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A PROJECTION METHOD FOR THE COMPUTATION OF

ADMISSIBLE MEASURE VALUED SOLUTIONS OF THE

INCOMPRESSIBLE EULER EQUATIONS

F. LEONARDI

Abstract. We formulate a fully discrete finite difference numerical method to
approximate the incompressible Euler equations and prove that the sequence
generated by the scheme converges to an admissible measure valued solution.
The scheme combines an energy conservative flux with a velocity-projection
temporal splitting in order to efficiently decouple the advection from the pres-
sure gradient. With the use of robust Monte Carlo approximations, statistical

quantities of the approximate solution can be computed. We present numerical
results that agree with the theoretical findings obtained for the scheme.

1. Introduction

We consider the incompressible Euler equations, which model the motion of an
inviscid, Newtonian fluid. These equations are of the form {eq:euler}

ut + div(u⊗ u) +∇p = 0, on D × [0, T ] =: D × I,(1a) {{eq:euler_b}}{{eq:euler_b}}

divu = 0, on D × [0, T ],(1b) {{eq:euler_a}}{{eq:euler_a}}

u(x, 0) = u0(x), on D ⊆ R
d,(1c)

where u denotes the velocity field and p is the pressure, which can be viewed as a
Lagrange multiplier for the divergence-free constraint (1b).

Incompressible Euler equations are a fundamental building block of fluid dynam-
ics, and are considered a good model for flows with very low Mach number and
high Reynolds number [22]. Yet, their mathematical and numerical understanding
is still incomplete.

1.1. Known results. In the following, we summarize the main theoretical results
about Euler equations.

Classical solutions, which require sufficient smoothness, fail to exist in general,
for example on the 3D torus. For special cases (e.g. in 2D, with periodic boundary
conditions) classical solutions exist globally and are unique [2, 22].

In the general case, one considers weak solutions to the Euler equations. Given
a function u0 ∈ L2

x(D), a function u(t) ∈ L2
x(D) is said to be a weak solution to the

Euler equations, if it satisfies the equations in the sense of distributions, namely:
∫

I×D

u · ϕt + (u⊗ u) : ∇ϕ dxdt−

∫

D

u0 · ϕ(x, 0)dx = 0,
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for all test functions ϕ ∈ C∞
0 (I×D)d, with divϕ = 0. The pressure can be recovered

from the velocity up to a constant function depending only on the time.
In [26], Yudovich showed that, in R

2, as long as the initial vorticity is bounded
in L∞

x , there is global existence and uniqueness of weak solutions to the Euler
equations.

When the vorticity is unbounded, Delort [10] proved the existence of global weak
solutions for 2D Euler equations, provided that the initial vorticity is a positive
Radon measure in H−1. This particular class of initial data is interesting for prac-
tical applications, since it encompasses the so called vortex-sheets.

In general, uniqueness has been proven to be false for Euler equations (see [23,
24], or the recent [20]). Numerically, there is also evidence for non-uniqueness of
solutions of the vortex-sheet problem [21].

Our work will focus on the more general framework of (admissible) measure
valued solutions (MVS). In this framework (introduced in [14]) the solution is not
an integrable function, but rather a parametrized measure ν(x,t) for (x, t) ∈ D × I.
Measure valued solutions are shown to exist globally, in 3D and to represent limits
of interesting theoretical [13] and numerical approximation schemes [19].

1.2. Numerical methods. Many numerical approximation techniques have been
applied successfully to the approximation of the Euler equations, even in cases
where the underlying mathematical analysis in unavailable. However, numerical
approximations of problems with rough initial data, may not converge (cf. eg. [6]).
In such cases, it is necessary to question, whether the numerical approximation of
weak solutions is an appropriate approach [15].

Existing numerical methods include spectral methods, which, for sufficiently reg-
ular solutions, has been shown to converge to the underlying solution with spectral
accuracy (exponential accuracy in the number of modes) in a spatially semi-discrete
framework [5]. The convergence of spectral methods to measure valued solutions
was proved in [19]. However, spectral methods are only valid for periodic domains.

Finite element methods (cf. [16,17]) are also a possible discretization technique,
although they generally require some amount of regularity of the initial data.

Finite difference methods can be employed to approximate the equations. This,
combined with operator splitting methods, yields efficient and robust methods,
cf. [1,6,9,18]. However, no convergence results for non-smooth initial data, even in
the framework of measure valued solutions, are available for these type of schemes.

1.3. Aim of the paper. Our aim is to propose and analyse a variant of the finite-
difference projection methods, and prove that it generates sequences that converge
to a admissible measure valued solutions of the incompressible Euler equations.

The procedure used in this paper is based on a similar approach used for the
computation of measure valued solutions in the context of hyperbolic conservation
laws [15]. In the article, the authors devised a class of schemes that converge
to measure value solutions. In [19], the authors present a semi-discrete spectral
method that is able to approximate measure valued solutions for incompressible
Euler equation in the 2-dimensional torus.

1.4. Contents of the paper. In section 2, we will recall basic definitions of mea-
sure valued solutions for incompressible Euler equations. In section 3, we will define
the numerical scheme for the approximation of measure valued solutions. Finally,
in section 4, we will provide numerical experiments of convergence of the scheme to
measure valued solutions.
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2. Admissible measure valued solutions

The concept of measure valued solution is based on that of (generalized) Young
measure [25], namely, a probability measure parametrized in space and time.

This notion was initially introduced for conservation laws [11], subsequently ex-
tended to uniformly L∞-bounded approximations to (incompressible) Euler equa-
tions [14] and then generalized to arbitrary L2 sequences [12], after a small, technical
modification taking into account the possibility of concentrations.

We define the family F of functions:

F := {g(u)(1 + |u|2), g ∈ Cc(R
d), ∃ lim

r→∞
g(ru) ∈ C(Sd−1)}.(2)

We define g∞(u) := limr→∞ g(ru) whenever the limit exists and is unique.
{thm:generalized_young}

Theorem 2.1 ((Generalized) Young measure theorem [14]). Given a sequence
{un}n∈N of uniformly bounded functions in L2(D × [0, T )), there exists:

• a measure λ ∈ M+(D × [0, T )) such that |un|
2 ⇀ λ ∈ M(D × [0, T ));

• a weakly measurable map νx from D × [0, T ) to P(Rd);
• a weakly measurable map, ν∞x from D × [0, T ) to P(Sd−1),

such that, for a subsequence, relabelled as the original by abuse of notation, it holds:

g(un)dxdt
∗
⇀ 〈ν, g〉 (dxdt+ dλ) + 〈ν∞, g∞〉 dλ, inM(D × [0, T )), ∀g ∈ F .(3)

Definition 2.2 ((Generalized) Young measure). The triple (ν, ν∞, λ) obtained from
Theorem 2.1, is termed a generalized Young measure relative to the sequence un.

Based on [15], we consider a general measure as initial data for the incompressible
Euler equations. Having a measure as initial datum for the problem (rather than
an integrable function), further generalizes the problem allowing to model uncer-
tainty in the initial data. This automatically provides a framework for uncertainty
quantification.

Definition 2.3 (Admissible measure valued solution). Let σ0 := ν(x,0) be an initial
measure. A measure value solution for the Euler equations is a (generalized) Young
measure ν such that

∫

D×[0,T )

φt
〈

ν(x,t), id
〉

+∇φ :
〈

ν(x,t), ξ ⊗ ξ
〉

dxdt +

∫

D

φ0 · 〈σ0, Id〉 dx = 0,

for all divergence-free test functions φ ∈ C∞
c (D × I)d. Moreover, if, for all ϕ ∈

Cc(D × [0, T )),
∫

D×[0,T )

ϕ(x, t)
〈

ν(x,t), ξ
2
〉

dxdt+

∫

D×[0,T )

ϕdλ ≤ ‖ϕ‖L1(D×[0,T ))E(0)

then we call ν an admissible measure valued solution. Here, we denote λ := λt × dt
and define E(t) :=

∫

D

〈

ν(x,t), ξ
2
〉

dx+λt(D) to be the mean (Kinetic) energy of the
measure valued solution.

Admissible measure valued solution are not unique [20], thus a stronger notion
of admissibility is necessary to recover uniqueness. However, at least in the case
where a smooth solution exists, the notion of admissible measure valued solution
coincides with it [7]. The vanishing viscosity approach can be exploited to construct
approximations of measure valued solutions [8] from sequences of weak solutions
to the Navier-Stokes problem. Another possible approach for the construction of
measure valued solutions consists in using a numerical scheme that produces a
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suitable sequence of approximations. The sequence can be then shown to converge,
in the weak* sense, to admissible measure valued solutions.

3. Numerical scheme
{sec:num_scheme}

In this section, we present a numerical scheme that is able to approximate (ad-
missible) measure valued solutions. In order to compute measure valued solutions,
we require two main ingredients:

• an “individual solver”, able to approximate the Euler equations in their
classical formulation, whenever such formulation is well-posed;

• a statistical integrator, capable of approximating measures exploiting sto-
chastic sampling procedures.

In general, we cannot expect from the individual solver to converge (weakly or
strongly) in the usual sense [6]. Instead, we require minimal stability properties
allowing us to control key quantities of the approximated solutions, which, in turn,
allow us to show consistency with measure valued solutions. Our individual solver
is based upon the ideas of [9] and [6]. We utilize a projection method (also known
as fractional step or pressure correction method) for an efficient enforcement of the
divergence-free condition. The spatial discretization is enforced using a “mimetic”
approach: we construct a scheme that possesses properties similar to the continuous
equation.

We consider the domain [0, 1]d × [0, T ]. For simplicity, we assume a uniform grid
in both space and time, with uniform grid spacing ∆x = ∆y = 1/M > 0 in space
and ∆t > 0 in time. Furthermore, we assume O(∆x) = O(∆y) = O(∆t). The
velocity will be approximated by a piecewise constant function in both space and
time variables (in a cell Ci,j := [i∆x, (i+1)∆x]× [j∆y, (j+1)∆y]). We will identify
these velocities with a sequence {un

i,j}i,j,n (denoted also u by abuse of notation)
indexed by space variables i ∈ I and j ∈ J (I = {0, . . . ,M−1}, J = {0, . . . ,M−1})
and a time variable n ∈ {0, . . . , N}, T = N∆t. We denote the space of grid functions
for the choice h = ∆x = ∆y as Gh.

The scheme uses a fractional step method, in which the velocity is evolved, in
a prediction step (4a), without imposing the divergence-free constraint. In turn,
the divergence constraint is enforced in a second projection step (4b), which also
provides an evolution equation for the pressure. The scheme reads:{fully:proj}

u∗n+1 − un

∆t
+C(un, ūn+1/2) = Dūn+1/2,(4a)

un+1 − un

∆t
= P

(

u∗n+1 − un

∆t

)

,(4b)

gradhpn+1/2 = Q

(

u∗n+1 − un

∆t

)

,(4c)

where C(un, ūn+1/2)i,j is an approximation of the nonlinear convective term (which
will be specified later). The operator D is an numerical dissipation term, which
ensures the numerical stability of the scheme. The time-averaged velocity ūn+1/2 :=
θun+(1− θ)u∗,n+1 (with θ ∈ [0, 1/2) as free parameter) ensures that the scheme is
sufficiently dissipative. The approximation of spatial differential operators exploits
finite difference (FD) and finite volume approximations (FV).
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3.1. Definitions. In this section, we introduce concrete discretizations of the spa-
tial finite difference operators. We formulate the space discretization in 2 space
dimensions, but remark that extension to 3D is straightforward.

3.1.1. Discrete differential operators. We denote by gradh a standard cell-centred
central, second order discrete gradient operator defined as

gradhϕi,j =

(

ϕi+1,j−ϕi−1,j

∆x
ϕi,j+1−ϕi,j−1

∆y ,

)

and by divh a cell-centred central divergence operator

divhui,j =
(u1)i+1,j − (u1)i−1,j

∆x
+

(u2)i,j+1 − (u2)i,j−1

∆y
.

We introduce the notation ∆h (resp. ∆h) for a standard five point Laplace (resp.
vector Laplace) operator:

∆hϕi,j =
ϕi+1,j − 2ϕi,j + ϕi−1,j

∆x
+
ϕi,j+1 − 2ϕi,j + ϕi,j−1

∆y
.

3.1.2. Notation. In the following, for discrete (i.e. piecewise constant in cells Ci,j)
quantities, we denote by

‖w‖p :=







∑

i∈I
j∈J

|wi,j |
p∆x∆y







1/p

(5)

the discrete Lp norm in space and with

‖w‖p,q :=









N−1
∑

n=0







∑

i∈I
j∈J

|w
(n)
i,j |

p∆x∆y







q/p

∆t









1/q

(6)

the Lp,q norm in space-time (with standard extensions to ∞). We also introduce
the L2 inner product (in the spatial variables) for grid functions:

〈a,b〉 :=
∑

i∈I
j∈J

ai,j · bi,j∆x∆y.

We introduce the notion of jump JaKxi+1/2,j := ai+1,j − ai,j and average axi+1/2,j =
1
2 (ai+1,j − ai,j) (analogous definition for the y-direction).

3.1.3. The (numerical) diffusion operator. The operatorD is a second-order, energy
dissipative diffusion operator evaluated at the time averaged quantity ūn+1/2 :=
1
2 (u

n+1+un) (this ensures energy dissipation in both space and time). We will use
the 2nd order Lax-Wendroff diffusion, which has the form:

Du =
ci+1/2,j |JuKxi+1/2,j | JuKxi+1/2,j + ci−1/2,j |JuKxi−1/2,j | JuKxi−1/2,j

∆x
(7) {{eq:lw}}{{eq:lw}}

+
ci,j+1/2|JuKyi,j+1/2| JuKyi,j+1/2 + ci,j−1/2|JuKyi,j−1/2| JuKyi,j−1/2

∆y
,(8)

with 0 < ci±·,j±· <∞ as parameters of choice.
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3.1.4. The exact projection operator. We denote by P the exact discrete projection
operator of a vector field into a discretely divergence-free vector space (i.e. s.t.

divhP(u) = 0) and Q := I − P (the gradient, or irrotational, part of the vector
field, where I is the identity map). The discrete projection is implemented by

solving: Pu := Iu − gradh(∆h
2 )

−1divhu, where ∆h
2 = divhgradh is a cell-centred

five point Laplacian acting on cell-centres in checker-board formation:

∆h
2ϕi,j =

ϕi+2,j − 2ϕi,j + ϕi−2,j

∆x
+
ϕi,j+2 − 2ϕi,j + ϕi,j−2

4∆y
.

3.1.5. The non-linear (convective) term. The non-linear term is evaluated at two
different discrete quantities, namely the “lagged” velocity un and the time-averaged
ūn+1/2. For those we use a second order, consistent flux term:

C(u,v)i,j :=
Fx(ui+1,j ,ui,j ,vi+1,j ,vi,j)− Fx(ui,j ,ui−1,j ,vi,j ,vi−1,j)

∆x

+
Fy(ui,j+1,ui,j ,vi,j+1,vi,j)− Fy(ui,j ,ui,j−1,vi,j ,vi,j−1)

∆y

where

Fx(u+,u,− ,v+,v−) :=
1

4

(

(u+1 + u−1 )(v
+
1 + v−1 )

(u+1 + u−1 )(v
+
2 + v−2 )

)

,

Fy(u+,u,− ,v+,v−) :=
1

4

(

(u+2 + u−2 )(v
+
1 + v−1 )

(u+2 + u−2 )(v
+
2 + v−2 ).

)

,

We define the cinvenience notation

Fxn+1/2
i+1/2,j := Fx(un

i+1,j ,u
n
i,j ,u

∗n+1
i+1,j ,u

∗n+1
i,j )

Fyn+1/2
i,j+1/2 := Fy(un

i,j+1,u
n
i,j ,u

∗n+1
i,j+1,u

∗n+1
i,j ),

F
n+1/2
i+1/2,j+1/2 :=

(

Fxn+1/2
i+1/2,j , Fyn+1/2

i,j+1/2

)

.

3.2. Preliminaries. In this subsection, we discuss some technical propositions
which will be used in later sections. First of all, we remark that the fluxes are
consistent with the continuous convective terms. Moreover, the fluxes are energy
conservative, in the following sense.

