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Abstract

We analyze the convergence rate of a multilevel quasi-Monte Carlo (MLQMC) Finite
Element Method for a scalar diffusion equation with log-Gaussian, isotropic coefficients in a
bounded, polytopal domain D ⊂ R

d. The multilevel algorithm Q∗

L
which is investigated here

was first proposed in [Frances Y. Kuo, Christoph Schwab, and Ian H. Sloan: Multi-level quasi-
Monte Carlo finite element methods for a class of elliptic PDEs with random coefficients,
Journ. Found. Comp. Math.15 (2015) pp. 411–449]. The random coefficient is assumed
to admit a representation with locally supported coefficient functions, such as indicator
functions or multiresolution representations. The present analysis builds on and generalizes
the single-level analysis in [Lukas Herrmann and Christoph Schwab: QMC integration for
lognormal-parametric, elliptic PDEs: local supports imply product weights, Report 2016-
39, Seminar for Applied Mathematics, ETH Zürich] and also extends the MLQMC error
analysis in [Frances Y. Kuo, Robert Scheichl, Christoph Schwab, Ian H. Sloan, and Elisabeth
Ullmann: Multilevel quasi-Monte Carlo methods for lognormal diffusion problems (to appear
in Math. Comp. 2017)], to locally supported basis functions in the representation of the
Gaussian random field (GRF) in D, and to product weights. In particular, in polytopal
domains D ⊂ R

d, d = 2, 3, our analysis is based on weighted function spaces that allow
GRFs and solutions whose realizations become singular at edges and vertices of D. This is
natural for covariance operators whose associated precision operator is a fractional power of
the Dirichlet Laplacean in D. In these weighted Sobolev spaces in D, first order, Lagrangean
Finite Elements on regular, simplicial triangulations of D with suitable mesh refinement yield
optimal asymptotic convergence rates. Our analysis yields also bounds for the ε-complexity
of the MLQMC algorithm, uniformly with respect to the dimension of the parameter space.

∗This work was supported in part by the Swiss National Science Foundation (SNSF) under grant
SNF 200021 159940/1.
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1 Introduction

The numerical analysis of solution methods for partial differential equations (PDEs for short)
and more general operator equations with random input data has received increasing attention
in recent years, in particular with the development of computational uncertainty quantification
and computational science and engineering. There, particular models of randomness in the
PDEs’ input parameters entail particular requirements to efficient computational uncertainty
quantification algorithms. A basic case arises when there are only a finite number of random
variables whose densities have bounded support and which parametrize the uncertain input in
the forward PDE model: computation of statistical moments of responses and also Bayesian
inversion then amounts to numerical integration over a bounded domain of finite dimension
s. Statistical independence and scaling implies numerical integration over the unit cube [0, 1]s,
against a product probability measure. In the context of PDEs, so-called distributed random
inputs such as spatially heterogeneous diffusion coefficients, uncertain physical domains, etc.
imply, via uncertainty parametrizations (such as Fourier- , B-spline or wavelet expansions) in
physical domains D, a countably-infinite number of random parameters (being, for example,
Fourier- or wavelet coefficients). This, in turn, renders the problem of estimation of response
statistics of solutions a problem of infinite-dimensional numerical integration. Assuming again
statistical independence of the system of (countably many) random input parameters results in
the problem of numerical integration against a product measure. In the case of the uncertain
PDE input being a Gaussian random field (GRF for short) considered here, in addition the
domain Ω of integration is the countable product of real lines R

N, endowed with the Gaussian
product measure (GM for short) µ and with the product sigma algebra obtained by completing
the finite dimensional cylinders of Borel sets on R (we refer to [8] for details on GMs on R

N).
Here, as in [16, 21] and the references there, we analyze the combined discretization by

quasi-Monte Carlo (QMC for short) quadratures and the Finite Element (FE for short) solution
of linear, second order elliptic PDEs in a bounded, polygonal domain D, with isotropic, log-
Gaussian diffusion coefficient a = exp(Z), where Z is a GRF in D. As in [16, 21], we confine
the analysis to first order, randomly shifted lattice rules proposed originally in [26], and to
continuous, piecewise linear “Courant” FE methods in D. We adopt the setting of our analysis
[19] of the single-level QMC-FE algorithm: in a bounded, polytopal domain D ⊂ R

d, d = 2, 3
we consider the model Dirichlet problem

−∇ · (a∇u) = f, u
∣∣∣
∂D

= 0 . (1)

As in [19], the Gaussian random field Z = log(a) : Ω → L∞(D) is (formally) represented as

Z :=
∑

j≥1

yjψj , (2)

where (ψj)j≥1 is a sequence of real-valued, bounded, and measurable functions in D. In par-
ticular, with respect to the GM µ the sequence y = (yj)j≥1 has independent and identically
distributed (i.i.d. for short) components and for every j ≥ 1, yj is standard normally distributed.
That is to say, yj ∼ N (0, 1), i.i.d. for j ∈ N. The lognormal coefficient a in (1) is given by

a := exp(Z) . (3)

The series (2) converges in Lq(Ω;L∞(D)), q ∈ [1,∞), under the assumption that there exists a
positive sequence (bj)j≥1 ∈ ℓp(N) for some p ∈ (0,∞) such that

K :=

∥∥∥∥∥∥

∑

j≥1

|ψj |
bj

∥∥∥∥∥∥
L∞(D)

<∞ . (A1)
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In the setting of (2) and (3), the expectation with respect to the GM µ of the solution to
(1) can be computed with QMC by randomly shifted lattice rules and product weights with
dimension-independend convergence rates under the assumption (A1) with p < 2, cp. [19]. The
assumption in (A1) can account for locality in the support of the function ψj . An assumption
of the type of (A1) in the case of so called affine-parametric coefficients in conjunction with
the application of QMC with product weights was already discussed in [12]. In the present
work, we extend the analysis of [19] to a multilevel QMC algorithm with log-Gaussian inputs to
reduce the overall work. The perspective of multilevel QMC integration with product weights
for random inputs ψj with localized supports was originally introduced in [11] for the case of
so-called affine-parametric coefficients. Multilevel QMC for elliptic PDEs with affine coefficients
was first introduced in [22] (there for globally supported Karhúnen-Loève eigenfunctions and
with so-called “POD” weights). As we showed there, localization of supports allows to obtain in
certain cases estimates for the work of the evaluation of the multilevel QMC quadrature, which
are asymptotically equal to the work to solve one instance of the corresponding deterministic
PDE with the same error tolerance also in the case that the FE convergence rate is higher than
1/d with respect to the FE degrees of freedom. The FE convergence rate of first order FE
is higher than 1/d if, for example, the spatial error is considered in a weaker Sobolev norm.
In the present paper, the cost of generating the QMC points using the fast CBC construction
of [27, 28] is included into the overall complexity estimate. This is due to product weights
affording construction cost of QMC rules which is linear scaling in terms of the dimension of the
integration domain.

The outline of this paper is as follows. In Section 2, we recapitulate known results on the
well-posedness of problem (1) - (3) under assumption (A1), and on the integrability of random
solution with respect to the GM. We also present bounds on the error incurred in the random
solution when the expansion (2) is truncated to a finite number s of terms. As we combine QMC
quadrature approximation of the GM with continuous, piecewise linear FE discretization of (1) of
the random solution in polytopic domains D ⊂ R

d, d = 2, 3, we also review in Section 2 elements
of elliptic regularity theory and FE approximation theory in D; notably, handling corner and
(in space dimension d = 3) edge singularities induced by D we review weighted Sobolev spaces
in D in which (1) admits a full regularity shift. Corresponding weighted spaces also appear in
our convergence rate analysis of the expansion (2) of the GRF. In Section 3, we review QMC
convergence theory from [26, 19]. Suitable (weighted) spaces on R

s of integrand functions with
mixed first derivatives which ensure (nearly) first order convergence with dimension-independent
constants are introduced. Section 4 presents the key mathematical results: parametric regularity
analysis for the integrand functions which arise from the dimensionally truncated, FE discretized
problem, generalizing the single level QMC analysis in [19] by admitting locally supported
functions ψj in the representation (2) of the GRF; while similar in spirit to the multilevel
analysis in [16], there are significant technical differences due to accounting for local supports
of ψj , analogous to the recent gpc N -term approximation rate analysis in [6]. The error bounds
are then combined in Section 5 to a novel, MLQMC convergence rate bound in terms of the
(sequences of) truncation dimensions {sℓ}ℓ≥0, numbers {Mℓ}ℓ≥0 of FE degrees of freedom and of
QMC sample numbers {Nℓ}ℓ≥0. Judicious choices of these parameters for concrete MLQMC-FE
algorithms are derived in Section 6 by the “usual” error vs. work analysis through optimization,
of the error bounds in Section 5, derived analogously to [22, 16]. Numerical experiments of this
multilevel QMC algorithm in one spatial dimension are presented in [20, Section 5].
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2 Well-posedness and spatial approximation

2.1 Well-posedness

We consider the variational formulation of the PDE (1) with lognormal coefficient a = exp(Z),
i.e., to find u : Ω → V such that

∫

D
a∇u · ∇vdx = f(v), v ∈ V. (4)

Under the assumption that for some p0 ∈ (0,∞), (bj)j≥1 ∈ ℓp0(N) it holds that Z ∈ Lq(Ω, L∞(D))
for every q ∈ [1,∞), cp. [19, Theorem 2]. Hence, 0 < ess infx∈D{a(x)} ≤ ‖a‖L∞(D) <∞, µ-a.s. .
As in previous works [19, 21, 16], in the ensuing error analysis, the quantities

amin := ess inf
x∈D

{a(x)} and amax := ‖a‖L∞(D)

will play an important role. Under Assumption (A1), amin and amax are random variables on the
probability space (Ω,

⊗
j≥1 B(R), µ) (see, for example, [8, Example 2.3.5]). Therefore, continuity

and coercivity of the random bilinear form (w, v) 7→
∫
D a∇w · ∇vdx in (4) on V × V holds with

coercivity constant amin and continuity constant amax, µ-a.s. By the Lax-Milgram Lemma, a
unique solution u to (4) exists µ-a.s. and solves (4) uniquely by the Lax–Milgram lemma. By
[19, Proposition 3], for every q ∈ [1,∞),

‖u‖Lq(Ω;V ) ≤ ‖1/amin‖Lq(Ω)‖f‖V ∗ <∞,

where the strong measurability of u : Ω → V follows, since the V -valued solution u depends
continuously on the L∞(D)-valued coefficent a (by the second Strang lemma).

Numerical approximation of (functionals of) the random solution by QMC quadratures re-
quires a finite dimensional domain of integration. To this end, the expansion of the Gaussian
random field Z in (2) is truncated to a finite number s of terms: the s-term truncated lognormal
random field as is defined by as := exp(Zs) = exp(

∑s
j=1 yjψj), for every s ∈ N. With as, we

associate the random variables

asmin := ess inf
x∈D

{as(x)} and asmax := ‖as‖L∞(D).

By us we denote the solution of the variational problem (4) with the s-term truncated, parametric
coefficient as in place of a, i.e.,

us : Ω → V s.t.

∫

D
as∇us · ∇vdx = f(v), v ∈ V . (5)

The truncation error can be controlled if the sequence (bj)j≥1 is p-summable. Specifically, if
(bj)j≥1 ∈ ℓp0(N) for some p0 ∈ (0,∞), [19, Proposition 7] implies that for every ε > 0 there
exists a constant Cε > 0 such that for every G(·) ∈ V ∗ and for every s ∈ N

|E(G(u))− E(G(us))| ≤ Cε‖G(·)‖V ∗‖f‖V ∗ max
j>s

{b1−ε
j }. (6)

2.2 Elliptic Regularity in D

Approximations of second order, elliptic PDEs with regular, simplicial Finite Elements in a
polytope D ⊂ R

d, d = 2, 3, on regular, simplicial families of uniformly refined triangulations may
produce suboptimal convergence rates, due to the occurence of singularities in the parametric
solutions u and us at vertices and, in space dimension d = 3, also at edges. In such domains,
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linear elliptic PDEs admit regularity shifts in certain weighted Sobolev spaces, cp. [5, 25] which
we now recapitulate as we require the precise definition of the weighted norms in D in the
ensuing QMC error analysis. We assume the polyhedron resp. polygon D to have straight edges
and plane faces and J corners C := {c1, . . . , cJ} ⊂ ∂D.

