, , + 38w), [F(v) = Fw)l ,, < 0 max{1, o]l Hlv = wli, +6flv— wHQW

I1F(v)|[7_, < 0max{L, HU||2+’9} and

t
Y, = (Yo — Oo) +/0 eIV ity +10L ity <h3y F (Ysg, ) ds + O (19)
Then it holds for all t € [0,T) that

1Y — Ol + /‘WWMMWY Oyl , ds < e 0 1y, — Ol
(20)

t
[Lo(0), ) du 0 (1-+1/9)2+9 p2min{(1+9/2)(1—a—p—(14+9/2)x),0—p—(1+9/2)x, 1—a—p—(1+0)x}
+/0 ‘ 2O+ (/2472 (—a—p)77 ds.

Proof of Proposition 2.5. Throughout this proof let Q, C Q, t € [0, T1], be the sets with the property
that for all ¢ € [0, 7] it holds that Q, = {[[Y}s, [la, + [0}, lm, < h™X} and let Y € M([0,T], H) be

the function with the property that for all ¢t € [0, 7] it holds that Y; = Y; — O;. Next note that for
all t € [0,77] it holds that

t
Y; = Y, +/ =4 F(Y],),) ds. (21)
0

Lemma 2.1 hence proves that Y has continuous sample paths and that for all ¢ € [0, 7] it holds that
Y, =Yy + f(f AY, + I]_QSF(YLS | h) ds. The fundamental theorem of calculus therefore ensures for all
t € [0,7] that

e O |V,

t t
= [|Yoll% +/O 2 Jo YO v (Y, AY, + 1, F (Yiy),) )y ds — /0 H(Osy,) e #OWI® 1T, ds
t
= |Yoll% + 2/ e o YO M (Y AV, + 1o, F(Y, + Oy, ), ds
0

t t
*2/éwﬂ%wmhmﬁwaJ—ﬂZ+0w»H%—/¢ww»fhwwww2%w.
0 0
(22)

Next observe that for all s € [0, 77 it holds that

(Y, AY>H + la, < (Y., AY>H - (I_SD) Qe H%m = (Y, AK>H -

= (Y., 1 - 152] 4y, V., DAy
H H

S
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This, (22), and the Cauchy-Schwartz inequality show for all ¢ € [0, 7] that
t
e o XL T3, = ([ Vol + 2 / eI OB Y AY, + 10, F(Y, + O14),))  ds
0
t
+ 2/ oot (—A)PY, (A) T [F(Yy,) = F(Ys + O]y ds

/ H(Osy,) e 9w 1T, ds

24
< HYOHH+2/ o @O F(Ys%—OLth»HdS !
0
2 / I3 90w 14, [Tt (Vi) = F(Ya + Ol — 52Tl ] ds
~ [ 601 e Ty s
0
The fact that Va,b € R,e € (0,00): ab < ea® + Z—Z therefore proves for all ¢ € [0, 7] that
AU T < ol + [ UMY, (14 ) AT, 4 20, (T, 4 0Ly s
0
T / e B0 , |F(Y,,,) — F(Y, + Oy I, d (25)

/ $(Ops),) € I 2O |V |12, ds.

In the next step we use the fact that Vo, w € Hy = H: ||F(v) — F(w)H%{_U2 < #max{l1, ||UH}9{Q}||U —
w||f, +0llv— w||2+’9 to obtain for all v,w € Hy = H, s € [0,T] that

Lo [|1F(Yisp,) = F(Ys + Ol ,
< Lo 6max{L, [V, |7, } ¥, = Vallh, + L0011V, — Va3 (26)
< 10,0 Vi, = Vallh, (B + 1V, = Vallf, )

Moreover, observe that, e.g., Theorem 4.7.6 in [19] and, e.g., Lemma 4.7.7 in [19] imply that for all
s € (0,77 it holds that

1o, YLSJh — YSHHP = ILQH (e(s Ls]n)A IdH) YSJh L{ els—wA F(YSJh)du) .
S|h P
< 195[\8 — LsJul® " 1YV s e, + f (s —u) T E (Vg . dU}
s—|s a=p 149

< 1o, [Is = L)l ’J||YLthHHQ+¥\[ mase {1,V 157} (&1)
< 22 1P| Vi i, + VR max{1, X2

Ctor [rompx f a2 (1 +\/§) pymin{o—p—x,1—a—p—(1+9/2)x}
— l—a—p h + 0h - (1 — —p) '

11



Putting (27) into (26) shows for all s € [0, 7] that
Lo [|1F(Yisp,) = F(Ys + O )l ,
2 p2min{o—p—x,1—a—p—(1+9/2)x} ¥ Y min{o—p—x,1—a—p—(1+9/2)x}
_ 0+ VO h (h_ﬂx+(1+\/5) h )

- (1—a—p)? (1—a—p)’
20 (1 4 \/§)Q+19 h2min{o—p—x,1—a—p—(1+9/2)x} p¥ min{oe—p—x,1—a—p—(1+9/2)x,—x}
: O (23)
B 20 (1 + \/5)24-19 h2min{g—p—x,1—a—p—(1+19/2)x} hﬂmin{l—a—p—(l+19/2)x,—x}
- a7
20 (1 + \/5)24-19 h2min{(1+9/2)(1—a—p—(1+9/2)x),0—p—(1+9/2)x,1 —a—p—(1+9)x}
B (1—a—px? '

In the next step we put (28) into (25) to obtain that for all ¢ € [0, 7] it holds that

t
A0 T < ol + [ e R (<14 )T, + 2o, (Far P(Ta + L))y ] ds
0

t

249 p2min{(1+9/2)(1—a—p—(14+9/2)x),0—p— (1+9/2)x,1—a—p—(1+9)x } s

+ 0 (1+06) h P X),0—p X p X e Il $(Oluy,,) du ds
(1/2=572) (—a—p)27? ;

t
a / G(Oys),) € o 2O )Y, |12, ds.
0
(29)

The assumption that Vv, w € Hy: (v, F(v+w))y < s¢(w)|v|3 + <p||v]|%{l/2 + 2®(w) hence proves
that for all ¢ € [0, 7] it holds that

e~ 0 OLL) B 17,12, < Vo3

t
4 [ e BACmIE (14 ) Vil , + 6(O0) Il + 20 Vel , + B(OL,)] ds
0

A t (30)
0 (14+/9)2+9 p2min{(1+9/2)(1—a—p—(14+8/2)x),0=p— (14+8/2)x,1—a—p—(1+9)x} [ $(011. ) du
+ /3073 (o p)77 /0 e Jo 2O s
t s _
N / $(Osp,) e~ o XOLI & V13, ds.
0
Therefore, we obtain for all ¢ € [0, 7] that
_ t s — — ¢ _ s " —
U0 T < Folly + [ e oCmI (20— (Lt HIT I, + B(OL,)] ds
0
: (31)
0 (1+/6)2+7 p2min{(1+9/2)(1—a—p—(1+9/2)x),0—p—(1+9/2)x,1—a—p—(1+9)x} — [56(Oyu;, ) du
+ /2= (i=a—p" /0 e A0 ds,
This assures for all ¢ € [0, 7] that
t
N e u ||\ e CHIRY,
il + (1= ) [ e I T ds < el |5
t (32)
t b0 wls)du 0 (14+/6)2+? p2min{(1+9/2)(1—a—p—(1+9/2)x),0e—p—(1+8/2)x,1 —a—p—(1+9)x}
- /0 el A0 (0, ) + LA (/2= (i—a—p* ds.
The proof of Proposition 2.5 is thus completed. O
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Corollary 2.6 (A priori moment bounds). Let (H,(-,),|||l;) be a separable R-Hilbert space, let
(Q,F,P) be a probability space, let A € L(H) be a diagonal linear operator with sup(o,(A)) < 0
(see, e.g., Definition 5.4.5 in [19]), let (Hy, (-,) g |l .), 7 € R, be a family of interpolation spaces
associated to —A (see, e.g., Definition 3.5.25 in [19]), let O: [0,T] x Q — H be a stochastic process,
and let Y € M([0,T] x Q, H), F € C(H,H), ,® € M(B(H),B([0,0))), ¢ € [0,1), a € [0,1/2],

€0,1—a), 0€[pp+1], 0,0 €[0,00), y €[0,(2—2a—2p)/(2+9)], T € (0,00), h € (0,1],
p € [2,00) satisfy for allv,w € Hy, t € [0,T] that (v, F(v+w)), < %gb(w)“v”%,ﬂo”v”%lm + 3P (w),
1F () = Fw)lly_, , < §max{1, o]l % v = wl, +0llv—wl7?, [F)lF, < §max{1, |[of7"},
and

—a

t
—s)A
Y, :/0 eI Ly, iy 100, g <hry B (Visg,) ds + Or (33)

Then it holds that Y — O: [0,T] x Q — H is a stochastic process with continuous sample paths and
it holds that

suprcio.ry 1Y = Oclla | 1o o

T
ST qS(OLuJ ) du |: 9(1_,_\/5)24-19 hmin{QQ,Q—Qa—ﬁx}—2p—(2+19)X:|
< \/ /0 ¢ W 2(0L,) + 2279 T=a=p7" T
< 9(1_,_\/5)2-‘-19 pmin{20,2—2a—9x} —2p—(2+9)x T p/zf o OLuJ CI) o/ 2/p d
= [1 + /2=472) =a—p P77 ] ; ’ [ Y max{1, |2(0p),)| }} >
(34)

Proof of Corollary 2.6. Note that the assumption that O: [0,7] x Q — H is a stochastic process and
Lemma 2.3 yield that Y: [0,7] x Q@ — H is also a stochastic process. Combining Proposition 2.5
with the assumption that x € [0, (2 — 2a — 2p)/(2 + 0)] hence yields that

sup [|Y: — O4l
te[0,T

t ot i o e o
Oul,)d 0 (14+/6)2+? p2min{(1+9/2)(1—a—p—(14+8/2)x),0=p—(14+9/2)x,1—a—p—(1+9)x}
< s[%pﬂ ( gefs $(Ouy,) du [@(OLSJhH =073 (L—ap )0 ds
te|0,

t
t Ol du 0 1_,’_\/5 2+9 hmin{QQ,Q—Qa—19x}—2p—(2+19)x
o (/ el 201 [q)(Olth) R a } ds)

T
u (7 1 \/5 2419 hmin{QQ,Q—Qa—ﬁx}—Qp_(2+19)x
- /0 f Ot @ [ (OLSJh) e )(1/2—30/2) (I—a—p)2t? } ds.