Lemma 3.1. The flux function is energy conservative, i.e. satisfies:
∑

i∈I
j∈J

Fx(ui+1,j ,ui,j ,vi+1,j ,vi,j) · Jv·,jKxi+1/2 ∆y

+
∑

i∈I
j∈J

Fy(ui,j+1,ui,j ,vi,j+1,vi,j) · Jvi,·Kyj+1/2 ∆x = 0,

provided u is discretely divergence free (w.r.t. the operator divh). Moreover,

∑

i∈I
j∈J

(

Fx(u,v)i+1/2,j − Fx(u,v)i−1/2,j

∆x

+
Fy(u,v)i,j+1/2 − Fy(u,v)i,j−1/2

∆y

)

· vi,j = 0.
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We omit the proof. Notice that the flux function Fx satisfies the following in-
equality:

|Fx(A,C,X,Y)− Fx(B,C,X,Y)| ≤|A−B|(|X|+ |Y|)(9)

and similarly for the other arguments of Fx and for the same arguments for Fy.

3.2.1. Projection. We start by stating two useful lemmas on the exact projection
operator.

Lemma 3.2. There exists a grid function ψ such that:

u = u∗ − gradhψ.(10) {{eq:lm:proj-has-grad-term}}{{eq:lm:proj-has-grad-term}}

Proof. Observe that (4b), together with P(u) = u, the linearity of the projection

operator, and the fact Q(u) = gradhψ for some ψ, implies the claim. �

Lemma 3.3. The operators divh and gradh are self adjoint, namely:
∑

i∈I
j∈J

u · gradhψ = −
∑

i∈I
j∈J

divhu ψ, ∀u ∈ G2
h, ψ ∈ Gh.

(For suitable boundaries: the lemma holds for a compactly supported velocity field,
wall boundary conditions, periodic boundaries, or a compatible inflow/outflow bound-
ary condition.)

The following proposition provides a discrete energy bound (i.e. an L2 bound
for the velocity) and a bound on the gradient pressure for the scheme (4).

{lm:energy-proj}
Proposition 3.1. The projection P is energy dissipative, namely:

(11) {{energy-part1}}{{energy-part1}} ‖u‖
2
2 = ‖u∗‖

2
2 −

∥

∥

∥gradhψ
∥

∥

∥

2

2
.

Proof. Take the L2 discrete inner product of (10) with u and use the fact that u is
divergence-free:

〈u,u〉 − 〈u∗,u〉 = 0.

The usual reformulation implies

‖u‖
2
2 − ‖u∗‖

2
2 + ‖u− u∗‖

2
2 = 0.

�

3.2.2. Energy conservation.

Proposition 3.2. The approximate solution for the projection scheme satisfies the
energy balance:

∥

∥un+1
∥

∥

2

2
= ‖un‖

2
2 + 2∆t

〈

ūn+1/2,Dūn+1/2
〉

(12)

+
1

2
(1− 2θ)

∥

∥u∗,n+1 − un
∥

∥

2

2
−
∥

∥

∥gradhψn+1/2
∥

∥

∥

2

2
.(13)

Moreover, we have
∥

∥un+1
∥

∥

2

2
≤ ‖un‖

2
2 ,(14)

by the sign property of the diffusion term and positivity of the other terms.
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Proof. Taking the L2 discrete inner product of (4a) with ∆tūn+1/2, we obtain

〈

u∗n+1
i,j − un

i,j , ū
n+1/2

〉

+∆t
〈

ūn+1/2,C(un, ūn+1/2)i,j

〉

= ∆t
〈

ūn+1/2,Dūn+1/2
〉

,

which, by the conservation property of the nonlinear term, reads

∥

∥

∥u
∗n+1

∥

∥

∥

2

2
− ‖un‖

2
2 = 2∆t

〈

ūn+1/2,D1ū
n+1/2

〉

+
1

2
(1− 2θ)

∥

∥u∗,n+1 − un
∥

∥

2

2
.

Using Theorem 3.1, we obtain

∥

∥un+1
∥

∥

2

2
= ‖un‖

2
2 + 2∆t

〈

ūn+1/2,D1ū
n+1/2

〉

+
1

2
(1− 2θ)

∥

∥u∗,n+1 − un
∥

∥

2

2
−
∥

∥

∥gradhψn+1/2
∥

∥

∥

2

2
.

�

3.2.3. Weak space-time total variation bounds. The following proposition provides
discrete total variation limits that will be used in the following sections.

{fully:tv-bound}
Proposition 3.3. The following limit hold with a second order Lax-Wendroff dif-
fusion operator D:

N−1
∑

n=0

∑

i∈I
j∈J

∣

∣ūn+1
j+1,i − ūn+1

j,i

∣

∣

3
∆t∆x∆y

h→0
→ 0,(15)

N−1
∑

n=0

∑

i∈I
j∈J

∣

∣ūn+1
j,i+1 − ūn+1

j,i

∣

∣

3
∆t∆x∆y

h→0
→ 0,(16)

N−1
∑

n=0

∑

i∈I
j∈J

∣

∣

∣u
∗n+1
j,i+1 − un

j,i

∣

∣

∣

2

∆t∆x∆y
h→0
→ 0.(17)

We denote this limits as space (resp. time) weak total variation bounds.

Proof. The discrete diffusion operator (of Lax-Wendroff type) provides the spatial
total variation limits. Hence, using the energy estimate, we can write

−2∆t
〈

ūn+1/2,Dūn+1/2
〉

−∆t(
1

2
− θ)

∥

∥u∗,n+1 − un
∥

∥

2

2
≤ −

∥

∥un+1
∥

∥

2

2
+ ‖un‖

2
2 .

