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Abstract. The fields of photonics and phononics encompass the fundamental
science of light and sound propagation and interactions in complex structures,
and its technological applications. The aim of this book is to review new
and fundamental mathematical tools, computational approaches, and inver-
sion and optimal design methods to address challenging problems in photon-

ics and phononics. An emphasis is placed on analyzing subwavelength res-
onators; super-focusing and super-resolution of electromagnetic and acoustic

waves; photonic and phononic crystals; electromagnetic cloaking; and electro-
magnetic and elastic metamaterials and metasurfaces. Throughout this book,
we demonstrate the power of layer potentials techniques in solving challenging
problems in photonics and phononics when they are combined with asymptotic
analysis. The book could be of interest to researchers and graduate students
working in the fields of applied and computational mathematics, partial dif-
ferential equations, electromagnetic theory, elasticity, integral equations, and
inverse and optimal design problems. Researchers in photonics, phononics,
and nanotechnologies might also find this book helpful.
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Introduction

The aim of this book is to give a self-contained presentation of recent math-
ematical and computational advances in photonics and phononics. The fields of
photonics and phononics encompass the fundamental science of light and elastic
wave propagation and interactions in complex structures, and its technological ap-
plications.

The recent advances in nanoscience present great challenges for the applied and
computational mathematics community. In nanophotonics, the aim is to control,
manipulate, reshape, guide, and focus electromagnetic waves at nanometer length
scales, beyond the resolution limit. In particular, one wants to push the resolution
limit by reducing the focal spot and confining light to length scales significantly
smaller than half the wavelength. Nanostructures also open exciting opportunities
for tuning the phonon energy spectrum and related acoustic material properties for
specific applications.

Interactions between the field of photonics and mathematics has led to the
emergence of a a multitude of new and unique solutions in which today’s conven-
tional technologies are approaching their limits in terms of speed, capacity and
accuracy.

Light can be used for detection and measurement in a fast, sensitive and ac-
curate manner, and thus photonics possesses a unique potential to revolutionize
healthcare.

Light-based technologies can be used effectively for very early detection of dis-
eases, with non-invasive imaging techniques or point-of-care applications. They are
also instrumental in the analysis of processes at the molecular level, giving a greater
understanding of the origin of diseases, and hence allowing prevention along with
new treatments.

Photonic technologies also play a major role in addressing the needs of our
ageing society: from pace-makers to synthetic bones and from endoscopes to the
micro-cameras used in in-vivo processes. Photonics are used also in advanced light-
ing technology and in improving energy efficiency and quality.

The emerging discipline of phononics encompasses many disciplines, including
quantum physics and mechanics, materials science engineering and applied mathe-
matics.

Specialized phononic crystals are currently being developed. These are artifi-
cial, elastic structures with unusual acoustic wave propagation capabilities, such as
the ability to increase the resolution of ultrasound imaging with super lenses, or to
process information with sound-based circuits.

By using photonic and phononic media to control waves across a wide band
of wavelengths, we have unprecedented ability to fabricate new optical and elastic
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2 INTRODUCTION

materials with specific microstructures. Modern technologies are certainly going to
be based on the manipulation of electrons and photons.

Our main objective in this book is to report on the use of sophisticated math-
ematics in diffractive optics; plasmonics; super-resolution; photonic and phononic
crystals; and metamaterials for electromagnetic and elastic invisibility and cloaking.

We develop new mathematical and computational models for wave scattering
from sub-wavelength resonators and introduce a unified approach for designing,
at low frequencies, metamaterials for cloaking and high-contrast media for sub-
wavelength resolution. We establish sub-wavelength imaging approaches based on
the use of resonant plasmonic nanoparticles and Minnaert bubbles. Through an-
alyzing the mathematical properties of sub-wavelength resonators, we unify the
theories of metamaterials and super-focusing. This is certain to pave the way for
the reshaping, controlling, and manipulation of waves at sub-wavelength scales.

The book merges various branches of mathematics to advance the field of math-
ematical modelling of optical and acoustic subwavelength devices and structures
capable of light enhancement, and of the focusing and guiding of light at a subwave-
length scale. These include asymptotic analysis, spectral analysis, and harmonic
analysis.

In particular, the book shows how powerful the layer potential techniques are
for solving challenging problems in photonics and phononics, especially when they
are combined with asymptotic analysis and the elegant theory of Gohberg and Sigal
on meromorphic operator-valued functions.

The emphasis of this book is placed on mathematically analyzing plasmon reso-
nant nanoparticles and Minnaert bubbles, diffractive optics, photonic and phononic
crystals, super-resolution, and metamaterials. For each of these topics, a solid math-
ematical and computational framework and an optimal design approach in the sense
of robustness and accuracy is derived.

Plasmon resonant nanoparticles have unique capabilities of enhancing the bright-
ness of light and confining strong electromagnetic fields. A reason for the thriving
interest in optical studies of plasmon resonant nanoparticles is due to their re-
cently proposed use as labels for molecular biology. New types of cancer diagnostic
nanoparticles are constantly being developed.

A distinctive feature of bubbles in fluid is the high contrast between the air
density inside and outside of the bubble. This results in a quasi-static acoustic
resonance, called the Minnaert resonance. At or near this resonant frequency, the
size of the bubble can be three orders of magnitude smaller than the wavelength
of the incident wave and the bubble behaves as a very strong monopole scatterer
of sound. The resonance makes the bubble a good candidate for acoustic sub-
wavelength resonator. Bubbles have the potential to be the basic building blocks
not only for sub-wavelength acoustic imaging but also for acoustic meta-materials.

Super-resolution involves pushing the diffraction limits by reducing the focal
spot size. Super-focusing is the counterpart of super-resolution. It describes elec-
tromagnetic, acoustic or elastic waves to be confined to a length scale significantly
smaller than the diffraction limit of the focused waves. The super-focusing phenom-
enon is being intensively investigated in the field of nanophotonics as a technique
with the potential to focus electromagnetic radiation in a region of order of a few
nanometers beyond the diffraction limit of light and thereby causing an extraordi-
nary enhancement of the electromagnetic field.
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Plasmon resonant nanoparticles and Minnaert bubbles provide a possible means
of achieving super-resolved imaging in biophonics. In this book, we study the
resonant property of high-contrast particles for different particle geometries and
environments, and use them to achieve super-focusing and to investigate super-
focusing and its counterpart super-resolution.

Diffractive optics is a fundamental and vigorously growing technology which
continues to be a source of novel optical devices. Significant recent technology
developments of high precision micromachining techniques have permitted the cre-
ation of gratings (periodic structures) and other diffractive structures with tiny fea-
tures. Current and potential application areas include corrective lenses, microsen-
sors, optical storage systems, optical computing and communications components,
and integrated opto-electronic semiconductor devices.

Because of the small structural features, light propagation in micro-optical
structures is generally governed by diffraction. In order to accurately predict the
energy distributions of an incident field in a given structure, the numerical solution
of the governing equation is required. If the field configurations are built up of
harmonic electromagnetic waves that are transverse, then the Maxwell equations
can be reduced to two scalar Helmholtz equations.

Throughout this book, we will focus on this scalar model and address signif-
icant developments in mathematical analysis and modeling of diffractive optics.
Particular emphasis is placed on the formulation of the mathematical model; well-
posedness and regularity analysis of the solutions of governing equations in gratings;
and optimal design and inverse diffraction problems in diffractive optics.

Photonic and phononic crystals are structures constructed of electromagnetic
and elastic materials arranged in a periodic array. They have attracted enormous
interest in the last decade because of their unique electromagnetic or elastic prop-
erties. Such structures have been found to exhibit interesting spectral properties
with respect to classical wave propagation, including the appearance of band gaps
[456, 278, 414]. In this book we construct subwavelength photonic and phononic
crystals using plasmonic particles and Minnaert bubbles.

Electromagnetic and elasticity invisibility is to render a target invisible to elec-
tromagnetic and elastic probing. In this book, we investigate many schemes. Based
on a new effective medium theory for subwavelength resonators, we also provide a
mathematical framework for electromagnetic and elastic metamaterials.

The bibliography provides a list of relevant references. It is by no means com-
prehensive. However, it should provide the reader with some useful guidance in
searching for further details on the main ideas and approaches discussed in this
book.

The material in this book is taught as a graduate course in applied mathemat-
ics at ETH. Tutorial notes and Matlab codes can be downloaded at Codes. Some of
the material in this book is from our wonderful collaborations with Toufic Abboud,
Gang Bao, Giulio Ciraolo, Josselin Garnier, David Gontier, Vincent Jugnon, Hyun-
dae Lee, Mikyoung Lim, Pierre Millien, Graeme Milton, Jean-Claude Nédélec, Fadil
Santosa, Michael Vogelius, and Darko Volkov. We feel indebted to all of them.

http://www.sam.math.ethz.ch/~grsam/HS16/MCMP
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CHAPTER 1

Generalized Argument Principle

and Rouché’s Theorem

1.1. Introduction

In this chapter we review the results of Gohberg and Sigal in [237] concerning
the generalization to operator-valued functions of two classical results in complex
analysis, the argument principle and Rouché’s theorem. An efficient and reliable
method, referred to as Muller’s method, for finding a zero of a function defined
on the complex plane is presented. This numerical method can be used for com-
puting poles of integral operators, in particular for the computation of resonant
cavities, band gap structures, and plasmonic resonances in nanoparticles. The re-
sults described in this chapter will be applied to the mathematical theory of cavities,
plasmonic nanoparticles, and photonic and phononic crystals.

1.2. Argument Principle and Rouché Theorem

To state the argument principle, we first observe that if f is holomorphic and
has a zero of order n at z0, we can write f(z) = (z−z0)ng(z), where g is holomorphic
and nowhere vanishing in a neighborhood of z0, and therefore

f ′(z)
f(z)

=
n

z − z0
+
g′(z)
g(z)

.

Then the function f ′/f has a simple pole with residue n at z0. A similar fact also
holds if f has a pole of order n at z0, that is, if f(z) = (z − z0)

−nh(z), where h is
holomorphic and nowhere vanishing in a neighborhood of z0. Then

f ′(z)
f(z)

= − n

z − z0
+
h′(z)
h(z)

.

Therefore, if f is meromorphic, the function f ′/f will have simple poles at the zeros
and poles of f , and the residue is simply the order of the zero of f or the negative
of the order of the pole of f .

The argument principle results from an application of the residue formula. It
asserts the following.

Theorem 1.1 (Argument principle). Let V ⊂ C be a bounded domain with
smooth boundary ∂V positively oriented and let f(z) be a meromorphic function in
a neighborhood of V . Let P and N be the number of poles and zeros of f in V ,
counted with their orders. If f has no poles and never vanishes on ∂V , then

(1.1)
1

2π
√
−1

∫

∂V

f ′(z)
f(z)

dz = N − P.

7



8 1. GENERALIZED ARGUMENT PRINCIPLE AND ROUCHÉ’S THEOREM

Rouché’s theorem is a consequence of the argument principle [437]. It is in
some sense a continuity statement. It says that a holomorphic function can be
perturbed slightly without changing the number of its zeros. It reads as follows.

Theorem 1.2 (Rouché’s theorem). With V as above, suppose that f(z) and
g(z) are holomorphic in a neighborhood of V . If |f(z)| > |g(z)| for all z ∈ ∂V , then
f + g and f have the same number of zeros in V .

In order to explain the main results of Gohberg and Sigal in [237], we begin
with the finite-dimensional case which was first considered by Keldys̆ in [293];
see also [349]. We proceed to generalize formula (1.1) in this case as follows. If a
matrix-valued function A(z) is holomorphic in a neighborhood of V and is invertible
in V except possibly at a point z0 ∈ V , then by Gaussian eliminations we can write

(1.2) A(z) = E(z)D(z)F (z) in V,

where E(z), F (z) are holomorphic and invertible in V and D(z) is given by

D(z) =



(z − z0)

k1 0
. . .

0 (z − z0)
kn


 .

Moreover, the powers k1, k2, . . . , kn are uniquely determined up to a permutation.
Let tr denote the trace. By virtue of the factorization (1.2), it is easy to produce

the following identity:

1

2π
√
−1

tr

∫

∂V

A(z)−1 d

dz
A(z) dz

=
1

2π
√
−1

tr

∫

∂V

(
E(z)−1 d

dz
E(z) +D(z)−1 d

dz
D(z) + F (z)−1 d

dz
F (z)

)
dz

=
1

2π
√
−1

tr

∫

∂V

D(z)−1 d

dz
D(z) dz

=

n∑

j=1

kj ,

which generalizes (1.1).
In the next sections, we will extend the above identity as well as the factoriza-

tion (1.2) to infinite-dimensional spaces under some natural conditions.

1.3. Definitions and Preliminaries

In this section we introduce the notation we will use in the text, gather a few
definitions, and present some basic results, which are useful for the statement of
the generalized Rouché theorem.

1.3.1. Compact Operators. If B and B′ are two Banach spaces, we denote
by L(B,B′) the space of bounded linear operators from B into B′. An operator
K ∈ L(B,B′) is said to be compact provided K takes any bounded subset of B to
a relatively compact subset of B′, that is, a set with compact closure.

The operator K is said to be of finite rank if Im(K), the range of K, is finite-
dimensional. Clearly every operator of finite rank is compact.

The next result is called the Fredholm alternative. See, for example, [312].
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Proposition 1.3 (Fredholm alternative). Let K be a compact operator on the
Banach space B. For λ ∈ C, λ 6= 0, (λI − K) is surjective if and only if it is
injective.

1.3.2. Fredholm Operators. An operator A ∈ L(B,B′) is said to be Fred-
holm provided the subspace KerA is finite-dimensional and the subspace ImA is
closed in B′ and of finite codimension. Let Fred(B,B′) denote the collection of
all Fredholm operators from B into B′. We can show that Fred(B,B′) is open in
L(B,B′).

Next, we define the index of A ∈ Fred(B,B′) to be

indA = dimKerA− codim ImA.

In finite dimensions, the index depends only on the spaces and not on the operator.
The following proposition shows that the index is stable under compact per-

turbations [312].

Proposition 1.4. If A : B → B′ is Fredholm and K : B → B′ is compact, then
their sum A+K is Fredholm, and

ind (A+K) = indA.

Proposition 1.4 is a consequence of the following fundamental result about the
index of Fredholm operators.

Proposition 1.5. The mapping A 7→ indA is continuous in Fred(B,B′); i.e.,
ind is constant on each connected component of Fred(B,B′).

1.3.3. Characteristic Value and Multiplicity. We now introduce the no-
tions of characteristic values and root functions of analytic operator-valued func-
tions, with which the readers might not be familiar. We refer, for instance, to the
book by Markus [338] for the details.

Let U(z0) be the set of all operator-valued functions with values in L(B,B′)
which are holomorphic in some neighborhood of z0, except possibly at z0.

The point z0 is called a characteristic value of A(z) ∈ U(z0) if there exists a
vector-valued function φ(z) with values in B such that

(i) φ(z) is holomorphic at z0 and φ(z0) 6= 0,
(ii) A(z)φ(z) is holomorphic at z0 and vanishes at this point.

Here, φ(z) is called a root function of A(z) associated with the characteristic value
z0. The vector φ0 = φ(z0) is called an eigenvector. The closure of the linear set of
eigenvectors corresponding to z0 is denoted by KerA(z0).

Suppose that z0 is a characteristic value of the function A(z) and φ(z) is an
associated root function. Then there exists a number m(φ) ≥ 1 and a vector-valued
function ψ(z) with values in B′, holomorphic at z0, such that

A(z)φ(z) = (z − z0)
m(φ)ψ(z), ψ(z0) 6= 0.

The number m(φ) is called the multiplicity of the root function φ(z).
For φ0 ∈ KerA(z0), we define the rank of φ0, denoted by rank(φ0), to be the

maximum of the multiplicities of all root functions φ(z) with φ(z0) = φ0.
Suppose that n = dimKerA(z0) < +∞ and that the ranks of all vectors in

KerA(z0) are finite. A system of eigenvectors φj0, j = 1, . . . , n, is called a canonical
system of eigenvectors of A(z) associated to z0 if their ranks possess the following

property: for j = 1, . . . , n, rank(φj0) is the maximum of the ranks of all eigenvectors
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in the direct complement in KerA(z0) of the linear span of the vectors φ10, . . . , φ
j−1
0 .

We call

N(A(z0)) :=

n∑

j=1

rank(φj0)

the null multiplicity of the characteristic value z0 of A(z). If z0 is not a characteristic
value of A(z), we put N(A(z0)) = 0.

Suppose that A−1(z) exists and is holomorphic in some neighborhood of z0,
except possibly at z0. Then the number

M(A(z0)) = N(A(z0))−N(A−1(z0))

is called the multiplicity of z0. If z0 is a characteristic value and not a pole of A(z),
thenM(A(z0)) = N(A(z0)) whileM(A(z0)) = −N(A−1(z0)) if z0 is a pole and not
a characteristic value of A(z).

1.3.4. Normal Points. Suppose that z0 is a pole of the operator-valued func-
tion A(z) and the Laurent series expansion of A(z) at z0 is given by

A(z) =
∑

j≥−s
(z − z0)

jAj .(1.3)

If in (1.3) the operators A−j , j = 1, . . . , s, have finite-dimensional ranges, then A(z)
is called finitely meromorphic at z0.

The operator-valued function A(z) is said to be of Fredholm type (of index zero)
at the point z0 if the operator A0 in (1.3) is Fredholm (of index zero).

If A(z) is holomorphic and invertible at z0, then z0 is called a regular point of
A(z). The point z0 is called a normal point of A(z) if A(z) is finitely meromorphic,
of Fredholm type at z0, and regular in a neighborhood of z0 except at z0 itself.

1.3.5. Trace. Let A be a finite-dimensional operator acting from B into itself.
There exists a finite-dimensional invariant subspace C of A such that A annihilates
some direct complement of C in B. We define the trace of A to be that of A|C ,
which is given in the usual way. It is desirable to recall some results about the
trace operator.

Proposition 1.6. The following results hold:

(i) trA is independent of the choice of C, so that it is well-defined.
(ii) tr is linear.
(iii) If B is a finite-dimensional operator from B to itself, then

trAB = trBA.

(iv) If M is a finite-dimensional operator from B × B′ to itself, given by

M =

(
A B
C D

)
,

then trM = trA+ trD.

Recall that if an operator-valued function C(z) is finitely meromorphic in the
neighborhood V of z0, which contains no poles of C(z) except possibly z0, then∫
∂V

C(z) dz is a finite-dimensional operator. The following identity will also be
used frequently.
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Proposition 1.7. Let A(z) and B(z) be two operator-valued functions which
are finitely meromorphic in the neighborhood V of z0, which contains no poles of
A(z) and B(z) other than z0. Then we have

(1.4) tr

∫

∂V

A(z)B(z) dz = tr

∫

∂V

B(z)A(z) dz.

1.4. Factorization of Operators

We say that A(z) ∈ U(z0) admits a factorization at z0 if A(z) can be written
as

(1.5) A(z) = E(z)D(z)F (z),

where E(z), F (z) are regular at z0 and

(1.6) D(z) = P0 +

n∑

j=1

(z − z0)
kjPj .

Here, Pj ’s are mutually disjoint projections, P1, . . . , Pn are one-dimensional opera-

tors, and I −
n∑

j=0

Pj is a finite-dimensional operator.

Theorem 1.8. A(z) ∈ U(z0) admits a factorization at z0 if and only if A(z) is
finitely meromorphic and of Fredholm type of index zero at z0.

Proof. Suppose that A(z) is finitely meromorphic and of Fredholm type of
index zero at z0. We shall construct E,F, and D such that (1.5) holds. Write the
Laurent series expansion of A(z) as follows:

A(z) =

+∞∑

j=−ν
(z − z0)

jAj

in some neighborhood U of z0. Since indA0 = 0, then by the Fredholm alternative
B0 := A0+K0 is invertible for some finite-dimensional operator K0. Consequently,

B(z) := K0 +

+∞∑

j=0

(z − z0)
jAj

is invertible in some neighborhood U1 of z0 and

(1.7) A(z) = C(z) +B(z) = B(z)[I +B−1(z)C(z)],

where

C(z) =
−1∑

j=−ν
(z − z0)

jAj −K0.

Since K(z) := B−1(z)C(z) is finitely meromorphic, we can write K(z) in the
form

K(z) =

ν∑

j=1

(z − z0)
−jKj + T1(z),

where Kj , j = 1, . . . , ν, are finite-dimensional and T1 is holomorphic.
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Since the operators Aj and Kj are finite-dimensional, there exists a subspace
N of B of finite codimension such that




N ⊂ KerAj , j = −ν, . . . ,−1,

N ⊂ KerKj , j = 0, . . . , ν,

N
⋂
Im Kj = {0}, j = 1, . . . , ν.

Let C be a direct finite-dimensional complement of N in B and let P be the pro-
jection onto C satisfying P (I − P ) = 0. Set P0 := I − P . We have

I +K(z) = I + PK(z)P + P0K(z)P

= I + PK(z)P + P0T1(z)P,

and therefore,

(1.8) I +K(z) = (I + PK(z)P )(I + P0T1(z)P ).

Since P (I + K(z))P can be viewed as an operator from C into itself and C is
finite-dimensional, it follows from Gaussian elimination that

P (I +K(z))P = E1(z)D1(z)F1(z),

where D1(z) is diagonal and E1(z) and F1(z) are holomorphic and invertible. In
view of (1.8), this implies that

A(z) = B(z)(P0 + P (I +K(z))P )(I + P0T1(z)P )

= B(z)(P0 + E1(z)D1(z)F1(z))(I + P0T1(z)P )

= B(z)(P0 + E1(z))(P0 +D1(z))(P0 + F1(z))(I + P0T1(z)P ).

Here I +P0T1(z)P is holomorphic and invertible with inverse I −P0T1(z)P . Thus,
taking

E(z) := B(z)(P0 + E1(z)), F (z) := (P0 + F1(z))(I + P0T1(z)P )

yields the desired factorization for A since E(z) and F (z), given by the above
formulas, are holomorphic and invertible at z0.

The converse result, that A(z) = E(z)D(z)F (z) with E(z), F (z) regular at z0
and D(z) satisfying (1.6) is finitely meromorphic and of Fredholm type of index
zero at z0, is easy. �

Corollary 1.9. A(z) is normal at z0 if and only if A(z) admits a factorization

such that I =

n∑

j=0

Pj in (1.6). Moreover, we have

M(A(z0)) = k1 + · · ·+ kn

for k1, . . . , kn, given by (1.6).

Corollary 1.10. Every normal point of A(z) is a normal point of A−1(z).

1.5. Main Results of the Gohberg and Sigal Theory

We now tackle our main goal of this chapter, which is to generalize the argument
principle and Rouché’s theorem to operator-valued functions.
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1.5.1. Argument Principle. Let V be a simply connected bounded domain
with rectifiable boundary ∂V . An operator-valued function A(z) which is finitely
meromorphic and of Fredholm type in V and continuous on ∂V is called normal
with respect to ∂V if the operator A(z) is invertible in V , except for a finite number
of points of V which are normal points of A(z).

Lemma 1.11. An operator-valued function A(z) is normal with respect to ∂V
if it is finitely meromorphic and of Fredholm type in V , continuous on ∂V , and
invertible for all z ∈ ∂V .

Proof. To prove that A is normal with respect to ∂V , it suffices to prove that
A(z) is invertible except at a finite number of points in V . To this end choose a
connected open set U with U ⊂ V so that A(z) is invertible in V \ U . Then, for
each ξ ∈ U , there exists a neighborhood Uξ of ξ in which the factorization (1.5)

holds. In Uξ, the kernel of A(z) has a constant dimension except at ξ. Since U is

compact, we can find a finite covering of U , i.e.,

U ⊂ Uξ1 ∪ · · · ∪ Uξk ,

for some points ξ1, . . . , ξk ∈ U . Therefore, dimKerA(z) is constant in V \{ξ1, . . . , ξk},
and so A(z) is invertible in V \ {ξ1, . . . , ξk}. �

Now, if A(z) is normal with respect to the contour ∂V and zi, i = 1, . . . , σ, are
all its characteristic values and poles lying in V , we put

M(A(z); ∂V ) =

σ∑

i=1

M(A(zi)).(1.9)

The full multiplicity M(A(z); ∂V ) of A(z) in V is the number of characteristic
values of A(z) in V , counted with their multiplicities, minus the number of poles
of A(z) in V , counted with their multiplicities.

Theorem 1.12 (Generalized argument principle). Suppose that the operator-
valued function A(z) is normal with respect to ∂V . Then we have

1

2π
√
−1

tr

∫

∂V

A−1(z)
d

dz
A(z)dz = M(A(z); ∂V ).(1.10)

Proof. Let zj , j = 1, . . . , σ, denote all the characteristic values and all the
poles of A lying in V . The key of the proof lies in using the factorization (1.5) in
each of the neighborhoods of the points zj . We have

1

2π
√
−1

tr

∫

∂V

A−1(z)
d

dz
A(z)dz =

σ∑

j=1

1

2π
√
−1

tr

∫

∂Vj

A−1(z)
d

dz
A(z)dz,(1.11)

where, for each j, Vj is a neighborhood of zj . Moreover, in each Vj , the following
factorization of A holds:

A(z) = E(j)(z)D(j)(z)F (j)(z), D(j)(z) = P
(j)
0 +

nj∑

i=1

(z − zj)
kijP

(j)
i .
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As for the matrix-valued case at the beginning of this chapter, it is readily verified
that

1

2π
√
−1

tr

∫

∂Vj

A−1(z)
d

dz
A(z)dz =

1

2π
√
−1

tr

∫

∂Vj

(D(j)(z))−1 d

dz
D(j)(z)dz

=

nj∑

i=1

kij =M(A(zj)).

Now, (1.10) follows by using (1.11). �

The following is an immediate consequence of Lemma 1.11, identity (1.10), and
(1.4).

Corollary 1.13. If the operator-valued functions A(z) and B(z) are normal
with respect to ∂V , then C(z) := A(z)B(z) is also normal with respect to ∂V , and

M(C(z); ∂V ) = M(A(z); ∂V ) +M(B(z); ∂V ).

The following general form of the argument principle will be useful. It can be
proven by the same argument as the one in Theorem 1.12.

Theorem 1.14. Suppose that A(z) is an operator-valued function which is nor-
mal with respect to ∂V . Let f(z) be a scalar function which is analytic in V and
continuous in V . Then

1

2π
√
−1

tr

∫

∂V

f(z)A−1(z)
d

dz
A(z)dz =

σ∑

j=1

M(A(zj))f(zj),

where zj , j = 1, . . . , σ, are all the points in V which are either poles or characteristic
values of A(z).

1.5.2. Generalization of Rouché’s Theorem. A generalization of Rouché’s
theorem to operator-valued functions is stated below.

Theorem 1.15 (Generalized Rouché’s theorem). Let A(z) be an operator-
valued function which is normal with respect to ∂V . If an operator-valued func-
tion S(z) which is finitely meromorphic in V and continuous on ∂V satisfies the
condition

‖A−1(z)S(z)‖L(B,B) < 1, z ∈ ∂V,

then A(z) + S(z) is also normal with respect to ∂V and

M(A(z); ∂V ) = M(A(z) + S(z); ∂V ).

Proof. Let C(z) := A−1(z)S(z). By Corollary 1.10, C(z) is finitely meromor-
phic in V . Suppose that z1, z2, . . . , zn, are all of the poles of C(z) in V and that
C(z) has the following Laurent series expansion in some neighborhood of each zj :

C(z) =
+∞∑

k=−νj
(z − zj)

kC
(j)
k .

Let N be the intersection of the kernels KerC
(j)
k for j = 1, . . . , n and k =

1, . . . , νj . Then, dimB/N < +∞ and the restriction C(z)|N of C(z) to N is holo-
morphic in V .
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Let q := maxz∈∂V ‖C(z)‖, which by assumption is less than 1. Since

∆z‖C(z)|N‖2 = 4‖ ∂
∂z
C(z)|N‖2,

then ‖C(z)|N‖ is subharmonic in V , and hence we have from the maximum principle

max
z∈V

‖C(z)|N‖ ≤ q.

It then follows that

‖(I + C(z))x‖ ≥ (1− q)‖x‖, x ∈ N, z ∈ V.

This implies that (I + C(z))|N has a closed range and Ker(I + C(z))|N = 0.
Therefore, I + C(z) has a closed range and a kernel of finite dimension for z ∈
V \ {z1, . . . , zn}. By a slight extension of Proposition 1.5 [441], I(z) defined by

I(z) = dimKer(I + C(z))− codim Im(I + C(z))

is continuous for z ∈ V \ {z1, . . . , zn}. Thus,

ind(I + C(z)) = 0 for z ∈ V \ {z1, . . . , zn}.

Moreover, since the Laurent series expansion of (I +C(z))|N in a neighborhood of
zj is given by

(1.12) (I + C(z))|N = I|N +

+∞∑

k=0

(z − zj)
kC

(j)
k |N,

it follows that (I+C
(j)
0 )|N has a closed range and a trivial kernel. Using Propositions

1.4 and 1.5, we have

ind(I + C
(j)
0 ) = ind(I +

+∞∑

k=0

(z − zj)
kC

(j)
k ) = ind(I + C(z)) = 0.

Thus, (I + C
(j)
0 ) is Fredholm. By Lemma 1.11, we deduce that I + C(z) is normal

with respect to ∂V .
Now we claim that M(I + C(z); ∂V ) = 0. To see this, we note that I + tC(z)

is normal with respect to ∂V for 0 ≤ t ≤ 1. Let

f(t) := M(I + tC(z); ∂V ).

Then f(t) attains integers as its values. On the other hand, since

(1.13) f(t) =
1

2π
√
−1

tr

∫

∂V

t(I + tC(z))−1 d

dz
C(z) dz

and (I+ tC(z))−1 is continuous in [0, 1] in operator norm uniformly in z ∈ ∂V , f(t)
is continuous in [0, 1]. Thus, f(1) = f(0) = 0.

Finally, with the help of Corollary 1.13, we can conclude that the theorem
holds. �
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1.5.3. Generalization of Steinberg’s Theorem. Steinberg’s theorem as-
serts that if K(z) is a compact operator on a Banach space, which is analytic in z
for z in a region V in the complex plane, then I +K(z) is meromorphic in V . See
[438]. A generalization of this theorem to finitely meromorphic operators was first
given by Gohberg and Sigal in [237]. The following important result holds.

Theorem 1.16 (Generalized Steinberg’s theorem). Suppose that A(z) is an
operator-valued function which is finitely meromorphic and of Fredholm type in the
domain V . If the operator A(z) is invertible at one point of V , then A(z) has a
bounded inverse for all z ∈ V , except possibly for certain isolated points.

1.6. Muller’s Method

Muller’s method is an efficient and fairly reliable interpolation method for find-
ing a zero of a function defined on the complex plane and, in particular, for deter-
mining a simple or multiple root of a polynomial. It finds real as well as complex
roots. Compared to Newton’s method, it has the advantage that the derivatives
of the function need not to be computed. Moreover, it converges even faster than
Newton’s method [439].

For a function f define its divided differences by

f [x0] := f(x0),

f [x0, x1] :=
f [x1]− f [x0]

x1 − x0
,

f [x0, x1, x2] :=
f [x1, x2]− f [x0, x1]

x2 − x0
,

...

f [x0, x1, . . . , xk] :=
f [x1, . . . , xk]− f [x0, . . . , xk−1]

xk − x0
,

...

The quadratic polynomial which interpolates a function f at xi−2, xi−1, xi can
be written as

Qi(x) = f [xi] + f [xi−1, xi](x− xi) + f [xi−2, xi−1, xi](x− xi−1)(x− xi),

or

Qi(x) = ai(x− xi)
2 + 2bi(x− xi) + ci,

where
ai := f [xi−2, xi−1, xi],

bi :=
1

2
(f [xi−1, xi] + f [xi−2, xi−1, xi](xi − xi−1)),

ci := f [xi].

If hi is the root of smallest absolute value of the quadratic equation

aih
2 + 2bih+ ci = 0,

then xi+1 := xi + hi is the root of Qi(x) closest to xi.
In order to express the smaller root of a quadratic equation in a numerically sta-

ble fashion, the reciprocal of the standard solution formula for quadratic equations
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should be used. Then Muller’s iteration takes the form

(1.14) xi+1 := xi −
ci

bi ±
√
b2i − aici

,

where the sign of the square root is chosen so as to maximize the absolute value of
the denominator.

Once a new approximate value xi+1 has been found, the function f is evaluated
at xi+1 to find

f [xi+1] := f(xi+1),

f [xi, xi+1] :=
f [xi+1]− f [xi]

xi+1 − xi
,

f [xi−1, xi, xi+1] :=
f [xi, xi+1]− f [xi−1, xi]

xi+1 − xi−1
.

These quantities determine the next quadratic interpolating polynomial Qi+1(x).
It can be shown that the errors δi = (xi−ξ) of Muller’s method in the proximity

of a single zero ξ of f(x) = 0 satisfy

δi+1 = δiδi−1δi−2

(
− f (3)(ξ)

6f ′(ξ)
+O(δ)

)
,

where δ = max(|δi|, |δi−1|, |δi−2|). It can also be shown that Muller’s method is
at least of order the largest root q of the equation ζ3 − ζ2 − ζ − 1 = 0, which is
approximately 1.84.

The Matlab code is at Muller’s Method. As an illustration, we consider the
complex valued function

f(z) = sin(z) + 5 +
√
−1,

whose exact roots are given by zα = 2πn − sin−1(5 +
√
−1) or zβ = 2πn + π +

sin−1(5 +
√
−1) for n ∈ Z. We can obtain the roots of this function numerically

using the code referenced above. For instance, if we take n = 0 then the exact
root (to eight decimal places) is zα = −1.36960125 − 2.31322094

√
−1. Choosing

appropriate initial guesses, say, z0 = 0.5, z1 = 1 + 3
√
−1, and z2 = −1 − 2

√
−1,

our numerical result for this root is also −1.36960125− 2.31322094
√
−1.

1.7. Concluding Remarks

In this chapter, we have reviewed the main results in the theory of Gohberg
and Sigal on meromorphic operator-valued functions. These results concern the
generalization of the argument principle and the Rouché theorem to meromorphic
operator-valued functions. Some of these results have been extended to very general
operator-valued functions in [125, 333] and with other types of spectrum than
isolated eigenvalues in [337]. The theory of Gohberg and Sigal will be applied to
perturbation theory of eigenvalues in Chapter 3. Other interesting applications
include the investigation of scattering resonances and scattering poles [247, 139].
Finally, we have described Muller’s method for finding complex roots of scalar
equations.

http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial1/1.1 Mullers Method.zip




CHAPTER 2

Layer Potentials

2.1. Introduction

The mathematical and numerical framework for analyzing photonic and phononic
problems described in this book relies on layer potential techniques.

In this chapter we prepare the way by reviewing a number of basic facts and
preliminary results regarding the layer potentials associated with the Laplacian,
the Helmholtz equation, the Maxwell equations, and the operator of elasticity. The
most important results in this chapter are on the one hand what we call character-
ization of eigenvalues as characteristic values of layer potentials and on the other
hand, the spectral properties of Neumann-Poincaré operators. Due to the vectorial
aspect of the Maxwell equations and the equations of elasticity, the analysis for the
electromagnetism and the elasticity is more delicate than in the scalar case. We also
note that when dealing with exterior problems for the Helmholtz equation, Maxwell
equations or harmonic elasticity, one should introduce a radiation condition to select
the physical solution to the problem. Together with reciprocity properties satisfied
by fundamental solutions to the acoustic, electromagnetic, or elastic wave propaga-
tion problems, radiation conditions yield Helmholtz-Kirchhoff identities, which play
a key role in the analysis of resolution in wave imaging. We state the optical the-
orem, which establishes a fundamental relation between the imaginary part of the
scattering amplitude and the total (or extinction) cross-section. We also investigate
quasi-periodic Green’s functions and associated layer potentials for the Helmholtz
equation and the Lamé system. We provide spectral and spatial representations
of the Green’s functions in periodic domains and describe analytical techniques for
transforming them from slowly convergent representations into forms more suitable
for computation. In particular, we discuss in some detail Ewald’s method, which
consists in splitting the quasi-periodic Green’s function into a spectral part and a
spatial part to achieve exponential convergence.

2.2. Sobolev Spaces

For ease of notation we will sometimes use ∂2 to denote the Hessian.
Let Ω be a smooth domain. We define the Hilbert space H1(Ω) by

H1(Ω) =

{
u ∈ L2(Ω) : ∇u ∈ L2(Ω)

}
,

where ∇u is interpreted as a distribution and L2(Ω) is defined in the usual way,
with

||u||L2(Ω) =

(∫

Ω

|u|2
)1/2

.

19
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The space H1(Ω) is equipped with the norm

||u||H1(Ω) =

(∫

Ω

|u|2 +
∫

Ω

|∇u|2
)1/2

.

If Ω is bounded, another Banach space H1
0 (Ω) arises by taking the closure of

C∞
0 (Ω), the set of infinitely differentiable functions with compact support in Ω, in
H1(Ω). We will also need the space H1

loc(R
d \Ω) of functions u ∈ L2

loc(R
d \Ω), the

set of locally square summable functions in Rd \ Ω, such that

hu ∈ H1(Rd \ Ω), ∀ h ∈ C∞
0 (Rd \ Ω).

Furthermore, we define H2(Ω) as the space of functions u ∈ H1(Ω) such that
∂2u ∈ L2(Ω) and the space H3/2(Ω) as the interpolation space [H1(Ω), H2(Ω)]1/2
(see, for example, the book by Bergh and Löfström [132]). We also define the
Banach space W 1,∞(Ω) by

(2.1) W 1,∞(Ω) =

{
u ∈ L∞(Ω) : ∇u ∈ L∞(Ω)

}
,

where ∇u is interpreted as a distribution and L∞(Ω) is defined in the usual way,
with

||u||L∞(Ω) = inf

{
C ≥ 0 : |u(x)| ≤ C a.e. x ∈ Ω

}
.

The trace theorem states that the trace operator u 7→ u|∂Ω is a bounded linear
surjective operator from H1(Ω) into H1/2(∂Ω). Here, f ∈ H1/2(∂Ω) if and only if
f ∈ L2(∂Ω) and

∫

∂Ω

∫

∂Ω

|f(x)− f(y)|2
|x− y|d dσ(x) dσ(y) < +∞.

We set H−1/2(∂Ω) = (H1/2(∂Ω))∗ and let 〈 , 〉1/2,−1/2 denote the duality pair
between these dual spaces.

Let T1, . . . , Td−1 be an orthonormal basis for the tangent plane to ∂Ω at x and
let

∂/∂T =
d−1∑

p=1

(∂/∂Tp) Tp

denote the tangential derivative on ∂Ω. We say that f ∈ H1(∂Ω) if f ∈ L2(∂Ω)
and ∂f/∂T ∈ L2(∂Ω). Furthermore, we define H−1(∂Ω) as the dual of H1(∂Ω) and
the space Hs(∂Ω), for 0 ≤ s ≤ 1, as the interpolation space [L2(∂Ω), H1(∂Ω)]s; see
again [132].

Finally, we introduce Sobolev spaces of quasi-periodic functions. Let Λ =
(Λ1, . . . ,Λn, 0, . . . , 0) ∈ Rd with Λj > 0 for j = 1, . . . , n and n ≤ d. Let α =
(α1, . . . , αn, 0, . . . , 0) ∈ Rd. Let C∞

α (Rd) be the set of functions u ∈ C∞(Rd) satis-
fying:

(i) u has a compact support in xn+1, . . . , xd;

(ii) u(x+ Λ) = e
√−1α·Λu(x) for all x ∈ Rd.

Recall that every function u ∈ C∞
α (Rd) can be expanded in an absolutely convergent

and termwise infinitely differentiable Fourier series:

u(x) =
∑

l∈Zn

ul(xn+1, . . . , xd)e
√−1αl·x,
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where

αl := α+ 2π(
l1
Λ1
, . . . ,

ln
Λn

, 0, . . . , 0).

For an open set Ω ⊂ Rd, C∞
α (Ω) is the space of restrictions to Ω of functions of

C∞
α (Rd). This enables us to consider the quasi-periodic Sobolev space given by the

closure of C∞
α (Ω) in H1(Ω), i.e.,

H1
α(Ω) := C∞

α (Ω)
H1(Ω)

,

which, equipped with the H1(Ω)-norm becomes a Hilbert space.

2.3. Layer Potentials for the Laplace Equation

A fundamental solution to the Laplacian is given by

(2.2) Γ0(x) =





1

2π
ln |x| , d = 2,

1

(2− d)ωd
|x|2−d , d ≥ 3,

where ωd denotes the area of the unit sphere in Rd.
Given a bounded Lipschitz domain Ω in Rd, d ≥ 2, we denote, respectively, the

single- and double-layer potentials of a function ϕ ∈ L2(∂Ω) as S0
Ω[ϕ] and D0

Ω[ϕ],
where

S0
Ω[ϕ](x) :=

∫

∂Ω

Γ0(x− y)ϕ(y) dσ(y), x ∈ Rd,(2.3)

D0
Ω[ϕ](x) :=

∫

∂Ω

∂

∂ν(y)
Γ0(x− y)ϕ(y) dσ(y) , x ∈ Rd \ ∂Ω,(2.4)

where ν(y) is the outward unit normal to ∂Ω at y.
Define the operator K0

Ω : L2(∂Ω) → L2(∂Ω) by

(2.5) K0
Ω[ϕ](x) :=

1

ωd
p.v.

∫

∂Ω

〈y − x, ν(y)〉
|x− y|d ϕ(y) dσ(y),

where p.v. stands for the Cauchy principal value, and let (K0
Ω)

∗ be the L2-adjoint
of K0

Ω. Hence, the operator (K0
Ω)

∗ is given by

(2.6) (K0
Ω)

∗[ϕ](x) =
1

ωd
p.v.

∫

∂Ω

〈x− y, ν(x)〉
|x− y|d ϕ(y) dσ(y), ϕ ∈ L2(∂Ω).

The singular integral operators K0
Ω and (K0

Ω)
∗ are known to be bounded on

L2(∂Ω) [177]. If ∂Ω is of class C1,η for some η > 0, then the operators K0
Ω and

(K0
Ω)

∗ are compact in L2(∂Ω). Indeed, K0
Ω : L2(∂Ω) → Hs(∂Ω) is bounded for any

0 ≤ s < η. See, for example, [442].
For convenience we introduce the following notation. For a function u defined

on Rd \ ∂Ω, we denote

u|±(x) := lim
t→0+

u(x± tν(x)), x ∈ ∂Ω,

and
∂u

∂ν(x)

∣∣∣∣
±
(x) := lim

t→0+
〈∇u(x± tν(x)), ν(x)〉 , x ∈ ∂Ω,
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if the limits exist. Here ν(x) is the outward unit normal to ∂Ω at x, and 〈 , 〉
denotes the scalar product in Rd. For ease of notation we will sometimes use the
dot for the scalar product in Rd.

We relate in the next lemma the traces of the double-layer potential and the
normal derivative of the single-layer potential to the operators K0

Ω and (K0
Ω)

∗ de-
fined by (2.5) and (2.6).

Lemma 2.1 (Jump relations). If Ω is a bounded Lipschitz domain, then, for
ϕ ∈ L2(∂Ω),

(2.7) (D0
Ω[ϕ])

∣∣
±(x) =

(
∓1

2
I +K0

Ω

)
[ϕ](x) a.e. x ∈ ∂Ω,

(2.8)
∂

∂ν
S0
Ω[ϕ]

∣∣∣∣
±
(x) =

(
±1

2
I + (K0

Ω)
∗
)
[ϕ](x) a.e. x ∈ ∂Ω,

and

(2.9)
∂

∂T
S0
Ω[ϕ]

∣∣∣∣
+

(x) =
∂

∂T
S0
Ω[ϕ]

∣∣∣∣
−
(x) a.e. x ∈ ∂Ω.

Moreover, for ϕ ∈ H1/2(∂Ω),

(2.10)
∂

∂ν
D0

Ω[ϕ]

∣∣∣∣
+

=
∂

∂ν
D0

Ω[ϕ]

∣∣∣∣
−

in H−1/2(∂Ω).

Note that (2.8) yields the following jump relation:

(2.11)
∂

∂ν
S0
Ω[ϕ]

∣∣∣∣
+

− ∂

∂ν
S0
Ω[ϕ]

∣∣∣∣
−
= ϕ on ∂Ω.

Note also that if Ω is of class C1,η for some 0η > 0, then for any ϕ ∈ L2(∂Ω),
∂D0

Ω[ϕ]/∂ν exists (in H−1(∂Ω)) and has no jump across ∂Ω. Indeed, if

N : L2(∂Ω) → H−1(∂Ω)

is the Dirichlet-to-Neumann operator defined by

N [ϕ] =
∂u

∂ν

∣∣∣∣
∂Ω

,

where u is the solution to {
∆u = 0 in Ω,

u = ϕ on ∂Ω,

then the following formula holds:

∂

∂ν
D0

Ω[ϕ]

∣∣∣∣
±
= (

1

2
+ (K0

Ω)
∗)N [ϕ].

See [442] for the details.
We shall also recall the concept of capacity. Suppose d = 2 and let (ϕe, a) ∈

L2(∂Ω)× R denote the unique solution of the system

(2.12)





1

2π

∫

∂Ω

ln |x− y|ϕe(y)dσ(y) + a = 0 on ∂Ω,
∫

∂Ω

ϕe(y)dσ(y) = 1.
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The logarithmic capacity of ∂Ω is defined by

(2.13) cap(∂Ω) := e2πa,

where a is given by (2.12).
If d = 3, there exists a unique ϕe ∈ L2(∂Ω) such that

(2.14)





∫

∂Ω

ϕe(y)

|x− y|dσ(y) = constant on ∂Ω,
∫

∂Ω

ϕe(y)dσ(y) = 1.

The capacity of ∂Ω in three dimensions is defined to be

(2.15)
1

cap(∂Ω)
:=

1

4π

∫

∂Ω

1

|x− y|ϕe(y)dσ(y).

If we form the solution u of the Dirichlet problem for the domain outside Ω, with
boundary values 1, then the capacity is given by

cap(∂Ω) = −
∫

∂Ω

∂u

∂ν

∣∣∣∣
+

(x) dσ(x)

(
=

∫

R3\Ω
|∇u|2 dx

)
.

Hence, the solution u behaves like the point source −cap(∂Ω)Γ0(x) at infinity.
It is clear that the capacity of the unit disk is 1 and the capacity of the unit

sphere is 4π. Further interesting properties of the capacity are given in the books
by Hille [261], Landkof [310], and Armitage and Gardiner [92].

2.4. Neumann-Poincaré Operator

As will be seen later, the plasmonic resonances of nanoparticles are related
to the spectra of the non-self-adjoint Neumann-Poincaré type operators associated
with the particle shapes. We will show that plasmon resonances in nanoparticles
can be treated as an eigenvalue problem for the Neumann-Poincaré operator, which
leads to direct calculation of resonance values of permittivity and optimal design
of nanoparticles that resonate at specified frequencies. The analysis of Neumann-
Poincaré-type operators will also be the key to fathoming the blow-up of the gra-
dient of solutions to conductivity problems as well as to cloaking by anomalous
resonances. In the next subsection, by choosing a proper inner product, we prove
that the non-self-adjoint operator Neumann-Poincaré (K0

Ω)
∗ can be symmetrized,

and its spectrum is discrete and accumulates at zero, provided that Ω is smooth.

2.4.1. Symmetrization of (K0
Ω)

∗. Let

L2
0(∂Ω) :=

{
ϕ ∈ L2(∂Ω) :

∫

∂Ω

ϕdσ = 0

}
.

The following lemma holds.

Lemma 2.2. Assume that Ω is a bounded Lipschitz domain in Rd, d ≥ 2. The
spectrum of (K0

Ω)
∗ : L2(∂Ω) → L2(∂Ω) lies in the interval (−1/2, 1/2] and therefore,

the operator (1/2) I+K0
Ω is invertible on L2(∂Ω). Moreover, the operator −(1/2) I+

K0
Ω is invertible on L2

0(∂Ω).
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Proof. The argument is by contradiction. Let λ ∈ (−∞,−1/2] ∪ (1/2,+∞),
and assume that ϕ ∈ L2(∂Ω) satisfies (λI − (K0

Ω)
∗)[ϕ] = 0 and ϕ is not identically

zero. Since K0
Ω[1] = 1/2 by Green’s formula, we have

0 =

∫

∂Ω

(λI − (K0
Ω)

∗)[ϕ] dσ =

∫

∂Ω

ϕ(λ− (K0
Ω)

∗[1]) dσ

and thus
∫
∂Ω
ϕdσ = 0. Hence S0

Ω[ϕ](x) = O(|x|1−d) and ∇S0
Ω[ϕ](x) = O(|x|−d) at

infinity for d ≥ 2. Since ϕ is not identically zero, both of the following numbers
cannot be zero:

A =

∫

Ω

|∇S0
Ω[ϕ]|2 dx and B =

∫

Rd\Ω
|∇S0

Ω[ϕ]|2 dx.

In fact, if both of them are zero, then S0
Ω[ϕ] = constant in Ω and in Rd \Ω. Hence

ϕ = 0 by (2.11) which is a contradiction.
On the other hand, using the divergence theorem and (2.8), we have

A =

∫

∂Ω

(−1

2
I + (K0

Ω)
∗)[ϕ] S0

Ω[ϕ] dσ and B = −
∫

∂Ω

(
1

2
I + (K0

Ω)
∗)[ϕ] S0

Ω[ϕ] dσ.

Since (λI − (K0
Ω)

∗)[ϕ] = 0, it follows that

λ =
1

2

B −A

B +A
.

Thus, |λ| < 1/2, which is a contradiction and so, for λ ∈ (−∞,− 1
2 ] ∪ ( 12 ,+∞),

λI − (K0
Ω)

∗ is one to one on L2(∂Ω).
If λ = 1/2, then A = 0 and hence S0

Ω[ϕ] = constant in Ω. Thus S0
Ω[ϕ] is

harmonic in Rd \ ∂Ω, behaves like O(|x|1−d) as |x| → +∞ (since ϕ ∈ L2
0(∂Ω)), and

is constant on ∂Ω. By (2.8), we have (K0
Ω)

∗[ϕ] = (1/2)ϕ, and hence

B = −
∫

∂Ω

ϕ S0
Ω[ϕ] dσ = C

∫

∂Ω

ϕdσ = 0,

which forces us to conclude that ϕ = 0. This proves that (1/2) I − (K0
Ω)

∗ is one to
one on L2

0(∂Ω). �

Assume that Ω is simply connected and ∂Ω is of class C1,η for some η > 0. In
this subsection, we symmetrize the non-self-adjoint operator (K0

Ω)
∗ and prove that

it can be realized as a self-adjoint operator on H−1/2(∂Ω) by introducing a new
inner product.

We first state the following lemma.

Lemma 2.3. Let d ≥ 2. The following results hold:

(i) The operator S0
Ω in H−1/2(∂Ω) is self-adjoint and −S0

Ω ≥ 0 on L2(∂Ω).

(ii) The operator (K0
Ω)

∗ : H−1/2(∂Ω) → H−1/2(∂Ω) is compact.

By Lemma 2.3, there exists a unique square root of −S0
Ω which we denote by√

−S0
Ω; furthermore,

√
−S0

Ω is self-adjoint and
√
−S0

Ω ≥ 0.
Next we look into the kernel of S0

Ω. If d ≥ 3, then it is known that S0
Ω :

H−1/2(∂Ω) → H1/2(∂Ω) has a bounded inverse. Suppose now that d = 2. If
φ0 ∈ Ker(S0

Ω), then the function u defined by

u(x) := S0
Ω[φ0](x), x ∈ R2
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satisfies u = 0 on ∂Ω. Therefore, u(x) = 0 for all x ∈ Ω. It then follows from (2.8)
that

(2.16) (K0
Ω)

∗[φ0] =
1

2
φ0 on ∂Ω .

If 〈χ(∂Ω), φ0〉1/2,−1/2 = 0, then u(x) → 0 as |x| → ∞ , and hence u(x) = 0

for x ∈ R2 \ Ω as well. Thus φ0 = 0. The eigenfunctions of (2.16) make a one
dimensional subspace of H−1/2(∂Ω), which means that Ker(S0

Ω) is of at most one
dimension.

Let (φe, a) ∈ H−1/2(∂Ω) × R denote the solution of the system (2.12), then it
can be shown that S0

Ω : H−1/2(∂Ω) → H1/2(∂Ω) has a bounded inverse if and only
if a 6= 0.

The following result is well-known. It shows that K0
ΩS0

Ω is self-adjoint on

H−1/2(∂Ω).

Lemma 2.4. The following Calderón identity (also known as Plemelj’s sym-
metrization principle) holds:

(2.17) S0
Ω(K0

Ω)
∗ = K0

ΩS0
Ω on H−1/2(∂Ω) .

Consider the three-dimensional case. Since the single-layer potential becomes
a unitary operator from H−1/2(∂Ω) onto H1/2(∂Ω), the operator (K0

Ω)
∗ can be

symmetrized using Calderón identity (2.17) and hence becomes self-adjoint [295].
It is then possible to write its spectral decomposition. Let H∗(∂Ω) be the space
H−1/2(∂Ω) with the inner product

(2.18) 〈u, v〉H∗ = −〈S0
Ω[v], u〉 1

2 ,− 1
2
,

which is equivalent to the original one (on H−1/2(∂Ω)).

Theorem 2.5. For d = 3, the following results hold:

(i) The operator (K0
Ω)

∗ is self-adjoint in the Hilbert space H∗(∂Ω);
(ii) Let (λj , ϕj), j = 0, 1, 2, . . . be the eigenvalue and normalized eigenfunction

pair of (K0
Ω)

∗ in H∗(∂Ω) with λ0 = 1/2. Then, λj ∈ (− 1
2 ,

1
2 ) for j ≥ 1

with |λ1| ≥ |λ2| ≥ . . .→ 0 as j → ∞;
(iii) The following spectral representation formula holds: for any ψ ∈ H−1/2(∂Ω),

(2.19) (K0
Ω)

∗[ψ] =
∞∑

j=0

λj〈ϕj , ψ〉H∗ ϕj .

Moreover, it is clear that the following result holds.

Lemma 2.6. Let d = 3. Let H(∂Ω) be the space H1/2(∂Ω) equipped with the
following equivalent inner product

(2.20) 〈u, v〉H = 〈v, (−S0
Ω)

−1[u]〉 1
2 ,− 1

2
.

Then, S0
Ω is an isometry between H∗(∂Ω) and H(∂Ω).

Furthermore, we list other useful observations and basic results in three dimen-
sions.

Lemma 2.7. Let d = 3. The following results hold:

(i) We have (− 1
2I + (K0

Ω)
∗)(S0

Ω)
−1[χ(∂Ω)] = 0 with χ(∂Ω) being the charac-

teristic function of ∂Ω.
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(ii) The corresponding eigenspace to λ0 = 1
2 has dimension one and is spanned

by the function ϕ0 = c(S0
Ω)

−1[χ(∂Ω)] for some constant c such that ||ϕ0||H∗ =
1.

(iii) Moreover, H∗(∂Ω) = H∗
0(∂Ω)⊕ {µϕ0, µ ∈ C}, where H∗

0(∂Ω) is the zero
mean subspace of H∗(∂Ω) and ϕj ∈ H∗

0(∂Ω) for j ≥ 1, i.e., 〈χ(∂Ω), ϕj〉 1
2 ,− 1

2
=

0 for j ≥ 1. Here, {ϕj}j is the set of normalized eigenfunctions of (K0
Ω)

∗.

In two dimensions, again based on (2.17), we show that (K0
Ω)

∗ can be realized
as a self-adjoint operator by introducing a new inner product, slightly different from
the one introduced in the three-dimensional case.

Recall that the single-layer potential S0
Ω : H−1/2(∂Ω) → H1/2(∂Ω) is not, in

general, injective. Hence, −〈S0
Ω[v], u〉 1

2 ,− 1
2
does not define an inner product and the

symmetrization technique described in Theorem 2.5 is no longer valid. To overcome
this difficulty, a substitute of S0

Ω can be introduced as in [86] by

(2.21) S̃Ω[ψ] =

{ S0
Ω[ψ] if 〈χ(∂Ω), ψ〉 1

2 ,− 1
2
= 0 ,

−χ(∂Ω) if ψ = ϕ0 ,

where ϕ0 is the unique eigenfunction of (K0
Ω)

∗ associated with eigenvalue 1/2 such
that 〈χ(∂Ω), ϕ0〉 1

2 ,− 1
2
= 1. Note that, from the jump relations of the layer poten-

tials, S0
Ω[ϕ0] is constant.

The operator S̃Ω : H−1/2(∂Ω) → H1/2(∂Ω) is invertible. Moreover, the follow-

ing Calderón identity holds K0
ΩS̃Ω = S̃Ω(K0

Ω)
∗. With this, define

〈u, v〉H∗ = −〈S̃Ω[v], u〉 1
2 ,− 1

2
.

Thanks to the invertibility and positivity of −S̃Ω, this defines an inner product for
which (K0

Ω)
∗ is self-adjoint and H∗ is equivalent to H−1/2(∂Ω). Then, if Ω is C1,η,

η > 0, we have the following results.

Theorem 2.8. Let d = 2. Let Ω be a C1,η, η > 0, bounded simply connected

domain of R2 and let S̃Ω be the operator defined in (2.21). Then,

(i) The operator (K0
Ω)

∗ is compact self-adjoint in the Hilbert space H∗(∂Ω)
equipped with the inner product defined by

(2.22) 〈u, v〉H∗ = −〈S̃D[v], u〉 1
2 ,− 1

2
;

(ii) Let (λj , ϕj), j = 0, 1, 2, . . . , be the eigenvalue and normalized eigenfunc-
tion pair of (K0

Ω)
∗ with λ0 = 1

2 . Then, λj ∈ (− 1
2 ,

1
2 ) with |λ1| ≥ |λ2| ≥

. . .→ 0 as j → ∞;
(iii) H∗(∂Ω) = H∗

0(∂Ω) ⊕ {µϕ0, µ ∈ C}, where H∗
0(∂Ω) is the zero mean

subspace of H∗(∂Ω);
(iv) The following representation formula holds: for any ψ ∈ H−1/2(∂Ω),

(K0
Ω)

∗[ψ] =
∞∑

j=0

λj〈ϕj , ψ〉H∗ ϕj .

Lemma 2.9. Let H(∂Ω) be the space H1/2(∂Ω) equipped with the following
equivalent inner product:

(2.23) 〈u, v〉H = 〈v,−S̃−1
Ω [u]〉 1

2 ,− 1
2
.

Then, S̃Ω is an isometry between H∗(∂Ω) and H(∂Ω).
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Note that S̃−1
Ω [χ(∂Ω)] = ϕ0 and −(1/2)I + (K0

Ω)
∗ = (−(1/2)I + (K0

Ω)
∗)PH∗

0
,

where PH∗
0
is the orthogonal projection ontoH∗

0(∂Ω). In particular, we have (− 1
2I+

(K0
Ω)

∗)S̃−1
Ω [χ(∂Ω)] = 0.

In dimension two, the twin spectrum relation for the Neumann-Poincaré oper-
ator (K0

Ω)
∗ holds [340].

Lemma 2.10. For any j ≥ 1, ±λj are eigenvalues of (K0
Ω)

∗.

Proof. In order to prove the twin property, suppose that λj is an eigenvalue
of (K0

Ω)
∗ with an associated eigenfunction ϕj . Then u := S0

Ω[ϕj ] is a nontrivial
solution to the transmission problem

(2.24)

{
∇ · ((1 + (k − 1)χ(Ω))∇u) = 0 in R2,

u(x) = O(|x|−1) as |x| → +∞
with k = (2λj + 1)/(2λj − 1).

Let v be the harmonic conjugate of u, which is defined such that ∇v = ∇⊥u
where

(2.25) ∇⊥u =

[
− ∂u
∂x2

∂u
∂x1

]
.

Then v is a nontrivial solution to

(2.26)

{
∇ · ((1 + ( 1k − 1)χ(Ω))∇v) = 0 in R2,

v(x) = O(|x|−1) as |x| → +∞.

Therefore, by using the integral representation v = S0
Ω[ψj ] it can be seen that

−λj =
1 + 1

k

2( 1k − 1)

is an eigenvalue of (K0
Ω)

∗ as well associated to the eigenfunction ψj . �

On the other hand, the following relation between the eigenfunctions of (K0
Ω)

∗

associated with ±λj holds.
Lemma 2.11. Let ∂/∂T denote the tangential derivative on ∂Ω and let ϕj be

an eigenfunction of (K0
Ω)

∗ associated with λj. Then

∂
∂T S0

B [ϕj ]

‖ ∂
∂T S0

B [ϕj ]‖H∗

is a (normalized) eigenfunction of (K0
Ω)

∗ associated with −λj.

Proof. Let ν =

[
ν1

ν2

]
and let T =

[−ν2
ν1

]
. From [450], we have

(2.27) (K0
Ω)

∗ ∂

∂T
= − ∂

∂T
K0

Ω.

From (2.27) it follows that if φj ∈ H1/2(∂Ω) is an eigenfunction of K0
Ω associated

with the eigenvalue λj 6= 1/2, then ∂φj/∂T is an eigenfunction of (K0
Ω)

∗ associated
with the eigenvalue −λj . Therefore, by using Calderón’s identity (2.17), we obtain
the stated result.
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Identity (2.27) can be proved by noticing that for φ ∈ H1/2(∂Ω), the functions
D0

Ω[φ] and S0
Ω[∂φ/∂T ] in Ω are the harmonic conjugate functions of each other and

therefore, by the jump formulas,

(K0
Ω)

∗[
∂φ

∂T
] = (−1

2
+ (K0

Ω)
∗)[

∂φ

∂T
] +

1

2

∂φ

∂T

=
∂S0

Ω

∂ν
[
∂φ

∂T
]|− +

1

2

∂φ

∂T

= −∂D
0
Ω

∂T
[φ]|− +

1

2

∂φ

∂T

= − ∂

∂T

(1
2
I +K0

Ω

)
[φ] +

1

2

∂φ

∂T
.

Therefore, the proof of the lemma is complete. �

In two dimensions, we will also need the following identities from [344, 406].

Lemma 2.12. We have

(2.28)
∂D0

Ω[φ]

∂ν
=
∂S0

Ω

∂T
[
∂φ

∂T
]

and

(2.29) S0
Ω

∂

∂T
S0
Ω[
∂φ

∂T
] = (K0

Ω)
2[φ]− 1

4
φ

for φ ∈ H1/2(∂Ω).

Remark 2.13. With the same notation as in Lemma 2.11, notice that from
(2.29) it follows that

‖ ∂

∂T
S0
B [ϕj ]‖2H∗ = −〈S0

B

∂

∂T
S0
B [ϕj ],

∂

∂T
S0
B [ϕj ]〉 1

2 ,− 1
2

= 〈(S0
B

∂

∂T
)2S0

B [ϕj ], ϕj〉 1
2 ,

1
2

=
1

4
− λ2j .

Remark 2.14. When Ω is Lipschitz, (K0
Ω)

∗ is no longer compact. Neverthe-
less, since it is self-adjoint, its spectrum σ((K0

Ω)
∗) is real, consists of point and

continuous spectrum, and is a closed set; see Appendix A. Moreover, by the spectral
resolution theorem (see [458]), there is a family of projection operators E(t) on H∗

(called a resolution of identity) such that

(2.30) (K0
Ω)

∗ =

∫

t∈σ((K0
Ω)∗)

tdE(t).

Let bΩ be the spectral bound of (K0
Ω)

∗, namely

bΩ := sup{|λ| : λ ∈ σ((K0
Ω)

∗)}.
From the proof of Lemma 2.2 it follows that

bΩ =
1

2
sup
ϕ∈H∗

∣∣∣∣
∫

Rd\Ω
|∇S0

Ω[ϕ]|2dx−
∫

Ω

|∇S0
Ω[ϕ]|2dx

∣∣∣∣
∫

Rd

|∇S0
Ω[ϕ]|2dx

≤ 1

2
.
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2.4.2. Spectral Decomposition of the Fundamental Solution. Fix z ∈
Rd \ Ω. Then Γ0(· − z) belongs to H1/2(∂Ω), and so admits the following decom-
position:

(2.31) Γ0(x− z) =

∞∑

j=1

cj(z)S0
Ω[ϕj ](x) + c0(z), x ∈ ∂Ω,

for some constants cj(z) satisfying

∞∑

j=1

|cj(z)|2 <∞.

Since −〈S0
Ω[ϕj ], ϕi〉1/2,−1/2 = δij , we see that

cj(z) = −S0
Ω[ϕj ](z), j = 1, 2, . . . .

We also see from 〈χ(∂Ω), ϕ0〉1/2,−1/2 = 0 that c0(z) = S0
Ω[ϕ0](z). So, we obtain the

following formula:

Γ0(x− z) = −
∞∑

j=1

S0
Ω[ϕj ](z)S0

Ω[ϕj ](x) + S0
Ω[ϕ0](z), x ∈ ∂Ω.

Observe that

‖S0
Ω[ϕj ](z)S0

Ω[ϕj ]‖2H =

∞∑

j=1

|S0
Ω[ϕj ](z)|2 <∞.

Since ‖ ‖H is equivalent to the H1/2-norm, we find from the trace theorem that the

series

∞∑

j=1

S0
Ω[ϕj ](z)S0

Ω[ϕj ] converges in H
1(Ω) and is harmonic in Ω. Therefore, the

following expansion of the fundamental solution Γ0 in terms of the eigenvectors of
the Neumann-Poincaré operator (K0

Ω)
∗ holds.

Theorem 2.15. We have

(2.32) Γ0(x− z) = −
∞∑

j=1

S0
Ω[ϕj ](z)S0

Ω[ϕj ](x) + S0
Ω[ϕ0](z), x ∈ Ω, z ∈ Rd \ Ω.

Formula (2.32) is a general addition formula for the fundamental solution Γ0 to
the Laplace operator. It was derived in [86]. Addition formulas for the fundamental
solution to the Laplace operator on disks, balls, ellipses, and ellipsoids are classical
and well-known. That on ellipsoids is attributed to Heine (see [189]). The formulas
describe expansions of the fundamental solution to the Laplace operator in terms
of spherical harmonics (balls) and ellipsoidal harmonics (ellipses). Formula (2.32)
shows that, in the general case, the addition formula is a spectral expansion by
eigenfunctions of the Neumann-Poincaré operator.

2.4.3. Spectrum of the Neumann-Poincaré Operator on Disks and
Ellipses. Recall that if Ω is a disk or a ball, then we may simplify the expressions
defining the operators KΩ and (K0

Ω)
∗. The following results hold:

(i) Suppose that Ω is a two dimensional disk with radius r0. Then,

< x− y, ν(x) >

|x− y|2 =
1

2r0
∀ x, y ∈ ∂Ω, x 6= y ,
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and therefore, for any φ ∈ L2(∂Ω),

(2.33) (K0
Ω)

∗[φ](x) = K0
Ω[φ](x) =

1

4πr0

∫

∂Ω

φ(y) dσ(y) ,

for all x ∈ ∂Ω.
(ii) For d ≥ 3, if Ω is a ball with radius r0, then, we have

< x− y, ν(x) >

|x− y|d =
1

2r0

1

|x− y|d−2
∀ x, y ∈ ∂Ω, x 6= y ,

and for any φ ∈ L2(∂Ω) and x ∈ ∂Ω,

(2.34) (K0
Ω)

∗[φ](x) = K0
Ω[φ](x) =

(2− d)

2r0
S0
Ω[φ](x) .

Another useful formula in two dimensions is the expression of K0
Ω[φ](x), where

Ω is an ellipse whose semi-axes are on the x1− and x2−axes and of length a1 and
a2, respectively. Using the parametric representation X(t) = (a1 cos t, a2 sin t), 0 ≤
t ≤ 2π, for the boundary ∂Ω, we find that

(2.35) K0
Ω[φ](x) =

a1a2
2π(a21 + a22)

∫ 2π

0

φ(X(t))

1−Q cos(t+ θ)
dt ,

where x = X(θ) and Q = (a21 − a22)/(a
2
1 + a22).

Using (2.33), it also follows that if Ω is a disk, then the spectrum of (K0
Ω)

∗ is
{0, 1/2}. If D is an ellipse of semi-axes a1 and a2, then

(2.36) λj =





1

2
j = 0,

±1

2

(
a1 − a2
a1 + a2

)j
j ≥ 1,

are the eigenvalues of (K0
Ω)

∗, which can be expressed by (2.35).
In three dimensions, by using (2.34) it can be shown that the spectrum of

(K0
Ω)

∗ in the case where Ω is a ball is 1/(2(2j + 1)), j = 0, 1, . . .. Furthermore,
the eigenvalues of (K0

Ω)
∗ for Ω being an ellipsoid can be expressed explicitly in

terms of Lamé functions [210]. In [210], it is also shown that for any number
λ ∈ (−1/2, 1/2) there is an ellipsoid on which λ is an eigenvalue of the associated
Neumann-Poincaré operator.

In two dimensions, we also recall that if the disk Ω of radius r0 is centered at
the origin, then one can easily see that for each integer n 6= 0

(2.37) S0
Ω[e

√−1nθ](x) =





− r0
2|n|

(
r

r0

)|n|
e
√−1nθ if |x| = r < r0,

− r0
2|n|

(r0
r

)|n|
e
√−1nθ if |x| = r > r0,

and hence

(2.38)
∂

∂r
S0
Ω[e

√−1nθ](x) =





−1

2

(
r

r0

)|n|−1

e
√−1nθ if |x| = r < r0,

1

2

(r0
r

)|n|+1

e
√−1nθ if |x| = r > r0.
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We also get, for any integer n,

D0
Ω[e

√−1nθ](x) =





1

2

(
r

r0

)|n|
e
√−1nθ if |x| = r < r0,

−1

2

(r0
r

)|n|
e
√−1nθ if |x| = r > r0.

It follows from (2.33) that

(2.39) (K0
Ω)

∗[e
√−1nθ] = 0 ∀n 6= 0.

As K0
Ω[1] = 1/2, it follows that, when Ω is a disk, K0

Ω is a rank one operator whose
only non-zero eigenvalue is 1/2. On the other hand, from K0

Ω[1] = 1/2 it also follows
that

(2.40) S0
Ω[1](x) =

{
ln r0 if |x| = r < r0,

ln |x| if |x| = r > r0,

and hence

(2.41)
∂

∂r
S0
Ω[1](x) =




0 if |x| = r < r0,

1

r
if |x| = r > r0.

Let Ωi and Ωe be two concentric disks in R2 with radii ri < re. Define (K0
Ωe\Ωi

)∗

by

(2.42) (K0
Ωe\Ωi

)∗ =

(
−(K0

Ωi
)∗ − ∂

∂νiS0
Ωe

∂
∂νeS0

Ωi
(K0

Ωe
)∗

)
,

where νi and νe are the outward normal vectors to ∂Ωi and Ωe, respectively. Let
the operator SΩe\Ωi

be given by

SΩe\Ωi
=

(
S0
Ωe

S0
Ωi

∣∣
∂Ωe

S0
Ωe

∣∣
∂Ωi

S0
Ωi

)
.

Then, following the arguments given in Subsection 2.4.1, we can prove that (K0
Ωe\Ωi

)∗

is compact and self-adjoint for the inner product
(2.43)

〈ϕ, ψ〉H∗ := −〈SΩe\Ωi
[ψ], ϕ〉1/2,−1/2 for ϕ, ψ ∈ H−1/2(∂Ωe)×H−1/2(∂Ωi).

The following lemma from [32] gives the eigenvalues and eigenvectors of the
Neumann-Poincaré operator (K0

Ωe\Ωi
)∗ associated with the circular shell Ωe \Ωi on

H∗.

Lemma 2.16. The eigenvalues of (K0
Ωe\Ωi

)∗ on H∗ are

−1

2
,
1

2
,−1

2
(
ri
re

)n,
1

2
(
ri
re

)n, n = 1, 2, . . . ,

and corresponding eigenvectors are

[
1

− 1
re

]
,

[
0
1

]
,

[
e±

√−1nθ

ri
re
e±

√−1nθ

]
,

[
e±

√−1nθ

− ri
re
e±

√−1nθ

]
, n = 1, 2, . . . .
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Proof. We first prove that ±1/2 are eigenvalues of (K0
Ωe\Ωi

)∗ on H∗. From

(2.41) we have

(K0
Ωe\Ωi

)∗
[
a
b

]
=

(
− 1

2 0
1
re

1
2

)[
a
b

]
,

where a and b are constants. So ±1/2 are eigenvalues of (K0
Ωe\Ωi

)∗ on H∗.

Now we consider (K0
Ωe\Ωi

)∗ on H∗
0 defined by

H∗
0 := {ϕ ∈ H∗ : 〈1, ϕ〉1/2,−1/2 = 0}.

Because of (2.39) it follows that

(K0
Ωe\Ωi

)∗ =




0 − ∂

∂νi
S0
Ωe

∂

∂νe
S0
Ωi

0




on H∗
0 and hence we have from (2.38) that

(2.44) (K0
Ωe\Ωi

)∗
[
e
√−1nθ

0

]
=

1

2
(
ri
re

)|n|+1

[
0

e
√−1nθ

]

and

(2.45) (K0
Ωe\Ωi

)∗
[

0

e
√−1nθ

]
=

1

2
(
ri
re

)|n|−1

[
e
√−1nθ

0

]

for all n 6= 0, which completes the proof of the lemma. �

Remark 2.17. From Lemma 2.16, it follows that the eigenvalues of (K0
Ωe\Ωi

)∗

on H∗
0 are ±(1/2)(ri/re)

j and (K0
Ωe\Ωi

)∗ as an operator on H∗ has the trivial kernel,

i.e.,

(2.46) Ker (K0
Ωe\Ωi

)∗ = {0}.

Remark 2.18. In [175], by using elliptic coordinates, the Neumann-Poincaré
operator associated with two confocal ellipses is investigated and the asymptotic
behavior of its eigenvalues λj as j → +∞ is derived.

In three dimensions, we can compute the spectrum of the Neumann-Poincaré
operator associated with concentric balls. The following lemma is needed.

Lemma 2.19. Let Ω = {|x| < r0} in R3. We have for j = 0, 1, . . .

(2.47) (K0
Ω)

∗[Y lj ] =
1

2(2j + 1)
Y lj (x̂), |x| = r0, l = −j, . . . , j,

where x̂ = x/|x| and (Y lj )l=−j,...,j are the orthonormal spherical harmonics of degree
j.

Proof. From (2.34) and (2.8), it follows that

∂

∂r
S0
Ω[Y

l
j ]
∣∣
− +

1

2r0
S0
Ω[Y

l
j ] = −1

2
Y lj (x̂), |x| = r0.

Then since S0
Ω[Y

l
j ] and |x|jY lj (x̂) are harmonic functions in Ω, we have

(2.48) S0
Ω[Y

l
j ](x) = − 1

2j + 1

rj

rj−1
0

Y lj (x̂) for |x| = r ≤ r0,
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and (2.47) follows from (2.34). �

Lemma 2.19 says that the eigenvalues of (K0
Ω)

∗ when Ω is a ball are

1

2(2j + 1)
, j = 0, 1, . . . ,

and their associated multiplicities are 2j + 1.
Let Ωi and Ωe be two concentric balls in R3 with radii ri < re and let the the

Neumann-Poincaré operator (K0
Ωe\Ωi

)∗ associated with the spherical shell Ωe \ Ωi
be defined, analogously to the two dimensional case, by (2.42).

By (2.48), we have

∂

∂νi
S0
Ωe

[Y lj ](x) = − j

2j + 1
(
ri
re

)j−1Y lj (x̂), |x| = ri.

Similarly, we have

S0
Ωi
[Y lj ](x) = − 1

2j + 1

rj+2
i

rj+1
Y lj (x̂), |x| = r ≥ ri,

and hence
∂

∂νe
S0
Ωi
[Y lj ](x) =

j + 1

2j + 1
(
ri
re

)j+2Y lj (x̂), |x| = re.

We now have for constants a and b

(K0
Ωe\Ωi

)∗
[
aY lj
bY lj

]
=

(
− 1

2(2j+1)
j

2j+1 (
ri
re
)j−1

j+1
2j+1 (

ri
re
)j+2 1

2(2j+1)

)[
aY lj
bY lj

]
.

Thus we have the following lemma from [32].

Lemma 2.20. The eigenvalues of (K0
Ωe\Ωi

)∗ on H∗ are

± 1

2(2j + 1)

√
1 + 4j(j + 1)(ri/re)2j+1, j = 0, 1, . . . ,

and corresponding eigenfunctions are
[

(
√
1 + 4j(j + 1)(ri/re)2j+1 − 1)Y lj

2(j + 1)(ri/re)
j+2Y lj

]
,

[
(−
√
1 + 4j(j + 1)(ri/re)2j+1 − 1)Y lj

2(j + 1)(ri/re)
j+2Y lj

]
,

for l = −j, . . . , j, respectively.
2.4.4. Neumann Poincaré Operator for Two Separated Disks and Its

Spectral Decomposition. In this subsection, we consider the spectrum of the
Neumann-Poincaré operator associated with two separated disks in R2. Let B1

and B2 be two separated disks. We set the Cartesian coordinates (x1, x2) to be
such that the x1-axis is parallel to the line joining the centers of the two disks and
let ν(i) be the outward normal on ∂Bi, i = 1, 2.

Define the Neumann-Poincaré operator K∗
B1∪B2

associated with B1 and B2 by

(2.49) K∗
B1∪B2

:=




(K0
B1

)∗
∂

∂ν(1)
S0
B2

∂

∂ν(2)
S0
B1

(K0
B2

)∗


 ,

and define the operator SB1∪B2 by

SB1∪B2 =

(
S0
B1

S0
B2

∣∣
∂B1

S0
B1

∣∣
∂B2

S0
B2

)
.



34 2. LAYER POTENTIALS

Then, again following the arguments given in Subsection 2.4.1, we can prove
that K∗

B1∪B2
is compact and self-adjoint for the inner product

(2.50)

〈ϕ, ψ〉H∗
0
:= −〈SB1∪B2 [ψ], ϕ〉1/2,−1/2 for ϕ, ψ ∈ H

−1/2
0 (∂B1)×H

−1/2
0 (∂B2).

2.4.4.1. Bipolar Coordinates. To compute the spectrum of K∗
B1∪B2

, we make
use of bipolar coordinates. The following definitions are needed.

Definition 2.21. Each point x = (x1, x2) in the Cartesian coordinate system
corresponds to (ξ, θ) ∈ R × (−π, π] in the bipolar coordinate system through the
equations

(2.51) x1 = α
sinh ξ

cosh ξ − cos θ
and x2 = α

sin θ

cosh ξ − cos θ

with a positive number α.

Notice that the bipolar coordinates can be defined using a conformal mapping.
Define a conformal map Ψ by

z = x1 +
√
−1x2 = Ψ(ζ) = α

ζ + 1

ζ − 1
.

If we write ζ = eξ−
√−1θ, then we can recover (2.51).

From Definition 2.21, we can see that the coordinate curves {ξ = c} and {θ = c}
are, respectively, the zero-level set of the following two functions:

(2.52) fξ(x1, x2) =

(
x1 − α

cosh c

sinh c

)2

+ x22 −
( α

sinh c

)2

and

fθ(x1, x2) = x21 +
(
x2 − α

cos c

sin c

)2
−
( α

sin c

)2
.

Definition 2.22. We define orthonormal basis vectors {eξ, eθ} as follows:

eξ :=
∂x/∂ξ

|∂x/∂ξ| and eθ :=
∂x/∂θ

|∂x/∂θ| .

Notice that, in the bipolar coordinates, the scaling factor h is

h(ξ, θ) :=
cosh ξ − cos θ

α
.

The gradient of any scalar function g is given by

(2.53) ∇g = h(ξ, θ)

(
∂g

∂ξ
eξ +

∂g

∂θ
eθ

)
.

Moreover, the normal and tangential derivatives of a function u in bipolar coordi-
nates are 




∂u

∂ν

∣∣∣
ξ=c

= ∇u · vξ=c = −sgn(c)h(c, θ)
∂u

∂ξ

∣∣∣
ξ=c

,

∂u

∂T

∣∣∣
ξ=c

= −sgn(c)h(c, θ)
∂u

∂θ

∣∣∣
ξ=c

,
(2.54)

and the line element dσ on the boundary {ξ = ξ0} is

dσ =
1

h(ξ0, θ)
dθ.



2.4. NEUMANN-POINCARÉ OPERATOR 35

Furthermore, the bipolar coordinate system admits separation of variables for
any harmonic function f as follows:

f(ξ, θ) = a0 + b0ξ + c0θ +

∞∑

n=1

[
(ane

nξ + bne
−nξ) cosnθ+

(
cne

nξ + dne
−nξ) sinnθ

]
,

(2.55)

where an, bn, cn and dn are constants.
We have

x+
√
−1y =

sinh ξ −
√
−1 sin θ

cosh ξ − cos θ
= sgn(ξ)

(eζ + e−ζ

eζ − e−ζ
= 1 + 2

∞∑

n=1

e−nξ(cosnθ −
√
−1 sinnθ)

)
,

(2.56)

with ζ = (ξ +
√
−1θ)/2.

2.4.4.2. Spectrum of K∗
B1∪B2

. Suppose that the two disks B1 and B2 have the
same radius r and let ǫ be their separation distance. Set

(2.57) α =

√
ǫ(r +

ǫ

4
) and ξ0 = sinh−1

(α
r

)
.

Note that

(2.58) ∂Bj = {ξ = (−1)jξ0} for j = 1, 2.

To establish the spectral decomposition of K∗
B1∪B2

, we use the following lemma
from [31].

Lemma 2.23. Assume that there exists u a nontrivial solution to the following
equation:

(2.59)





∆u = 0 in B1 ∪B2 ∪ R2 \ (B1 ∪B2),

u|+ = u|− on ∂Bj , j = 1, 2,
∂u

∂ν

∣∣∣
+
= k

∂u

∂ν

∣∣∣
−

on ∂Bj , j = 1, 2,

u(x) → 0 as |x| → ∞,

where k = −1 + 2λ

1− 2λ
< 0. If we set

ψj :=
∂u

∂ν

∣∣∣
+
− ∂u

∂ν

∣∣∣
−

on ∂Bj for j = 1, 2,

then ψ =

[
ψ1

ψ2

]
is an eigenvector of K∗

B1∪B2
corresponding to the eigenvalue λ.

One can see that the following function un is a solution to (2.59):
(2.60)

u±n (ξ, θ) = constant +





∓ 1

2|n| (e
|n|ξ0 ∓ e−|n|ξ0)e|n|ξ+

√−1nθ for ξ < −ξ0,
1

2|n|e
−|n|ξ0(e|n|ξ ∓ e−|n|ξ)e

√−1nθ for − ξ0 < ξ < ξ0,

1

2|n| (e
|n|ξ0 ∓ e−|n|ξ0)e−|n|ξ+√−1nθ for ξ > ξ0.
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From (2.60) and Lemma 2.23, it follows that the eigenvalues and the associated
eigenvectors of K∗

B1∪B2
on H∗

0 are given by

(2.61) λ±n = ±1

2
e−2|n|ξ0 ,

and

(2.62) Φ±
n (θ) = e

√−1nθ

[
h(−ξ0, θ)
∓h(ξ0, θ).

]

Note that the above eigenvectors are not normalized and both the eigenvalues
and eigenvectors depend on the separation distance between B1 and B2.

We now compute −〈SB1∪B2 [Φ
±
n ],Φ

±
n 〉1/2,−1/2. From (2.60), we obtain that

SB1∪B2 [Φ
±
n ] = constant +

[
∓ 1

2|n| (1∓ e−2|n|ξ0)e
√−1nθ

1
2|n| (1∓ e−2|n|ξ0)e

√−1nθ

]
.

Thus

−〈SB1∪B2 [Φ
±
n ],Φ

±
n 〉1/2,−1/2 =

2π

|n| (1∓ e−2|n|ξ0).

Therefore, we arrive at the following result, which was first proved in [72].

Theorem 2.24. We have the following spectral decomposition of K∗
B1∪B2

on
H∗

0:

(2.63) K∗
B1∪B2

=
∑

n 6=0

1

2
e−2|n|ξ0Ψ+

n ⊗Ψ+
n +

∑

n 6=0

(
−1

2
e−2|n|ξ0

)
Ψ−
n ⊗Ψ−

n ,

where ⊗ denotes the tensor product and Ψ±
n are the normalized eigenvectors defined

by

(2.64) Ψ±
n (θ) :=

√
|n|e

√−1nθ

√
2π(1∓ e−2|n|ξ0)

[
h(−ξ0, θ)
∓h(ξ0, θ)

]
.

Note that

(S0
B1

[Ψ±
n,1] + S0

B2
[Ψ±
n,2])(ξ, θ) = constant +

√
|n|√

2π(1∓ e−2|n|ξ0)

×





∓ 1

2|n| (e
|n|ξ0 ∓ e−|n|ξ0)e|n|ξ+

√−1nθ for ξ < −ξ0,
1

2|n|e
−|n|ξ0(e|n|ξ ∓ e−|n|ξ)e

√−1nθ for − ξ0 < ξ < ξ0,

1

2|n| (e
|n|ξ0 ∓ e−|n|ξ0)e−|n|ξ+√−1nθ for ξ > ξ0.

(2.65)

2.4.5. Numerical Implementation.
2.4.5.1. Numerical Representation. In order to utilize the Neumann-Poincaré

operator in applications we must define an appropriate numerical representation
for it. We begin by parameterizing the boundary by x(t) for t ∈ [0, 2π). After
partitioning the interval [0, 2π) into N pieces

[t1, t2), [t2, t3), . . . , [tN , tN+1),

with t1 = 0 and tN+1 = 2π, we approximate the boundary ∂Ω = {x(t) ∈ R2 : t ∈
[0, 2π)} by x(i) = x(ti) for 1 ≤ i ≤ N . We then represent the infinite dimensional
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operator (K0
Ω)

∗ acting on the density ϕ by a finite dimensional matrix K acting on

the coefficient vector ϕi := ϕ(x(i)) for 1 ≤ i ≤ N . We have

(K0
Ω)

∗[ϕ](x) =
1

2π
p.v.

∫

∂Ω

〈x− y, ν(x)〉
|x− y|2 ϕ(y) dσ(y),

for ψ ∈ L2(∂Ω) and we represent it numerically by

Kψ̃ =




K11 K12 . . . K1N

K21 K22 . . . K2N

...
. . .

...
KN1 . . . . . . KNN







ϕ1

ϕ2
...
ϕN


 ,

where

Kij =
1

2π

〈x(i) − x(j), ν(x(i))〉
|x(i) − x(j)|2 |T (x(i))|(tj+1 − tj) i 6= j,

with T (x(i)) being the tangent vector at x(i).
2.4.5.2. Handling Singularities on the Diagonal. Complications arise in the di-

agonal terms of K as the expression

〈x(i) − x(j), ν(x(i))〉
|x(i) − x(j)|2 ,

is singular when i = j. We can handle this by explicitly calculating the integrals for
the diagonal terms. Let the portion of the boundary starting at x(i) and ending at
x(i+1) be parameterized by s ∈ [0, ε = 2π

N ), which means that ε→ 0 as the number
of discretization points N → ∞. Applying this parameterization to the diagonal
terms of K we have

Kii =
1

2π

∫ ε

0

〈x(i) − x(s), ν(x(i))〉
|x(i) − x(s)|2 |T (s)|ds.

Denote by

T (i) = T (s) = r′(s),

ν(i) = ν(s),

a(i) = a(s) = r′′(s),

the tangent vector, the unit normal vector, and the acceleration vector respectively.
Note that x(i) = x(0), T (i) = x′(0), and a(i) = x′′(0). Taylor expanding the
numerator for small s we have

〈x(i) − x(s), ν(x(i))〉 = 〈x(i) − (x(0) + sT (i) +
s2

2
a(i) +O(s3)), ν(i)〉

≈ −s
2

2
〈a(i), ν(i)〉,

as ε→ 0. Similarly, we have |x(i) − x(s)|2 ≈ s2|T (i)|2 and |T (s)| ≈ |T (i)| as ε→ 0.
Therefore we can approximate the diagonal terms of K by
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Kii ≈ − 1

2π

∫ ε

0

〈a(i)), ν(i)〉
2|T (i)|2 |T (i)|ds

= − ε

4π

〈a(i)), ν(i)〉
|T (i)|

= − 1

2N

〈a(i)), ν(i)〉
|T (i)| .

We now present some examples that demonstrate the spectrum of the Neumann-
Poincaré operator in various situations.

2.4.5.3. Spectrum of the Neumann-Poincaré Operator for an Ellipse. We first
compute the spectrum of (K0

Ω)
∗ for an ellipse with semi-axes a1 = 10 and a2 = 1

using Code Neumann Poincaré Operator. Table 2.1 compares the first few eigen-
values obtained numerically with the eigenvalues obtained via the formula given
in (2.36).

Theoretical Numerical
0.5000 0.5000
0.4091 0.4091

−0.4091 −0.4091
0.3347 0.3347

−0.3347 −0.3347
0.2739 0.2739

−0.2739 −0.2739
0.2241 0.2241

Table 2.1. Spectrum of the Neumann-Poincaré operator for an ellipse.

2.4.5.4. Spectrum of the Neumann-Poincaré Operator for Two Disks. Using
Code Neumann Poincaré Operator for Two Particles, we now compute the spectrum
of K∗

B1∪B2
for two disks with r = 2 and ǫ = 0.3. Table 2.2 compares the first few

eigenvalues obtained numerically with the eigenvalues obtained via the formula
given in (2.61).

Theoretical Numerical
0.5000 0.5000
0.5000 0.5000

−0.2315 −0.2315
−0.2315 −0.2315
0.2315 0.2315
0.2315 0.2315

−0.1072 −0.1072
−0.1072 −0.1072

Table 2.2. Spectrum of the Neumann-Poincaré operator for two disks.

http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial1/1.2 Neumann Poincare Operator.zip
http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial1/1.2 Neumann Poincare Operator.zip
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2.5. Conductivity Problem in Free Space

2.5.1. Far-Field Expansion. Let B be a Lipschitz bounded domain in Rd

and suppose that the origin O ∈ B. Let 0 < k 6= 1 < +∞ and denote λ(k) :=
(k + 1)/(2(k − 1)). Let h be a harmonic function in Rd, and let u be the solution
to the following transmission problem in free space:

(2.66)

{
∇ · ((1 + (k − 1)χ(B))∇uk) = 0 in Rd,

uk(x)− h(x) = O(|x|1−d) as |x| → +∞.

For a multi-index α = (α1, . . . , αd) ∈ Nd, let ∂αf = ∂α1
1 . . . ∂αd

d f and xα :=
xα1
1 . . . xαd

d . We can easily prove that

(2.67) uk(x) = h(x) + S0
B(λ(k)I − (K0

B)
∗)−1[

∂h

∂ν
|∂B ](x) for x ∈ Rd,

which together with the Taylor expansion

Γ0(x− y) =

+∞∑

α,|α|=0

(−1)|α|

α!
∂αxΓ0(x)y

α, y in a compact set, |x| → +∞,

yields the far-field expansion
(2.68)

(uk−h)(x) =
+∞∑

|α|,|β|=1

(−1)|α|

α!β!
∂αxΓ0(x)∂

βh(0)

∫

∂B

(λ(k)I−(K0
B)

∗)−1
[
ν(x)·∇xα

]
(y)yβ dσ(y)

as |x| → +∞.

Definition 2.25. For α, β ∈ Nd, we define the generalized polarization tensor
Mαβ by

(2.69) Mαβ(λ(k), B) :=

∫

∂B

yβφα(y) dσ(y),

where φα is given by

(2.70) φα(y) := (λ(k)I − (K0
B)

∗)−1
[
ν(x) · ∇xα

]
(y), y ∈ ∂B.

If |α| = |β| = 1, we denote Mαβ by (mpq)
d
p,q=1 and call M = (mpq)

d
p,q=1,

(2.71) mpq :=

∫

∂B

yq(λ(k)I − (K0
B)

∗)−1
[
νp](y) dσ(y),

with ν = (ν1, . . . , νd), the polarization tensor.

Formula (2.68) shows that through the generalized polarization tensors we have
complete information about the far-field expansion of u:

(uk − h)(x) =

+∞∑

|α|,|β|=1

(−1)|α|

α!β!
∂αxΓ0(x)Mαβ(λ(k), B)∂βh(0)

as |x| → +∞.
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2.5.2. Polarization Tensor. In this subsection, we derive some important
properties satisfied by the polarization tensor. It is worth mentioning that the
concept of polarization tensor has been widely used in various areas such as the
imaging of small particles and effective medium theory (see [44, 45, 47, 67, 351,
363] for these applications).

For a C1,η, η > 0, domain B in Rd, using (2.19) we can write

(λ(k)I − (K0
B)

∗)−1[ψ] =

∞∑

j=0

〈ψ,ϕj〉H∗ϕj
λ(k)− λj

,

with (λj , ϕj) being the eigenvalues and eigenvectors of (K0
B)

∗ in H∗. Hence, the
entries of the polarization tensor M can be decomposed as

(2.72) mpq(λ(k), B) =

∞∑

j=1

〈νp, ϕj〉H∗〈ϕj , xq〉− 1
2 ,

1
2

λ(k)− λj
.

Note that 〈νp, χ(∂B)〉− 1
2 ,

1
2
= 0. So, considering the fact that λ0 = 1/2, we have

〈νp, ϕ0〉H∗ = 0. Moreover, since

〈ϕj , xq〉− 1
2 ,

1
2

=
〈(1

2
− λj

)−1(1
2
I − (K0

B)
∗)[ϕj ], xq

〉
− 1

2 ,
1
2

=
−1

1/2− λj

〈∂S0
B [ϕj ]

∂ν

∣∣∣
−
, xq

〉
− 1

2 ,
1
2

=
−1

1/2− λj

[ ∫

∂B

∂xq
∂ν

S0
B [ϕj ]dσ −

∫

B

(
∆xqS0

B [ϕj ]− xq∆S0
B [ϕj ]

)
dx

]

=
〈νq, ϕj〉H∗

1/2− λj
,

it follows that

(2.73) mpq(λ(k), B) =

∞∑

j=1

〈νp, ϕj〉H∗〈νq, ϕj〉H∗

(1/2− λj)(λ(k)− λj)
=

∞∑

j=1

α
(j)
pq

λ(k)− λj
.

Here, we have used the fact that S0
B [ϕj ] is harmonic in B and introduced

(2.74) α(j)
pq :=

1

1/2− λj
〈νp, ϕj〉H∗〈νq, ϕj〉H∗ .

Notice that α
(j)
pp ≥ 0, for all p = 1, . . . , d, and j ≥ 1.

Remark 2.26. If B is a bounded Lipschitz domain, then for any k such that
λ(k) /∈ σ((K0

B)
∗), it follows from (2.30) that

(2.75)

mpq(λ(k), B) =

∫

t∈σ((K0
Ω)∗)

1

λ(k)− t

∫

∂B

νpdE(t)[xq]dσ(x)

=

∫

t∈σ((K0
Ω)∗)

1

λ(k)− t

∫

∂B

νqdE(t)[xp]dσ(x) .

From (2.73), one can see that the following properties of the polarization tensor
hold.

Proposition 2.27. The polarization tensor M(λ(k), B) is symmetric and if
k > 1, then M(λ(k), B) is positive definite, and it is negative definite if 0 < k < 1.

The following sum rules are from [70, 350].
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Proposition 2.28. For d ≥ 2, we have

(2.76)
∞∑

j=1

α(j)
pq = δpq|B|,

and

(2.77)

∞∑

j=1

λj

d∑

l=1

α(j)
pq =

(d− 2)

2
|B|.

Proof. Let f be a holomorphic function defined in an open set U ⊂ C con-

taining the spectrum, σ((K0
B)

∗), of (K0
B)

∗. Then, we can write f(z) =

∞∑

j=0

ajz
j for

every z ∈ U . Let

f((K0
B)

∗) :=
∞∑

j=0

aj((K0
B)

∗)j ,

where

((K0
B)

∗)j := (K0
B)

∗ ◦ (K0
B)

∗ ◦ . . . ◦ (K0
B)

∗
︸ ︷︷ ︸

j times

.

We have

f((K0
B)

∗) =
∞∑

j=1

f(λj)〈·, ϕj〉H∗ϕj .

Hence

(2.78)

∫

∂D

xpf((K0
B)

∗)[νq](x) dσ(x) =
∞∑

j=1

f(λj)α
(j)
pq .

Equation (2.78) yields the summation rules (2.76) and (2.77) for the entries of the
polarization tensor by respectively taking f(λ) = 1 and f(λ) = λ in (2.78). �

Remark 2.29. In [26], by means of the holomorphic functional calculus used in
the proof of Proposition 2.28, the eigenvalues λj of the Neumann-Poincaré operator
(K0

B)
∗ are recovered from the polarization tensorM , provided that the corresponding

α
(j)
pq 6= 0 for at least one pair (p, q).

In two dimensions, by using the twin spectrum property stated in Lemma 2.10,
we can rewrite the entries of the polarization tensor in the form

mpq(λ(k), B) =

∞∑

j,λj≥0

[
α
(j)
pq

λ(k)− λj
+

α̃
(j)
pq

λ(k) + λj

]
.

Furthermore, the following result holds.

Lemma 2.30. For all j ≥ 1 such that λj ≥ 0, we have

α̃
(j)
22 = α

(j)
11 ,

α̃
(j)
12 = −α(j)

12 .
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Proof. For simplicity, suppose that (K0
B)

∗ has simple eigenvalues. Let ϕ̃j be
the normalized eigenfunction associated with −λj . Recall from Lemma 2.11 that

ϕ̃j =
∂
∂T S0

B [ϕj ]

‖ ∂
∂T S0

B [ϕj ]‖H∗
,

where ϕj is the (normalized) eigenfunction associated with λj . On the other hand,
from (2.74), we have

(2.79) α̃(j)
pq =

1

1/2 + λj
〈νp, ϕ̃j〉H∗〈νq, ϕ̃j〉H∗ .

Since x2 is the harmonic conjugate of x1, the Cauchy-Riemann equations yield

ν1 =
∂x2
∂T

, ν2 = −∂x1
∂T

.

Hence, it follows that

〈ν2, ϕ̃j〉H∗ = −〈S0
B [ϕ̃j ], ν2〉 1

2 ,− 1
2

= 〈S0
B [ϕ̃j ],

∂x1
∂T

〉 1
2 ,− 1

2

= −‖ ∂

∂T
S0
B [ϕ̃j ]‖H∗〈x1, ϕj〉 1

2 ,− 1
2
,

= −

√
1
4 − λ2j

1/2− λj
〈ν1, ϕj〉H∗ .

Similarly, we have

〈ν1, ϕ̃j〉H∗ =

√
1
4 − λ2j

1/2− λj
〈ν2, ϕj〉H∗ .

From the definitions (2.74) and (2.79) of α
(j)
pq and α̃

(j)
pq , we obtain the desired iden-

tities. �

In view of the connection of the concept of polarization tensor to the theory
of composites (see Section 7.3), it is natural for the polarization tensor to have the
following bounds, which are called the Hashin-Shtrikman bounds after the names of
the scientists who found optimal bounds for the effective conductivity [255, 351].

Proposition 2.31. If B is a smooth bounded domain in R2, then the polar-
ization tensor associated with B and the conductivity parameter 0 < k 6= 1 < +∞
satisfies

(2.80)
1

k − 1
tr(M(λ(k), B)) < (1 +

1

k
)|B|

and

(2.81) (k − 1) tr(M(λ(k), B)−1) ≤ (1 + k)

|B| .
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Proof. From Lemma 2.30, we have

tr (M(λ(k), B)) =

+∞∑

j=1

2α
(j)
11

λ(k)− λj
+

2α
(j)
11

λ(k) + λj

=

+∞∑

j=1

2λ(k)α
(j)
11

λ(k)2 − λ2j
.

By using the sum rule (2.76), we obtain

| tr (M(λ(k), B)) | ≥ 2

|λ(k)| |B|.

Since |λj | < 1/2, it follows that

| tr (M(λ(k), B)) | < 2|λ(k)|
λ(k)2 − 1/4

|B|.

Concerning tr(M(λ(k), B)−1), by rotating the coordinate system in such a way that
the orthogonal eigenbasis of M(λ(k), B) is parallel to the two coordinate axes we
have that

tr(M(λ(k), B)−1) =
1

+∞∑

j=1

α
(j)
11

(λ(k)− λj)

+
1

+∞∑

j=1

α
(j)
22

(λ(k)− λj)

.

Thus, (2.76) yields
∣∣ tr(M(λ(k), B)−1)

∣∣ ≤ 2|λ(k)|
|B| ,

which completes the proof of the proposition. �

The bounds (2.80) and (2.81) were obtained in [331, 165] and proved to be
optimal in [165, 25]. The proof of Proposition 2.31 given here is from [246]. In view
of (2.75), the bounds (2.80) and (2.81) hold true for Lipschitz bounded domains.

If B is an ellipse of the form R(B′) where R is a rotation by θ and B′ is an
ellipse of the form

x21
a21

+
x22
a22

≤ 1,

then it is known (see [45, pp. 81-122] for example) that its polarization tensor is
given by

(2.82)

M(λ(k), B) = (k − 1)|B|R




a1 + a2
a1 + ka2

0

0
a1 + a2
ka1 + a2


Rt

= R




|B|
λ(k)− 1

2
a1−a2
a1+a2

0

0
|B|

λ(k) + 1
2
a1−a2
a1+a2


Rt.

Thus for a given polarization tensor there corresponds a unique ellipse whose po-
larization tensor is the given one [145].
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In the three-dimensional case, a domain for which analogous analytical expres-
sions for the elements of its polarization tensor M are available is the ellipsoid.
If the coordinate axes are chosen to coincide with the principal axes of B whose
equation then becomes

x21
a21

+
x22
a22

+
x23
a23

≤ 1, 0 < a3 ≤ a2 ≤ a1 ,

then M takes the form
(2.83)

M(λ(k), B) = (k − 1)|B|




1

(1−A1) + kA1
0 0

0
1

(1−A2) + kA2
0

0 0
1

(1−A3) + kA3



,

where the constants A1, A2, and A3 are defined by

A1 =
a2a3
a21

∫ +∞

1

1

t2
√
t2 − 1 + (a2a1 )

2
√
t2 − 1 + (a3a1 )

2
dt ,

A2 =
a2a3
a21

∫ +∞

1

1

(t2 − 1 + (a2a1 )
2)

3
2

√
t2 − 1 + (a3a1 )

2
dt ,

A3 =
a2a3
a21

∫ +∞

1

1√
t2 − 1 + (a2a1 )

2(t2 − 1 + (a3a1 )
2)

3
2

dt .

In the special case, a1 = a2 = a3, B becomes a ball and A1 = A2 = A3 = 1/3.
Hence the polarization tensor associated with the ball is given by

(2.84) M(λ(k), B) = (k − 1)|B|




3

2 + k
0 0

0
3

2 + k
0

0 0
3

2 + k



.

Derivation of the above formulas can be found in [351].
It is worth mentioning that the polarization tensors for ellipses (or ellipsoids)

satisfy the lower Hashin-Shtrikman bound (2.81). In [284, 285], the converse was
also proved to be true.

Formula (2.82) shows that if B is an ellipse or a disk, then M(λ(k), B) as
a meromorphic function of λ(k) has at most two poles (given by ± 1

2
a−b
a+b ) and

therefore, in view of the fact, in H∗(∂B),

σ((K0
B)

∗)\{1/2} =

{
±1

2

(
a− b

a+ b

)j
, j = 1, 2, . . .

}
,

all α
(j)
pq other than those corresponding to the eigenvalues ± 1

2
a−b
a+b vanish.

The converse is also true. If M(λ(k), B) as a meromorphic function of λ(k)
has at most two poles, then B is an ellipse or a disk if the poles are 0. The proof
first given in [246] follows from the strong Eshelby conjecture, which can be stated
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as follows: If for a nontrivial (c1, c2) the gradient in B of the solution u to the
transmission problem

(2.85)





∆u = 0 in R2 \ ∂B,
u|+ = u|− on ∂B,
∂u
∂ν |+ = k ∂u∂ν |− on ∂B,

u(x)− (c1x1 + c2x2) → 0 as |x| → +∞,

is constant, then B is an ellipse. Here, 0 < k 6= 1 < +∞. The strong Eshelby
conjecture was proved in [285, 332].

Proposition 2.32. Let B be a bounded and simply connected smooth domain
in R2. If the meromorphic function λ 7→M(λ,B) has at most two poles, then B is
an ellipse.

Proof. Let ±µ denote the two poles of M(λ,B). Note that M(λ,B) either
has two poles if µ 6= 0 or one pole when µ = 0. In view of Lemma 2.30, we can
write

M(λ,B) =




r21
λ− µ

+
r22

λ+ µ

r1r2
λ− µ

− r1r2
λ+ µ

r1r2
λ− µ

− r1r2
λ+ µ

r22
λ− µ

+
r21

λ+ µ


 ,

where r1 and r2 ≥ 0. Let c =

[
c1

c2

]
with

(2.86) cj :=
rj√
r21 + r22

, j = 1, 2.

We can easily see that, for all λ ∈ C\σ((K0
B)

∗),

c ·M(λ,B)c =
r21 + r22
λ− µ

=
|B|
λ− µ

=

∫

∂B

c · x(λI − (K0
B)

∗)−1[c · ν](x)dσ(x).

Similarly, we have

|B|
λ− µ

=

∫

∂B

c · ν(x)(λI − (K0
B))

−1[c · y](x)dσ(x).

Therefore, from Remark 2.75 it follows that c · ν and c · x are eigenfunctions of
(K0

B)
∗ and (K0

B), respectively, associated with the eigenvalue µ.
Since c · x is harmonic, we have on ∂B

S0
B [c · ν](x) = D0

B [c · y](x)− c · x

= (
1

2
I +K0

B)[c · y](x)− c · x

= (µ− 1

2
)c · x,

and hence, by the maximum principle

S0
B [c · ν](x) = (µ− 1

2
)c · x, x ∈ B.

Therefore, the solution u to (2.85) is given by

u(x) = S0
B(λI − (K0

B)
∗)−1[c · ν](x) + c · x

=

(
µ− 1

2

λ− µ
− 1

)
c · x.
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Since ∇u(x) is constant in B, it follows from the strong Eshelby conjecture that B
is an ellipse. �

2.5.3. Conductivity Equation with Complex Coefficients. Suppose that
k ∈ C. Then formula (2.67) holds true provided that λ(k) /∈ σ((K0

B)
∗) [281].

Theorem 2.33. Let k ∈ C. If λ(k) /∈ σ((K0
B)

∗), then, for any harmonic
function h in Rd, the unique solution uk to (2.66) satisfies

(2.87) ‖∇(uk − h)‖L2(Rd) ≤
C

dist
(
λ(k), σ((K0

B)
∗)
)‖∂h
∂ν

‖H−1/2(∂B)

for some constant C independent of k. Here, dist denotes the distance.

Proof. The existence of a solution to (2.66) follows from (2.67). To prove
(2.87), we note that

‖∇(uk − h)‖2L2(Rd) =

∫

B

∣∣∇S0
B [ϕk](x)

∣∣2 dx+

∫

Rd\B

∣∣∇S0
B [ϕk](x)

∣∣2 dx

=

∫

∂B

∂

∂ν
S0
B [ϕk]

∣∣
−S

0
B [ϕk] dσ −

∫

∂B

∂

∂ν
S0
B [ϕk]

∣∣
+
S0
B [ϕk] dσ

= −
∫

∂B

ϕkS0
B [ϕk] dσ = ‖ϕk‖2H∗ ,

where ϕk is given by

(2.88) ϕk = (λ(k)I − (K0
B)

∗)−1[
∂h

∂ν
|∂B ].

So (2.87) follows from (2.67).
To show the uniqueness of the solution, assume that u1k and u2k satisfy (2.66).

Let v = u1k − u2k. Then v is a solution to (2.66) with h = 0. So we have

0 =

∫

Rd

(
χ(Rd \B + kχ(B)

)
|∇v|2 dx

=

∫

Rd\B
|∇v|2 dx+ ℜk

∫

B

|∇v|2 dx+
√
−1ℑk

∫

B

|∇v|2 dx.

Hence, if ℜk > 0, or if ℜk ≤ 0 and ℑk 6= 0, then
∫

Rd\B
|∇v|2 dx =

∫

B

|∇v|2 dx = 0.

So, v is constant. Since v → 0 as |x| → ∞, we conclude that v = 0.
Uniqueness for the case k ≤ 0 (and λ(k) /∈ σ((K0

B)
∗)) can be proved as a

limiting case of k +
√
−1δ as δ → 0. �

The following result on Lipschitz dependency on k of the solution uk to (2.66)
holds [281].

Theorem 2.34. Let k ∈ C. If λ(k) /∈ σ((K0
B)

∗), then, for |k′−k| small enough,
there exists a positive constant C independent of k such that

(2.89) ‖∇(uk − uk′)‖L2(Rd) ≤
C|k′ − k|

dist
(
λ(k), σ((K0

B)
∗)
)‖∂h
∂ν

‖H−1/2(∂B)

for all harmonic functions h in Rd.
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Proof. Let ϕk and ϕk′ be defined by (2.88). We have

ϕk − ϕk′ =

∞∑

j=0

λ(k′)− λ(k)

(λ(k)− λj)(λ(k′)− λj)
〈∂h
∂ν
, ϕj〉H∗ϕj .

Therefore, for |k′−k| small enough, there exists a positive constant C independent
of k such that

‖ϕk − ϕk′‖H−1/2(∂B) ≤
C|k − k′|

dist(λ(k), σ((K0
B)

∗)
‖∂h
∂ν

‖H−1/2(∂B).

Since uk − uk′ = S0
B [ϕk − ϕk′ ] for x ∈ Rd, we obtain (2.89). �

We now investigate the behavior of the solution uk when λ(k) approaches one
of the eigenvalues λl 6= 0 of (K0

B)
∗ as ℑk → 0. We show that

(2.90) ‖∇(uk − h)‖L2(B) ∼
1

|ℑk| as ℑk → 0,

as one may expect.
We first show that

(2.91) ‖∇S0
B [ϕ]‖L2(B) ≈ ‖ϕ‖H∗

for all ϕ ∈ H∗
0. In fact, we have

‖∇S0
B [ϕ]‖2L2(B) =

∫

∂B

S0
B [ϕ]

∂

∂ν
S0
B [ϕ]

∣∣
−dσ

= −〈ϕ, (−1

2
I + (K0

B)
∗)[ϕ]〉H∗

=

∞∑

j=1

(
1

2
− λj)|〈ϕ,ϕj〉H∗ |2.

Since |λj | < 1/2 and they accumulate to 0, we have (2.91). We now see that

‖∇(uk − h)‖2L2(B) =
∞∑

j=1

|〈∂h∂ν , ϕj〉H∗ |2
|λ(k)− λj |2

=
∑

λj=λl

|〈∂h∂ν , ϕj〉H∗ |2
|λ(k)− λl|2

+
∑

λj 6=λl

|〈∂h∂ν , ϕj〉H∗ |2
|λ(k)− λl|2

.

Hence, we obtain (2.90) since |λ(k)− λl| ∼ |ℑk| as |ℑk| → 0.
Suppose that 0 is not an eigenvalue of (K0

B)
∗. Then, since (λj) converge to

zero, {0} is the essential spectrum of (K0
B)

∗. We investigate the behavior of the
solution uk when λ(k) approaches 0 as ℑk → 0. For simplicity we approximate
λ(k) by

√
−1ℑk and show that

(2.92) |ℑk|‖∇(uk − h)‖L2(B) → 0 as ℑk → 0.

We write

‖∇(uk − h)‖2L2(B) ≈
∑

|λj |≤|ℑk|

|〈∂h∂ν , ϕj〉H∗ |2
|ℑk|2 + |λj |2

+
∑

|λj |>|ℑk|

|〈∂h∂ν , ϕj〉H∗ |2
|ℑk|2 + |λj |2

=: S1 + S2.

Since
∑∞
j=1 |〈∂h∂ν , ϕj〉H∗ |2 <∞, it follows that

|ℑk|2S1 ≤
∑

|λj |≤|ℑk|
|〈∂h
∂ν
, ϕj〉H∗ |2 → 0 as ℑk → 0.
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To show that |ℑk|2S2 → 0, we express S2 as

S2 =

∞∑

l=0

∑

2l|ℑk|<|λj |<2l+1|ℑk|

|〈∂h∂ν , ϕj〉H∗ |2
|ℑk|2 + |λj |2

.

Then we see that

|ℑk|2S2 ≤
∞∑

l=0

1

1 + 22l

∑

2l|ℑk|<|λj |<2l+1|ℑk|
|〈∂h
∂ν
, ϕj〉H∗ |2

≤
∞∑

l=0

1

1 + 22l

∑

|λj |<2l+1|ℑk|
|〈∂h
∂ν
, ϕj〉H∗ |2

and so we infer that |ℑk|2S2 → 0 as ℑk → 0 since for each fixed l,
∑

|λj |<2l+1|ℑk|
|〈∂h
∂ν
, ϕj〉H∗ |2 → 0

as ℑk → 0. This completes the proof of (2.92).
Estimates (2.90) and (2.92) are from [86].

2.5.4. Field Enhancement Between Closely Spaced Disks. Let B1 and
B2 be two disks with the same radius r and conductivity k embedded in the back-
ground with conductivity 1. Let ǫ be the distance between the two disks B1 and
B2, that is,

ǫ := dist(B1, B2).

Let (ξ, θ) be the bipolar coordinates defined by

eξ−
√−1θ =

x1 +
√
−1x2 + α

x1 +
√
−1x2 − α

,

where α is defined by (2.57).
Let u be the solution to

(2.93)

{
∇ ·
(
1 + (k − 1)χ(B1 ∪B2)

)
∇u = 0 in R2,

u(x)− x1 = O(|x|−1) as |x| → +∞.

Then u can be represented as follows:

u = x1 + SB1∪B2 [ϕ],

where ϕ is the solution to

(λI −K∗
B1∪B2

)[ϕ] =



∂x1
∂ν

|∂B1

∂x1
∂ν

|∂B2


 .

Using (2.56), we have the following harmonic expansion for the linear function
x1:

(2.94) x1 = sgn(ξ)α

[
1 + 2

∞∑

n=1

e−n|ξ| cosnθ

]
,

which yields

(2.95) x1 = sgn(ξ)α

∞∑

m=−∞
e−|m||ξ|+√−1mθ.



2.5. CONDUCTIVITY PROBLEM IN FREE SPACE 49

From (2.95), we obtain

∂x1
∂ν

|ξ=±ξ0 = ±h(ξ0, θ)α
∞∑

m=−∞
(−|m|)e−|m|ξ0+

√−1mθ.(2.96)

On the other hand,


∂x1
∂ν

|∂B1

∂x1
∂ν

|∂B2


 =

∞∑

m=−∞
α
√
2π|m|(1− e−2|m|ξ0)e−|m|ξ0Ψ+

m + 0 ·Ψ−
m,(2.97)

where Ψ±
m are defined by (2.64). Hence, by Theorem 2.24,

ϕ =
∑

n 6=0

1

λ− λ+n

(
α
√

2π|n|(1− e−2|m|ξ0)e−|m|ξ0
)
Ψ+
n .(2.98)

Then (2.65) yields

u = x1 +
∑

n 6=0

αe−2|n|ξ0

λ− λ+n
sinh |n|ξ e

√−1nθ for |ξ| < |ξ0|.(2.99)

Now we compute ∇u(ξ = 0, θ = π) at the center of the gap between B1 and B2.
From 2.53 we have

∇u(0, π) = e1 + Ee1, E =

∞∑

n=1

4|n|e−2|n|ξ0

λ− λ+ǫ,n
(−1)n,

where (e1, e2) is the orthonormal basis in Cartesian coordinates.
Let k+n = − coth |n|ξ0. Note that

λ+n =
k+n + 1

2(k+n − 1)
.

E can be rewritten as

E =
∞∑

n=1

(1− k)(k+n − 1)

k − k+n
4|n|e−2|n|ξ0(−1)n.

Let us assume that k is given by

k = k+N +
√
−1δ

for some N ∈ N, where δ > 0 is a small parameter. For small δ > 0, E can be
approximated by

E ≈ (1− k)(k+N − 1)

k − k+N
4Ne−2Nξ0(−1)N .(2.100)

Since k+N ≈ −
√
r

N
√
ǫ
for small ǫ > 0, we have

E ≈
√
−1

r

Nδǫ
4e−2Nξ0(−1)N .(2.101)

It then follows that

∇u(0, π) ≈
√
−1

r

Nδǫ
4e−2Nξ0(−1)Ne1.
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Remark 2.35. Estimates of the field enhancement between two disks in the
limiting case when k → 0 or k → +∞ were first derived in [60]. The behav-
ior of the electric field between two nearly touching strictly convex perfect conduc-
tors or perfect insulators with smooth boundaries is investigated in [30]; see also
[117, 118, 282, 461]. In [459], the singular behavior of nearly touching spheres is
fully characterized. By combining the method of image charges and transformation
optics, an approximate analytical formula for the electric field for two spheres is
derived. The formula is highly accurate for wide ranges of complex permittivities
and gap distances.

2.5.5. Polarization Tensor of Multiple Particles. The polarization tensor
can be defined for multiple particles. In the case of two particles B1 ∪B2 with the
same conductivity k, it is defined as follows. Let K∗

B1∪B2
be the Neumann-Poincaré

operator associated with B1∪B2 given by (2.49) and let ν(i) be the outward normal
on ∂Bi, i = 1, 2. The polarization tensor M = (mpq)

d
p,q=1 associated with B1 ∪B2

and k is given by

mpq(λ(k), B1 ∪B2) =

∫

∂B1

ypφ
(1)
q dσ(y) +

∫

∂B2

ypφ
(2)
q dσ(y) for p, q = 1, . . . , d,

where [
φ
(1)
p

φ
(2)
p

]
= (λ(k)I −K∗

B1∪B2
)−1

[
ν
(1)
p |∂B1

ν
(2)
p |∂B2

]
.

If B1 and B2 are two separated disks of radius r centered at (−1)j(r + ǫ
2 , 0)

for j = 1, 2 and ǫ > 0 is their separation distance, then from formula (2.61) for
the eigenvalues of K∗

B1∪B2
, the polarization tensor associated with B1 ∪B2 and the

conductivity k is given by the following formula:

M(λ(k), B1 ∪B2) = 8πα2




∞∑

j=1

je−2jξ0

λ(k)− 1
2e

−2jξ0
0

0

∞∑

j=1

je−2jξ0

λ(k) + 1
2e

−2jξ0



,(2.102)

where α and ξ0 are defined by (2.57). Again, it is represented in a spectral form.

2.5.6. Representation by an Equivalent Ellipse. Consider the polariza-
tion tensor for some particle(s). It can be shown that there exists a corresponding
unique ellipse E that has precisely the same polarization tensor. We will call E
the equivalent ellipse. The equivalent ellipse represents the essential nature of the
particle. From a given polarization tensor M , we can reconstruct the parameters
for the equivalent ellipse using the following formula:

(2.103) a1 = ea2, a2 =

√
E

πe
, E =

λ1(e+ k)

(e+ 1)(k − 1)
, e =

λ2 − kλ1
λ1 − kλ2

,

where λ1, λ2 are the eigenvalues of M and [e11, e12]
t, [e21, e22]

t are the associated
normalized eigenvectors. Let E ′ be the ellipse whose semi-axes are on the x1− and
x2−axes and of length a1 and a2. Let

θ = arctan
e21
e11

.
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Then the equivalent ellipse is given by

(2.104) E =

(
cos θ − sin θ

sin θ cos θ

)
E ′.

2.5.7. Numerical Results. With a particular choice of parameters we can
obtain an explicit solution to the conductivity problem (2.66). Let B be a disk of
radius R = 5 located at the origin in R2. Let us take the conductivity in B to be
k = 3 which means λ = 1. We also assume that h(x) = x1. It can be shown that
the explicit solution is given by

(2.105) u(r, θ) =





r cos(θ)− k − 1

k + 1
R2r−1 cos(θ), |r| > R,

2

k + 1
r cos(θ), |r| ≤ R,

where (r, θ) are the polar coordinates.
Likewise, we can obtain a numerical solution by using Code Conductivity

Solver. This involves inverting the operator λI − (K0
B)

∗ which is possible in this
case as λ = 1. A comparison between the exact solution and the numerical solution
is shown in Figure 2.1 where we have evaluated the solutions on the circle |x| = 10.

0 10 20 30 40 50
-10

-5

0

5

10

u
exact

u
numerical

Figure 2.1. The exact solution and the numerical solution of the
conductivity problem (2.66) evaluated on the circle |x| = 10.

Next, we compute the polarization tensor for an ellipse whose semi-axes are
on the x1− and x2−axes of length a1 = 5 and a2 = 3. We assume k = 3 (or
equivalently, λ(k) = 1). A comparison between the numerical values obtained by
Code Polarization Tensors and the exact values is provided in Table 2.3.

Finally, we consider the case of two separated disks B1 ∪ B2 where Bj is a
circular disk of radius r = 1 centered at (−1)j(r + ǫ

2 , 0) for j = 1, 2. Let the
distance between the two disks be ǫ = 0.3 and assume k = 3. A comparison
between the numerical values and the exact values is provided in Table 2.4.

http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial1/1.2 Neumann Poincare Operator.zip
http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial1/1.2 Neumann Poincare Operator.zip
https://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Tutorial4/Polarization Tensors
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Theoretical Numerical

M(λ(k), B)

(
53.8559 0.0000
−0.0000 41.8879

) (
53.8559 0.0000
−0.0000 41.8879

)

Table 2.3. Polarization Tensor M(λ(k), B) when B is an ellipse.

Theoretical Numerical

M(λ(k), B)

(
6.9789 0.0000
0.0000 5.7629

) (
6.9789 0.0000
0.0000 5.7629

)

Table 2.4. Polarization Tensor M(λ(k), B1 ∪ B2) when B1 and
B2 are two disks of radius r = 1 separated by a distance ǫ = 0.3.

From (2.103), the reconstructed parameters for the equivalent ellipse E defined
in (2.104) turn out to be a1 = 1.713224, a2 = 1.167994, and θ = 0.523599. The two
disks B1 ∪B2 and the equivalent ellipse E are shown in Figure 2.2.

-2 -1 0 1 2

-2

-1

0

1

2

Figure 2.2. Two circular disks (gray) and their equivalent ellipse
(black). The parameters are given as r = 1, ǫ = 0.3, and k = 1.4.

2.6. Periodic and Quasi-Periodic Green’s Functions

In this section we investigate Green’s functions for gratings; periodic, and quasi-
periodic Green’s functions; and layer potentials for the Laplacian. The results
described in this section will be applied to the mathematical theory of photonic
crystals, metasurfaces, and metamaterials.

2.6.1. Green’s Functions for Gratings. Consider a function G♯ : R
2 → C

satisfying

(2.106) ∆G♯(x) =
∑

n∈Z

δ0(x+ (n, 0)).

We call G♯ a periodic Green’s function for the one-dimensional grating in R2.

Lemma 2.36. Let x = (x1, x2). Then

(2.107) G♯(x) =
1

4π
ln
(
sinh2(πx2) + sin2(πx1)

)
,



2.6. PERIODIC AND QUASI-PERIODIC GREEN’S FUNCTIONS 53

satisfies (2.106).

Proof. We have

∆G♯(x) =
∑

n∈Z

δ0(x+ (n, 0))

=
∑

n∈Z

δ0(x2)δ0(x1 + n)

=
∑

n∈Z

δ0(x2)e
√−12πnx1 ,(2.108)

where we have used the Poisson summation formula
∑

n∈Z

δ0(x1 + n) =
∑

n∈Z

e
√−12πnx1 .

On the other hand, as G♯ is periodic in x1 of period 1, we have

(2.109) G♯(x) =
∑

n∈Z

βn(x2)e
√−12πnx1 ,

therefore

(2.110) ∆G♯(x) =
∑

n∈Z

(β
′′

n(x2) + (
√
−12πn)2βn)e

√−12πnx1 .

Comparing (2.108) and (2.110) yields

(2.111) β
′′

n(x2) + (
√
−12πn)2βn = δ0(x2).

A solution to the previous equation can be found by using standard techniques for
ordinary differential equations. We have

β0 =
1

2
|x2|+ c,

βn =
−1

4π|n|e
−2π|n||x2|, n 6= 0,

where c is a constant. Subsequently,

G♯(x) =
1

2
|x2|+ c−

∑

n∈Z\{0}

1

4π|n|e
−2π|n||x2|e

√−12πnx1

=
1

2
|x2|+ c−

∑

n∈N\{0}

1

2πn
e−2πn|x2| cos(2πnx1)

=
1

4π
ln
(
sinh2(πx2) + sin2(πx1)

)
,

where we have used the summation identity (see, for instance, [250, pp. 813-814])

∑

n∈N\{0}

1

2πn
e−2πn|x2| cos(2πnx1) =

1

2
|x2| −

ln(2)

2π

− 1

4π
ln
(
sinh2(πx2) + sin2(πx1)

)
,

and defined c = − ln(2)

2π
. �
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Let us denote by G♯(x, y) := G♯(x − y). In the following we define the
one-dimensional periodic single-layer potential and the one-dimensional periodic

Neumann-Poincaré operator, respectively, for a bounded domain Ω ⋐
(
− 1

2
,
1

2

)
×R

which we assume to be of class C1,η for some η > 0. Let

SΩ,♯ : H
− 1

2 (∂Ω) −→ H1
loc(R

2), H
1
2 (∂Ω)

ϕ 7−→ SΩ,♯[ϕ](x) =

∫

∂Ω

G♯(x, y)ϕ(y)dσ(y)

for x ∈ R2 (or x ∈ ∂Ω) and let

K∗
Ω,♯ : H

− 1
2 (∂Ω) −→ H− 1

2 (∂Ω)

ϕ 7−→ K∗
Ω,♯[ϕ](x) =

∫

∂Ω

∂G♯(x, y)

∂ν(x)
ϕ(y)dσ(y)

for x ∈ ∂Ω. As in the previous subsections, the periodic Neumann-Poincaré opera-
tor K∗

Ω,♯ can be symmetrized. The following lemma holds.

Lemma 2.37. (i) For any ϕ ∈ H− 1
2 (∂Ω), SΩ,♯[ϕ] is harmonic in Ω and

in
(
− 1

2
,
1

2

)
× R \ Ω;

(ii) The following trace formula holds: for any ϕ ∈ H− 1
2 (∂Ω),

(−1

2
I +K∗

Ω,♯)[ϕ] =
∂SΩ,♯[ϕ]

∂ν

∣∣∣
−
;

(iii) The following Calderón identity holds: KΩ,♯SΩ,♯ = SΩ,♯K∗
Ω,♯, where KΩ,♯

is the L2-adjoint of K∗
Ω,♯;

(iv) The operator K∗
Ω,♯ : H

− 1
2

0 (∂Ω) → H
− 1

2
0 (∂Ω) is compact self-adjoint equipped

with the following inner product:

(2.112) 〈u, v〉H∗
0
= −〈SΩ,♯[v], u〉 1

2 ,− 1
2

which makes H∗
0 equivalent to H

− 1
2

0 (∂Ω). Here, by E0 we denote the zero-

mean subspace of E for E = H∗ or H− 1
2 (∂Ω).

(v) Let (λj , ϕj), j = 1, 2, . . . be the eigenvalue and normalized eigenfunction
pair of K∗

Ω,♯ in H∗
0(∂Ω), then λj ∈ (− 1

2 ,
1
2 ) and λj → 0 as j → ∞.

Proof. First, note that a Taylor expansion of sinh2(πx2) + sin2(πx1) yields

(2.113) G♯(x) =
ln |x|
2π

+R(x),

where R is a smooth function such that

R(x) =
1

4π
ln(1 +O(x22 − x21)).

We can decompose the operators SΩ,♯ and K∗
Ω,♯ on H∗

0(∂Ω) accordingly. Since

SΩ,♯ − S0
Ω and K∗

Ω,♯ − (K0
Ω)

∗ are smoothing operators, the proof of Lemma 2.37
follows the same arguments as those given in the previous subsections. �
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2.6.2. Periodic Green’s Function. In order to derive effective medium prop-
erties of subwavelength resonators, we shall investigate the periodic transmission
problem for the Laplace operator. The results in this subsection are from [67].

Let Y = (−1/2, 1/2)d denote the unit cell and D ⊂ Y . Consider the periodic
transmission problem:

(2.114)





∇ ·
(
1 + (k − 1)χ(D)

)
∇up = 0 in Y ,

up − xp periodic (in each direction) with period 1 ,∫

Y

up dx = 0 ,

for p = 1, . . . , d.
In order to derive a representation formula for the solution to the periodic

transmission problem (2.114), we need to introduce a periodic Green’s function.
Let

(2.115) G♯(x) = −
∑

n∈Zd\{0}

e
√−12πn·x

4π2|n|2 .

Then we get, in the sense of distributions,

∆G♯(x) =
∑

n∈Zd\{0}
e
√−12πn·x =

∑

n∈Zd

e
√−12πn·x − 1 ,

and G♯ has mean zero. It then follows from the Poisson summation formula:

(2.116)
∑

n∈Zd

e
√−12πn·x =

∑

n∈Zd

δ0(x− n) ,

that

(2.117) ∆G♯(x) =
∑

n∈Zd

δ0(x− n)− 1 .

The appearance of the constant 1 in (2.117) may be somewhat peculiar. It is the
volume of Y and an integration by parts shows that it should be there. In fact,

∫

Y

∆G♯(x)dx =

∫

∂Y

∂G♯
∂ν

dσ ,

and the right-hand side is zero because of the periodicity.
The expression (2.115) for G♯ is called a lattice sum and its asymptotic behavior

has been studied extensively in many contexts in solid state physics, e.g., [465].
We state the next lemma for the general case, but give in some detail a proof

only for d = 2, leaving the proof in higher dimensions to the reader. Formulas
(2.118) and (2.119) will be applied later in our study of the effective properties of
systems of subwavelength resonators.

Lemma 2.38. There exists a smooth function Rd(x) in the unit cell Y such that

(2.118) G♯(x) =





1

2π
ln |x|+R2(x), d = 2 ,

1

(2− d)ωd

1

|x|d−2
+Rd(x), d ≥ 3 .
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Moreover, the Taylor expansion of Rd(x) at 0 for d ≥ 2 is given by

(2.119) Rd(x) = Rd(0)−
1

2d
(x21 + . . .+ x2d) +O(|x|4) .

Proof. As mentioned above, we assume that d = 2. The proof we give here is
not the simplest one, but has the advantage that it can be extended to other more
complicated periodic Green’s functions. Note that the behavior G♯(x) ∼ Γ(x) as
|x| → 0 is to be expected since the effect of the periodic boundary conditions is
negligible when x is near the origin.

We begin by writing

G♯(x) = −
∑

n∈Z2\{0}

e
√−12πn·x

4π2|n|2 = − 1

4π2

∑

n∈Z2\{0}

cos 2πn1x1 cos 2πn2x2
n2
1 + n2

2

= − 1

2π2

+∞∑

n1=0

cos 2πn1x1

+∞∑

n2=1

cos 2πn2x2
n21 + n2

2

− 1

2π2

+∞∑

n2=0

cos 2πn2x2

+∞∑

n1=1

cos 2πn1x1
n21 + n2

2

:= G1 +G2 .

After that, let us invoke three summation identities (see for instance [178, pp.
813-814]):

(2.120)

+∞∑

n2=1

cos 2πn2x2
n2
1 + n2

2

=





− 1

2n2
1

+
π

2n1

coshπ(2x2 − 1)n1

sinhπn1
if n1 6= 0 ,

π2

6
− π2x2 + π2x22 if n1 = 0 ,

(2.121)

+∞∑

n1=1

cos 2πn1x1
n1

e−2πn1x2 = πx2 − ln 2− 1

2
ln

(
sinh2 πx2 + sin2 πx1

)
.

We then compute

G1 = − 1

2π2

+∞∑

n2=1

cos 2πn2x2
n22

− 1

2π2

+∞∑

n1=1

cos 2πn1x1

(
− 1

2n2
1

+
π

2n1

coshπ(2x2 − 1)n1
sinhπn1

)

= − 1

2π2

+∞∑

n2=1

cos 2πn2x2
n22

+
1

4π2

+∞∑

n1=1

cos 2πn1x1
n2
1

− 1

4π

+∞∑

n1=1

cos 2πn1x1
n1

coshπ(2x2 − 1)n1

sinhπn1
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= − 1

12
+

1

2
x2 −

1

2
x22 +

1

24
− 1

4
x1 +

1

4
x21 −

1

4π

+∞∑

n1=1

cos 2πn1x1
n1

e−2πn1x2

− 1

4π

+∞∑

n1=1

cos 2πn1x1
n1

(
coshπ(2x2 − 1)n1

sinhπn1
− e−2πn1x2

)

to arrive at

G1 = − 1

24
+
ln 2

4π
+
1

4
(x2−x1)−

1

4
(2x22−x21)+

1

8π
ln

(
sinh2 πx2+sin2 πx1

)
+r1(x) ,

where the function r1(x) is given by

r1(x) = − 1

4π

+∞∑

n1=1

cos 2πn1x1
n1

(
coshπ(2x2 − 1)n1

sinhπn1
− e−2πn1x2

)

= − 1

4π

+∞∑

n1=1

cos 2πn1x1
n1

e2πn1x2 + e−2πn1x2

e2πn1 − 1
.

Because of the term e−πn1 , we can easily see that r1 is a C∞-function.
In the same way we can derive

G2 = − 1

24
+
ln 2

4π
+
1

4
(x1−x2)−

1

4
(2x21−x22)+

1

8π
ln

(
sinh2 πx1+sin2 πx2

)
+r2(x) ,

where

r2(x) = − 1

4π

+∞∑

n1=1

cos 2πn1x2
n1

e2πn1x1 + e−2πn1x1

e2πn1 − 1
.

By a Taylor expansion, we readily see that

ln

(
sinh2 πx2 + sin2 πx1

)
+ ln

(
sinh2 πx1 + sin2 πx2

)

= 4 lnπ + 2 ln(x21 + x22) + r3(x) ,

where r3(x) is a C∞-function with r3(x) = O(|x|4) as |x| → 0. In short, we obtain

G♯(x) =
1

2π
ln |x|+R2(x) ,

where

R2(x) = C − 1

4
(x21 + x22) + r1(x) + r2(x) + r3(x)

for some constant C. By a Taylor expansion again, one can see that

r1(x) + r2(x) = C +O(|x|4) as |x| → 0 ,

for some constant C. That R2 is harmonic follows from (2.117). This concludes
the proof. �

Note that in the two-dimensional case we can expand R2(x) even further to get

R2(x) = R2(0)−
1

4
(x21 + x22) +

m∑

s=3

R
(s)
2 (x) +O(|x|m+1) as |x| → 0 ,
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where the harmonic polynomial R
(s)
2 is homogeneous of degree s, i.e., R

(s)
2 (tx) =

tsR
(s)
2 (x) for all t ∈ R and all x ∈ R2. Since

R2(−x1, x2) = R2(x1, x2) and R2(x1,−x2) = R2(x1, x2) ,

R
(s)
2 ≡ 0 if s is odd, and hence

(2.122) R2(x) = R2(0)−
1

4
(x21 + x22) +

m∑

s=2

R
(2s)
2 (x) +O(|x|m+2) as |x| → 0 .

We now establish a representation formula for the solution of the periodic
transmission problem (2.114).

Let the periodic single-layer potential of the density function φ ∈ L2
0(∂Ω) be

defined by

S0
Ω,♯[φ](x) :=

∫

∂Ω

G♯(x− y)φ(y) dσ(y), x ∈ R2 .

Lemma 2.38 shows that

(2.123) S0
Ω,♯[φ](x) = S0

Ω[φ](x) +RΩ[φ](x) ,

where RΩ is a smoothing operator defined by

RΩ[φ](x) :=

∫

∂Ω

Rd(x− y)φ(y) dσ(y) .

Thanks to (2.123), we have

∂

∂ν
S0
Ω,♯[φ]

∣∣∣∣
±
(x) =

∂

∂ν
S0
Ω[φ]

∣∣∣∣
±
(x) +

∂

∂ν
RΩ[φ](x), x ∈ ∂Ω .

Thus we can understand, with the help of Lemma 2.38, ∂S0
Ω,♯[φ]/∂ν|± as a compact

perturbation of ∂S0
Ω[φ]/∂ν|±. Based on this natural idea, we obtain the following

results.

Lemma 2.39. (i) Let φ ∈ L2
0(∂Ω). The following behaviors at the bound-

ary hold:

(2.124)
∂

∂ν
S0
Ω,♯[φ]

∣∣∣∣
±
(x) = (±1

2
I + (K0

Ω,♯)
∗)[φ](x) on ∂Ω ,

where (K0
Ω,♯)

∗ : L2
0(∂Ω) → L2

0(∂Ω) is given by

(2.125) (K0
Ω,♯)

∗[φ](x) = p.v.

∫

∂Ω

∂

∂ν(x)
G♯(x− y)φ(y) dσ(y), x ∈ ∂D .

(ii) If φ ∈ L2
0(∂Ω), then S0

Ω,♯[φ] is harmonic in Ω and Y \ Ω.
(iii) If |λ| ≥ 1

2 , then the operator λI − (K0
Ω,♯)

∗ is invertible on L2
0(∂Ω).

Proof. Since (K0
Ω,♯)

∗ = (K0
Ω)

∗ + CΩ where CΩ is a smoothing operator, part

(i) immediately follows from (2.8). Part (ii) follows from (2.117) and the fact that
φ ∈ L2

0(∂Ω). As a consequence of parts (i) and (ii), it follows that λI − (K0
Ω,♯)

∗

maps L2
0(∂Ω) into L2

0(∂Ω). To prove part (iii), we observe that CΩ maps L2(∂Ω)
into H1(∂Ω), and hence it is a compact operator on L2(∂Ω). Since, by Lemma 2.2,
λI−(K0

Ω)
∗ is invertible on L2

0(∂Ω), it suffices, by applying the Fredholm alternative,
to show that λI − (K0

Ω,♯)
∗ is one-to-one on L2

0(∂Ω). We shall prove this fact, using
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the same argument as the one introduced in Lemma 2.2. Let |λ| ≥ 1/2, and suppose
that φ ∈ L2

0(∂Ω) satisfies (λI − (K0
Ω,♯)

∗)[φ] = 0 and φ 6= 0. Let

A :=

∫

Ω

|∇S0
Ω,♯[φ]|2 dx, B :=

∫

Y \Ω
|∇S0

Ω,♯[φ]|2 dx .

Then A 6= 0. In fact, if A = 0, then S0
Ω,♯[φ] is constant in Ω. Therefore S0

Ω,♯[φ] in

Y \ Ω is periodic and satisfies S0
Ω,♯[φ]|∂Ω = constant. Hence S0

Ω,♯[φ] = constant in

Y \ Ω. Therefore, by part (i), we get

φ =
∂

∂ν
S0
Ω,♯[φ]

∣∣∣∣
+

− ∂

∂ν
S0
Ω,♯[φ]

∣∣∣∣
−
= 0 ,

which contradicts our assumption. In a similar way, we can show that B 6= 0.
On the other hand, using Green’s formula and periodicity, we have

A =

∫

∂Ω

(−1

2
I + (K0

Ω,♯)
∗)[φ] S0

Ω,♯[φ] dσ, B = −
∫

∂Ω

(
1

2
I + (K0

Ω,♯)
∗)[φ] S0

Ω,♯[φ] dσ .

Since (λI − (K0
Ω,♯)

∗)[φ] = 0, it follows that

λ =
1

2

B −A

B +A
.

Thus, |λ| < 1/2, which is a contradiction. This completes the proof. �

The following result holds.

Theorem 2.40. Let up be the unique solution to the transmission problem
(2.114). Then up, p = 1, . . . , d, can be expressed as follows

(2.126) up(x) = xp + Cp + S0
Ω,♯(

k + 1

2(k − 1)
I − (K0

Ω,♯)
∗)−1[νp](x) in Y ,

where Cp is a constant and νp is the p-component of the outward unit normal ν to
∂Ω.

Proof. Observe that up, p = 1, . . . , d, satisfies




∆up = 0 in Ω ∪ (Y \ Ω) ,
up|+ − up|− = 0 on ∂Ω ,

∂up
∂ν

∣∣∣∣
+

− k
∂up
∂ν

∣∣∣∣
−
= 0 on ∂Ω ,

up − xp periodic with period 1 ,∫

Y

up dx = 0 .

To prove (2.126), define

Vp(x) = S0
Ω,♯((

k + 1

2(k − 1)
I − (K0

Ω,♯)
∗)−1[νp](x) in Y .

Then routine calculations show that

(2.127)





∆Vp = 0 in Ω ∪ (Y \D) ,

Vp|+ − Vp|− = 0 on ∂Ω ,

∂Vp
∂ν

|+ − k
∂Vp
∂ν

|− = (k − 1)νp on ∂Ω ,

Vp periodic with period 1 .
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Thus by choosing Cp so that
∫
Y
up dx = 0, we get (2.126) which completes the

proof. �

Consider a general periodic lattice in two dimensions. Suppose that the periodic
lattice is given by rn = n1a

(1) + n2a
(2), n = (n1, n2) ∈ Z2. Here the vectors a(1)

and a(2) determine the unit cell Y := {sa(1)+ ta(2), s, t ∈ (−1/2, 1/2)} of the array.
The reciprocal vector of rn is given by kn · a(i) = ni, i = 1, 2. The periodic Green’s
function of the Laplacian is defined by




∆Ga♯ =
∑

n∈Z2

δ0(x− rn)−
1

|Y | ,

Ga♯ (x+ rn) = Ga♯ (x), ∀ n ∈ Z2.

Since it is possible to rotate and scale the given lattice in order to satisfy a(1) = (1, 0)
and a(2) = (a, b) with b > 0, we can write

rn = n1(1, 0) + n2(a, b), kn = n1(1,−
a

b
) + n2(0,

1

b
), n = (n1, n2) ∈ Z2.

Analogously to (2.115), we have

(2.128) Ga♯ (x) = −
∑

n∈Z2\{0}

e
√−12π(n1x1+(− a

b n1+
1
bn2)x2

4π2
(
n2
1 + (−a

bn1 +
1
bn2)

2
)2 .

Analogously to Lemma 2.37, the Neumann-Poincaré operator (K0
Ω,♯)

∗ can be
symmetrized. The following lemma holds.

Lemma 2.41. (i) The operator (K0
Ω,♯)

∗ : H
− 1

2
0 (∂Ω) → H

− 1
2

0 (∂Ω) is com-
pact self-adjoint equipped with the following inner product

(2.129) 〈u, v〉H∗
0
= −〈S0

Ω,♯[v], u〉 1
2 ,− 1

2

(ii) Let (λj,♯, ϕj,♯), j = 1, 2, . . . be the eigenvalue and normalized eigenfunction
pair of (K0

Ω,♯)
∗ in H∗

0(∂Ω), then λj,♯ ∈ (− 1
2 ,

1
2 ) and λj,♯ → 0 as j → ∞.

2.6.3. Quasi-Periodic Green’s Functions. For α ∈ (0, 2π)d, a function u

is said to be α-quasi-periodic if e−
√−1α·xu is periodic.

Let

(2.130) Gα(x) = −
∑

n∈Zd

e
√−1(2πn+α)·x

|2πn+ α|2 , α ∈ (0, 2π)d.

We have

(2.131) ∆Gα(x) =
∑

n∈Zd

δ0(x− n)e
√−1α·n in Rd,

or equivalently,

(2.132)

(
∆+

√
−1α · ∇ − |α|2

)(
e−

√−1α·xGα(x)
)
=
∑

n∈Zd

δ0(x− n) in Rd.

We denote by S0
Ω,α,D0

Ω,α, and (K0
Ω,α)

∗ the α-quasi-periodic single- and double-
layer potentials and the α-quasi-periodic Neumann-Poincaré operator associated
with Gα, respectively.

Analogously to Lemma 2.37, the quasi-periodic Neumann-Poincaré operator
(K0

Ω,α)
∗ can be symmetrized. The following lemma holds.
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Lemma 2.42. (i) Let α ∈ (0, 2π)2. The operator (K0
Ω,α)

∗ : H
− 1

2
0 (∂Ω) →

H
− 1

2
0 (∂Ω) is compact self-adjoint equipped with the following inner product

(2.133) 〈u, v〉H∗
0
= −〈S0

Ω,α[v], u〉 1
2 ,− 1

2

(ii) Let (λj,α, ϕj,α), j = 1, 2, . . . be the eigenvalue and normalized eigenfunc-
tion pair of (K0

Ω,α)
∗ in H∗

0(∂Ω), then λj,α ∈ (− 1
2 ,

1
2 ) and λj,α → 0 as

j → ∞.

2.6.4. Numerical Implementation. The periodic single layer potential SΩ,♯

can be represented numerically in the same fashion as described previously for the
Neumann-Poincaré operator (K0

Ω)
∗ in Subsection 2.4.5. Recall that the boundary

∂Ω is parametrized by x(t) for t ∈ [0, 2π). After partitioning the interval [0, 2π)
into N pieces

[t1, t2), [t2, t3), . . . , [tN , tN+1),

with t1 = 0 and tN+1 = 2π, we approximate the boundary ∂Ω = {x(t) ∈ R2 : t ∈
[0, 2π)} by x(i) = x(ti) for 1 ≤ i ≤ N . We then represent the infinite dimensional
operator SΩ,♯ acting on the density ϕ by a finite dimensional matrix S acting on

the coefficient vector ϕi := ϕ(x(i)) for 1 ≤ i ≤ N . We have

SΩ,♯[ϕ](x) =

∫

∂Ω

G♯(x, y)ϕ(y) dσ(y),

for ψ ∈ L2(∂Ω) and we represent it numerically by

Sψ̃ =




S11 S12 . . . S1N

S21 S22 . . . S2N

...
. . .

...
SN1 . . . . . . SNN







ϕ1

ϕ2
...
ϕN


 ,

where

Sij =
1

4π
ln
(
sinh2(π(x

(i)
2 −x(j)2 ))+ sin2(π(x

(i)
1 −x(j)1 ))

)
|T (x(j))|(tj+1− tj), i 6= j,

with T (x(i)) being the tangent vector at x(i). When i = j we have a logarithmic
singularity and therefore we must handle the diagonal terms carefully. Let us
explicitly calculate the integrals for the diagonal terms. Let the portion of the
boundary starting at x(i) and ending at x(i+1) be parameterized by s ∈ [0, ε = 2π

N )
and note that ε → 0 as the number of discretization points N → ∞. Therefore,
using the Taylor expansion (2.113) given in the proof of Lemma 2.37 the expression
we need to calculate for the diagonal terms is:

Sii =
1

2π

∫ ε

0

ln

(
π|x(i) − x(s)|

)
|T (s)|ds.

Taylor expanding for small s this expression becomes

Sii =
1

2π

∫ ε

0

ln

(
π|x(i) − (x(0) + x′(0)s+O(s2))|

)
|T (0) + T ′(0)s+O(s2)|ds.

Noting that x(i) = x(0) and T (i) = x′(0) we have

Sii ≈
|T (i)|
2π

∫ ε

0

ln

(
π|T (i)|s

)
ds,
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Figure 2.3. The periodic Green’s function G♯ for the Laplace equation.

as ε→ 0. As
∫ ε
0
ln(as)ds = ε(ln(aε)− 1) this means that

Sii ≈
|T (i)|ε
2π

(
ln

(
π|T (i)|ε

)
− 1

)

=
|T (i)|
N

(
ln

(
2π2

N
|T (i)|

)
− 1

)
,

and we have found an explicit representation for the diagonal terms of the matrix
S.

For the periodic Neumann-Poincaré operator K∗
Ω,♯, the terms of the correspond-

ing discretization matrix K are given by

Kij =
1

2

[
ν
(i)
1 sin(πx̃1) cos(πx̃1)

sinh2(πx̃2) + sin2(πx̃1)

+
ν
(i)
2 sinh(πx̃2) cosh(πx̃2)

sinh2(πx̃2) + sin2(πx̃1)

]
|T (j)|(tj+1 − tj), i 6= j,

where x̃ = x(i) − x(i+1). With regard to the diagonal terms, observe that in light
of (2.113) we have precisely the same singularity as for the non-periodic case and
therefore we can use the same expression for the diagonal terms of the periodic
version of the discretization matrix, that is:

(2.134) Kii ≈ − 1

2N

〈a(i)), ν(i)〉
|T (i)| .

The periodic Green’s function G♯, which can be seen in Figure 2.3, and the
associated layer potentials SΩ,♯ and K∗

Ω,♯ are implemented in Code Periodic Green’s
Function Laplace.

http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial3/3.1 Periodic Green's Function Laplace.zip
http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial3/3.1 Periodic Green's Function Laplace.zip
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2.7. Shape Derivatives of Layer Potentials

In this section, we compute shape derivatives of layer potentials (see Appendix
B.3 for the definition of the shape derivative). These calculations will be used
for the sensitivity analysis with respect to changes in the shape of a cavity or a
resonator of eigenmodes or resonant modes.

Let D be a bounded domain of class C2 and Dǫ be an ǫ-perturbation of D; i.e.,
let h ∈ C2(∂D) and ∂Dǫ be given by

∂Dǫ =

{
x̃ : x̃ = x+ ǫh(x)ν(x), x ∈ ∂D

}
.

In this section we derive full asymptotic expansions of SωDǫ
and (KωDǫ

)∗ in terms
of ǫ.

Let a, b ∈ R, with a < b, and letX(t) : [a, b] → R2 be the arclength parametriza-
tion of ∂D; namely, X is a C2-function satisfying |X ′(t)| = 1 for all t ∈ [a, b] and

∂D :=

{
x = X(t), t ∈ [a, b]

}
.

Then the outward unit normal to ∂D, ν(x), is given by ν(x) = R−π/2X ′(t), where
R−π/2 is the rotation by −π/2, the tangential vector at x, T (x) = X ′(t), and
X ′(t) ⊥ X ′′(t). Set the curvature τ(x) to be defined by

X ′′(t) = τ(x)ν(x).

We sometimes use h(t) for h(X(t)) and h′(t) for the tangential derivative of h(x).

Then, X̃(t) = X(t) + ǫh(t)ν(x) = X(t) + ǫh(t)R−π/2X ′(t) is a parametrization
of ∂Dǫ. By ν̃(x̃), we denote the outward unit normal to ∂Dǫ at x̃. Then, we have

ν̃(x̃) =
R−π/2X̃ ′(t)

|X̃ ′(t)|

=

(
1− ǫh(t)τ(x)

)
ν(x)− ǫh′(t)X ′(t)

√
ǫ2h′(t)2 +

(
1− ǫh(t)τ(x)

)2

=

(
1− ǫh(t)τ(x)

)
ν(x)− ǫh′(t)T (x)

√
ǫ2h′(t)2 +

(
1− ǫh(t)τ(x)

)2 ,(2.135)

and hence ν̃(x̃) can be expanded uniformly as

(2.136) ν̃(x̃) =

+∞∑

n=0

ǫnν(n)(x), x ∈ ∂D,

where the vector-valued functions ν(n) are bounded. In particular, the first two
terms are given by

ν(0)(x) = ν(x), ν(1)(x) = −h′(t)T (x).
Likewise, we get a uniformly convergent expansion for the length element dσǫ(ỹ):
(2.137)

dσǫ(ỹ) = |X̃ ′(s)|ds =
√
(1− ǫτ(s)h(s))2 + ǫ2h′2(s)ds =

+∞∑

n=0

ǫnσ(n)(y) dσ(y),
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where σ(n) are bounded functions and

(2.138) σ(0)(y) = 1, σ(1)(y) = −τ(y)h(y).
Set

x = X(t), x̃ = X̃(t) = x+ ǫh(t)R−π
2
X ′(t),

y = X(s), ỹ = X̃(s) = y + ǫh(s)R−π
2
X ′(s).

Since

(2.139) x̃− ỹ = x− y + ǫ
(
h(t)ν(x)− h(s)ν(y)

)
,

we get

(2.140) |x̃−ỹ|2 = |x−y|2+2ǫ〈x−y, h(t)ν(x)−h(s)ν(y)〉+ǫ2|h(t)ν(x)−h(s)ν(y)|2,

and hence H
(1)
0 (ω|x̃− ỹ|) is equal to

H
(1)
0

(
ω|x− y|(

√
1 +

2ǫ〈x− y, h(t)ν(x)− h(s)ν(y)〉+ ǫ2|h(t)ν(x)− h(s)ν(y)|2
|x− y|2 )

)
.

Therefore, we can write

H
(1)
0 (ω|x̃− ỹ|) =

+∞∑

n=0

ǫnHω
n (x, y),

where the series converges absolutely and uniformly and in particular,

Hω
0 (x, y) = H

(1)
0 (ω|x− y|)

and

Hω
1 (x, y) = ω(H

(1)
0 )′(ω|x− y|) 〈x− y, h(t)ν(x)− h(s)ν(y)〉

|x− y| .

Introduce a sequence of integral operators (S(n)
D,ω)n∈N, defined for any φ ∈

L2(∂D) by

S(n)
D,ω[φ](x) = −

√
−1

4

n∑

m=0

∫

∂D

Hω
m(x, y)σ(n−m)(y)φ(y) dσ(y) for n ≥ 0.

Let Ψǫ be the diffeomorphism from ∂D onto ∂Dǫ given by

Ψǫ(x) = x+ ǫh(t)ν(x),

where x = X(t).
The following lemma holds.

Lemma 2.43. Let N ∈ N. There exists C depending only on N , ‖X‖C2 , and

‖h‖C2 such that for any φ̃ ∈ L2(∂Dǫ),

(2.141)

∥∥∥∥∥(S
ω
Dǫ

[φ̃]) ◦Ψǫ − SωD[φ]−
N∑

n=1

ǫnS(n)
D,ω[φ]

∥∥∥∥∥
L2(∂D)

≤ CǫN+1||φ||L2(∂D),

where φ := φ̃ ◦Ψǫ.
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Turning now to the operator (KωDǫ
)∗, we first note that

(KωDǫ
)∗ = (K0

Dǫ
)∗ +RDǫ

,

where RDǫ
has a smooth kernel so that we can write

(2.142) (RDǫ [φ̃]) ◦Ψǫ =
+∞∑

n=0

ǫn
∫

∂D

rn(x, y)φ(y) dσ(y),

where rn are smooth kernels and the series converges absolutely and uniformly. It
suffices then to expand (K0

Dǫ
)∗ with respect to ǫ.

From (2.140), it follows that

(2.143)
1

|x̃− ỹ|2 =
1

|x− y|2
1

1 + 2ǫF (x, y) + ǫ2G(x, y)
,

where

F (x, y) =
〈x− y, h(t)ν(x)− h(s)ν(y)〉

|x− y|2

and

G(x, y) =
|h(t)ν(x)− h(s)ν(y)|2

|x− y|2 .

One can easily see that

|F (x, y)|+ |G(x, y)| 12 ≤ C‖X‖C2‖h‖C2 .

It follows from (2.135), (2.137), (2.139), and (2.143) that

〈x̃− ỹ, ν̃(x̃)〉
|x̃− ỹ|2 dσǫ(ỹ) =

( 〈x− y, ν(x)〉
|x− y|2 + ǫ

[ 〈h(t)ν(x)− h(s)ν(y), ν(x)〉
|x− y|2

−〈x− y, τ(x)h(t)ν(x) + h′(t)T (x)〉
|x− y|2

]

−ǫ2 〈h(t)ν(x)− h(s)ν(y), τ(x)h(t)ν(x) + h′(t)T (x)〉
|x− y|2

)

× 1

1 + 2ǫF (x, y) + ǫ2G(x, y)

√
(1− ǫτ(y)h(s))2 + ǫ2h′2(s)√
(1− ǫτ(x)h(t))2 + ǫ2h′2(t)

dσ(y)

:=
(
K0(x, y) + ǫK1(x, y) + ǫ2K2(x, y)

)

× 1

1 + 2ǫF (x, y) + ǫ2G(x, y)

√
(1− ǫτ(y)h(s))2 + ǫ2h′2(s)√
(1− ǫτ(x)h(t))2 + ǫ2h′2(t)

dσ(y).

Let

1

1 + 2ǫF (x, y) + ǫ2G(x, y)

√
(1− ǫτ(y)h(s))2 + ǫ2h′2(s)√
(1− ǫτ(x)h(t))2 + ǫ2h′2(t)

=

+∞∑

n=0

ǫnFn(x, y),

where the series converges absolutely and uniformly. In particular, we can easily
see that

F0(x, y) = 1, F1(x, y) = −2F (x, y) + τ(x)h(x)− τ(y)h(y).
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Then we now have

〈x̃− ỹ, ν̃(x̃)〉
|x̃− ỹ|2 dσǫ(ỹ) =

〈x− y, ν(x)〉
|x− y|2 dσ(y) + ǫ

(
K0(x, y)F1(x, y) +K1(x, y)

)
dσ(y)

+ǫ2
+∞∑

n=0

ǫn
(
Fn+2(x, y)K0(x, y) + Fn+1(x, y)K1(x, y) + Fn(x, y)K2(x, y)

)
dσ(y).

Therefore, we obtain that

〈x̃− ỹ, ν̃(x̃)〉
|x̃− ỹ|2 dσǫ(ỹ) =

+∞∑

n=0

ǫnkn(x, y) dσ(y),

where

k0(x, y) =
〈x− y, ν(x)〉

|x− y|2 , k1(x, y) = K0(x, y)F1(x, y) +K1(x, y),

and for any n ≥ 2,

kn(x, y) = Fn(x, y)K0(x, y) + Fn−1(x, y)K1(x, y) + Fn−2(x, y)K2(x, y).

Introduce a sequence of integral operators (K(n)
D )n∈N, defined for any φ ∈

L2(∂D) by

(2.144) K(n)
D [φ](x) =

∫

∂D

kn(x, y)φ(y) dσ(y) for n ≥ 0.

Note that K(0)
D = (K0

D)
∗. Observe that the same operator with the kernel kn(x, y)

replaced withKj(x, y), j = 0, 1, 2, is bounded on L2(∂D). In fact, it is an immediate
consequence of the theorem of Coifman, McIntosh, and Meyer [177]. Therefore,

each K(n)
D is bounded on L2(∂D).

The following lemma from [61] holds.

Lemma 2.44. Let N ∈ N. There exists C depending only on N , ‖X‖C2 , and

‖h‖C2 such that for any φ̃ ∈ L2(∂Dǫ),
(2.145)∥∥∥∥∥((K

0
Dǫ

)∗[φ̃]) ◦Ψǫ − (K0
D)

∗[φ]−
N∑

n=1

ǫnK(n)
D [φ]

∥∥∥∥∥
L2(∂D)

≤ CǫN+1‖φ‖L2(∂D),

where φ := φ̃ ◦Ψǫ.

Now combining (2.142) and (2.145) immediately yields a full asymptotic ex-
pansion of (KωDǫ

)∗ with respect to ǫ and allows us to write

(2.146) (KωDǫ
)∗[·] ◦Ψǫ = (KωD)∗[·] + ǫK(1)

D,ω[·] + ǫ2K(2)
D,ω[·] + . . . ,

where each operator K(n)
D,ω is bounded on L2(∂D).

2.8. Layer Potentials for the Helmholtz Equation

In this section we review a number of basic facts and results regarding the layer
potentials associated with the Helmholtz equation. The integral equations applying
to the eigenvalue problem will be obtained from a study of these layer potentials.
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2.8.1. Fundamental Solution. For ω > 0, a fundamental solution Γω(x) to
the Helmholtz operator ∆ + ω2 in Rd, d = 2, 3, is given by

(2.147) Γω(x) =





−
√
−1

4
H

(1)
0 (ω|x|) , d = 2,

−e
√−1ω|x|

4π|x| , d = 3,

for x 6= 0, where H
(1)
0 is the Hankel function of the first kind of order 0. For the

Hankel function we refer, for instance, to [313]. The only relevant fact we shall
recall here is the following behavior of the Hankel function near 0:

(2.148) −
√
−1

4
H

(1)
0 (ω|x|) = 1

2π
ln |x|+ ηω +

+∞∑

j=1

(bj ln(ω|x|) + cj)(ω|x|)2j ,

where

bj =
(−1)j

2π

1

22j(j!)2
, cj = bj

(
γ − ln 2− π

√
−1

2
−

j∑

l=1

1

l

)
,

and the constant ηω = (1/2π)(lnω+γ− ln 2)−
√
−1/4, γ being the Euler constant.

It is known (see, for example, [313, 179]) that for large values of t we have

(2.149)

H
(1)
0 (t) =

√
2

πt
e
√−1(t−π

4 )

[
1 +O

(
1

t

)]
,

d

dt
H

(1)
0 (t) =

√
2

πt
e
√−1(t+π

4 )

[
1 +O

(
1

t

)]
,

as t→ +∞.

Using (2.149) in two dimensions and the explicit form of Γω in three dimensions,
one can see that

(2.150)
x

|x| · ∇Γω(x)−
√
−1ωΓω(x) =

{
O(|x|−3/2), d = 2,

O(|x|−2), d = 3.

This is exactly the Sommerfeld radiation condition one should impose in order
to select the physical solution. The Sommerfeld radiation condition is also called
the outgoing radiation condition and Γω the outgoing fundamental solution to the
Helmholtz equation.

2.8.2. Single- and Double-Layer Potentials. For a bounded Lipschitz do-
main Ω in Rd and ω > 0, let SωΩ and Dω

Ω be the single- and double-layer potentials
defined by Γω; that is,

SωΩ [ϕ](x) =
∫

∂Ω

Γω(x− y)ϕ(y) dσ(y), x ∈ Rd,(2.151)

Dω
Ω[ϕ](x) =

∫

∂Ω

∂Γω(x− y)

∂ν(y)
ϕ(y) dσ(y) , x ∈ Rd \ ∂Ω,(2.152)

for ϕ ∈ L2(∂Ω). Then SωΩ [ϕ] and Dω
Ω[ϕ] satisfy the Helmholtz equation

(∆ + ω2)u = 0 in Ω and in Rd \ Ω.
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Moreover, in view of (2.150), both of them satisfy the Sommerfeld radiation condi-
tion, namely,

(2.153)

∣∣∣∣
∂u

∂r
−
√
−1ωu

∣∣∣∣ = O

(
r−(d+1)/2

)
as r = |x| → +∞ uniformly in

x

|x| .

Let us make note of a Green’s formula to be used later. If (∆ + ω2)u = 0 in Ω
and ∂u/∂ν ∈ L2(∂Ω), then

(2.154) − SωΩ
[
∂u

∂ν

∣∣∣
−

]
(x) +Dω

Ω[u](x) =

{
u(x), x ∈ Ω,

0, x ∈ Rd \ Ω.
A formula similar to (2.154) holds for the solution to the Helmholtz equation in
Rd \ Ω subject to the Sommerfeld radiation condition (2.153).

Analogously to (2.7) and (2.8), the following formulas give the jump relations
obeyed by the double-layer potential and by the normal derivative of the single-layer
potential on general Lipschitz domains:

∂(SωΩ [ϕ])
∂ν

∣∣∣∣
±
(x) =

(
± 1

2
I + (KωΩ)∗

)
[ϕ](x) a.e. x ∈ ∂Ω,(2.155)

(Dω
Ω[ϕ])

∣∣∣∣
±
(x) =

(
∓ 1

2
I +KωΩ

)
[ϕ](x) a.e. x ∈ ∂Ω,(2.156)

for ϕ ∈ L2(∂Ω), where KωΩ is the singular integral operator defined by

KωΩ[ϕ](x) = p.v.

∫

∂Ω

∂Γω(x− y)

∂ν(y)
ϕ(y) dσ(y)

and (KωΩ)∗ is the L2-adjoint of K−ω
Ω , that is,

(KωΩ)∗[ϕ](x) = p.v.

∫

∂Ω

∂Γω(x− y)

∂ν(x)
ϕ(y)dσ(y).

Moreover, analogously to (2.10), for ϕ ∈ H
1
2 (∂Ω),

(2.157)
∂

∂ν
Dω

Ω[ϕ]

∣∣∣∣
−
(x) =

∂

∂ν
Dω

Ω[ϕ]

∣∣∣∣
+

(x) in H− 1
2 (∂Ω).

The singular integral operators KωΩ and (KωΩ)∗ are bounded on L2(∂Ω). Since
Γω(x) − Γ0(x) = C + O(|x|) as |x| → 0 where C is constant, we deduce that
KωΩ − K0

Ω is bounded from L2(∂Ω) into H1(∂Ω) and hence is compact on L2(∂Ω).
If Ω is C1,η, η > 0, then K0

Ω itself is compact on L2(∂Ω) and so is KωΩ.

2.8.3. Low-Frequency Asymptotic Expansions of Layer Potentials.
We recall some basic asymptotic expansion for the layer potentials in three and two
dimensions.

2.8.3.1. Expansions in Three Dimensions. We first consider the single layer
potential. We have the following asymptotic expansion as ω → 0:

(2.158) SωΩ = S0
Ω +

∞∑

j=1

ωjSΩ,j ,

where

SΩ,j [ψ](x) = −
√
−1

4π

∫

∂Ω

(
√
−1|x− y|)j−1

j!
ψ(y)dσ(y).
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In particular, we have

SΩ,1[ψ](x) = −
√
−1

4π

∫

∂Ω

ψ(y)dσ(y),(2.159)

SΩ,2[ψ](x) = − 1

8π

∫

∂Ω

|x− y|ψ(y)dσ(y).(2.160)

Lemma 2.45. The norm ‖SΩ,j‖L(L2(∂Ω),H1(∂Ω)) is uniformly bounded with re-

spect to j. Moreover, the series in (2.158) is convergent in L(L2(∂Ω), H1(∂Ω)).

We now consider the boundary integral operator (KωΩ)∗. We have

(2.161) (KωΩ)∗ = (K0
Ω)

∗ + ωKΩ,1 + ω2KΩ,2 + . . . ,

where

KΩ,j [ψ](x) = −
√
−1

4π

∫

∂Ω

∂(
√
−1|x− y|)j−1

j!∂ν(x)
ψ(y)dσ(y)

= − (
√
−1)j(j − 1)

4πj!

∫

∂Ω

|x− y|j−3(x− y) · ν(x)ψ(y)dσ(y).

In particular, we have

KΩ,1 = 0,

KΩ,2[ψ](x) =
1

8π

∫

∂Ω

(x− y) · ν(x)
|x− y| ψ(y)dσ(y),

KΩ,3[ψ](x) =

√
−1

12π

∫

∂D

(x− y) · ν(x)ψ(y)dσ(y).

Lemma 2.46. The norm ‖KΩ,j‖L(L2(∂Ω)) is uniformly bounded for j ≥ 1. More-

over, the series in (2.161) is convergent in L(L2(∂Ω)).

Lemma 2.47. The following identities hold:

(i)

K∗
Ω,2[1](x) =

1

8π

∫

∂Ω

(y − x) · ν(y)
|y − x| dσ(y) =

1

8π

∫

Ω

∇ · y − x

|y − x|dy =
1

4π

∫

Ω

1

|y − x|dy.

(ii)

K∗
Ω,3[1](x) =

−
√
−1

12π

∫

∂Ω

(y−x) · ν(y)dσ(y) = −
√
−1

12π

∫

Ω

∇· (y−x)dy =
−
√
−1

4π
|Ω|.

2.8.3.2. Expansions in Two Dimensions. From (2.148), it follows that the single-
layer potential for the Helmholtz equation in two dimensions has the following
expansion as ω → 0:

(2.162) SωΩ = ŜωΩ +
∞∑

j=1

(
ω2j lnω

)
S(1)
Ω,j +

∞∑

j=1

ω2jS(2)
Ω,j ,

where

(2.163) ŜωΩ [ψ](x) = S0
Ω[ψ](x) + ηω

∫

∂Ω

ψ dσ,



70 2. LAYER POTENTIALS

and

S(1)
Ω,j [ψ](x) =

∫

∂Ω

bj |x− y|2jψ(y)dσ(y),

S(2)
Ω,j [ψ](x) =

∫

∂Ω

|x− y|2j(bj ln |x− y|+ cj)ψ(y)dσ(y).

We next consider the boundary integral operator (KωΩ)∗. We have

(2.164) (KωΩ)∗ = (K0
Ω)

∗ +
∞∑

j=1

(
ω2j lnω

)
K(1)

Ω,j +

∞∑

j=1

ω2jK(2)
Ω,j ,

where

K(1)
Ω,j [ψ](x) =

∫

∂Ω

bj
∂|x− y|2j
∂ν(x)

ψ(y)dσ(y),

K(2)
Ω,j [ψ](x) =

∫

∂Ω

∂
(
|x− y|2j(bj ln |x− y|+ cj)

)

ν(x)
ψ(y)dσ(y).

Lemma 2.48. The following estimates hold in L(L2(∂Ω), H1(∂Ω)) and L(L2(∂Ω), L2(∂Ω)),
respectively:

SωΩ = ŜωΩ + ω2 lnω S(1)
Ω,1 + ω2S(2)

Ω,1 +O(ω4 lnω);

(KωΩ)∗ = (K0
Ω)

∗ + ω2 lnω K(1)
Ω,1 + ω2K(2)

Ω,1 +O(ω4 lnω).

Lemma 2.49. The following identities hold:

(i)

(K(1)
Ω,1)

∗[1](x) = 4b̄1|Ω|;

(ii)

(K(2)
Ω,1)

∗[1](x) = (2b̄1 + 4c̄1)|Ω|+ 4b̄1

∫

Ω

ln |x− y|dy,

where b̄1 and c̄1 are the complex conjugates of b1 and c1.

Proof. First, we have

(K(1)
Ω,1)

∗[1](x) = b̄1

∫

∂Ω

2(y − x, ν(y))dσ(y)

= b̄1

∫

∂Ω

∂|y − x|2
∂ν(y)

dσ(y)

= b̄1

∫

Ω

∆y|y − x|2dy

= 4b̄1|Ω|.
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We now prove the second identity. We have

(K(2)
Ω,1)

∗[1](x) =

∫

∂Ω

∂
[
|y − x|2(b̄1 ln |x− y|+ c̄1)

]

∂ν(y)
dσ(y)

=

∫

Ω

∆y[|y − x|2(b̄1 ln |x− y|+ c̄1)]dy

= 4c̄1|Ω|+ b̄1

∫

Ω

∆y[|y − x|2 ln |x− y|]dy

= 4c̄1|Ω|+ b̄1

∫

Ω

4 ln |x− y|]dy + b̄1

∫

Ω

2dy + b̄1

∫

Ω

|y − x|2∆ ln |y − x|dy

= (2b̄1 + 4c̄1)|Ω|+ 4b̄1

∫

Ω

ln |x− y|dy,

where we have used the fact that∫

Ω

|y − x|2∆ ln |y − x|dy = 0 for x ∈ ∂Ω .

This completes the proof of the Lemma. �

2.8.4. Uniqueness Results. In this subsection we consider important unique-
ness results for the Helmholtz equation.

We will need the following key result from the theory of the Helmholtz equation.
It will help us prove uniqueness for exterior Helmholtz problems. For its proof we
refer to [179, Lemma 2.11] or [344, Lemma 9.8].

Lemma 2.50 (Rellich’s lemma). Let R0 > 0 and BR = {|x| < R}. Let u satisfy
the Helmholtz equation ∆u+ ω2u = 0 for |x| > R0. Assume, furthermore, that

lim
R→+∞

∫

∂BR

|u(x)|2 dσ(x) = 0.

Then, u ≡ 0 for |x| > R0.

Note that the assertion of this lemma does not hold if ω is imaginary or ω = 0.
2.8.4.1. Exterior Helmholtz Problems. Now, using Lemma 2.50, we can estab-

lish the following uniqueness result for the exterior Helmholtz problem.

Lemma 2.51. Suppose d = 2 or 3. Let Ω be a bounded Lipschitz domain in Rd.
Let u ∈ H1

loc(R
d \ Ω) satisfy





∆u+ ω2u = 0 in Rd \ Ω,∣∣∣∣
∂u

∂r
−
√
−1ωu

∣∣∣∣ = O

(
r−(d+1)/2

)
as r = |x| → +∞ uniformly in

x

|x| ,

u = 0 or
∂u

∂ν
= 0 on ∂Ω.

Then, u ≡ 0 in Rd \ Ω.
Proof. Let BR = {|x| < R}. For R large enough, Ω ⊂ BR. Notice first that

by multiplying ∆u+ ω2u = 0 by u and integrating by parts over BR \Ω, we arrive
at

ℑ
∫

∂BR

u
∂u

∂ν
dσ = 0.
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But

ℑ
∫

∂BR

u

(
∂u

∂ν
−
√
−1ωu

)
dσ = −ω

∫

∂BR

|u|2.

Applying the Cauchy–Schwarz inequality,
∣∣∣∣ℑ
∫

∂BR

u

(
∂u

∂ν
−
√
−1ωu

)
dσ

∣∣∣∣

≤
(∫

∂BR

|u|2
)1/2(∫

∂BR

∣∣∣∣
∂u

∂ν
−
√
−1ωu

∣∣∣∣
2

dσ

)1/2

,

and using the radiation condition (2.153), we get

∣∣∣∣ℑ
∫

∂BR

u

(
∂u

∂ν
−
√
−1ωu

)
dσ

∣∣∣∣ ≤
C

R

(∫

∂BR

|u|2
)1/2

,

for some positive constant C independent of R. Consequently, we obtain that

(∫

∂BR

|u|2
)1/2

≤ C

R
,

which indicates by Rellich’s lemma that u ≡ 0 in Rd \ BR. Hence, by the unique
continuation property for ∆ + ω2, we can conclude that u ≡ 0 up to the boundary
∂Ω. This finishes the proof. �

2.8.4.2. Transmission Problem for the Helmholtz equation. LetD be a bounded
smooth domain in Rd. Let µ and ε be two piecewise constant functions such that
µ(x) = µm and ε(x) = εm for x ∈ Rd \ D and µ(x) = µc and ε(x) = εc for
x ∈ D. Suppose that µm, εm, µc, and εc are positive and let km = ω

√
εmµm and

kc = ω
√
εcµc.

We consider the following transmission problem for the Helmholtz equation:

(2.165)





∇ · 1
µ
∇u+ ω2εu = 0 in Rd,

us := u− ui satisfies the Sommerfeld radiation condition,

where ui is an incident wave. Here, the Sommerfeld radiation condition reads:
(2.166)∣∣∣∣

∂us

∂r
−
√
−1kmu

s

∣∣∣∣ = O

(
r−(d+1)/2

)
as r = |x| → +∞ uniformly in

x

|x| .

Notice that (2.165) can be rewritten as

(2.167)





(∆ + k2m)u = 0 in Rd \D,
(∆ + k2c )u = 0 in D,

u|+ = u|− on ∂D,
1
µm

∂u
∂ν |+ = 1

µc

∂u
∂ν |−on ∂D,

us := u− ui satisfies the Sommerfeld radiation condition.

By using Rellich’s lemma, we can prove that the following uniqueness result holds.

Lemma 2.52. If u satisfies (2.165) with ui = 0, then u ≡ 0 in Rd.
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Proof. Using the fact that
∫

∂D

∂u

∂ν

∣∣∣∣
+

ū dσ =
µm
µc

∫

∂D

∂u

∂ν

∣∣∣∣
−
ū dσ =

µm
µc

∫

D

(|∇u|2 − k2c |u|2) dx ,

we find that

ℑ
∫

∂D

∂u

∂ν

∣∣∣∣
+

ū dσ = 0 ,

which gives, by applying Lemma 2.51, that u ≡ 0 in Rd \ D. Now u satisfies
(∆ + k2c )u = 0 in D and u = ∂u/∂ν = 0 on ∂D. By the unique continuation
property of ∆ + k2c , we readily get u ≡ 0 in D, and hence in Rd. �

The following result from [46] is of importance to us for establishing a repre-
sentation formula for the solution u to (2.165).

Proposition 2.53. Suppose that k2m is not a Dirichlet eigenvalue for −∆ on
D. For each (F,G) ∈ H1(∂D) × L2(∂D), there exists a unique solution (f, g) ∈
L2(∂D)× L2(∂D) to the system of integral equations

(2.168)





SkcD [f ]− SkmD [g] = F

1

µc

∂(SkcD [f ])

∂ν

∣∣∣∣
−
− 1

µm

∂(SkmD [g])

∂ν

∣∣∣∣
+

= G
on ∂D.

Furthermore, there exists a constant C independent of F and G such that

(2.169) ‖f‖L2(∂D) + ‖g‖L2(∂D) ≤ C

(
‖F‖H1(∂D) + ‖G‖L2(∂D)

)
,

where in the three-dimensional case the constant C can be chosen independently of
km and kc if km and kc go to zero.

Proof. We only give the proof for d = 3 and µm 6= µc leaving the general case
to the reader. Let X := L2(∂D)×L2(∂D) and Y := H1(∂D)×L2(∂D), and define
the operator T : X → Y by

T (f, g) :=

(
SkcD [f ]− SkmD [g],

1

µc

∂(SkcD [f ])

∂ν

∣∣∣∣
−
− 1

µm

∂(SkmD [g])

∂ν

∣∣∣∣
+

)
.

We also define T0 by

T0(f, g) :=

(
S0
D[f ]− S0

D[g],
1

µ

∂(S0
D[f ])

∂ν

∣∣∣∣
−
− 1

µm

∂(S0
D[g])

∂ν

∣∣∣∣
+

)
.

We can easily see that Sk0D − S0
D : L2(∂D) → H1(∂D) is a compact operator, and

so is ∂
∂νS

km
D |± − ∂

∂νS0
D|± : L2(∂D) → L2(∂D). Therefore, T − T0 is a compact

operator from X into Y . It can be proved that T0 : X → Y is invertible. In fact, a
solution (f, g) of the equation T0(f, g) = (F,G) is given by

f = g + (S0
D)

−1(F )

g =
µmµc
µm − µc

(λI + (K0
D)

∗)−1

(
G+

1

µc
(
1

2
I − (K0

D)
∗)((S0

D)
−1[F ])

)
,

where λ = (µc + µm)/(2(µc − µm)). From the invertibility of S0
D and λI+(K0

D)
∗ we

can see, by the Fredholm alternative, that it is enough to prove that T is injective.
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Suppose that T (f, g) = 0. Then the function u defined by

u(x) :=

{
SkmD [g](x) if x ∈ Rd \D,
SkcD [f ](x) if x ∈ D,

satisfies the transmission problem (2.165) with ui = 0 and hence, by Lemma 2.52,

u ≡ 0 in Rd. In particular, SkmD [g] = 0 on ∂D. Since (∆+ k2m)SkmD [g] = 0 in D and

k2m is not a Dirichlet eigenvalue for −∆ on D, we have SkmD [g] = 0 in D, and hence
in Rd. It then follows from the jump relation (2.155) that

g =
∂(SkmD [g])

∂ν

∣∣∣∣
+

− ∂(SkmD [g])

∂ν

∣∣∣∣
−
= 0 on ∂D.

On the other hand, SkcD f satisfies (∆ + k2c )SkcD [f ] = 0 in Rd \D and SkcD [f ] = 0 on

∂D. It then follows from Lemma 2.51, that SkcD [f ] = 0. Then, in the same way as
above, we can conclude that f = 0. This finishes the proof of solvability of (2.168).
The estimate (2.169) is an easy consequence of solvability and the closed graph
theorem. Finally, it can be easily proved in the three-dimensional case that if km
and kc go to zero, then the constant C in (2.169) can be chosen independently of
km and kc. We leave the details to the reader. �

By using Proposition 2.53, the following representation formula holds.

Theorem 2.54. Suppose that k20 is not a Dirichlet eigenvalue for −∆ on D.
Let u be the solution of (2.165). Then u can be represented using the single-layer

potentials SkmD and SkcD as follows:

(2.170) u(x) =

{
ui(x) + SkmD [ψ](x), x ∈ R2 \D ,

SkcD [ϕ](x), x ∈ D ,

where the pair (ϕ, ψ) ∈ L2(∂D)× L2(∂D) is the unique solution to

(2.171)





SkcD [ϕ]− SkmD [ψ] = ui

1

µc

∂(SkcD [ϕ])

∂ν

∣∣∣∣∣
−
− 1

µm

∂(SkmD [ψ])

∂ν

∣∣∣∣∣
+

=
1

µm

∂ui

∂ν

on ∂D.

Moreover, there exists C > 0 independent of ui such that

(2.172) ‖ϕ‖L2(∂D) + ‖ψ‖L2(∂D) ≤ C

(
δ−1‖ui‖L2(∂D) + ‖∇ui‖L2(∂D)

)
.

Remark 2.55. For a special case of the domain B, we can obtain an explicit so-
lution to the transmission problem. Let B be a disk of radius R located at the origin

in R2. We also assume that the incident wave is given by ui(x) = Jn(kmr)e
√−1nθ.

Then it can be shown that the explicit solution is given by

(2.173) u(r, θ) =

{
Jn(kmr)e

√−1nθ + anH
(1)
n (kmr)e

√−1nθ, |r| > R,

bnJn(kcr)e
√−1nθ, |r| ≤ R,
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where (r, θ) are the polar coordinates and the constants an and bn are given by

an =

km
µm
Jn(kcR)J

′
n(kmR)− kc

µc
Jn(kmR)J

′
n(kcR)

kc
µc
H

(1)
n (kmR)J ′

n(kcR)− km
µm
Jn(kcR)H ′

n(kmR)
,(2.174)

bn =
Jn(kmR) + anH

(1)
n (kmR)

Jn(kcR)
.(2.175)

2.9. Laplace Eigenvalues

In this section we transform eigenvalue problems of −∆ on an open bounded
connected domain Ω with either Neumann, Dirichlet, Robin or mixed boundary
conditions into the determination of the characteristic values of certain integral
operator-valued functions in the complex plane. This results in a considerable
advantage as it allows us to reduce the dimension of the eigenvalue problem. After
discretization of the kernels of the integral operators, the problem can be turned
into a complex root finding process for a scalar function; see for instance [172].
Many tools are available for finding complex roots of scalar functions. Muller’s
method described in Section 1.6 is both efficient and robust.

Moreover, with the help of the generalized argument principle, the integral for-
mulations can also be used to study perturbations of the eigenvalues with respect
to changes in Ω, as we will see in Subsection 3.2.2. Furthermore, the splitting prob-
lem in the evolution of multiple eigenvalues can be easily handled. In Subsection
2.9.6, we present a method for deriving sensitivity analysis of multiple eigenvalues
with respect to changes in Ω which relies on finding a polynomial of degree equal
to the geometric multiplicity of the eigenvalue such that its zeros are precisely the
perturbations.

2.9.1. Eigenvalue Characterization. We first restrict our attention to the
three-dimensional case. We note that because of the holomorphic dependence of Γω
as given in (2.147), KωΩ is an operator-valued holomorphic function in C. Indeed,
the following result holds. See, for example, [441].

Proposition 2.56 (Neumann Eigenvalue characterization). Suppose that Ω is
of class C1,η for some η > 0. Let ω > 0. Then ω2 is an eigenvalue of −∆ on Ω
with Neumann boundary condition if and only if ω is a positive real characteristic
value of the operator −(1/2) I +KωΩ.

Proof. Suppose that ω2 is an eigenvalue of

(2.176)





∆u+ ω2u = 0 in Ω,

∂u

∂ν
= 0 on ∂Ω.

By Green’s formula (2.154), we have

u(x) = Dω
Ω[u|∂Ω](x), x ∈ Ω.

It then follows from (2.156) that (−I/2+KωΩ)[u|∂Ω] = 0 and u|∂Ω 6= 0 since otherwise
the unique continuation property for ∆+ ω2 would imply that u ≡ 0 in Ω. Thus ω
is a characteristic value of −(1/2) I +KωΩ.
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Suppose now that ω is a characteristic value of −(1/2) I + KωΩ; i.e., there is a
nonzero ψ ∈ L2(∂Ω) such that

(
−1

2
I +KωΩ

)
[ψ] = 0.

Then u = Dω
Ω[ψ] on Rd\Ω is a solution to the Helmholtz equation with the boundary

condition u|+ = 0 on ∂Ω and satisfies the radiation condition (2.153). The unique-
ness result in Lemma 2.51 implies that Dω

Ω[ψ] = 0 in Rd \ Ω. Since ∂Dω
Ω[ψ]/∂ν

exists and has no jump across ∂Ω, we get

∂Dω
Ω[ψ]

∂ν

∣∣∣
+
=
∂Dω

Ω[ψ]

∂ν

∣∣∣
−

on ∂Ω.

Hence, we deduce that Dω
Ω[ψ] is a solution of (2.176). Note that Dω

Ω[ψ] 6= 0 in Ω,
since otherwise

ψ = Dω
Ω[ψ]

∣∣
− −Dω

Ω[ψ]
∣∣
+
= 0.

Thus ω2 is an eigenvalue of −∆ on Ω with Neumann condition, and so the propo-
sition is proved. �

Proposition 2.56 asserts that −(1/2) I + KωΩ is invertible on L2(∂Ω) for all
positive ω except for a discrete set. The following result, whose proof can be found
in [441, Proposition 7.3], shows that (−(1/2) I + KωΩ)−1 has a continuation to an
operator-valued meromorphic function on C.

Proposition 2.57. −(1/2) I + KωΩ is invertible on L2(∂Ω) for all ω ∈ C ex-
cept for a discrete set, and (−(1/2) I + KωΩ)−1 is an operator-valued meromorphic
function on C.

In the two-dimensional case, Proposition 2.56 holds true. Moreover, due to the
logarithmic behavior of the Hankel function as shown by (2.148), (−(1/2) I+KωΩ)−1

has a continuation to an operator-valued meromorphic function on only C\
√
−1R−.

Similarly, the eigenvalues of −∆ on Ω with Dirichlet boundary condition can
be characterized as follows.

Proposition 2.58 (Dirichlet Eigenvalue characterization). Suppose that Ω is
of class C1,η for some η > 0. Let ω > 0. Then ω2 is an eigenvalue of −∆ on Ω
with Dirichlet boundary condition if and only if ω is a positive real characteristic
value of the operator (1/2) I + (KωΩ)∗.

The problem of finding the eigenvalues of −∆ on Ω with the Robin boundary
condition,

(2.177)
∂u

∂ν
+ λu = 0 on ∂Ω,

can be also transformed into the determination of a certain integral operator-valued
function in the complex plane.

Proposition 2.59 (Robin Eigenvalue characterization). Suppose that Ω is of
class C1,η for some η > 0. Let ω > 0 and λ ≤ 0. Then ω2 is an eigenvalue of −∆
on Ω with the Robin boundary condition (2.177) if and only if ω is a positive real
characteristic value of the operator −(1/2) I +KωΩ − λSωΩ.

Finally, we consider the mixed boundary value problem and state the following
result.
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Proposition 2.60 (Zaremba eigenvalue characterization). Suppose that Ω is
of class C1,η for some η > 0. Let ΓD be a subset of ∂Ω and let ΓN = ∂Ω \ ΓD. Let
ω > 0. Then ω2 is an eigenvalue of −∆ on Ω with the mixed boundary conditions
(also called a Zaremba eigenvalue),

(2.178)





∆u+ ω2u = 0 in Ω,

u = 0 on ΓD,

∂u

∂ν
= 0 on ΓN ,

if and only if ω is a positive real characteristic value of the operator

ω 7→
[
(1/2) I + (KωΓD

)∗ ∂
∂νDω

ΓN

∣∣
ΓD

−SωΓD

∣∣
ΓN

−(1/2) I +KωΓN

]

Here, SωΓD
,KωΓN

, (KωΓD
)∗, and Dω

ΓN
are defined in the same way as in Section 2.3

with ∂Ω replaced with ΓN or ΓD.

2.9.2. Neumann Function. Let 0 = µ1 < µ2 ≤ µ3 ≤ . . . be the eigenvalues
of −∆ on Ω with Neumann conditions on ∂Ω. Let uj denote the normalized eigen-
function associated with µj ; that is, it satisfies ‖uj‖L2(Ω) = 1. Let ω /∈ {√µj}j≥1.

Introduce Nω
Ω (x, z) as the Neumann function for ∆ + ω2 in Ω corresponding to a

Dirac mass at z. That is, Nω
Ω is the unique solution to

(2.179)





(∆x + ω2)Nω
Ω (x, z) = −δz in Ω,

∂Nω
Ω

∂ν

∣∣∣
∂Ω

= 0 on ∂Ω.

We derive two useful facts on the Neumann function. First, we establish the fol-
lowing proposition, providing a purely formal proof. We refer the reader to [413,
Theorem 9.8] for a more rigorous one where even the case ω = 0 is treated.

Proposition 2.61 (Spectral decomposition). The following spectral decompo-
sition holds pointwise:

(2.180) Nω
Ω (x, z) =

+∞∑

j=1

uj(x)uj(z)

µj − ω2
, x 6= z ∈ Ω.

Proof. Consider the function

f(x) :=
+∞∑

j=1

ajuj(x), x ∈ Ω.

If (∆x + ω2)f(x) = −δz(x), then we have

+∞∑

j=1

aj(ω
2 − µj)uj(x) = −δz(x).

Integrating both sides of the above identity against uk over Ω gives

ak(ω
2 − µk) = −uk(z),

and hence (2.180) follows. Here note that we used the orthogonality relation
∫

Ω

uj uk = δjk

satisfied by the eigenfunctions, where δjk denotes the Kronecker symbol. �
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Next, we provide an important relation between the fundamental solution Γω
and the Neumann function Nω

Ω . Note that the Neumann function Nω
Ω yields a

solution operator for the Neumann problem for the Helmholtz equation. In fact,
the function u defined by

u(z) =

∫

∂Ω

Nω
Ω (x, z)g(x) dσ(x), z ∈ Ω,

is the unique solution to the Helmholtz equation:

(2.181)




∆u+ ω2u = 0 in Ω,

∂u

∂ν
= g on ∂Ω,

provided that ω2 is not an eigenvalue of −∆ on Ω with Neumann boundary condi-
tion. On the other hand, under this assumption, −(1/2) I+KωΩ : L2(∂Ω) → L2(∂Ω)
is invertible, and so we can readily see that the solution to (2.181) can be repre-
sented as

(2.182) u(z) = SωΩ
(
−1

2
I + (KωΩ)∗

)−1 [
g
]
(z), z ∈ Ω.

Therefore, we obtain
∫

∂Ω

Γω(x− z)

(
−1

2
I + (KωΩ)∗

)−1 [
g
]
(x)dσ(x) =

∫

∂Ω

Nω
Ω (x, z)g(x)dσ(x),

and hence
∫

∂Ω

(
−1

2
I +KωΩ

)−1 [
Γω(· − z)

]
(x)g(x)dσ(x) =

∫

∂Ω

Nω
Ω (x, z)g(x)dσ(x).

We then have the following proposition.

Proposition 2.62. The following identity relating the fundamental solution
Γω to the Neumann function Nω

Ω holds:

(2.183) −
(
1

2
I −KωΩ

)−1[
Γω(· − z)

]
(x) = Nω

Ω (x, z), x ∈ ∂Ω, z ∈ Ω.

Finally, we recall that the Neumann function Nω
Ω has a logarithmic singularity

in two dimensions [45].

Lemma 2.63. The Neumann function Nω
Ω has the form

(2.184) Nω
Ω (x, z) = − 1

2π
ln |x− z|+RωΩ(x, z) for x 6= z ∈ Ω,

where RωΩ(·, z) belongs to H3/2(Ω) for any z ∈ Ω.

In dimension d ≥ 3, the following lemma holds.

Lemma 2.64. The Neumann function Nω
Ω has the form

(2.185) Nω
Ω (x, z) =

1

(d− 2)ωd
|x− z|2−d +Rω,dΩ (x, z) for x 6= z ∈ Ω,

where Rω,dΩ (·, z) belongs to H3/2(Ω) for any z ∈ Ω.
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2.9.3. Dirichlet Function. Let 0 < τ1 < τ2 ≤ τ3 ≤ . . . be the eigenvalues of
−∆ on Ω with Dirichlet conditions on ∂Ω. Let vj denote the normalized eigenfunc-
tion associated with τj ; that is, it satisfies ‖vj‖L2(Ω) = 1. Let ω /∈ {√τj}j≥1. The
Dirichlet function GωΩ(x, z) is defined by

(2.186)

{
(∆x + ω2)GωΩ(x, z) = −δz in Ω,

GωΩ = 0 on ∂Ω.

The following useful facts on the Dirichlet function hold.

Proposition 2.65. We have

(i) The following spectral decomposition holds pointwise:

(2.187) GωΩ(x, z) =
+∞∑

j=1

vj(x)vj(z)

τj − ω2
, x 6= z ∈ Ω.

(ii) The Dirichlet function GωΩ has the form

(2.188) GωΩ(x, z) =
1

(d− 2)ωd
|x− z|2−d + R̃ω,dΩ (x, z) for x 6= z ∈ Ω,

where R̃ω,dΩ (·, z) belongs to H3/2(Ω) for any z ∈ Ω.

2.9.4. Eigenvalues in Circular Domains. Let κnm be the positive zeros
of Jn(z) (Dirichlet), J ′

n(z) (Neumann), and J ′
n(z) + λJn(z) (Robin). The index

n = 0, 1, 2, . . . counts the order of Bessel functions of first kind Jn whilem = 1, 2, . . .
counts their positive zeros. The rotational symmetry of a disk Ω = {x : |x| <
R} of radius R leads to an explicit representation of the eigenfunctions in polar
coordinates:

(2.189) unml(r, θ) = Jn(
κnmr

R
)×

{
cos(nθ), l = 1,

sin(nθ), l = 2 (n 6= 0).

The eigenvalues of −∆ on Ω are given by κ2nm/R
2. They are independent of the

index l. They are simple for n = 0 and twice degenerate for n > 0. In the latter
case, the eigenfunction is any nontrivial linear combination of unm1 and unm2.

Notice that when the index n is fixed while m increases, the Bessel func-
tions Jn(

κnmr
R ) rapidly oscillate, the amplitude of oscillations decreasing toward

the boundary and the eigenfunctions unml given by (2.189) are mainly localized at
the origin, yielding focusing modes. In turn, when the index m is fixed while n in-
creases, the Bessel functions Jn(

κnmr
R ) become strongly attenuated near the origin

and essentially localized near the boundary. This yields the so-called whispering
gallery eigenmodes. Estimates of localization are derived in [241].

2.9.5. Shape Derivative of Laplace Eigenvalues. In this subsection, we
compute shape derivatives of Laplace eigenvalues by using the generalized argu-
ment principle. Let Ω be a bounded domain of class C2. We consider Neumann
eigenvalues in the two-dimensional case and let Ωǫ be given by

∂Ωǫ =

{
x̃ : x̃ = x+ ǫh(x)ν(x), x ∈ ∂Ω

}
,

where h ∈ C2(∂Ω) and 0 < ǫ≪ 1.
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To fix ideas, we set µj for j > 1 to be a Neumann eigenvalue of −∆ on Ω and
consider the integral operator-valued function

(2.190) ω 7→ Aǫ(ω) := −1

2
I +KωΩǫ

,

when ω is in a small complex neighborhood of
√
µj .

By using the compactness of KωΩǫ
and the analyticity of H

(1)
0 in C \

√
−1R−,

the following results hold.

Lemma 2.66. The operator-valued function Aǫ(ω) is Fredholm analytic with
index 0 in C \

√
−1R− and (Aǫ)

−1(ω) is a meromorphic function. If ω is a real
characteristic value of the operator-valued function Aǫ (or equivalently, a real pole
of (Aǫ)

−1(ω)), then there exists j such that ω =
√
µǫj.

Lemma 2.67. Any
√
µj is a simple pole of the operator-valued function (A0)

−1(ω).

Proof. We define φ(ω) the root function corresponding to
√
µj as a charac-

teristic value of A0(ω). Recall that the multiplicity of φ(ω) is the order of
√
µj as

a zero of A0(ω)φ(ω). Since the order of
√
µj as a pole of (A0)

−1(ω) is precisely the
maximum of the ranks of eigenvectors in KerA0(

√
µj), it suffices to show that the

rank of an arbitrary eigenvector is equal to one. Then let us write

A0(ω)φ(ω) = (ω2 − µj)ψ(ω),

where ψ(ω) is a holomorphic function in L2(∂Ω). For ω in a small neighborhood
Vδ0 of

√
µj , we denote by u(ω) the unique solution to

{
(∆ + ω2)u(ω) = 0 in Ω,
∂u
∂ν = (ω2 − µj)ψ(ω) on ∂Ω,

By integration by parts over Ω, we find that
∫

Ω

u(ω)u(
√
µj)dx =

∫

∂Ω

ψ(ω)u(
√
µj)dσ,

which implies that ∫

∂Ω

ψ(
√
µj)u(

√
µj)dσ = 1

since ω 7→
∫
Ω
u(ω)u(

√
µj)dx is holomorphic in Vδ0 . Therefore,

∫
∂Ω

|ψ(√µj)|2 6= 0
and thus, the function ψ(

√
µj) is not trivial. �

Lemma 2.68. Let ω0 =
√
µj and suppose that µj is simple. Then there exists a

positive constant δ0 such that for |δ| < δ0, the operator-valued function ω 7→ Aǫ(ω)
has exactly one characteristic value in Vδ0(ω0), where Vδ0(ω0) is a disk of center
ω0 and radius δ0 > 0. This characteristic value is analytic with respect to ǫ in
]− ǫ0, ǫ0[. Moreover, the following assertions hold:

(i) M(Aǫ(ω); ∂Vδ0) = 1,
(ii) (Aǫ)

−1(ω) = (ω − ωǫ)
−1Lǫ +Rǫ(ω),

(iii) Lǫ : Ker((Aǫ(ωǫ))
∗) → Ker(Aǫ(ωǫ)),

where Rǫ(ω) is a holomorphic function with respect to (ǫ, ω) ∈ ] − ǫ0, ǫ0[×Vδ0(ω0)
and Lǫ is a finite-dimensional operator.
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Proof. Note that the kernel of KωΩǫ
is jointly analytic with respect to ǫ in

] − ǫ0, ǫ0[ and ω ∈ Vδ0 for ǫ0 and δ0 small enough; see [155]. Since µj is simple,
it is clear that M(Aǫ(ω); ∂Vδ0) = 1. Furthermore, from Lemmas 2.66 and 2.67, it
follows that

(Aǫ)
−1(ω) = (ω − ωǫ)

−1Lǫ +Rǫ(ω),

where

Lǫ : Ker((Aǫ(ωǫ))
∗) → Ker(Aǫ(ωǫ))

is a finite-dimensional operator and Rǫ(ω) is a holomorphic function with respect
to (ǫ, ω). �

Let ω0 =
√
µj and suppose that µj is simple. Then, from Theorem 1.14 it

follows that ωǫ =
√
µǫj is given by

(2.191) ωǫ − ω0 =
1

2
√
−1π

tr

∫

∂Vδ0

(ω − ω0)Aǫ(ω)
−1 d

dω
Aǫ(ω)dω.

With the same notation as in Section 2.7, let the operator K(1)
Ω be defined by

(2.192) K(1)
Ω [ϕ] =

∫

∂Ω

k1(x, y)ϕ(y)dσ(y)

with

k1(x, y) =

√
−1ω

4
(L0M0N1 + (L0M1 + L1M0)N0)(x, y)

and the functions L0, L1,M0,M1, N0 and N1 being defined by

L0(x, y) = H
(1)
1 (ω|x− y|), M0(x, y) = |x− y|, N0(x, y) =

〈y−x,νy〉
|x−y|2 ,

L1(x, y) = (H
(1)
1 )′(ω|x− y|) 〈x− y, h(x)ν(x)− h(y)ν(y)〉

|x− y| ,

M1(x, y) =
〈x− y, h(x)ν(x)− h(y)ν(y)〉

|x− y| ,

N1(x, y) = N0(x, y)F̃ (x, y) +K1(x, y)

K1(x, y) =
〈h(y)ν(y)− h(x)ν(x), ν(y)〉

|x− y|2 − 〈y − x, τ(y)h(y)ν(y) + h′(y)T (y)〉
|x− y|2 ,

F̃ (x, y) = −2M1(x, y) + τ(x)h(x)− τ(y)h(y).

Here, τ(x) represents the curvature at the point x.
Substituting

(2.193) KωΩǫ
[φ̃] ◦Ψǫ = KωΩ[φ] + ǫK(1)

Ω [φ] +O(ǫ2)

into (2.191), we obtain the following shape derivative of the Neumann eigenvalues.

Theorem 2.69 (Shape derivative of Neumann eigenvalues). The following as-
ymptotic expansion holds:

(2.194)
√
µǫj −

√
µj =

ǫ

2
√
−1π

tr

∫

∂Vδ0

A0(ω)
−1K(1)

Ω (ω)dω +O(ǫ2),

where Vδ0 is a disk of center
√
µj and radius δ0 small enough, A0(ω) = −(1/2)I+KωΩ

and K(1)
Ω (ω) is given by (2.192).
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Proof. If ǫ is small enough, then the following expansion is uniform with
respect to ω in ∂Vδ0 :

Aǫ(ω)
−1 = A0(ω)

−1 − ǫA0(ω)
−1K(1)

Ω (ω)A0(ω)
−1 +O(ǫ2),

and therefore,

ωǫ − ω0 =
1

2
√
−1π

tr

∫

∂Vδ0

(ω − ω0)

[
A0(ω)

−1 d

dω
A0(ω)

−ǫA0(ω)
−1K(1)

Ω (ω)A0(ω)
−1 d

dω
A0(ω) + ǫA0(ω)

−1 d

dω
K(1)

Ω (ω)

]
dω +O(ǫ2).

Because of Lemma 2.67, ω0 is a simple pole of A0(ω)
−1 and A0(ω) is analytic, and

hence we get

(2.195)

∫

∂Vδ0

(ω − ω0)A0(ω)
−1 d

dω
A0(ω)dω = 0.

Moreover, by using the property (1.4) of the trace together with the identity

(2.196)
d

dω
A0(ω)

−1 = −A0(ω)
−1 dA0

dω
(ω)A0(ω)

−1,

we arrive at

ωǫ − ω0 = − ǫ

2
√
−1π

tr

∫

∂Vδ0

(ω − ω0)
d

dω

[
A−1

0 (ω)K(1)
Ω (ω)

]
dω +O(ǫ2).

Now, a simple integration by parts yields the desired result. �

2.9.6. Splitting of Multiple Eigenvalues. The main difficulty in deriving
asymptotic expansions of perturbations in multiple eigenvalues of the unperturbed
configuration relates to their continuation. Multiple eigenvalues may evolve, under
perturbations, as separated, distinct eigenvalues, and the splitting may only become
apparent at high orders in their Taylor expansions with respect to the perturbation
parameter [290, 412, 429, 155].

In this subsection, as an example, we address the splitting problem in the eval-
uation of the perturbations of the Neumann eigenvalues due to shape deformations.
Our approach applies to the other eigenvalue perturbation problems as well.

Let ω2
0 denote an eigenvalue of the Neumann problem for −∆ on Ω with geomet-

ric multiplicity m. We call the ω0-group the totality of the perturbed eigenvalues
ω2
ǫ of −∆ on Ωǫ for ǫ > 0 that are generated by splitting from ω2

0 .
In exactly the same way as Lemma 2.68 we can show that the eigenvalues are

exactly the characteristic values of Aǫ defined by (2.190). We then proceed from
the generalized argument principle to investigate the splitting problem.

Lemma 2.70. Let ω0 =
√
µj and suppose that µj is a multiple Neumann eigen-

value of −∆ on Ω with geometric multiplicity m. Then there exists a positive
constant δ0 such that for |δ| < δ0, the operator-valued function ω 7→ Aǫ(ω) defined
by (2.190) has exactly m characteristic values (counted according to their multi-
plicity) in Vδ0(ω0), where Vδ0(ω0) is a disk of center ω0 and radius δ0 > 0. These
characteristic values form the ω0-group associated to the perturbed eigenvalue prob-
lem (3.2) and are analytic with respect to ǫ in ]− ǫ0, ǫ0[. They satisfy ωiǫ|ǫ=0 = ω0

for i = 1, . . . ,m. Moreover, if (ωiǫ)
n
i=1 denotes the set of distinct values of (ωiǫ)

m
i=1,

then the following assertions hold:
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(i) M(Aǫ(ω); ∂Vδ0) =

n∑

i=1

M(Aǫ(ω
i
ǫ); ∂Vδ0) = m,

(ii) (Aǫ)
−1(ω) =

n∑

i=1

(ω − ωiǫ)
−1Liǫ +Rǫ(ω),

(iii) Liǫ : Ker((Aǫ(ω
i
ǫ))

∗) → Ker(Aǫ(ω
i
ǫ)),

where Rǫ(ω) is a holomorphic function with respect to ω ∈ Vδ0(ω0) and Liǫ for
i = 1, . . . , n is a finite-dimensional operator. Here M(Aǫ(ω

i
ǫ); ∂Vδ0) is defined by

(1.9).

Let, for l ∈ N, al(ǫ) denote

al(ǫ) =
1

2π
√
−1

tr

∫

∂Vδ0

(ω − ω0)
lAǫ(ω)

−1 d

dω
Aǫ(ω)dω.

By the generalized argument principle, we find

al(ǫ) =
m∑

i=1

(ωiǫ − ω0)
l for l ∈ N.

The following theorems from [78] hold.

Theorem 2.71. The following asymptotic expansion for al(ǫ) as ǫ→ 0 holds:

(2.197) al(ǫ) =
ǫ

2
√
−1π

tr

∫

∂Vδ0

l(ω − ω0)
l−1A0(ω)

−1K(1)
Ω (ω)dω +O(ǫ2),

where Vδ0 is a disk of center
√
µj and radius δ0 small enough, A0(ω) = −(1/2)I+KωΩ

and K(1)
Ω (ω) is given by (2.192).

Theorem 2.72 (Splitting of a multiple eigenvalue). There exists a polynomial-
valued function ω 7→ Qǫ(ω) of degree m and of the form

Qǫ(ω) = ωm + c1(ǫ)ω
m−1 + . . .+ ci(ǫ)ω

m−i + . . .+ cm(ǫ)

such that the perturbations ωiǫ − ω0 are precisely its zeros. The polynomial coeffi-
cients (ci)

m
i=1 are given by the recurrence relation

al+m + c1al+m−1 + . . .+ cmal = 0 for l = 0, 1, . . . ,m− 1.

Based on Theorems 2.71 and 2.72, our strategy for deriving asymptotic expan-
sions of the perturbations ωiǫ − ω0 relies on finding a polynomial of degree m such
that its zeros are precisely the perturbations ωiǫ − ω0. We then obtain complete
asymptotic expansions of the perturbations in the eigenvalues by computing the
Taylor series of the polynomial coefficients.

Notice that in the cases where the multiplicity m ∈ {2, 3, 4}, there is no need to
use Theorem 2.72, because we can explicitly have the expressions of the perturbed
eigenvalues as functions of (al)

m
l=1. For example, if m = 2 which is the case when

Ω is a disk, we can easily see when the splitting occurs. It suffices that one of the
terms in the expansion of 2a2(ǫ)− a21(ǫ) in terms of ǫ does not vanish. Necessarily
the order of splitting is even (because of the analyticity of the eigenvalues). Let
aj(ǫ) =

∑
n aj,nǫ

n and write

2a2(ǫ)− a21(ǫ) =
∑

n≥2

αnǫ
n, αn = 2a2,n −

n∑

p=1

a1,pa1,n−p.
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Suppose that the splitting order is 2s, then we obtain

ωjǫ = ω0 +
∑

i≥1

λ
(j)
i ǫi, j = 1, 2

with

λ
(1)
i = λ

(2)
i for i ≤ 2s− 1,

λ
(1)
2s =

a1,2s
2 −√

α2s, λ
(2)
2s =

a1,2s
2 +

√
α2s.

Explicit formulas for λ
(j)
i for j = 1, 2, can be obtained; see [78].

2.9.7. Numerical Implementation.
2.9.7.1. Discretization of the Operator KωΩ. Similarly to the case of the Neumann-

Poincaré operator (K0
Ω)

∗ in Subsection 2.4.5 we must now define an appropriate
numerical representation for the operator KωΩ. Suppose that the boundary ∂Ω is
parametrized by x(t) for t ∈ [0, 2π). We first partition the interval [0, 2π) into N
pieces

[t1, t2), [t2, t3), . . . , [tN , tN+1),

with t1 = 0 and tN+1 = 2π, and then approximate the boundary ∂Ω = {x(t) ∈ R2 :
t ∈ [0, 2π)} by x(i) = x(ti) for 1 ≤ i ≤ N .

We represent the infinite dimensional operator KωΩ by a finite dimensional ma-

trix K and the density function ϕ by ϕi := ϕ(x(i)) for 1 ≤ i ≤ N . Then

KωΩ[ϕ](x) =

∫

∂Ω

∂Γω
∂νy

(x, y)ϕ(y) dσ(y)

=

∫

∂Ω

√
−1

4
H

(1)
1 (ω|x− y|)ω 〈y − x, νy〉

|y − x| ϕ(y)dσ(y),

for ψ ∈ L2(∂Ω) has the numeric representation

Kψ̃ =




K11 K12 . . . K1N

K21 K22 . . . K2N

...
. . .

...
KN1 . . . . . . KNN







ϕ1

ϕ2
...
ϕN


 ,

where

Kij =

√
−1

4
H

(1)
1 (ω|x(i) − x(j)|)ω 〈x

(j) − x(i), νy〉
|x(j) − x(i)| |T (x(j))|(tj+1 − tj) i 6= j,

with T (x(i)) being the tangent vector at x(i).
As in the previous section, we have singularities in the diagonal terms of the

discretization matrix. Recall that Γ0(x) = 1
2π ln |x| and in Subsection 2.4.5.2 we

showed how to compute the diagonal elements in the case of the Neumann-Poincaré
operator (K0

Ω)
∗. In view of (2.148), the kernel ∂Γω/∂νy(x, y) has the same singu-

larity as that of the Neumann-Poincaré operator. Therefore we can approximate
the diagonal elements of K by

(2.198) Kii ≈
1

2N

〈a(i)), ν(i)〉
|T (i)| .
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2.9.7.2. Finding the Eigenvalues by Muller’s Method. We now describe the
computation of Laplace eigenvalues (or the characteristic values of A(ω)) using
Muller’s method. Let us define a function f : C → C such that f(ω) is the smallest
eigenvalue of A(ω). This means that f(ω) = 0 whenever ω is a characteristic value
of A and using Muller’s method we can find such an ω.

Consider the following numerical example. Assume that Ω is a unit disk. We
discretize the boundary ∂Ω with N = 500 points. As discussed previously, charac-
teristic values are zeros of J ′

n(z) = 0. The first zero is approximately 1.8412. Upon
computing a characteristic value near 1.8 using Muller’s method in Code Eigenval-
ues of the Laplacian we find that there is a good agreement with the exact value,
as can be seen in Table 2.5.

Theoretical Numerical

1.8412 + 0.0000
√
−1 1.8421− 0.0026

√
−1

Table 2.5. Characteristic value of A near 1.8.

Next, we present a numerical example for computing perturbed eigenvalues
using the shape derivative. We assume that Ω is a unit disk. We use polar coordi-
nates (r, θ) to parametrize the boundary ∂Ω. For the boundary perturbation, we set
ǫ = 0.01 and h(θ) = cos(2θ). We discretize the boundary ∂Ωǫ with N = 100 points.
We compute the perturbed characteristic values near ω0 = 0.8412 using Muller’s
method. Then we compute their approximation by using the shape derivative. A
comparison between the perturbed eigenvalues obtained via Muller’s method and
the approximation given by the shape derivative in Code Shape Perturbations of
Eigenvalues of the Laplacian is provided in Table 2.6.

Muller’s method Shape derivative

1.8623− 0.0126
√
−1 1.8619 + 0.0008

√
−1

1.8288− 0.0126
√
−1 1.8204− 0.0007

√
−1

Table 2.6. Perturbed characteristic values of the operator Aǫ.

2.10. Helmholtz-Kirchhoff Identity, Scattering Amplitude and Optical
Theorem

In this section we derive the Helmholtz-Kirchhoff identity, which plays a key
role in understanding the resolution limit in imaging with waves, and outline the
optical theorem. The optical theorem establishes a fundamental relation between
the imaginary part of the scattering amplitude and the total cross-section. The
scattering amplitude (or the far-field pattern) is the amplitude of the outgoing
spherical or cylindrical wave scattered by a particle, relative to a plane wave. It is
function of the incidence and observation directions. The total cross-section (also
called the extinction cross-section) is the sum of the scattering and absorption
cross-sections, which are respectively defined as the ratio of the total radiant power
scattered and absorbed by a particle in all directions, to the radiant power incident
on the particle.

http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial2/2.1 Eigenvalues of the Laplacian.zip
http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial2/2.1 Eigenvalues of the Laplacian.zip
http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial2/2.1 Eigenvalues of the Laplacian.zip
http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial2/2.1 Eigenvalues of the Laplacian.zip
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2.10.1. Reciprocity. An important property satisfied by the outgoing fun-
damental solution of the Helmholtz equation is the reciprocity property.

Let µ and ε be two piecewise smooth functions such that µ(x) = µm and
ε(x) = εm for |x| ≥ R0 for some positive R0. Let km = ω

√
εmµm. For y ∈ Rd,

introduce the fundamental solution Φkm(x, y) to be the solution to

(2.199) (∇x ·
1

µ(x)
∇x + ω2ε(x))Φkm(x, y) =

1

µm
δy(x),

subject to the Sommerfeld radiation condition:
(2.200)∣∣∣∣
∂Φkm
∂r

−
√
−1kmΦkm

∣∣∣∣ = O

(
r−(d+1)/2

)
as r = |x| → +∞ uniformly in

x

|x| .

The following holds.

Lemma 2.73. We have, for x 6= y,

(2.201) Φkm(x, y) = Φkm(y, x) .

Identity (2.201) means that the wave recorded at x when there is a time-
harmonic source at y is equal to the wave recorded at y when there is a time-
harmonic source at x.

Proof. We consider the equations satisfied by the fundamental solution with
the source at y2 and with the source at y1 (with y1 6= y2):

(∇x ·
1

µ
∇x + ω2ε)Φkm(x, y2) =

1

µm
δy2 ,

(∇x ·
1

µ
∇x + ω2ε)Φkm(x, y1) =

1

µm
δy1 .

We multiply the first equation by Φkm(x, y1) and subtract the second equation
multiplied by Φkm(x, y2):

∇x ·
µm
µ

[
Φkm(x, y1)∇xΦkm(x, y2)− Φkm(x, y2)∇xΦkm(x, y1)

]

= −Φkm(x, y2)δy1 +Φkm(x, y1)δy2

= −Φkm(y1, y2)δy1 +Φkm(y2, y1)δy2 .

We next integrate over the ball BR of center 0 and radius R which contains both
y1 and y2 and use the divergence theorem:

∫

∂BR

ν ·
[
Φkm(x, y1)∇xΦkm(x, y2)− Φkm(x, y2)∇xΦkm(x, y1)

]
dσ(x)

= −Φkm(y1, y2) + Φkm(y2, y1) ,

where ν is the unit outward normal to the ball BR, which is ν = x/|x|.
If x ∈ ∂BR and R→ ∞, then we have by the Sommerfeld radiation condition:

ν · ∇xΦkm(x, y) =
√
−1kmΦkm(x, y) +O

( 1

R(d+1)/2

)
.
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Therefore, as R→ ∞,

−Φkm(y1, y2) + Φkm(y2, y1)

= ikm

∫

∂BR

[
Φkm(x, y1)Φkm(x, y2)− Φkm(x, y2)Φkm(x, y1)

]
dσ(x)

= 0 ,

which is the desired result. �

2.10.2. Lippmann-Schwinger Representation Formula. The following
Lippmann-Schwinger representation formula for Φkm holds.

Lemma 2.74. For any x 6= y, we have

(2.202)

Φkm(x, y) = Γkm(x, y) +

∫
(
µm
µ(z)

− 1)∇Φkm(z, x) · ∇Γkm(z, y) dz

+k2m

∫
(1− ε(z)

εm
)Φkm(z, x)Γkm(z, y) dz .

Proof. We multiply (2.199) by Γkm and subtract the equation satisfied by
Γkm multiplied by 1

µm
Φkm :

∇z ·
[

1
µ(z)Γkm(z, y)∇zΦkm(z, x)− 1

µm
Φkm(z, x)∇zΓkm(z, y)

]

= (
1

µ(z)
− 1

µm
)∇zΦkm(z, x) · ∇zΓkm(z, y)

+ω2εm
(
1− ε(z)

εm

)
Φkm(z, x)Γkm(z, y)

+
1

µm
(Γkm(x, y)δx(z)− Φkm(x, y)δy(z)) .

We integrate over BR (with R large enough so that it encloses the support of µ−µm
and ε − εm) and send R to infinity to obtain thanks to the Sommerfeld radiation
condition the desired result. �

Lippmann-Schwinger representation formula (2.202) is used as a basis for ex-
panding the fundamental solution Φkm when µ ≈ µm and ε ≈ εm. If Φkm in the
right-hand side is replaced by Γkm , then we obtain:

(2.203)

Φkm(x, y) ≈ Γkm(x, y) +

∫
(
µm
µ(z)

− 1)∇Γkm(z, y) · ∇Γkm(z, y) dz

+k2m

∫
(1− ε(z)

εm
)Γkm(z, y)Γkm(z, y) dz ,

which is the (first-order) Born approximation for Φkm .

2.10.3. The Helmholtz-Kirchhoff Theorem. The Helmholtz-Kirchhoff the-
orem plays a key role in understanding the resolution limit in imaging with waves.
The following holds.

Lemma 2.75. Let ∂BR be the sphere of radius R and center 0. We have
(2.204)∫

∂BR

(
∂Γkm
∂ν

(x, y)Γkm(z, y)− Γkm(x, y)
∂Γkm
∂ν

(z, y)

)
dσ(y) = 2

√
−1ℑΓkm(x, z) ,
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which yields

(2.205) lim
R→+∞

∫

∂BR

Γkm(x, y)Γkm(z, y) dσ(y) = − 1

km
ℑΓkm(x, z) ,

by using the Sommerfeld radiation condition.

Identity (2.204) follows from multiplying by Γkm the equation satisfied by Γkm
and integrating by parts. Identity (2.205) can be deduced from (2.204) by using
the Sommerfeld radiation condition.

Notice that identity (2.205) is valid even in inhomogeneous media. The follow-
ing identity holds, which as we will see shows that the sharper the behavior of the
imaginary part of the fundamental solution Φkm around the source is, the higher is
the resolution.

Theorem 2.76. Let Φkm be the fundamental solution defined in (2.199). We
have

(2.206) lim
R→+∞

∫

|y|=R
Φkm(x, y)Φkm(z, y) dσ(y) = − 1

km
ℑΦkm(x, z) .

Proof. As for Lemma 2.73, the proof is based essentially on the second Green’s
identity and the Sommerfeld radiation condition. Let us consider

(∇y · 1
µ∇y + ω2ε)Φkm(y, x2) =

1

µm
δx2

,

(∇y · 1
µ∇y + ω2ε)Φkm(y, x1) =

1

µm
δx1

.

We multiply the first equation by Φkm(y, x1) and we subtract the second equation
multiplied by Φkm(y, x2):

∇y
µm
µ

·
[
Φkm(y, x1)∇yΦkm(y, x2)− Φkm(y, x2)∇yΦkm(y, x1)

]

= −Φkm(y, x2)δx1 +Φkm(y, x1)δx2

= −Φkm(x1, x2)δx1
+Φkm(x1, x2)δx2

,

using the reciprocity property Φkm(x1, x2) = Φkm(x2, x1).
We integrate over the ball BR and we use the divergence theorem:

∫

∂BR

ν ·
[
Φkm(y, x1)∇yΦkm(y, x2)− Φkm(y, x2)∇yