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Abstract

We analyze the convergence rate of a multilevel quasi-Monte Carlo (MLQMC) Finite
Element Method for a scalar diffusion equation with log-Gaussian, isotropic coefficients in
a bounded, polytopal domain D C R? The multilevel algorithm Q7 which we analyze
here was first proposed, in the case of parametric PDEs with sequences of uniformly, i.i.d
distributed parameters in [Frances Y. Kuo, Christoph Schwab, and Ian H. Sloan: Multi-
level quasi-Monte Carlo finite element methods for a class of elliptic PDEs with random
coefficients, Found. Comput. Math. 15 (2015) pp. 411-449]. The random coefficient
is assumed to admit a representation with locally supported coefficient functions, as arise
for example in spline- or multiresolution representations of the input random field. The
present analysis builds on and generalizes our single-level analysis in [Lukas Herrmann and
Christoph Schwab: QMC integration for lognormal-parametric, elliptic PDEs: local supports
and product weights, Report 2016-39, Seminar for Applied Mathematics, ETH Ziirich]. It
also extends the MLQMC error analysis in [Frances Y. Kuo, Robert Scheichl, Christoph
Schwab, Ian H. Sloan, and Elisabeth Ullmann: Multilevel quasi-Monte Carlo methods for
lognormal diffusion problems, Math. Comp. 86 (2017) pp. 2827-2860], to locally supported
basis functions in the representation of the Gaussian random field (GRF) in D, and to
product weights in QMC integration. In particular, in polytopal domains D C R%, d =
2,3, our analysis is based on weighted function spaces to describe solution regularity with
respect to the spatial coordinates. These spaces allow GRFs and PDE solutions whose
realizations become singular at edges and vertices of D. This is natural for non-stationary
GRF's whose covariance operators and associated precision operator are fractional powers of
elliptic differential operators in D with boundary conditions on dD. In weighted Sobolev
spaces in D, first order, Lagrangean Finite Elements on regular, simplicial triangulations of
D with suitable mesh refinement yield optimal asymptotic convergence rates. Our analysis
yields also bounds for the e-complexity of the MLQMC algorithm, uniformly with respect
to the dimension of the parameter space.

*This work was supported in part by the Swiss National Science Foundation under grant SNF 200021-159940/1.
The authors acknowledge the computational resources provided by the EULER cluster of ETH Ziirich. They also
acknowledge the help of Magdalena Keller, a MSc student in the ETH Applied Maths program, for permission to
use her C++ implementation of the fast CBC algorithm.



1 Introduction

The numerical analysis of solution methods for partial differential equations (PDEs) and more
general operator equations with random input data has received increasing attention in recent
years, in particular with the development of computational uncertainty quantification and com-
putational science and engineering. There, particular models of randomness in the PDEs’ input
parameters entail particular requirements to efficient computational uncertainty quantification
algorithms. A basic case arises when there are a finite (possibly large) number s of random
variables whose densities have bounded support and which parametrize uncertain input from
function spaces, such as diffusion coefficients or source terms in the forward PDE model: com-
putation of statistical moments of “responses” being (functionals of) solution families of these
PDEs. Numerical Bayesian inversion then amounts to numerical integration over a parameter
domain of finite parameter space dimension s, which itself is a discretization parameter. Statisti-
cal independence and scaling reduces this task to numerical integration over the unit cube [0, 1],
against a product probability measure. In the context of PDEs, so-called distributed random
inputs such as spatially heterogeneous diffusion coefficients, uncertain physical domains, etc.
imply, via uncertainty parametrizations (such as Fourier-, Karhunen-Loeve , B-spline or wavelet
expansions) in physical domains D, a countably-infinite number of random parameters (being,
for example, Fourier- or wavelet coefficients). This, in turn, renders the problem of numerical
estimation of response statistics of PDE solutions a problem of infinite-dimensional numerical
integration. Assuming statistical independence of the system of (countably many) random input
parameters results in the problem of numerical integration against a product probability mea-
sure. The case of the uncertain PDE input being a Gaussian random field (GRF) is particular
important in applications, and the numerical analysis has received considerable attention in re-
cent years. Here, the numerical estimation of statistical moments of PDE solutions amounts to
integrating parametric PDE solutions against Gaussian measures on function spaces of admissi-
ble input data. Adopting uncertainty parametrizations of the input GRFs renders the domain
Q of integration a countable product of real lines RY, endowed with the Gaussian product mea-
sure (GM) p and with the product sigma algebra obtained by completing the finite dimensional
cylinders of Borel sets on R (we refer to [10] for details on GMs on RY).

Here, as in [24, 33] and the references there, we analyze the combined discretization by
quasi-Monte Carlo (QMC) quadratures and the Finite Element (FE) solution of linear, second
order elliptic PDEs in a bounded, polytopal domain D C R%, d = 2,3. Unlike the analysis in
[24, 33] and the references there, and in [27], where stationarity enters the algorithms and the
error analysis in an essential way, here we consider isotropic (i.e. scalar), log-Gaussian diffusion
coefficient a = exp(Z), where Z is a possibly non-stationary GRF in D.

We place the present work in perspective with other recent recent work on the numerical
analysis of PDEs with GRF inputs. In [24, 33], an error analysis of single- and multilevel
algorithms was developed for Karhunen-Loeve type representations of the GRF Z. Except for
rather special settings where Karhunen-Loeéve eigenfunctions are explicitly known (when D is a
torus or a sphere [29]), Karhunen-Loeve type representations of GRF's are not explicitly available
but must be computed numerically. This entails the accurate numerical approximation of a large
number of eigenpairs of the covariance operator of the GRF Z in the domain D, a significant
computational overhead.

Moreover, the covariance eigenfunctions in Karhunen-Loeéve representations of GRFs in do-
mains or manifolds D typically have global support in D. This was shown in [24, 33] to imply
in the error analysis of QMC quadrature rules so-called product-and-order dependent (POD)
weights. Constructing QMC points with these weights introduces, via the corresponding fast
component-by-component (CBC) algorithm, a quadratic scaling w.r. to the QMC integration
dimension s of the construction cost for QMC rules, see [40, 14] and the references there. For this



reason, the QMC construction cost is not explicitly accounted for in recent complexity estimates
of QMC-FE algorithms for PDEs.

To bypass the need for numerical Karhunen-Loeve eigenfunction computation, under (strong)
assumptions on stationarity of the GRF Z, fast, FFT based numerical methods have been
proposed for efficient numerical realization of GRFs. We refer to [15] and the references there
for details. FFT based techniques have recently been used in conjunction with QMC and
FE for elliptic PDEs with coefficients given by (exponentials of) stationary GRFs Z in [27].
While allowing linear scaling w.r. to the number of FE degrees of freedom in the domain
D, stationarity of the GRF Z is a key condition for the applicability of FFT-based, so-called
“circulant embedding” methods. Being essentially Fourier-based techniques, the QMC-FE error
analysis in [27] involves QMC weight sequences with POD structure and, hence, quadratic w.r.
to QMC integration dimension s scaling of the cost for QMC rule construction via the fast CBC
construction (see [27, Equation (3.16), Remark 9]).

In recent years, computational modelling of noisy spatial data has increasingly employed
non-stationary GRFs in bounded domains D. We mention only recently used random models
in so-called “spatial statistics” (see [37, 17] and the references there), GRFs on manifolds such
as the sphere (see [29] and the references there), and deep Gaussian processes (see [16] and
the references there). As proposed in [37], rather general non-stationary GRFs Z in bounded
domains or on manifolds D can be modelled and sampled as solutions of stochastic (integro)
PDE (SPDE). A widely used equation which generalizes the classical Whittle-Matérn [46, 38]
covariances of stationary Gaussian random fields reads as

(—=div(A(z)V) + &2(@))*?Z =W inD. (1)

Here W denotes spatial white noise on D, and « > 0 is suitably chosen. If D = R?, A(x) = Id,
and k(x) = const, the solution Z to (1) (we assume Z to be centered throughout this paper) is
stationary with so-called Matérn-type covariance, cp. [45, 46]. For a variable coefficient matrix
A(z) and variable k(x), or in bounded domains D with homogeneous Dirichlet or Neumann
boundary conditions, equation (1) results in non-stationary, “Matérn-like” Gaussian random
fields. On bounded domains D, boundary conditions for Z are mandatory for the unique solv-
ability of the SPDE (1). Boundary conditions on 0D generally entails nonstationarity of the
GRF Z, cp. [37, Section A.4]. Then, FFT-based methods are generally not available, and com-
putation of Karhunen-Loeve eigenbases for (1) will entail, again, prohibitive cost. Alternative,
covariance independent representations of GRFs via multiresolution systems in D allow to cir-
cumvent the numerical solution of Karhunen-Loéve eigenproblems, the classical example being
the Brownian bridge in D = (0, 1), going back to P. Lévy and Ciesielski. The basis functions
in corresponding representation systems are well-localized in D (either compactly supported or
exponentially decaying) and allow for fast evaluation of the GRF in D, similar to FFTs. While
retaining linear scaling w.r. to the spatial resolution of the approximate GRF in D, the hierar-
chical nature of MRA’s naturally enables multilevel QMC' algorithms with a discretization level
dependent resolution of GRF and QMC integration. In addition, as observed by us recently
in [19, 30], the localization of the supports of the representation system in D allows to use
QMC quadrature with product weights. This, in turn, is known to afford linear scaling of the
work with respect to the parameter dimension s to compute the QMC generating vectors (see
[41, 14] and the references there). To provide a complete error vs. work analysis of a multilevel
QMC FE algorithm for the numerical solution of a linear, second order elliptic PDE with GRF
input and locally supported basis functions in a bounded, polytopal domain D C R%, d = 2,3,
where the GRF satisfies (1) with suitable boundary conditions on 9D is the purpose of the
present paper. Recently, and independent of the present work, in [32] a combined QMC and
wavelet-based discretization of log-Gaussian random fields was proposed and error bounds were
proposed. The analysis in the present work is considerably more general, in several respects, as



the results in that work. We consider, in particular, multilevel QMC-FE discretizations, and use
sharper bounds on the error caused by truncating the expansion of the GRF, from our single-
level analysis in [30]. We also generalize, based on [30], the QMC error analysis by admitting
Gaussian type weight functions in the anisotropic QMC norms, as opposed to the exponential
weights used in [24, 33]. This extends the summability range of Karhunen-Loeve and wavelet
expansions of the admissible GRFs for the applicability of QMC with product weights, in addi-
tion to obviating stationarity, as compared to [24, 33]. Furthermore, in the present paper, we
provide a full regularity analysis of the PDE as required for the MLQMC-FE. As is well-known,
this requires a form of “mixed regularity” analysis, with possibly sharp, quantitative bounds
of the sensitivities of the parametric integrand functions with respect to the coordinates in the
GRF Z, in weighted H2(D) norms. In the present paper, we also develop these norm bounds.

We confine QMC integration error analysis to first order, randomly shifted lattice rules
proposed originally in [40], and to continuous, piecewise linear “Courant” FE methods in D.
We adopt the setting of our analysis [30] of the single-level QMC-FE algorithm: in a bounded,
polytopal domain D C R%, d = 2,3 we consider a model Dirichlet problem

-V .-(aVu)=f, ul =0. (2)

oo

As in [30], we assume that the GRF Z =log(a) : @ — L*>°(D) is (formally) represented as

7=y, (3)

Jj=1

where (1;);>1 is a sequence of real-valued, bounded, and measurable functions in D. In par-
ticular, with respect to the GM g the sequence y = (y;);>1 has independent and identically
distributed (i.i.d.) components and for every j > 1, y; is standard normally distributed. That
is to say, y; ~ N(0,1), i.i.d. for j € N. The lognormal coefficient a in (2) is given by

a:=exp(Z). (4)

The series (3) converges in L(€2; L>°(D)), q € [1,00), under the assumption that there exists a
positive sequence (b;);>1 € (P(N) for some p € (0, 00) such that

_ |51

K = Z b <00. (A1)

0
In the setting of (3) and (4), the expectation with respect to the GM p of the solution to
(2) can be computed with QMC by randomly shifted lattice rules and product weights with
dimension-independent convergence rates under the assumption (A1) with p < 2, cp. [30]. The
assumption in (A1) can account for locality in the support of the functions ;. An assumption
of the type of (A1) in the case of so called affine-parametric coefficients in conjunction with the
application of QMC with product weights was already discussed by us in [19]. In the present
work, we extend the analysis of [30] to a multilevel QMC algorithm with log-Gaussian inputs to
reduce the overall work. The perspective of multilevel QMC integration with product weights
for random inputs 1; with localized supports was originally introduced in [18] for the case of
so-called affine-parametric coefficients. Multilevel QMC for elliptic PDEs with affine coefficients
was first introduced in [34] (there for globally supported Karhunen-Loeéve eigenfunctions and
with POD weights). As we showed there, localization of supports allows to obtain in certain
cases estimates for the work of the evaluation of the multilevel QMC quadrature, which are
asymptotically equal to the work to solve one instance of the corresponding deterministic PDE
with the same error tolerance also in the case that the FE convergence rate is higher than



1/d with respect to the FE degrees of freedom. The FE convergence rate of first order FE
is higher than 1/d if, for example, the spatial error is considered in a weaker Sobolev norm.
In the present paper, the cost of generating the QMC points using the fast CBC construction
of [41, 42] is included into the overall complexity estimate. This is due to product weights
affording construction cost of QMC rules which is linear scaling in terms of the dimension of the
integration domain.