(18)

Summing over each time-step and exploiting the telescoping summation, we obtain

−

N−1
∑

n=0

2
〈

ūn+1/2,Dūn+1/2
〉

+ (
1

2
− θ)

∥

∥u∗,n+1 − un
∥

∥

2

2
∆t ≤ −

∥

∥uN
∥

∥

2

2
+
∥

∥u0
∥

∥

2

2
.

(19)
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Using the Lax-Wendroff diffusion (7), we obtain
〈

ūn+1/2,Dūn+1/2
〉

=
∑

i∈I
j∈J

ūn+1/2 · ci+1/2,j |
q
ūn+1/2

y
|
q
ūn+1/2

y

∆x

+
ūn+1/2 · ci−1/2,j |

q
ūn+1/2

y
|
q
ūn+1/2

y

∆y
∆x∆y

+
∑

i∈I
j∈J

ūn+1/2 · ci,j+1/2|
q
ūn+1/2

y
|
q
ūn+1/2

y

∆x

+
ūn+1/2 · ci,j+−1/2|

q
ūn+1/2

y
|
q
ūn+1/2

y

∆y
∆x∆y

= −
∑

i∈I
j∈J

ci,j
|
q
ūn+1/2

y
|3

2∆x
+ ci,j

|
q
ūn+1/2

y
|3

2∆y
∆x∆y.

With ci,j > 0 we obtain

N−1
∑

n=0

(

∥

∥

∥ū
n+1/2
i+1/2,j − ū

n+1/2
i−1/2,j

∥

∥

∥

3

3
+
∥

∥

∥ū
n+1/2
i,j+1/2 − ū

n+1/2
i,j−1/2

∥

∥

∥

3

3

)

∆t ≤
∥

∥u0
∥

∥

2

2
2h→ 0.(20)

This proves our claim. �

3.3. Convergence to admissible measure valued solutions. In this section we
prove that the limit of the sequence, as the mesh is refined, of piecewise constant
functions generated by the scheme is consistent with admissible measure valued
solutions.

Lemma 3.4. The vector valued piecewise constant function R, defined as

Fx(un
i+1,j ,u

n
i,j , ū

n+1
i+1,j , ū

n+1
i,j )− f(un

i,j) =: R

satisfies
∥

∥

∥R : gradhϕh
∥

∥

∥

1
→ 0, for a suitable piecewise approximation (on the grid

with size h) of any smooth test function ϕh.

Proof. Consider the term:

Fx(un
i+1,j ,u

n
i,j , ū

n+1/2
i+1,j , ū

n+1/2
i,j )

= Fx(un
i+1,j ,u

n
i,j , ū

n+1/2
i+1,j , ū

n+1/2
i,j )− Fx(un

i+1,j ,u
n
i,j , ū

n+1/2
i,j , ū

n+1/2
i,j )

+ Fx(un
i+1,j ,u

n
i,j , ū

n+1/2
i,j , ū

n+1/2
i,j )− Fx(un

i+1,j ,u
n
i,j ,u

n
i,j ,u

n
i,j)

+ Fx(un
i+1,j ,u

n
i,j ,u

n
i,j ,u

n
i,j)− Fx(un

i,j ,u
n
i,j ,u

n
i,j ,u

n
i,j)

+ Fx(un
i,j ,u

n
i,j ,u

n
i,j ,u

n
i,j).

Using the consistency of the fluxes, the last term is exactly f(un
i,j). Then (using

Equation 9):

|R| ≤ |(|un
i+1,j |+ |un

i,j |)|ū
n+1/2
i+1,j − ū

n+1/2
i,j )|+ 2|un

i+1,j + un
i,j ||ū

n+1/2
i,j − un

i,j |

+ 2|un
i+1,j − un

i,j ||u
n
i,j |.
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Using the discrete weak total variation bounds, all terms converge to zero after
summation over the space-time indices and integration over the probability space Ω.
In fact, we have (we consider the first term only, the rest is completely analogous):

∫

Ω

∑

i∈I
j∈J

N−1
∑

n=0

∣

∣un
i,j

∣

∣

∣

∣

∣

∣

r
ū
n+1/2
·,j

z
i+1/2

∣

∣

∣

∣

∣

∣

∣gradh+ϕ
n
i,j

∣

∣

∣∆x∆y∆t dP (ω)

≤ sup
ω∈Ω

∥

∥uh
0

∥

∥

p

∥

∥

∥

∥

r
ū
n+1/2
·,j

z
i+1/2

∥

∥

∥

∥

q

‖gradh+ϕ
h‖r,s

h→0
→ 0,

using the fact that ϕ is sufficiently smooth (i.e. of class C∞
0 ). Here, p, q, r, s > 0 are

the exponents obtained from the application of the discrete Hölder inequalities. �

In the following, we will establish that the weak*-limit of the approximate solu-
tion is a measure valued solution.

For the approximation of measure valued solutions with initial data σx, we pro-
ceed as following (cf. [15]): from the law u0(ω;x, t) of σx, we draw a sufficient
number of i.i.d. samples u0(ωi;x), for ωi ∈ Ω, i ∈ I for some index set I. We evolve
each sample with scheme (4), and find a discretization uh(ωi;x, t), where h > 0
represent a discretization parameter. From the individual samples, we reconstruct
the approximate measure valued solution as:

ν(x,t) ≈
∑

i∈I

δuh(ωi;x,t).

From this approximation, we can compute statistical quantities of interest, such as
mean, variance and mean mean kinetic energy.