For d = 2, let β = (β1, . . . , βJ) be a J-tuple of weight exponents, we define the corner weight
function

Φβ(x) :=
J∏

i=1

|x− ci|βi , x ∈ D,

where βi ∈ [0, 1), i = 1, . . . , J . Here and in the following, the Euclidean norm in R
d is denoted

by | · |. The weighted function spaces Lq
β(D) and H2

β(D) are defined as closures of C∞(D) with
respect to the norms

‖v‖Lq
β
(D) := ‖vΦβ‖Lq(D), q ∈ [1,∞],

and
‖v‖2H2

β
(D) := ‖v‖2H1(D) +

∑

|α|=2

‖|∂αx v|Φβ‖2L2(D).

For d = 3, let the polyhedron D have J ′ straight edges E := {e1, . . . , eJ ′} ⊂ ∂D and define
Xj := {k : cj ∈ ek} as the index set of edges that meet at corner cj , j = 1, . . . , J . Let rk denote
the distance to the edge ek and let ρj denote the distance to the corner cj . Let (Vj : j = 1, . . . , J)
be a finite, open covering of D such that

D ⊂
J⋃

j=1

Vj , ci /∈ V j , if i 6= j, and V j ∩ ek = ∅ if k /∈ Xj .

For a real-valued J-tuple β ∈ [0, 1)J and a real-valued J ′-tuple δ ∈ [0, 1)J
′
, define the corner-edge

weight function

Φ(β,δ)(x) :=

J∑

j=1

ρ
βj

j (x)
∏

k∈Xj

(
rk(x)

ρj(x)

)δk

✶Vj
(x), x ∈ D. (7)

With this weight, we associate the weighted Sobolev spaces L2
β,δ(D) and H2

β,δ(D), cp. [25,

Section 4.1.2] as closures of C∞
0 (D\(C ∪ E)) with respect to the norms

‖v‖L2
(β,δ)

(D) := ‖vΦβ,δ‖L2(D)

and for ι = 0, 1, 2,

‖v‖Hι
(β,δ)

(D) :=




J∑

j=1

∑

|α|≤ι

∫

D∩Vj

ρ
2(βj−ι+|α|)
j (x)

∏

k∈Xj

(
rk(x)

ρj(x)

)2(δj−ι+|α|)
|∂αv|2dx




1/2

.

We note that the spaces L2
β,δ(D) and H0

β,δ(D) are isomorphic with equivalent norms: for every
x ∈ D,

J∑

j=1

ρ
2βj

j (x)
∏

k∈Xj

(
rk(x)

ρj(x)

)2δk

✶Vj
(x) ≤ (Φ(β,δ)(x))

2 ≤ J

J∑

j=1

ρ
2βj

j (x)
∏

k∈Xj

(
rk(x)

ρj(x)

)2δk

✶Vj
(x),

Also, we define the weighted seminorm

|v|H2
(β,δ)

(D) :=




J∑

j=1

∑

|α|=2

∫

D∩Vj

ρ
2βj

j (x)
∏

k∈Xj

(
rk(x)

ρj(x)

)2δj

|∂αv|2dx




1/2

.
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Lemma 2.1 For a polygon D (i.e. in spatial dimension d = 2), there exists a constant C > 0
such that for every f ∈ L2

β(D),
‖f‖V ∗ ≤ C‖f‖L2

β
(D).

For a polyhedron D (i.e. in spatial dimension d = 3), there exists a constant C > 0 such that
for every f ∈ L2

(β,δ)(D),

‖f‖V ∗ ≤ C‖f‖L2
(β,δ)

(D).

Proof. The case d = 2 is proven in [20, Lemma 1]. The case d = 3 follows by [25, Lemma 4.1.4].
Specifically, in the notation of [25] the assertion of this lemma reads that the embedding
V 0,2
β,δ(D) ⊂ V −1,2

0,0 (D) is continiuous, if βj < 1 and δk < 1, j = 1, . . . , J , k = 1, . . . , J ′. We note

that here the space V 0,2
β,δ(D) of [25] coincides with our spacesH0

(β,δ)(D) = L2
(β,δ)(D) and the space

V −1,2
0,0 (D) is isomorphic to V ∗. In the definition of the weighted space L2

(β,δ)(D) = H0
(β,δ)(D), it

has been assumed that βj < 1 and δk < 1, j = 1, . . . , J , k = 1, . . . , J ′. ✷

In polygons D in space dimension d = 2 and for functions in H2
β(D), a full regularity shift

for the Laplacean is available, cp. eg. [5, Theorem 3.2]: there exists a constant C > 0 such that
for every w ∈ V with ∆w ∈ L2

β(D),

‖w‖H2
β
(D) ≤ C‖∆w‖L2

β
(D), (8)

where we assume that the weight exponent sequence β satisfies max{0, 1 − π/ωi} < βi < 1,
i = 1, . . . , J . Here, ωi denotes the interior angle of the polygon D at corner ci, i = 1, . . . , J . Since
[5] considers the Poisson boundary value problem with a zero order term, i.e., −∆u+u = f , we
note that Lemma 2.1 implies that there exists a constant C such that for every w ∈ V ∩H2

β(D),
‖w‖L2

β
(D) ≤ C‖∆w‖L2

β
(D).

In space dimension d = 3, when D is a polyhedral domain with plane sides and for functions
in H2

(β,δ)(D) ∩ V , there holds a corresponding regularity shift of the Dirchlet Laplacean by [25,

Lemma 4.3.1] and by the inverse mapping theorem, cp. [10, Theorem 5.6-2]: there exists a
constant C > 0 such that for every w ∈ H2

(β,δ)(D) ∩ V holds

‖w‖H2
(β,δ)

(D) ≤ C‖∆w‖L2
(β,δ)

(D), (9)

where we assume that

1

2
− λj < βj < 1, j = 1, . . . , J, and 1− π

ωk
< δk < 1, k = 1, . . . , J ′,

where ωk is the interior angle between two faces meeting at edge ek and λj is given by

λj := −1

2
+

√
Λj +

1

4
,

where Λj is the smallest, strictly positive eigenvalue of the Dirichlet Laplace–Beltrami operator
on the intersection of the unit sphere centered at cj and the infinite, interior polyhedral tangent
cone to ∂D with vertex cj , cp. [25, Section 4.3.1].

2.3 FE convergence theory

Let {Tℓ}ℓ≥0 denote a sequence of regular, simplicial triangulations of D with proper mesh re-
finements near vertices and, if d = 3, also near edges of D. Let further P1(K) denote the affine
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functions on a subset K of Rd. In FE spaces Vℓ := {v ∈ V : v|K ∈ P
1(K),K ∈ Tℓ} of continu-

ous, piecewise linear functions on {Tℓ}ℓ≥0, optimal asymptotic convergence rates are achieveable,
also in the presence of singularities. We state these for subsequent reference, recapitulating from
[5, 13, 4, 1] approximation properties H1(D) of the subspaces Vℓ.

Specifically, there exists a constant C such that for every w ∈ H2
β(D) for d = 2, w ∈ H2

(β,δ)(D)
for d = 3, respectively, there is wℓ ∈ Vℓ satisfying

‖w − wℓ‖V ≤ CM
−1/d
ℓ




‖w‖H2

β
(D) if d = 2,

‖w‖H2
(β,δ)

(D) if d = 3,
(10)

where Mℓ := dim(Vℓ). For d = 2, the convergence rate bound (10) is due to [5, Lemmas 4.1
and 4.5] for regular, graded simplicial meshes, resp. due to [13] for simplicial bisection tree
meshes. In polyhedral domains D in space dimension d = 3, this estimate follows by [4, Theo-
rem 4.6] for every w ∈ C∞

0 (D\C) and follows for every w ∈ H2
(β,δ)(D), since C∞

0 (D\(C ∪ E)) is
dense in H2

(β,δ)(D) (see also [3]).

2.4 Combined Dimension Truncation FE error bound

We now derive an error bound for the combined effect of truncating the GRF Z to a finite
number of parameters s, and to FE discretization of the resulting s-parametric problem (5).

Let accordingly us,Tℓ : Ω → Vℓ denote the FE solution, i.e.,

∫

D
as∇us,Tℓ · ∇vdx = f(v), ∀v ∈ Vℓ. (11)

For notational convenience, we introduce

β :=

{
β if d = 2,

(β, δ) if d = 3.
(12)

The Banach space W 1,∞
β

(D) is the space of all measurable functions v : D → R that have finite

W 1,∞
β

(D)-norm, where

‖v‖
W 1,∞

β
(D)

:= max{‖v‖L∞(D), ‖|∇v|Φβ‖L∞(D)}.

In order for the ML algorithm Q∗
L to yield improved (w.r. to the single-level case) error vs.

work bounds, we require stronger assumptions than in the single-level analyses of [16, 19] on the
function system (ψj)j≥1. This corresponds to what was found for uniform random parameters
in [22] and in the lognormal case for ψj with global supports in [21]. Let (b̄j)j≥1 be a positive
sequence such that ∥∥∥∥∥∥

∑

j≥1

max{|∇ψj |Φβ, |ψj |}
b̄j

∥∥∥∥∥∥
L∞(D)

<∞ . (A2)

We remark that the assumption (A2) is stronger than (A1), which was found sufficient in [19]
for the convergence rate analysis of the corresponding single-level QMC-FE algorithm.

Remark 2.1 When the precision operator of Z is a positive power of a shifted Dirichlet Laplacean
on D (as is the case in, e.g., the so-called Matern covariance functions), the Karhúnen-Loève
eigenfunctions vj are, by the spectral mapping theorem, eigenfunctions of the Dirichlet Laplacean
on D: −∆vj = νjvj, vj |∂D = 0, j ∈ N. Here, the eigenvalues νj are related to the ones appearing
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in the Karhúnen-Loève expansion of the GRF Z by the spectral mapping theorem. This setting
includes GRFs with stationary covariance such as the well-known family due to B. Matérn,
cp. [24]. Elliptic regularity shifts for the Dirichlet Laplacean are also known in certain weighted
Hölder spaces in D: for d = 3, [25, Lemma 4.3.1.2)], implies that vj ∈W 1,∞

(β,δ)(D) provided that

1 − λj < βj < 1, j = 1, . . . , J , and 1 − π/θk < δk < 1, k = 1, . . . , J ′, where we used here

that the weighted C1+ε(D)-type space N1,ε
β,δ(D) (in the notation of [25, Sections 4.2 and 4.3])

embeds continuously into W 1,∞
(β,δ)(D). Note that this condition on β for the KL eigenfunctions

is stronger than in Assumption (A2). Similar statements hold for d = 2. Here, singularities at
corners and (for d = 3) along edges of the Karhúnen-Loève eigenfunctions appear as a conse-
quence of regularity shifts for the Dirichlet Laplacean in weighted Hölder spaces. The structure
of the weight functions Φβ (which depend only on D and on the (Dirichlet) Laplacean) in the
assumption (A2) on the Karhúnen-Loève eigenfunctions is identical to the weights in the elliptic
regularity shift (9). In the case of Matérn covariance functions, there is neither dependence of
the functional form of the weight functions on the regularity nor on the positive correlation length
of the respective GRF. Note, however, that in general, KL eigenfunctions have global support in
D.

Assumption (A2) implies W 1,∞
β

(D)-regularity of the GRF Z and strong approximation by its

truncated expansion. This is made precise in the following proposition. Its proof is completely
analogous to [19, Theorem 2] and therefore not detailed.

Proposition 2.2 Let the assumption in (A2) be satisfied for some sequence (b̄j)j≥1 such that
(b̄j)j≥1 ∈ ℓp0(N) for some p0 ∈ (0,∞). For every ε > 0 and q ∈ [1,∞) there exists a constant
C > 0 such that for every s ∈ N,

‖Z − Zs‖
Lq(Ω:W 1,∞

β
(D))

≤ C sup
j>s

{b̄1−ε
j } .

