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TENSOR FEM FOR SPECTRAL FRACTIONAL DIFFUSION∗

LEHEL BANJAI† , JENS M. MELENK‡ , RICARDO H. NOCHETTO§ , ENRIQUE

OTÁROLA¶, ABNER J. SALGADO‖, AND CHRISTOPH SCHWAB∗∗

Abstract. We design and analyze several Finite Element Methods (FEMs) applied to the
Caffarelli-Silvestre extension that localizes the fractional powers of symmetric, coercive, linear elliptic
operators in bounded domains with Dirichlet boundary conditions. We consider open, bounded,
polytopal but not necessarily convex domains Ω ⊂ Rd with d = 1, 2. For the solution to the
Caffarelli-Silvestre extension, we establish analytic regularity with respect to the extended variable
y ∈ (0,∞). Specifically, the solution belongs to countably normed, power–exponentially weighted
Bochner spaces of analytic functions with respect to y, taking values in corner-weighted Kondat’ev
type Sobolev spaces in Ω. In Ω ⊂ R2, we discretize with continuous, piecewise linear, Lagrangian
FEM (P1-FEM) with mesh refinement near corners, and prove that first order convergence rate is
attained for compatible data f ∈ H1−s(Ω) with 0 < s < 1 denoting the fractional power.

We also prove that tensorization of a P1-FEM in Ω with a suitable hp-FEM in the extended
variable achieves log-linear complexity with respect to NΩ, the number of degrees of freedom in the
domain Ω. In addition, we propose a novel, sparse tensor product FEM based on a multilevel P1-
FEM in Ω and on a P1-FEM on radical–geometric meshes in the extended variable. We prove that
this approach also achieves log-linear complexity with respect to NΩ. Finally, under the stronger
assumption that the data be analytic in Ω, and without compatibility at ∂Ω, we establish exponential
rates of convergence of hp-FEM for spectral fractional diffusion operators in energy norm. This is
achieved by a combined tensor product hp-FEM for the Caffarelli-Silvestre extension in the trun-
cated cylinder Ω × (0, Y ) with anisotropic geometric meshes that are refined towards ∂Ω. We also
report numerical experiments for model problems which confirm the theoretical results. We indicate
several extensions and generalizations of the proposed methods to other problem classes and to other
boundary conditions on ∂Ω.

Key words. Fractional diffusion, nonlocal operators, weighted Sobolev spaces, regularity esti-
mates, finite elements, anisotropic hp–refinement, corner refinement, sparse grids, exponential con-
vergence.
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1. Introduction. We are interested in the design and analysis of a variety of effi-
cient numerical techniques to solve problems involving certain fractional powers of the
linear, elliptic, self-adjoint, second order, differential operator Lw = −div(A∇w)+cw,
supplemented with homogeneous Dirichlet boundary conditions. The coefficient A ∈
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L∞(Ω,GL(Rd)) is symmetric and uniformly positive definite and 0 ≤ c ∈ L∞(Ω,R)
(additional regularity requirements will be imposed in the course of our convergence
rate analysis ahead). We denote by Ω a bounded domain of Rd (d = 1, 2), with Lips-
chitz boundary ∂Ω and further properties imposed as required: the FEM convergence
theory in Section 5 will focus on polygonal domains Ω ⊂ R2, the hp-FEM results in
Section 7 require analytic ∂Ω.

The Dirichlet problem for the fractional Laplacian is as follows: Given a function
f and s ∈ (0, 1), we seek u such that

Lsu = f in Ω . (1.1)

An essential difficulty in the analysis of (1.1) and in the design of efficient numer-
ical methods for this problem is that Ls is a nonlocal operator [15, 16, 17, 19, 36]. In
the case of the Dirichlet Laplacian L = −∆, Caffarelli and Silvestre in [17] localize
it by using a nonuniformly elliptic PDE posed in one more spatial dimension. They
showed that any power s ∈ (0, 1) of the fractional Laplacian in Rd can be realized as
the Dirichlet-to-Neumann map of an extension to the upper half-space Rd+1

+ . This
result was extended by Cabré and Tan [16] and by Stinga and Torrea [63] to bounded
domains Ω and more general operators, thereby obtaining an extension posed on the
semi–infinite cylinder C := Ω × (0,∞); we also refer to [19]. This extension is the
following local boundary value problem





LU = −div (yαA∇U ) + cyαU = 0 in C,
U = 0 on ∂LC,
∂ναU = dsf on Ω× {0},

(1.2)

where A = diag{A, 1} ∈ L∞(C̄,GL(Rd+1)), ∂LC := ∂Ω × (0,∞) signifies the lateral
boundary of C, ds := 21−2sΓ(1 − s)/Γ(s) is a positive normalization constant and
the parameter α is defined as α = 1 − 2s ∈ (−1, 1) [17, 63]. The so–called conormal
exterior derivative of U at Ω× {0} is

∂ναU = − lim
y→0+

yαUy. (1.3)

We shall refer to y as the extended variable and to the dimension d + 1 in Rd+1
+ the

extended dimension of problem (1.2). Throughout the text, points x ∈ C will be
written as x = (x′, y) with x′ ∈ Ω and y > 0. The limit in (1.3) must be understood
in the distributional sense [16, 17, 63]. With the extension U at hand, the fractional
powers of L in (1.1) and the Dirichlet-to-Neumann operator of problem (1.2) are
related by

dsLsu = ∂ναU in Ω . (1.4)

In [48] the extension problem (1.2) was first used as a way to obtain a numerical
technique to approximate the solution to (1.1). A piecewise linear finite element
method (P1-FEM) was proposed and analyzed. In this work, we extend the results of
[48] in several directions:
a) In Theorem 5.10, we generalize the error analysis of [48], based on the localization

of Ls given by (1.2), to nonconvex polygonal domains Ω ⊂ R2, under the require-
ment of Lipschitz regularity in Ω for A and c, and for f ∈ H1−s(Ω) (see (2.2)
ahead).
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b) In Theorem 4.7 we prove, again under Lipschitz regularity in Ω for A and c,
weighted H2 (with respect to the extended variable y) regularity estimates for the
solution U of (1.2). We use these to propose a novel, sparse tensor product P1-
FEM in C which is realized by invoking (in parallel) O(logNΩ) many instances of
anisotropic tensor product P1-FEM in C. We prove, in Theorem 5.13, that, when
the base of the cylinder C is a polygonal domain Ω ⊂ R2, this approach yields a
method with O(NΩ logNΩ) degrees of freedom realizing the (optimal) asymptotic

convergence rate of N−1/2
Ω for f ∈ H1−s(Ω).

c) We show, in Theorem 5.16, that a full tensor product approach of an hp-FEM in
the extended variable y with P1-FEM in Ω yields the same rate. To achieve this,
we establish weighted analytic regularity of U with respect to the extended variable
y, in terms of countably normed weighted Bochner-Sobolev spaces. This extends,
in the case d = 2, recent work [40] to a general diffusion operator L in (1.1) and to
nonconvex, polygonal domains, under the requirement of Lipschitz regularity in Ω
for A and c.

d) We propose in Section 6 a novel diagonalization technique which decouples the
degrees of freedom introduced by a Galerkin (semi-)discretization in the extended
variable. It reduces the y-semidiscrete Caffarelli-Stinga extension to the solution
of independent, singularly perturbed second order reaction-diffusion equations in
Ω. This decoupling allows us to establish exponential convergence for analytic
data f without boundary compatibility as discussed in the following item e). The
diagonalization also permits to block-diagonalize the stiffness matrix of the fully
discrete problem with corresponding benefits for the solver complexity of the linear
system of equations.

e) We establish an exponential convergence rate (7.7) of a local hp-FEM for the
fractional differential operator L in (1.2). This requires, however, the data A, c
and f to be analytic in Ω̄ and the boundary ∂Ω to be analytic as well. Here, no
boundary compatibility of f at ∂Ω is required. For brevity of exposition, we detail
the mathematical argument in intervals Ω ⊂ R1 and in bounded domains Ω ⊂ R2

with analytic boundary ∂Ω, and for constant coefficients A and c, and only outline
the necessary extensions, with references, for polygons Ω ⊂ R2; see Theorems 7.3,
7.7 and Remark 7.8.

f) We present numerical experiments in each of the previous cases which illustrate
our results, and indicate their sharpness.

g) We indicate how the presently developed discretizations and error bounds extend
in several directions, in particular to three dimensional polyhedral domains Ω, to
Neumann or mixed Dirichlet-Neumann boundary conditions on ∂Ω, etc.

To close the introduction, we comment on other numerical approaches to frac-
tional PDEs. In addition to [48], numerical schemes that deal with spectral fractional
powers of elliptic operators have been proposed in [40] and [13]. The very recent
work [40] adopts the same Galerkin framework as [48] and the present article and,
independently, proposes to use high order discretizations in the extended variable to
exploit analyticity. The starting point of [13] is the so-called Balakrishnan formula, a
contour integral representation of the inverse L−s. Upon discretizing the integral by
a suitable quadrature formula, the numerical scheme of [13] results in a collection of
(decoupled) singularly perturbed reaction diffusion problems in Ω. This connects [13]
with our approach in Section 7. However, the decoupled reaction diffusion problems
in Ω which arise in our approach result from a Galerkin discretization in the extended
variable. For the integral definition of the fractional Laplacian in several dimensions
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we mention, in particular, the analysis of [2, 24]. We refer the reader to [12] for a
detailed account of all the approaches mentioned above.

2. Notation and preliminaries. We adopt the notation of [48, 52]: For Y > 0
the truncated cylinder with base Ω and height Y is CY = Ω × (0,Y ), its lateral
boundary is ∂LCY = ∂Ω × (0,Y ). If x ∈ C, we set x = (x′, y) with x′ ∈ Ω and
y ∈ (0,∞). By a . b we mean a ≤ Cb, with a constant C that does not depend on
a, b, or the discretization parameters. The notation a ∼ b signifies a . b . a. The
value of C might change at each occurrence. The spaces H1(D), H1

0 (D), and more
generally Hσ(D), σ ∈ R, denote the usual Sobolev spaces (see, e.g., [3]).

2.1. Fractional powers of elliptic operators. To define Ls, as in [48], we
invoke spectral theory [11]. The operator L induces an inner product aΩ(·, ·) on
H1

0 (Ω)

aΩ(w, v) =

ˆ

Ω

(A∇w · ∇v + cwv) dx′, (2.1)

and L is an isomorphism H1
0 (Ω) → H−1(Ω) given by u 7→ aΩ(u, ·). The eigenvalue

problem: Find (λ, φ) ∈ R×H1
0 (Ω) \ {0} such that

aΩ(φ, v) = λ(φ, v)L2(Ω) ∀v ∈ H1
0 (Ω)

has a countable collection of solutions {λk, ϕk}k∈N ⊂ R+ × H1
0 (Ω), with the real

eigenvalues enumerated in increasing order, counting multiplicities, and such that
{ϕk}k∈N is an orthonormal basis of L2(Ω) and an orthogonal basis of (H1

0 (Ω), aΩ(·, ·)).
In terms of these eigenpairs, we introduce, for s ≥ 0, the spaces

Hs(Ω) =

{
w =

∞∑

k=1

wkϕk : ‖w‖2
Hs(Ω) =

∞∑

k=1

λskw
2
k <∞

}
. (2.2)

We denote by H−s(Ω) the dual space of Hs(Ω). The duality pairing between Hs(Ω)
and H−s(Ω) will be denoted by 〈·, ·〉. Through this duality pairing, we identify el-
ements of f ∈ H−s(Ω) with sequences {fk}k with

∑
k f

2
kλ

−2s
k = ‖f‖2

H−s(Ω), which

allows us to extend the definition of the norm in (2.2) to s < 0. We have the isome-
tries ‖w‖2L2(Ω) = ‖w‖2

H0 and aΩ(w,w) = ‖w‖2
H1 ; by (real) interpolation between L2(Ω)

and H1
0 (Ω), we infer for s ∈ (0, 1) that Hs(Ω) = [L2(Ω), H1

0 (Ω)]s. We notice that,
if s ∈ (0, 12 ), then Hs(Ω) = Hs(Ω) = Hs

0(Ω), while, for s ∈ ( 12 , 1), H
s(Ω) can be

characterized by [37, 39, 64]

Hs(Ω) = {w ∈ Hs(Ω) : w = 0 on ∂Ω} . (2.3)

If s = 1
2 , we have that H

1
2 (Ω) is the so–called Lions–Magenes space H

1
2
00(Ω) [37, 64].

Finally, we notice that since the domain Ω is Lipshitz and the coefficients of L are
assumed to be smooth, we have that Hs(Ω) = Hs(Ω) ∩H1

0 (Ω) for s ∈ (1, 3/2).
For functions w =

∑
k wkϕk ∈ H1(Ω), the operator L : H1(Ω) → H−1(Ω) takes

the form Lw =
∑

k λkwkϕk. For s ∈ (0, 1) and w =
∑

k wkϕk ∈ Hs(Ω), the operator
Ls : Hs(Ω) → H−s(Ω) is defined by

Lsw =

∞∑

k=1

λskwkϕk. (2.4)
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In the scale of spaces Hσ(Ω), problem (1.1) admits the following shift theorem.
Lemma 2.1 (shift theorem). Let s ∈ (0, 1) and σ ≥ 0. If f ∈ H−s+σ(Ω), then

the solution u of (1.1) satisfies u ∈ Hs+σ(Ω) and ‖u‖Hs+σ(Ω) . ‖f‖H−s+σ(Ω).
Proof. The assertion follows from the definition of Hs(Ω) and from the fact that

the solution u can be written as u =
∑
ukϕk with uk = fkλ

−s
k and k ∈ N.

Remark 2.2 (compatibility conditions). Frequently, as in [48], in the present
work we will impose the regularity assumption f ∈ H1−s(Ω). We notice that, for s ∈
(0, 1/2), and in view of (2.3), this assumption requires f to have a vanishing trace on
∂Ω. If this is the case, we will thus say that f has to satisfy a (boundary) compatibility
condition. Finally, we notice that functions f ∈ C∞(Ω) are (generically) only in
H1/2−δ(Ω) with δ > 0.

Remark 2.3 (nonconvexity of the domain). Except for Proposition 3.1 below, the
analysis of the numerical schemes proposed in this work does not require the convexity
of Ω. A key ingredient that will allow for such an analysis on properly refined meshes
in Ω is a regularity shift result in weighted Sobolev spaces in both Ω and the extended
domain (0,∞); see Theorem 5.5 below.

2.2. The extension property. Both extensions, the one by Caffarelli–Silvestre
for Ω = Rd [17] and that of Cabré–Tan [16] and Stinga–Torrea for Ω bounded and
general elliptic operators [63] require us to deal with the nonuniformly (but local)
linear, second order elliptic equation (1.2). Here, Lebesgue and Sobolev spaces with
the weight yα for α ∈ (−1, 1) [14, 16, 17, 19] naturally arise. If D ⊂ Rd+1, we define
L2(yα, D) as the Lebesgue space for the measure |y|α dx. We also define the weighted
Sobolev space

H1(yα, D) =
{
w ∈ L2(yα, D) : |∇w| ∈ L2(yα, D)

}
,

where ∇w is the distributional gradient of w. We equip H1(yα, D) with the norm

‖w‖H1(yα,D) =
(
‖w‖2L2(yα,D) + ‖∇w‖2L2(yα,D)

) 1
2

. (2.5)

In view of the fact that α ∈ (−1, 1), the weight yα belongs to the Muckenhoupt class
A2(R

d+1) [27, 28, 31, 46, 65]. This, in particular, implies that H1(yα, D) with norm
(2.5) is Hilbert and C∞(D) ∩ H1(yα, D) is dense in H1(yα, D) (cf. [65, Proposition
2.1.2, Corollary 2.1.6], [35] and [31, Theorem 1]).

To analyze problem (1.2) we define the weighted Sobolev space

◦

H1(yα, C) =
{
w ∈ H1(yα, C) : w = 0 on ∂LC

}
. (2.6)

In [48, inequality (2.21)] the following weighted Poincaré inequality is shown:

‖w‖L2(yα,C) . ‖∇w‖L2(yα,C) ∀w ∈ ◦

H1(yα, C). (2.7)

Consequently, the seminorm on
◦

H1(yα, C) is equivalent to (2.5). For w ∈ H1(yα, C),
trΩ w denotes its trace on Ω× {0}, which satisfies (see [48, Proposition 2.5])

trΩ
◦

H1(yα, C) = Hs(Ω), ‖ trΩ w‖Hs(Ω) ≤ CtrΩ‖w‖ ◦

H1(yα,C)
. (2.8)

Define the bilinear form aC :
◦

H1(yα, C)× ◦

H1(yα, C) → R by

aC(v, w) =

ˆ

C
yα(A∇v · ∇w + cvw) dx′ dy, (2.9)
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and note that it is continuous and, owing to (2.7), also coercive. Consequently, it

induces an inner product on
◦

H1(yα, C) and the energy norm ‖·‖C :

‖v‖2C := aC(v, v) ∼ ‖∇v‖2L2(yα,C) . (2.10)

Occasionally, we will restrict the integration to the truncated cylinder CY . The corre-
sponding bilinear form and norm are denoted by

aCY
(v, w) :=

ˆ

CY

yα(A∇v · ∇w + cvw) dx′ dy, ‖v‖2CY
= aCY

(v, v) . (2.11)

With these definitions the weak formulation of (1.2) reads: Find U ∈ ◦

H1(yα, C) such
that

aC(U , v) = ds〈f, trΩ v〉 ∀v ∈ ◦

H1(yα, C). (2.12)

The fundamental result of Caffarelli and Silvestre [17] then reads as follows (see
also [16, Proposition 2.2] and [63, Theorem 1.1] for bounded domains and for general

elliptic operators): given f ∈ H−s(Ω), let u ∈ Hs(Ω) solve (1.1). If U ∈ ◦

H1(yα, C)
solves (2.12), then u = trΩ U and

dsLsu = ∂ναU in Ω. (2.13)

3. A first order FEM for fractional diffusion. The first work that, in a
numerical setting, exploits the identity (2.13) for the design and analysis of a finite
element approximation of solutions to (1.1) is [48]; see also [52]. Let us briefly review
the main results of [48].

First, [48] truncates C to CY and places homogeneous Dirichlet boundary con-
ditions on y = Y , thus obtaining an approximation U (which, by slight abuse of
notation, is understood to coincide with its extension by zero to C \ CY . The error
committed in this approximation is exponentially small: There holds with λ1 being
the first eigenvalue of the operator L (see [48, Theorem 3.5])

‖∇(U − U)‖L2(yα,C) . e−
√
λ1Y /4‖f‖H−s(Ω).

Second, since ∂2yU has a blow-up singularity at y = 0, [48] develops a regularity
theory for U in weighted Sobolev spaces; the reader will find a generalization of that
regularity theory in Theorem 4.7 below. Consequently, graded meshes in the extended
variable y play a fundamental role. In the notation of the present work, with a mesh
T on Ω and a mesh GM on (0,Y ) that is graded towards y = 0, the truncated cylinder
CY is partitioned by tensor product elements K × I with K ∈ T and I ∈ GM . On
this mesh, the tensor product space V

1,1
h,M (T ,GM ) of piecewise bilinears in Ω× (0,Y )

(see (5.2) for the precise definition) is used in a Galerkin method. The Galerkin
approximation Uh,M ∈ V

1,1
h,M (T ,GM ) of U satisfies a best approximation property à la

Céa. From there, upon studying piecewise polynomial interpolation in Muckenhoupt
weighted Sobolev spaces [48, 49] error estimates were obtained under the assumption
that f ∈ H1−s(Ω) and that Ω is convex (see [48, Theorem 5.4] and [48, Corollary
7.11]):

Proposition 3.1 (a priori error estimate). Let GM be suitably graded towards
y = 0 and V

1,1
h,M be constructed with tensor product elements and Uh,M ∈ V

1,1
h,M
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denote the Galerkin approximation to U . Then, for suitable truncation parameter
Y ∼ logNΩ,Y we have that

‖u− trΩ Uh,M‖Hs(Ω) . ‖∇(U − Uh,M )‖L2(yα,C)

. | logNΩ,Y |s(NΩ,Y )
−1/(d+1)‖f‖H1−s(Ω),

where NΩ,Y := #T #GM corresponds to the total number of unknowns.
Remark 3.2 (complexity). Up to logarithmic factors, Proposition 3.1 yields

rates of convergence of (NΩ,Y )
−1/(d+1). In terms of error versus work, this P1-FEM

is sub-optimal as a method to compute in Ω. In this paper we propose and study P1-
FE methods in Ω that afford an error decay (NΩ,Y )

−1/d (up to possibly logarithmic
terms).

4. Analytic regularity. We obtain regularity results for the solution of (1.2)
that will underlie the analysis of the various FEMs in Section 5 and 7. We begin by
recalling that if u =

∑∞
k=1 ukϕk solves (1.1), then the unique solution U of problem

(1.2) admits the representation [48, formula (2.24)]

U (x′, y) =
∞∑

k=1

ukϕk(x
′)ψk(y), uk := λ−s

k fk. (4.1)

We also recall that {λk, ϕk}k∈N is the set of eigenpairs of the elliptic operator L,
supplemented with homogeneous Dirichlet boundary conditions. The functions ψk

solve





d2

dy2
ψk(y) +

α

y

d

dy
ψk(y)− λkψk(y) = 0, y ∈ (0,∞),

ψk(0) = 1, lim
y→∞

ψk(y) = 0.
(4.2)

Thus, if s = 1
2 , we have ψk(y) = exp(−

√
λky) [16, Lemma 2.10]; more generally, if

s ∈ (0, 1) \ { 1
2}, then [19, Proposition 2.1]

ψk(y) = cs(
√
λky)

sKs(
√
λky),

where cs = 21−s/Γ(s) and Ks denotes the modified Bessel function of the second kind.
We refer the reader to [1, Chapter 9.6] for a comprehensive treatment of the Bessel
function Ks and recall the following properties.

Lemma 4.1 (properties of Kν). The modified Bessel function of the second kind
Kν satisfies:
(i) For ν > −1 and z > 0, Kν(z) is real and positive [1, Chapter 9.6].
(ii) For ν ∈ R, Kν(z) = K−ν(z) [1, Chapter 9.6].
(iii) For ν > 0, [1, estimate (9.6.9)]

lim
z↓0

Kν(z)
1
2Γ(ν)

(
1
2z
)−ν = 1. (4.3)

(iv) For ℓ ∈ N, [1, formula (9.6.28)]

(
1

z

d

dz

)ℓ

(zνKν(z)) = (−1)ℓzν−ℓKν−ℓ(z). (4.4)
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(v) For z > 0, zmin{ν,1/2}ezKν(z) is a decreasing function [45, Theorem 5].
(vi) For ν > 0, [1, estimate (9.7.2)]

Kν(z) ∼
√

π

2z
e−z, z → ∞, | arg z| ≤ 3π/2− δ, δ > 0.

Remark 4.2 (consistency for s = 1
2). A combination of formulas (9.2.10) and

(9.6.10) in [1] yields K 1
2
(z) =

√
π
2z e

−z. Since c 1
2
=
√

2
π , we have arrived at

lim
s→ 1

2

ψk(y) = exp(−
√
λky) ∀y > 0.

In order to understand the nature of the y-dependence of the solution U given
by the representation formula (4.1), we derive regularity estimates for the solution ψk

of problem (4.2). To this end, define the function ψ(z) = csz
sKs(z) and notice that

d2

dz2
ψ(z)− ψ(z) +

α

z

d

dz
ψ(z) = 0, z ∈ (0,∞), ψ(0) = 1, lim

z→∞
ψ(z) = 0. (4.5)

The differential equation and Leibniz’ formula imply, for any ℓ ∈ N0,

dℓ+2

dzℓ+2
ψ(z) =

dℓ

dzℓ
ψ(z)− α

dℓ

dzℓ

(
z−1 d

dz
ψ(z)

)

=
dℓ

dzℓ
ψ(z)− α

ℓ∑

j=0

(
ℓ

j

)
dj

dzj
(z−1)

dℓ−j

dzℓ−j
ψ′(z).

We thus have arrived at the bound
∣∣∣∣∣
dℓ+2

dzℓ+2
ψ(z)

∣∣∣∣∣ ≤
∣∣∣∣∣
dℓ

dzℓ
ψ(z)

∣∣∣∣∣+ |α|
ℓ∑

j=0

ℓ!

(ℓ− j)!
z−(1+j)

∣∣∣∣∣
dℓ+1−j

dzℓ+1−j
ψ(z)

∣∣∣∣∣ , (4.6)

which is essential to derive the following asymptotic result.
Lemma 4.3 (behavior of ψ near z = 0). Let ψ solve (4.5). Let s ∈ (0, 1) and set

ds = 21−2sΓ(1 − s)/Γ(s). Then there is Cs > 0 independent of z ∈ (0, 1) and ℓ ∈ N

such that
∣∣∣∣∣
dℓ

dzℓ
ψ(z)

∣∣∣∣∣ ≤ Csdsℓ!z
2s−ℓ. (4.7)

Proof. We proceed by induction, starting with the case ℓ = 1. The differentiation
formula (4.4) with ℓ = 1 yields that

ψ′(z) = cs(z
sKs(z))

′ = −cszsKs−1(z) = −cszsK1−s(z), (4.8)

where we used Lemma 4.1 (ii). The asymptotic formula (4.3) shows that there is C̃s

independent of z ∈ (0, 1) such that

∣∣∣∣
K1−s(z)

1
2Γ(1− s)( 12z)

−(1−s)
− 1

∣∣∣∣ ≤ C̃s.
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Set Cs := C̃s + 1 to arrive at the fact that we have, for all z ∈ (0, 1),

∣∣∣∣
d

dz
ψ(z)

∣∣∣∣ ≤
∣∣∣∣

K1−s(z)
1
2Γ(1− s)( 12z)

−(1−s)

∣∣∣∣

(
1

2
Γ(1− s)

(
1

2
z

)−(1−s)
)
csz

s ≤ Csdsz
2s−1.

This shows (4.7) for ℓ = 1. For the induction step, we assume that (4.7) holds for all
differentiation orders up to ℓ+ 1 ≥ 1. Together with (4.6), we then get

∣∣∣∣∣
dℓ+2

dzℓ+2
ψ(z)

∣∣∣∣∣ ≤ Csdsℓ!z
2s−ℓ + Csdsz

2s−ℓ−2
ℓ∑

j=0

ℓ!

(ℓ− j)!
(ℓ+ 1− j)!

≤ Csdsℓ!z
2s−ℓ−2

[
1 +

ℓ+1∑

i=1

i

]
= Csdsℓ!z

2s−ℓ−2

[
1 +

1

2
(ℓ+ 1)(ℓ+ 2)

]
,

because z ∈ (0, 1). Noting 1 + 1
2 (ℓ+ 1)(ℓ+ 2) ≤ (ℓ+ 1)(ℓ+ 2) gives

∣∣∣∣∣
dℓ+2

dzℓ+2
ψ(z)

∣∣∣∣∣ ≤ Csds(ℓ+ 2)!z2s−ℓ−2,

which concludes the proof.
We now analyze the behavior of ψ for large, positive values of z. We show that

ψ and all its derivatives decay exponentially as z → ∞.
Lemma 4.4 (behavior of ψ for z large). Let ψ solve (4.5). Fix ǫ ∈ (0, 1) and

s ∈ (0, 1). Then there is a constant Cǫ,s depending solely on ǫ and s such that

∣∣∣∣∣
dℓ

dzℓ
ψ(z)

∣∣∣∣∣ ≤ Cǫ,sℓ!ǫ
−ℓzs−ℓ− 1

2 e−(1−ǫ)z ∀z ≥ 1, ∀ℓ ∈ N0. (4.9)

Proof. The proof is a consequence of Cauchy’s integral formula for derivatives
[4, 20] and Lemma 4.1 (vi). Let Bσ(ζ) ⊂ C denote the ball with center ζ and radius
σ. For any fixed z ≥ 1, ℓ ∈ N0 we then have

∣∣∣∣∣
dℓ

dzℓ
ψ(z)

∣∣∣∣∣ =
∣∣∣∣∣
ℓ!

2πi

ˆ

ζ∈∂Bǫz(z)

ψ(ζ)

(ζ − z)ℓ+1
dζ

∣∣∣∣∣ ≤ ℓ!ǫ−ℓz−ℓ max
ζ∈∂Bǫz(z)

|ψ(ζ)|.

Recalling ψ(z) = csz
sKs(z) and invoking Lemma 4.1 (vi) we conclude that

∣∣∣∣∣
dℓ

dzℓ
ψ(z)

∣∣∣∣∣ ≤ Cǫ,scsℓ!ǫ
−ℓzs−ℓ− 1

2 e−(1−ǫ)z,

with Cǫ,s = C ′ max{(1+ ǫ)s− 1
2 , (1− ǫ)s− 1

2 } and C ′ such that |Ks(z)| ≤ C ′|z|− 1
2 e−Re z

for Re z ≥ 0. We remark in passing that the constant C ′ can be chosen independent
of s ∈ (0, 1) since, for ζ in the right half plane, the function µ 7→ |Kµ(ζ)| for µ > 0 is
monotone increasing, [26, (10.37.1)].

Remark 4.5 (Cauchy’s integral formula). Cauchy’s integral formula can also be
invoked to analyze the ℓ-th derivative of ψ near z = 0. However, the resulting estimate
is not quite as sharp as (4.7) since it include a term ǫ−ℓ with ǫ ∈ (0, 1), as it appears
in the estimate (4.9).
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To analyze global regularity properties of the α–harmonic extension U of a func-
tion u on Ω we define the weight

ωβ,γ(y) = yβeγy, 0 ≤ γ < 2
√
λ1, (4.10)

with a parameter β ∈ R that will be specified later. We recall that the parameter
λ1 > 0 is the smallest eigenvalue of L. In terms of the weight (4.10), we define the
weighted norm

‖v‖L2(ωβ,γ ,C) :=

(
ˆ ∞

0

ˆ

Ω

ωβ,γ(y)|v(x′, y)|2 dx′ dy
) 1

2

. (4.11)

Our analysis will require control of certain weighted integrals of derivatives of ψ.
We define, for γ satisfying (4.10) and β, δ ∈ R, ℓ ∈ N, λ > 0, the integrals

Φ(δ, γ, λ) =

ˆ ∞

0

zδeγz/
√
λ |ψ(z)|2 dz, (4.12)

Ψℓ(β, γ, λ) =

ˆ ∞

0

zβ+2ℓeγz/
√
λ

∣∣∣∣∣
dℓ

dzℓ
ψ(z)

∣∣∣∣∣

2

dz. (4.13)

Let us bound the integrals Φ(δ, γ, λ) and Ψℓ(β, γ, λ).
Lemma 4.6 (bounds on Φ and Ψℓ). Let δ > −1, β > −1 − 4s, ℓ ∈ N, and let γ

satisfy 0 ≤ γ < 2
√
λ1. If λ ≥ λ1, then we have that

Φ(δ, γ, λ) . 1, (4.14)

where the hidden constant is independent of λ. In addition, there exists κ > 1 such
that for every ℓ ∈ N we have the following bound

Ψℓ(β, γ, λ) . κ2ℓ(ℓ!)2, (4.15)

where the hidden constant is independent of ℓ and λ.
Proof. We derive (4.15). As a first step, we write Ψℓ = Ψℓ(β, γ, λ) as follows:

Ψℓ =

ˆ 1

0

zβ+2ℓe
γz√
λ

∣∣∣∣∣
dℓ

dzℓ
ψ(z)

∣∣∣∣∣

2

dz +

ˆ ∞

1

zβ+2ℓe
γz√
λ

∣∣∣∣∣
dℓ

dzℓ
ψ(z)

∣∣∣∣∣

2

dz =: I + II, (4.16)

and estimate each term separately. We start by bounding term I. Since 0 ≤ γ < 2
√
λ1

and λ ≥ λ1 we have that

sup
z∈(0,1)

e
γz√
λ < sup

z∈(0,1)

e2z ≤ e2.

Consequently, an application of Lemma 4.3 yields

I =

ˆ 1

0

zβ+2ℓe
γz√
λ

∣∣∣∣∣
dℓ

dzℓ
ψ(z)

∣∣∣∣∣

2

dz . d2s(ℓ!)
2

ˆ 1

0

zβ+2ℓ+2(2s−ℓ) dz . d2s(ℓ!)
2,

where last integral converges because β > −1 − 4s. Notice that the hidden constant
blows up when β ↓ −1− 4s.
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We now estimate the term II in (4.16). To do this we utilize the estimate (4.9) of
Lemma 4.4 as follows:

II ≤ C2
ǫ c

2
s(ℓ!)

2ǫ−2ℓ

ˆ ∞

1

zβ+2ℓz2s−2ℓ−1e
γz√
λ e−2(1−ǫ)z dz.

Define

γ̂ := sup
λ≥λ1

(
γ√
λ
− 2(1− ǫ)

)
.

Notice that, since 0 ≤ γ√
λ1

< 2 by (4.10), the parameter ǫ ∈ (0, 1) can be selected

such that γ̂ < 0. Consequently

II . C2
ǫ c

2
s(ℓ!)

2ǫ−2ℓ

ˆ ∞

1

zβ+2s−1eγ̂z dz . C2
ǫ c

2
s(ℓ!)

2ǫ−2ℓ.

Inserting the estimates for the terms I and II in (4.16) and selecting κ = ǫ−1 > 1
we arrive at the desired estimate (4.15). The estimate (4.14) is obtained in a similar
way: We decompose Φ as in (4.16) and use that, as estimate (4.3) shows, ψ is bounded
as z ↓ 0+ and decays exponentially to zero as z ↑ ∞; see Lemma 4.1 (v) and (vi). For
brevity, we skip the details.

On the basis of Lemma 4.6, we provide global regularity results for the α-harmonic
extension U in weighted Sobolev spaces.

Theorem 4.7 (global regularity of U ). Let U ∈ ◦

H1(yα, C) solve (1.2) with
s ∈ (0, 1). Let 0 ≤ ν̃ < s and 0 ≤ ν < 1 + s. Then there exists κ > 1 such that the
following holds for all ℓ ∈ N0 with the weight wβ,γ given by (4.10):

‖∂ℓ+1
y U ‖L2(ωα+2ℓ−2ν̃,γ ,C) . κℓ+1(ℓ+ 1)!‖f‖H−s+ν̃(Ω), (4.17)

‖∇x′∂ℓ+1
y U ‖L2(ωα+2(ℓ+1)−2ν,γ ,C) . κℓ+1(ℓ+ 1)!‖f‖H−s+ν(Ω), (4.18)

‖L∂ℓ+1
y U ‖L2(ωα+2(ℓ+1)−2ν,γ ,C) . κℓ+1(ℓ+ 1)!‖f‖H1−s+ν(Ω). (4.19)

In all these inequalities, the hidden constants are independent of ℓ, U , and f . In
addition, if 0 ≤ ν′ < 1− s then

‖LU ‖L2(ωα−2ν′,γ ,C) . ‖f‖
H1−s+ν′ (Ω), (4.20)

‖∇x′U ‖L2(ωα−2ν′,γ ,C) . ‖f‖
H−s+ν′ (Ω), (4.21)

‖U ‖L2(ωα−2ν′,γ ,C) . ‖f‖
H−1−s+ν′ (Ω), (4.22)

where the constant entailed in . is independent of U and f .
Proof. Following [48, Theorem 2.7] we start from the representation formula (4.1)

to arrive at

‖∂ℓ+1
y U ‖2L2(ωα+2ℓ−2σ,γ ,C) =

∞∑

k=1

f2kλ
−2s
k

ˆ ∞

0

yα+2ℓ−2σeγy

∣∣∣∣∣
dℓ+1

dyℓ+1
ψk(y)

∣∣∣∣∣

2

dy .

With the change of variable z =
√
λky and recalling ψ(z) = csz

sKs(z) and ψk(y) =
ψ(

√
λky) as well as the definition of Ψℓ given in (4.13), to obtain

‖∂ℓ+1
y U ‖2L2(ωα+2ℓ−2σ,γ ,C) =

∞∑

k=1

f2kλ
−2s+(ℓ+1)−

(
α+2ℓ−2σ

2

)
− 1

2

k Ψℓ+1(α− 2σ − 2, γ, λk)

. (ℓ+ 1)!2κ2(ℓ+1)
∞∑

k=1

f2kλ
σ−s
k = (ℓ+ 1)!2κ2(ℓ+1)‖f‖2

H−s+σ(Ω),
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where the last inequality follows from the estimate (4.15) with β = α − 2σ − 2 =
1− 2s− 2σ − 2 > −1− 4s. This shows (4.17).

We now derive (4.19); the proof of the estimate (4.18) follows by using similar
arguments. As before, we estimate

‖L∂ℓ+1
y U ‖2L2(ωα+2(ℓ+1)−2ν,γ ,C)

=
∞∑

k=1

f2kλ
2(1−s)
k

ˆ ∞

0

yα+2(ℓ+1)−2νeγy

∣∣∣∣∣
dℓ+1

dyℓ+1
ψk(y)

∣∣∣∣∣

2

dy

=

∞∑

k=1

f2kλ
2(1−s)+(ℓ+1)−

(
α+2(ℓ+1)−2ν

2

)
− 1

2

k Ψℓ+1(α− 2ν, γ, λk),

where we applied again the change of variable z =
√
λky and used the definition of

Ψℓ given by (4.13). We now notice that α − 2ν > 1 − 2s − 4 − 2s = −1 − 4s. Thus
an application of the estimate (4.15) with β = α− 2ν reveals that

‖L ∂ℓ+1
y U ‖2L2(ωα+2(ℓ+1)−2ν,γ ,C) . κ2(ℓ+1)(ℓ+ 1)!2‖f‖2

H1−s+ν(Ω).

This yields (4.19). The proofs of (4.20), (4.21), (4.22) rely on similar arguments using
that ν′ < 1 − s implies δ := α − 2ν′ = 1 − 2s − 2ν′ > 1 − 2s − 2(1 − s) = −1, and
thus, as a consequence of (4.14), that Φ(δ, γ, λ) . 1. This concludes the proof.

5. h-FE discretization in Ω. In this section we present and analyze three dis-
cretizations of (2.12) that rely on P1-FEM in Ω, and structure it as follows: Section 5.1
introduces the FE approximation in Ω and fixes notation on Finite Element spaces.
Section 5.2 presents the FE discretization in C in abstract form. Section 5.3 discusses
a basic decomposition of the FE discretization error into two parts: a semidiscretiza-
tion error with respect to x′ ∈ Ω, and a corresponding error with respect to y ∈ (0,Y ),
where 0 < Y < ∞ denotes a truncation parameter of the cylinder (0,∞). Section
5.4 then deals with two first order tensor product FEMs in C. The first one, as in
[48], is a full tensor product FEM for which we show (under sufficient regularity of
the solution and under compatibility assumptions on the data) convergence in Ω with
rate 1 (in terms of the mesh size), but with superlinear complexity in terms of the
number NΩ of degrees of freedom in Ω. To reduce the complexity, we propose the
second, novel approach: a sparse tensor product of P1 finite elements for the extended
problem in C, for which we show the same convergence rate, but with (essentially)
linear complexity in terms of NΩ requiring only marginally more regularity of the
data f in Ω. Section 5.5 addresses a third method, namely, the use of an hp-FEM in
the extended variable y, combined with a P1-FEM in Ω.

5.1. Notation and FE spaces. For a truncation parameter Y > 0 (which is
fixed, and which will be selected ahead), we denote by GM a generic partition of [0,Y ]
into M intervals. In particular, the following two types of partitions that are refined
towards y = 0 will be used:
• Graded meshes Gk

gr,η. Here k indicates the mesh size near y = 1 and η characterizes
the mesh grading towards y = 0; see Section 5.4.2 ahead for details.

• Geometric meshes GM
geo,σ. This mesh has M elements and σ ∈ (0, 1) is the subdivi-

sion ratio; see Section 5.5.1 ahead for details.
Given a mesh GM = {Im}Mm=1 in [0,Y ], where Im = [ym−1, ym], y0 = 0 and yM =

Y , we associate to GM a polynomial degree distribution r = (r1, r2, . . . , rM ) ∈ NM .



Tensor FEM for the spectral fractional Laplacian 13

With these ingredients at hand we define the finite element space

Sr((0,Y ),GM ) =
{
vM ∈ C[0,Y ] : vM |Im ∈ Prm(Im), Im ∈ GM ,m = 1, . . . ,M

}
.

We also define the subspace of Sr((0,Y ),GM ) of functions that vanish at y = Y :

Sr

{Y }((0,Y ),GM ) =
{
vM ∈ Sr((0,Y ),GM ) : vM (Y ) = 0

}
. (5.1)

In the particular case that ri = r for i = 1, . . . ,M , we write Sr((0,Y ),GM ) or
Sr
{Y }((0,Y ),GM ) as appropriate. In Ω, we consider Lagrangian FEM of polynomial

degree q ≥ 1 based on shape-regular, simplicial triangulations denoted by T . Denote
by h(T ) = max{diam(K) : K ∈ T } the meshwidth of T . We introduce

Sq
0(Ω, T ) =

{
vh ∈ C(Ω̄) : vh|K ∈ Pq(K) ∀K ∈ T , vh|∂Ω = 0

}
.

Later, we will also consider nested sequences {T ℓ}ℓ≥0 of triangulations of Ω that are
generated by bisection–tree refinement of a coarse, regular initial triangulation T 0 of
Ω. Then, we denote by hℓ = max{diam(K) : K ∈ T ℓ} the meshwidth of T ℓ.

We define the finite–dimensional tensor product space

V
q,r
h,M (T ,GM ) := Sq

0(Ω, T )⊗ Sr

{Y }((0,Y ),GM ) ⊂ ◦

H1(yα, C) , (5.2)

and write Vh,M if the arguments are clear from the context. In the ensuing error
analysis, we also require semidiscretizations which are based on the following (infinite–
dimensional) Hilbertian tensor product spaces

V
q
h(CY ) := Sq

0(Ω, Th)⊗H1
Y (y

α, (0,Y )) ⊂ ◦

H1(yα, C) ,
Vr

M (CY ) := H1
0 (Ω)⊗ Sr

{Y }((0,Y ),GM ) ⊂ ◦

H1(yα, C) , (5.3)

where

H1
Y (y

α, (0,Y )) = {v ∈ H1(yα, (0,Y )) : v(Y ) = 0}. (5.4)

Both of them are closed subspaces of
◦

H1(yα, C), so that Galerkin projections with
respect to the inner product given by the bilinear form aCY

in (2.11) are well defined.
We denote these projections by Gq

h and Gr

M , respectively. To the space Vq,r
h,M (T ,GM ),

defined in (5.2), we can also associate a Galerkin projection with respect to aCY
. We

remark that this projector is the composition of the semidiscrete projections:

Gq,r
h,M = Gq

h ◦Gr

M = Gr

M ◦Gq
h :

◦

H1(yα, C) → V
q,r
h,M (T ,GM ) . (5.5)

5.2. FE discretization and quasioptimality. The FE approximation Uh,M

is defined as Uh,M = Gq,r
h,MU ∈ Vh,M , i.e., it satisfies

aCY
(Uh,M , φ) = ds〈f, trΩ φ〉 ∀φ ∈ Vh,M . (5.6)

Coercivity of aCY
immediately implies existence and uniqueness of Uh,M . In addi-

tion, Galerkin orthogonality gives quasioptimality of Uh,M . More precisely, as in [48,
Section 4], we have the following result.

Lemma 5.1 (Céa and truncation). Let U be the solution to problem (2.12), and
let Uh,M = Gq,r

h,MU be its finite element approximation that solves (5.6). Then we
have

‖∇(U − Uh,M )‖L2(yα,C) . min
vh,M∈Vh,M

‖∇(U − vh,M )‖L2(yα,CY )

+ ‖∇U ‖L2(yα,C\CY ) ,
(5.7)
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where the hidden constant does not depend on Vh,M .
As already noted in [48, Prop. 3.1], the second term on the right-hand side of

(5.7) is exponentially small in Y . More precisely, using (4.17) and (4.21) we get, with
the selection γ < 2

√
λ1, that

‖∇U ‖L2(yα,C\CY ) . exp(−γY /2)‖f‖H−s(Ω). (5.8)

5.3. FE error splitting. As (5.8) shows, the second term on the right-hand
side of of (5.7) decays exponentially in Y . Thus, we now concentrate on estimating
the first one.

As in [48, 40], we separate the errors incurred by discretizations with respect to
x′ and y as follows.

Lemma 5.2 (dimensional error splitting). Let U be the solution to problem (2.12)
and let Πq

x′ : L2(Ω) → Sq
0(Ω, T ) be a linear operator that is simultaneously stable in

L2 and H1, i.e. there exist constants cL2 , cH1 such that

‖Πq
x′v‖L2(Ω) ≤ cL2‖v‖L2(Ω) ∀v ∈ L2(Ω), |Πq

x′v|H1(Ω) ≤ cH1 |v|H1(Ω) ∀v ∈ H1
0 (Ω).

Then

min
vh,M∈Vh,M

‖∇(U − vh,M )‖L2(yα,CY ) ≤ ‖∇(U −Πq
x′U )‖L2(yα,CY )

+
√
c2L2 + c2H1‖∇(U − πr

yU )‖L2(yα,CY ).
(5.9)

Proof. The desired estimate follows from the tensor-product structure of the finite
element space defined in (5.2) and the triangle inequality, upon choosing in (5.9) the
function vh,M := Πq

x′ ⊗ πr

yU .

5.4. h-FE error analysis. In the present subsection we analyze convergence
rates and complexity for two particular instances of the FE-space V

q,r
h,M (T ,GM ):

(a) The case when r = (1, 1, . . . , 1) on a graded mesh GM and q = 1. A particular
instance of this was first introduced in [48]; see Section 3. Generalizing the results
of [48, 40], we allow Ω ⊂ R2 to be a polygon with finitely many straight sides
and corners {c}. This will mandate the use of a sequence of nested triangulations
{T ℓ}ℓ≥0 of the domain Ω with, in general, local refinement towards the corners
c ∈ ∂Ω.

(b) The case r = (1, 1, . . . , 1) on a nested sequence {Gℓ′}ℓ′≥1 of graded meshes in
(0,Y ). At the same time, we also consider multilevel approximations in Ω on a
sequence {T ℓ}ℓ≥0 of nested triangulations with appropriate corner refinement in
Ω, a particular instance being the so-called bisection–tree refinements.
In all cases, we bound the first term on the right-hand side of (5.7).

5.4.1. P1-FEM in Ω with mesh refinement at c. We start with the case
s = 1. In a bounded polygon Ω ⊂ R2 with straight sides and corners {c} we consider
the Dirichlet problem

Lw = g in Ω , w = 0 on ∂Ω , (5.10)

for g ∈ H−1(Ω). It is immediate that problem (5.10) has a unique solution w ∈ H1
0 (Ω).

However, in general the solution w does not belong to H2(Ω). Under additional
regularity assumptions on A, c and on g, it rather belongs to weighted Sobolev spaces
of Kondrat’ev type in Ω which we now define.
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For the finite set {c} of corners c of Ω define Ω ∋ x 7→ Φ(x) =
∏

c
|x − c|. For

0 ≤ β ∈ R, we denote L2
β(Ω) = L2(Φ2β ,Ω). We also define the space H2

β(Ω) as the

closure of H2(Ω) ∩H1
0 (Ω) with respect to the norm

‖w‖H2
β(Ω) = ‖w‖H1(Ω) + ‖D2w‖L2(Φ2β ,Ω) . (5.11)

With this setting at hand, we present the following result on regularity shift in
weighted Sobolev spaces for the solution of problem (5.10).

Proposition 5.3 (weighted regularity estimate). Let Ω ⊂ R2 be a polygon. Let
A ∈ W 1,∞(Ω,GL(R2)) be uniformly positive definite, c ∈ W 1,∞(Ω,R). Then there
exists β ∈ [0, 1) (depending only on Ω, A, c) such that for every g ∈ L2

β(Ω) the

solution w of (5.10) belongs to H2
β(Ω) and

‖w‖H2
β(Ω) . ‖Lw‖L2

β(Ω) = ‖g‖L2
β(Ω) , (5.12)

where the hidden constant is independent of g.
Proof. This result is a particular case of [9, Theorem 1.1]. It suffices to set, in

the notation of that reference, m = 1, bj = 0, and β = 1− a.
Remark 5.4 (Laplacian). In the special case that L = −∆, i.e., when (5.10)

corresponds to the Dirichlet Poisson problem in a polygon Ω, the parameter β must
satisfy β > 1 −minc π/ωc, where 0 < ωc < 2π is the interior opening angle of Ω at
the vertex c. If Ω is convex, the choice β = 0 is admissible, and then (5.12) reduces
to the classical regularity shift for the Dirichlet problem of the Poisson equation in
convex domains. We refer the reader to the discussion in [9, equations (2) and (3)]
for more details.

Proposition 5.3 and the regularity of U given in Theorem 4.7 imply the following
regularity result for U in weighted norms in Ω.

Theorem 5.5 (global regularity of U : weighted estimates in Ω). Let Ω ⊂ R2

be a bounded polygon, and let A, c satisfy the assumptions of Proposition 5.3. Let
U ∈ ◦

H1(yα, C) solve (1.2) with s ∈ (0, 1). Then there exists β ∈ [0, 1) (depending
only on Ω, A, c) such that the following regularity assertions hold with the weight ωδ,γ

given by (4.10):
(i) For 0 ≤ ν′ < 1− s, we have that

‖U ‖L2(ωα−2ν′,γ ,(0,∞);H2
β(Ω)) . ‖f‖

H1−s+ν′ (Ω). (5.13)

(ii) For 0 ≤ ν̃ < 1 + s, there exists κ > 1 such that

‖∂ℓ+1
y U ‖L2(ωα+2(ℓ+1)−2ν̃,γ ,(0,∞);H2

β(Ω)) . κℓ+1(ℓ+ 1)!‖f‖H1−s+ν̃(Ω), (5.14)

for all ℓ ∈ N0.
In both estimates, the hidden constants are independent of U and f .

Proof. The proof of (5.14) follows with the aid of (4.20) and that of (5.13) with
(4.19) by using the weighted regularity shift (5.12). In more detail, for a fixed y > 0
and m ∈ N0, set w = ∂my U (·, y) in (5.10). Notice that g = ∂my LU (·, y). Since β ≥ 0
we have that g ∈ L2

β(Ω) and estimate (5.12) holds. Square it and multiply it by either
ωα−2ν′,γ if m = 0, or ωα+2m−2ν,γ when m ≥ 1. Integration with respect to y over
(0,∞) allows us then to conclude.

The regularity result provided in Theorem 5.5 will be the basis for the analysis
of a P1-FEM on properly refined meshes in Ω that will allow us to recover in The-
orem 5.10 below the full first order convergence rate. The proof will require meshes
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and approximation operators suitable for the approximation of functions with H2
β(Ω)

regularity. This is achieved with appropriate refinement towards the vertices of Ω.
Since the sparse grids approach ahead will require nested spaces, it is expedient to
impose the additional constraint that the meshes be obtained by repeated bisection
from an initial triangulation. Lemma 5.2 indicates that it is desirable to have approx-
imation operators that are uniformly bounded with respect to ℓ in both, L2(Ω) and
H1(Ω). The following lemma shows that these requirements can be fulfilled:

Lemma 5.6 (meshes (T ℓ
β )ℓ≥0 and operators Πℓ

β). Let Ω ⊂ R2 be a bounded
polygon with straight sides and corners {c} and β ∈ [0, 1). Then there is a sequence
{T ℓ

β }ℓ≥0 of nested, regular bisection-tree meshes with associated quasi-interpolation

operators Πℓ
β : L2(Ω) → S1

0(Ω, T ℓ
β ) such that the following properties hold.

(i) Nℓ := dimS1
0(Ω, T ℓ

β ) . h−2
ℓ .

(ii) Simultaneous stability:

‖Πℓ
βv‖L2(Ω) . ‖v‖L2(Ω) ∀v ∈ L2(Ω), (5.15)

‖Πℓ
βv‖H1(Ω) . ‖v‖H1(Ω) ∀v ∈ H1

0 (Ω). (5.16)

(iii) Projection property: Πℓ
βv = v for all v ∈ S1

0(Ω, T ℓ
β ).

(iv) Optimal approximation rates for H1
0 (Ω) and H

2
β(Ω)-functions:

Nℓ‖w −Πℓ
βw‖2L2(Ω) . ‖w‖2H1(Ω) (5.17)

Nℓ‖w −Πℓ
βw‖2L2(Ω) + ‖∇x′(w −Πℓ

βw)‖2H1(Ω) . N−1
ℓ ‖w‖2H2

β(Ω), (5.18)

for all w ∈ H1
0 (Ω) and all w ∈ H1

0 (Ω) ∩H2
β(Ω), respectively.

In (ii) and (iv), constants hidden in . are independent of ℓ.
Proof. We divide the proof in two steps.
Step 1: The meshes T ℓ

β are constructed as described in [30] with an appropriate
refinement towards the corners {c} of Ω. By construction, property (i) holds. Since
such a sequence is obtained by “newest vertex bisection” the meshes T ℓ

β are uniformly
(in ℓ) shape-regular (see, e.g., [50, Lemma 1]). Additionally, they exhibit the following
approximation property

inf
v∈S1

0(Ω,T ℓ
β )

‖w − v‖L2(Ω) . hℓ‖w‖H1(Ω) . N
−1/2
ℓ ‖w‖H1(Ω) ∀w ∈ H1

0 (Ω), (5.19)

with hidden constants independent of ℓ. In view of the the continuous embedding
H2

β(Ω) →֒ C0(Ω̄), the nodal interpolant Iw ∈ S1
0(Ω, T ℓ

β ) is well defined. By construc-
tion, we thus have that:

h−1
ℓ ‖w − Iw‖L2(Ω) + ‖∇x′(w − Iw)‖L2(Ω) . hℓ‖w‖H2

β(Ω); (5.20)

see [47, Section 5].
Step 2: Step 1 shows that the spaces S1

0(Ω, T ℓ
β ) have the desired approximation

properties. The operator Πℓ
β can be taken as the L2(Ω)-projection onto S1

0(Ω, T ℓ
β ).

Then Πℓ
β is stable in L2(Ω) and, by [29], also stable in H1(Ω) so that (ii) holds.

The approximation properties (iii), (iv) now follow from the fact that Πℓ
β reproduces

the space S1
0(Ω, T ℓ

β ), the simultaneous stability in L2(Ω) and H1(Ω) as well as the
approximation properties (5.19) and (5.20).
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Remark 5.7 (other quasi-interpolants). In the proof of Lemma 5.6, the L2-
projection may be replaced with Scott-Zhang type quasi-interpolants that are projec-
tions onto S1

0(Ω, T ℓ
β ) and have suitable local stability properties in both L2 and H1.

Such operators are constructed, e.g., in [7, Lemma 4] by dropping in the classical
Scott-Zhang operator [62] the degrees of freedom associated with nodes on ∂Ω and
noting that the remaining operator is well-defined and (locally) stable in L2(Ω).

5.4.2. Linear interpolant π1
η on radical-geometric meshes in [0,Y ]. To

approximate the solution U with respect to the extended variable y, we shall use a
continuous, piecewise linear interpolant on suitably refined meshes Gk

gr,η in [0,Y ]. The
mesh is radical on [0, 1] and geometric on [1,Y ], and the parameter k indicates the
mesh size near the point 1. Specifically, for Y > 1, η > 0, and k = 1/N for an integer
N ∈ N, the mesh Gk

gr,η is given by

Gk
gr,η := {Ii | i = 1, . . . , N} ∪ {Jj | j = 1, . . . , N ′}, (5.21a)

Ii =
[
((i− 1)k)η, (ik)η

]
, i = 1, . . . , N, (5.21b)

Jj =
[
exp((j − 1)k), exp(jk)

]
, j = 1, . . . , N ′ − 1 := ⌊N log Y ⌋ − 1, (5.21c)

JN ′ =
[
exp((N ′ − 1)k),Y

]
. (5.21d)

Given η and Y , we denote by π1
η : C((0,Y ]) → S1((0,Y ),Gk

gr,η) the piecewise linear

interpolation operator over all the elements of the mesh Gk
gr,η with the exception of

the first one, i.e., I1. On that element, π1
η corresponds to the linear interpolant in the

midpoint of I1 and the right endpoint of I1. The operator

π1
η,{Y } : C((0,Y ]) → S1

{Y }
(
(0,Y ),Gk

gr,η

)
(5.22)

is obtained from π1
η by subtracting a linear function on the element abutting at Y

so as to satisfy (π1
η,{Y }u)(Y ) = 0. These operators naturally extend to Hilbert space

valued functions. The approximation properties of these operators are as follows.
Lemma 5.8 (interpolation error estimates). Let X be a Hilbert space, α ∈ (−1, 1),

θ ∈ (0, 1], and 0 ≤ γ′ < γ. Let the mesh grading parameter η that defines the radical
mesh Gk

gr,η satisfy ηθ ≥ 1. In this setting the following assertions hold:

(i) The number of elements in Gk
gr,η is bounded by k−1(1 + log Y ).

(ii) For every u ∈ C((0,∞);X) with u′ ∈ L2(ωα+2(1−θ),γ , (0,∞);X) we have

‖u− π1
ηu‖L2(ωα,γ′ ,(0,Y );X) . k‖u′‖L2(ωα+2(1−θ),γ ,(0,Y );X), (5.23)

‖u− π1
η,{Y }u‖L2(ωα,γ′ ,(0,Y );X) . k‖u′‖L2(ωα+2(1−θ),γ ,(0,Y );X) (5.24)

+
√

Y kY
α/2 exp(Y γ′/2)‖u(Y )‖X .

Furthermore, under the assumption that limy→∞ u(y) = 0 in X and the con-
straint

Y
−1/2+θ exp(−Y γ/2) ≤ k1/2 (5.25)

the following estimate holds:

‖u− π1
η,{Y }u‖L2(yα,(0,Y );X) . k‖u′‖L2(ωα+2(1−θ),γ ,(0,∞);X). (5.26)
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(iii) For u ∈ C((0,∞);X) with u′′ ∈ L2(ωα+2(1−θ),γ , (0,∞);X) and j ∈ {0, 1}

‖(u− π1
ηu)

(j)‖L2(ωα,γ′ ,(0,Y );X) . k2−j‖u′′‖L2(ωα+2(1−θ),γ(0,Y );X), (5.27)

‖(u− π1
η,{Y }u)

(j)‖L2(ωα,γ′ ,(0,Y );X) . k2−j‖u′′‖L2(ωα+2(1−θ),γ(0,Y );X) (5.28)

+ (Y k)1/2−j
Y

α/2 exp(Y γ′/2)‖u(Y )‖X .