(35)
Moreover, the fact that Y: [0, T]xQ — H is a stochastic process, the assumption that O: [0, 7] xQ —
H is a stochastic process, (33), and Lemma 2.1 prove that Y — O: [0,7] x Q — H is a stochastic
process with continuous sample paths. Hence, we obtain that (2 3 w = sup,ep 71 [|Yi(w) = On(w)||m €

R) € M(F,B(R)). This, (35), Minkowski’s integral inequality, and the assumption that p > 2 show
that

Hsupte[O,T] 1Y: — OtHHHLP(IP;R)

: s u 0 (14+v/0)2+9 pmin{20,2—2a—9x} —2p—(2+9)x
< \//0 Hef,s (Oluyy,) d [(I)(O\_SJ}L) + 1+ )(1/2—50/2) (I—a—p)2+? }

The proof of Corollary 2.6 is thus completed. O

(36)

£r/2(P;R)
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3 Pathwise convergence

3.1 Setting

Let (V. ]|[ly-) and (W, ||]|;;-) be R-Banach spaces and let 7', x € (0,00), T € R, a € [0,1), (Py)nen €
M(N, L(V)), (hn)nen € M(N, (0,00)), F € C(V,W), ¥ € M([0,00],[0,00]), X,0 € C([0,T],V),
(X™)nen, (O")nen € M(N,M([0,7],V)), S € M(B((0,T]), B(L(W,V))) satisty for all r € [0, 00],
t € [0,7], n € N that limsup,, .. hm = 0, T = Pte(o:r(t 1SellLowvy)s ¥(r) = sup({0} U
{”F(ﬁl:ﬁﬂ)nw sv,w € Voo # w,max{||vllv, lwllv} <7}), ¥([0,00)) CR, X, = fo Si—s F'(X5) ds+0y,
and

t
th:/o Fu s Lognal - (145, v + 1O, Iv) F (A, ) ds + OF- (37)

3.2 Auxiliary results

Lemma 3.1. Assume the setting in Section 3.1 and let n € N, t € [0,T]. Then

1Xe = & lv < 100 = Ol + ( ) W (sup,epo 1 Xsllv) [supsepo g X = X, [Iv]

Y | A, Xt
(1-a)

t
+ (v P ) [ 10y = PSL ey ds (38)
T (1Pl vy @ (Uit i, oy MO o 12 ) + ¥ (50D IF (X)) |
t
= X, - A, e ds
0

Proof of Lemma 3.1. Observe that the triangle inequality proves that

(Supse[o,t] | F(X HW) (Sup560t 1 X[y + 07l ])

t
1X: — Xy < (|0 — Ol + / 1S [F(Xs) = F(X1ap,,)] ||y ds

/ HSt s (XLthn> - 1[0 |hn| =X (||XLthnHV + ||OLthnHV>F(XLthn” Hvds

(39)

/ H St s — Py St S] IL[0 || =X (HXthnHV + HO SJhnHV)F<XLSJhn)HVd8

+ /0 [ Pa Ses Loy~ (123, v+ 1O, V) [F (X)) — F (&L, )] ds
Next note that
[ ISl = POt < [ 1S g 1) = F (S
t
< T U (sup ey X V) / (t =) |X. = Xiap, v ds  (40)
’I‘tl—a
< 1= a)‘lf(supse[o,t] HXsHV) [SUpse[o,t} 1 Xs — XLthnHV} .

14



Moreover, observe that

t
/ St [F (X 10,) = Lo al - (12, v + 1Oy, M) F (X, )] ds

/ Si—s L (jpn|—x,00 (HXSJ,WHVJF HOthnHV) F (X)) Iy ds

/ 1Si—sll Ly Lithn - .00) 1K, v+ 1O, 1) | F (X s ) | s

t
< T (supyepog HF(XS>HW)/O(t_ )7 (1x%y,, v + 104, Iv) [hal¥ ds

< 7Y (supsepo g 1F(X) )

t
= 5 (X, = X+ 1X g, v+ 1O, ) ds
0

t
< T [hal* (suPsepo g IIF(XS)IIW)/(t—S)‘“HXLthn — &, v ds
0

T ‘hn‘xtl—a n
i (supseqoq 1 F(X) ) (supseqoq 1 Xl + 10511])

and

/ [[St—s = Pu St Lo, (1X, v + 107, V) F (X (s, )] ds

< /0 13dy — P)Sedllpwey 1F(X g, )l ds
< (swpucpg IFCCI) [ 10w = P)S- b
= (swpuci IFCI) [ 100 = P2)S.l ds.
Furthermore, note that
/ 1P St Lo a ) (12, v + 1O, V) [F (X (s, ) — F (X)) ds
< / 1Pl 1See gy |F (Xiagn,) = F () |y ds

t
TPy [ (= 57 X, = X, ¥ {11, I 12, ) s

t
<7 ||PnHL(v) (Supse[Omax{O [t1h,, —hn}] max{||X v, HXHHV})/ (t—s) HX Lslhn, — XLZJ;LTLHV ds.

Combining (39)—(43) completes the proof of Lemma 3.1.

15
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Corollary 3.2. Assume the setting in Section 3.1, let n € N, and assume that sup,cp 11 [|Of |lv < o0.
Then it holds for all't € [0, T] that SUpcio max{o,[1n. —hn}] max{|| Xy, | X"|lv} < oo and

SuPefo, | Xs = X lv

. TTl—a
SUPselo,1] 105 = Oflv + 1-a) lI](Supse[O,T} ||X8HV> [SuPse[O,T] X5 — XLSJhn HV]
T ‘hn‘le_a n
+ (1 — Oé) (Supse[O,T} HF(XS)HW) (Supsé[O,T] [HXSHV + ||Os HV]) (44)

T Y(1-a)
+ (SUpse[o,T} HF(Xs)Hw) { [(Idy — Pn)SsHL(W,V) ds] “Eiq [t ‘F(l —a) T‘ 1 [HPTLHL(V)
n Y(1-a)
< W (SUDe 0, mas{0, /11, —hny) X X llv, [ XL }) + [Pl (supgepo.ry (X)) | 1 } < 0.
Proof of Corollary 3.2. Note that Lemma 3.1 implies for all ¢ € [0, 7] that

sup,cio, [ Xs — & |lv
T Tl—a

i)
T |h, ><T1 a )
T (b 1P (supacr 11+ 1021)

+ (SUPse[o ) HF( )HW) [(Idy — n)SsHL(W,V) ds

T 1Pall ) (5P aeqomasio s, oy M5 1Kol 1221 }) + onl* (50D aeioiry 1K) ) |

[t = 5)7 (Supyep ) | X0 — Xy lv) ds.

< SUPyeo,7] 105 = Oflv + lI’(SuPse[o,T} ||X8HV) [SUPSE[O,T} | Xs — Xisin, ||V}

(45)

oxﬁ

Moreover, note that the assumption that sup,cio[|Of|lv < oo and the assumption that O €
C([0,T],V) imply that

SUP¢e(o,17] 10: = Of|lv < SUD¢e0,1) 1Ol + SUD¢e0,1) 107 lv < oc. (46)
This yields that

SUDyefo,r) 114" lv

< | Poll vy ( maxsegon, 2n,.... 30071 (X W) [subseo.r J6 1Si=sllLowvy ds] + sup [[OF|lw

te[0,T
<T|P F(xr i(t—s)°d or (47)
<7 nHL(V)(maXse{o,hn,2hn,...}m[o,T} | (X )HW) sup [( s) s| + sup [[Of|lw
te[0,7] 0 te[0,7
T>7||P, max, O F(xr
_ 1Pl v ( {02, 3007] |1 F (X lw) +sup O < oo
(1 - Oé) t€[0,7]
The assumption that X € C([0,77], V) hence yields that
supseio 1 X — X [lv < supyepo 1 [ Xellv + supiejo m 14 lv < oo (48)
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Moreover, note that

T T

g”(ldv — Po)Ssll vy ds < (IMdv ooy + 1 Pallzo)) g 15[ ow,v) ds

Y (1+ || Pallpy) T
(1-a)

In the next step we combine (45)-(49) with the generalized Gronwall lemma in Chapter 7 in Henry [12]
(see, e.g., Corollary 1.4.6 in [19]) to obtain that for all ¢ € [0, 7] it holds that

(49)

T
ST(l—FHPnHL(V))gS_adS: < OQ.