The outline of this paper is as follows. In Section 2, we recapitulate known results on the
well-posedness of problem (2) - (4) under assumption (A1), and on the integrability of random
solution with respect to the GM. We also present bounds on the error incurred in the random
solution when the expansion (3) is truncated to a finite number s of terms. As we combine QMC
quadrature approximation of the GM with continuous, piecewise linear FE discretization of (2) of
the random solution in polytopal domains D C R%, d = 2, 3, we also review in Section 2 elements
of elliptic regularity theory and FE approximation theory in D; notably, handling corner and
(in space dimension d = 3) edge singularities induced by D we review weighted Sobolev spaces
in D in which (2) admits a full regularity shift. Corresponding weighted spaces also appear in
our convergence rate analysis of the expansion (3) of the GRF. In Section 3, we review QMC
convergence theory from [40, 30]. Suitable (weighted) spaces on R® of integrand functions with
mixed first derivatives which ensure (nearly) first order convergence with dimension-independent
constants are introduced. Section 4 presents the key mathematical results: parametric regularity
analysis for the integrand functions which arise from the dimensionally truncated, FE discretized
problem, generalizing the single level QMC analysis in [30] by admitting locally supported
functions 1; in the representation (3) of the GRF; while similar in spirit to the multilevel
analysis in [24], there are significant technical differences due to accounting for local supports
of 1;, analogous to the recent gpc N-term approximation rate analysis in [7]. The error bounds
are then combined in Section 5 to a novel, MLQMC convergence rate bound in terms of the
(sequences of) truncation dimensions (sg)¢=o,.. 1, numbers (M;)r>o of FE degrees of freedom
and of QMC sample numbers (Ny)¢—o,.. 1, where L denotes the number of discretization levels.
Judicious choices of these parameters for concrete MLQMC-FE algorithms are derived in Section
6 by the “usual” error vs. work analysis through optimization, of the error bounds in Section
5, derived analogously to [34, 24]. Numerical experiments of this multilevel QMC algorithm for
non-stationary GRF input represented by a multiresolution function system are presented in the
univariate case in Section 7.

2 Well-posedness and spatial approximation

2.1 Well-posedness

We consider the variational formulation of the PDE (2) with lognormal coefficient a = exp(Z),
i.e., to find v : Q2 — V such that

/aVu-Vvd:L‘:f(v), veV, (5)
D

where V := H}(D) with dual space V*. We also identify L?(D) with its dual space L?(D)*,
ie., V C L*(D) ~ L*(D)* C V*. Under the assumption that for some py € (0,00), (bj)j>1 €
¢P0(N) it holds that Z € L%(Q; L*°(D)) for every ¢ € [1,00), cp. [30, Theorem 2]. Hence,
0 <essinfyepla(r)} < [lapo(p) < o0, p-a.s. . As in previous works [30, 33, 24], in the ensuing
error analysis, the quantities

Apmin = eisei[l;lf{a(x)} and  amax := [|a|| (D)



will play an important role. Under Assumption (A1), amin and apmax are random variables
on the probability space (2, ®;>; B(R), ) (see, for example, [10, Example 2.3.5]). Therefore,
continuity and coercivity of the random bilinear form (w,v) — [, aVw - Vodz in (5) on V x V
holds with coercivity constant ami, and continuity constant amax, p-a.s. By the Lax-Milgram
Lemma, a unique solution u to (5) exists p-a.s. By [30, Proposition 3] (see also [12]), for every
q € [1,00),

[ullLagsvy < 111/ aminll Lol fllv- < o0,

where the strong measurability of u : & — V follows, since the V-valued solution u depends
continuously on the L*°(D)-valued coefficent a (by the second Strang lemma).

Numerical approximation of (functionals of) the random solution by QMC quadratures re-
quires a finite dimensional domain of integration. To this end, the expansion of the GRF Z in
(3) is truncated to a finite number s of terms: the s-term truncated lognormal random field a® is
defined by a® := exp(Z*) = eXp(ijl yj1;), for every s € N. With a®, we associate the random
variables

S

G = essinf{a* (@)} and @l 1= 0*]l 1)

By u® we denote the solution of the variational formulation (5) with the s-term truncated,
parametric coefficient a® in place of a, i.e.,

u®: Q= Vst /DaSVuS-Vvdwzf(v), veV. (6)

The truncation error can be controlled if the sequence (bj);>1 is p-summable. Specifically, if
(bj)j>1 € €P°(N) for some py € (0,00), [30, Proposition 7] implies that for every ¢ > 0 there
exists a constant C; > 0 such that for every G(-) € V* and for every s € N

1—e i
@@M%E@WMS@WOMWM{M%MJ} fro =2, (7)

2—p0/2 .
supj>s{bj po/} if po < 2.

2.2 Elliptic Regularity in D

Approximations of second order, elliptic PDEs with regular, simplicial Finite Elements in a
polytope D C R%, d = 2, 3, on regular, simplicial families of uniformly refined triangulations may
produce suboptimal convergence rates, due to the occurrence of singularities in the parametric
solutions u and u® at vertices and, in space dimension d = 3, also at edges. In such domains,
linear elliptic PDEs admit regularity shifts in certain weighted Sobolev spaces, cp. [5, 39] which
we now recapitulate as we require the precise definition of the weighted norms in D in the
ensuing QMC error analysis. We assume the polyhedron resp. polygon D to have straight edges
and plane faces and J corners C := {c1,...,c;} C 9D.

Ford =2, let 3 = (51,...,37) be a J-tuple of weight exponents, we define the corner weight
function

J
Pg(x) = H |z —¢|%, wxeD,
i=1

where 3; € [0,1),i =1,...,J. Here and in the following, the Euclidean norm in R? is denoted
by | -|. The weighted function spaces L%(D) and H E(D) are defined as closures of C*°(D) with
respect to the norms

||’UHL;§(D) = HU(I)ﬁHLq(D)y q € [1,00],

and
HUH%T%(D) = HUH%ﬂ(D) + Z |H33U\‘I’BH%2(D)'

|ax|=2



For d = 3, let the polyhedron D have J’ straight edges £ := {e1,...,ey;} C OD and define
Xj:={k : ¢; € e;} as the index set of edges that meet at corner ¢j, j =1,...,J. Let r; denote
the distance to the edge ey, and let p; denote the distance to the corner ¢;. Let (V;:j=1,...,J)
be a finite, open covering of D such that

J
DclJVy, eV ifi#j, and V;ne,=0ifk¢ X,
j=1

For a real-valued J-tuple 3 € [0,1)” and a real-valued .J'-tuple & € [0,1)” ', define the corner-edge
weight function

Ok
(I)(ﬁ 5) ijj H ( k(l‘)> Ilvj(l’), zeD. (8)

KeX; Pj (v)

With this weight, we associate the weighted Sobolev spaces LIQB,J(D) and H?M(D), cp. [39,
Section 4.1.2] as closures of C§°(D\(C U £)) with respect to the norms

lWliz, , ) = llv®ssllL2()
and for ¢t = 0,1, 2,
H H EJ: Z/ 2(,3‘7L+\a|)( ) H Tk(x) 2(5j_b+|0¢|)‘ o ‘2 1/2
H = p J €T < > 8 v d-:U
oo™ j=1 |a|<.’ POVi ! keX; pi(x)

We note that the spaces L%’ s(D) and H& 5(D) are isomorphic with equivalent norms: for every
x €D,

J 0g T'k(.r) 20y, 9 ’I”k(l‘) 26y
> @ IT (25) 10 < @@ <J2pﬁﬂ I (%) .

j=1 kex; \Pi (@)

Also, we define the weighted seminorm

1/2

26;
2B (s @)\ a2
= (53, [, 700 I (515) " e

=1 a2’ PNV

Lemma 2.1 For a polygon D (i.e. in spatial dimension d = 2), there exists a constant C > 0
such that for every f € L%(D),

1£llv- < ClF Lz

For a polyhedron D (i.e. in spatial dimension d = 3), there exists a constant C' > 0 such that
2
for every f € L(ﬁﬁ)(D), "

* < C
Vv HfHL%B 5 (D)

Proof. The case d = 2 is proven in [31, Lemma 1]. The case d = 3 follows by [39, Lemma 4.1.4].
Specifically, in the notation of [39] the assertion of this lemma reads that the embedding
Vg”g(D) - V0_701’2(D) is continuous, if f; < land o <1,j=1,...,J, k=1,...,J. We note
that here the space Vg’g(D) of [39] coincides with our spaces H(Oﬁ 5) (D) = L%ﬁ 5) (D) and the space
VO_,Ol’Q(D) is isomorphic to V*. In the definition of the weighted space L%ﬁ 5)(D) = H(OB 6)(D), it
has been assumed that 3; < land 0 <1,j=1,...,J,k=1,...,J. O



In polygons D in space dimension d = 2 and for functions in H[%(D), a full regularity shift
for the Laplacian is available, cp. for example [5, Theorem 3.2]: there exists a constant C' > 0
such that for every w € V with Aw € L%_}(D)7

||U)HH5(D) < CHAMHL%(D)a (9)

where we assume that the weight exponent sequence 3 satisfies max{0,1 — 7/w;} < 8; < 1,
1 =1,...,J. Here, w; denotes the interior angle of the polygon D at corner ¢;, : = 1,...,J.
Since [5] considers the Poisson boundary value problem with a zero order term, i.e., —Au+4u = f,
we note that Lemma 2.1 implies that there exists a constant C' such that for every w € VNH E(D),
lwll ) < ClAw] 3 p).

In space dimension d = 3, when D is a polyhedral domain with plane sides and for functions
in H (2@ 5)(D) NV, there holds a corresponding regularity shift of the Dirchlet Laplacian by [39,
Lemma 4.3.1] and by the inverse mapping theorem, cp. [13, Theorem 5.6-2]: there exists a
constant C' > 0 such that for every w € H (2,37 5)(D) NV holds

HwHH(Qﬁ’J)(D) < CHAWHL@’E)(D)’ (10)

where we assume that

1
SN <B <L j=l...J and - e <1, k=1,....J,
Wi

where wy, is the interior angle between two faces meeting at edge e and )\; is given by

1 / 1

where A; is the smallest, strictly positive eigenvalue of the Dirichlet Laplace-Beltrami operator
on the intersection of the unit sphere centered at c; and the infinite, interior polyhedral tangent
cone to 0D with vertex c;, cp. [39, Section 4.3.1].

2.3 FE convergence theory

Let {7¢}¢>0 denote a sequence of regular, simplicial triangulations of D with proper mesh re-
finements near vertices and, if d = 3, also near edges of D. Let further P!(K) denote the affine
functions on a subset K of R%. In FE spaces V; := {v € V : v|x € P(K), K € T;} of continuous,
piecewise linear functions on {7;}¢>0, optimal asymptotic convergence rates are achievable, also
in the presence of singularities. We state these for subsequent reference, recapitulating from
[5, 20, 4, 1] approximation properties in H'(D) of the subspaces V;.

Specifically, there exists C' > 0 such that for every w € HE(D) for d = 2, resp. for every
w E H(QB,J)(D) for d = 3, and for every ¢ > 0 there exists w; € Vp such that, with M, := dim(V}),

w if d=2,
lwll gz, 0y i d=3.

(11)

For d = 2, the convergence rate bound (11) is due to [5, Lemmas 4.1 and 4.5] for regular, graded
simplicial meshes, resp. due to [20] for simplicial bisection tree meshes. In polyhedral domains
D in space dimension d = 3, this estimate follows by [4, Theorem 4.6] for every w € C§°(D\C)
and follows for every w € H(Qﬁﬁé)(D), since C§°(D\(CUE)) is dense in H(Qﬁﬁ)(D) (see also [3, 36]).



2.4 Combined Dimension Truncation FE error bound

We now derive an error bound for the combined effect of truncating the GRF Z to a finite
number of parameters s, and to FE discretization in D of the resulting s-parametric problem

(6).

Let accordingly u®7¢ :  — V; denote the FE solution, i.e.,
/ a*VuTt . Vudz = f(v), Yv eV, (12)
D

For notational convenience, we introduce

" if d =2,
pi= {(5,5) if d = 3. (13)

The Banach space W%’OO(D) is the space of all measurable functions v : D — R that have finite

Wé’oo (D)-norm, where
el oy = ms ol 119125l 0}

In order for the ML algorithm Q7 to yield improved (w.r. to the single-level algorithm) error vs.
work bounds, we require stronger assumptions than in the single-level analyses of [24, 30] on the
function system (¢;);>1. This corresponds to what was found for uniform random parameters

in [34] and in the lognormal case for v; with global supports in [33]. Let (b;);>1 be a positive
sequence such that

Z max{\Vlb_j’(I)ﬁa |1hj} (A2)

; b;
j>1 J Loo(D)

We remark that the assumption (A2) is stronger than (A1), which was found sufficient in [30]
for the convergence rate analysis of the corresponding single-level QMC-FE algorithm.