The following theorem holds:

Theorem 3.4. Let σx be an initial Young measure in L∞
w (D;P(Rd)). Then, there

exists a probability space (Ω,F , P ) and a random variable u0(ω;x) with law σx. For
fixed ω ∈ Ω, let uh(ω;x, t) be the approximate solution with initial data u0(ω;x)
obtained with scheme (4). Let νh(x,t) be its law. Then there exists a subsequence

(which we denote by abuse of notation by νh(x,t)) and a limit Young measure ν(x,t),

such that, for every divergence-free test vector field ϕ ∈ C∞
0 (D × [0, T ))d and

q ∈ C∞
0 (D × [0, T )), the following holds:

∫

[0,T )

〈〈

ν(x,t), id
〉

, ϕt

〉

dt− 〈〈σx, id〉 , ϕ(x, 0)〉+

∫

[0,T )

〈〈

ν(x,t), ξ ⊗ ξ
〉

,∇ϕ
〉

dt = 0

(21a)

∫

[0,T )

〈〈

ν(x,t), id
〉

,∇q
〉

dt = 0,(21b)

moreover the admissibility criterion is satisfied. The limit is therefore an admissible
measure valued solution.

Proof. Denote by uh(ω;x, t) and gradhph(ω;x, t) the approximated step vector fields
generated by the numerical scheme (depending on the outcome ω and on the step
size h). The fundamental theorem of Young measures provides a measure ν(x,t),

which is the narrow limit of a subsequence νh(x,t), the law of the approximation uh.
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The evolution equations for the projection scheme are condensed into (removing
dependency on ω for ease of notation):

un+1 − un

∆t
=−C(un, ūn+1/2)− gradhpn+1/2 +Dūn+1/2,

divhun = 0.

We denote by Ci,j the cell [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2] and by I
n the temporal

interval [tn, tn+1]. Let ϕ := (ϕ1, ϕ2) ∈ C∞
0 (D × [0, T ))2 be a solenoidal test vector

field and construct a sequence sequence ϕh with limit ϕ, such that divh+ϕ
h = 0.

Multiplying the evolution equation by the corresponding approximate test function
and by the cell-indicator function 1Ci,j×In(x, t), summing over each time step n =
0, ..., N − 1 and each spatial index, and integrating in space, time, and on the
probability space Ω, we obtain

0 =

∫

Ω×D×[0,T )

∑

i∈I
j∈J

N−1
∑

n=0

un+1 − un

∆t
· ϕh1Ci,j×Indxdt dP (ω)

+

∫

Ω×D×[0,T )

∑

i∈I
j∈J

N−1
∑

n=0

gradhpn+1/2 · ϕh1Ci,j×Indxdt dP (ω)

+

∫

Ω×D×[0,T )

∑

i∈I
j∈J

N−1
∑

n=0

C(un, ūn+1/2) · ϕh1Ci,j×Indxdt dP (ω)

+

∫

Ω×D×[0,T )

∑

i∈I
j∈J

N−1
∑

n=0

Dūn+1/2 · ϕh1Ci,j×Indxdt dP (ω).

Let us consider each term of the sum individually.

• For the first term, we define:

ϕn
i,j :=

∫

D×[0,T )

ϕ1Ci,j×Indxdt.

Consider:

∫

D×[0,T )

∑

i∈I
j∈J

N−1
∑

n=0

un+1 − un

∆t
· ϕ1Ci,j×Indxdt

=
∑

i∈I
j∈J

N−1
∑

n=0

un+1 − un

∆t
·

∫

D×[0,T )

ϕ1Ci,j×Indxdt

=
∑

i∈I
j∈J

N−1
∑

n=0

un+1 − un

∆t
· ϕn

i,j∆x∆y∆t

=
∑

i∈I
j∈J

(

ϕN
i,j · u

N
i,j − ϕ0

i,j · u
0
i,j

)

∆x∆y −
∑

i∈I
j∈J

N−1
∑

n=0

ϕn+1
i,j − ϕn

i,j

∆t
· un+1

i,j ∆t∆x∆y.
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As ϕ is compactly supported in [0, T ) we have ϕN
i,j = 0, ∀i ∈ I, j ∈ J for a

large enough N (i.e. for small enough ∆t). Hence (using Fubini’s theorem):

∫

Ω×D×[0,T )

∑

i∈I
j∈J

N−1
∑

n=0

un+1 − un

∆t
· ϕ1Ci,j×Indxdt dP (ω)

= −
∑

i∈I
j∈J

ϕ0
i,j ·

∫

Ω

u0
i,j dP (ω)∆x∆y

−
∑

i∈I
j∈J

N−1
∑

n=0

ϕn+1
i,j − ϕn

i,j

∆t
·

∫

Ω

un+1
i,j dP (ω)∆t∆x∆y

= −

∫

D

ϕh(x, 0) ·
〈

νh(x,0), id
〉

dx

−

∫

D×[0,T )

∆tϕ
h(x, t) ·

〈

νh(x,t), id
〉

dxdt.

Thus, using the weak*-convergence and the consistency with the initial
data, we obtain

∫

Ω×D×[0,T )

∑

i∈I
j∈J

N−1
∑

n=0

un+1 − un

∆t
ϕ1Ci,j×Indxdt dP (ω)

h→0
→ −

∫

[0,T )

〈〈ν(x, t), id〉 , ϕt〉 dt− 〈〈σ(x), id〉 , ϕ(x, 0)〉 .

• The pressure term is tested against discretely divergence-free vector field,
hence the term drops upon integration.

• Let us now consider the convection term. We notice that the divergence for
the flux form is considered as an edge-centred sequence. Thus, integration
by parts with a cell-centred quantity leads to a forward gradient. The
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convective term becomes:

−

∫

Ω×D×[0,T )

∑

i∈I
j∈J

N−1
∑

n=0

C
n+1/2
i,j · ϕ1D×[tn,tn+1]dxdt dP (ω)

=−

∫

Ω

∑

i∈I
j∈J

N−1
∑

n=0

C
n+1/2
i,j · ϕn

i,j∆x∆y∆t dP (ω)

=

∫

Ω

∑

i∈I
j∈J

N−1
∑

n=0

F
n+1/2
i+1/2,j+1/2 : gradh+ϕ

n
i,j∆x∆y∆t dP (ω)

=

∫

Ω

∑

i∈I
j∈J

N−1
∑

n=0

un ⊗ un : gradh+ϕ
n
i,j∆x∆y∆t dP (ω) +

∥

∥

∥R : gradh+ϕ
h
∥

∥

∥

1

=

∫

Ω

∑

i∈I
j∈J

N−1
∑

n=0

f(uh(xi,j , t
n)) : gradh+ϕ

h(xi,j , t
n)∆x∆y∆t dP (ω)

=

∫

D×[0,T )

〈

νh(x,t), f
〉

: gradh+ϕ
n
i,jdxdt

h→0
→

∫

D×[0,T )

〈

ν(x,t), f
〉

: ∇ϕdxdt,

using consistency, the weak*-convergence of the Young measure (by Young’s
theorem), Fubini’s theorem, and the fact that ϕ ∈ C∞

0 .
• For the dissipation term, consider:

∫

Ω×D×[0,T )

∑

i∈I
j∈J

N−1
∑

n=0

Dūn+1/2 · ϕ1Ci,j×Indxdt dP (ω).

The first term can be bounded in the following way (assuming boundedness
of the coefficients ci,j of the diffusion):

∣

∣

∣

∣

∣

∣

∣

∫

Ω

∑

i∈I
j∈J

N−1
∑

n=0

r
(u∗n+1

+ un)
z2

· gradhϕn
i,j∆x∆y∆t dP (ω)

∣

∣

∣

∣

∣

∣

∣

≤

∫

Ω

∑

i∈I
j∈J

N−1
∑

n=0

∣

∣

∣

r
(u∗n+1

+ un)
z∣
∣

∣

2 ∣
∣

∣gradhϕn
i,j

∣

∣

∣∆x∆y∆t dP (ω)

≤ sup
Ω







∑

i∈I
j∈J

N−1
∑

n=0

(

∣

∣

∣

r
(u∗n+1

+ un)
z∣
∣

∣

3
)

·
∑

i∈I
j∈J

N−1
∑

n=0

(

|gradhϕn
i,j |

3
)







1
3

(∆x∆y∆t)2/3

h→0
→ 0,

by the time total variation limit and smoothness of ϕ. Having space bounds
on the averaged state it follows immediately that the term goes to zero.
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• The divergence-free constraint is treated analogously.

As h→ 0, the approximate measure generated by the scheme converges to a measure
valued solution. �

Given the previous theorem, we have a tool for the consistent approximation of
measure valued solutions from a measure as initial data. For an atomic initial data
(i.e. σ0 = δu0

), we can define an analogous algorithm.
The algorithm is the following (cf. also [15,19]) and uses a Monte-Carlo sampling

procedure:

(1) set a small discretization parameter δ > 0, and create a new random initial
data uδ,0(ω;x), adding a random perturbation of size δ to the initial data
u0(x);

(2) drawM > 0 i.i.d. samples from the random field arising from the perturbed
uδ,0(ω;x);

(3) evolve each sample, individually, using (4), after choosing suitable space-
time discretization parameters;

(4) compute mean, variance and other quantities of interest form the samples.

4. Numerical experiments
{sec:num_exp}

The following computations are performed on the Cray XC40 Piz Dora of the
Swiss National Supercomputing Center and on the ETH Zürich cluster Euler. The
code was developed in C++ and exploits the parallel framework PETSc [3, 4] to
achieve efficient load balancing on distributed domains.

4.1. Vortex patch. As first set of experiments for computation of measure valued
solutions, we consider a vortex patch. We call vortex patch an initial data whose
vorticity takes the form of an indicator function of a set. The vorticity is bounded
and weak solutions with vortex patches as initial data are unique and well defined
in 2D and with periodic boundary conditions [26].

We perform experiments in the domain [0, 1)2 augmented with periodic boundary
conditions. We consider a random initial data given by a random field for the
vorticity η := ∇× u. For a radius r > 0 and a perturbation parameter δ > 0, the
random “vortex-patch” will be η0,δ(ω;x, y) := 1Sδ(ω), where

Sδ(ω) := {(r cos θ, r sin θ) ∈ [0, 1)2 | r < r0 + fδ(ω; θ), θ ∈ [0, 2π)},

(a perturbed ball of radius r0). We define a random perturbation function fδ as

fδ : [−1, 1]2M × [0, 2π) → R,

fδ(ω, θ) :=

M
∑

m=0

δ

S
ω2m sin(2π(ω2m+1 + θ)), with

M
∑

m=0

ω2
2m =: S2.

We choose the final time T = 1 andM = 20. The initial velocity u0 is reconstructed
from the vorticity η0.

In order to test our simulation, we perform M = 400 i.i.d. draws for ω ∼
U(−1, 1). We use the Monte-Carlo estimator to approximate the mean and variance
(cf. Figure 1) of the underlying random field for the velocity and the vorticity.

Numerical evidence indicates that, as δ → 0, the approximate measure valued
solution converges towards a limit measure (cf. Figure 2). Moreover, the perturbed
measure valued solution converges towards an atomic solution (1): i.e. towards the
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(a) Mean with δ = 0.005 (b) Variance at δ = 0.005

(c) Mean at δ = 0.0075 (d) Variance at δ = 0.0075

Figure 1. Color map of mean and variance of the vorticity at time
T = 1 for two different perturbation sizes δ.{fig:patch-map}

Dirac measure of the indicator function of the ball of radius r0 (the initial data with
δ = 0).
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Figure 2. L2-norm of the error of the mean and variance of the
velocity at time T = 1 with different values of δ, for the vortex-
patch initial data w.r.t. to a reference solution with δ = 10e− 5. {fig:patch-conf}

(a) δ = 0.01 (b) δ = 0.0075 (c) δ = 0.005 (d) δ = 0.0025 (e) δ = 0.001

Figure 3. Histograms of the vorticity at the point (0.8, 0.8) and
final time T = 1 for the perturbed vortex patch. {fig:patch-histo}

4.2. Perturbed vortex sheet. We now consider a so-called vortex-sheet. The
vortex-sheet is a standard benchmark commonly used in engineering. Contrary to
the vortex-patch, the vortex-sheet is ill-defined and present large instabilities for
small times. The initial data for the velocity is

u0(x, y) := (H(y), 0),

where H(y) = 1 for y > 0 and H(y) = −1 for y ≤ 0. This initial data is a steady
state for the Euler equations.

We consider a small random perturbation of this initial state. To this end, we
define a perturbation by setting the initial data for the velocity to be the random
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(a) Mean, δ = 0.016. (b) Variance, δ = 0.016.

(c) Mean, δ = 0.008. (d) Variance, δ = 0.008.

Figure 4. Color map of the mean and the variance of both com-
ponents of the velocity u, for different values of δ at time T = 1,
for a fixed mesh resolution of 512× 1024. {fig:sl-mav}

field:

uδ
0(ω;x, y) := P(u0(y + fδ(ω; 2πx)), 0),(22)

where fδ is the same perturbation function used in the case of the vortex patch.
Here P denotes the Leray projection. As boundary conditions, we impose periodic
condition in the x-direction and wall boundaries in the y-direction (where u = 0).
We choose, as final time, T = 1 and as domain [0, 1]×[−1, 1] to ensure the turbulence
zone does not reach the wall boundaries. We perform experiments with a random
space of dimensionM = 20. We compute the sample mean and the sample variance
of the ensemble (cf. Figure 4).

The error of the mean and of the variance of the approximate solution converges
to zero for any time (cf. Figure 5), even if the individual samples do not. Moreover,
looking at the distributions of the components of the velocity at fixed points in time
and space, the variance does not converge to zero and, in fact, the limit measure
appear to be non-atomic (cf. Figure 6).



18 F. LEONARDI

Figure 5. L2-error of the mean and variance for the perturbed
vortex-sheet (with root mean square error) as the perturbation size
δ goes to zero. The error is computed against a reference pertur-
bation of size δ = 10e− 4. {fig:mavconv_sl_eul}

(a) δ = 0.0032 (b) δ = 0.0016 (c) δ = 0.0008 (d) δ = 0.0004

Figure 6. Histograms for the shear-layer at the point p =
(0.5, 0.5) for the first component of the velocity and for different
perturbation sizes (from δ = 0.0016 to 0.0128) at the time T = 1. {sl:histo}

5. Conclusion

In this paper, we presented a fully discrete Monte Carlo finite difference projec-
tion method for the approximation of measure valued solutions of the incompressible
Euler equations. We showed the consistency and weak* convergence of our scheme.
Those properties are derived from the interesting stability features of our scheme.

Numerical experiments demonstrate the difference between vortex-patches (well
defined in the standard weak sense) and vortex-sheets: the first appear to converge
to atomic measure valued solutions (i.e. to standard weak solutions), whilst the sec-
ond appear to converge to non-atomic weak solutions. Out findings strongly suggest
that some initial data, even if atomic, may generate measure valued solutions that
are non-atomic. Our results are consistent with the ones illustrated in [19].
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pp. 225–237.

[22] A. Majda and A. Bertozzi, Vorticity and Incompressible Flow, Cambridge Texts in Applied

Mathematics, Cambridge University Press, 2002.
[23] V. Scheffer, An inviscid flow with compact support in space-time, The Journal of Geometric

Analysis, 3 (1993), pp. 343–401.
[24] A. Shnirelman, On the nonuniqueness of weak solution of the Euler equation, Communica-

tions on Pure and Applied Mathematics, 50 (1997), pp. 1261–1286.
[25] L. Tartar, Compensated compactness and applications to partial differential equations, in

Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, vol. 39 of Res. Notes in
Math., Pitman, Boston, Mass.-London, 1979, pp. 136–212.

[26] V. Yudovich, Non-stationary flow of an ideal incompressible liquid, USSR Computational
Mathematics and Mathematical Physics, 3 (1963), pp. 1407–1456.

E-mail address: filippo.leonardi@sam.math.ethz.ch


	1. Introduction
	1.1. Known results
	1.2. Numerical methods
	1.3. Aim of the paper
	1.4. Contents of the paper

	2. Admissible measure valued solutions
	3. Numerical scheme
	3.1. Definitions
	3.2. Preliminaries
	3.3. Convergence to admissible measure valued solutions

	4. Numerical experiments
	4.1. Vortex patch
	4.2. Perturbed vortex sheet

	5. Conclusion
	6. Aknownledgements
	References