SuPefo, | Xs — X lv

. TTl—a
< | suPyepo,r 10s — OFflv + 1—a) U (supyepor 1Xslv) [supseom || Xs = Xispn, [|v]
T ‘hn‘le_a n
(1 — Oé) (Supse[O,T} HF(XS)HW) (Supsé[O,T] [HXSHV + ||Os HV]) (50)

T 1/(1—a
+ (SUPse[O,T} HF(XS>HW) g [(Idy — Pn)SsHL(W,V) ds] "B [t ‘F(l —a) T‘ . )[HPTLHL(V)

W (SUD e 0 e 11, ) DXl 22 3) + [l (5o IF (X)) 7] < oo

The proof of Corollary 3.2 is thus completed. O

3.3 Pathwise convergence
Proposition 3.3. Assume the setting in Section 3.1 and assume that limsup,,_, . || Pyl 1) < 00 and
. T n
Hmsup, oo ( [y [[(Idv = P)Ssllnwvy ds + supsepory |05 — O¢llv) = 0. Then
(i) it holds that limsup,,_, ., supsejo 7 | Xs — &7 ||y = 0 and

(ii) it holds that there exists a real number C' € (0,00) such that for all n € N it holds that

sup || X — X lv
s€[0,7T7
(51)

T
S C [ sup ||OS—OQ||V+|hn‘X+ sup HXs_Xl_sjhn||V+f||(IdV_Pn)SsHL(W,V) ds
s€[0,7T7 s€[0,T 0

Proof of Proposition 3.3. Note that the assumption that limsup,, ., supcjo 1 [|Os — O%[|y = 0 and
the assumption that O € C([0, 7], V) imply that

lim SUP;, 0 SupsG[O,T} ||OQHV < SupsG[O,T] ||OS||V + lim SUP;, 0 SupsG[O,T] ||OS - O?HV < 0. (52>

This and the assumption that lim supn_m(foT [(Idy — P)Ssllow,vy ds + supeo 1 [|10s — OF[[v) = 0
yield that

) . TTl—a
hm_)sup SUPselo,7] 10s — OF[lv + 7(1 — a)qj<supse[0,T} ||XsHV) [Supse[O,T] | Xs — XLthn HV}
T |hﬂ|XT1_a n
0o (supsejor 1F(Xs)llw) (subseor I Xslly + 10211,]) (53)

T
+ (SuPse[o,T} 1F(X5)llw) g (v — o) Sl vy ds| = 0.
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Combining this with (52) and the fact that sup,cy [[|Pall2v) + |hn]X] < oo ensures that there exists
a natural number N € N such that

SUPpe{N,N+1,...} SUPse[0,7] 0% lv < o0 (54)
and
. T Tl—a
sup supPsepor) [|0s — O lv + =P (sup,eozy [ Xsllv) [subseory 1 Xs = X(sp, Iv]
ne{N,N+1,..} (1-a)
Y |h,|X T "
W (Supse[o,T} ||F(Xs)||w) (SUpse[O,T] 12Xy + 108 Hv])

T 1/(1—a
+ (SUPse[O,T} HF(XS>HW) g [(Idy — Pn)SsHL(W,V) ds] "B [T ‘F(l —a) T‘ . )[HPTLHL(V)

Y1)
W (supeio r 1 Xsllv + 1) + [l ¥ (supgeio ) 1F(X) lw) ] ]) =1 <oo.
(55)
Moreover, observe that the triangle inequality shows for all ¢ € [0,T], n € N that

sup e o, max{ || X, A7y } < supepo g max{||Xsllv, [ Xellv + [ X — XL[lv }
= sup,ejo) (1 Xsllv + 1K = XLlv) < supyeror [1Xsllv + supgepo q X — AL[lv (56)
< supgepor) | Xsllv + 2 sup,epo g max{ | X lv, |4 v }-

Combining Corollary 3.2 with (54) and the fact that ¥ is non-decreasing hence proves for all n €
{N,N +1,...}, k € NgN (=00, T/n, — 1] that supge( g, [|[Xs — X&'[y < oo and

SUPse(0,(k+1)hn) 1Xs — X lv

. T Tl—a

< SUPse(o,1] HOS - Os HV + mq](supse[o,ﬂ HXSHV) [Supse[O,T} ||X8 - XLSJhn ||V}
Y | [ T (

1
+ W (Supse[O,T} | £ Xs)Hw) (SUPse[o,T} Xl + HO?H\/]) (57)

T Yo
+ (SUpse[o,T] HF(Xs)Hw) { [(Idy — Pn)SsHL(W,V) ds] “Eiq [T }F(l —a) T‘ ! )[HPTLHL(V)
n X Y/(1—a)
W (supseqo r 1 Xsllv + supeio o, 1 Xs = X Mv) + [hal X (suDseio ry 1 (X)) | }
Next let n € {N, N +1,...}. We then claim that for all k& € Ny N [0,7/n,] it holds that
SUDse(0,kh,] 1 Xs — & lv < 1. (58)

We prove (58) by induction on k € NyN[0,7/n,|. Combining (55) and the fact that n € {N, N+1,...}
with the fact that Va € [0,00): E;_,[z] > 1 shows that

supseqop [ Xs = X v = [[Xo = & lv = [[O0 = Ogllv < supyepor 105 = Offlv < 1. (59)
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This proves (58) in the base case k = 0. The induction step Ng N (=00, T/h, — 1] 2k - k+1 €
NN (=00, /h,] is an immediate consequence of (55), (57), and the induction hypothesis. Induction
hence proves (58). Inequality (58), in particular, shows that for all n € {N, N +1,...} it holds that

SUD ¢ [0,max{0,[ T, —ha}] 1 Xs — X' v < 1. (60)

In the next step we combine (60) and the fact that Vn € {N, N +1,...}: sup,io 1 [|OF[[v < 0o with
Corollary 3.2 and (56) to obtain that for all n € {N, N + 1,...} it holds that

SUDsel0,1] 1 Xs — X lv

. YT«
< | SUPseo,1] 105 — OFlv + WW(SUPSQO,T} HXsHV> [Supse[O,T} | Xs — Xislnn, ||V}
T ‘hn‘le—a n
W (Supse[O,T} HF(XS)HW> (Supse[O,T} 12Xl + 11O; ||v]> (61)

T 1/ l—a
+ (SuPse[o,T] HF(XS)HW) of [(Idy — Pn)SsHL(W,V) ds] "Eia [T ‘F(l — ) T‘ ( )[HPnHL(V)
/(1-a)
W (supepoiy [XKully + 1) + hal® (s0paeon |FCE) ) 17

This and the fact that sup,cy [||Pallrv) + [ha|X] < oo imply (51). Moreover, (61), the fact that
SUP,en U|Pn||L(V) + \hn\x] < 00, and (53) prove lim sup,, ., Sup,ejo 7y | Xs — XX||yy = 0. The proof of
Proposition 3.3 is thus completed. O

4 Strong convergence

In this section we accomplish in Theorem 4.6 strong convergence for our approximation scheme.
Before we establish Theorem 4.6, we present in Lemma 4.1, Lemma 4.2, Lemma 4.3, Corollary 4.4,
and Proposition 4.5 a few elementary results on an appropriate convergence concept for random fields.
We employ Corollary 4.4 and Proposition 4.5 in the proof of Theorem 4.6.

4.1 Weakly uniform convergence in probability

Lemma 4.1. Let (2, F,P) be a probability space, let P*: P(2) — [0,00] be the mapping with the
property that for all A € P(Q) it holds that P*(A) = inf({P(B) € [0,1]: (B € F and A C B)}), let
Qe {AeP(Q): P*(A) =1}, and let X,,: Q — RU{o0, —o00}, n € N, be mappings which satisfy for all
w € Q that limsup,,_, . | X,(w)| = 0. Then it holds for alle € (0, 00) thatlim inf,,_,o P*(|X,| < &) = 1.

Proof of Lemma 4.1. Throughout this proof let Y,,: Q — [0, 0], n € N, be the mappings with the
property that for all n € N it holds that

Y,= sup |X,| (62)

meNN[n,c00)

Note that the fact that Vn € N: Y, .; <Y, ensures that for all n € N, ¢ € (0,00) it holds that
{Y, < e} C{Y,i1 < ¢e}. Proposition 1.5.12 in Bogachev [3] and the fact that P*: P(2) — [0, o] is
non-decreasing hence prove for all £ € (0, 00) that

P*(Upen{Y, < }) = liminf P*(Y,, < &) < liminf P*(|X,,| < ¢). (63)

n—oo n—oo
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Moreover, again the fact that P*: P(2) — [0, 00| is non-decreasing shows that for all ¢ € (0, 00) it
holds that

P*(Unen{¥n <e}) =P ({IneN: Y, <e}) =P({3n e N: (Ym € NN [n,00): |Xn| <€)} 61
> P*(Q) = 1. (64

Combining this with (63), the fact that P*: P(Q) — [0, 00| is non-decreasing, and the fact that
P*| 7 = P ensures that for all € € (0, 00) it holds that

1 < P*(Upen{Y, < £}) < liminf P*(|X,| < &) < P*(Q) = P(Q) = 1. (65)
n—oo

This completes proof of Lemma 4.1. O

Lemma 4.2. Let I be a non-empty set, let (Q, F,P) be a probability space, let ¢ € (0,00), and let
X" I xQ — RU{oo,—ox}, n € N, be random fields. Then the following three statements are
equivalent:

(1) It holds for all € € (0,00) that limsup,, . sup,c; P(|X}"| > ¢) = 0.
(i) It holds for all € € (0,00) that liminf, . inf;c; P(| X <e) = 1.
(iti) It holds that limsup,,_, . sup,c; E[min{c, | X?"[}] = 0.
Proof of Lemma 4.2. First, note that Markov’s inequality proves for all € € (0,¢), n € N, i € I that

P(|X7| > ¢) = P(min{c, | XN|} > £) < E[mm{? Rl (66)

This shows that ((i¢7) = (7)). In the next step observe for all £ € (0, 00) that

lim sup sup P(|X["| > ) = limsupsup [1 — P(|X}'| <¢)] = limsup |1 — 12§P(|XZ"\ <eg)

n—oo i€l n—oo i€l n—00 (67)
=1 —liminfinf P(|X]"| < &).
n—oo i€l
This ensures that ((7) < (i4)). It thus remains to prove that ((¢) = (iii)). Note that for all € € (0, 00)
it holds that

lim sup sup E [min{c, | X["|}]
n—oo €]

< limsup sup |1 xn >y min{c, | X7'[}] + limsup sup E[Ljxnr e} min{c, | X}'|}] (68)
icl el

n—o0 n—o0 (3

< climsupsup P(| X['| > ¢) + <.

n—oo i€l
This shows that ((7) = (ii)). The proof of Lemma 4.2 is thus completed. O

Lemma 4.3. Let Q and I be non-empty sets, let p: P(Q2) — [0,00] be a non-decreasing map-
ping, and let X": I x Q@ — R U {oo,—0}, n € N, be mappings. Then it holds for all ¢ €
(0,00), n € N that inf,e; p(| X7 < €) > p(sup;e; | X7 < €) and liminf,, o inf,e; p(| X" < €) >
lim inf,, 0 p(sup;e; | X" < €).