Remark 2.1 When the precision operator of Z is a positive power of a shifted Dirichlet Laplacian
on D the Karhunen-Loéve eigenfunctions v; are, by the spectral mapping theorem, eigenfunc-
tions of the Dirichlet Laplacian on D: —Avj = vv;, vijlap =0, j € N. Here, the eigenvalues v;
are related to the ones appearing in the Karhunen-Loéve expansion of the GRF Z by the spectral
mapping theorem. Elliptic reqularity shifts for the Dirichlet Laplacian are also known in certain
weighted Holder spaces in D: for d =3, [39, Lemma 4.3.1.2)], implies that v; € W(lﬁ’?g)(D) pro-
vided that 1-X\; < B; < 1,j=1,...,J, and1—7/0p <0, < 1,k =1,...,J, where we used here
that the weighted C1*¢(D)-type space Néfs(D) (in the notation of [39, Sections 4.2 and 4.3])

embeds continuously into W(lﬁ’fg)(D). Note that this condition on B for the KL eigenfunctions
is stronger than in Assumption (A2). Similar statements hold for d = 2. Here, singularities at
corners and (for d = 3) along edges of the Karhunen-Loéve eigenfunctions appear as a conse-
quence of reqularity shifts for the Dirichlet Laplacian in weighted Hélder spaces. The structure
of the weight functions @5 (which depend only on D and on the (Dirichlet) Laplacian) in the
assumption (A2) on the Karhunen-Loéve eigenfunctions is identical to the weights in the elliptic
reqularity shift (10). In the case of Matérn-type covariance functions, as induced by solutions to
(1), there is neither dependence of the functional form of the weight functions on the reqularity
nor on the positive correlation length of the respective GRF. Note, however, that in general,
Karhunen-Loéve eigenfunctions have global support in D.



Assumption (A2) implies Wﬁl’oo(D)—regularity of the GRF Z and strong approximation by its
truncated expansion. This is made precise in the following proposition. Its proof is completely
analogous to [30, Theorem 2] and therefore not detailed.

Proposition 2.2 Let the assumption in (A2) be satisfied for some sequence (bj)j>1 such that
(bj)j>1 € £P°(N) for some pg € (0,00). For every e > 0 and q € [1,00) there exists a constant
C > 0 such that for every s € N,

Z = Z%| Lyt pyy < C'sup{b;°}.

I HLq(Q_WE (D)) j>€{ ' }
Since (Va)®z = (aVZ)®z holds in L>*(D)%, p-a.s., Proposition 2.2 and [30, Corollary 6] imply
with the Cauchy-Schwarz inequality that for every ¢ € [1,00) there exists a constant C' > 0
such that for every s € N,

HG/HLq(Q;Wﬁi,OO(D)) < oo and Ha5||Lq(Q;W%,oo(D)) <C < 0. (14)

To obtain an estimate of the Laplacian of u, we note that in any compact subset DccD
it holds —aAu = f — Va - Vu, p-a.s., where we assume that f € L%(D). This equation may be

tested with —Au@%/ a, which implies with Lemma, 2.1

A Hf”L%(D) CHfHL%D

< —— + || Z]| 51000 < C——2—(1+ | Z]|yyr.000 0y )- 15
Al € — 2 + 1 Zlyree lully < O— 2=+ [ Zllyamgp)-  (15)
An Aubin-Nitsche duality argument, (7), (9), (11), Proposition 2.2, (14), and (15) imply that
for every € > 0 exists a constant C' > 0 such that for every s € N, £ € Ny

E(G(w) ~E(G@ )| < 0 (i’-‘iﬁ?{b?} + M, d) 121Gl (16)

where t = 2 —po/2 if pg < 2 and t = 1 — € otherwise. Recall that (b;);>1 € *°(N) for some
po € (0,00). In this setting, po € (0, 2) is the range of applicability of QMC, cp. [30, Theorem 11].

Remark 2.2 By interpolation the error estimate in (16) extends to the case that f € (V*, L%(D))tyoo
and G(-) € (V*, L%(D))t/7OO for some t,t' € [0,1]. Then the estimate in (16) holds with the term

M[wd replaced by M[(t+t,)/d. To see this, we observe that the real method of interpolation can
be applied to the regularity shifts in (9) and in (15). Specifically, the linear operator relating
the solution w € V to its approximation error with a V-bounded, and quasioptimal projector
I, : V. — Vp, where Iy is, for example, the H&(D)—projection. From the approximation property
n (11), the interpolation couple L%(D) C V* then yields the fractional convergence order. Here
and throughout what follows, interpolation spaces shall be understood with respect to the real
method of interpolation; we refer to [43, Chapter 1].

3 QMC integration

With convergence rate bounds on the dimension truncation and the FE discretization error at
hand, we address the numerical approximation of the expectations in (16) with respect to the
GM pu. Due to dimension truncation, we evaluate its s-variate section, i.e. we integrate w.r. to
the GM on R®. As in [24], we approximate the s-variate integrals by so-called randomly shifted



lattice rules proposed in [40]. Accordingly, we review QMC error estimates of randomly shifted
lattice rules for high-dimensional integrals with respect to the s-variate normal distribution. The
construction of generating vectors for such QMC rules in particular with respect to Gaussian
and exponentially decaying weight functions with a fast CBC construction have been found in
[40]. There, concrete error estimates of the resulting QMC rules in the mean-square sense (with
respect to the random shift) have been derived, cp. [40, Theorem 8]. See also [35, Examples 4
and 5] for the estimation of constants appearing in the error bound of [40, Theorem 8] for
Gaussian and exponential weight functions, respectively.

The error analysis of randomly shifted lattice rules requires, for sequences of positive weights
~ = (Vu)u, indexed by all finite subsets u C N, the weighted Sobolev space W (R®) of mixed
first order derivatives, which is defined by the following norm

2 1/2

1F [y rs) == /|u| /Ré N "Fly) [ ow)dypana []#7w)dy,

uC{l } je{l:sP\u JEu

Here, ¢ denotes the univariate normal density
L
V2T

e 2, yelk
The norm in (17) is considered with respect to Gaussian and exponential weight functions

o(y) ==

y2

wg i (y) == e i, yeR,jeN, and wexpj(y) = e ®ewilVl e R jEN,

where the parameters ag; > 1 and oeyp; > 0 will be determined in the following. If the
parameters o ; Or Qexp,j are constant with respect to j, we omit j for ease of presentation. In
the following we consider the case ag; = ag > 1 and qexp,j = Qexp > 0 for every j € N. In this
work, we consider in (17) product weights v = (Y4 )ucn, determined by a positive QMC weight
sequence (7yj)j>1, i.€.,
= Hyj, uC N, u < oo.
JEU

We will denote the QMC approximation in s dimensions with N points by Qs n(-). It shall
approximate integrals with respect to the multivariate normal distribution which we denote for
every integrand F € L'(R*, i) by

L= [ P T1 sty

For a sequence of dimension truncations (s¢)s—o,.. r and a sequence (Ny)¢=o,.. .1, L € No, the
multilevel QMC quadrature algorithm of [34] is defined by

L
= ZQS@,N[(G(UZ) — G(ug_l)% L >0, (18)
=0

with the understanding that G(u™') := 0. we used the notation that u’ := uw*¢7¢, ¢ > 0.
Multilevel QMC algorithms stemming from randomly shifted lattice rules have been considered
in [34, 33]. The following error estimate (see [34, Equation (23)] or [33, Equation (3.2)]) holds
due to the independence of the random shifts on the different levels

A(L(G(h) - QL@ ZEA (G (uf = u™h) = Qun, (G’ —u ™)), (19)

10



where we apply a randomly shifted lattice rule with respect to (possibly) a different QMC weight
sequence on the PDE discretization level £ = 0.

In [30], convergence of randomly shifted lattice rules with product weights is investigated,
which relies on parametric regularity estimates of a particular form We summarize the QMC
convergence theory in the following theorem.

Theorem 3.1 Let (gj)jzl be a positive sequence such that for some F : RN — R there ezists a
constant C' > 0 and a positive function H(y) such that for everyy € {y e RN : Is e N,y; =0 :
Vi > s},

2
K
> el (§) <cnw?
uCN, |u|<oo j€Eu b
1. Let (gj)jzl € (P(N) for somep € (2/3,2). Fore € (0,3/4—1/(2p)), setp’ = p/44+1/2—ep €
(0,1). Consider the Gaussian weight functions (wyj)j>1 with parameter oy and QMC
integration weight sequence

o €< P P
- \2—-p) p—201-p)

Then, there exists a constant C (independent of F') such that for qo = 2q4’' /(¢ — q), where
q=p/(2(1 =p')) and ¢’ € (q,0a5/(1 — ag)),

) and 'yj:’l;ipl, j=>1.

VEAUL(F) = Qo (F)? < Clp(N)) OOV 42 | H | oy e .

2. Let (gj)jzl € (P(N) for some p € (2/3,1]. Assume that H(y) < n exp(n2 Zj21gj‘yj‘) for
some m,m2 > 0. Set p' =1 —p/2. Consider the exponential weight functions (Wexp,j);j>1
with parameter aex, and QMC integration weight sequence

Qexp > 212 and  7j :g?p,, j>1.

Then, there exists a positive constant C (independent of n1) such that

\/]EA(’IS(F) - QsN(F)?2<C (p(N))~HPHL/2g,

The Euler totient function is denoted by o(-).

This theorem was, in the case of Gaussian weight functions, obtained in [30, Theorems 9 and 11]
and in the case of exponential weight functions in [30, Theorems 9 and 12]. The main ingredient
of the proof of [30, Theorem 9] is a parametric regularity estimate of the form assumed in
Theorem 3.1. The parametric regularity estimates derived in [24, 33| for globally supported
1; afforded bounds for each partial derivative separately. In [30], we used the bound from [7,
Theorem 4.1] which does account for local supports and affords control of “bulk” sums of (norms
of) solution derivatives with respect to the parameters y;. We also note that in applications,
the sequence (Z]) j>1 may be arbitrarily scaled by a factor x in order to satisfy such a regularity
estimate.

4 Parametric regularity

In this section we derive parametric regularity estimates that allow to prove dimension indepen-
dent convergence rates of multilevel QMC. We extend the argument that results in the estimate
in [7, Theorem 4.1] to dimensionally truncated and FE differences.

11



For every finite s € N, the truncated fields Z° a®, and u®, are well-defined regardless of
assumption (A1). In particular, Z° = 2521 y;1; is well-defined for every y € Q = RN. We may
therefore interpret Z° as a mapping from R?® to L such that pointwise evaluation is well-defined
for every y € R®. Similarly, a® and u® may be interpreted as mappings from R* to L>°(D) and
to V, respectively. In the same way Z, a, and u are mappings with pointwise evaluation from
the set

U={yeN:3IseN,y; =0,j > s}
to L>°(D) and V, respectively. Note that R® x {0} C U = [J,xR® x {0} for every s € N, where
0 ¢ RN\{Is} Hence, the set U of admissible parameters y is sufficiently rich for the ensuing

QMC convergence analysis. The mappings Z°, a®, and u® extend naturally to mappings from
U to L*°(D) and to V, respectively.

4.1 Dimension truncation

Let s € N be a truncation level. For every y € U, the difference u(y) — u®(y) satisfies the
variational formulation

/ a(y)V (u(y) — u*(y)) - Vodz = — / (a(y) - &*(y))Ve'(y) - Vode, VoeV.  (20)
D D

We will mostly (in the proofs) omit the y dependence in the following. Set F := {r € N} :
|T| < oco}. For every real-valued sequence p = (pj);>1 and 7 € F, we shall use the notation
P =1l p;j, which is a product with finitely many factors due to 7| = 3,5, 7; < co. For
every T € F and a positive sequence (p;);>1, let us define the following numbers

VTl T T
Vol (r—u)

Also, for given k,r € N introduce the set A := {7 € F : || = k,||7||;= < 7} and for any
integer £ < k — 1 and for v € Ay, introduce

ko(T,Vv) :

IN
ﬂ

Ry :={Tt €A, : 7>},

where 7 denotes the maximal order of differentiability to be considered. The following lemma
reveals that kg can be interpreted as a discrete measure which charges certain multi-indices of
interest with mass less than one, which will be useful in the ensuing analysis.

Lemma 4.1 Assume that there exists a positive sequence (p;)j>1 such that, for some r € N,

K= |Solul]| < loj(f). (21)

j>1 L>(D)

Then, for every T € F such that ||7|gpe <,

Z ro(T,v) <eVE —1<1

v<T,V#ET

and for every positive integer £ < k — 1 and multi-index v € Ay,

I )Rt
Z ko(T,v) < (\(g_)g)‘

TGRu,k

12



The estimates in this lemma are given in [7, Equations (4.12) and (4.14)]. The second es-
timate of Lemma 4.1 still holds if the smallness assumption in (2_1) is not guaranteed. We
note that the condition (21) is implied by (A1) with ,oj_l = b;K/r/log(2) provided that
K > || 22551 [%41/0jl|Loe(py- For every s € N, integers £ < k — 1, and v € Ay, introduce the
set

Ry, = {T € Ry : 3j > s such that 7; > 0} .

Lemma 4.2 Let the assumptions of Lemma 4.1 hold for a positive sequence (p;)j>1 such that
= [l(p; )]>1Hgoo < 00. Let us further assume that for some n >0

Sl <

= (D)
Then, for s € N and every T € F such that || T ||~ <17 and 7; > 0 for some j > s,
> kolr,v) <2V — 1) Tsup{p; "}
V< =0V)>s i>s
For s € N, positive integers £ <k —1, and v € Ay such that v; =0, j > s,

T C k—
S rolrw) < VB ).