Furthermore, under the assumption that, for j ∈ {0, 1}, we have that

lim
y→∞

u(j)(y) = 0 in X,

and, under the constraint

Y
−1/2+θ exp(−Y γ/2) ≤ k3/2 (5.29)

the following estimate holds for j ∈ {0, 1}:

‖(u− π1
η,{Y }u)

(j)‖L2(yα,(0,Y );X) . k2−j‖u′′‖L2(ωα+2(1−θ),γ ,(0,∞);X). (5.30)

Proof. We present the details for the proof of (ii), as that of (iii) is similar. The
technique used to obtain interpolation error estimates on the radical mesh on [0, 1] is
well-established; see, for instance, [59, Example 3.47]. We introduce the mesh points
yi := (ik)η, i = 0, . . . , N so that Ii = [yi−1, yi].

For the first element I1 = [y0, y1] = [0, kη], we invoke the estimate (A.3) with the
choice δ = 1− θ ∈ [0, 1) and a scaling argument to conclude that

‖u− π1
ηu‖2L2(yα,I1;X) . k2θ1 ‖u′‖2L2(yα+2(1−θ),I1;X), (5.31)

where k1 = |I1| = kη; we recall that θη ≥ 1.

For the remaining elements Ii, i = 2, . . . , N , of [0, 1], we use that ki . ky
(η−1)/η
i−1 ,

where ki = |Ii| = yi−yi−1 and η defines the radical mesh on [0, 1] in (5.21b). Recalling
the standard interpolation estimate

‖u− π1
ηu‖2L2(Ii)

. k2i ‖u′‖2L2(Ii)
, (5.32)

we obtain, upon using that maxy∈Ii y
α . miny∈Ii y

α and tensorization with X, the
bound

‖u− π1
ηu‖2L2(yα,Ii;X) . k2i ‖u′‖2L2(yα,Ii;X) . k2y

2(η−1)/η
i−1 ‖u′‖2L2(yα,Ii;X)

. k2‖u′‖2L2(yα+2(η−1)/η,Ii,;X) . k2‖u′‖2L2(yα+2(1−θ),Ii;X) . (5.33)

The last relation holds because ηθ ≥ 1.
For the elements beyond y = 1, we abbreviate Jj := [ỹj−1, ỹj ] :=

[
exp((j −

1)k, exp(jk)
]
for j = 1, . . . , N ′. Notice that, since k ≤ 1,

|Jj | = exp((j − 1)k)(1− ek) ∼ ỹj−1k, j = 1, . . . , N ′ − 1 . (5.34)

Using that the weight functions ωα,γ′ and ωα,γ , defined in (4.10), are slowly varying
over the intervals Jj , i.e.,

max
y∈Jj

ωα,γ′(y) . min
y∈Jj

ωα,γ′(y) and max
y∈Jj

ωα,γ(y) . min
y∈Jj

ωα,γ(y), (5.35)
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we obtain

∑

j

‖u− π1
ηu‖2L2(ωα,γ′ ,Jj ;X)

(5.32)

.
∑

j

|Jj |2‖u′‖2L2(ωα,γ′ ,Jj ;X)

(5.34),(5.35)

. k2
∑

j

ỹ2j−1e
−(γ−γ′)ỹj−1‖u′‖2L2(ωα,γ ,Jj ;X).

The estimate ỹ2j−1e
−(γ−γ′)ỹj−1 . 1 implies

∑

j

‖u− π1
ηu‖2L2(ωα,γ′ ,Jj ;X) . k2

∑

j

‖u′‖2L2(ωα,γ ,Jj ;X). (5.36)

Combining (5.31), (5.33), and (5.36) finishes the proof of the approximation prop-
erties of π1

η. The correction on the last element to obtain (5.24) for the operator
π1
η,{Y } is straightforward in view of (5.34). The estimate (5.26) follows from (5.24) by

controlling ‖u(Y )‖X with the aid of Lemma A.2.
It is worth stressing that the choices k = 2−ℓ, ℓ = 0, 1, . . . , lead to nested meshes:
Corollary 5.9 (nested meshes). For every fixed η ≥ 0, Y ≥ 1 and for kℓ =

2−ℓ, the sequence {Gkℓ
gr,η}∞ℓ=0 of graded meshes in (0,Y ) is nested and each Gkℓ

gr,η has

O(2ℓ(1 + log Y )) elements.
Proof. For fixed Y > 0, it follows directly from the definition of the mesh points

(5.21), in terms of k, that the meshes are nested.

5.4.3. Tensor P1-FEM in C with corner mesh refinement in Ω. We now
derive a rate of convergence for corner-refined meshes in, not necessarily convex,
polygons.

Theorem 5.10 (error estimates). Let Ω ⊂ R2 be a bounded polygon with a

finite set of corners {c}. Let u ∈ Hs(Ω) and U ∈ ◦

H1(yα, C) solve (1.1) and (1.2),
respectively, with f ∈ H1−s(Ω) and s ∈ (0, 1). Let β ∈ [0, 1) be such that (5.12) holds.
Let further {T ℓ

β }ℓ≥0 denote a sequence of uniformly shape-regular meshes in Ω that

satisfy (5.17) and (5.18). Let Gk
gr,η be the graded–exponential mesh in (0,Y ) defined

in (5.21) with the parameter η chosen to satisfy ηs > 1, k = 1/N , and with N ∈ N

chosen so that hℓ/2 ≤ k ≤ hℓ, and with the cut-off parameter Y > 0 chosen as

Y ∼ | log hℓ| . (5.37)

Assume that the constant hidden in (5.37) is fixed sufficiently large, independent of ℓ.
For every ℓ,M ∈ N, denote by Uhℓ,M ∈ V

1,1
hℓ,M

(T ℓ
β ,Gk

gr,η) the solution of (5.6). Then
we have the following error estimate

‖u− trΩ Uhℓ,M‖Hs(Ω) . ‖∇(U − Uhℓ,M )‖L2(yα,C) . hℓ‖f‖H1−s(Ω) (5.38)

The total number of degrees of freedom satisfies

NΩ,Y := dimV
1,1
hℓ,M

(T ℓ
β ,Gk

gr,η) = O(h−3
ℓ log | log hℓ|) = O(N 1+1/2

Ω log logNΩ) , (5.39)

where NΩ = #T ℓ
β .

Before proving Theorem 5.10, we note a corollary that follows from a simple
interpolation argument.

Corollary 5.11 (reduced regularity). Assume that the meshes satisfy the con-
ditions of Theorem 5.10 and that f ∈ H−s+t(Ω) with t ∈ [0, 1]. Then we have

‖u− trΩ Uhℓ,M‖Hs(Ω) . ‖∇(U − Uhℓ,M )‖L2(yα,C) . htℓ‖f‖Ht−s(Ω), (5.40)
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where the hidden constant additionally depends on t.

Proof of Theorem 5.10: The proof relies on the stability and approximation prop-
erties (5.18) of Πβ

ℓ , using arguments similar to those employed in [48], [40, Section
4.1]. For completeness we provide the details.

A sequence {T ℓ
β }ℓ≥0 (and associated approximation operators Πℓ

β) as required in
the statement of Theorem 5.10 has been constructed in Lemma 5.6. That sequence
of meshes is even nested. However, nestedness is not essential in the ensuing argu-
ments. The essential ingredients are the approximation properties (5.17), (5.18) and
the existence of an operator Πℓ

β that is simultaneously stable in L2(Ω) and H1(Ω);
shape-regularity of the meshes ensures the existence of such operators by Remark 5.7.
For a given choice of k, η, and Y , we denote by π1,ℓ

η,{Y } the nodal interpolation oper-

ator on the mesh (5.21), which we analyzed in Lemma 5.8. By Lemmas 5.1 and 5.2,
and by the choice (5.37) (recall (5.8)) it suffices to bound

‖∇(U − π1,ℓ
η,{Y }U )‖L2(yα,CY ) + ‖∇(U −Πℓ

βU )‖L2(yα,CY ) =: I + II .

Recalling that ∇ = (∇x′ , ∂y) we split the first term I into

I . ‖∂y(U − π1,ℓ
η,{Y }U )‖L2(yα,CY ) + ‖∇x′(U − π1,ℓ

η,{Y }U )‖L2(yα,CY ) =: Ia + Ib .

In view of (5.37) (with implied constant sufficiently large) we immediately obtain
that the conditions (5.25) and (5.29) of Lemma 5.8 are satisfied. Since ηs > 1, we can
therefore bound the term Ia using Lemma 5.8, item (iii), with j = 1 and X = L2(Ω)
and the term Ib using Lemma 5.8, item (ii) with X = H1

0 (Ω). Together with the
regularity estimates of Theorem 4.7 we have thus arrived at

I . Ia + Ib . hℓ‖f‖H0(Ω).

We apply the same splitting to the term II to obtain

II . ‖∂y(U −Πℓ
βU )‖L2(yα,CY ) + ‖∇x′(U −Πℓ

βU )‖L2(yα,CY ) =: IIa + IIb .

Since Nℓ = O(h−2
ℓ ) we have, from (5.17), that

IIa = ‖∂yU −Πℓ
β(∂yU )‖L2(yα,CY ) . hℓ‖∂yU ‖L2(ωα,0,(0,Y );H1(Ω)) ,

which can be controlled with the aid of (4.18) with ν = 1 there. To bound IIb we use
(5.18) and get

IIb . hℓ‖U ‖L2(ωα,0,(0,Y );H2
β(Ω)) .

Using the regularity estimate (5.13) with ν′ = 0 we conclude the proof of (5.38).

To obtain (5.39), we first note that by Lemma 5.8 item (i), the number of elements
in Gk

gr,η with hℓ = 2−ℓ and with the choice Y ≃ | log hℓ| ≃ ℓ is O(2ℓ log ℓ). We finally
observe that the total number of degrees of freedom in the tensor product space is the
product of the dimensions of the component spaces, i.e., O(h−2

ℓ h−1
ℓ log | log hℓ|). �
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5.4.4. Sparse grid P1-FEM with corner mesh refinement. For the approx-
imation with piecewise linears and for f ∈ H1−s(Ω), the convergence order in (5.38)
is optimal. However, the complexity of the method implied by (5.39) is superlinear
with respect to the number of degrees of freedom NΩ in Ω. To reduce the complexity
to nearly linear, we develop a sparse tensor product approach in what follows. It is
based on the subspace hierarchies

{S1
0(Ω, T ℓ

β )}ℓ≥0 , {S1
{Y }((0,Y ),G2−ℓ′

gr,η )}ℓ′≥0,

where {T ℓ
β }ℓ≥0 is a nested sequence of bisection–tree meshes in Ω which are β-graded

toward the corners {c} in such a way that first-order convergence in hℓ = O(2−ℓ) is
achieved for H2

β functions; such meshes are provided by Lemma 5.6. The sequence

{G2−ℓ′

gr,η }ℓ′≥0 consists of nested graded meshes on [0,Y ] that achieve, for functions
belonging to weighted H2-spaces in (0,Y ), as introduced in Theorem 4.7, first order
convergence (cf. the precise statements in Lemma 5.8 and in Corollary 5.9).

For ℓ, ℓ′ ≥ 0, we denote by

Πℓ
β : L2(Ω) → S1

0(Ω, T ℓ
β ) and π

1,ℓ′

η,{Y } : C((0,Y ]) → S1
{Y }((0,Y ),G2−ℓ′

gr,η )

the corresponding (quasi)interpolatory projections introduced in Lemma 5.6 and for-
mula (5.22), respectively. Set in addition Π−1

β := 0 and π1,−1
η,{Y } := 0. Then, for L ∈ N0,

we define the sparse tensor product space as

V̂
1,1
L (CY ) =

∑

ℓ,ℓ′≥0,ℓ+ℓ′≤L

S1
0(Ω, T ℓ

β )⊗ S1
{Y }((0,Y ),G2−ℓ′

gr,η ) . (5.41)

We immediately flag that the sum in (5.41) is not direct (cf. Remark 5.12 below). By

zero extension we have V̂
1,1
L (CY ) ⊂

◦

H1(yα, C).
We define the approximation ÛL ∈ V̂

1,1
L (CY ) as the solution to (5.6) with V̂

1,1
L (CY )

taking the role of Vh,M there.
Remark 5.12 (implementation). The computation of the sparse tensor FE

approximation ÛL ∈ V̂
1,1
L (CY ) by directly evaluating (5.6) would require an explicit

representation of the sparse tensor product subspace V̂
1,1
L (CY ) and therefore, in par-

ticular, an explicit basis for the “increment spaces” in (5.41), i.e., for the comple-

ments of S1
0(Ω, T ℓ−1

β ) in S1
0(Ω, T ℓ

β ) and the complements of S1
{Y }((0,Y ),G2−(ℓ′−1)

gr,η ) in

S1
{Y }((0,Y ),G2−ℓ′

gr,η ). Construction of bases for the increment spaces is possible, based

on ideas from multiresolution analyses. We opt, instead, to compute ÛL ∈ V̂
1,1
L (CY )

from the so-called combination formula (see, e.g., [33, Section 4.2, Equation (4.6)]).

It is based on anisotropic
◦

H1(yα, C)-Galerkin projections

G1,1
ℓ,ℓ′ := G1

hℓ
◦G1

2−ℓ′ :
◦

H1(yα; C) → V
1,1
h,M (Tℓ,G2−ℓ′

gr,η ) , (5.42)

with the semidiscrete projections defined in (5.5). The projectors G1,1
ℓ,ℓ′ in (5.42) can

be realized with standard FE bases in Ω and in (0,Y ). The combination formula then
takes the form

ÛL =

L∑

ℓ=0

(Uℓ,L−ℓ − Uℓ−1,L−ℓ) ,



22 L. Banjai, J. M. Melenk, R.H. Nochetto, E. Otárola, A.J. Salgado, Ch. Schwab

where Uℓ,ℓ′ := G1,1
ℓ,ℓ′U and U−1,j = 0 for j ∈ N0,

The convergence of our sparse grids scheme is the content of the next result.

Theorem 5.13 (convergence for sparse grids). Let Ω ⊂ R2 be a polygon and
let β ∈ [0, 1) be such that (5.12) holds. Let s ∈ (0, 1) and 1 < ν < 1 + s. Let f ∈
H−s+ν(Ω) and U ∈ ◦

H1(yα, C) solve (1.2). Let η(ν − 1) ≥ 1 and select Y ∼ | log hL|
with a sufficiently large hidden constant that is independent of ℓ. Then the sparse
tensor product space V̂1,1

L (CY ) of (5.41) and the corresponding Galerkin approximation

ÛL ∈ V̂
1,1
L (CY ) to U satisfy

‖∇(U − ÛL)‖L2(yα,C) . hL| log hL|‖f‖H−s+ν(Ω), (5.43)

dim V̂
1,1
L (CY ) . NΩ log logNΩ. (5.44)

Proof. Before proving the theorem, we recall that a sequence {T ℓ
β }ℓ≥0 of meshes

with corresponding approximation operators Πℓ
β is constructed in Lemma 5.6. We be-

gin by proving (5.44). From the condition Y ∼ | log hL| ∼ L, we have, by Lemma 5.8,

item (i), that #(G2−ℓ′

gr,η ) . 2ℓ
′ | log hL| ∼ 2ℓ

′
logL. Consequently,

dim V̂
1,1
L (CY ) .

∑

ℓ,ℓ′≥0,ℓ+ℓ′≤L

22ℓ+ℓ′ | logL| . 22L logL ∼ NΩ log logNΩ , (5.45)

where we have also used that Nℓ = dim(S1
0(Ω, T ℓ

β )) ∼ 22ℓ.

To prove (5.43), we next study the error of our method. From Lemma 5.1 and
(5.8) it suffices to study the best approximation error in V

1,1
L (CY ). To do so, we

introduce the sparse tensor product interpolation projector

Π̂L
Y : C((0,Y ];L2(Ω)) → V̂

1,1
L (CY )

which is defined by

Π̂L
Y w :=

∑

ℓ,ℓ′≥0,ℓ+ℓ′≤L

(Πℓ
β −Πℓ−1

β )⊗ (π1,ℓ′

η,{Y } − π1,ℓ′−1
η,{Y } )w . (5.46)

It is convenient to introduce the operators

Qℓ
β := Πℓ

β −Πℓ−1
β , q1,ℓ

′

η := π1,ℓ′

η,{Y } − π1,ℓ′−1
η,{Y } .

As in the proof of Theorem 5.10, we split the error into

min
v̂L∈V̂L

‖∇(U − v̂L)‖2L2(yα,CY )
. ‖∂y(U − Π̂L

Y U )‖2L2(yα,CY )

+ ‖∇x′(U − Π̂L
Y U )‖2L2(yα,CY )

=: I + II .
(5.47)

Each one of these terms can now be bounded in the usual sparse grid fashion, provided
that U has so-called mixed regularity, which is indeed the case by Theorems 4.7, 5.5.

Let us bound term I in (5.47). From the estimate (4.18) of Theorem 4.7 we infer

‖∂2yU ‖L2(ωα+2(2−ν),γ ,(0,∞);H1(Ω)) . ‖f‖H−s+ν(Ω), 0 ≤ ν < 1 + s. (5.48)



Tensor FEM for the spectral fractional Laplacian 23

Of interest to us is the case 1 < ν < 1+s < 2. Then, with the mesh grading parameter
η satisfying η(−1 + ν) ≥ 1 and upon assuming that Y ≥ CL for C > 0 sufficiently
large so that the condition (5.29) is satisfied we estimate

I ≤
∑

ℓ+ℓ′>L

‖∂y(Qℓ
β ⊗ q1,ℓ

′

y U )‖L2(yα,CY )

≤
∑

ℓ+ℓ′>L

‖∂y[((Ix′ ⊗ q1,ℓ
′

y ) ◦ (Qℓ
β ⊗ Iy)U ]‖L2(yα,CY )

.
∑

ℓ+ℓ′>L

2−ℓ‖∂y[(Ix′ ⊗ q1,ℓ
′

y )U ]‖L2(yα,(0,Y );H1(Ω)),

where, in the last step, we used the approximation property (5.17). We now apply
the estimate (5.30) with j = 0, θ = ν − 1 and X = H1(Ω), to arrive at

I .
∑

ℓ+ℓ′>L

2−ℓ−ℓ′‖∂2yU ‖L2(ωα+2(2−ν),γ ,(0,Y );H1(Ω)) . L2−L‖f‖H−s+ν(Ω) ,

where in the last step we have used the regularity estimate (5.48).

Let us now bound, using similar arguments, the term II in (5.47). From (5.13)
and (5.14) we obtain, for 1 ≤ ν < 2− s, the regularity estimate

‖∂yU ‖L2(ωα+2(2−ν),γ ,(0,∞);H2
β(Ω)) . ‖f‖H−s+ν(Ω). (5.49)

Hence, for η(−1 + ν) ≥ 1, and again under the condition that Y ≥ CL so that (5.25)
is satisfied, we can estimate

II ≤
∑

ℓ+ℓ′>L

‖∇x′(Qℓ
β ⊗ q1,ℓ

′

y U )‖L2(yα,CY )

≤
∑

ℓ+ℓ′>L

‖∇x′ [((Ix′ ⊗ q1,ℓ
′

y ) ◦ (Qℓ
β ⊗ Iy)U ]‖L2(yα,CY )

.
∑

ℓ+ℓ′>L

2−ℓ‖(Ix′ ⊗ q1,ℓ
′

y )U ‖L2(yα,(0,Y );H2
β(Ω)),

where in the last step we used the approximation properties of Πℓ
β , as stated in (5.18).

The approximation properties of π1,ℓ′

η,{Y } given in (5.26) with the regularity estimate

of (5.49) allow us to conclude that

II .
∑

ℓ+ℓ′>L

2−ℓ−ℓ′‖∂yU ‖L2(ωα+2(2−ν),γ ,(0,Y );H2
β(Ω)) . L2−L‖f‖H−s+ν(Ω) .

Collecting the bounds obtained for I and II yields the result.

Theorem 5.13 shows that it is possible to obtain near optimal order convergence
for fractional diffusion in Ω, by using only P1-FEM in both Ω and the extended
dimension. An alternative approach is based on exploiting analytic regularity of the
solution of the extended problem. In this case, exponentially convergent hp-FEM with
respect to the extended variable y will achieve near optimal order for conforming P1-
FEM in Ω, as observed recently in [40], and, as we show (by a different argument) in
Theorem 5.16 of Section 5.5.
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5.5. hp-FEM in (0,∞) and P1-FEM in Ω. The discretizations in the preced-
ing Sections 5.4.4 and 5.4.3 were of first order in x′ and y. We showed that full tensor
product FEM can lead to first order convergence in Ω at the expense of superlinear
complexity (5.39). Here, we address the use of the so-called hp-FEM in (0,Y ); the
analytic regularity estimates derived in Section 4 allow us to prove exponential con-
vergence estimates for corresponding high-order discretizations in (0,Y ). We consider
two situations:
a) The case where r is a so-called linear degree vector in (0,Y ), which will imply

exponential convergence with respect to y (cf. Lemma 6.2 below). If fixed order
FEM on a sequence {T ℓ

β }ℓ≥0 of regular, simplicial corner-refined meshes in Ω are
used, near optimal, algebraic convergence rates (with respect to the number NΩ of
degrees of freedom in Ω) result for the solution of (1.1) in Ω (Theorem 5.16). We
mention [34] where, in a structurally similar context, analyticity in the extended
variable y is also exploited by an hp-FEM.

b) The case where r is a linear degree vector in (0,Y ), and where we use the hp-FEM
in Ω; in this case, and under the additional assumption (7.1) of analyticity on the
data c, f , A, exponential convergence in terms of the number NΩ,Y of degrees of
freedom in CY can be achieved. We confine the exposition to the case Ω = (0, 1)
and to Ω ⊂ R2 with analytic boundary. This will be the content of Section 7.

5.5.1. Univariate hp-interpolation operator. We present here the construc-
tion of a univariate interpolation operator that leads to exponential convergence for
analytic functions that may have a singularity at y = 0. The construction is essen-
tially taken from the work by Babuška and collaborators, [32, 8] and discussed in the
literature on hp-FEM (see, e.g., [59, Sec. 4.4.1], [6, Thm. 8] and also [40]).

To make matters precise, we consider geometric meshes GM
geo,σ on [0,Y ] with M

elements and grading factor σ ∈ (0, 1): {Ii | i = 1, . . . ,M} with I1 = [0,Y σM−1] and
Ii = [Y σM−i+1,Y σM−i] for i = 2, . . . ,M . On such meshes, we consider a linear degree
vector r with slope s given by

ri := 1 + ⌊s(i− 1)⌋ , i = 1, 2, ...,M . (5.50)

We denote by K̂ = (−1, 1) the reference interval. We will require a base interpo-

lation operator Π̂r that allows for exponential convergence in r for analytic functions:
Lemma 5.14 (polynomial approximation operator Π̂r). There exists a linear

operator Π̂r : H1(K̂) → Pr(K̂) with the following properties:

1. (Π̂rû)(±1) = û(±1) for all û ∈ H1(K̂).
2. For every Ku > 0 there exist C ′ = C(Ku), b = b(Ku) > 0 such that if, for all

ℓ ∈ N0, we have ‖û(ℓ)‖L2(K̂) ≤ CuK
ℓ+1
u (ℓ+ 1)! then

‖û− Π̂rû‖H1(K̂)≤ C ′Cue
−br ∀r ∈ N.

Proof. Classical examples of such operators include the Gauss-Lobatto interpola-
tion operator and the “Babuška-Szabó operator” ΠBS

r as described, e.g., in the survey
[6, Example 13] or in [59, Theorem 3.14].

With the aid of Π̂r we introduce the operators πr

y and πr

y,{Y } on an arbitrary

mesh GM on [0,Y ] with M elements and polynomial degree distribution r ∈ NM in
an element-by-element fashion in the usual way below. However, for πr

y we modify
the approximation on the first element I1 = [0, y1] by interpolating in the points
y1/2 and y1 instead of the endpoints. The operator πr

y,{Y } is obtained by a further



Tensor FEM for the spectral fractional Laplacian 25

modification that enforces πr

y,{Y }(Y ) = 0. Specifically, with FIi : K̂ → Ii denoting

the affine, orientation-preserving element maps for element Ii ∈ GM we have

((πr

yu)|I1 ◦ FI1)(ξ) = 2(u ◦ FI1)(1)(ξ − 1/2) + 2(u ◦ FI1)(1/2)(1− ξ),

((πr

yu)|Ii ◦ FIi)(ξ) = Π̂rm
(u ◦ FIi), i = 2, . . . ,M,

(πr

y,{Y }u)|Ii = (πr

yu)|Ii , i = 1, . . . ,M − 1,

((πr

y,{Y }u)|IM ◦ FIM )(ξ) = ((πr

yu)|IM ◦ FIM )(ξ)− (u ◦ FIM )(1)(ξ + 1)/2 .

The definition of πr

y , π
r

y,{Y } is naturally extended for functions u ∈ C0((0,Y ];X),
where X denotes a Hilbert space. We will apply these operators to functions from
the following two classes of analytic functions of the extended variable y:

B1
β,γ(Cu,Ku;X) :=

{
u ∈ C∞((0,∞);X) : ‖u‖L2(ωα,γ ,(0,∞);X) < Cu,

‖u(ℓ+1)‖L2(ωα+2(ℓ+1)−2β,γ ,(0,∞);X) < CuK
ℓ+1
u (ℓ+ 1)! ∀ℓ ∈ N0

}
(5.51)

and

B2
β,γ(Cu,Ku, X) :=

{
u ∈ C∞((0,∞);X) :

‖u‖L2(ωα,γ ,(0,∞);X) + ‖u′‖L2(ωα,γ ,(0,∞);X) ≤ Cu,

‖u(ℓ+2)‖L2(ωα+2(ℓ+1)−2β ,γ , (0,∞);X) ≤ CuK
ℓ+2
u (ℓ+ 2)! ∀ℓ ∈ N0

}
. (5.52)

We recall that the weight ωβ,γ is defined as in (4.10). In the case that X = R, we
omit the tag X in (5.51), (5.52).

The approximation properties of the operators πr

y and πr

y,{Y } are given in the
following lemma.

Lemma 5.15 (exponential interpolation error estimates). Let β ∈ (0, 1], γ >
0, Cu, Ku ≥ 0. Let σ ∈ (0, 1). Then there exists a slope smin > 0 such that
on the geometric mesh GM

geo,σ the following estimates hold for any polynomial degree

distribution r = (ri)
M
i=1 with ri ≥ 1 + smin(i− 1):

(i) If u ∈ B1
β,γ(Cu,Ku;X) and σMY ≤ 1, then

‖u− πr

yu‖L2(ωα,γ ,(0,Y );X) . CuY
βe−bM , (5.53)

‖u− πr

y,{Y }u‖L2(ωα,γ ,(0,Y );X) . Cu

(
Y

βe−bM + Y
−1/2+βe−γY /2

)
. (5.54)

(ii) If u ∈ B2
β,γ(Cu,Ku;X) and σMY ≤ 1, then

‖(u− πr

yu)
′‖L2(ωα,γ ,(0,Y );X) . CuY

βe−bM , (5.55)

‖(u− πr

y,{Y }u)
′‖L2(ωα,γ ,(0,Y );X) . Cu

(
Y

βe−bM + Y
−3/2+βe−γY /2

)
. (5.56)

In all the estimates, the hidden constant and b > 0 depend only on β, γ, α, σ, and
Ku.

Proof. See Appendix A.

5.5.2. hp-discretization in y and P1 FEM in Ω. With the hp-approximation
operator πr

y of the previous section at hand, we can analyze the properties of the

space V
1,r
h,M (T ℓ

β ,GM
geo,σ). The following result generalizes [40] in that we allow for a



26 L. Banjai, J. M. Melenk, R.H. Nochetto, E. Otárola, A.J. Salgado, Ch. Schwab

general elliptic operator L and in that the appropriate mesh grading in Ω is included
to compensate for the lack of full elliptic regularity in the Sobolev scale Hs(Ω).

Theorem 5.16 (error estimates). Let Ω ⊂ R2 be a bounded polygon with (a
finite set of) corners {c}. Let β ∈ [0, 1) be such that (5.12) holds. Let u ∈ Hs(Ω) and

U ∈ ◦

H1(yα, C) solve (1.1) and (1.2), respectively, with f ∈ H1−s(Ω) and s ∈ (0, 1).
Let β ∈ [0, 1) be such that (5.12) holds and let {T ℓ

β }ℓ≥0 be a sequence of uniformly
shape-regular meshes of meshwidth hℓ that satisfy (5.17) and (5.18). For arbitrary,
fixed 0 < σ < 1, denote GM

geo,σ a geometric mesh on (0,Y ) with Y ∼ | log hℓ| with
a sufficiently large implied constant that is independent of ℓ, and assume that the
number M of elements in GM

geo,σ satisfies c1M ≤ Y ≤ c2M with absolute constants c1

and c2. Let Uhℓ,M be the Galerkin projection (5.6) onto the space V
1,r
hℓ,M

(T ℓ
β ,GM

geo,σ).
Then there exists a minimal slope smin independent of hℓ and f such that for linear
polynomial degree vectors r with slope s ≥ smin there holds

‖u− trΩ Uhℓ,M‖Hs(Ω) . ‖∇(U − Uhℓ,M )‖L2(yα,C) . hℓ‖f‖H1−s(Ω). (5.57)

In addition, the total number of degrees of freedom satisfies, with NΩ = #T ℓ
β ,

dimV
1,r
hℓ,M

(T ℓ
β ,GM

geo,σ) ∼ NΩ,Y ∼M2h−2
ℓ ∼ h−2

ℓ (log hℓ)
2 ∼ NΩ logNΩ.

More generally, if f ∈ Ht−s(Ω) for t ∈ [0, 1], then the bound (5.57) takes the form

‖u− trΩ Uhℓ,M‖Hs(Ω) . ‖∇(U − Uhℓ,M )‖L2(yα,C) . htℓ‖f‖Ht−s(Ω).

Proof. The starting point is again the error decomposition (5.9). The univariate
hp-interpolation operator πr

y constructed in Section 5.5.1 makes the semidiscretization
error U − πr

yU in y exponentially small in M (see Lemma 6.2 below for details). In
turn, the assumption M ∼ | log hℓ| implies any desired algebraic convergence in hℓ by
suitably selecting the hidden constant. On the other hand, the error U − Πq

x′U in
(5.9) is controlled as in the proof of Theorem 5.10.

Finally, the estimate for f ∈ Hσ−s(Ω) follows by interpolation.

6. Diagonalization: semidiscretization in y. We now explore the possibili-
ties offered by a semidiscretization in y. We will observe, among other things, that
this leads to a sequence of decoupled singularly perturbed, linear second order elliptic
problems in Ω. We remark that this decoupling idea dates back at least to [38], in
the context of the Laplacian in rectangular domains.

For an arbitrary mesh GM on [0,Y ] and for a polynomial degree distribution r,
we consider the following y-semidiscrete problem: Find UM ∈ Vr

M (CY ) such that

aC(UM , φ) = ds〈f, trΩ φ〉 ∀φ ∈ Vr

M (CY ), (6.1)

where Vr

M (CY ) is defined in (5.3) and is a closed subspace of
◦

H1(yα, C). In what
follows we obtain an explicit formula for UM . To accomplish this, we consider the
following eigenvalue problem: Find (v, µ) ∈ Sr

{Y }((0,Y ),GM ) \ {0} × R such that

µ

ˆ Y

0

yαv′(y)w′(y) dy =

ˆ Y

0

yαv(y)w(y) dy ∀w ∈ Sr

{Y }((0,Y ),GM ), (6.2)

where Sr

{Y }((0,Y ),GM ) is defined in (5.1). All eigenvalues µ are positive, and the

space Sr

{Y }((0,Y ),GM ) has an eigenbasis (vi)
M
i=1, with M := dimSr

{Y }((0,Y ),GM ),
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such that, for i, j ∈ {1, . . . ,M},
ˆ Y

0

yαv′i(y)v
′
j(y) dy = δi,j ,

ˆ Y

0

yαvi(y)vj(y) dy = µiδi,j . (6.3)

We write UM (x′, y) :=
∑M

j=1 Uj(x
′)vj(y) and consider φ(x′, y) = V (x′)vi(y), with

V ∈ H1
0 (Ω) as a test function, in (6.1). This yields the following system of decoupled

problems for i = 1, . . . ,M: Find Ui ∈ H1
0 (Ω) such that

aµi,Ω(Ui, V ) = dsvi(0)〈f, V 〉 ∀V ∈ H1
0 (Ω), (6.4)

where

aµi,Ω(U, V ) := µiaΩ(U, V ) +

ˆ

Ω

UV dx′,

and aΩ is introduced in (2.1). An important observation is that, for functions of the

form Z(x′, y) =
∑M

i=1 Vi(x
′)vi(y) with Vi ∈ H1

0 (Ω), we have the equality

aC(Z,Z) = aCY
(Z,Z) =

M∑

i=1

‖Vi‖2µi,Ω, ‖V ‖2µi,Ω := aµi,Ω(V, V ). (6.5)

To obtain a fully discrete scheme, select a mesh T on Ω and the corresponding
space Sq

0(Ω, T ) and let Πi : H
1
0 (Ω) → Sq

0(Ω, T ) be the Ritz projectors for the bilinear
forms aµi,Ω defined by

aµi,Ω(u−Πiu, v) = 0 ∀v ∈ Sq
0(Ω, T ). (6.6)

With this notation at hand, we can formulate an explicit representation of the
Galerkin approximation Uh,M ∈ Sq

0(Ω, T ) ⊗ Sr

{Y }(GM ) to U as well as an error rep-
resentation.

Lemma 6.1 (error representation). Let (µi, vi)
M
i=1 be the eigenpairs given by (6.2),

(6.3). Let Ui ∈ H1
0 (Ω) be the solution to (6.4) and Πi : H

1
0 (Ω) → Sq

0(Ω, T ) be the Ritz
projection defined in (6.6). Let UM be the solution to the semidiscrete problem (6.1).
Then the Galerkin approximation Uh,M ∈ Sq

0(Ω, T )⊗ Sr

{Y }(GM ) to U satisfies

Uh,M (x′, y) =
M∑

i=1

ΠiUi(x
′)vi(y), (6.7)

aC(UM − Uh,M ,UM − Uh,M ) =

M∑

i=1

‖Ui −ΠiUi‖2µi,Ω. (6.8)

Proof. Expression (6.7) follows from (6.4) and (6.6), whereas (6.8) is a consequence
of (6.5).

We next show that the semidiscretization error U − UM can be made exponen-
tially small on geometric meshes GM

geo,σ.
Lemma 6.2 (exponential convergence). Let f ∈ H−s+ν(Ω) for ν ∈ (0, s). Let

c1M ≤ Y ≤ c2M . Consider the geometric mesh GM
geo,σ on (0,Y ). Then there exist C,

smin, b > 0 (depending solely on s, L, c1, c2, σ, ν) such that for any linear degree r

with slope s ≥ smin there holds

‖∇(U − UM )‖L2(yα,C) ≤ Ce−bM‖f‖H−s+ν(Ω). (6.9)
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Proof. We begin the proof by invoking Galerkin orthogonality to arrive at

‖U − UM‖2C ≤ ‖U − πr

y,{Y }U ‖2C
. ‖U − πr

y,{Y }U ‖2CY
+ ‖∇U ‖2L2(yα,C\CY )

,

where ‖·‖C and ‖·‖CY
are defined by (2.10) and (2.11), respectively. Since (5.8) shows

that ‖∇U ‖L2(yα;C\CY ) is exponentially small in Y we may focus on the interpolation
error term. To control such a term we first observe that, in view of the definitions of
the spaces Bj

β,γ , j ∈ {0, 1}, given by (5.51), (5.52), the regularity estimates (4.17) and

(4.18) of Theorem 4.7, imply that U viewed as a function in C∞((0,∞), L2(Ω)) ∩
C∞((0,∞), H1

0 (Ω)) satisfies for ν ∈ (0, s) and K > κ (with κ as in Theorem 4.7)

U ∈ B1
ν,γ(C‖f‖H−s+ν(Ω),K;H1

0 (Ω)) ∩ B2
ν,γ(C‖f‖H−s+ν(Ω),K;L2(Ω)). (6.10)

From Lemma 5.15 together with the fact that Y ∼M we conclude that

‖∇x′(U − πr

y,{Y }U )‖L2(yα,CY ) ≤ Ce−bM‖f‖H−s+ν(Ω), (6.11)

‖∂y(U − πr

y,{Y }U )‖L2(yα,CY ) ≤ Ce−bM‖f‖H−s+ν(Ω), (6.12)

with b > 0 slightly smaller than that in (5.53) – (5.56). This implies the desired
estimate (6.9) and concludes the proof.

Finally, for the geometric mesh GM
geo,σ with the linear degree vector r and trun-

cation parameter Y ∼ M , we have the following estimates for the eigenvalues µi of
problem (6.2) and for the point values vi(0) in (6.4).

Lemma 6.3 (properties of the eigenpairs). For arbitrary fixed 0 < σ < 1 and for
every M ∈ N, let GM

geo,σ be a geometric mesh on (0,Y ) and r a linear degree vector
with slope s ≥ smin > 0. If c1M ≤ Y ≤ c2M for some constants 0 < c1 < c2 < ∞,
then there is C > 0 depending only on α, σ, c1, c2, smin such that for the eigenpairs
(µi, vi)

M
i=1 given by (6.2), (6.3) we have that:

‖vi‖L∞(0,Y ) ≤ CM (1−α)/2, C−1
(

Y s
−2M−2σM

)2 ≤ µi ≤ CM2.

Proof. The results follow from Lemmas B.1, B.2, and B.3.
The previously described approach to perform a semidiscretization in y leads to

structural insight into the regularity properties of the solution U : it shows that, up
to an exponentially small, in Y , error introduced by cutting off at Y , the solution
U can be expressed in terms of solutions of singularly perturbed reaction–diffusion
type problems. (A similar structural property for U (·, 0) can also be seen from
the Balakrishnan formula, e.g., [13, Equation (4)]). In what follows we will exploit
this to design appropriate approximation spaces in the x′-variable. Nevertheless, the
diagonalization (6.1)–(6.4) has more far-reaching ramifications:
• The diagonalization technique can be exploited numerically as it is not restricted to
the semi-discrete case. It holds for arbitrary, closed tensor product approximation
spacesW⊗Q, whereW ⊂ H1

0 (Ω) and Q ⊂ H1
{Y }(y

α, (0,Y )) (cf. (5.4)). It completely
decouples the solution of the full Galerkin problem, based on W ⊗ Q, into the
(parallel) solution of dimQ problems of size dimW. The numerical experiments in
Section 8 exploit this observation; see Remark 8.5 below.
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• The observation (6.5) allows one to gauge the impact of solving approximately the
dimQ problems that are of (singularly perturbed) reaction–diffusion type. For con-
vex domains Ω and spaces W based on piecewise linears on quasi-uniform meshes,
robust (with respect to the singular perturbation parameter) multigrid methods are
available (see, e.g., [51]).