20



Proof of Lemma 4.3. Note that the fact that p: P(£2) — [0, o0] is non-decreasing ensures that for all
neN, jel, ee(0,00) it holds that

p( X5 < ) = plsupie [ X7 < ). (69)

This yields for all n € N, ¢ € (0,00) that inf;e; pu(| X7 <€) > p(sup;e; | X*| < €). This completes
the proof of Lemma 4.3. O

Informally speaking, the following corollary, Corollary 4.4, shows that convergence uniformly in
an index set [ on a measurable set of probability 1 implies convergence in probability uniformly in
the index set. This statement is nontrivial since arbitrary suprema over random variables are, in
general, not random variables.

Corollary 4.4. Let (2, F,P) be a probability space, let Qe {A e F:P(A) =1}, let I be a non-empty
set, and let X™: I x Q — RU {oo, —o0}, n € N, be random fields which satisfy for all w € § that
lim sup,, . sup,c; | X" (w)| = 0. Then it holds for all ¢ € (0,00) that limsup,,_, . sup,c; P(| X} >
g)=0.

Proof of Corollary 4.4. Throughout this proof let P*: P(Q) — [0, oc] be the mapping with the prop-
erty that for all A € P(2) it holds that P*(A) = inf({P(B) € [0,1]: (B € F and A C B)}) and let
Y,: Q = RU{o0, —o0}, n € N, be the mappings with the property that for all n € N, w € Q it holds
that Y, (w) = sup;c; | X7(w)|. Next note that P*(Q) = 1. Combining Lemma 4.1 with the fact that
Yw e Q: limsup, .. |Y,(w)| = 0 hence proves for all £ € (0,00) that liminf, . P*(|Y,| < &) = 1.
This implies for all € € (0, 00) that liminf, . P*(sup,c; | X]| < ¢e) = 1. The fact that P*|r = P and
Lemma 4.3 therefore prove that

liminfinf P(| X'| < &) = liminfinf P*(| X]'| <e) > hmmfIP*(supZG] X <e)=1. (70)

n—oo i€l n—oo i€l
Hence, it holds for all ¢ € (0,00) that liminf, ,. inf;c; P(|X]| < €) = 1. Combining this with
Lemma 4.2 shows that for all ¢ € (0, 00) it holds that limsup,,_, . sup,c; P(|X}*| > ¢) = 0. The proof
of Corollary 4.4 is thus completed. O

Informally speaking, the following proposition, Proposition 4.5, proves for all p € (0,00) that
convergence in probability uniformly in an index set [ together with uniform moment bounds of
the approximations implies for every ¢ € (0,p) Li-convergence uniformly in /. In applications to
stochastic processes the index set I can be a time interval.

Proposition 4.5. Let I be a non-empty set, let (2, F,P) be a probability space, let p € (0,00), let
(V. I1ly) be a separable normed R-vector space, and let X™: IxQ — V, n € Ny, be random fields which
satisfy for all ¢ € (0,00) that limsup,,_,. sup,e; E[||X!'|I},] < oo and limsup,,_,. sup;c; P(|| X)) —
XP|v > €) = 0. Then it holds for all ¢ € (0,p) that limsup,_, . sup,c; E[| X — XP'[|I,] = 0 and
sup,c; B[ X0%] < oo,

Proof of Proposition 4.5. First, observe that, e.g., Lemma 3.10 in [15], the assumption that Ve €
(0,00): limsup,,_, sup;e; P(| X — X|ly > €) = 0, and the assumption that limsup,,_,.. sup,c;
E[||X|}] < oo yield that

supE||| X <su hmmfIE X <limsupsupE||| X} 00. 71
pE[|| X717 ] up I35 ] psup E[[|X7||}] < (71)

el n—oo €1
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Next note that Holders inequality ensures for all ¢ € (0,p), n € N that

SE?E[!|X? - XMIV] = sup (E[ﬂ{llxg_xﬂlva}ﬂX? - Xf“%f] +E[1{||X9_X?IIV<1}||X¢O - in”?/] )
< sup (P(IX? - X7l = 1| (B[IX? - X715) ) + sup E[min{1, X! - X7[¢].
icl icl
(72)
The fact that Va,b € R: |a + b|P < 2P(|a|P + |b|P) together with the triangle inequality hence shows
for all ¢ € (0,p), n € N that

swpE[|IXP ~ X7] < 20sup ([PAIXY — X7y > 1|7 E[IX0I])7)
el (7?))
+20sup ([P(IXY = X7y = D] (E]IX71P1)7) +sup E[min{1, X7 - X7[5)].

Moreover, observe that Lemma 4.2 and the assumption that Ve € (0,00): limsup,,_, . sup;c; P(||X? —
X!'|lv > ¢) = 0 prove that for all ¢ € (0,p) it holds that

lim sup sup E [min{1, | X — X?||{.}] = 0. (74)
n—oo i€l
This, (73), (71), the fact that limsup,,_, . sup;c; P(]| X? — X*|ly > 1) = 0, and the assumption that
limsup,,_, sup,e; E[[|X7|I}/] < oo yield that for all ¢ € (0,p) it holds that

hmsupsupIE[||X0 X% =o. (75)
n—o0 el
Combining this with (71) completes the proof of Proposition 4.5. O

4.2 Main result of this article

Theorem 4.6. Let (H,(-,-)y,||ll;) be a separable R-Hilbert space, let (2, F,P) be a probabil-
ity space, let H C H be a non-empty orthonormal basis of H, let \: H — (0,00) be a func-
tion with the property that infpeg Ny > 0, let A: D(A) C H — H be the linear operator such
that D(A) = {v € H: Y gl M(b,v)u* < oo} and such that for all v € D(A) it holds that
Av =3 —Ab, )b, let (Hy, () s |-l ), 7 € R, be a family of interpolation spaces associated
to —A (see, e.g., Definition 3.5.25 in [19]), let o € [0,1/2], ¢ € [0,1), p € [0,1 — @), 0 € (p,1 — a),
T.0,9 € (0,00), x € (0,0-2=n/at20)] N (0,(e=P/10)], p € [2,00), = € {B € F:P(B) = 1},
O € PQ), F € C(H, H.), 6,0 € MB(H,),B(0,00))), (Hy)uers € M(N,Po(H)), (Pu)ncss
M(N, L(H)), (hn)nen € M(N, (0,00)), (X")pen € M(N,M([0,T] x 2, H,)), let X™: [0,T] x Q — H,,
n € N, and O": [0,T] x Q — H,, n € N, be stochastic processes, let X,0:[0,T] x Q@ — H,
be stochastic processes with continuous sample paths, and assume for all v,w € Hy, t E [0 T],

n €N, weZ that (v, F(v+w))y < ¢(w)lvllf + ellvlly,, + e(w), [F(v) = Fw)l,_, <601+
Wiz, + lwll,) o = wlla,, iminfy, o inf({Ap: b € H\Hy} U {o0}) = oo, Pu(v) = ZbeH <b,U>Hb;
limsup,, .o hm = 0, O"([0,T] x Q) C P,(H), Q = {Vs € [0,7T]: = [Je A R(X,)du +
Osy N{vm € N,s € [0,T]: X} = &[] }ﬂ_,hmsupm_)oosupseOTHO( ) — O (w)|lm, =0,

hmsupm_mosupseOT [llom1%, +f0 exp(f PO, ) du) max{1,|®(O" i )\p/z}dr} < oo, XP =
Jo P € L viop,, Ny <thal -t F(XLy, ) ds+OF, and P(X, = [ye eI F(X,) ds+0y) =
PXP =4 =1. Then
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(i) it holds that Q € F and P(Q) = 1,
(i) it holds for all w € Q that limsup,, . supepo7) | Xe(w) — XP (W), =0,

(111) it holds for every n € N that X™ — O": [0,T] x @ — H, is a stochastic process with continuous
sample paths,

(ZU) it holds that lim SUDPp 00 SUP¢te[0,7] E[HXtHZI?{ + H‘)(th;?{ + SUPge(0,77] HX? o O?H?I} < 00, and
(v) it holds for all q € (0,p) that limsup,,_, ., Supsc(o 7 E[IIX, —x™|%] =0