— N
TER,_S,’]Q (k E)' J1>s

Proof. There is j > s such that 7; > 0. Since kg is a product, by Lemma 4.1,

Z Ko (T’ V) = Z Ko (T{I:s}a V{l:s}) Ko (TN\{I:s}a ON\{I:S})

UST,I/J'ZOV]‘>S V{l:s}ST{lzs}
< 2/‘&0(TN\{1;3}7 ON\{I:S})7

where we used the notation that for every u C N, 7, is a multi-index that satisfies (7,); = 7,
J €u, and (7); = 0 otherwise. With ¢ = ||(pj_1)j21||goo(N), we obtain

( )<y NS
Ko(TN\{1:s}> O\ {1:5}) < ———=9[T"\ (1=} < exp pilvsl | —1
TN\{I j>$

< (V™K 1) sup{p; ).
Jj>s

For the proof of the second inequality, we observe that
1+ncn) T— u)‘w“r v

Z ko(T, V) Z \F o) ¢ Tsup{p; .

TERS TER] I3>8

where we used that for every 7 € R; , there exists j > s such that 7; — v; > 0 and that
pj*l/c <1, j < 1. By the first statement of Lemma 4.1,

(e Tl _ (1T (R
Z \ﬁ (r—v)! Z \F (r—v)! - (k=0

TGRS TER,,

which implies the assertion of the lemma. O
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Theorem 4.3 [Truncation error/
Let the assumptions of Lemmas 4.1 and 4.2 be satisfied for a positive sequence (p;)j>1 and
n > 0. There exists a constant C' > 0 such that for every s € N and every y € U

2T 2

S Lom(uly) - w )y, < C (

[[7llgoo <r

a(y) — a*(y)
a(y)

+sup{p; "} ) llut ()12 -
Loo(D)  i>s J (v)

Proof. We divide the index set F. ;= {r € F:7; <r,j € N}into F{ :={r e F.: 75, =0Vj >
s} and F§ = {r € F, : 3j > s s.t. 7; > 0}. Obviously, F, = Fj U F5.
Let 0 # T € F} be arbitrary. We observe that for every v € V,

T 5. — T T—V v 25 .
/Dava (u—u®) - Vode Z <V>/D¢ aVo¥ (u —u®) - Vodz

v<T ,V#T

- Z (Z) / YTV (a — a®)VO¥u® - Voude.
D

v<T:Vi>sTj=V;

Set
2T

oni= 3 0T (- )2

‘TEAk

and take v = 0" (u — u®). By a twofold application of the Cauchy—Schwarz inequality and by
Lemma 4.1

Ok S/D Z Z alﬁo(’r,l/)\5;|V8V(u_u5)‘j%|va7(u_us)|

TEAL v<T VF#T

s i v si T() .8
—1—/DZ Z|a—a!mo(r,u)mlvaulm]V8 (u—u®)|

TEAL, VT
1/2

2v
S/D Z Z amo(r,u)pu—!|V8”(u—us)|2

TEN, v<T ,VE£T

1/2
2T

P T s
xla > AL (u — u®)|?
TENL

1/2
PQV 2 :
+/ >y la = a®[ro(T,v) VO u|
D TEA, v<T ’

1/2
§ s p27' T s\|2

TEA
Further, we apply the Cauchy—Schwarz inequality on the integral and obtain that
1/2

2v
w<| [ Y arn i vew-w)) v
D TEAL, v<T V#T
1/2

2v
S 4 v, 5|2
+ /D E E la —a |/£0(7',1/)—V! |Vo¥u’| \/2

TEANL VT

a— a’

NG

Lee(D)

14



By [7, Equation (4.18)] in the proof of [7, Theorem 4.1], for any 6 € [\/rK/log(2),1) and for

every £ € N,
2T

p
> llomeld < fut? ot (22)

TEA[

We change the order of summation in order to apply the second estimate in Lemma 4.1 and
insert (22) to obtain with Young’s inequality that for any e > 0

k—1
Kkﬁ
o< (e Y
=0

L

a—a’

k
(\/;K)k_z p2T T, S[|2
Zigl Z ?H(‘) u’ll;

L**(D) y=p (k= o) TEA,

™

k—1 2 k _
K k—/¢ 1 8 K k—¢
(1+e) Z o ae+(1+)2 - IS
(=0 < L>(D) =0 (k—10)
k—1 k—¢ 52
<@ T o (14 D) a2 ez
=0 (k—0)! € Loo(D)

By a change of the order of summation, we obtain that
= (VK
>3 M-y (5 Y e e T e
k>1¢=0 >0 \k=(+1 ) >0

Let us choose € > 0 such that ¢ < (2—eV"5)/(eV™  —1), which implies that (1+¢)(eV™ 1) < 1.
Denote C* := (1 — (14 ¢&)(eV"™X —1))~'. We sum oy, over k > 1 and obtain that

K a—a*? 1)
Zak< (1+¢e)(eV” foe-i- 4 [u® |2 —
oo 1-46°
k>1 >0 Leo(D)
Since (1 +¢)(eV™ — 1) < 1, we conclude that
1 —a*|? 5
S or < Crop+ C <1 + ) Y w2 =
k>1 < L>(D)
which implies
2T 5|2
p a—a
> j”af(u—us)ﬂg <C (Hu—ungJr HUSH§> -
TeFy L°(D)

In the other case T € F3, we observe that for arbitrary 0 # 7 € F3,

[ avoru—u) Vear == 5 (7)o ravortu o) Tods
D

v<T v#T

= (;) BTV aV Yy’ - Vodz, YueV.

v<Tt

(24)

We used that there is j > s such that 7; > 0, which implies that for v # 7 such that v < T,
either 7; — v; > 0 yielding 0" %a® = 0 or 7; = v; > 0 yielding 0Yu® = 0. Moreover, in the
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second sum above, we can restrict the index set to those v satisfying v; = 0 for every j > s. In
particular, always v # 7. The estimate of the sum over 7 € F3 follows with a similar argument
using Lemma 4.1 for the first sum and Lemma 4.2 for the second sum of the right hand side
of equality (24), where we crucially use that v # 7, which yield that the sum runs only over
¢ e€{0,...,k—1}. Specifically,

2T
P -2
> Lol < € (I = o+ max )12

T.
TEFS

Since by (20) and by the Cauchy—Schwarz inequality

a—a’

Ju—ufla <

14" las
L=(D)

the assertion of the theorem follows. O

Remark 4.1 The statement of Theorem 4.3 also holds true for the FE solution vt and u®T¢
for every truncation dimension sp with £ > 0.

4.2 FE discretization

First we show parametric regularity estimates of the solution u. Thus, we bound weighted sums
over sensitivities of u in the norm of the smoothness space. For every 7 € F, we define the

quantities
VAT VT |3
ki(T,v) = ,
V! (T =)l

Similar to Lemma 4.1, the following lemma reveals that «; has the property of a discrete prob-
ability density, which will be essential in the ensuing analysis.

<.

Lemma 4.4 Assume that for r € N

ijmax{\VQ/Jj@B,Wj’} =K< (= sup{c>0: VreeVT < 1}. (25)
Jj=1 L>=(D)

Then for every T € Ny such that |7/~ <7

Z r(T,v) < VrKeVTE <1
v<T V#ET
and for every £ <k —1 and v € Ay,

Z ki(T,v)

TeRy,k

IN
—
oy

|
)
~—
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Proof. We set k = |7| and observe with the multinomial theorem

2. " Z 2. )

=lv<r,|T—v|=(

v<TV#T
. pT Y max{|Vi)|Pg, [y}

= Z /2 Z ¢ (r—v)!

1 v<Tt,|T—v|=¢

p"" max{|V|®g, ]}

¢

< \/;Ke‘/FK < 1,

k £/2
=Xy | S mastivusies vl
T \uxt

where we applied that
— )TV @G [ [ [l < | — v max{| Ve g, [¢1} T

VT D5 <> (7
i#j
O

j>1

The second estimate follows similarly.

Theorem 4.5 Let the assumption of Lemma 4.4 be satisfied for a positive sequence (p;)j>1,
and assume that r € N and K < C,.. There exists a constant C > 0 such that for every y € U

p°T 2
T
Z ?HA@ U(?J))HL%(D)

7 lleoo <r

<C

<(1+|||VZ(y)|q>5||%°°(D))|u( i) + 1Auly )lliéw))-

amin( )

Proof. Let 0 # T € F be given such that |7/ < r. We observe that for every v € C§°(D),

—/ avAJ"udx = / Va-VoTu+ Z <T> (VO™ %a-Vo¥u+ 0" YaAd"u) | vdz .
D D v<T ,V#T
Using the density of C§°(D) in LZ(D), we choose the test function v = —®2 /aAd™u, multiply

by p?7 /7!, and apply the Young inequality for arbitrary £ > 0 to obtain

27 2T TV
P - 2 . p va, T T Va a v P 2
=) A0 “”L%(D) I . — -Vio"u V<TEV¢T <V> — Vo¥u | AD u@de

9 aAa"u A@Tui%dx

i 3 (Z) -

1

T Jp v<T V#T

2
<P Ad U2, (26)
- 7! L5(D)

2
4 811
PVl

1 / pT|VOTu|
+— \VZ|og——F—— + ki(T,v)
4e Jp A Vr VSTZ;#T V!

/ p YA u|Pg pT|ADTU| Py
> ok x
N7

v<T,V#T
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Note that V((07%a)/a) = V¢"7%. Note also the change of the order of summation: for any
sequence (k'(7T,v)) and for any k € N

k—1

SO e =33 > Hirw), (27)

TEAN, v<T V#T I=0veA, TER, i,

which implies with Lemma 4.1 and with the elementary estimate zy < (22 + 32)/2, z,y > 0,
that for any k£ > 1,

p’|AD"u|®g pT|ADTu|Pg
Z / Z KO(TJ/) \/’7 \/77‘ T

D

TENE v<T, V;éf
28
1 < \TK k ¢ p2u v VrK pQT T 112 ( )
52 Z 7||A8 U||L2 (o) T35 ( 1) Z ?HAO uHL%(D)
veNy TEAL
Similarly, we obtain with Lemma 4.4
2
Vo v IVo¥
Z / |VZ|<I>—u Z /ﬂ(T,V)L'u’ dz
TEAL \/7 v<TV#ET \/17
2
1 11VZ105]2 0 VO
min TEAL ! TGA v<t u;éT v
11 ) P oL N /T
< oo — | IV ZI25liam) Y EpllomulZ+ " ,Z ||a“ 12
€ ¢min rehy | z:o( N
(29)

As before by the proof of [7, Theorem 4.1 and Equation (4.18)], for any ¢ € [\/rK/log(2),1)
and for every ¢ € Ny,

2v
> Erlorullz < o ull. (30)
UEA@ ’
Hence,
S WIS G e N TR
7 Z 0¥ ullg < Z m‘s [ullg
=0 ( Tvel, /=0 ( )
k—1 - 1)
log(2))k—¢-1 (3
< o3 tog() (EE o ul?
Z .
< 0% log(2)2][ul|2 = 6" log(4) u2.

We choose 0 < ¢ < 1 —eV™K /2, which implies that C, := (1 —e — (eV"% —1)/2)~! < 2. This
allows us to subtract A9"u-terms summed over Ay in (26) and (28) while obtaining a constant
C-! > 1/2 which is shifted to the left hand side, i.e.,

2 T CE 1 2 k 2
2 CrlaoTuliy i < 5 — (11 21% 5] o) + los(4)) 6" ull:
TENE

k—1

C fK k—¢ p21/

752 7“A8VUH%3(D)
=0 veh, s
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where we have also inserted (29), (30) and (31). We sum over k£ > 1 and obtain with (23)

T 1 0 2
>3 LAl <;E(WZ\%HLM )+ log(9)) 75 lul?

k>1TEA,
+ Z Z 7HA8VUHL2(D),

(>0 velAy

which implies the assertion as at the end of the proof of Theorem 4.3, since (C./2)(eV™  —1) < 1.
(]

We remark that a related estimated to Theorem 4.5 has been derived in [6, Theorem 6.1] without
taking into account the spatial weight function.

Theorem 4.6 Let the assumption of Lemma 4.4 be satisfied for a positive sequence (p;)i>1,
r €N, and K < C,.. There exists a constant C' > 0 such that for every y € U
2T

> 0T (uly) — T @)l

l[7llgoo <r

amax 2
=¢ <((am((:yy))))4(1 +IVZ(y)|Pgll7~ )) HfIIL2 M

Proof. Define the Galerkin projection P : V' — V, for every w € V by
/ aV(w — Ppw) - Vodx =0, Vv e V,.
D

Since (Z — Pp)v = 0 for every v € Vi, it holds that for every T € F,
107 (u = u") |l < PRI (u — u"*) |0 + (T — Pn)0Tulla- (32)
Let 7 € F be such that || 7|/ < 7 and |7| = k for some k € N. We observe that
2T

Pl T PV (T (VPR (u — )|
g Da]VPha (u— dx</ Z N N dz.