• The diagonalization (6.2)–(6.4) also suggests another numerical approach: approx-
imate each solution Ui from a different (closed) space Wi ⊂ H1

0 (Ω). This leads to

the approximation of U in the space
∑M

i=1 v
i(y)Wi. The resulting Galerkin ap-

proximation still satisfies (6.7) and (6.8). This approach produces approximation
spaces in Ω × (0,Y ) that do not have tensor product structure but still provides
exponential convergence. As in the sparse grids case of Section 5.4.4 this approach
allows for reducing the number of degrees of freedom without sacrificing much ac-
curacy; specifically, the exponent 1/4 in the exponential convergence bound (7.7)
that we obtain in the next section could be reduced to 1/3 if Ω is an interval and the
exponent 1/5 in (7.12) could be reduced to 1/4 if Ω ⊂ R2 has an analytic boundary,
albeit at the expense of breaking the tensor product structure of the discretization.

7. hp-FE discretization in Ω. Up to this point, we have exploited the analytic
regularity of the solution U in the extended variable y in order to recover (up to
logarithmic terms) optimal complexity of a P1-FEM, for (1.1) posed in the polygon
Ω ⊂ R2, by full tensorization of a hp-FEM with respect to y with the P1-FEM in Ω

As a final goal, in this section we employ, in addition, an hp-FEM in Ω to obtain
an exponentially convergent, local FEM for the fractional diffusion problem (1.1).
Naturally, stronger regularity assumptions on the data f , A and c will be required: in
addition to the previously made assumptions on these data, we assume in the present
Section 7

c, f ∈ A(Ω,R) , A ∈ A(Ω,GL(Rd)) . (7.1)

Here, A(Ω, G) denotes the set of functions which are analytic in Ω and take values in
the group G.

We describe the setup of tensorized FEM in Ω× (0,Y ). The choice of the meshes
GM and T as well as the degree vector r and the polynomial degree q were not
specified in Section 6. Mesh design principles for problems as (6.4) are available
in the literature. For meshes, in an h-version context, we mention the so–called
Shishkin meshes and refer to [53] for an in-depth discussion of numerical methods
for singular perturbation problems. Here, we focus on the hp-version. Appropriate
mesh design principles ensuring robust exponential convergence of hp-FEM have been
developed in [60, 61, 41, 43, 42]. In these references, linear second order elliptic
singular perturbations with a single length scale and exponential boundary layers were
considered. As is revealed by the diagonalization (6.4), the y-semidiscrete solution
(6.1) contains M separate length scales µi, i = 1, ...,M. These need to be resolved
simultaneously by the x′-discretization space. To this end, based on [60, 61, 41, 43, 42],
we employ a mesh that is geometrically refined towards ∂Ω such that the smallest
length scale µM is resolved. We illustrate the key points in the following Sections 7.1
and 7.2 in dimension d = 1, and in dimension d = 2 for smooth boundaries.

7.1. Exponential convergence of hp-FEM in one dimension. To gain in-
sight into how to discretize the family of problems (6.4), we first consider the fol-
lowing reaction-diffusion problem in Ω = (0, 2): given f ∈ A(Ω;R) and a parameter
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0 < ε ≤ 1, find uε ∈ H1
0 (Ω) such that

− ε2u′′ε + uε = f on Ω, uε(0) = uε(2) = 0 . (7.2)

For (7.2), hp-Galerkin FEM afford robust exponential convergence. The following
result is a particular instance of [41, Proposition 20].

Proposition 7.1 (exponential convergence). Let Ω = (0, 2). Let T 1D,L
geo,σ be

a mesh on Ω that is geometrically refined towards ∂Ω = {0, 2} with L layers and
grading factor σ ∈ (0, 1):

T 1D,L
geo,σ := {(0, σL), (2− σL, 2)} ∪ {(σL−i+1, σL−i), (2− σL−i, 2− σL−i+1)}Li=1. (7.3)

Select L such that σL ≤ ε ≤ 1. Let f satisfy the analytic regularity estimates

‖f (ℓ)‖L2(Ω) ≤ CfK
ℓ
f ℓ! ∀ℓ ∈ N0, (7.4)

for some constants Cf , Kf > 0 that depend on f . Then there exist constants C, b > 0
independent of ε ∈ (0, 1] such that for the Galerkin approximation uq,Lε ∈ Sq

0(Ω, T 1D,L
geo,σ )

of the solution uε of (7.2) one has exponential convergence in the energy norm, given
by ‖w‖2ε2,Ω := ε2‖w′‖2L2(Ω) + ‖w‖2L2(Ω), i.e.,

‖uε − uq,Lε ‖ε2,Ω . Cfe
−bq.

Here the hidden constant and the constant b > 0 are independent of ε, but depend on
σ and Kf . Furthermore, L = O(1 + | log ε|) so that dimSq

0(Ω, T 1D,L
geo,σ ) = O(q2(1 +

| log ε|)).
Remark 7.2 (exponential convergence). The discretization described in Propo-

sition 7.1 and its properties warrant the following comments.
• The case ǫ ≥ 1: Although Proposition 7.1 restricts to ε ∈ (0, 1], one can check that
for ε ≥ 1, the mesh degenerates into a fixed mesh with three points {0, 1, 2} and the
corresponding approximation result reads

‖uε − uq,Lε ‖ε2,Ω . (1 + ε)Cfe
−bq . (7.5)

• Different length scales: Proposition 7.1 gives robust exponential convergence and
does not require explicit knowledge of the singular perturbation parameter ε, but
only a lower bound for it. This is crucial for the presently considered fractional
diffusion problem, where the decoupled problems (6.4) depend on several length
scales characterized by µi (which, in turn, depend on the discretization in the ex-
tended variable y ∈ (0,Y )). Applying a tensor product hp-FE space directly (i.e.,
without explicit diagonalization (6.1)–(6.4)) to the extended problem (1.2) based
on the tensor product of the hp-FE space Sq

0(Ω, T 1D,L
geo,σ ) and on the hp-FE space

Sr

{Y }((0,Y ),GM
σ ) obviates the numerical solution of the generalized eigenproblem

(6.2). It requires, however, the hp-space Sq
0(Ω, T 1D,L

geo,σ ) to concurrently approximate
the solutions of all singularly perturbed problems (6.4) in Ω with exponential con-
vergence rates.

• Different meshes: If an eigenbasis (vi)
M
i=1 satisfying (6.3) is available, then for each

of the decoupled singularly perturbed problems in Ω, a geometric boundary layer
mesh is not mandatory to achieve robust exponential convergence. A coarser mesh,
tailored to the specific length scale µi in the i-th equation of (6.4), will then suffice;
we refer to [60, 59] for details.
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Lemma 6.3 asserts that the reaction-diffusion problems (6.4) are singularly per-
turbed with length scale µi ranging from O(M−2σ2M ) to O(M2). Proposition 7.1
implies exponential convergence rates under the analyticity assumption (7.1). In the
next result, we combine these two observations to obtain an exponentially convergent
hp-FEM for the fractional diffusion problem in Ω.

Theorem 7.3 (exponential convergence). Let u ∈ Hs(Ω) and U ∈ ◦

H1(yα, C)
solve (1.1) and (1.2), respectively, with Ω = (0, 2), A = I, c = 0, and f satisfying
(7.1). Given fixed constants c1, c2 > 0, let GM

geo,σ be a geometric mesh on [0,Y ] with

grading factor σ ∈ (0, 1) and such that c1M ≤ Y ≤ c2M . Let r, on GM
geo,σ, be the

linear degree vector with slope s. Let T 1D,L
geo,σ be a geometric mesh in Ω as described in

Proposition 7.1 with an integer L such that

σ2L ≤ Y
2(sM)−4σ2M . (7.6)

Then, there are constants b, smin > 0 independent of M such that for s ≥ smin the
Galerkin projection Uq,r ∈ Sq

0(Ω, T 1D,L
geo,σ )⊗ Sr

{Y }((0,Y ),GM
geo,σ) of U satisfies

‖u− trΩ Uq,r‖Hs(Ω) . ‖∇(U − Uq,r)‖L2(yα,C) .M2e−bq + e−bM ,

where the hidden constant is independent of M and of q. In addition, as M → ∞,
with L and M related by (7.6), we have that, uniformly in q ∈ N, the total number of
degrees of freedom is

NΩ,Y := dimSq
0(Ω, T 1D,L

geo,σ )⊗ Sr

{Y }((0,Y ),GM
σ ) = O(qM3).

Choosing, in particular, q ∼ M yields a convergence rate bound in terms of the total
number of degrees of freedom NΩ,Y of the form

‖u− trΩ Uq,r‖Hs(Ω) . ‖∇(U − Uq,r)‖L2(yα,C) . exp(−b′N 1/4
Ω,Y ) (7.7)

for some b′ > 0 independent of NΩ,Y .
Proof. Let UM solve (6.1). We proceed in two steps.
Step 1 (Bounds on the semidiscretization error U −UM ): By the assumption of

analyticity of f , there exist constants Cf , Kf such that (7.4) holds. We thus have
that f ∈ H1/2−δ(Ω) for any δ > 0. Consequently, an application of Lemma 6.2 reveals
that for a sufficiently large slope s of the linear degree vector r (depending on the
constants Kf in the analytic regularity bound (7.4) of the data f) there exists b > 0
such that

‖∇(U − UM )‖L2(yα,C) . e−bM .

Step 2(Bounds on the errors ‖Ui − ΠiUi‖µi,Ω): We first notice that Lemma 6.3
immediately yields s−4M−2σ2M . µi. This, in view of the assumption (7.6), implies
that σ2L . µi. Consequently, given that f is analytic on Ω, we apply Proposition 7.1
(more precisely, the refinement (7.5)) to obtain that

‖Ui −ΠiUi‖µi,Ω . Y e−bq .Me−bq, (7.8)

where we have also used that µi . M2 . Y 2, which follows, again, from Lemma 6.3
and the condition c1M ≤ Y ≤ c2M . We recall that ‖ · ‖µi,Ω is defined as in (6.5).
Finally, combining (7.8) with (6.8) and recalling that M .M2 give

‖UM − Uh,M‖2L2(yα,C) . MM2e−2bq .M4e−bq.
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Fig. 7.1. Anisotropic geometric mesh (see Definition 7.6). Left: geometric refinement of the
reference patch with L layers. Right: Example of a mesh with N = 5 patches where n = 4 and with
L = 3 layers in the boundary layer patches. Solid lines indicate patches, dashed lines represent mesh
lines introduced by refinement of reference patches.

This concludes the proof.

Remark 7.4 (other operators). Theorem 7.3 also holds for 0 < c ∈ R by arguing
as in the proof of Theorem 7.7 ahead.

Remark 7.5 (mesh gradings Ω). The condition (7.6) is a sufficient condition
ensuring that the smallest boundary layer length scale (characterized by mini µi) that
arises from the diagonalization is resolved by the mesh T 1D,L

geo,σ . More generally, if the
geometric mesh of (7.3) were based on the mesh grading factor σx′ ∈ (0, 1) (distinct
from the factor σ in the mesh in the extended variable y), then condition (7.6) should
be replaced with σ2L

x′ ≤ CY 2(sM)−4σ2M for some chosen C > 0 independent of
L,M,Y .

7.2. Exponential convergence of hp-FEM in two dimensions. Let us now
discuss the extension of the ideas of Section 7.1 to the two dimensional case. As
it is structurally similar to the univariate case, we proceed briefly. For domains
Ω ⊂ Rd, d > 1, with smooth boundary, the boundary layers presented in the solutions
Ui of the singularly perturbed problems (6.4) can be resolved by meshes that are
anisotropically refined towards the boundary ∂Ω. A two dimensional analogue of the
meshes T 1D

geo,L of Proposition 7.1 is presented in [43, Section 3.4.3] and illustrated in

Figure 7.1 (right). These anisotropic geometric meshes T 2D,L
geo,σ are created as push-

forwards of anisotropically refined geometric meshes on reference patches as detailed
in the following definition, where we follow the notation employed in [43, Section
3.4.3].

Definition 7.6 (anisotropic geometric meshes T 2D,L
geo,σ ). Denote by S = [0, 1]2 the

reference element. Let Ωi, i = 1, . . . , N , be a fixed mesh on Ω ⊂ R2 consisting of curvi-
linear quadrilaterals with bijective element maps Mi : S → Ωi satisfying the “usual”
conditions for H1-conforming triangulations (see [43, (M1)–(M3) in Section 3.1] for
the precise definition). The elements Ωi are called patches and the associated maps
Mi patch maps. Let Ωi, i = 1, . . . , n ≤ N , be such that the left edge e := {0} × (0, 1)
of S is mapped to ∂Ω, i.e., Mi(e1) ⊂ ∂Ω, and that Mi(∂S \ e)∩ ∂Ω = ∅. Assume that
the remaining elements Ωi, i = n+ 1, . . . , N satisfy Ωi ∩ ∂Ω = ∅.

Subdivide the reference element S into L+1 rectangles Sℓ, ℓ = 0, . . . , L, as follows
for chosen grading factor σ ∈ (0, 1):

S0 = (0, σL)× (0, 1), Sℓ = (σL+1−ℓ, σL−ℓ)× (0, 1), ℓ = 1, . . . , L. (7.9)

Define elements Ωℓ
i , i = 1, . . . , n, ℓ = 0, . . . , L, and the corresponding element maps
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M ℓ
i : S → Ωℓ

i by

Ω0
i :=Mi(S

0), M0
i (ξ, η) :=Mi(ξσ

L, η),

Ωℓ
i :=Mi(S

ℓ), M ℓ
i (ξ, η) :=Mi(σ

L+1−ℓ + ξσL−ℓ, η), ℓ = 1, . . . , L.

The mesh T 2D,L
geo,σ given by the elements {Ωℓ

i : i = 1, . . . , n, ℓ = 0, . . . , L} ∪ {Ωj : j =
n+1, . . . , N} with corresponding element maps introduced above is a triangulation of Ω
that satisfies the “usual” conditions of H1-conforming triangulations, i.e., conditions
[43, (M1)–(M3) in Section 3.1]. For T 2D,L

geo,σ the FE-space is given by the standard
H1

0 (Ω)-conforming space of mapped polynomials of degree q:

Sq
0(T 2D,L

geo,σ ) := {u ∈ H1
0 (Ω) : u|K ◦ FK ∈ Qq(S) ∀K ∈ T 2D,L

geo,σ }, (7.10)

where FK : S → K is the element map of K ∈ T 2D,L
geo,σ and Qq(S) is the space of

polynomials of degree q in each variable on S.
For such anisotropically refined meshes, we have the following exponential con-

vergence result.
Theorem 7.7 (exponential convergence). Let u ∈ Hs(Ω) and U ∈ ◦

H1(yα, C)
solve (1.1) and (1.2), respectively, with Ω ⊂ R2 having an analytic boundary, A = I,
0 ≤ c ∈ R, and f satisfying the regularity requirement (7.1). Given fixed constants
c1, c2 > 0, let GM

geo,σ be a geometric mesh on [0,Y ] with grading factor σ ∈ (0, 1)

and such that c1M ≤ Y ≤ c2M . Let r, on GM
geo,σ, be the linear degree vector with

slope s. Assume that L is chosen such that (7.6) holds. Let T 2D,L
geo,σ be an anisotropic

geometric mesh with L layers as described in Definition 7.6 where, additionally, the
patch maps Mi, i = 1, . . . , N , are assumed to be analytic. Then, there are constants
C, b, smin > 0 independent of M such that for s ≥ smin the Galerkin approximation
Uq,r ∈ Sq

0(Ω, T 2D,L
geo,σ )⊗ Sr

{Y }((0,Y ),GM
geo,σ) to U satisfies

‖u− trΩ Uq,r‖Hs(Ω) . ‖∇(U − Uq,r)‖L2(yα,C) ≤ C
(
M2e−bq + e−bM

)
. (7.11)

Furthermore, as M → ∞, with L related to M by (7.6), we have that, uniformly in
q ∈ N, the total number of degrees of freedom is

NΩ,Y := dimSq
0(Ω, T 2D,L

geo,σ )⊗ Sr

{Y }((0,Y ),GM
σ ) = O(q2M3).

Choosing, in particular, q ∼ M yields a convergence rate bound in terms of the total
number of degrees of freedom NΩ,Y of the form

‖u− trΩ Uq,r‖Hs(Ω) . ‖∇(U − Uq,r)‖L2(yα,C) . exp(−b′N 1/5
Ω,Y ) (7.12)

for some b′ > 0 independent of NΩ,Y .
Proof. The proof parallels that of Theorem 7.3. We start with the case c = 0. By

the arguments in [43, Section 3.4.3] the meshes T 2D,L
geo,σ allow for estimates of the form

inf
v∈Sq

0 (Ω,T 2D,L
geo,σ )

‖Ui − v‖µi,Ω . e−bq (7.13)

for the solutions Ui of (6.4), provided L and µi satisfy σ
2L . µi, which is ensured by

assumption (7.6) with Lemma 6.3. Here, the hidden constant and b > 0 depend on
f , ∂Ω, and the analyticity of the patch maps Mi, i = 1, . . . , N . The estimates (7.13)
then allow us to conclude the proof for c = 0 as in Theorem 7.3.



34 L. Banjai, J. M. Melenk, R.H. Nochetto, E. Otárola, A.J. Salgado, Ch. Schwab

For c 6= 0, we observe that the singularly perturbed problems (6.4) in Ω take the
form

−µi∆Ui + (1 + cµi)Ui = f on Ω, Ui|∂Ω = 0.

This can be transformed to the case c = 0 by rewriting it in terms of µ̃i := µi/(1+cµi)
as

−µ̃i∆Ui + Ui = f̃ :=
1

1 + cµi
f on Ω, Ui|∂Ω = 0.

The approximation result (7.13) holds again (with µi replaced with µ̃i there).
Remark 7.8 (limitations and extensions).

(i) Theorem 7.7 is restricted to A = I and to the coefficient c being constant, as
it relies on [43], which in turn builds on the regularity theory developed in [44].
The results of [43] can be generalized to A and c that satisfy (7.1) using the
results from [42]. In turn, Theorem 7.7 could be generalized to this setting as
well.

(ii) Theorem 7.7 can be expected to generalize to Ω ⊂ Rd with d > 2 if ∂Ω is analytic.
The underlying reason for this is that the boundary layers are structurally a
one dimensional phenomenon, which can be resolved with anisotropic refinement
transversal to ∂Ω. The approximation result (7.11) can therefore be expected
to hold. However, the complexity is then NΩ,Y = O(qMd+2), resulting in an

exponential convergence bound of exp(−b′N 1/(d+3)
Ω,Y ).

(iii) Theorem 7.7 does generalize to so-called “bounded, curvilinear polygonal do-
mains” Ω ⊂ R2. The analogue of Proposition 7.1, i.e., a rigorous convergence
analysis of hp-FEM in Ω for the single-scale reaction diffusion problem with the
appropriate mesh refinement towards the corners of Ω is available in [42].