Proof of Theorem 4.6. Throughout this proof let X, 0: [0,7] x Q — H, be the mappings with the
property that for all ¢ € [0, 7] it holds that X, = 15X, and O; = 15 O, — loa fot =94 F(0) ds, let
(X™)nen, (O™)pen € MI(N, M([0, T] x Q, H,)) be the mappings with the property that for all n € N,
t € [0, 77 it holds that O = 15 O} + 1g P, Oy and

fP N Ly i, <t F(X,, ) ds + OF (76)

let 9,6 € (0,00) be the real numbers given by ¥ = 20 and

5 l[ull?

bem{o0 Pl [1 ] 1),
ueH_o\{0} ~ - EHQ\{O}

flu ||2+219

(892+2||F(0)||§,_a)max{1, sup f}} (77)

uer\{oy Il

and let ¢, P,(H) = [0,00), n € N, and ®,,: P,(H) — [0,00), n € N, be the mappings with the
property that for all n € N, v € P,(H) it holds that ¢,(v) = 2- ¢(v) and ®,(v) = 2- ®(v). Next
observe that the assumption that X,0: [0,7] x Q — H, are stochastic processes with continuous
sample paths and the assumption that Vt € [0, 77: IP’(Xt = fot =94 F(X,) ds + Ot) = 1 ensure that
(Vt e [0,T]: X; = [} " DA F(X,)ds+0,} € Fand P(Vt € [0,T]: X, = [5 94 F(X,)ds+0;) =
1. The assumption that Vn € N, ¢ € [0,7]: P(X} = &}*) = 1 and the assumption that P(Z) = 1
hence yield that Q € F and P(Q) = 1. This establishes (i). In the next step we observe that, e.g.,
Theorem 4.7.6 in [19] proves that for all n € N, ¢ € [0,T], € € (0,1 — o — «) it holds that

$uDycio.11 (8 A Lot try) = SUD,e oy (—5A) € 4y < 1 < 00 (78)
and
/ 1(0ds — P oy ds < / s — Pallittysrt 1 ottt ds
= =)y = Pl [ A ey ds (79

I(=A)"(Ads — Pa)llg gyt ¢
(1—p0o—a—¢) ‘

< [[(=A) " (Idi — Po)ll5 /0 g (orero) g
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This together with the assumption that liminf,, . inf({\,: b € H\H,,} U {o0}) = oo ensures that

limsup sup (/ |(Idg — Mo, ds ) =0. (80)

n—oo t€[0,7]

In addition, the assumption that Vw € Z': limsup,,_, .. supco 1 [|0¢(w) — OF (W) #, = 0 and the fact
that Q C = imply that limsup,, , SUDye(0.7] 10, — Op||g, = 0. Combining this with (78), (80), the
fact that V¢ € [0,7]: X, = [} e®94 F(X,) ds+ Oy, and the fact that limsup,,_,. || Pul £z, = 1 < 00
allows us to apply Proposition 3.3 (with V =H,, W =H_,, T=T,x=x,a=90+a«a, P, =(H,>
v Py(v) € Hy), hyy = hyy F = Fly, € C(Hp,H-p), Sy = (H_o, 2 v — e'v € H,) for ¢t € (0,7,
n € N in the notation of Proposition 3.3) to obtain that lim sup,,_, .. Supe(o 1] X, — )ethHg = 0. This
together with the fact that Yw € Q, t € [0,T], n € N: X;(w) — " (w) = X,;(w) — X (w) proves (ii).
In the next step note that Lemma 2.1 yields for every n € N that X* — O": [0,T] x Q@ — H, is a
stochastic process with continuous sample paths. This establishes (iii). Next observe that Lemma 2.4
implies that for all v,w € H, it holds that

|F@) = F)l},, < Gmax{1, o], v —w|F, + 6 v — w3’ (81)

and .

IF@)13 . < 6max{1, [|v]%"}. (82)
In addition, observe that the assumption that y € (0,(1-a=r)/(14+29)], in particular, assures that
X € [0,(2—2a—2p)/(2+ 3)} Combining this with (81) and (82) enables us to apply Corollary 2.6
(with H = P,(H), (2, F,P) = (Q,F,P), A = (P,(H) v+~ Av € P,(H)) € L(P,(H)), O =
([0, 7] x Q3 (t,w) = Op(w) € Po(H)), Y = ([0,T] x 23 (t,w) = XA (w) € Py(H)), F = (P,(H) >
v PoF(v) € Po(H)) € C(Py(H), Pu(H)), ¢ = o, =Py, p =, a =, p=1p, 0= 0,0 =0,
V=109, x=x,T=T,h=h, p=pforne{meN:h, <1} in the notation of Corollary 2.6) to
obtain that for all n € N with h,, <1 it holds that

H SUD¢e0,1) ||‘)€tn - @?HHHEP(]P;]R)

\/|:1 + (1+|9‘1/2)2+ﬁ‘h |m1n{292 2a—I0x}—2p— (2+19)X:| }_j
0

2

pds

(1/2—¢/2) (1—a—p)2+?

(1+|9‘1/2)2+219 ‘h |2 [min{g,1—a—9x}—p—(1+9)x] T
\/2 [1‘1‘ (1/2—¢/2) (1—a—p)2+27 ]g

p T 7 An U = 2
E |:€2 f.s ¢"(OLthn)d max{l, ‘(I)n(ofthn)‘p/Q}]

2
E |:€pf ¢(0Lujhn)du maX{la |q)(@f3Jhn)‘p/2}} 'p o
(83)

Next observe that the assumption that x € (0, 1—a=p)/1+29)] N (0, (e=)/(149)] ensures that
(l—a—p)—(1+20)x >0  and (o—p)— (1 +)x >0. (84)
This, in turn, proves that
min{o,1 —a—9x} —p— (1+)x=min{(0—p) — (1 +9)x, (1 —a—p) — (1+29)x} >0. (85)

Hence, we obtain for all n € N with h,, < 1 that |h,|2iMel-e=dx}=p=(+9x < 1 Combining this
with (83) proves that for all n € N with h,, <1 it holds that

H SUP¢e(0,7) H‘)E‘tn - @?HHng (P;R)

6 (1+10]/2)2+2? Pl 607, )du )
S \/2 |:1+ (1/2 @/2)(1 — p2+219 / ' |: l-Jhn maX{l |® th )‘ /2}:|
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2/p (86)
ds.




The fact that Vw € Q, t € [0,7], n € N: X (w) = X' (w), OMw) = OF(w), (i), and (iii) hence yield
that for all n € N with h,, <1 it holds that

HsuptE[O,T} HX? - O?HHHLP(P;R)

T T 2/p

9(1_,_‘9‘1/2)24-219 pfs ¢>((’)"u ) du n »

\/2 L+ e e | /0 'E [e e maxd L (O, ) /Q}} * (87)
T T
9(l+‘9‘1/2)2+219 pfs qS(O"u ) du n
- \/2 L+ Gt g | (THEUO ’ o max{l"@(OLthn)|p/2}dSD'
Combining this with the assumption that limsup,, ,. h, = 0 implies that

lim SUPp— 00 H SuptE[O,T] ||X? - O:LHHHLP(P;R) < 0. (88)

This, the assumption that limsup,, .. sup,ejo 7 E[]|O2%] < oo, and the triangle inequality assure
that

lim sup,, o0 SUP;ejo 77 E[IXF (1] < (89)

Next note that (ii) and the fact H, C H continuously ensure that for all w € Q it holds that
lim sup,, , o, SUPeo 7 || Xe(w) = X7 (w)[|# = 0. Combining this with (i) allows us to apply Corollary 4.4
to obtain that for all € € (0, 00) it holds that limsup,, , ., sup,co 7 P([| X: — X}||z > €) = 0. Proposi-
tion 4.5 together with (89) hence ensures that for all ¢ € (0, p) it holds that sup,cjo 7 E[IX:|5] < oo
and limsup,, ., sup;co 7 B[|X; — X7[|%] = 0. Combining this with (88), (89), and the assumption
that Vn € N, t € [0,T]: P(A* = X}') = 1 establishes (iv) and (v). The proof of Theorem 4.6 is thus
completed. O

5 Stochastic Kuramoto-Sivashinsky equations

In this section we establish a few elementary results which, in particular, demonstrate that Theo-
rem 4.6 can be applied to the stochastic K-S equation (3).

5.1 Setting

Let (H, (-, ) u, HHH) = (Lz()‘(O,l);R)> () '>L2(>‘(0,1)§R)> H'HLQ()\(OJ);R))> B € (Y8,%2), T,n € (0,00), k € R,
0 € (Y16,8/2), x € (0,92 — Vs2], & € Hipa, (ex)rez € M(Z, H), (Ae)rez, (br)rez, (be)rez € M(Z,R)
satisfy for all n € N, k € Z that ¢y = [(1)5,;6(0,1)],\(()‘1)73(]1@), €n = [(\/§cos(2n7rx))ze(071)],\(oyl)7B(R),
e p = [(\/5sin(2n7rx))x€(o71)h(oyl)73(R), A\ = 16k*mt —4k?7? 4+, and Zmez(‘bm|2+\gm\2) Im| %1 < o0,
let A: D(A) € H — H be the linear operator such that D(A) = {v € H: Y, |Aelew, v)u|* < 0o}
and such that for all v € D(A) it holds that Av =, _, —Ax(ex, v)mer, let (Hy, () |-l g ), 7 € R,
be a family of interpolation spaces associated to —A (see, e.g., Definition 3.5.25 in [19]), let (2, F,P)
be a probability space with a normal filtration (F).cpo,r, let F € M(Hi 16, H-1/4), B € M(H, H_;),
(hn)nen € M(N, (0,00)), (Pu)nen € M(N, L(H)) satisfy for all v € Hype, n € N that F(v) =
nv — 3(02)’, Bv =", cp(biler, v) g + bple_g, v) i) ex, limsup,_, o hy = 0, Py(v) = >0 (€x, v) gex,
let (2): {[v]agp.8@) € L°(Ao1);R): v e C((0,1),R)} — C((0,1),R) be the function with the property
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that for all v € C((0, 1), R) it holds that [U],\ [VIrg.B@) =0, let (W} )iepo,r) be an Id g-cylindrical (F3)sejo,11-

Wiener process, let X™: [0, T|xQ — P,(H), n € N, and O": [0, T|xQ — P,(H), n € N, be stochastic
processes, and assume for all n € N, ¢ € [0, T] that [O}]p gy = fot P, =4 B dW, and

t
P(A = P e+ [P

(), ”HQJ’_”OTSJhn+Pne|‘5JhTLA§||HQS|I’Ln|7X}F(X[;szhn) dS‘FO?) =1. (90)

5.2 Properties of the nonlinearity

In Lemma 5.2 and Lemma 5.3 below we demonstrate that the function F' in Section 5.1 fulfills
the hypotheses of Theorem 4.6 above. Our proofs of Lemma 5.2 and Lemma 5.3 use the following
well-known lemma.