A twofold application of the Cauchy—Schwarz inequality using that by the first estimate of
Lemma 4.1 for fixed 7 € F such that ||7| gy < 7 the sequence (ko(T,v))y<r s is a discrete
probability density implies with the change of the order of summation in (27) and the second
estimate in Lemma 4.1 the bound

2 k— k—t 2w
S P (u " Z rK) K = T2 (33)
/=0

|TI=k |v[=¢

v<T V#T

By the approximation property in (11), by (32), (33), the Young inequality for any € > 0, and
by the change of the order of summation that implied (23)

2T 2v
S o w T < (14 ) ZZ Y e =

k>1|r|=k k>1¢=0 lv|=¢
2T
P T
+ <1+€> Z Z 7”(1—7%)5 ullz
k>1|r|=k
P v (
< (I +e)(e Ny Z Fl10¥ (w — w2
€20 |v|=¢ '
+ (1 )cuaHmD >3 LAl
k>1 |7|=k '
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Hence, we choose £ < (2—eV"K)/(eV™® —1) and conclude with Theorem 4.5 and (15) that there
exists a constant C' > 0 such that

2T

S Zhiom— iz < 0 (Y 1921050 ) ) 11

[7llece <r

O

Remark 4.2 The parametric reqularity estimate in Theorem 4.6 also holds if f € (V*, L%(D))t,oo

for some t € [0,1] with the FE error bounded by an absolute constant times M[Qt/d

be shown by interpolation applied in the last and next to last step of the proof of Theorem 4.6,
see also Remark 2.2).

. This can

Let G(-) € LE(D) denote a solution functional of interest. We are interested in the parametric

regularity of G (u — 7). Introduce vg and vg’ to be the solution and respective FE solution to
the adjoint problem with right hand side G(-). It holds that

Glu—u') = / aV(u—u"") - V(vg — vg’)dx
D

Proposition 4.7 For (p)j>1 defined by p; == \/2pj, j € N, assume that (p;)j>1 satisfies the
sparsity assumption in (21) of Lemma 4.1. Then, for every y € U, there holds

/)2; T o 2 ﬁzi T T 2
> CorGuty) )P <a | Y 0T wly) — o @),

[Tl <r [[7llgoo <r

ﬁQT
| S L ety - @),
I T]lgo0 <7
Proof. We observe that for every © € F

%87-(;('& —uT \/>/ Z

v<Tt

(1)or m(vavemu— )

Wb

x (\/avafw(v — vl))dz

)2 molm) ﬂ'ﬁvam(u_u%)
(V> m<v (\/77 )

x( (T VavVomT ™ (vg —UG))dZL‘

T—v)!

It holds that Zug-r (Z) = 27. By a twofold application of the Cauchy—Schwarz inequality

2

27
p T TV Te
PG ( )n Wosoy s |7 = D)l
T! UZ:T 1/
T Q(T_V) T—U Te\ 112
<2 Z .- ||L2 71/)'”8 (va — v )i
v<Tt !

20



We define the sequence (p);>1 by pj := v/2p;, j € N. By a change of the order of summation

pQT T2
> 107G u—u™)|

[|7[lgoo <r
2(T—v)

v p T—U Tey 2
< Z 2Y|[.. HL2 Z m”a (va — v )l

[@llgoo <r ||7'||z<>o <rT>v
Since ), <, o(v;m) < 2 due to Lemma 4.1, by the Cauchy—Schwarz inequality and (27)

2

Y / Ko(v m)j%\/ayvam(uuw dz

k>0 veA, m<v

~2m
<23 % m(u,m)%r\am(u—u”)uz

k>0 ueAk m<v

P Toy|2
<2 Y WL 5 P
k>0 £=0 meA,
xf K pm
=2y S S P o
€>0 k>€ mEAg
ﬁzm Ty )2
<4 3 Ejomu—uT2,
[mleoe <r
which proves the assertion together with the previous inequality. O

The following theorem is directly implied by Theorem 4.6 and Proposition 4.7.

Theorem 4.8 Let the assumption of Lemma 4.4 be satisfied for a positive sequence (p;)j>1,
and let r € N and assume that K < C,./\/2.
Then there exists a constant C' > 0 such that for every y € U

P o T ) 2
> LG uly) — v W)

[T llgoo <r

(amas(y))° 2
<C <(amin(y))4(1 + !Ivz(y)\%llioo(w) 4/dHfHL2 )||GH§%(D),

Remark 4.3 The statement of Theorem 4.8 also holds true for the dimensionally truncated
solutions u® and u®¢, for every truncation dimension s € N. In particular, the constant C
which appears in the error bound is independent of s.

Remark 4.4 The parametric reqularity estimate in Theorem 4.8 also holds if f € (V*, L%(D))t,oo

and G(-) € (V*,L%(D))t/,oo for t,t' € [0,1]. Then, the FE discretization error contribution to

2t+t)/d

the overall error is bounded by a constant times M, . This follows from Remark 4.2.

5 Multilevel QMC convergence analysis

The sequences (b;);>1 and (b;);>1 in the assumptions in (A1) and (A2) will be the input for the
QMC weight sequence (7;);>1 of product weights. In the multilevel QMC quadrature algorithm
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@7 in (18), we apply a randomly shifted lattice rule on level £ = 0 with respect to the QMC
weight sequence

v =0, =1 (34)

for some p’ € (0,1) and on the levels £ = 1,..., L with respect to the QMC weight sequence
7=V E)P, =1 (35)
for some p’ € (0,1) and some 6 € (0,1). Here, for ¢1,c2 € R, ¢1 V ¢o := max{cy, ca}.

Theorem 5.1 For every L € Ny and sequences (s¢)i—o,....1. and (N¢)¢=o,.. 1, the ensuing error
estimate holds under the following conditions:

1. Gaussian weight functions: (b;j)j>1 € P(N) for some p € (2/3,2) and (b}fe Vbj)j>1 €
P(N) for some p € [p,2) with x = 1/(2p) +1/4 — ¢ and x = 1/(2p) + 1/4 — &. The
QMC weight sequence in (34) is applied with p' = p/4+ 1/2 — ep on the level £ = 0 for
e€(0,3/4—1/(2p)). The QMC weight sequence in (35) is applied with p’ = p/4+1/2—¢&p
on the levels ¢ =1,...,L for g € (0,3/4—1/(2p)).

2. Exponential weight functions: (b;)j>1 € P(N) for somep € (2/3,1] and for (bjl-_e\/Bj)jzl €
¢P(N) for some p € [p,1] with x =1/p—1/2 and x = 1/p—1/2. The QMC weight sequence
in (34) is applied with p' =1 —p/2 on the level £ = 0. The QMC weight sequence in (35)
is applied with P =1 —p/2 on the levels £ =1,..., L.

There exists a constant C > 0 that is in particular independent of (My)s>0, (S¢)e=o,....1., (Ne)e=o,....1.»
and of L € Ny, such that

VEA(E(G (1) - Q4(Guh)P) < c( sup {b] 7} + My 4 (p(No)) =X

J>sL
. 1/2
+ D (p(Ng)) X (@,@1 sup {b7°} + Me_41/d> ) ;
—1 J>Se—1

where §gp—1 := 0 if sp = sp—1 and & p—1 = 1 otherwise.
Proof. By the triangle inequality, for £ =1,..., L,

(L, = Qs,n)(G(uf) = G )|
< (Ls, = Qse NG (T8 = G(u T 1) | 4 | (s, — Qi v ) (G0 T01) = G171
and
(L, = Qspn)(G(u™T0) — Gut 7))
< (Lsy = Qse N (G (™) = G(u™ )| +|(Ls, — Q) (G (™) — Gu 7)),
where we recall that u! := u®07¢, ¢ =0,..., L. We wish to show the conditions of Theorem 3.1

for integrands y — G(u*(y)) — G(u**"¢(y)) and y — G(u®tT:-1(y)) — G(ust-+Tt-1(y)).
Setting

X | P— .
| {\vngr sl .

j>1 L>=(D)

the conditions of Theorem 3.1 are satisfied for the integrand y — G(u*(y)) — G(ustT (y))
with the sequence (bj);>1 and k < C,/(v/2K) by Theorem 4.8 and Remark 4.3 with r = 1.
Specifically, we apply Theorem 4.8 and Remark 4.3 with p; = /b, j > 1.
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For the integrand y — G(u*7¢-1(y)) — G(u*-7¢-1(y)), we apply Theorem 4.3 with p; =
H/b}_e, j > 1. Then, the condition of Theorem 4.3 is satisfied for n = /(1 — ) and k <
log(2)/K, where K is as in assumption (A1). Hence, the conditions of Theorem 3.1 are satisfied
for the integrand y — G(us7-1(y)) — G(u®-7-1(y)). Since the sequence (b;_e V bj) i1
dominates (b;_e)jzl and (b;);>1, Theorem 3.1 can be applied with b; = bjl-_e V bj, j > 1. For

the exponential weight functions, we note that 7, = C(max;> 8(71{b?} + M [_21/ d) for a constant
C > 0 (independent of ), and with 7, = 8 in the notation of the second point of Theorem 3.1.

On discretization level £ = 0, the parametric integrand is y — G(u*>7°). The conditions of
Theorem 3.1 are satisfied with b; = bj, j > 1 (see also [30, Theorems 11 and 13]). The assertion
follows with (16) and (19). O

Remark 5.1 If f € (V*,L%(D))t,oo and G(-) € (V*,L%(D))tlvoo for some t,t' € [0,1], then
the error estimate in Theorem 5.1 also holds with an error bounded by an absolute multiple of
M[2(t+t/)/d on mesh level £.

Remark 5.2 When the GRF Z is stationary in D C R, the covariance kernel k(z,xz') :=
E(Z(z)Z(2")) of Z depends only on x—2a', cp. [2]. A widely used parametric family of covariances
for stationary GRFE’s was proposed by B. Matérn. Here, the covariance kernel depends on two
parameters v, \ > 0, where X is referred to as correlation length and Z € C*(D), p-a.s., for
every positive real number t < v. Wawvelet type function systems exist which allow to represent
the GRF Z in terms of a sequence (y;)j>1 of independent, standard normally distributed y;, that
satisfy Assumption (A1) with bj ~ GBIl 5 > 1, for every B < v, cp. eg. [8, Corollary 4.3].
In [8], the random field Z in D is constructed by restriction of a GRF defined on suitable
product domain that depends on the correlation length \ and which is a superset of D. For a
constructive approach to obtain function systems of expansions with i.i.d. coefficients, we refer
for example to [22] and the references there. For a discussion of the Holder reqularity and L1(2)
integrability of GRFs expanded in generic wavelets, we refer to [30, Section 9]. There, also if
CY(D)-regularity of the respective GRF Z holds as an implication by [30, Proposition 18], the

generic wavelets satisfy Assumption (A1) with bj ~ j_B/d, j =1, for every B < t.

Remark 5.3 In the case of single-level QMC, also fractional Holder regularity of the lognormal
coefficent a = exp(Z) is covered by our theory in [30]. The GRF of the model function system
of generic wavelets discussed in [30, Section 9] is for d = 1 and for wavelets that are scaled
to decay as ||V e (py ~ Y272 j > 1, a member of LY(; CV/*+' (D)), for every q € [1,00)
and for every e > €' > 0, ¢p. [30, Proposition 19]. The sequence (bj)j>1 may be chosen such
that bj ~ §7Y2E" for every j > 1 and for some &' € (0,e). For every p > 2/(1 + 2¢'), this
sequence (b;)j>1 € P(N) is admissible with Gaussian weight functions for every ' > 0, cp. [30,
Theorem 11] and therefore QMC with Gaussian weight functions and product weights is applicable
for every e > 0. However, for1/2 > ¢ > 0, the convergence theory for QMC with product weights
in [30, Theorem 18] does not seem to be applicable with exponential weight functions in this case.
Numerical tests in [30, Section 11] for Z the Brownian bridge and Gaussian weight functions
also show empirically convergence rates slightly larger than 1/2. Note that the Brownian bridge
is the boundary case of applicability, since there Z € Cl/Q*E(ﬁ) p-a.s. for every 0 < e < 1/2

and b; ~ Y2 using the Lévy-Ciesielski decomposition of Z.

6 Error vs. work analysis

In the estimate of Theorem 5.1, the error contributions of the QMC quadrature and the spatial
approximation by FE and dimension truncation are coupled on the different levels. The numbers
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of QMC points per level should minimize the error estimate and a corresponding work measure.
In this manuscript, we will consider locally supported functions (1/;);>1 as for example certain
multiresolution analyses (MRA). Note that this will only affect the choice of the work measure
for the assembly of stiffness matrices.

Let us assume that the MRA (1)) ey results from a finite number of generating (or “mother”)
wavelets by scaling and translation, i.e.,

Ua(z) =92z —k), ke vz eD. (37)

We use notation that is standard for MRA, i.e., the function system is indexed by A = (|]A|, k) €
V, where [A| € Ny refers to the level and k € 7|5 to the translation. The index set 7, has
cardinality |x7,] = O(2%), £ € Ny. Let j : v — N be a suitable enumeration. The overlap on
every level |A\| = £ € Ny is assumed to be uniformly bounded, i.e., there exists K > 0 such that
for every ¢ € Ny and every = € D,

{Aew: A = 6na) £ 0} < K .

Additionally, for constants o, @ > 0 we introduce the scaling

[allpoo(py < 027 X e v (38)

Under this assumption, the work to assemble one sample of the stiffness matrix (i.e. for one
QMC point) on discretization level £ € Ny scales for large £ as O(M;|j = (s¢)]) = O(Mylog(sy)).

Proposition 6.1 For d = 1, the work to solve the linear system that corresponds to (12) for
one sample is O(My), ¢ € Ny.

Proof. The parametric stiffness matrix is tridiagonal and symmetric, positive definite with prob-
ability one. Therefore both, Cholesky decomposition and backsubstitution, can be performed in
O(My) work and memory (see, e.g., [23, Chapter 4.3.6]). O

Due to Proposition 6.1 and Remark 6.1, we stipulate availability of a PDE solver with work
WOrkppEsolve = O(Man) (A3)

for some n > 0 with implied constants independent of £ € Ny and, in particular, of the realization
of the PDE coefficients. For D = (0,1)? and a sparse direct solver based on nested dissection it
is known that n = 1/2, cp. [21]. Note that n = 0 corresponds to linear complexity as is afforded
by multigrid or multilevel preconditioned iterative solvers for elliptic PDEs in the deterministic
setting; see, e.g., [11, 47]. The results in [28] on convergence of these methods for log-Gaussian
coefficients in the L9(2;V)-norm, g € [1,00), and d = 2,3 suggest that » = 0 may not be
admissible for MLQMC and d = 2, 3.

Remark 6.1 The uniformity w.r. to the coefficient realizations of the work estimate (A3) is,
for the presently considered log- Gaussian diffusion coefficient models, by no means to be taken for
granted [28]. Since for d = 2,3 stiffness matrices will not be tridiagonal, usually iterative solvers
are used. In [28], strong convergence (in the L1(Q2; V)-norm) for iterative methods is shown for
every n > 0 in the general framework of [47], which is nearly optimal complexity (w.r. to the
degrees of freedom) of a PDE solver. This is sufficient for single-level QMC and multilevel Monte
Carlo. Applicability to multilevel QMC does not seem to be a direct consequence. In practice
also direct solvers have been used for d = 2 with observed n < 1/2 using different sparse direct
solvers than in [21], e.g., in [33, Figure 5] for D = (0,1)2, Nobserved = 0 and in [29, Figure 3],
Nobserved = 0.3 for D = S? (the two dimensional sphere).
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Under (A3) the model for the computational work for the multilevel QMC quadrature reads,
for every L € Ny, as

L L
worky, = O (Z s¢Nyglog(Ny) + ZNg(Mg log(s¢) + MKHW)) , (39)
=0

£=0

where the first sum in (39) is the work of the generation of the QMC points which includes
the work to obtain the generating vectors by the fast CBC construction, cp. [41, 42]. The work
model in (39) depends on the choices for (s¢)¢=o.....1., (Ne)e=o,...,1., and (Mp)g>0, which we shall
not indicate explicitly in our notation and simply write “workz”. The second sum in (39) is the
work of the evaluation of the multilevel QMC quadrature. The sequence

by = b = cZ_BW, A € revyy, (40)
together with (¢))xev defined in (37) and (38) satisfies the assumption in (A1) for max{1,d/2} <
B < « and some ¢ > 0. Since H’v’(/})\H‘Loo(D < g2-(@-1) |)\||||vw|||Loo , A € V, the sequence

b =07V jeN, (41)

and (1;);>1 defined in (37) and (38) satisfy the assumption (A2). In this section we assume
that
f € (V*7 L%(D))t,oo and G() € (V*7 L%(D))t’,mv tv t/ € [07 1]7 (A4)

and define 7 :=t + t. In the following, we assume that
My ~2¥  1>0. (A5)

The ensuing analysis is inspired by [34, Section 3.7] (see also [33, 18]). We will restrict
the analysis to one QMC rule with respect to the QMC weight sequence (35) on all levels
¢ =0,...,L, but remark that in some cases it might be beneficial to use a second one with
respect to the QMC weight sequence (34) on the level £ = 0. The multilevel QMC quadrature
depends on the algorithmic steering parameters (Ng)¢=o...1, (S¢)e=0,..1., (Me)e>0, and also on
6 € (0,1). The number of degrees of freedom (M)¢>o of the FE discretization in D are assumed
to be given. The parameter 6 € (0,1) is for now left arbitrary. According to the estimate in
Theorem 5.1, 6 can be used to balance the truncation error with the FE error on the levels
£=0,...,L. We will use this feature to discuss two possible strategies to choose the truncation
dimensions (s¢)¢=o,...,L.-

Strategy 1: The contributions in the QMC weight sequence in (35) are equilibrated, i.e., we
choose 6 = 1/ ﬁ, which implies that b'=¢ = b], 7 € N. The truncation dimension sy, is also
chosen to equilibrate the respective truncation and FE error in the estimate of Theorem 5.1.

We choose N
sy ~ 20[LT/B]

for some

1<5<23_g (42)

close to 23 — d/2, where we use that M, = O(2%), £ = 0,..., L, and (b;);>1 € £(N) for every
p > d/B. On the levels £ =0,..., L — 1, we either increase s; or leave it constant. We choose

Sp ~ min{Zd[Tm,sL}, £=0,...,L—1.
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Strategy 2: For particular (1)) ev and meshes, it may be interesting to align the level structure
(¥a)aev and the used FE meshes. Therefore, we choose

s¢g~My, £=0,...,L.

The choice § = 7/ 3 equilibrates the truncation and FE error in _the estimate of Theorem 5.1
on the levels ¢ = 0,..., L assuming that 5 > 7. Then, (bjlfe V bj)j>1 € ¢P(N) for every p >

d/(min{B — 7,8 — 1}).
For either of the strategies and for every L € Ny, by Theorem 5.1 we obtain the error estimate

L
errors, = O <M£2T/d + Z(tp(Ng))QXMZ_QT/d> . (43)
=0

Since the Euler totient function satisfies that (p(N))~' < N~1(e¥loglog N + 3/loglog(N)) for
every N > 3, where 7 ~ 0.5772 is the Euler-Mascheroni constant, (o(N))~! < 9/N for every
N =3,...,10°. We will for simplicity restrict in our analysis the range of N to N < 10%°
and use the bound (p(N))~! < 9/N. In Strategies 1 and 2, the p-summability of the sequence
(b}_e V b;)j>1 holds with a strict inequality condition on p, i.e., (b}_e Vb;)j>1 € (P(N), for every
p > d/(B— 1) in the case of Strategy 1 and for every p > d/ min{ﬁ - T,B\— 1} in the case of
Strategy 2. Since the QMC convergence rate y depends on the exponent p, there exists € > 0
such that x(1 + ¢) is also admissible in (43) due to Theorem 5.1. Using log(N) < N¢/(ee) for
every N € N, cp. see e.g. the proof of [18, Lemma 1], the factor Nylog(Ny) in (39) may be
estimated by N, EHE. Since N €1+€ appears then in the estimate of the work (39) and in the error
estimate (43), it can be substituted by Ny, using the strict inequalities in the above bounds for
the admissible indices, and choosing € > 0 sufficiently small.
We obtain with the choices for (s¢)¢—o, . 1 in Strategies 1 and 2

O Zf:o No(Mylog(My) + maX{Man,min{MT,Mz/ﬁ}})> , for Strategy 1,

works = O (L Ny(Mylog(My) + M} ™" for S 2
o Ne(Mglog(Mg) + M, ™)), or Strategy 2.

and .
errors, = O <ML27/d + ZNZQXMZZTM> .
(=0
We will distinguish between the cases that 7 = 0 and 7 > 0 in (A3). We treat Strategy 2 and

the case n > 0 first. As above, log(M) < M"/(ne) for every M € N. To obtain optimal choices
for the sample numbers (Ny),—o,... 1., we search for a stationary point of the function

L L
g(f) — MEQT/d + ZNK—%’(M[%'/d +§ZN€ME1+T]
=0 =0

with respect to Ny, i.e., we solve the first order necessary condition dg/0Ny; = 0 (see also [34,
Section 3.7]). This gives

N, = [NOM[(QT/HH”)/(H%)-‘ 0(=1,...,L (44)
and with setting E, = M£(1+77_T/(d>2))2>2/(1+2>2), £=0,...,L,
~ L L
error? = O (ML_QT/ T NN Eg) and  work = O (No > Ef> , (45)
=0 =0
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where

L (’)(1) if 14+n<7/(dy),
S E if 1+ 7 =7/(dx), (46)
£=0 (9(2(2xd(1+n) 2T)L/(1+2>2)) if 147> 7-/( X).
The parameter Ny is chosen to balance the error contributions, i.e., E @L O(M, 27/ d),
which implies
[271/x] if 1+n<7/(dy),
No = ¢ [27E/XLH (207 if 14n=1/(dy), (47)

[2@r+d(+m)L/(142%) i 1 + 9 > 7/(dY).

We conclude that error? = O(ML_2T/ d) can be achieved with

O(27L/%) if 1+n<7/(dy),
worky, = ¢ O(27F/XLA+20/2X)) if 1 45 = 7/(dx),
O(24L(1+n)) if 14n>7/(dx).

In the case that n = 0, the resulting work measure is considered in [34, Section 3.7]. In particular,
we obtain by [34, Equations (74) and (77)]

1/(142x)
Ny = {NO (M 1= QT/dlog(Sg)_1> Xw L 0=1,.... L, (48)
and )
[27L/X] if d <7/%,
No = { [2rLALO+0/GEH0)]  if d = r/3, (49)

[2(d+21)L/(+20) [1/(1+20)] i d > 7/¥.

Note that the corresponding work estimates are given on [34, p. 443]. We summarize this analysis
as e-complexity bounds in the following theorem.

Theorem 6.2 [Error vs. work for Strategy 2]

Let the truncation dimensions (s¢)i=o,....1, be chosen according to Strategy 2 assuming 6 >
max{7,1}. Let the assumptions (A5) and (A3) be satisfied for n > 0. If n > 0, the sample
numbers for Q3 (-) are given by (47) and (44), L € Ny. If n =0, the sample numbers for Q7 (-)
are given by (49) and (48), L € Ng. Let f and G(-) satisfy (A4).

1. Gaussian weight functions: for p € (max{2/3,d/(B—7),d/(B—1)},2), ¥ = 1/(2p)+1/4—¢’

for €' > 0 sufficiently small assuming d/ min{B -7, E -1} <2.

2. Exponential weight functions: for p € (max{2/3, d/( — r),d/(B— D1, x=1/p—1/2
assuming d/min{B — 7,8 — 1} < 1.

For an error threshold 1 > ¢ > 0, we obtain

\/EA(\E(G(U)) — QL(GWM)P) = O(e)

is achieved with
(e71/%) if L+n <7/(dx),
(e= /X 1og(e~H(I+20/(2X))  if 1 4+ =171/(dX),n > 0,
worky, = { O(e /X log(e~ )/ (X)) ifd = 7/x,n =0,
(e=/7(1+m) if 14+n>7/(dx),n >0,
O(e~%71og(e™1)) ifd>T7/x,n=0.

\

Here, the implied constants are independent of L, (s¢)¢=o,..1, (Ne)e=o,...., and of (My)e>o.
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Remark 6.2 In Strategy 2, there is one parameter respectively one dimension of integration,
per spatial degree of freedom, so that sy ~ My, £ > 0. This coupling occurs, for example, when
circulant embedding is applied to evaluate a GRF on uniformly spaced spatial grid points such
that each element of the FE mesh contains at least one of these points to perform a one point
quadrature for computing the stiffness matriz. Numerical experiments with a QMC rule using a
circulant embedding are presented in [25] and the references there.

For Strategy 1, we may restrict the analysis to the case 7 > 1, since for 7 < 1 the additional
restriction § > 7 for Strategy 2 is redundant and Strategy 2 can be applied. For n > 0, we
obtain following the same line of argument as applied in the analysis of Strategy 2

~ —1/(1+2)_()
N, = [NO (Mjf/d max{ M}, min{ M7 7M£/5}}> w Co0=1,.... L, (50)

where also (45) holds with

2x%/(142x)

By = (M, 7/ max{Mﬁ”,min{Mg,Mg/B}}) . (=0,...,L.
We observe that
L 2x/(142%)
Z( —7/(dx) max{M1+n MT/B})
(=0
B @(QdL(T/B)2>’</(1+2>’<)) if 1479 < 71/(dy),
O(2dL max{l+n=/(dx),7/BY2%/(142)) if 1 4+ 5 > 7/(d¥),

where we used that max{z,y} < x + y for every z,y € [0,00). The respective estimate for
the sum over (M[T/(di) max{M, ", M7 })?/(+2%) is given in (46) with max{1 + 7,7} in place
of 1 4+ n (also in the conditions of the three cases). To estimate Zﬁ:o Ey, we use the iden-
tity that max{z, min{y, z}} = min{max{z, y}, max{z, z}} for every z,y,2z € R, and apply the
superadditivity of the minimum to obtain that

o(1) if max{r,1+n} < 7/(dy),
ZL: 5 O(L) if max{r,1+n} =171/(dy),
= dL(1+n—7/(dx%))2x/(1+2 . -
= O (2 (tHn=7/(dx))2x/ (1+2%) ) if1+n>71+n>7/(dy),
O(27F min{7—7/(dx) max{(1+n—7/(dx)), T/B}}Qx/(1+2x)) if 14+n<7,1<dy.

As above, Ny is chosen to balance the error, i.e., Ny ~ MZ/(di)(Zé::o E)Y/ (%) Specifically,

raLr/x] if max{7,1+n} <7/(dx),
. [oLr/X[1/(20)] if max{7,1+n} =17/(dx),
[2 (27+d(14n) L/(1+2X)" if1+n2>71+n>7/(dx),
DdL min{r—7/(dx),max{(1+n— T/(dx)),T/B}}/(1+2x)+LT/x1 ifl+n<r,1<dy.
(51)
For n =0,

27/d . - /B —1/(1+2x)
N, = [NO (MZ max{ My log(My), min{ MJ , M }}) w . f=1,...,L, (52)
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and By = (M, ") max{M,log(My), min{ M7, M]/P}})=1/0420 ¢ = 0 ... L. We obtain
similarly using 7 > 1,

O(1) if 1 < 1/(dy),
L O(L) if 1=1/(dx),
Z By = { 0(2U=7/0L2xX/ 0420 [2%/(14+2%))  if d — 7/x > dr/B,
b= O(24/B)1L2x/ (1+2) ) if d—7/x <dr/B < 7(d—1/%),
O(27([@=1/0)L2x/ (142%)) ifd—1/x <dr/B,7(d—1/%) < dr/B.

Again by Ny ~ M/ (SL | Ey)/@0),

([257/X] if 1 <1/(dx),
[2Er/X [}/ if 1 =1/(dx),
Np = { [2@r+d)L/(1+200] if d—7/x >dr/B, (53)
ro(r/x+dr/(BU+20)LY  if d — 1 /5 < dr/B < 7(d — 1/%),
[ [2(7+d7)L/(14+2%)] if d—7/x <dr/B,7(d—1/%) < dr/B.

Explicit error vs. work estimates are summarized as e-complexity bounds in the following
theorem, where we recall that work = No Y7 By = MZ/(dX)(ZfZO E,)(1+2%0/(2%),

Theorem 6.3 [Error vs. work for Strategy 1]

Let the truncation dimension (sg)g>1 be chosen according to Strategy 1 assuming B > 1 and
T > 1. Let the assumptions (Ab5) and (A3) be satisfied for n > 0. The sample numbers for
Q7.(-) are given by (51) and (50) for n > 0 and by (53) and (52) for n =0, L € Ny. Let f and
G(-) satisfy (A4).

1. Gaussian weight functions: for p € (@aX{Z/B,d/(B\* D}HL2), x =1/(2p) +1/4 — £ for
e’ > 0 sufficiently small assuming d/(f —1) < 2.

2. Exponential weight functions: for p € (max{2/3,d/(§— D], x =1/p —1/2 assuming
d/(f—-1)<1

For an error threshold € > 0, we obtain

\/EA(\E(G(U)) — QL(GWM)P) = O(e)

18 achieved with

(’)(5*1/2) if max{7,1+n} < 7/(dx),
O(e X log(e~1)(1+20)/(2)) if max{r,1+n}=7/(dx),
O(e~d/m(+m) ifl+n=71+n>7/(dY),n>0,

work = ord—T/XZdT/g,UZU,
O(E—dmin{1,max{(1+n)/T71/5+1/(d>2}}) Zf 1+ n<T, 1< d)?, n > 0,
O(e~(/x+1/B) ifd—71/x <dr/B<7(d—1/%),n=0,
(f)(efd) ifd—r/>‘<<dr/5,r(d—1/>‘<) SdT/EJI:U-

Here, B is as in (42) chosen close to 0 < 23— d/2 such that B < 2§— d/2 and all implied
constants are independent of L, (S¢)i=o......, (Ne)e=o,....., and (My)e>o.
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Remark 6.3 In the case that Z is a stationary GRF and has a Matérn covariance with smooth-
ness parameter v > 1, see Remark 5.2, a function system exists such that the assumption (A1)
is satisfied with (bj);j>1 € P(N) for every p > d/v. The statement of [8, Corollary 4.3] maybe
extended to gradients of the function system, which would imply that the assumption (A2) could
be satisfied with (b;);>1 € (P(N) for every p > d/(v — 1). Error vs. work estimates achieved
by MLQMC with product weights then hold according to Theorems 6.2 and 6.5. We note that
Strategy 2 is applicable provided that v > T, where T € [0,2] is the approzimation rate of the

considered FEs.

7 Numerical experiments

We illustrate the complexity estimates and algorithmic details on GRF generation in locally
supported representation systems with numerical tests. To this end, we consider the following
class of Gaussian random fields . We admit Gaussian random fields Z which are pathwise, weak
solutions to the SPDE (1), where W denotes spacial white noise on D. See e.g. [2] for details
on this. In (1), we assume that A(x) € R¥9 is symmetric for a.e. z € D and there exists A > 0
such that

ess inf ETA(z)E > AETE, VEeRY,

and essinf,cp x(x) > 0.

We recall from Section 1 that if D = RY, A(x) = Id, and if also x(z) = const, then the
stationary solution Z to (1) is well known to have Matérn covariance. As proposed in [37], the
SPDE (1) can be used to define and numerically sample non-stationary GRF's in bounded do-
mains and for general coefficients k and A, which accomodates non-stationary Gaussian random
fields Z. As in [37], both in stationary and non-stationary cases (see [37, Section 3.2]), we shall
refer to solutions to (1) as Matérn fields.

We choose D = (0,1) with periodic boundary conditions, which can be identified with the
one-dimensional sphere or the one-dimensional torus T!. To obtain a series expansion of Z
with ii.d. standard normally distributed coefficients, i.e., the form of (3), we discretize (1)
by biorthogonal and continuous, piecewise linear spline prewavelets as in [44]. Let (Vi)e>0
be a sequence of FE spaces of piecewise affine functions on uniformly refined meshes with
meshwidth hy, = 272 and dim(V;) = 22, Each FE space is spanned by the usual hat
functions, i.e., V; = span{go{,...,goge 421, £ > 0. We shall use the following representation
system for the Gaussian random field in D: for every £ € N, define the spline-prewavelets as in
[44, Equation (4.7)] by

5
Gop =Y @y 4y, k=1,...,Nya=(1/2,-35-3,1/2), (54)
=1
where N; = 2¢+1 and negative indices of gof; are taken modulo 2¢72. We define the wavelet spaces

wt .= span{¢y1,...,¢en,}, £ > 1, with the understanding that WO .= Vj. For £ =0, we define
Go k= gol,;, k=1,...,Np:=4. These spaces are L?-orthogonal across levels, i.e., fD wiwodx =0
for all wy € W, wy € W s.t. 1,05 € Ny and ¢, = {5. Hence, we obtain the multilevel splitting

Vi=wleawWle...awt, ¢>1.

We note that {¢px : £ > 0,k = 1,...,N;} is a Riesz basis of L?(T!) and of H'(T!). Upon
proper scaling, there hold stable norm equivalences in scale of spaces H'(T!) for ¢t € [0,3/2),
cp. [44, Proposition 4.1]. There are constants C,Cy such that for every L > 0 and for every
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L N,
v = Ze:o Zkil Ve kDo

L Nz L NZ
_ Y — l
01222(15 1/2) Z |ve; 2 < HUH%’&(W) < C2Z2Q(t 1/2) Z |W,j\2-
=0 j=1 =0 7=l

Let us define the sequence space £2 := {c € RY : }~,.,2¢ Z]kvi1 leex|? < oo} that corresponds to
H'(T'). Note that when the white noise W is applie& to prewavelets a random vector W results,
which is normally distributed with zero mean and has covariance, which is determined by the
mass operator M, i.e., COV(W(QS@,M),W((;S&’M)) = fD Oty ko Pty AT =1 My, 11 05 1oy £1,02 > 0,
k1€ {1,...,Ny}, k2 € {1,..., Ny, }. Due to the orthogonality of the prewavelets across levels
the bi-infinite mass matrix is block diagonal with the mass matrices of the spaces W' on the
diagonal. This means there is no correlation between the different levels. This fact will be
convenient in sampling realizations of W with a block Cholesky algorithm; its complexity is
O(Ny) on every block. Note that the random vectors W and Ly have the same distribution
for an ii.d. standard normally distributed y and any operator L that satisfies LLT = M.
For example, L can be the operator that results by applying the Cholesky algorithm to every
block of M. For a = 2, the operator in (1) is local and reads (—div(A(x)V) + x2(x)) It can be
equivalently represented as a bi-infinite matrix in a prewavelet basis. We denote the resulting (bi-
infinite) matrix by A, where Ap kil ke = fD(VqﬁgQ’kg)TAnggl’kl + /i2¢g2’k2q§ghk1dx, l1,05 > 0,
ki € {1,...,Ngl}, ko € {1,...,]\7[2}.

For o = 2, the variational formulation of (1) with respect to this prewavelet basis is: for a
given parameter vector y, find Z(y) € ¢3 such that

AZ(y) = Ly,
where the parametric coefficients Z(y) and the Gaussian random field Z are related by
Ny
=> > Z(y)ejou;
>0 j=1

Let us define e(¢,k) by e(l,k)pjr := 1 if £ = ¢’ and j = k' and zero otherwise. A piecewise
linear multiresolution respresentation of the Matérn field Z with i.i.d. coefficients and a function

system (¢?£2)g207k:1 77777 ~, (here @/2 = 1) is now obtained by

Ny
ZZW kwg ks with ’(/}ek = Z Z 1L€ g k )gl k/¢él k' (55)
>0 k=1 0'>0k'=1

For o > 2, let {a/2} be the fractional part of a/2 and |a/2] = a/2 — {«a/2}. The SPDE (1) is

rewritten recursively as
(—div(A(z)V)
(—div(A(z)V)

K2(x)%z =z,

K@) Zi = Zic, i=1,...,|a/2], (56)

+
_|._
where Zy := W. If {a/2} = 0, (=div(A(z)V) + x%(z))° is understood as the identity operator.
For a € 2N, there is no fractional PDE to be solved in (56) and by standard Galerkin techniques

Nys
it =33 (ATTM) P AT e k) obe g, €20,k =1,..., N, (57)
>0k'=1
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Generally, for a > 2,

Vi = A

oy Mu? 02 0k=1,.. N,

where A, /oy is the wavelet representation of the fractional operator (—div(A(x)V)+r2(x)) /2,
In the case that {«/2} > 0, a fractional PDE with a non-local operator needs to be discretized.
Efficient FE methods for this have been recently analyzed in [9]. We remark that the application
of first order prewavelets is sufficient here, since the convergence rate of randomly shifted lattice
rules is limited by one and also first order FE is considered to discretize (2) in space.

Remark 7.1 The application of the sparse operator L introduces a weight sequence (2*(1/2)£)g207j:17_”71\;z
and the application of the inverse of A introduces an additional weight sequence (2_€)€20,k:1,...,N4
on the parameter vector y or e({, ). The theory of pseudodifferential operators and wavelet com-

pression suggests that (¢?£2)ezo,k:1,..‘,Nz satisfies Assumption (A1) and Assumption (A2) with

be = 98¢ and Bg’k = 2*(3*1)5, £>1,k=1,...,Ny, forall 1 < 3 < a—1/2. See ahead Fig-
ures 1(a) and 1(b) for an illustration of this property. In practical implementations the infinite
series of the @ZJ%Z ’s in (55) needs to be truncated. A detailed analysis of these aspects in a more

general setting will be presented elsewhere.

For a scaling parameter 6§ > 0 to be specified, the parametric PDE (2) with log-Matérn
input @ = exp(#Z) and right hand side f € L?(T') such that [, fdz = 0 is discretized by the
FE spaces (V7)¢>0, which are spanned by the standard hat functions. We recall the variational
formulation: for all £ > 0, find v € V} such that

/ a (W)vde = | fudz, YveV, and / udz = 0. (58)
T! T! T!

Due to periodicity, no essential boundary conditions enter the variational formulation (58). The
vanishing mean condition on the solution is sufficient to ensure well-posedness, since the kernel
of the precision operator comprises exactly the constant functions.

We will adopt Strategy 2 from Section 6, which means that on every discretization level
¢ >0 we set sy = My. We also truncate the expansion of the wl}’k’s in (55) and (57) and the
infinite matrices A to My terms. Note that the bi-infinite matrices M and L do not need
to be truncated as they are block-diagonal. The work to compute Z5¢(y) for a given y in a
continuous, piecewise linear representation is O(M,log(M/)), since it amounts to the solution of
a PDE discretized by prewavelets and the application of the Cholesky algorithm to sparse band
matrices. The work for the approximate solution of the PDE discretized with the hat functions
on mesh-level ¢ scales as O(Mp).

In our numerical tests, D = (0,1), f(z) = sin(27x) and

K (x) = R’? <1 + ;sin(27r:r)> , A(r)=1d, «ac€{2,4}.

The parameter v such that « = v + d/2 determines the path regularity of realizations of the
Matérn field. In this sense, we test the cases v € {3/2,7/2}. The correlation length scale
parameter A is defined by

27

A= —.