8. Numerical experiments. In the numerical experiments, we apply the dif-
ferent discretization techniques of the present paper to the following four problems.

Problem 8.1 (smooth solution). We consider A = I, c = 0, and Ω = ΩL, where
ΩL ⊂ R2 is the L-shaped polygonal domain determined by the vertices

c ∈ {(0, 0), (1, 0), (1, 1), (−1, 1), (−1,−1), (0,−1)}.

The solution u with corrresponding right-hand side f are prescribed as follows (recall
x′ = (x1, x2) ∈ Ω):

u(x1, x2) = sinπx1 sinπx2, f(x1, x2) = (2π2)s sinπx1 sinπx2. (8.1)

Obviously, u ∈ C∞(Ω). Since u is an eigenfunction of the Dirichlet-Laplacian, both
u and f ∈ Ht(Ω) for any t ∈ R.

Problem 8.2 (solution with corner singularities). We consider A = I, c = 0,
Ω = ΩL with the L-shaped domain ΩL of Problem 8.1. The right-hand side f is

f(x1, x2) ≡ 1 . (8.2)

We note f ∈ H1−s(Ω) for s ∈ (1/2, 1) and that the solution u has corner singularities
at vertices of ΩL, the strongest one at the re-entrant corner.

Problem 8.3 (variable coefficients). We consider Ω = (0, 1) and A(x′) = 1 +
sin(πx′), c ≡ 0, and f ≡ 1. We note f ∈ H1−s(Ω) for s ∈ (1/2, 1).
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Problem 8.4 (analytic, incompatible data). We consider Ω = (0, 1) and A ≡ 1,
c ≡ 0, and f ≡ 1. We note f ∈ H1−s(Ω) for s ∈ (1/2, 1). For s ∈ (0, 1/2),
the data f is incompatible (in the sense defined in Remark 2.2), and we only have
f ∈ H1/2−δ(Ω), δ > 0.

The error measure in the numerical experiments will always be the energy norm

‖u− trΩ Uh,M‖2
Hs(Ω) . ‖∇(U − Uh,M )‖2L2(yα,C) = ds

ˆ

Ω

f(u− trΩ Uh,M ),

where Uh,M denotes the discrete solution in CY . The exact solution is not known for
Problems 8.2, 8.3, 8.4 so that a comparison with a more accurate numerical solution
is performed.

Remark 8.5 (algorithmic details). For the chosen discrete spaces the mass and
stiffness matrices in Ω and (0,Y ) are computed. We then numerically solve the gener-
alized eigenvalue problem (6.3), thereby arriving at M decoupled linear systems: Find
Ui ∈ Sq

0(Ω, T ) such that

aµi,Ω(Ui, V ) = dsv
i(0)

ˆ

Ω

fV dx′ ∀V ∈ Sq
0(Ω, T ), (8.3)

where aµi,Ω is defined in (6.4). Following (6.7), the solution is then obtained by

Uh,M (x′, y) =
M∑

i=1

vi(y)Ui(x
′).

The implementation was done in Matlab R2017a, with the generalized eigenvalue prob-
lem solved with eig and the decoupled linear systems by a direct solver, i.e., Matlab’s
“backslash” operator.

8.1. P1-FEM in Ω with radical meshes in (0,Y ). In the following examples
we make use of the family of graded meshes Gk

gr,η as described in Section 5.4.2 with the
particular choices η = 2/s, k = h/2, and Y = | log h|, where h denotes the meshwidth
of the mesh in Ω to be described next.

8.1.1. Smooth solution. In our first experiment we study Problem 8.1 with
smooth solution (8.1). We use the P1-FEM in Ω on a hierarchy of uniformly refined
meshes T ℓ. The results are displayed in Figure 8.1. As the theory predicts we see
first order convergence in the energy norm with respect to the meshwidth h for both
cases s = 1/4 and s = 3/4.

8.1.2. Mesh refinement at (0, 0). In the next experiment we consider Prob-
lem 8.2 with s = 3/4. We note that f ∈ H1−s(Ω). As in Sec. 8.1.1, we use the graded
mesh Gk

gr,η in (0,Y ). We compare two types of meshes in Ω: uniformly refined meshes

and a hierarchy {T ℓ
β }ℓ≥0 of bisection–tree meshes in Ω that are suitably refined to-

wards the re-entrant corner at (0, 0) as constructed in [30]. Indeed, for this particular
problem and approxmiation by P1-FEM, mesh refinement near the convex corners of
Ω is not necessary since in fact the H2-regularity is lost only near the non-convex
vertex of Ω. In Figure 8.2 we observe for the corner-refined meshes linear conver-
gence with respect to the meshwidth as predicted by Theorem 5.10 whereas uniform
refinement leads to sublinear convergence.
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Fig. 8.1. (cf. Sec. 8.1.1) Error in the en-
ergy norm versus the meshwidth in Ω with the
(smooth) solution given in (8.1). A P1-FEM on
uniformly refined meshes in Ω and P1-FEM on
radical meshes in (0, Y ) is used.
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Fig. 8.2. (cf. Sec. 8.1.2) Error in the en-
ergy norm versus meshwidth in Ω with the right-
hand side f ≡ 1 and s = 3/4. Error graphs are
shown for a P1-FEM on uniformly and corner-
refined refined meshes in Ω.

8.1.3. Sparse grid P1-FEM with mesh refinement at (0, 0). We consider
Problem 8.2 with corner-refined meshes in Ω as in Section 8.1.2. While the discrete
spaces used in Section 8.1.2 achieve the optimal order convergence with respect to
the number of degrees of freedom NΩ, the number of degrees of freedom NΩ,Y in

the extended problem is of size O(N 1+1/2
Ω log logNΩ), i.e., it grows superlinearly with

respect to NΩ. To reduce the complexity to nearly linear, we use sparse grids as
explained in Section 5.4.4; see in particular the combination formula described in
Remark 5.12. In Figure 8.3, we show the error versus NΩ,Y for a) the full tensor space
already described in Section 8.1.2, b) the sparse grids approach of Section 5.4.4 (based
on the corner-refined P1-FEM in Ω and the radial mesh in y), and c) the hp-FEM
in the y-variable described in detail in the following Section 8.2. Figure 8.3 shows
that the use of sparse grids dramatically reduces the number of degrees of freedom
and provides accuracy vs. number of degrees of freedom comparable to hp-FEM in
the y-variable.

8.2. P1-FEM in Ω with hp-FEM in (0,Y ). We again start with Problem 8.1
with smooth solution (8.1). P1-FEM on uniformly refined meshes is used in Ω, whereas
in the extended direction y we use hp-discretization on the geometric meshes GM

geo,σ

on [0,Y ]. We use Y = 1
3 | log2 h|, M = | log2(h/2)|, σ = 0.05, and linear degree vector

r with slope s = 2. First order convergence, as predicted by theory, can be seen in
Figure 8.4. In Table 8.1 we give more details on the various parameters we used in the
numerical experiments: the size of the meshwidth in Ω, the polynomial degrees in the
y direction, and the number of decoupled linear systems solved. In Table 8.2 we show
how the results change when the grading factor is increased to σ = 0.1. This has little
effect on the error for s = 0.75. However, the error for s = 0.25 increases significantly,
and the convergence order in h is reduced from 1 to about 0.8. Increasing M recovers
the optimal convergence order. Namely, further numerical experiments show that the
optimal convergence order for s = 0.25 is recovered by choosing M = 2| log2(h/2)|.

We also consider Problem 8.2 with s = 0.75. This time we show convergence
versus the number of degrees of freedom NΩ,Y in the extended problem and compare
with P1-FEM in Ω on corner-refined meshes as described in Section 8.1.2. We report
the computations in Figure 8.3. We obtain nearly optimal complexity as predicted
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Fig. 8.3. (cf. Sec. 8.1.3) Error in the
energy norm versus the number of degrees of
freedom of the extended problem with f ≡ 1,
s = 3/4. A P1-FEM on corner-refined meshes
is used in Ω. We compare a) full tensor grid
(radical mesh in (0, Y )), b) sparse grids (radical
mesh in (0, Y )), and c) hp-FEM in (0, Y ).
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Fig. 8.4. (cf. Sec. 8.2) Error in the en-
ergy norm versus the meshwidth in Ω with the
(smooth) solution given in (8.1) for s = 1/4
and s = 3/4. A P1-FEM on uniformly refined
meshes in Ω and hp-FEM in (0, Y ) is used.

h p no. linear sys. error (s = 0.25) error (s = 0.75)
2−2 1 4 0.329 1.32
2−3 2 9 0.152 0.427
2−4 3 16 0.0761 0.181
2−5 4 25 0.0385 0.0869
2−6 5 36 0.0193 0.0431
2−7 6 49 0.00956 0.0216

Table 8.1
Meshwidth h of the P1-FEM on uniform meshes in Ω, highest polynomial degree used in the

hp-discretization in the extended direction, number of decoupled linear systems solved and resulting
errors in the energy norm for s = 0.25 and s = 0.75 and with the grading factor σ = 0.05.

by theory, but interestingly in this example slightly worse behavior compared with
sparse grids.

8.3. P1-FEM in (0, 1) with hp-FEM in (0,Y ) and variable A. Next, we
investigate the case of a variable diffusion coefficient in Problem 8.3 with s = 3/4. In
the domain Ω = (0, 1) we use a uniform mesh and set σ = 0.1, whereas the remaining
parameters for the hp-FEM in the y-direction are chosen as in the previous Section 8.2.
As the exact solution is not available, the convergence in the energy norm is estimated
numerically with respect to an accurate numerical solution obtained on a finer mesh.
The expected first order convergence is seen in Figure 8.5.

8.4. hp-FEM in (0, 1)× (0,Y ). We study the hp-FEM in x and in y for Prob-
lem 8.4 with the aim to show that exponential convergence can be achieved even in the
case of incompatible data f . We comment that the solution of Problem 8.4 behaves
like

u(x′) ∼





dist(x′, ∂Ω) + v(x′) for 1/2 < s < 1 ,

dist(x′, ∂Ω) log dist(x′, ∂Ω) + v(x′) for s = 1/2 ,

dist(x′, ∂Ω)2s + v(x′) for 0 < s < 1/2 ,

(8.4)
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h p no. linear sys. error (s = 0.25) error (s = 0.75)
2−2 1 4 0.353 1.33
2−3 2 9 0.191 0.443
2−4 3 16 0.114 0.184
2−5 4 25 0.0682 0.0872
2−6 5 36 0.0404 0.0431
2−7 6 49 0.0237 0.0215

Table 8.2
Larger grading factor σ = 0.1 than in Table 8.1, but otherwise the same parameters. Notice

little difference in the error for s = 0.75, but increased errors for s = 0.25.
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Fig. 8.5. (cf. Sec. 8.3). Energy norm convergence for P1-FEM in (0, 1) and hp-FEM in (0, Y )
for variable diffusion coefficient A.

with v denoting a smoother remainder. In (8.4), the first and third case are shown
in [18], whereas the “borderline” case s = 1/2 follows from [22, Thm1.1 with Eqn.
(0.2) and Example 1.6], upon observing that for s = 1/2 the differential operator in
the Caffarelli-Silvestre extension is the Laplacian in d + 1 dimension. Hence, the
singular support of u is ∂Ω, i.e., u exhibits an algebraic boundary singularity (distinct
from the smooth exponential boundary layers arising in linear, elliptic-elliptic singular
perturbations) near the boundary of Ω; see Figure 8.6.

In our numerical convergence studies, we compare the numerical solution with an
accurate solution obtained on a finer grid.

In (0,Y ), we use the same geometric hp-FEM space GM
geo,σ as in Section 8.2. The

hp-FEM space Sq
0(Ω, TL) is based on the geometric mesh TL, which is scaled version of

the geometric mesh T 1D
geo,L described in Proposition 7.1. We select q =M and L =M .

Exponential convergence with respect to the polynomial degree q as predicted by the
theory is shown in Figure 8.7.

In Figure 8.8 we illustrate the behavior of the solution given by (8.4). We also
investigate numerically the borderline case s = 1/2 in Figure 8.9. Even if the domain
Ω is smooth, u exhibits in general a boundary singularity with singular support ∂Ω.
For s = 1/2 and polygonal Ω, this boundary singularity is the trace, at y = 0, of an
edge singularity of the solution U of the extended problem (1.2) in C whose structure
is known; see, for instance, [23] and the references therein. For d = 2, the hp-FE
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Fig. 8.6. Solution profile for Problem 8.4
for s = 0.25 with algebraic boundary singularity.
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Fig. 8.7. (cf. Sec. 8.4) Exponential con-
vergence in energy norm of the hp-FEM on
Ω×(0, Y ) versus polynomial order q for s = 0.25
and incompatible f ≡ 1.
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Fig. 8.8. Numerical verification of the
algebraic boundary singularity behavior (8.4) of
the solution of Problem 8.4 for s = 1/4. Note
that the change in the slope (from 1/2 to 1) near
the boundary is a numerical artifact – as the
approximation is improved, the kink moves to
the left.
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Fig. 8.9. Solution profile for Prob-
lem 8.4 for s = 1/2 near the bound-
ary. The numerical solution is compared with
dist(x′, ∂Ω)| log dist(x′, ∂Ω)|.

geometric boundary layer meshes in Figure 7.1 appear naturally as traces at y = 0 of
the 3-dimensional geometric meshes in CY developed in [57, 58].

9. Conclusions and generalizations. In the course of this work, we intro-
duced and analyzed four different types of local FEM discretizations for the numerical
approximation of the spectral fractional diffusion problem (1.1) in a bounded polyg-
onal domain Ω ⊂ R2 with straight sides (or a bounded interval Ω ⊂ R), subject to
homogeneous Dirichlet boundary conditions. Our local FEM schemes are based on
the Caffarelli-Silvestre extension of (1.1) from Ω to C. Our main contributions are
the following.

• General operators and nonconvex domains. We proposed a tensor product
argument for continuous, piecewise linear FEM in both (0,∞), and in Ω with proper
mesh refinement towards y = 0 and the corners c of Ω. Assuming that A and c are
as in Proposition 5.3, we showed that the approximate solution to problem (1.1)
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exhibits a near optimal asymptotic convergence rate O(hΩ| log hΩ|) subject to the
optimal regularity f ∈ H1−s(Ω). However, if NΩ denotes the number of degrees
of freedom in the discretization in Ω, then the total number of degrees of freedom

grows asymptotically as O(N 3/2
Ω ) (ignoring logarithmic factors).

This result is analogous to the bounds obtained in [48] for convex domains Ω, thus
generalizing these results to nonconvex, polygonal domains Ω ⊂ R2. The error
analysis proceeded by a suitable form of quasi-optimality in Lemma 5.1 and the
construction of a tensor product FEM interpolant in the truncated cylinder CY .
This interpolant was constructed from a nodal, continuous and piecewise linear
interpolant π1,ℓ

η with respect to the extended variable y ∈ (0,Y ) on a radical-

geometric mesh, and from an L2(Ω) projection Πℓ
β in Ω onto the space of continuous,

piecewise linears on a suitable sequence {T ℓ
β }ℓ≥0 of regular nested, bisection-tree,

simplicial meshes with refinement towards the corners c of Ω. A novel result from
[29] implies that Πℓ

β is also uniformly H1(Ω)-stable with respect to the refinement
level ℓ. The present construction would likewise work with any other concurrently
L2(Ω) and H1(Ω) stable family of quasi-interpolation operators, e.g. those of [62].

• Sparse tensor grids. While the regularity requirement f ∈ H1−s(Ω) is, essen-

tially, minimal for first order convergence in Ω, the complexity O(N 3/2
Ω ) due to

the extra degrees of freedom in the extended variable results in superlinear work
with respect to NΩ. We therefore proposed in Section 5.4.4 a novel, sparse tensor
product FE discretization of the truncated, extended problem. Using novel regu-
larity results for the extended solution in C in weighted spaces and sparse tensor
product constructions of the interpolation operators π1,ℓ

η and Πℓ
β in Ω, we proved

that this approach still delivers FEM solutions of (1.1) with essentially first order
convergence rates (i.e., up to logarithmic factors), under the slightly more stringent
regularity f ∈ H1−s+ν(Ω), ν > 0, while requiring essentially only O(NΩ) many
degrees of freedom.

• hp-FE approximation in the extended variable. The solution of the extended
problem being analytic with respect to the extended variable y > 0 allows for
designing hp-FE approximations with respect to the variable y on geometric meshes
and proving exponential convergence rates even under finite regularity of A, c, and f
as specified in Proposition 5.3. The proof is based on a novel framework of countably
normed, weighted Bochner spaces in (0,∞) to quantify the analytic regularity with
respect to y. We also developed a corresponding family of hp-interpolation operators
that affords exponential convergence rates in the extended variable.
Upon tensorization with the projectors Πℓ

β onto spaces of continuous, piecewise
linear finite elements on simplicial, bisection-tree meshes with corner refinement in
Ω, we obtained a class of FE schemes that afford essentially optimal, linear conver-
gence rate in Ω under the regularity f ∈ H1−s(Ω), also for nonconstant coefficients
and nonconvex polygonal domains Ω, thereby generalizing [40]. We remark that the
convergence rate bounds essentially equal the results of so-called wavelet Galerkin
discretizations for the integral fractional Laplacian (see [55, 54] and the references
therein). Wavelet Galerkin methods are based on direct, “nonlocal” Galerkin dis-
cretization of integro-differential operators, which entail numerical evaluation of
singular integrals and dense stiffness matrices, neither of which occurs in the present
local FE approach. However, these methods can also cope with variable exponent
s(x′), which seems to be beyond reach with the present approach; see [56, 21] and
the references therein. We also point out that the boundary compatibility of f ,
which is implicit in the assumption f ∈ H1−s(Ω), is essential in the arguments in
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Section 5 as well as in the results of [48, 40, 13].
• Diagonalization. We further developed a diagonalization approach, first proposed
in [38] for the Laplacian in rectangular domains, which allows us to decouple the
second order elliptic system in CY , resulting from any Galerkin semidiscretization
in the extended variable y (either of h-FEM or of hp-FEM type) of the truncated
problem, into a finite number of decoupled, singularly perturbed, second order
elliptic problems in Ω. This approach is instrumental for both the design of hp-
FEMs in Ω in Section 7 as well as the implementation of parallel and inexact solvers
in Section 8.

• hp-FEMs. Exploiting results on robust exponential convergence of hp-FEMs for
second order, singularly perturbed problems [44, 43, 41, 42], and tensorization with
the exponentially convergent hp-FEM in (0,Y ) resulted in exponential convergence
for analytic input data A, c, f , and Ω for incompatible forcing f (i.e. f ∈ H1−s(Ω)
but f /∈ H1−s(Ω)). The boundary incompatibility of f leads to the formation of
a strong boundary singularity for 0 < s ≤ 1/2 and a weaker one for s > 1/2 with
∂Ω analytic, which is a genuine fractional diffusion effect. Our analysis in Section
7.2 revealed that for incompatible data f in space dimension d > 1, anisotropic,
geometric meshes in Ω capable of resolving boundary layers over a wide range of
length scales, are generally indispensable, even if ∂Ω is smooth. Section 8 displays
an example. For incompatible data f of finite Sobolev regularity in Ω our analysis
indicates that optimal, algebraic convergence rates require anisotropic mesh refine-
ment towards ∂Ω, in addition to corner refinement which suffices for compatible
data, ie., for f ∈ H1−s(Ω).

The following generalizations of the results of the present work suggest themselves.
• Boundary conditions. The present analysis was limited to polygonal domains
in two space dimensions and to homogeneous Dirichlet boundary conditions. The
extension (1.2) is also available for homogeneous Neumann boundary conditions in
[18, Section 7] and for combinations of Dirichlet and Neumann boundary conditions
on parts of ∂Ω. Solutions U of these extensions also admit the representation
(4.1), so that the analytic regularity results in Section 4 extend almost verbatim.
Likewise, all regularity results in Section 5, being based on [9], extend verbatim to
homogeneous Neumann and Dirichlet-Neumann boundary conditions on polygonal
domains Ω.

• Higher dimensions and elements of degree q ≥ 2 in Ω. Analogous results as in
Section 5 hold for polyhedral domains Ω ⊂ R3 with plane faces, using corresponding
regularity results for the Dirichlet Laplacian in weighted spaces in the polyhedron Ω,
combined with corresponding FE projections on anisotropically refined FE meshes
(with corner and edge-refinements in Ω), as described in [5].
Returning to polygons, if we consider piecewise polynomials of degree q ≥ 2 on
families of simplicial meshes which are sufficiently refined towards the vertices c of
Ω, we expect algebraic convergence rates higher than for linear elements provided
the compatible forcing f ∈ Hq−s(Ω). This implies, in particular, that f should
satisfy besides f ∈ Hq−s

loc (Ω) also certain higher-order boundary compatibility on
∂Ω, a consequence of the eigenfunction expansions used in our regularity analysis.

Appendix A. Proof of Lemma 5.15. We will only show (5.53), (5.54) as the
estimates (5.55), (5.56) are proved using similar arguments; see, for instance, the
proof of [6, Theorem 8]. We distinguish between the first element I1, the terminal
element IM , and the remaining ones. We write hi = |Ii|. We simplify the exposition
by assuming X = R. It is convenient to define, for each interval Ii, i = 2, . . . ,M , the
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quantity Ci by

C2
i :=

∞∑

ℓ=1

(2Ku)
−ℓ 1

ℓ!2
‖u(ℓ)‖2L2(ωα+2ℓ−2β,γ ,Ii)

. (A.1)

We observe that, since u ∈ B1
β,γ(Cu,Ku),

M∑

i=2

C2
i ≤ 2C2

u, (A.2)

where, we recall that the space B1
β,γ(Cu,Ku) corresponds to a class of analytic func-

tions and is defined as in (5.51). We begin the proof with an auxiliary result about
linear interpolation on the reference element.

Lemma A.1 (linear interpolant). Let X be a Hilbert space, K̂ = (0, 1), and let
π̃1 be the linear interpolant in the points 1/2, 1. Let α > −1 and δ ≤ 1. Then, for
u ∈ C((0, 1];X) and provided the terms on the right-hand side are finite, we have

ˆ

K̂

yα‖u− π̃1u‖2X dy .

ˆ

K̂

yα+2δ‖u′‖2X dy, (A.3)

ˆ

K̂

yα‖(u− π̃1u)
′‖2X dy .

ˆ

K̂

yα+2δ‖u′′‖2X dy, (A.4)

where the hidden constant is independent of u.
Proof. For notational simplicity, we will prove the lemma only for the case X = R.
We begin with the proof of (A.3). Since (u− π̃1u)(1) = 0 we have, for y ∈ K̂,

(u− π̃1u)(y) =

ˆ y

1

(u− π̃1u)
′(t) dt,

so that

ˆ 1

0

yα|u− π̃1u|2 dy ≤ 2

ˆ 1

0

yα
∣∣∣∣
ˆ 1

y

|u′(t)| dt
∣∣∣∣
2

dy + 2

ˆ 1

0

yα
∣∣∣∣
ˆ 1

y

|(π̃1u)′(t)| dt
∣∣∣∣
2

dy.

From Hardy’s inequality (e.g., [25, Chapter 2, Theorem 3.1]) we infer

ˆ 1

0

yα
∣∣∣∣
ˆ 1

y

|u′(t)| dt
∣∣∣∣
2

dy ≤ (α+ 1)−2

ˆ 1

0

yα+2|u′(y)|2 dy.

From (π̃1u)
′ = 2

´ 1

1/2
u′(t) dt we obtain |(π̃1u)′|2 ≤ C

´ 1

1/2
tα+2δ|u′(t)|2 dt and there-

fore, in view of α > −1, the estimate

ˆ 1

0

yα|(π̃1u)′|2 dy .

ˆ 1

0

yα+2|u′(y)|2 dy.

This concludes the proof of (A.3) for the case δ = 1. Since the integration range is

y ∈ K̂ = (0, 1), we may replace yα+2 by yα+2δ.
Next, we prove (A.4) and assume that the right-hand side of (A.4) is finite. Again,

it suffices to consider the limiting case δ = 1 and use Hardy’s inequality. We mention
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in passing that (A.5) below actually shows that u ∈ C1((0, 1];X). We write

(u− π̃1u)
′(y) = u′(y)− 2

ˆ 1

1/2

u′(t) dt = 2

ˆ 1

1/2

(u′(y)− u′(t)) dt

= 2

ˆ 1

1/2

ˆ y

t

u′′(τ) dτ dt. (A.5)

Therefore,

ˆ 1

0

yα|(u−π̃1u)′(y)|2 dy = 4

ˆ 1

0

yα

∣∣∣∣∣

ˆ 1

1/2

ˆ y

t

u′′(τ) dτ dt

∣∣∣∣∣

2

dy

≤ 2

ˆ 1

1/2

ˆ 1

0

yα
∣∣∣∣
ˆ y

t

|u′′(τ)| dτ
∣∣∣∣
2

dy dt

.

ˆ 1

1/2

ˆ 1

0

yα

[∣∣∣∣
ˆ 1

y

|u′′(τ)| dτ
∣∣∣∣
2

+

∣∣∣∣
ˆ 1

t

|u′′(τ)| dτ
∣∣∣∣
2
]
dy dt

.

ˆ 1

0

yα+2|u′′(y)|2 dy +

ˆ 1

1/2

yα+2|u′′(y)|2 dy,

where, in the last step we applied Hardy’s inequality. Lemma A.1 is thus proved.
With Lemma A.1 we can estimate the error on the first element I1 as follows:

Scaling the estimate (A.3) gives

‖u− πr

yu‖L2(ωα,0,I1) ≤ Chβ1‖u′‖L2(ωα+2−2β,0,I1), (A.6)

and the assumption |I1| = σMY ≤ 1 allows us to insert the weight eγy on both sides
of (A.6).

We now bound the error contributions from elements away from the origin, i.e.,
on the elements Ii, i = 2, . . . ,M . These elements satisfy hiσ/(1 − σ) = dist(Ii, 0).
For Ii = (yi−1, yi) the pull-back ûi := u|Ii ◦ FIi satisfies

‖û(ℓ+1)
i ‖2L2(−1,1) = (hi/2)

−1+2(ℓ+1)‖u(ℓ+1)‖2L2(Ii)

≤ (hi/2)
−1+2(ℓ+1)e−γyi−1 max

y∈Ii
y−α−2(ℓ+1)+2β‖u(ℓ+1)‖2L2(ωα+2(ℓ+1)−2β,γ ,Ii)

. e−γyi−1h
−1+2(ℓ+1)
i h

−α−2(ℓ+1)+2β
i (2(1− σ))−2(ℓ+1)C2

i (2Ku)
2(ℓ+1)(ℓ+ 1)!2,

where in the last step we have used (A.1). The operator Π̂r given by Lemma 5.14
then yields the existence of a b > 0 that depends solely on Ku and σ for which

‖û− Π̂ri û‖L2(−1,1) . Cie
−γyi−1e−brih

−(1+α)/2+β
i .

Scaling back to Ii and using again hi ∼ dist(Ii, 0) yields

‖u− πr

yu‖2L2(ωα,γ ,Ii)
≤ Ch2βi C2

i e
−2bri .

Summation over i and taking the slope of the linear degree vector sufficiently large
(see, for instance, the proof of [6, Theorem 8] for details) gives

M∑

i=2

‖u− πr

yu‖2L2(ωα,γ ,Ii)
. Y

2βe−2b′M
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for suitable b′ > 0. Combining this with (A.6) gives the desired (5.53).
It remains to prove (5.54). We begin with a preparatory result.
Lemma A.2 (exponential decay). Let X be a Hilbert space, and let δ ∈ R, γ > 0,

Y0 > 0. Then the following holds for u ∈ C1((Y0,∞);X) in items (i), (ii) and for
u ∈ C2((Y0,∞);X) in items (iii), (iv) with implied constants depending solely on δ,
γ, and Y0:
(i) If limy→∞ u(y) = 0 and ‖u′‖L2(ωδ,γ ,(Y0,∞);X) <∞, then

‖u(Y )‖X . Y
−δ/2 exp(−Y γ/2)‖u′‖L2(ωδ,γ ,(Y ,∞);X) ∀Y ≥ Y0. (A.7)

(ii) If
∑1

j=0 ‖u(j)‖L2(ωδ,γ ,(Y0,∞);X) <∞, then limy→∞ u(y) = 0.

(iii) If limy→∞ u(j)(y) = 0 for j = 0, 1 and ‖u′′‖L2(ωδ,γ ,(Y0,∞);X) <∞, then

‖u(Y )‖X . Y
−δ/2 exp(−Y γ/2)‖u′′‖L2(ωδ,γ ,(Y ,∞);X) ∀Y ≥ Y0. (A.8)

(iv) If
∑2

j=0 ‖u(j)‖L2(ωδ,γ ,(Y0,∞);X) <∞, then limy→∞ u(y) = limy→∞ u′(y) = 0.
Proof. We will only prove items (i) and (ii) as the remaining two are proved by

similar arguments.
We begin the proof with the following observation: There is a constant c > 0

(that depends only on δ, Y0, and γ) such that for Y ≥ Y0

ˆ ∞

Y

y−δ exp(−γy) dy≤ cY
−δ exp(−γY ). (A.9)

For δ ≥ 0, this is immediate. For δ < 0, one integrates by parts once to discover that
the leading order asymptotics (as Y → ∞) of the integral is γ−1 exp(−γY )Y −δ.

We now proceed with the proof of (A.7): Since γ > 0, we can write

‖ − u(Y )‖X =

∥∥∥∥
ˆ ∞

Y

u′(y) dy

∥∥∥∥
X

≤
√
ˆ ∞

Y

y−δ exp(−γy) dy‖u′‖L2(ωδ,γ ,(Y ,∞)),

and (A.7) follows from (A.9). The assertion of item (ii) follows by a similar argument,
starting from u(y) = u(η) +

´ y

η
u′(t) dt, squaring, multiplying by exp(−γη), and

integrating in η from y to ∞.
To prove (5.54) we have to estimate u(Y ). Lemma A.2, (i) shows

‖u(Y )‖X . Y
−α/2−(1−β) exp(−Y γ/2)Cu. (A.10)

Since πr

y,{Y } is obtained from πr

y by a correction on the terminal element IM , the

desired (5.54) follows easily from (A.10), if we recall that |IM | ∼ Y .

Appendix B. Analysis of the decoupling eigenvalue problem.

Lemma B.1 (weighted Poincaré). Let Y > 0 and α ∈ (−1, 1). Then, for v ∈
C1((0,Y ]) with v(Y ) = 0 there holds

‖v‖L∞(0,Y ) ≤ Y
(1−α)/2(1− α)−1/2‖v′‖L2(yα,(0,Y )). (B.1)

Proof. From v(Y ) = 0 we get v(y) = −
´ Y

y
v′(t) dt. Hence, for y ∈ (0,Y ),

|v(y)| =
∣∣∣∣
ˆ Y

y

v′(t) dt

∣∣∣∣ =
∣∣∣∣
ˆ Y

y

t−α/2tα/2v′(t) dt

∣∣∣∣ ≤
(
ˆ Y

y

t−α dt

)1/2

‖v′‖L2(yα,(0,Y ))

≤ Y
(1−α)/2(1− α)−1/2‖v′‖L2(yα,(0,Y )),
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which finishes the proof.
Lemma B.2 (eigenvalue upper bound). Let Y > 0 and α ∈ (−1, 1). Assume that

(v, µ) satisfy

‖v′‖2L2(yα,(0,Y )) = 1, ‖v‖2L2(yα,(0,Y )) = µ, v(Y ) = 0. (B.2)

Then, 0 < µ ≤ Y 2(1− α2)−1.
Proof. We compute, using Lemma B.1

µ = ‖v‖2L2(yα,(0,Y )) =

ˆ Y

0

tα|v(t)|2 dt ≤ ‖v‖2L∞(0,Y )Y
1+α(1 + α)−1

≤ Y
1+α

Y
1−α(1 + α)−1(1− α)−1‖v′‖2L2(yα,(0,Y )) = Y

2(1− α2)−1,

which finishes the proof.
We also need lower bounds for eigenvalues.
Lemma B.3 (eigenvalue lower bound). Let α > −1. Let GM be an arbitrary mesh

on (0,Y ) with the property that for all elements Ii, i = 2, . . . ,M , not abutting y = 0
there holds |Ii| ≤ Cgeo dist(Ii, 0). Let Vh ⊂ H1(yα, (0,Y )) be a subspace of the space
of piecewise polynomials of degree q on GM . Then, with hmin denoting the smallest
element size,

‖v′‖L2(yα,(0,Y )) . h−1
minq

2‖v‖L2(yα,(0,Y )) ∀v ∈ Vh, (B.3)

where the hidden constant depends solely on Cgeo and α.
Proof. We emphasize that the condition hi ≤ Cgeo dist(Ii, 0) is satisfied for

all meshes where neighboring elements have comparable size. We also remark that
(slightly) sharper estimates (in the dependence on the polynomial degree q) are pos-
sible on geometric meshes with linear degree vector. We write hi = |Ii|. We will use
the polynomial inverse estimate (B.6) below. For the first element I1 = (0, y1) we
calculate for v ∈ Vh and its pull-back v̂ := v|I1 ◦ FI1

‖v′‖2
L2(yα,K̂)

= (h1/2)
α+1−2

ˆ 1

−1

(1 + y)α|v̂′(y)|2 dy

(B.6)

. hα+1−2
1 q4

ˆ 1

−1

(1 + y)α|v̂(y)|2 dy ∼ h−2
1 q4‖v‖2L2(yα,I1)

. (B.4)

For the remaining elements Ii, we exploit that the assumption hi ≥ Cgeo dist(Ii, 0)
ensures that the weight is slowly varying within them, i.e.,

max
y∈Ii

yα ≤ (1 + Cgeo)
|α| min

y∈Ii
yα, i = 2, . . . ,M.

Hence, the polynomial inverse estimate (B.6) (with α = β = 0 there) yields by scaling
arguments

‖v′‖L2(yα,Ii) ≤ Ch−1
i q2‖v‖L2(yα,Ii). (B.5)

Combining (B.4), (B.5) yields the result.

Lemma B.4 (polynomial inverse estimate). Let K̂ = (−1, 1). For α, β > −1

there is Cα,β > 0 such that for all q ∈ N0 and all w ∈ Pq(K̂):

ˆ 1

−1

(1 + y)α(1− y)β |w′(y)|2 dy ≤ Cα,βq
4

ˆ 1

−1

(1 + y)α(1− y)β |w(y)|2 dy. (B.6)
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Proof. Step 1: We assert (B.6) for α = β. From [10, Chap. III, Props. 6.1, 6.3]

we get for w ∈ Pq(K̂)

ˆ 1

−1

(1− y2)α|w′(y)|2 dy
[10,Chap. III,Prop. 6.1]

. q2
ˆ 1

−1

(1− y2)α+1|w′(y)|2 dy

[10,Chap. III,Prop. 6.3]

. q4
ˆ 1

−1

(1− y2)α|w(y)|2 dy.

Simple scaling arguments imply for arbitrary (fixed) finite intervals (a, b) and α′ > −1
for all w ∈ Pq(a, b):

ˆ b

a

(y − a)α
′

(b− y)α
′ |w′(y)|2 dy . q4

ˆ b

a

(y − a)α
′

(b− y)α
′ |w(y)|2 dy. (B.7)

Step 2: We show (B.6) for (α, β) = (α, 0). (By symmetry, this also shows the case

(α, β) = (0, β)). Since (B.7) implies for w ∈ Pq(K̂)

ˆ 1

0

(1 + y)α|w′(y)|2 dy .

ˆ 1

0

|w′(y)|2 dy . q4
ˆ 1

0

|w(y)|2 dy,

it suffices to prove the bound
´ 0

−1
(1 + y)α|w′(y)|2 dy . q4

´ 1

−1
(1 + y)α|w(y)|2 dy. To

that end, define w̃(y) := (1−y)w(y) ∈ Pq+1(K̂) and note w̃′(y) = (1−y)w′(y)−w(y).
Then

ˆ 0

−1

(1 + y)α|w′(y)|2 dy ≤
ˆ 0

−1

(1 + y)α|w′(y)(1− y)|2 dy

≤ 2

ˆ 0

−1

(1 + y)α
(
|w̃′(y)|2 + |w(y)|2

)
dy

(B.7)

. (q + 1)4
ˆ 1

−1

(1 + y)α
(
(1− y)α|w̃(y)|2 + |w(y)|2

)
dy

. (q + 1)4
ˆ 1

−1

(1 + y)α
(
(1− y)α(1− y)2|w(y)|2 + |w(y)|2

)
dy.

Since α > −1, we have (1 − y)2+α . 1, which allows us to conclude the proof of the
case β = 0 in (B.6).

Step 3: For arbitary α, β > −1 we use (scaled versions of) Step 2:

ˆ 1

−1

(1 + y)α(1− y)β |w′(y)|2 dy .

ˆ 0

−1

(1 + y)α|w′(y)|2 dy +
ˆ 1

0

(1− y)β |w′(y)|2 dy

Step 2

. q4
ˆ 0

−1

(1 + y)α|w(y)|2 dy + q4
ˆ 1

0

(1− y)β |w(y)|2 dy

. q4
ˆ 1

−1

(1 + y)α(1− y)β |w(y)|2 dy.

This concludes the proof.
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[11] M.Š. Birman and M.Z. Solomjak. Spektralnaya teoriya samosopryazhennykh operatorov v gilber-
tovom prostranstve. Leningrad. Univ., Leningrad, 1980.

[12] A. Bonito, J.P. Borthagaray, R.H. Nochetto, E. Otárola, and A.J. Salgado. Numerical methods
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[48] R.H. Nochetto, E. Otárola, and A.J. Salgado. A PDE approach to fractional diffusion in general
domains: a priori error analysis. Found. Comput. Math., 15(3):733–791, 2015.
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[52] E. Otárola. A PDE approach to numerical fractional diffusion. PhD thesis, University of
Maryland, College Park, 2014.

[53] H.-G. Roos, M. Stynes, and L. Tobiska. Numerical methods for singularly perturbed differential
equations, volume 24 of Springer Series in Computational Mathematics. Springer-Verlag,
Berlin, 1996. Convection-diffusion and flow problems.

[54] S.A. Sauter and Ch. Schwab. Boundary element methods, volume 39 of Springer Series in
Computational Mathematics. Springer-Verlag, Berlin, 2011. Translated and expanded



Tensor FEM for the spectral fractional Laplacian 49

from the 2004 German original.
[55] R. Schneider. Multiskalen- und Wavelet-Matrixkompression. Advances in Numerical Mathe-

matics. B. G. Teubner, Stuttgart, 1998. Analysisbasierte Methoden zur effizienten Lösung
großer vollbesetzter Gleichungssysteme. [Analysis-based methods for the efficient solution
of large nonsparse systems of equations].

[56] R. Schneider, O. Reichmann, and Ch. Schwab. Wavelet solution of variable order pseudodiffer-
ential equations. Calcolo, 47(2):65–101, 2010.
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