Since (∇a)Φβ = (a∇Z)Φβ holds in L∞(D)d, µ-a.s., Proposition 2.2 and [19, Corollary 6] imply
with the Cauchy–Schwarz inequality that for every q ∈ [1,∞) there exists a constant C > 0
such that for every s ∈ N,

‖a‖
Lq(Ω;W 1,∞

β
(D))

<∞ and ‖as‖
Lq(Ω;W 1,∞

β
(D))

≤ C <∞. (13)

To obtain an estimate of the Laplacean of u, we note that in any compact subset D̃ ⊂⊂ D
it holds −a∆u = f −∇a · ∇u, µ-a.s., where we assume that f ∈ L2

β
(D). This equation may be

tested with −∆uΦ2
β
/a, which implies with Lemma 2.1

‖∆u‖L2
β
(D) ≤

‖f‖L2
β
(D)

amin
+ ‖Z‖

W 1,∞

β
(D)

‖u‖V ≤ C
‖f‖L2

β
(D)

amin
(1 + ‖Z‖

W 1,∞

β
(D)

). (14)

An Aubin–Nitsche duality argument, (6), (8), (10), Proposition 2.2, (13), and (14) imply that
for every ε > 0 exists a constant C > 0 such that for every s ∈ N, ℓ ∈ N0

|E(G(u))− E(G(us,Tℓ))| ≤ C

(
sup
j>s

{b1−ε
j }+M

−2/d
ℓ

)
‖f‖L2

β
(D)‖G‖L2

β
(D). (15)

Remark 2.2 By the interpolation the error estimate in (15) extends to the case that f ∈
(V ∗, L2

β
(D))t,∞ and G(·) ∈ (V ∗, L2

β
(D))t′,∞ for some t, t′ ∈ [0, 1]. Then the estimate in (15)

holds with the term M
−2/d
ℓ replaced by M

−(t+t′)/d
ℓ . To see this, we observe that the real method

7



of interpolation can be applied to the regularity shifts in (8) and in (14). Specifically, to the
linear operator relating the solution u ∈ V to its approximation error with a V -bounded, and
quasioptimal projector Πℓ : V → Vℓ, where Πℓ is, for example, the H1

0 (D)-projection. From the
approximation property in (10), the interpolation couple L2

β
(D) ⊂ V ∗ then yields the fractional

convergence order. Here and throughout what follows, interpolation spaces shall be understood
with respect to the real method of interpolation; we refer to [29, Chapter 1].

3 QMC integration

With convergence rate bounds on the dimension truncation and the FE discretization error at
hand, we address the numerical approximation of the expectations in (15) with respect to the
GM µ. Due to dimension truncation, we evaluate its s-variate section, i.e. we integrate w.r. to
the GM on R

s. As in [16], we approximate the s-variate integrals by so-called randomly shifted
lattice rules proposed in [26]. Accordingly, we review QMC error estimates of randomly shifted
lattice rules for high-dimensional integrals with respect to the s-variate normal distribution. The
construction of generating vectors for such QMC rules in particular with respect to Gaussian
and exponentially decaying weight functions with a fast CBC construction have been found in
[26]. There, concrete error estimates of the resulting QMC rules in the mean-square sense (with
respect to the random shift) have been derived, cp. [26, Theorem 8]. See also [23, Examples 4
and 5] for the estimation of constants appearing in the error bound of [26, Theorem 8] for
Gaussian and exponential weight functions, respectively.

The error analysis of randomly shifted lattice rules requires, for sequences of positive weights
γ = (γu)u, indexed by all finite subsets u ⊂ N, the weighted Sobolev space Wγ(R

s) of mixed
first order derivatives, which is defined by the following norm

‖F‖Wγ(Rs) :=


 ∑

u⊂{1:s}
γ−1
u

∫

R|u|

∣∣∣∣∣∣

∫

Rs−|u|

∂uF (y)
∏

j∈{1:s}\u
φ(yj)dy{1:s}\u

∣∣∣∣∣∣

2
∏

j∈u
w

2
j (yj)dyu




1/2

.

(16)
Here, the standard normal density is denoted by

φ(y) :=
1√
2π
e−

y2

2 , y ∈ R.

The norm in (16) is considered with respect to Gaussian and exponential weight functions

w
2
g,j(y) := e

− y2

2αg , y ∈ R, j ∈ N, and w
2
exp,j(y) := e−αexp|y|, y ∈ R, j ∈ N,

where the parameters αg > 1 and αexp > 0 will be determined in the following. In this work, we
consider in (16) product weights γ = (γu)u⊂N, determined by a positive QMC weight sequence
(γj)j≥1, i.e.,

γu =
∏

j∈u
γj , u ⊂ N, |u| <∞.

We will denote the QMC approximation in s dimensions with N points by Qs,N (·). It shall
approximate integrals with respect to the multivariate normal distribution which we denote for
every integrand F ∈ L1(Rs, µ) by

Is(F ) :=

∫

Rs

F (y)
∏

j∈{1:s}
φ(yj)dy.

8



For a sequence of dimension truncations (sℓ)ℓ≥0 and a sequence (Nℓ)ℓ≥0, the multilevel QMC
quadrature algorithm of [22] is defined by

Q∗
L(G(u

L)) :=

L∑

ℓ=0

Qsℓ,Nℓ
(G(uℓ)−G(uℓ−1)), L ≥ 0,

with the understanding that G(u−1) := 0. we used the notation that uℓ := usℓ,Tℓ , ℓ ≥ 0.
Multilevel QMC algorithms stemming from randomly shifted lattice rules have been considered
in [22, 21]. The following error estimate (see [22, Equation (23)] or [21, Equation (3.2)]) holds
due to the independence of the random shifts on the different levels

E
∆(|Is(G(uL))−Q∗

L(G(u
L))|2) =

L∑

ℓ=0

E
∆(|Is(G(uℓ − uℓ−1))−Qsℓ,Nℓ

(G(uℓ − uℓ−1))|2), (17)

where we generally apply a randomly shifted lattice rule with respect to (possibly) a different
QMC weight sequence on the PDE discretization level ℓ = 0.

In [19], convergence of randomly shifted lattice rules with product weights is investigated,
which relies on parametric regularity estimates of a particular form. We summarize the QMC
convergence theory in the following theorem.

Theorem 3.1 Let (̃bj)j≥1 be a positive sequence such that for some F : RN → R there exists a
constant C > 0 and a positive function H(y) such that for every y ∈ {y ∈ R

N : ∃s ∈ N, yj = 0 :
∀j > s},

∑

u⊂N,|u|<∞
|∂uF (y)|2

∏

j∈u

(
κ

b̃j

)2

≤ CH(y)2 .

1. Let (̃bj)j≥1 ∈ ℓp(N) for some p ∈ (2/3, 2). For ε ∈ (0, 3/4−1/(2p)), set p′ = p/4+1/2−εp ∈
(0, 1). Consider the Gaussian weight functions (wg,j)j≥1 with parameter αg and QMC
weight sequence

αg ∈
(

p

2(p− p′)
,

p

p− 2(1− p′)

)
and γj = b̃2p

′

j , j ≥ 1.

Then, there exists a constant C (independent of F ) such that for q0 = 2qq′/(q′− q), where
q = p/(2(1− p′)) and q′ ∈ (q, αg/(1− αg)),

√
E∆(|Is(F )−Qs,N (F )|2 ≤ C(ϕ(N))−1/(2p)−1/4+ε‖H‖Lq0 (Rs,µ).

2. Let (̃bj)j≥1 ∈ ℓp(N) for some p ∈ (2/3, 1]. Assume that H(y) ≤ η1 exp(η2
∑

j≥1 b̃j |yj |) for
some η1, η2 > 0. Set p′ = 1 − p/2. Consider the exponential weight functions (wexp,j)j≥1

with parameter αexp and QMC weight sequence

αexp > 2η2 and γj = b̃2p
′

j , j ≥ 1.

Then, there exists a positive constant C (independent of η1) such that

√
E∆(|Is(F )−Qs,N (F )|2 ≤ C (ϕ(N))−1/p+1/2 η1.

The Euler totient function is denoted by ϕ(·).
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This theorem was, in the case of Gaussian weight functions, obtained in [19, Theorems 9 and 11]
and in the case of exponential weight functions in [19, Theorems 9 and 12]. The main ingredient
of the proof of [19, Theorem 9] is a parametric regularity estimate of the form assumed in
Theorem 3.1. The parametric regularity estimates derived in [16, 21] for globally supported
ψj afforded bounds for each partial derivative separately. In [19], we used the bound from [6,
Theorem 4.1] which does account for local supports and affords control of “bulk” sums of (norms
of) solution derivatives with respect to the parameters yj . We also note that in applications, the

sequence (̃bj)j≥1 might be arbitrarily scaled by a factor κ in order to satisfy such a regularity
estimate.

4 Parametric regularity

In this section we derive parametric regularity estimates that allow to prove dimension indepen-
dent convergence rates of multilevel QMC. We extend the argument that results in the estimate
in [6, Theorem 4.1] to dimensionally truncated and FE differences.

For every s ∈ N, the truncated fields Zs, as, and us, are well-defined regardless of assumption
(A1). In particular, Zs =

∑s
j=1 yjψj is well-defined for every y ∈ Ω = R

N. We may therefore
interpret Zs as a mapping from R

s to L∞ such that pointwise evaluation is well-defined for
every y ∈ R

s. Similarly as and us may be interpreted as mappings from R
s to L∞(D) and to

V , respectively. In the same way Z, a, and u are mappings with pointwise evaluation from the
set

U := {y ∈ Ω : ∃s ∈ N, yj = 0, j > s}
to L∞(D) and V , respectively. Note that Rs×{0} ⊂ U =

⋃
s∈NR

s×{0} for every s ∈ N, where

0 ∈ R
N\{1:s}. Hence, the set U of admissible parameters y is sufficiently rich for the ensuing

QMC convergence analysis. The mappings Zs, as, and us extend naturally to mappings from
U to L∞(D) and to V , respectively.

4.1 Dimensionally truncated differences

Let s ∈ N be a truncation level. For every y ∈ U , the difference u(y) − us(y) satisfies the
variational formulation

∫

D
a(y)∇(u(y)− us(y)) · ∇vdx = −

∫

D
(a(y)− as(y))∇us(y) · ∇vdx, ∀v ∈ V. (18)

We will mostly (in the proofs) omit the y dependence in the following. Set F := {τ ∈ N
N
0 :

|τ | <∞}. For every τ ∈ F and a positive sequence (ρj)j≥1, let us define the following numbers

κ0(τ ,ν) :=

√
τ !√
ν!

ρτ−ν |ψ|τ−ν

(τ − ν)!
, ν ≤ τ .

Also, for given k, r ∈ N introduce the set Λk := {τ ∈ F : |τ | = k, ‖τ‖ℓ∞ ≤ r} and for any
integer ℓ ≤ k − 1 and for ν ∈ Λℓ, introduce

Rν,k := {τ ∈ Λk : τ ≥ ν},

where r denotes the maximal order of differentiability to be considered. The following lemma
reveals that κ0 has the property of a discrete probability density, which will be useful in the
ensuing analysis.
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Lemma 4.1 Assume that there exists a positive sequence (ρj)j≥1 such that, for some r ∈ N,

K :=

∥∥∥∥∥∥

∑

j≥1

ρj |ψj |

∥∥∥∥∥∥
L∞(D)

<
log(2)√

r
. (19)

Then, for every τ ∈ F such that ‖τ‖ℓ∞ ≤ r,
∑

ν≤τ ,ν 6=τ

κ0(τ ,ν) ≤ e
√
rK − 1 < 1

and for every positive integer ℓ ≤ k − 1 and multi-index ν ∈ Λℓ,

∑

τ∈Rν,k

κ0(τ ,ν) ≤
(
√
rK)k−ℓ

(k − ℓ)!
.

The estimates in this lemma are given in [6, Equations (4.12) and (4.14)]. The second es-
timate of Lemma 4.1 still holds if the smallness assumption in (19) is not guaranteed. We
note that the condition (19) is implied by (A1) with ρ−1

j = bjK̄
√
r/ log(2) provided that

K̄ > ‖∑j≥1 |ψj |/bj‖L∞(D). For every s ∈ N, integers ℓ ≤ k − 1, and ν ∈ Λℓ, introduce the
set

Rs
ν,k := {τ ∈ Rν,k : ∃j > s such that τj > 0} .

Lemma 4.2 Let the assumptions of Lemma 4.1 hold for a positive sequence (ρj)j≥1 such that
c := ‖(ρ−1

j )j≥1‖ℓ∞(N) <∞. Let us further assume that for some η > 0

Kη :=

∥∥∥∥∥∥

∑

j≥1

ρ1+η
j |ψj |

∥∥∥∥∥∥
L∞(D)

<∞.

Then, for s ∈ N and every τ ∈ F such that ‖τ‖ℓ∞ ≤ r and τj > 0 for some j > s,
∑

ν≤τ ,νj=0 ∀j>s

κ0(τ ,ν) ≤ 2(e
√
rKηcη − 1)c−η sup

j>s
{ρ−η

j }.