R
For k(z) = F this corresponds to the correlation length parameter used in numerical experiments
in [33, Section 4]. We aim at testing for different values of A without greatly affecting the
variance of Z. Thus, we set the scaling 6 of the (non-stationary) Gaussian random field Z to

a0

0 =

o(a,R)
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with og > 0 still at our disposal. In the stationary (“Matern”) case, i.e., when A(z) = Id and
k(z) = K > 0, elementary Fourier analysis reveals that the marginal variance is given by

o, .1 2
o (o, R) = RQQ-F;W_’_HQ)Q
The function systems (@bZéQ :0>0,k=1,...,Ny) are well localized and satisfy a decay con-
dition which suits our MLQMC analysis with product weights. Let us illustrate this numerically.
To this end, we define
brot = (279 150 k=1,
In Figure 1(a), we plot this reference sequence and ||4g ;|| oo (1 for several choices of the cor-

relation length A > 0. Figure 1(b) shows a plot of @Z)}k For the illustrations in both figures,
the expansion in (55) has been truncated to the maximal level L = 11. For a = 2, Figures 1(a)

-----

--- [=5k=20,a=2
0.04 A

0.03 4 "

0.02 4 u"

0.01 4

@i =)

0.00 {—F====m-=tuy
10
~0.01 1

1075

10° 10t 102 103 104 0.0 0.2 0.4 0.6 0.8 1.0

ji, k)
(a) 0o = 1.0 (b) o0 = 1.0, A =0.1

Figure 1: Quantitative properties of (1/1%2)@20,;@:1,,“7M for o9 = 1.0, A € {0.1,0.05,0.01}, a« = 2
(v =3/2). On the left: decay of ||1/Jl}k||Loo(T1). On the right: localization of 1} ,

Remark 7.2 For stationary Gaussian random fields , the theory from [24, 33] with globally
supported Karhunen-Loéve basis functions and QMC integration with POD weights is applicable;
in particular, in the special case that A(x) = 1d and k(x) = const, and that periodic boundary
conditions are imposed on OD. Then, the Gaussian random field Z is stationary, and the SPDE
(1) can be numerically solved with Fourier methods, as the precision operator is a power of a
shifted Laplacean which is diagonalized by the Fourier system. We refer to [26, 15] for details
on this. Unlike the product weights for QMC integration which were derived in the present work,
the appearance of QMC weights with POD structure in [24, 33] implies that the construction
cost for these QMC integration methods scales as O(s*N + sN log(N)) [40].

In our numerical tests, we consider the functional G(v) := v(xg) with zp = 0.7, which is not
a node in any of our FE meshes for all levels ¢ > 0. Note that G(-) € H~Y/27¢(T') for every
e > 0. Since the QMC rate x is restricted to [1/2,1) the complexity estimate in Theorem 6.2
in the regime 1 < 7/y (here d = 1, n = 0) does not seem to benefit from 7 > 1. Thus, QMC
sample numbers are chosen according to (48) and (49) with 7 =1 and x to be specified, i.e.,

Ne—[gwxmn (2<27+1><f+1><e+1>1)””””], (=1L Ny = [201000] (s0)
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They are rounded up to the next odd prime number. We compute the generating vectors by the
fast CBC algorithm, Gaussian weight functions, and product weights according to Theorem 3.1
and the sequence
Bfée/fQ = (27" V) k=1,

for some ¢ > 0 (see Remark 7.1 and Figure 1(a)). According to Theorem 3.1, also the value p’
is needed for the product weights, which are an input in the CBC algorithm to construct the
QMC points. For a = 2, we use the boundary values p’ = 1 and £ = 0 in Theorem 3.1. We
note that v = 3/2 is the boundary case of applicability of our MLQMC convergence theory from
Theorem 6.2. We expect a convergence rate Y ~ 1/2. In our single-level QMC experiments,
we observed in [30, Figure 1] that the QMC rate for a boundary case of applicability (i.e.
(bj)j>1 ¢ (P(N) for every p € (0,2), but (bj);>1 € £?(N)) was always larger than 0.65. So for

a =2 (v=3/2), we use QMC sample numbers (59) with y = 0.65. For o = 4, l_)?e/fZ € ?/3(N).
Thus, we use p’ = 2/3 = p and the boundary value ¢ = 0 in Theorem 3.1. For a = 4, the sample
numbers are chosen with y = 0.9.

In Figures 2(a) and 2(b), we visualize error vs. work for « = 2, i.e., v =3/2, L =2,...,11
with reference solution on level L., = 12. For L = 11, there are s;, = 8192 dimensions on the
finest level and for the reference solution the highest occurring dimension is sy, , = 16384. The

asymptotic work model is here and in the following taken according to Theorem 6.2 as
worky, = 207/0L

In all numerical tests, the mean square error is approximated by the empirical variance of R
samples (); corresponding to R i.i.d. realizations of the random shift, with the unbiased estimator

1 R

=1 (@ - Q12 = \[EAIE(G (W) - Q4(G(uh))).

j=1

The reference value Q is the average over R i.i.d. random shifts of QT..c (G(ulret) with Lyes = 12.
In all numerical tests we use R = 20. For o = 2, this is the boundary case p = 2 of Theorem 6.2
and we expect a convergence rate of the error as a function of the work of &~ 1/2. The empirically
observed rate is a least squares fit taking into account the four data pairs corresponding to finer
resolution. The MLQMC algorithms converge even for very small correlation length A > 0,
which is presented in Figures 2(a) and 2(b) for two choices of 0g. Specifically, we observe that
for correlation length A € {0.1,0.05,0.01}, there seems to be a pre-asymptotic regime until the
(non-dimensional) correlation length A can be resolved by the FE discretization in D.

In Figure 3(a), we study the error versus the variance of the Matérn field Z. We control this
variance by the parameter g, and monitor the convergence rate of the error as a function of
the work. The test is carried out for a = 4, i.e., v = 7/2, fixed correlation length A = 0.1, and
L = 2,...,11 with reference solution on level L,s = 12. Thus, s1;7 = 8192 dimensions on the
highest considered level and sz, , = 16384 dimensions of the reference solution. The empirically
observed rate is a least squares fit taking into account the six data pairs corresponding to finer
resolution. We observe that the convergence rate seems to be influenced by the variance of
Z, the size of the fluctuations. This was also observed in previous numerical experiments in
[31, 30, 33, 24].

All numerical tests in Figures 2(a) and 2(b) were performed with generating vectors that do
not depend on the correlation length. However, Figure 1(a) suggests that the pre-asymptotic
spacial decay of the functions wt},k depends on the correlation length A > 0, which shall be
reflected in the decay of the respective QMC integration weight sequence (Bg7k)3207k:17._.7]\[£. In
Figure 3(b), we present numerical results with generating vectors that are informed by the
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MLQMC Convergence

MLQMC Convergence

-~ A=0.1 10-1 - A1=0.1
fit: —0.662 fit: —0.524
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(a) agog = 0.5 (b) agog = 1.0

Figure 2: MLQMC convergence with v = 3/2, ay = 1.05, ¢ = 0.1, A € {0.1,0.05,0.01}. On the
left: o9 = 0.5. On the right: oo = 1.0.

particular pre-asymptotic decay. The test is carried out for o = 2, i.e., v = 3/2, 09 = 1.0, and
L =2,...,9 with reference solution on level L.t = 10. The empirically observed rate is a least
squares fit taking into account the four data pairs corresponding to finer resolution. Specifically,
we compute the generating vectors with the sequence (l_)g,k) £>0,k=1,...,.N,» Which sequence is given

by by = cbé’iﬁl)/’g

~

(according to (41)) for § = 3/2 and

bek = [YekllLpy, €>0,k=1,...,Np.

In Figure 3(b), we observe a very similar behavior compared to Figure 2(b). We thus conclude
that the observed pre-asymptotic regime is indeed due to the inability of the FE method to
resolve the small correlation length until the MLQMC algorithm contains levels with sufficiently
fine meshes.

MLQMC Convergence MLQMC Convergence
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1072

1073

—@— 0p,=0.1
fit: —0.876

—A— 0p=0.25
fit: —0.683

- 0p=0.5
fit: —0.577

Relative Error

| /
Relative Error
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1074
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10° 10

- 162 4
Work

10
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(a) ag = 5.05, v =7/2, A =0.1 (b) ag = 1.05, v = 3/2, oo = 1.0
Figure 3: MLQMC convergence with v € {3/2,7/2} and ¢ = 0.1. On the left: v =7/2, A = 0.1,
and o9 € {0.1,0.25,0.5}. On the right: v = 3/2, 09 = 1.0, and A € {0.1,0.05,0.01} with
informed QMC generating vectors.
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8 Conclusions

For linear, second order diffusion equations (2) in a polygonal or polyhedral domain D, and
with diffusion coefficient a = exp(Z), where the Gaussian random field Z in D is represented in
terms of a series expansion with “localized supports”, taking values in weighted Holder spaces
in D, we extended the convergence rate and error versus work analysis of combined QMC
quadratures and multilevel FE approximation from [24, 33] in several directions. We considered
randomly shifted lattice QMC rules introduced in [40] for numerical integration of PDE outputs
against a dimension-truncated Gaussian measure. The present work extends previous results to
possibly non-stationary Gaussian random fields Z, accounts explicitly for a discretization-level
dependent truncation of the representation of the Gaussian random field , and accounts for
possibly low path regularity of Z and of the random solution « in a polytopal physical domain
D. In particular, Z and u are admitted in weighted Holder and Sobolev spaces in the polytope
D c R? the weights allowing singularities in realizations of Z and of u due to corners (and
edges in dimension d = 3) of D. This allows, in particular, Gaussian random fields Z whose
covariance is non-stationary, with associated Matérn SPDE in D with Dirichlet or Neumann
boundary conditions, as proposed recently in [37]. Whereas in [24, 33, 34], globally (in D)
supported ¢;’s were admitted (implying QMC quadratures with so-called “POD” weights), the
present analysis shows that for multilevel representation systems (1) j>1 with localized supports,
QMC quadratures with product weights are admissible and, in a sense, natural. We also provided
a novel QMC error analysis with Gaussian weighted function spaces for QMC integration on the
unbounded integration domain. It extends the range of summability exponents from p € (0, 1]
obtained by exponential weight function as considered in [24, 33] to p € (2/3,2) (Theorem
3.1, item 1.), while still retaining dimension independent convergence rate up to 1/(2p) + 1/4.

We proved that for Gaussian random fields Z whose spatial variation is parametrized by a
representation system (1;);>1 of functions v;(x) defined in D with “localized supports” that
QMC combined with continuous, piecewise linear FE in D on families of regular, simplicial
triangulations of D with suitable mesh refinement near vertices and (in space dimension d = 3)
edges of D, allow for parameter-dimension independent error vs. work bounds. The case of full
elliptic regularity in function spaces in D without spatial weights and s; = sz, £ = 0,..., L,
is considered in [33, Corollary 2 and Section 5]. In the present work, we admitted bounded,
polytopal domains D where 9D consists of straight lines (in space dimension d = 2) or of plane
faces (in space dimension d = 3) which require weighted spaces for the spatial coordinate, and
we consider level dependent truncations sy of the input GRF. In particular, the level dependent
truncations sy of the GRF allow in certain cases an e-complexity of MLQMC-FE with product
weights for elliptic PDEs with log-Gaussian coefficients, which is asymptotically equivalent to the
e-complexity of QMC in the case that integrand evaluation would be available at unit cost. The
parametric regularity results in weighted function spaces in D remain valid, however, also for
polytopal D with piecewise smoothly curved boundaries as considered in [39]. Since the assumed
localization of the supports of the 1); in D was shown to allow for QMC integration rules with so-
called product weights, the present model of the computational work (39) includes the cost of the
generation of the QMC points. This cost is dominated by the cost of the fast CBC construction
of generating vectors. It was considered a pre-computation in [34, 33] and the (quadratic w.r. to
the parameter dimensions s;) work count for the (precomputed) CBC construction was omitted
from the work counts in that reference. We also note that the same generating vectors can be
used for different right hand sides f. However, if the function system (1;);>1 is altered, e.g.,
by changing certain parameters of a considered class of (1););>1 that relate to the smoothness
or spatial correlation, due to modeling considerations of the lognormal diffusion coefficent, then
the generating vectors need in general to be recomputed. The QMC error analysis being based
on product weights, the work of the fast CBC construction of generating vectors due to R.
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Cools and D. Nuyens [41] and the generation of QMC points scales linearly with respect to the
parameter dimensions sy. Therefore, we conclude in certain cases the same asymptotic error
vs. work bounds of the considered multilevel QMC algorithm than in the case of the respective
deterministic, elliptic PDE; also in the case that the FE error has a rate higher than 1/d with
respect to the dimension of the FE spaces. We considered only homogeneous Dirichlet boundary
conditions on all of 9D in (2) and, in the numerical experiments section, only even integer order
precision operators. This was for ease of exposition only: the parametric regularity analysis of
Section 4 and the elliptic regularity results in Section 2.2 remain valid verbatim for problems
with Neumann or mixed boundary conditions. In particular, an analogous structure of the
corner- and edge-weights in (8) can be used to characterize elliptic regularity shifts in scales of
weighted Sobolev- and Hélder spaces in D for these boundary conditions. Precision operators
of fractional and odd integer order in (1), i.e. when o € R\(2N), can be treated in exactly
the same fashion, using recently developed methods for the efficient numerical solution of the
SPDE (1). We refer to [9] and the references there for details of the corresponding algorithms.
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