Lemma 5.1. Assume the setting in Section 5.1 and let v € Hy. Then ||V'||g < 21/4]|21||Hl/4 and

lvliZ,,, < wllalvllm,,-

Proof of Lemma 5.1. Note that Parseval’s identity and integration by parts prove that
2

||U/||H_Z| €k, U H| —Z :Z

kEZ keZ keZ
-y 2k7r/ e_i(z =3 4k e ) ul? = S 427 (ex, ) (91)

/ (o) () (@) da

kEZ kEZ kEZ
< S VE (1687 — 4k 4 ) e, o) ul* = V2 S AT (e, 0)al® = VE 0l
keZ keZ

Moreover, Holder’s inequality shows that

loll, o = S Il 1en, 0) > < /S Hew 0ha Py Sz Pl 1 e, 0) > = [ollllvlla o (92)

kEZ

Combining this and (91) completes the proof of Lemma 5.1. O
The next simple lemma is a slight modification of Lemma 5.7 in Blomker & Jentzen [2].
Lemma 5.2. Assume the setting in Section 5.1 and let v,w € Hy, € € (0,00). Then
(0, Fw+ )y < olld (% + 51+ Ve + e [supaeqo (@] ) + Lol , + Sl + 3w
(93)
Proof of Lemma 5.2. Note that integration by parts yields that
(v, Flo+w))y = (v,nv+w) —5((v+w)*)),

=l w5 [ o)+ ) @)

K 01 94
=n||v!|?{+n<v,w>H+§/0 (v)'(z) [u(2) + w(z)] dx oY

— llol + v, w)y + 8 / (0)'(2) () () d + / (v)'(2) Ju()P dz.
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The Cauchy-Schwartz inequality and the fact that YV, y,r € (0,00): zy < g—j + % therefore prove
that

(v, F(v+w)) g < nllolfy +nllollallwlla + sl o wla + 510wl
2 2
< nllvllz + Fllolle + 3lwls + 2101 +ellvwly + S5 + 2lw?lh (95)

2 2
< Flle + 3llwliy + [5 + T + ellvlf [supaeoq) (@) *] + gllw?|lZ-

Lemma 5.1 and again the fact that V,y,r € (0,00): zy < ;”—i + % hence show that
(v, F(v+w))y

< Sl + 3wl + V262 [ + dlvlallvllm,, + vl [supaeey lw@) ] + 3wl

2 96
< ol + Bl + w4 T + 3ol + Slolih, , + ol fsupaeon (@) ] + 22l ©F)
Ii4
= ol (% + 501+ e + 2 [sup,e [w(@)?]) + 2ol + Sl + Hw?l
The proof of Lemma 5.2 is thus completed. O
Lemma 5.3. Assume the setting in Section 5.1 and let v,w € Hijs. Then
|1F(v) = F(w)|u_,,,
[ullZair , m) (97)
<04 ml | sup = (T foll,,, + (] o —wlg,,, < oo
( u€H, /16\{0} ||u||%{1/16 ( Hi/16 H1/16) Hy16
Proof of Lemma 5.3. First, note that
lo = wlla_,,, < 1A Ne@llv = wlla,,, =070 = wlla, ., (98)
<y (L ollg, o+ o, ) 10 = 0l
Next observe that for all u € H it holds that
(—A) () = ((=A) )" (99)
This and Lemma 5.1 prove that
10 = @) [y, = 1(=A) (W) = (@) = [(=A) [0 = w?]))||u
< 2PH|(=A) 0 = Py, = 270 — w0l < 20 4wl paga @) [0 = wlpag . ®)
2
[ull 24030y )
e i st [ P L (100)
[U€H1/16\{0} ||u||H1/16 Hite e
’|UH%4(A R)
< sup  —— (14 [|o| + |Jw v—w|| :
[uEHl/w\{O} HUH%{l/la ( H Hy/16 H HH1/16) H Hy/16
This together with (98) shows that
1F@) = Fw)llu_,,, = [l —w) = § (") = @), ,
|| 2\/ 2\/
< UHU - w||H_1/4 + TH(U ) - (UJ ) ||H_1/4 (101>

||u||%4(>\(071);R)
SUp
“€H1/16\{0} HuHHl/la

: <n“/”+ k|

D L+ ol + Il ) o = wly, -
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Next observe that the Sobolev embedding theorem ensures that

||u||%4(>\(071);R)

sup - (102)
U€H1/16\{0} ||u||H1/16
Combining this with (101) completes the proof of Lemma 5.3. O

5.3 Fernique’s theorem

Lemma 5.4. Let (V,|[-||;,) be a separable R-Banach space, let (2, F,P) be a probability space, let
X:Q — V be a mapping which satisfies that for every ¢ € V' it holds that ¢ o X: 2 — R is a
centered Gaussian random variable, and let v € (0,00) satisfy that P(|| X |3 > r) < 10. Then

GO

Proof of Lemma 5.4. Note that (103) is an immediate consequence of the fact that P(||X||3 < r) >
9/10 and of Fernique’s theorem (see, e.g., Theorem 8.2.1 in Stroock [32]). The proof of Lemma 5.4 is
thus completed. O

5.4 Properties of the stochastic convolution process

Lemma 5.5. Assume the setting in Section 5.1 and let (ay)rez € M(Z,R), S € Po(Z). Then

E Z ag f(f €_>\k(t_s) (bk d<€k, W5>H + ék d<€_k, W5>H )

kesS

2 2 712
]SZ'G’“M Flahl o)

A
kes k

Proof of Lemma 5.5. Throughout this proof let S € Py(Z) be the set given by S = {—k: k € S}.
Next note that Itd’s isometry proves that
2]

r 2
=E||> ax by fot e M=) dley, W) i + Y ay, b fot e M=) dle i, W) o ]
kes

E|| S ay f; e =) (b dlex, We) py + b de—, W)y )

kesS

kesS

kes kes
- (105)

=E Z (ak b +a_ kb )f —Ak(t—s) d<€k>Ws>H+ Z ay, by, f(; e Ak(t=s) d<6k,W5>H

kESMS LTS
2
+ 3 a by fot e M=) dle, W)y Z lag by, + a_y b_ k‘2/ —2Ak(t-5) g
HENS kesns

+ Z |akbk|2/ —2A(t=s) ds + Z ‘CL kb k‘2/ “2M(t9) g

keS\S keS\S

i 2
=E Z ag bk f(f 6_)‘k(t_5) <€k> > + ZCL kb kf 6_)‘ K(t=s) d<€k,W3>H ]
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The fact that Vz,y € R: |z + y|* < 222 + 29? hence ensures that

E ' Z ag f(f G_Ak(t_s) (bk d(ek, WS)H + Ek d<6_k, WS)H )
kesS

|

|ag by + a_i b_g)? |ay, by |? la_y, bp|?
< mmr TR
D D Dl AP Dl (106)
€S\S keS\S
|ag, bi)? + |a_x b_i|? |y, by |? la_y, by
<> " DD vk Dl v
keSNS keS\S keS\S

This yields that

2
E Z ag f(f G_Ak(t_s) (bk d<€k, W8>H + Bk d<6_k, W8>H ) ]
kesS
|akbk ‘CL kb k‘ \akbk ‘CL kb k‘
<> + 2 + 2 + 2 (107)
keSS keSS keS\S Ak keS\S
Z \akbk Z \akbk Z |akbk Z |akbk|2 Z ‘akka—f“akka
kesSNS kesSnS keS\S keS\S kesS
The proof of Lemma 5.5 is thus completed. O

Lemma 5.6. Assume the setting in Section 5.1, let p € (Y/8,00),t € [0,T], n € N, and letY: Q — R
be a standard normal random variable. Then

N o [~ max{[br ¥, 1} (Jbef2 + [Bef2) ]
<E[SUpme(0,1) |OF (2))] D < V10 (E[)Y]])” [Z ] (108)

k=—n A
| sup ({sup,eqo [0(@)]: [0 € C((0,1),R) and [olbwosqonz < 1] })| < oo
Proof of Lemma 5.6. First, note that Jensen’s inequality proves that
E [sup, (o |07 (@) ]
< [sup ({supscion) [o(@)]: [0 € €0, 1) B) and [olhwangons < 11 })] B[O snone)

< [sup({supaen) @)]: o € C0.1).B) and [olhwesons < 1)) B[O mmonm])
(109)

Moreover, observe that

ol T/ [

|=E /01 |g(x)\pdx+/ol 01 ‘O—?'f)__y%iyﬂpdxdy]
1 . E[l0r(@) - 0pw)] )"
—E[mp]/o (E[@@)ﬂ) dz + E[|Y]7] // |x_y‘l—+ﬁp dz dy.

29

(110)




Next note that Lemma 5.5 ensures that for all z € (0, 1) it holds that

n 5 2
10 @)P| =B = ealw) fy e (bedlew, Wahy + b dle-. WS>H)' ]
k=—n
e Tl (111)
Z i ()] [1bx]* + |Bx]?] <9 Z \bk\2+|bk|2
Ak
k=—n k=—n
This yields that
~ p/2
1 o bl
m(x)]? < 9P/ kL TR
/0 (E[lor@r])" dr <2 L;n x (112)
Moreover, Lemma 5.5 proves that for all z,y € (0,1) it holds that
E[|07(z) - 07 (4)F]
n 5 2
kZ len(x) — ex(y)] fot e =) (by e, W)y + be d{e—e, W)y ) ] (113)

¢ 3 o) sl bl + o) — )P bl

k=—n

In addition, the assumption that 8 < 1/2 and the fact that Vz,y € R: max{]sin(z)—sin(y)|, | cos(z)—
cos(y)|} < |z — y| ensure for all x,y € (0,1), k € Z that

lex(2) — ex(y)]* < 2max{| sin(2krz) — sin(2kmy)|*, | cos(2krz) — cos(2kmy)|*}

114
< 2% max{| sin(2kmz) — sin(2kmy)|*’, | cos(2kmz) — cos(2kmy)| "} < 2° kx| |z — y[*. (114)
Combining this with (113) proves for all z,y € (0, 1) that
n n [k (Jbe]” + i
E[|07(x) - Op)F] < 2o — g1t 3 T " ) (115)
k=—n
This and the assumption that Sp > 1 yield that
p/2
E||0z () - 0r()?))
/ / PR drdy
~ q P/2
: k|2 ([br]* + [bg[? Lot
k o Jo

Lk=—n

¥ (Jbif2 + [5?) ]
Ak

S 2317/2

Lk=—n
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Combining (110), (112), and the fact that Va,y € R: |z +y|7* < |z”” + |y|** hence shows that

Gl
< E[vP))” W[i I+ P ”

k=—n

+ 2317/2

A\ (117)

k=—n

zn: kﬁ4ﬁ(bk2+5k2>r/z

n 4 2 172y
< VIO (E[[YP])" [Z maxc{|kr|*, 1} (|be ]2 + [ )]

A
k=—n k

Next observe that the Sobolev embedding theorem and the assumption that Sp > 1 ensure that

sup ({up,c(o) [v(@)]: [v € C((0,1),R) and [[ollwosqonz < 1] }) < oc. (118)
Combining this with (109) and (117) establishes (108 ) The proof of Lemma 5.6 is thus completed. O
Lemma 5.7. Let a € (0,00), x,r € [0,00). Then " < a~"(|r| + 1)!e™.
Proof of Lemma 5.7. Note that
[r]1+1 1 [r]1+1 r
([rjs+1)! ([rjs+1)! ([r]a+1)!
The proof of Lemma 5.7 is thus completed. O
Corollary 5.8. Assume the setting in Section 5.1 and let ¢, & € M(B(H,),B(]0,00))), p € (}/8,00),
. 4
e € (0,00) satisfy for all v € Hy that ¢(v) = 2 + 5 [1 + 1> + e [sup,eqy [v(2)?], @(v) = Z|lv||F +
vl and
-1
e < ‘7200 5T {max{l > sl £l 1}(‘bk‘2+|bk| )H
ke, (120)

[sup ({supscio [0(@)]: o € C(0.1).B) and [olhwssonz <1 })]

Then it holds that limsup,, . sup,eio 7 E[[|OF + Pre¢|}] < 0o and

T T
limsupE[/ exp (qub(Othm + PmeLthmAf) du) max{ ,
0 r

m—o0

(OF,, + Pac e A0) | < .
(121)

Proof of Corollary 5.8. First, note that Markov’s inequality, e.g., Lemma 4.7 in [14], Lemma 5.6, and
(120) imply for all m € N, ¢t € [0, 7] that

o 1
P (Sque(o,l) OF (=) = 72pTe )

< 72pT5E[supze(0,1) \@(x)ﬂ

2
< 720p°Te | sup ({sup,e(o) [0(@)]: [0 € C((0,1),R) and [ullwosqonm < 1]})]

‘ [ i max{k7r4ﬁ,1}(bk2+5k|2):| < L

(122)

A — 10°
k=—m F
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Lemma 5.4 hence shows that for all m € N, t € [0, 7] it holds that

E[exp <4pT5{supze(071) \g(x)ﬁ})} < 13. (123)

Moreover, Holders inequality ensures for all » € [0, T], m € N that

E[exp (jpp¢< L T Peltimae) du) max{l, @ ( e PmeLrJhmAé-)}p/Q}:|

SE{eXp(fpgb(OﬁJh —|—PmeLthmA§) du) max{l, O T +Pm€LTJhT”A§)‘p/2}} (124)
) . m

T
EZVAE%“p(f2p¢“9ﬁh  Poclhote) du) | E[1-+ 00, + Pacttint9)]],
0 m m
Next note that the fact that Va,y € R: (z + y)? < 222 + 2y? yields that for all m € N it holds that
T
E [exp <f 2p (O, + Prelmmie) du)}
0 m

T
=E {exp (f 3pn + %[1 + 1/e)* + 2p€{supm€(0,1) ‘Oth + PmeL“JhmAf(x)‘z} du)]
0 m

125
pTr* 2 T lulp,, A 2 ( )
<exp( 3pT'n + Fg=[1 4 1/<]* + 4pe [ {Spre(o,n | Petihm e (1)) }du
0 E—

T
.E{exp (of 4p5{supm€(0,1) ‘O%hm(x)F} du)} )

In addition, observe that the triangle inequality and the fact that Vz,y € R, a € [1,00): |z + y|* <
2071 x]® 4 2971 y|* show for all r € [0,T], m € N that

B|B(O,, + Paele )]

=E ‘gHOﬁEJhm

B[ 4 3O, + o)

" hm,

)
. . . A~112D 1 m r A~\21(2p
<E|Z|Of,,, + Puet ] + 5 [ (O, + Puel™rmde) HH]

[ P m r 2 m r 4
<E[5{s00eci01) [0, + P 6@ | + e {s1pscin) | O, + Pue i e(a)| "}
< 22p—2np{supre(0’l) ‘Pme\_TJhmAS(x”QP} + 23p—2{supx€(071) ‘Pm€\.TJhmA€(x)|4p}

_ m 2 — m 4
+E[22p 27]p{supx€(0,l) ‘OLrJhm(x)} p} +2% 2{SUPIG(OJ) ‘Omhm(x)‘ pH :

(126)
Lemma 5.7 hence proves for all » € [0,T], m € N that
E[|®(O,,, + Puel )|
< 2272 L up, ) |Pre ™ A (@) 7} + 2972 sup,e ) [ Puel i A(@) ) (127)

2p—2,.p ! 3p—2 | m
+ B[ (S + S ) e (Te{ s 100, @} )
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Combining this with (124), (125), and the fact that V,y € [0,00): v/ +y < /2 + /y ensures that
for all m € N it holds that

T
E[/ eXP(fPCb( luln, T P eliim4g) du) max{ @0, + pmetrjhmAg)‘Ph} dr}
0

T
< exp (@ + 1%[1 + 12+ 2p50f [SUpme(o,l) ‘PmeL“JhmAﬁ(x)}z] du)

T 2
: \/IE {exp (f dpe {SUPxe(o,n ‘OﬁJh (2)] }du)]
0 — Whm
T
([ vt {sup i [P A} 27 {supc Pl A ) dr
D ! m 2
/ \/ 1 4(1|§’_J[}g—|:1 2(po?2>{;;;|)21)> E[exp <4pT5{supxe(0,l) ‘(’)mhm (2)| })} dr).
Next note that, e.g., Lemma 2.22 in Cox et al. [5] and (123) show that for all m € N it holds that
2
E {exp <f 4p<€{supxe 0.1) ‘O e ]n, (z)| } du)]
I m 2
< T ), E[exp <4pT€{supre(0,1) }OLthm(as)} })] du < 13.
Combining (128) with (123) hence shows for all m € N that
r p/2
E[/ exp (fp ¢( (ufn, T PmeL“JhmAf) du) max{ , (Ofﬁjh + Pme“"JhmAf)‘ }dr]
0 m
T
< \/ﬁexp(@ + %[1 + 1?4+ 2pe [ {supme(o’l) \PmeL“JhmAﬂx)P} du)
. ° (130)
(1 [ 2 {supcon |Pac A )+ 207 s [P ()
0
lpl1+1)! ([2p] i 4+1)!
+ T\/13 < 4|pTe|P + 2P+§pT52p)) :

Moreover, the Sobolev embedding theorem implies that

(128)

(129)

SUP({SUPxe(o,l) lv(2)]: [v € Hiy and [ol[a,,s < 1] }) < 00

(131)
This yields for all s € [0,7], m € N that
SUPze(0,1) |M($)|
< [sup({supxe(m) lu(z)|: [v € Hys and [vllar,,, < 1}})] ]|PmesA§HH1/4 (132)
< [Sup<{ SUD,e(01) [2(7)]: [v € Hyyy and vz, < 1}})] 1€]] 1,4 < 00
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Combining this with (130) implies that

T T
limsupE[/ exp (fp¢(OﬁJhm + PmeLthmAf) du) max{ ,
0 r

m—o0

(O + b2 Y] <o
(133)
In the next step observe that Lemma 5.7 and (123) prove that for all m € N, s € [0, 7] it holds that