For s ∈ N, positive integers ℓ ≤ k − 1, and ν ∈ Λℓ such that νj = 0, j > s,

∑

τ∈Rs
ν,k

κ0(τ ,ν) ≤
(
√
rKηc

η)k−ℓ

(k − ℓ)!
c−η sup

j>s
{ρ−η

j }.

Proof. There is j > s such that τj > 0. Since κ0 is a product, by Lemma 4.1,

∑

ν≤τ ,νj=0 ∀j>s

κ0(τ ,ν) =


 ∑

ν{1:s}≤τ{1:s}

κ0(τ {1:s},ν{1:s})


κ0(τN\{1:s},0N\{1:s})

≤ 2κ0(τN\{1:s},0N\{1:s}),

where we used the notation that for every u ⊂ N, τu is a multi-index that satisfies (τu)j = τj ,
j ∈ u, and (τu)j = 0 otherwise. With c = ‖(ρ−1

j )j≥1‖ℓ∞(N), we obtain

κ0(τN\{1:s},0N\{1:s}) ≤
ρτN\{1:s}

√
τN\{1:s}!

|ψ|τN\{1:s} ≤ exp


√

r
∑

j>s

ρj |ψj |


− 1

≤ (e
√
rKηcη − 1)c−η sup

j>s
{ρ−η

j }.
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For the proof of the second inequality, we observe that

∑

τ∈Rs
ν,k

κ0(τ ,ν) ≤
∑

τ∈Rs
ν,k

√
τ !√
ν!

(ρ1+ηcη)(τ−ν)|ψ|τ−ν

(τ − ν)!
c−η sup

j>s
{ρ−η

j },

where we used that for every τ ∈ Rs
ν,k there exists j > s such that τj − νj > 0 and that

ρ−1
j /c ≤ 1, j ≤ 1. By the first statement of Lemma 4.1,

∑

τ∈Rs
ν,k

√
τ !√
ν!

(ρ1+ηcη)(τ−ν)|ψ|τ−ν

(τ − ν)!
≤

∑

τ∈Rν,k

√
τ !√
ν!

(ρ1+ηcη)(τ−ν)|ψ|τ−ν

(τ − ν)!
≤ (

√
rKηc

η)k−ℓ

(k − ℓ)!
,

which implies the assertion of the lemma. ✷

Theorem 4.3 [Truncation error]
Let the assumptions of Lemmas 4.1 and 4.2 be satisfied for a positive sequence (ρj)j≥1 and

η > 0. There exists a constant C > 0 such that for every s ∈ N and every y ∈ U

∑

‖τ‖ℓ∞≤r

ρ2τ

τ !
‖∂τ (u(y)− us(y))‖2a(y) ≤ C

(∥∥∥∥
a(y)− as(y)

a(y)

∥∥∥∥
2

L∞(D)

+ sup
j>s

{ρ−2η
j }

)
‖us(y)‖2a(y).

Proof. We divide the index set Fr := {τ ∈ F : τj ≤ r, j ∈ N} into Fs
1 := {τ ∈ Fr : τj = 0 ∀j >

s} and Fs
2 := {τ ∈ Fr : ∃j > s s.t. τj > 0}. Obviously, Fr = Fs

1 ∪ Fs
2 .

Let 0 6= τ ∈ Fs
1 be arbitrary. We observe that for every v ∈ V ,

∫

D
a∇∂τ (u− us) · ∇vdx = −

∑

ν≤τ ,ν 6=τ

(
τ

ν

)∫

D
ψτ−νa∇∂ν(u− us) · ∇vdx

−
∑

ν≤τ :∀j>s τj=νj

(
τ

ν

)∫

D
ψτ−ν(a− as)∇∂νus · ∇vdx.

Set

σk :=
∑

τ∈Λk

ρ2τ

τ !
‖∂τ (u− us)‖2a

and take v = ∂τ (u − us). By a twofold application of the Cauchy–Schwarz inequality and by
Lemma 4.1

σk ≤
∫

D

∑

τ∈Λk

∑

ν≤τ ,ν 6=τ

aκ0(τ ,ν)
ρν√
ν!

|∇∂ν(u− us)| ρ
τ

√
τ !

|∇∂τ (u− us)|

+

∫

D

∑

τ∈Λk

∑

ν≤τ

|a− as|κ0(τ ,ν)
ρν√
ν!

|∇∂νus| ρ
τ

√
τ !

|∇∂τ (u− us)|

≤
∫

D


∑

τ∈Λk

∑

ν≤τ ,ν 6=τ

aκ0(τ ,ν)
ρ2ν

ν!
|∇∂ν(u− us)|2




1/2

×


a

∑

τ∈Λk

ρ2τ

ν!
|∇∂τ (u− us)|2




1/2

+

∫

D


∑

τ∈Λk

∑

ν≤τ

|a− as|κ0(τ ,ν)
ρ2ν

ν!
|∇∂νus|2




1/2

×


2

∑

τ∈Λk

|a− as|ρ
2τ

τ !
|∇∂τ (u− us)|2




1/2
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Further, we apply the Cauchy–Schwarz inequality on the integral and obtain that

σk ≤



∫

D

∑

τ∈Λk

∑

ν≤τ ,ν 6=τ

aκ0(τ ,ν)
ρ2ν

ν!
|∇∂ν(u− us)|2




1/2

√
σk

+



∫

D

∑

τ∈Λk

∑

ν≤τ

|a− as|κ0(τ ,ν)
ρ2ν

ν!
|∇∂νus|2




1/2√
2

∥∥∥∥
a− as

a

∥∥∥∥
L∞(D)

√
σk.

By [6, Equation (4.18)] in the proof of [6, Theorem 4.1], for any δ ∈ [
√
rK/ log(2), 1) and for

every ℓ ∈ N,
∑

τ∈Λℓ

ρ2τ

τ !
‖∂τus‖2a ≤ ‖us‖2a δℓ. (20)

We change the order of summation in order to apply the second estimate in Lemma 4.1 and
insert (20) to obtain with Young’s inequality that for any ε > 0

σk ≤ (1 + ε)

k−1∑

ℓ=0

(
√
rK)k−ℓ

(k − ℓ)!
σℓ

+

(
1 +

1

ε

)∥∥∥∥
a− as

a

∥∥∥∥
2

L∞(D)

k∑

ℓ=0

(
√
rK)k−ℓ

(k − ℓ)!

∑

τ∈Λℓ

ρ2τ

τ !
‖∂τus‖2a

≤ (1 + ε)

k−1∑

ℓ=0

(
√
rK)k−ℓ

(k − ℓ)!
σℓ +

(
1 +

1

ε

)
2

∥∥∥∥
a− as

a

∥∥∥∥
2

L∞(D)

‖us‖2a
k∑

ℓ=0

(
√
rK)k−ℓ

(k − ℓ)!
δℓ

≤ (1 + ε)
k−1∑

ℓ=0

(
√
rK)k−ℓ

(k − ℓ)!
σℓ +

(
1 +

1

ε

)
4

∥∥∥∥
a− as

a

∥∥∥∥
2

L∞(D)

‖us‖2a δk.

By a change of the order of summation, we obtain that

∑

k≥1

k−1∑

ℓ=0

(
√
rK)k−ℓ

(k − ℓ)!
σℓ =

∑

ℓ≥0

( ∞∑

k=ℓ+1

(
√
rK)k−ℓ

(k − ℓ)!

)
σℓ ≤ (e

√
rK − 1)

∑

ℓ≥0

σℓ. (21)

Let us choose ε > 0 such that ε < (2−e
√
rK)/(e

√
rK−1), which implies that (1+ε)(e

√
rK−1) < 1.

Denote C∗ := (1− (1 + ε)(e
√
rK − 1))−1. We sum σk over k ≥ 1 and obtain that

∑

k≥1

σk ≤ (1 + ε)(e
√
rK − 1)

∑

ℓ≥0

σℓ +

(
1 +

1

ε

)
4

∥∥∥∥
a− as

a

∥∥∥∥
2

L∞(D)

‖us‖2a
δ

1− δ
.

Since (1 + ε)(e
√
rK − 1) < 1, we conclude that

∑

k≥1

σk ≤ C∗σ0 + C∗
(
1 +

1

ε

)
4

∥∥∥∥
a− as

a

∥∥∥∥
2

L∞(D)

‖us‖2a
δ

1− δ
,

which implies

∑

τ∈Fs
1

ρ2τ

τ !
‖∂τ (u− us)‖2a ≤ C

(
‖u− us‖2a +

∥∥∥∥
a− as

a

∥∥∥∥
2

L∞(D)

‖us‖2a

)
.
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In the other case τ ∈ Fs
2 , we observe that for arbitrary 0 6= τ ∈ Fs

2 ,

∫

D
a∇∂τ (u− us) · ∇vdx = −

∑

ν≤τ ,ν 6=τ

(
τ

ν

)
ψτ−νa∇∂ν(u− us) · ∇vdx

−
∑

ν≤τ

(
τ

ν

)
ψτ−νa∇∂νus · ∇vdx, ∀v ∈ V.

(22)

We used that there is j > s such that τj > 0, which implies that for ν 6= τ such that ν ≤ τ ,
either τj − νj > 0 yielding ∂τ−νas = 0 or τj = νj > 0 yielding ∂νus = 0. Moreover, in the
second sum above, we can restrict the index set to those ν satisfying νj = 0 for every j > s. In
particular, always ν 6= τ . The estimate of the sum over τ ∈ Fs

2 follows with a similar argument
using Lemma 4.1 for the first sum and Lemma 4.2 for the second sum of the right hand side
of equality (22), where we crucially use that ν 6= τ , which yield that the sum runs only over
ℓ ∈ {0, . . . , k − 1}. Specifically,

∑

τ∈Fs
2

ρ2τ

τ !
‖∂τ (u− us)‖2a ≤ C

(
‖u− us‖2a +max

j>s
{ρ−2η

j }‖us‖2a
)
.

Since by (18) and by the Cauchy–Schwarz inequality

‖u− us‖a ≤
∥∥∥∥
a− as

a

∥∥∥∥
L∞(D)

‖us‖a,

the assertion of the theorem follows. ✷

Remark 4.1 The statement of Theorem 4.3 also holds true for the FE solution uTℓ and us,Tℓ

for every truncation dimension sℓ with ℓ ≥ 0.

4.2 FE differences

First we show parametric regularity with respect to the smoothness space. For every τ ∈ F , we
define the quantities

κ1(τ ,ν) :=

√
τ !√
ν!

ρτ−ν |∇ψτ−ν |Φβ

(τ − ν)!
, ν ≤ τ .

Similar to Lemma 4.1, the following lemma reveals that κ1 has the property of a discrete prob-
ability density, which will be essential in the ensuing analysis.

Lemma 4.4 Assume that for r ∈ N

∥∥∥∥∥∥

∑

j≥1

ρj max{|∇ψj |Φβ, |ψj |}

∥∥∥∥∥∥
L∞(D)

=: K < Cr := sup
{
c > 0 :

√
rc e

√
rc ≤ 1

}
. (23)

Then for every τ ∈ N
N
0 such that ‖τ‖ℓ∞ ≤ r

∑

ν≤τ ,ν 6=τ

κ1(τ ,ν) ≤
√
rKe

√
rK < 1

and for every ℓ ≤ k − 1 and ν ∈ Λℓ,

∑

τ∈Rν,k

κ1(τ ,ν) ≤ (k − ℓ)
(
√
rK)k−ℓ

(k − ℓ)!
.
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Proof. We set k = |τ | and observe with the multinomial theorem

∑

ν≤τ ,ν 6=τ

κ1(τ ,ν) =
k∑

ℓ=1

∑

ν≤τ ,|τ−ν|=ℓ

κ1(τ ,ν)

≤
k∑

ℓ=1

rℓ/2
∑

ν≤τ ,|τ−ν|=ℓ

ℓ
ρτ−ν max{|∇ψ|Φβ, |ψ|}τ−ν

(τ − ν)!

≤
k∑

ℓ=1

rℓ/2ℓ
∑

|m|=ℓ

ρmmax{|∇ψ|Φβ, |ψ|}m
m!

=
k∑

ℓ=1

rℓ/2

(ℓ− 1)!


∑

j≥1

ρj max{|∇ψj |Φβ, |ψj |}




ℓ

≤ √
rKe

√
rK < 1,

where we applied that

|∇ψτ−ν |Φβ ≤
∑

j≥1

(τj − νj)|ψj |τj−νj−1|∇ψj |Φβ

∏

i 6=j

|ψi|τi−νi ≤ |τ − ν|max{|∇ψj |Φβ, |ψ|}τ−ν .

The second estimate follows similarly. ✷

Theorem 4.5 Let the assumption of Lemma 4.4 be satisfied for a positive sequence (ρj)j≥1,
and assume that r ∈ N and K < Cr. There exists a constant C > 0 such that for every y ∈ U

∑

‖τ‖ℓ∞≤r

ρ2τ

τ !
‖∆∂τu(y))‖2L2

β
(D)

≤ C
1

amin(y)

(
(1 + ‖|∇Z(y)|Φβ‖2L∞(D))‖u(y)‖2a(y) + ‖∆u(y)‖2L2

β
(D)

)
.

Proof. Let 0 6= τ ∈ F be given such that ‖τ‖ℓ∞ ≤ r. We observe that for every v ∈ C∞
0 (D),

−
∫

D
av∆∂τudx =

∫

D


∇a · ∇∂τu+

∑

ν≤τ ,ν 6=τ

(
τ

ν

)
∇∂τ−νa · ∇∂νu+ ∂τ−νa∆∂νu


 vdx .

Using the density of C∞
0 (D) in L2

β
(D), we choose the test function v = −Φ2

β
/a∆∂τu, multiply

by ρ2τ/τ !, and apply the Young inequality for arbitrary ε > 0 to obtain

ρ2τ

τ !
‖∆∂τu‖2L2

β
(D) = −ρ

2τ

τ !

∫

D


∇a

a
· ∇∂τu+

∑

ν≤τ ,ν 6=τ

(
τ

ν

)∇∂τ−νa

a
· ∇∂νu


∆∂τuΦ2

β
dx

− ρ2τ

τ !

∫

D


 ∑

ν≤τ ,ν 6=τ

(
τ

ν

)
∂τ−νa

a
∆∂νu


∆∂τuΦ2

β
dx

≤ ε
ρ2τ

τ !
‖∆∂τu‖2L2

β
(D)

+
1

4ε

∫

D


|∇Z|Φβ

ρτ |∇∂τu|√
τ !

+
∑

ν≤τ ,ν 6=τ

κ1(τ ,ν)
ρν |∇∂νu|√

ν!




2

dx

+

∫

D

∑

ν≤τ ,ν 6=τ

κ0(τ ,ν)
ρν |∆∂νu|Φβ√

ν!

ρτ |∆∂τu|Φβ√
τ !

dx.

(24)
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Note that ∇((∂τ−νa)/a) = ∇ψτ−ν . Note also the change of the order of summation: for any
sequence (κ′(τ ,ν)) and for any k ∈ N

∑

τ∈Λk

∑

ν≤τ ,ν 6=τ

κ′(τ ,ν) =
k−1∑

ℓ=0

∑

ν∈Λℓ

∑

τ∈Rν,k

κ′(τ ,ν), (25)

which implies with Lemma 4.1 and with the elementary estimate xy ≤ (x2 + y2)/2, x, y > 0,
that for any k ≥ 1,

∑

τ∈Λk

∫

D

∑

ν≤τ ,ν 6=τ

κ0(τ ,ν)
ρν |∆∂νu|Φβ√

ν!

ρτ |∆∂τu|Φβ√
τ !

dx

≤ 1

2

k−1∑

ℓ=0

(
√
rK)k−ℓ

(k − ℓ)!

∑

ν∈Λℓ

ρ2ν

ν!
‖∆∂νu‖L2

β
(D) +

1

2
(e

√
rK − 1)

∑

τ∈Λk

ρ2τ

τ !
‖∆∂τu‖2L2

β
(D).

(26)

Similarly, we obtain with Lemma 4.4

∑

τ∈Λk

1

4ε

∫

D


|∇Z|Φβ

ρτ |∇∂τu|√
τ !

+
∑

ν≤τ ,ν 6=τ

κ1(τ ,ν)
ρν |∇∂νu|√

ν!




2

dx

≤ 1

2ε

‖|∇Z|Φβ‖2L∞(D)

amin

∑

τ∈Λk

ρ2τ

τ !
‖∂τu‖2a +

1

2ε

∑

τ∈Λk

∫

D


 ∑

ν≤τ ,ν 6=τ

κ1(τ ,ν)
ρν |∇∂νu|√

ν!




2

dx

≤ 1

2ε

1

amin


‖|∇Z|Φβ‖2L∞(D)

∑

τ∈Λk

ρ2τ

τ !
‖∂τu‖2a +

k−1∑

ℓ=0

(
√
rK)k−ℓ

(k − ℓ− 1)!

∑

ν∈Λℓ

ρ2ν

ν!
‖∂νu‖2a


 .

(27)
As before by the proof of [6, Theorem 4.1 and Equation (4.18)], for any δ ∈ [

√
rK/ log(2), 1)

and for every ℓ ∈ N0, ∑

ν∈Λℓ

ρ2ν

ν!
‖∂νu‖2a ≤ δℓ‖u‖2a. (28)

Hence,
k−1∑

ℓ=0

(
√
rK)k−ℓ

(k − ℓ− 1)!

∑

ν∈Λℓ

ρ2ν

ν!
‖∂νu‖2a ≤

k−1∑

ℓ=0

(
√
rK)k−ℓ

(k − ℓ− 1)!
δℓ‖u‖2a

≤ δk
k−1∑

ℓ=0

log(2)
(log(2))k−ℓ−1

(k − ℓ− 1)!
‖u‖2a

≤ δk log(2)2‖u‖2a = δk log(4)‖u‖2a.

(29)

We choose 0 < ε < 1 − e
√
rK/2, which implies that Cε := (1 − ε − (e

√
rK − 1)/2)−1 < 2. This

allows us to subtract ∆∂τu-terms summed over Λk in (24) and (26) while obtaining a constant
C−1
ε > 1/2 which is shifted to the left hand side, i.e.,

∑

τ∈Λk

ρ2τ

τ !
‖∆∂τu‖2L2

β
(D) ≤

Cε

2ε

1

amin

(
‖|∇Z|Φβ‖2L∞(D) + log(4)

)
δk‖u‖2a

+
Cε

2

k−1∑

ℓ=0

(
√
rK)k−ℓ

(k − ℓ)!

∑

ν∈Λℓ

ρ2ν

ν!
‖∆∂νu‖2L2

β
(D),
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where we have also inserted (27), (28) and (29). We sum over k ≥ 1 and obtain with (21)

∑

k≥1

∑

τ∈Λk

ρ2τ

τ !
‖∆∂τu‖2L2

β
(D) ≤

Cε

2ε

1

amin

(
‖|∇Z|Φβ‖2L∞(D) + log(4)

) δ

1− δ
‖u‖2a

+
Cε

2
(e

√
rK − 1)

∑

ℓ≥0

∑

ν∈Λℓ

ρ2ν

ν!
‖∆∂νu‖2L2

β
(D),

which implies the assertion as at the end of the proof of Theorem 4.3, since (Cε/2)(e
√
rK−1) < 1.

✷

Theorem 4.6 Let the assumption of Lemma 4.4 be satisfied for a positive sequence (ρj)j≥1,
r ∈ N, and K < Cr. There exists a constant C > 0 such that for every y ∈ U

∑

‖τ‖ℓ∞≤r

ρ2τ

τ !
‖∂τ (u(y)− uTℓ(y))‖2a(y)

≤ C

(
(amax(y))

2

(amin(y))4
(1 + ‖∇Z(y)|Φβ‖2L∞(D))

)
‖f‖2L2

β
(D)M

−2/d
ℓ .

Proof. Define the Galerkin projection Ph : V → Vℓ for every w ∈ V by
∫

D
a∇(w − Phw) · ∇vdx = 0, ∀v ∈ Vℓ.

Since (I − Ph)v = 0 for every v ∈ Vℓ, it holds that for every τ ∈ F ,

‖∂τ (u− uTℓ)‖a ≤ ‖Ph∂
τ (u− uTℓ)‖a + ‖(I − Ph)∂

τu‖a. (30)

Let τ ∈ F be such that ‖τ‖ℓ∞(N) ≤ r and |τ | = k for some k ∈ N. We observe that

ρ2τ

τ !

∫

D
a|∇Ph∂

τ (u− uTℓ)|2dx ≤
∫

D

∑

ν≤τ ,ν 6=τ

κ0(τ ,ν)a
ρν |∇∂ν(u− uTℓ)|√

ν!

ρτ |∇Ph∂
τ (u− uTℓ)|√
τ !

dx.

A twofold application of the Cauchy–Schwarz inequality using that by the first estimate of
Lemma 4.1 for fixed τ ∈ F such that ‖τ‖ℓ∞(N) ≤ r the sequence (κ0(τ ,ν))ν≤τ ,ν 6=τ is a discrete
probability density implies with the change of the order of summation in (25) and the second
estimate in Lemma 4.1 the bound

∑

|τ |=k

ρ2τ

τ !
‖Ph∂

τ (u− uTℓ)‖2a ≤
k−1∑

ℓ=0

(
√
rK)k−ℓ

(k − ℓ)!

∑

|ν|=ℓ

ρ2ν

ν!
‖∂ν(u− uTℓ)‖2a. (31)

By the approximation property in (10), by (30), (31), the Young inequality for any ε > 0, and
by the change of the order of summation that implied (21)

∑

k≥1

∑

|τ |=k

ρ2τ

τ !
‖∂τ (u− uTℓ)‖2a ≤ (1 + ε)

∑

k≥1

k−1∑

ℓ=0

(
√
rK)k−ℓ

(k − ℓ)!

∑

|ν|=ℓ

ρ2ν

ν!
‖∂ν(u− uTℓ)‖2a

+

(
1 +

1

ε

)∑

k≥1

∑

|τ |=k

ρ2τ

τ !
‖(I − Ph)∂

τu‖2a

≤ (1 + ε)(e
√
rK − 1)

∑

ℓ≥0

∑

|ν|=ℓ

ρ2ν

ν!
‖∂ν(u− uTℓ)‖2a

+

(
1 +

1

ε

)
C‖a‖L∞(D)M

−2/d
ℓ

∑

k≥1

∑

|τ |=k

ρ2τ

τ !
‖∆∂τu‖2L2

β
(D).
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Hence, we choose ε < (2−e
√
rK)/(e

√
rK−1) and conclude with Theorem 4.5 and (14) that there

exists a constant C > 0 such that

∑

‖τ‖ℓ∞≤r

ρ2τ

τ !
‖∂τ (u− uTℓ)‖2a ≤ C

(
(amax)

2

(amin)4
(1 + ‖∇Z|Φβ‖2L∞(D))

)
‖f‖2L2

β
(D)M

−2/d
ℓ .

✷

Remark 4.2 The parametric regularity estimate in Theorem 4.6 also holds if f ∈ (V ∗, L2
β
(D))t,∞

for some t ∈ [0, 1] with the FE error bounded by an absolute constant times M
−2t/d
ℓ . This can

be shown by interpolation applied in the last and next to last step of the proof of Theorem 4.6,
see also Remark 2.2).

LetG(·) ∈ L2
β
(D) denote a solution functional of interest. We are interested in the parametric

regularity of G(u− uTℓ). Introduce vG and vTℓG to be the solution and respective FE solution to
the adjoint problem with right hand side G(·). It holds that

G(u− uTℓ) =
∫

D
a∇(u− uTℓ) · ∇(vG − vTℓG )dx .

Proposition 4.7 For (ρ̃)j≥1 defined by ρ̃j :=
√
2ρj, j ∈ N, assume that (ρ̃j)j≥1 satisfies the

sparsity assumption in (19) of Lemma 4.1.
Then, for every y ∈ U

∑

‖τ‖ℓ∞≤r

ρ2τ

τ !
|∂τG(u(y)− uTℓ(y))|2 ≤ 4


 ∑

‖τ‖ℓ∞≤r

ρ̃2τ

τ !
‖∂τ (u(y)− uTℓ(y))‖2a(y)




×


 ∑

‖τ‖ℓ∞≤r

ρ̃2τ

τ !
‖∂τ (vG(y)− vTℓG (y))‖2a(y)


 .

Proof. We observe that for every τ ∈ F

ρτ√
τ !
∂τG(u− uTℓ) =

ρτ√
τ !

∫

D

∑

ν≤τ

(
τ

ν

)
∑

m≤ν

(
ν

m

)
ψν−m(

√
a∇∂m(u− uTℓ))




× (
√
a∇∂τ−ν(vG − vTℓG ))dx

=

∫

D

∑

ν≤τ

√(
τ

ν

)
∑

m≤ν

κ0(ν,m)

(
ρm√
m!

√
a∇∂m(u− uTℓ)

)


×
(

ρτ−ν

√
(τ − ν)!

√
a∇∂τ−ν(vG − vTℓG )

)
dx.

It holds that
∑

ν≤τ

(
τ
ν

)
= 2τ . By a twofold application of the Cauchy–Schwarz inequality

ρ2τ

τ !
|∂τG(u− uTℓ)|2 ≤


∑

ν≤τ

√(
τ

ν

)
‖[. . . ]‖L2(D)

ρτ−ν

√
(τ − ν)!

‖∂τ−ν(vG − vTℓG )‖a




2

≤ 2τ
∑

ν≤τ

‖[. . . ]‖2L2(D)

ρ2(τ−ν)

(τ − ν)!
‖∂τ−ν(vG − vTℓG )‖2a.
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We define the sequence (ρ̃)j≥1 by ρ̃j :=
√
2ρj , j ∈ N. By a change of the order of summation

∑

‖τ‖ℓ∞≤r

ρ2τ

τ !
|∂τG(u− uTℓ)|2

≤
∑

‖ν‖ℓ∞≤r

2ν‖[. . . ]‖2L2(D)

∑

‖τ‖ℓ∞≤r,τ≥ν

ρ̃2(τ−ν)

(τ − ν)!
‖∂τ−ν(vG − vTℓG )‖2a.

Since
∑

m≤ν κ0(ν,m) ≤ 2 due to Lemma 4.1, by the Cauchy–Schwarz inequality and (25)

∑

k≥0

∑

ν∈Λk

∫

D


∑

m≤ν

κ0(ν,m)
ρ̃m√
m!

√
a|∇∂m(u− uTℓ)|




2

dx

≤ 2
∑

k≥0

∑

ν∈Λk

∑

m≤ν

κ0(ν,m)
ρ̃2m

m!
‖∂m(u− uTℓ)‖2a

≤ 2
∑

k≥0

k∑

ℓ=0

(
√
rK)k−ℓ

(k − ℓ)!

∑

m∈Λℓ

ρ̃2m

m!
‖∂m(u− uTℓ)‖2a

= 2
∑

ℓ≥0

∑

k≥ℓ

(
√
rK)k−ℓ

(k − ℓ)!

∑

m∈Λℓ

ρ̃2m

m!
‖∂m(u− uTℓ)‖2a

≤ 4
∑

‖m‖ℓ∞≤r

ρ̃2m

m!
‖∂m(u− uTℓ)‖2a,

which proves the assertion together with the previous inequality. ✷

The following theorem is directly implied by Theorem 4.6 and Proposition 4.7.

Theorem 4.8 Let the assumption of Lemma 4.4 be satisfied for a positive sequence (ρj)j≥1,
and let r ∈ N and assume that K < Cr/

√
2.

Then there exists a constant C > 0 such that for every y ∈ U

∑

‖τ‖ℓ∞≤r

ρ2τ

τ !
|∂τG(u(y)− uTℓ(y))|2

≤ C

(
(amax(y))

2

(amin(y))4
(1 + ‖|∇Z(y)|Φβ‖2L∞(D))

)2

M
−4/d
ℓ ‖f‖2L2

β
(D)‖G‖2L2

β
(D).

Remark 4.3 The statement of Theorem 4.8 also holds true for dimensionally truncated solution
us and us,Tℓ for every truncation dimension s ∈ N. In particular, the constant C which appears
in the error bound is independent of s.

Remark 4.4 The parametric regularity estimate in Theorem 4.8 also holds if f ∈ (V ∗, L2
β
(D))t,∞

and G(·) ∈ (V ∗, L2
β
(D))t′,∞ for t, t′ ∈ [0, 1]. Then, the FE discretization error contribution to

the overall error is bounded by a constant times M
−2(t+t′)/d
ℓ . This follows from Remark 4.2.

5 Multilevel QMC convergence analysis

The sequences (bj)j≥1 and (b̄j)j≥1 in the assumptions in (A1) and (A2) will be the input for
the QMC weight sequence (γj)j≥1 of product weights. In the multilevel QMC quadrature rule
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Q∗
L we will generally apply a randomly shifted lattice rule on level ℓ = 0 with respect to the

QMC weight sequence

γj = b2p
′

j , j ≥ 1, (32)

for some p′ ∈ (0, 1) and on the levels ℓ = 1, . . . , L with respect to the QMC weight sequence

γ̄j = (b1−θ
j ∨ b̄j)2p̄

′
, j ≥ 1 (33)

for some p′ ∈ (0, 1) and some θ ∈ (0, 1). Here, for c1, c2 ∈ R, c1 ∨ c2 := max{c1, c2}.

Theorem 5.1 For every L ∈ N0 and sequences (sℓ)ℓ=0,...,L and (Nℓ)ℓ=0,...,L, the ensuing error
estimate holds under the following conditions:

1. Gaussian weight functions: (bj)j≥1 ∈ ℓp(N) for some p ∈ (2/3, 2) and (b1−θ
j ∨ b̄j)j≥1 ∈

ℓp̄(N) for some p̄ ∈ [p, 2) with χ = 1/(2p) + 1/4 − ε and χ̄ = 1/(2p̄) + 1/4 − ε̄. The
QMC weight sequence in (32) is applied with p′ = p/4 + 1/2 − εp on the level ℓ = 0 for
ε ∈ (0, 3/4−1/(2p)). The QMC weight sequence in (33) is applied with p̄′ = p̄/4+1/2− ε̄p̄
on the levels ℓ = 1, . . . , L for ε̄ ∈ (0, 3/4− 1/(2p̄)).

2. Exponential weight functions: (bj)j≥1 ∈ ℓp(N) for some p ∈ (2/3, 1] and for (b1−θ
j ∨b̄j)j≥1 ∈

ℓp̄(N) for some p̄ ∈ [p, 1] with χ = 1/p−1/2 and χ̄ = 1/p̄−1/2. The QMC weight sequence
in (32) is applied with p′ = 1− p/2 on the level ℓ = 0. The QMC weight sequence in (33)
is applied with p̄′ = 1− p̄/2 on the levels ℓ = 1, . . . , L.

There exists a constant C > 0 that is in particular independent of (Mℓ)ℓ≥0, (sℓ)ℓ=0,...,L, (Nℓ)ℓ=0,...,L,
and of L ∈ N0, such that

√
E∆(|E(G(u))−Q∗

L(G(u
L))|2) ≤ C

(
max
j>sL

{b2(1−ε)
j }+M

−4/d
L + (ϕ(N0))

−2χ

+

L∑

ℓ=1

(ϕ(Nℓ))
−2χ̄

(
ξℓ,ℓ−1 max

j>sℓ−1

{b2θj }+M
−4/d
ℓ−1

))1/2

,

where ξℓ,ℓ−1 := 0 if sℓ = sℓ−1 and ξℓ,ℓ−1 := 1 otherwise.

Proof. By the triangle inequality, for ℓ = 1, . . . , L,

|(Isℓ −Qsℓ,Nℓ
)(G(uℓ)−G(uℓ−1))|

≤ |(Isℓ −Qsℓ,Nℓ
)(G(usℓ,Tℓ)−G(usℓ,Tℓ−1))|+ |(Isℓ −Qsℓ,Nℓ

)(G(usℓ,Tℓ−1)−G(usℓ−1,Tℓ−1))|

and

|(Isℓ −Qsℓ,Nℓ
)(G(usℓ,Tℓ)−G(usℓ,Tℓ−1))|

≤ |(Isℓ −Qsℓ,Nℓ
)(G(usℓ)−G(usℓ,Tℓ))|+ |(Isℓ −Qsℓ,Nℓ

)(G(usℓ)−G(usℓ,Tℓ−1))|,

where we recall that uℓ := usℓ,Tℓ , ℓ = 0, . . . , L. We wish to show the conditions of Theorem 3.1
for integrands y 7→ G(usℓ(y))−G(usℓ,Tℓ(y)) and y 7→ G(usℓ,Tℓ−1(y))−G(usℓ−1,Tℓ−1(y)).

Setting

K̄ :=

∥∥∥∥∥∥

∑

j≥1

max{|∇ψj |Φβ, |ψj |}
b̄j

∥∥∥∥∥∥
L∞(D)

<∞, (34)

the conditions of Theorem 3.1 are satisfied for the integrand y 7→ G(usℓ(y)) − G(usℓ,Tℓ(y))
with the sequence (b̄j)j≥1 and κ < Cr/(

√
2K̄) by Theorem 4.8 and Remark 4.3 with r = 1.

Specifically, apply Theorem 4.8 and Remark 4.3 with ρj = κ/b̄j , j ≥ 1.
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For the integrand y 7→ G(usℓ,Tℓ−1(y)) − G(usℓ−1,Tℓ−1(y)), we apply Theorem 4.3 with ρj =
κ/b1−θ

j , j ≥ 1. Then, the condition of Theorem 4.3 is satisfied for η = θ/(1 − θ) and κ <
log(2)/K, where K is as in assumption (A1). Hence, the conditions of Theorem 3.1 are satisfied
for the integrand y 7→ G(usℓ,Tℓ−1(y)) − G(usℓ−1,Tℓ−1(y)). Since the sequence (b1−θ

j ∨ b̄j)j≥1

dominates (b1−θ
j )j≥1 and (b̄j)j≥1, Theorem 3.1 can be applied with b̃j = b1−θ

j ∨ b̄j , j ≥ 1. For

the exponential weight functions, we note that η1 = C(maxj>sℓ−1
{bθj} +M

−2/d
ℓ−1 ) for a constant

C > 0 (independent of ℓ), and with η2 = 8 in the notation of the second point of Theorem 3.1.
On discretization level ℓ = 0, the parametric integrand is y 7→ G(us0,T0). The conditions of

Theorem 3.1 are satisfied with b̃j = bj , j ≥ 1 (see also [19, Theorems 11 and 13]). The assertion
follows with (15) and (17). ✷

Remark 5.1 If f ∈ (V ∗, L2
β
(D))t,∞ and G(·) ∈ (V ∗, L2

β
(D))t′,∞ for some t, t′ ∈ [0, 1], then

the error estimate in Theorem 5.1 also holds with an error bounded by an absolute multiple of

M
−2(t+t′)/d
ℓ on mesh level ℓ.

Remark 5.2 When the GRF Z is stationary in D ⊂ R
d, the covariance kernel k(x, x′) :=

E(Z(x)Z(x′)) of Z depends only on x − x′, cp. [2]. A particular parametric family of covari-
ances for stationary GRF’s is due to B. Matérn. Here, the covariance kernel depends on two
parameters ν, λ > 0, where λ is referred to as correlation length and Z ∈ Ct(D), µ-a.s., for
every positive real number t < ν. Wavelet type function systems exist which allow to represent
the GRF Z in terms of a sequence (yj)j≥1 of independent, standard normally distributed yj, that

satisfy Assumption (A1) with bj ∼ j−β̂/d, j ≥ 1, for every β̂ < ν, cp. e.g. [7, Corollary 4.3]. In
[7], the random field Z in D is constructed by restriction of a GRF defined on suitable product
domain that depends on the correlation length λ and which is a superset of D. For a constructive
approach to obtain function systems of expansions with i.i.d. coefficients, we refer for example to
[14] and the references there. For a discussion of the Hölder regularity and Lq(Ω) integrability of
GRFs expanded in generic wavelets, we refer to [19, Section 9]. There, also if Ct(D)-regularity
of the respective GRF Z holds as an implication by [19, Proposition 18], the generic wavelets

satisfy Assumption (A1) with bj ∼ j−β̂/d, j ≥ 1, for every β̂ < t.

Remark 5.3 In the case of single-level QMC, also fractional Hölder regularity of the lognormal
coefficent a is covered by our theory in [19]. The GRF of the model function system of generic
wavelets discussed in [19, Section 9] is for d = 1 and for wavelets that are scaled to decay as
‖ψj‖L∞(D) ∼ j−1/2−ε, j ≥ 1, a member of Lq(Ω;C1/2+ε′(D)), for every q ∈ [1,∞) and for every

ε > ε′ > 0, cp. [19, Proposition 19]. The sequence (bj)j≥1 may be chosen such that bj ∼ j−1/2−ε′,
for every j ≥ 1 and for some ε′ ∈ (0, ε). For every p > 2/(1+2ε′), this sequence (bj)j≥1 ∈ ℓp(N)
is admissible with Gaussian weight functions for every ε′ > 0, cp. [19, Theorem 11] and therefore
QMC with Gaussian weight functions and product weights is applicable for every ε > 0. However,
for 1/2 > ε > 0, the convergence theory for QMC with product weights in [19, Theorem 13] does
not seem to be applicable with exponential weight functions in this case.

6 Error vs. work analysis

In the estimate of Theorem 5.1, the error contributions of the QMC quadrature and the spatial
approximation by FE and dimension truncation are coupled on the different levels. The numbers
of QMC points per level should minimize the error estimate and a corresponding work measure.
In this manuscript, we will consider locally supported functions (ψj)j≥1 as for example certain
multiresolution analyses (MRA). Note that this will only affect the choice of the work measure
for the assembly of stiffness matrices.

21



Let us assume that the MRA (ψλ)λ∈∇ results from a finite number of generating (or “mother”)
wavelets by scaling and translation, i.e.,

ψλ(x) := ψ(2|λ|x− k), k ∈ ∇|λ|, x ∈ D. (35)

We use notation that is standard for MRA, i.e., the function system is indexed by λ = (|λ|, k) ∈
∇, where |λ| ∈ N0 refers to the level and k ∈ ∇|λ| to the translation. The index set ∇ℓ has

cardinality |∇ℓ| = O(2dℓ), ℓ ∈ N0. Let j : ∇ → N be a suitable enumeration. The overlap on
every level |λ| = ℓ ∈ N0 is assumed to be uniformly bounded, i.e., there exists K > 0 such that
for every ℓ ∈ N0 and every x ∈ D,

|{λ ∈ ∇ : |λ| = ℓ, ψλ(x) 6= 0}| ≤ K .

Additionally, for constants σ, α̂ > 0 we introduce the scaling

‖ψλ‖L∞(D) ≤ σ2−α̂|λ|, λ ∈ ∇. (36)

Under this assumption, the work to assemble one sample of the stiffness matrix (i.e. for one
QMC point) on discretization level ℓ ∈ N0 scales for large ℓ as O(Mℓ|j−1(sℓ)|) = O(Mℓ log(sℓ)).

Proposition 6.1 For d = 1, the work to solve the linear system that corresponds to (11) for
one sample is O(Mℓ), ℓ ∈ N0.

Proof. The parametric stiffness matrix is tridiagonal and symmetric, positive definite with prob-
ability one. Therefore both, Cholesky decomposition and backsubstitution, can be performed in
O(Mℓ) work and memory (see, e.g., [15, Chapter 4.3.6]). ✷

Due to Proposition 6.1 and Remark 6.1, we stipulate availability of a PDE solver with work

workPDEsolve = O(M1+η
ℓ ) (A3)

for some η ≥ 0 with implied constants independent of ℓ ∈ N0 and, in particular, of the realization
of the PDE coefficients. Note that η = 0 corresponds to linear complexity as is afforded by
multigrid of multi-level preconditioned iterative solvers for elliptic PDEs in the deterministic
setting; see, e.g., [9, 30]. Uniformity of the work estimate of the PDE solver w.r. to the realization
of the lognormal coefficient can, for lognormal diffusion a = exp(Z) and for multilevel Monte
Carlo methods, be achived for every η > 0, cp. [18], which is nearly optimal complexity (w.r. to
the degrees of freedom) of a PDE solver.

Remark 6.1 The uniformity w.r. to the coefficient realizations of the work estimate (A3) is,
for the presently considered log-Gaussian diffusion coefficient models, by no means to be taken for
granted [18]. Since for d = 2, 3 stiffness matrices will not be tridiagonal, usually iterative solvers
are used. In [18], strong convergence for iterative methods is shown in the general framework of
[30], which is sufficient for single-level QMC. However, applicability to multilevel QMC is not a
direct consequence.

Under (A3) the model for the computational work for the multilevel QMC quadrature reads,
for every L ∈ N0, as

workL = O
(

L∑

ℓ=0

sℓNℓ log(Nℓ) +
L∑

ℓ=0

Nℓ(Mℓ log(sℓ) +M1+η
ℓ )

)
, (37)

where the first sum in (37) is the work of the generation of the QMC points which includes
the work to obtain the generating vectors by the fast CBC construction, cp. [27, 28]. The work
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model in (37) depends on the choices for (sℓ)ℓ=0,...,L, (Nℓ)ℓ=0,...,L, and (Mℓ)ℓ≥0, which we shall
not indicate explicitly in our notation and simply write “workL”. The second sum in (37) is the
work of the evaluation of the multilevel QMC quadrature. The sequence

bj(λ) = bλ := c2−β̂|λ|, λ ∈ ∇, (38)

together with (ψλ)λ∈∇ defined in (35) and (36) satisfies the assumption in (A1) for 1 < β̂ < α̂
and some c > 0. Since ‖|∇ψλ|‖L∞(D) ≤ σ2−(α̂−1)|λ|‖|∇ψ|‖L∞(D), λ ∈ ∇, the sequence

b̄j := b
(β̂−1)/β̂
j , j ∈ N,

and (ψj)j≥1 defined in (35) and (36) satisfy the assumption (A2). In this section we assume
that

f ∈ (V ∗, L2
β
(D))t,∞ and G(·) ∈ (V ∗, L2

β
(D))t′,∞, t, t′ ∈ [0, 1], (A4)

and define τ := t+ t′. In the following, we assume that

Mℓ ∼ 2dℓ, ℓ ≥ 0. (A5)

The ensuing analysis is inspired by [22, Section 3.7] (see also [21, 11]). We will restrict
the analysis to one QMC rule with respect to the QMC weight sequence (33) on all levels
ℓ = 0, . . . , L, but remark that in some cases it might be beneficial to use a second one with
respect to the QMC weight sequence (32) on the level ℓ = 0. The multilevel QMC quadrature
depends on the algorithmic steering parameters (Nℓ)ℓ=0,...,L, (sℓ)ℓ=0,...,L, (Mℓ)ℓ≥0, and also on
θ ∈ (0, 1). The number of degrees of freedom (Mℓ)ℓ≥0 of the FE discretization in D are assumed
to be given. The parameter θ ∈ (0, 1) is for now left arbitrary. According to the estimate in
Theorem 5.1, θ can be used to balance the truncation error with the FE error on the levels
ℓ = 0, . . . , L. We will use this feature to discuss two possible strategies to choose the truncation
dimensions (sℓ)ℓ=0,...,L.

Strategy 1: The contributions in the QMC weight sequence in (33) are equilibrated, i.e., we
choose θ = 1/β̂, which implies that b1−θ = b̄j , j ∈ N. The truncation dimension sL is also
chosen to equilibrate the respective truncation and FE error in the estimate of Theorem 5.1.
We choose

sL ∼ 2d⌈Lτ/β̃⌉

for some
1 < β̃ < β̂ (39)

close to β̂, where we use that Mℓ = O(2dℓ), ℓ = 0, . . . , L. On the levels ℓ = 0, . . . , L − 1, we
either increase sℓ or leave it constant. We choose

sℓ ∼ min{2d⌈τℓ⌉, sL}, ℓ = 0, . . . , L− 1.

Strategy 2: For particular (ψλ)λ∈∇ and meshes, it may be interesting to align the level structure
(ψλ)λ∈∇ and the used FE meshes. Therefore, we choose

sℓ ∼Mℓ, ℓ = 0, . . . , L.

The choice θ = τ/β̂ equilibrates the truncation and FE error in the estimate of Theorem 5.1
on the levels ℓ = 0, . . . , L assuming that β̂ > τ . Then, (b1−θ

j ∨ b̄j)j≥1 ∈ ℓp̄(N) for every p̄ >

d/(min{β̂ − τ, β̂ − 1}).
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For either of the strategies and for every L ∈ N0, by Theorem 5.1 we obtain the error estimate

error2L = O
(
M

−2τ/d
L +

L∑

ℓ=0

(ϕ(Nℓ))
−2χ̄M

−2τ/d
ℓ

)
. (40)

Since the Euler totient function satisfies that (ϕ(N))−1 ≤ N−1(eγ̂ log logN + 3/ log log(N)) for
every N ≥ 3, where γ̂ ≈ 0.5772 is the Euler–Mascheroni constant, (ϕ(N))−1 ≤ 9/N for every
N = 3, . . . , 1040. We will for simplicity restrict in our analysis the range of N to N ≤ 1040

and use the bound (ϕ(N))−1 ≤ 9/N . In Strategies 1 and 2, the p-summability of the sequence
(b1−θ

j ∨ b̄j)j≥1 holds with a strict inequality condition on p, i.e., (b1−θ
j ∨ b̄j)j≥1 ∈ ℓp̄(N), for every

p̄ > d/(β̂ − 1) in the case of Strategy 1 and for every p̄ > d/min{β̂ − τ, β̂ − 1} in the case of
Strategy 2. Since the QMC convergence rate χ̄ depends on the exponent p, there exists ε > 0
such that χ̄(1 + ε) is also admissible in (40) due to Theorem 5.1. Using log(N) ≤ N ε/(εe) for
every N ∈ N, cp. see e.g. the proof of [11, Lemma 1], the factor Nℓ log(Nℓ) in (37) may be
estimated by N1+ε

ℓ . Since N1+ε
ℓ appears then in the estimate of the work (37) and in the error

estimate (40), it can be substituted by Nℓ, using the strict inequalities in the above bounds for
the admissible indices, and choosing ε > 0 sufficiently small.

We obtain with the choices for (sℓ)ℓ=0,...,L in Strategies 1 and 2

workL =




O
(∑L

ℓ=0Nℓ(Mℓ log(Mℓ) + max{M1+η
ℓ ,min{M τ

ℓ ,M
τ/β̂
L }})

)
, for Strategy 1,

O
(∑L

ℓ=0Nℓ(Mℓ log(Mℓ) +M1+η
ℓ )

)
, for Strategy 2.

and

error2L = O
(
M

−2τ/d
L +

L∑

ℓ=0

N−2χ̄
ℓ M

−2τ/d
ℓ

)
.

We will distinguish between the cases that η = 0 and η > 0 in (A3). We treat Strategy 2 and
the case η > 0 first. As above, log(M) ≤ Mη/(ηe) for every M ∈ N. To obtain optimal choices
for the sample numbers (Nℓ)ℓ=0,...,L, we search for a stationary point of the function

g(ξ) :=M
−2τ/d
L +

L∑

ℓ=0

N−2χ̄
ℓ M

−2τ/d
ℓ + ξ

L∑

ℓ=0

NℓM
1+η
ℓ

with respect to Nℓ, i.e., we solve the first order necessary condition ∂g/∂Nℓ = 0 (see also [22,
Section 3.7]). This gives

Nℓ =
⌈
N0M

−(2τ/d+1+η)/(1+2χ̄)
ℓ

⌉
, ℓ = 1, . . . , L, (41)

and with setting Eℓ =M
(1+η−τ/(dχ̄))2χ̄/(1+2χ̄)
ℓ , ℓ = 0, . . . , L,

error2L = O
(
M

−2τ/d
L +N−2χ̄

0

L∑

ℓ=0

Eℓ

)
and work = O

(
N0

L∑

ℓ=0

Eℓ

)
, (42)

where

L∑

ℓ=0

Eℓ =





O(1) if 1 + η < τ/(dχ̄),

O(L) if 1 + η = τ/(dχ̄),

O(2(2χ̄d(1+η)−2τ)L/(1+2χ̄)) if 1 + η > τ/(dχ̄).

(43)
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The parameterN0 is chosen to balance the error contributions, i.e., N−2χ̄
0

∑L
ℓ=0Eℓ = O(M

−2τ/d
L ),

which implies

N0 =





⌈2τL/χ̄⌉ if 1 + η < τ/(dχ̄),

⌈2τL/χ̄L1/(2χ̄)⌉ if 1 + η = τ/(dχ̄),

⌈2(2τ+d(1+η))L/(1+2χ̄) if 1 + η > τ/(dχ̄).

(44)

We conclude that error2L = O(M
−2τ/d
L ) can be achieved with

workL =





O(2τL/χ̄) if 1 + η < τ/(dχ̄),

O(2τL/χ̄L(1+2χ̄)/(2χ̄)) if 1 + η = τ/(dχ̄),

O(2dL(1+η)) if 1 + η > τ/(dχ̄).

In the case that η = 0, the resulting work measure is considered in [22, Section 3.7]. In particular,
we obtain by [22, Equations (74) and (77)]

Nℓ =

⌈
N0

(
M

−1−2τ/d
ℓ log(sℓ)

−1
)1/(1+2χ̄)

⌉
, ℓ = 1, . . . , L, (45)

and

N0 =





⌈2τL/χ̄⌉ if d < τ/χ̄,

⌈2τL/χ̄L(1+4χ̄)/(χ̄(2+4χ̄))⌉ if d = τ/χ̄,

⌈2(d+2τ)L/(1+2χ̄)L1/(1+2χ̄)⌉ if d > τ/χ̄.

(46)

Note that the corresponding work estimates are given on [22, p. 443]. We summarize this analysis
as ε-complexity bounds in the following theorem.

Theorem 6.2 [Error vs. work for Strategy 2]
Let the truncation dimensions (sℓ)ℓ=0,...,L be chosen according to Strategy 2 assuming β̂ >

max{τ, 1}. Let the assumptions (A5) and (A3) be satisfied for η ≥ 0. If η > 0, the sample
numbers for Q∗

L(·) are given by (44) and (41), L ∈ N0. If η = 0, the sample numbers for Q∗
L(·)

are given by (46) and (45), L ∈ N0. Let f and G(·) satisfy (A4).

1. Gaussian weight functions: for p̄ ∈ (max{2/3, d/(β̂−τ), d/(β̂−1)}, 2), χ̄ = 1/(2p̄)+1/4−ε′
for ε′ > 0 sufficiently small assuming d/min{β̂ − τ, β̂ − 1} < 2.

2. Exponential weight functions: for p̄ ∈ (max{2/3, d/(β̂ − τ), d/(β̂ − 1)}, 1], χ̄ = 1/p̄ − 1/2
assuming d/min{β̂ − τ, β̂ − 1} < 1.

For an error threshold 1 > ε > 0, we obtain

√
E∆(|E(G(u))−Q∗

L(G(u
L))|2) = O(ε)

is achieved with

workL =





O(ε−1/χ̄) if 1 + η < τ/(dχ̄),

O(ε−1/χ̄ log(ε−1)(1+2χ̄)/(2χ̄)) if 1 + η = τ/(dχ̄), η > 0,

O(ε−1/χ̄ log(ε−1)(1+4χ̄)/(2χ̄)) if d = τ/χ̄, η = 0,

O(ε−d/τ(1+η)) if 1 + η > τ/(dχ̄), η > 0,

O(ε−d/τ log(ε−1)) if d > τ/χ̄, η = 0.

Here, the implied constants are independent of L, (sℓ)ℓ=0,...,L, (Nℓ)ℓ=0,...,L, and of (Mℓ)ℓ≥0.
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Remark 6.2 In Strategy 2, there is one parameter respectively one dimension of integration,
per spatial degree of freedom, so that sℓ ∼ Mℓ, ℓ ≥ 0. This coupling occurs, for example, when
circulant embedding is applied to evaluate a GRF on uniformly spaced spatial grid points such
that each element of the FE mesh contains at least one of these points to perform a one point
quadrature for computing the stiffness matrix. Numerical experiments with a QMC rule using a
circulant embedding are presented in [17] and the references there.

For Strategy 1, we may restrict the analysis to the case τ > 1, since for τ ≤ 1 the additional
restriction β̂ > τ for Strategy 2 is redundant and Strategy 2 can be applied. We obtain following
the same line of argument as applied in the analysis of Strategy 2

Nℓ =

⌈
N0

(
M

2τ/d
ℓ max{M1+η

ℓ ,min{M τ
ℓ ,M

τ/β̃
L }}

)−1/(1+2χ̄)
⌉
, ℓ = 1, . . . , L, (47)

where also (42) holds with

Eℓ =
(
M

−2τ/d
ℓ max{M1+η

ℓ ,min{M τ
ℓ ,M

τ/β̃
L }}

)2χ̄/(1+2χ̄)

, ℓ = 0, . . . , L.

We observe that

L∑

ℓ=0

(
M

−2τ/d
ℓ max{M1+η

ℓ ,M
τ/β̃
L }

)2χ̄/(1+2χ̄)

=

{
O(2dL(τ/β̃)2χ̄/(1 + 2χ̄)) if 1 + η ≤ τ/(dχ̄) + τ/β̃,

O(2(2χ̄d(1+η)−2τ)L/(1+2χ̄)) if 1 + η > τ/(dχ̄) + τ/β̃,

where we used that max{x, y} ≤ x + y for every x, y ∈ [0,∞). The respective estimate for

the sum over M
−2τ/d
ℓ max{M1+η

ℓ ,M τ
ℓ } is given in (43) with max{1 + η, τ} in place of 1 + η

(also in the conditions of the three cases). To estimate
∑L

ℓ=0Eℓ, we use the identity that
max{x,min{y, z}} = min{max{x, y},max{x, z}} for every x, y, z ∈ R, and apply the superad-
ditivity of the minimum to obtain that

L∑

ℓ=0

Eℓ =





O(1) if max{τ, 1 + η} < τ/(dχ̄),

O(L) if max{τ, 1 + η} = τ/(dχ̄),

O(22χ̄d(1+η)−2τ)L/(1+2χ̄)) if 1 + η > τ/(dχ̄) + τ/β̃,

O(22τ min{dχ̄−1,dχ̄/β̃}L/(1+2χ̄)) if 1 + η ≤ τ min{1, 1/(dχ̄) + 1/β̃}, 1 > 1/(dχ̄),

O(22min{χ̄d(1+η)−τ,χ̄dτ/β̃}L/(1+2χ̄)) if max{τ, τ/(dχ̄)} < 1 + η ≤ τ/(dχ̄) + τ/β̃.

As above, N0 is chosen to balance the error, i.e., N0 ∼M
τ/(dχ̄)
L (

∑L
ℓ=0Eℓ)

1/(2χ̄). Specifically,

N0 =





⌈2Lτ/χ̄⌉ if max{τ, 1 + η} < τ/(dχ̄),

⌈2Lτ/χ̄L1/(2χ̄)⌉ if max{τ, 1 + η} = τ/(dχ̄),

⌈2(2τ+d(1+η))L/(1+2χ̄)⌉ if 1 + η > τ/(dχ̄) + τ/β̃,

⌈2τ(min{d,d/β̃+1/χ̄}+2)L/(1+2χ̄)⌉ if 1 + η ≤ τ min{1, 1/(dχ̄) + 1/β̃}, 1 > 1/(dχ̄),

⌈2(min{d(1+η),dτ/β̃+τ/χ̄}+2τ)L/(1+2χ̄)⌉ if max{τ, τ/(dχ̄)} < 1 + η ≤ τ/(dχ̄) + τ/β̃.

(48)
Explicit error vs. work estimates are summarized as ε-complexity bounds in the following theo-

rem, where we recall that work = N0
∑L

ℓ=0Eℓ =M
τ/(dχ̄)
L (

∑L
ℓ=0Eℓ)

(1+2χ̄)/(2χ̄).
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Theorem 6.3 [Error vs. work for Strategy 1]
Let the truncation dimension (sℓ)ℓ≥1 be chosen according to Strategy 1 assuming β̂ > 1 and

τ > 1. Let the assumptions (A5) and (A3) be satisfied for η ≥ 0. The sample numbers for
Q∗

L(·) are given by (48) and (47), L ∈ N0. Let f and G(·) satisfy (A4).

1. Gaussian weight functions: for p̄ ∈ (max{2/3, d/(β̂ − 1)}, 2), χ̄ = 1/(2p̄) + 1/4 − ε′ for
ε′ > 0 sufficiently small assuming d/(β̂ − 1) < 2.

2. Exponential weight functions: for p̄ ∈ (max{2/3, d/(β̂ − 1)}, 1], χ̄ = 1/p̄ − 1/2 assuming
d/(β̂ − 1) < 1.

For an error threshold ε > 0, we obtain

√
E∆(|E(G(u))−Q∗

L(G(u
L))|2) = O(ε)

is achieved with

work =





O(ε−1/χ̄) if max{τ, 1 + η} < τ/(dχ̄),

O(ε−1/χ̄ log(ε−1)(1+2χ̄)/(2χ̄)) if max{τ, 1 + η} = τ/(dχ̄),

O(ε−d/τ(1+η)) if 1 + η > τ/(dχ̄) + τ/β̃,

O(ε−min{d,d/β̃+1/χ̄}L) if 1 + η ≤ τ min{1, 1/(dχ̄) + 1/β̃}, 1 > 1/(dχ̄),

O(ε−min{d/τ(1+η),d/β̃+1/χ̄}L) if max{τ, τ/(dχ̄)} < 1 + η ≤ τ/(dχ̄) + τ/β̃.

Here, β̃ is as in (39) chosen close to 0 < β̂ such that β̃ < β̂ and all implied constants are
independent of L, (sℓ)ℓ=0,...,L, (Nℓ)ℓ=0,...,L, and (Mℓ)ℓ≥0.

7 Conclusions

For linear, second order diffusion equations (1) in a polygonal or polyhedral domain D, and with
log-Gaussian diffusion coefficient a = exp(Z), where the GRF Z in D is represented in terms of
a series expansion with “localized supports”, taking values in weighted Hölder spaces in D, we
extended the convergence rate and error versus work analysis of combined QMC quadratures
and multilevel FE approximation from [16, 21]. Specifically, we considered randomly shifted
lattice QMC rules for integration against a dimension-truncated Gaussian measure which were
introduced in [26]. The present work complements [16, 21, 22], where the ψj ’s were allowed to
have global support and QMC quadratures with so-called “POD” weights were employed. We
proved that for GRFs Z whose spatial variation is parametrized by a function system (ψj)j≥1 of
functions ψj(x) in D with “localized supports” that QMC combined with continuous, piecewise
linear FE in D on families of regular, simplicial triangulations of D with suitable mesh refine-
ment near vertices and (in space dimension d = 3) edges of D, allow for parameter-dimension
independent error vs. work bounds. The case of full elliptic regularity in spaces without weights
and sℓ = sL, ℓ = 0, . . . , L, is considered in [21, Corollary 2 and Section 5]. We considered
polytopal domains D where ∂D consists of straight lines (in space dimension d = 2) or of plane
faces (in space dimension d = 3). The parametric regularity results in weighted function spaces
in D remain valid, however, also for polytopal D with piecewise smoothly curved boundaries as
considered in [25].

Moreover, the assumed localization of the supports of the ψj in D was shown to allow for
QMC integration rules with so-called product weights. The present model of the computational
work (37) includes the cost of the generation of the QMC points, which is dominated by the cost
of the fast CBC construction of generating vectors. This was considered a pre-computation in [22,
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21] and the (quadratic w.r. to the parameter dimensions sℓ) work count for the (precomputed)
CBC construction was omitted from the work counts in that reference. We also note that
the same generating vectors can be used for different right hand sides f . However, if the
function system (ψj)j≥1 is altered, e.g., by changing certain parameters of a considered class
of (ψj)j≥1 that relate to the smoothness or spatial correlation, due to modeling considerations
of the lognormal diffusion coefficent, then the generating vectors need to be recomputed. The
QMC error analysis being based on product weights, the work of the fast CBC construction of
generating vectors due to R. Cools and D. Nuyens [27] and the generation of QMC points scales
linearly with respect to the parameter dimensions sℓ. In particular, the error vs. analysis in
the present paper is with respect to the overall work, including the work required for the CBC
construction. Therefore, we conclude in certain cases the same asymptotic error vs. work bounds
of the considered multilevel QMC algorithm than in the case of the respective deterministic,
elliptic PDE; also in the case that the FE error has a rate higher than 1/d with respect to the
dimension of the FE spaces. We considered only homogeneous Dirichlet boundary conditions
on all of ∂D in (1). This was for ease of exposition only: the parametric regularity analysis of
Section 4 and the elliptic regularity results in Section 2.2 remain valid verbatim for problems
with Neumann or mixed boundary conditions. In particular, the same structure of the corner-
and edge-weights in (7) can be used to characterize elliptic regularity shifts in D for these
boundary conditions.
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