E[IO215] < | sup,eo |02 (@)F| < U22LENE exp(4pTe{sup,e o [0 (@) })]

< 13(p/21+1)!
— 2P‘pT5‘P/2 :

IN

(134)

The triangle inequality and the fact that Vo, y € R: |z + y[P < 2P~ !|z|P 4+ 2P~ !|y|P hence show that

limsup sup E[[|OF + Pe**¢|h] < 2p_llimsup( sup E[|O7|[%] + sup ||y e“’A§Hp)
(135)

m—o00  s€[0,7) m—00 s€[0,T] s€[0,T]

13 2 1)!
< BURD L gr e, < oo

Combining this with (133) completes the proof of Corollary 5.8. O

Lemma 5.9. Assume the setting in Section 5.1, let p € [2,00), n € N, € € [0,8/2— p), let O: [0,T] x
Q0 — H, be a stochastic process, and assume for allt € [0,T] that [O]p gy = f(f et=94 BdW,. Then

" )7 (B—20—20) ] /2 N
2up 100 = Ofllovany < [Pt | IBllustans ™ (136)
S El

Proof of Lemma 5.9. First, observe that the Burkholder-Davis-Gundy type inequality in Lemma 7.7
in Da Prato & Zabczyk [7] implies that for all ¢ € [0, 77 it holds that

t
10 — Ol o,y = f (Idy — By) e BdWw,

Lr(P;Hy)

t
< {Q [0 = P e By,

$r2 (137)

t v
po-1) | |12 — P) et}
< {p SN Bl s b ) { |(dd — Py e HL(H(L?—I)/Q’HQ) ds]

Next note that, e.g., Theorem 4.7.6 in [19] proves for all ¢ € [0, 7] that

t
. t s)A||2 . 2 (t—s)A |12
/ H (Idx HL (H(g—1)/2,Ho) ds S/0 [1dm P”||L(HQ+E,HQ) le HL(H(ﬁ_U/Q,HW) ds
= [[(=A)=(Idy — P) 1) / [(—A)erer =D sy 3 o ds (138)
< \)\n+1‘_2€/ Rlerer IR g5 < —_86 A
B 0 T (B-20-2¢)
This together with (137) yields that for all £ € [0, 77 it holds that

10~ Ofllovemny < [P ] ™ 13 - (139)
t t 1lcP(PHp) = 2(B—20—2¢) HS(HHpg 1)2) 0 -

The proof of Lemma 5.9 is thus completed. O
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5.5 Strong convergence

Corollary 5.10. Assume the setting in Section 5.1 and let X: [0,T] x Q@ — H, be a stochastic
process with continuous sample paths which satisfies for all t € [0,T] that [X,lppmy = [e€ +

J& et =94 F(X,) dslp i) + f =4 BdW,. Then it holds for all p € (0,00) that

limsup sup E[||X; — &[] = 0. (140)
n—oo  t€[0,7)
Proof of Corollary 5.10. Throughout this proof let ¢, ® € M(B(H,),B([0,0))), € € (0,6/2 — )
p,v € (0,00), ¢ € (max{p, /s, 4/}, 00) satisfy for all v € H; that ¢(v ) Mop [+ Y+
Y [suPseon) [2(2)1*], 2(v) = FvllE + §llv? %, and
) —1
Y < ey {max{l, D max{lkwl‘*ﬁ&i(bu%bk2)}}
keZ (141)

[sup ({suprcion Io@)]: [o € C((0,1).B) and [ulwsagons <1 })]
Next note that Lemma 5.2 implies that for all v,w € H; it holds that
(v, F(v+w))y < d(w)l|vllF + 5llvllE,,, + 2(w). (142)
Moreover, Lemma 5.3 proves that for all v,w € H; it holds that F' € C(Hl/lﬁ, H_1/4) and

1F(0) = F(w)lla_,

§<W“+mw

In the next step observe that the Burkholder-Davis-Gundy type inequality in Lemma 7.7 in Da Prato
& Zabcezyk [7] shows that for all n € N, t1, ¢, € [0,T] with ¢; < t5 it holds that

+

[ 4(A0,1)iR (143)
S I T R—

UGHI/I()\{O} || ||H1/l6

])O+Wﬂmm+wwmm)m—wmmw<m.

t1 to 2
/ P, e=9)4 B aw, — / P, 294 B qw,
0 0

t t
/ 1 et=9A Baw, — / ’ 2794 B qw,
0 0 Lq(P§HQ)

to t1
q(q—1) /t et BH?LIS(H,HQ) ds +q(q —1) /0 (et =4 — 6<t2_8)A>BHiIS(H,HQ) ds
1

<qlq- 1)||BH?{S(H,H(B,1)/2)
to t1
. |:/t1 He(tz s AHL(H o) d8+/0 H€(t1_8)A(IdH _ elt2—t1) )HL(H ) ds| .

Therefore, e.g., Theorem 4.7.6 in [19] and, e.g., Lemma 4.7.7 in [19] imply that for all n € N,

La(P;H,)
2

(144)

IN
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t1,to € [0, 7] with t; < t5 it holds that

+

t1 to 2
/ P, e=)4 B aw, — / P, el2=9)4 B qw,
0 0

t t
/ 1 eM =94 B aw, — / 2 e2=5)4 B qw,
0 0 La(P;Hy)

l2
< qlq— 1)HB||%IS(H,H(571)/2) {/t [(—A)e =072 e(tz—s)AHi(H) ds
1
t1
A A Ay e ) o

to t1
< 4(a = DIBl sy, ) [/ (ty — )71 ds +/ (ty — 5)P7172e72) (4, — 1)) ds]

t1 0
e e
sl (6 - 20) (8 — 20— 2¢)
- 2q(q — 1)HBH%{s(H,H(B_l)/Q)T(ﬁ_%_%)(tz — )%
- (8 — 20— 2¢)

Combining this with the Kolmogorov-Chentsov theorem and the fact that ge > 1 yields that there
exist stochastic processes O: [0,T] x Q@ — H, and O": [0,T] x Q — P,(H), n € N, with continuous
sample paths which satisfy for alln € N, ¢ € [0, T] that [O]p gy = f(f =4 B dW, and [0 sy =
fot P, =94 B dW,. Next observe that Lemma 5.9 proves that for all n € N it holds that

La(P;H,)
2

An -1 T(B*2Q*2€) 1/2 _
ts[%% 10: = OF 2o esmr,) < q(q2(ﬁ)—2g—2a) ] 1Bl sy n " (146)
€10,

This, the fact that O: [0,7] x Q@ — H, and O": [0,T] x Q — P,(H), n € N, are stochastic processes
with continuous sample paths, (145), and Corollary 2.11 in Cox et al. [6] (with T =T, p=g¢q, § = ¢,
OV = {5F € [0,00): k € NoN [0, NI}, (B, |l p) = (Ho, Il g,), YV = ([0, T] x 23 (t,w) = ON(w) €

H,),Y"=0,a=0,e=c¢/2for N € Nin the notation of Corollary 2.11 in Cox et al. [6]) ensure that

sup [ n(2=Y4) < 00. (147)
neN L1(P;R)

Lemma 3.21 in [15] (cf., e.g., Theorem 7.12 in Graham & Talay [9] and Lemma 2.1 in Kloeden &
Neuenkirch [24]) together with the fact that ¢/2 — /g > 1/¢ hence yields that

sup [0, — O}l

te[0,T

P(limsup sup |05 — O \u, = 0) = 1. (148)

n—oo  s€[0,T

In the next step observe that for all n € N, ¢ € [0, 7] it holds that

1(dy = Po) e¢llm, < (=4 0dm — P)lloan 1€l = P27 1€ N w0 < 08 M -
(149)
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Combining this with (148) proves that

P(limsup sup [[(O, + e*4¢) — (O" + P.e*€)|,, = O) = 1. (150)
n—oo  s€[0,7) ¢

Moreover, note that the fact that Vn € N, ¢t € [0,T]: P(O} = OF) = 1 and (90) ensure that for all
n €N, t €[0,7] it holds that

Lslhn

t
n __ tA (t—s)A ~ n An\
(X = Pe E+T e L o, et it F (X ) ds+0;) = 1. (151)

In addition, Corollary 5.8, (141), and again the fact that Vn € N, t € [0,T]: P(O} = OF) = 1 show
that

T T B )
ﬁmSUPEV exp (fqeﬁ(offuhm + PyeltlimAc) dU) max{l, (0, + PmeLrJhmAg)}qﬁ} dr]
0 T

m—00

+limsup sup E[||O" + Pe*¢|%] < oo.

m—o0  s€[0,T

(152)
Combining (142)—-(143), (150)—(152), the fact that p € (0,¢q), the fact that Vt € [0,7]: P(X; =
[ et=4 F(X,)ds + O, + e4¢) = 1, and Item (v) in Theorem 4.6 (with H = {e, € H: k € Z},
a =11, ¢ =12 p=1f16, 0 =0, 0 = 0" + |5l [SUDyen, o\ 10y a0y Iul, ] 0 =1, p = g,
F=F ¢=¢ &= H,={e, e H: k € {-n,1-n,....,n—1,n}}, hy = hy, A" = ([0,T] x
Q> (wt) = X'(w) € Hy), O" = ([0,T] x Q > (t,w) — (OMw) + Pe¢) € H,)), X = X,
O = ([0,T] x Q> (t,w) = (Ox(w) + e¢) € H,), ¢ = p for n € N in the notation of Theorem 4.6)
completes the proof of Corollary 5.10. O
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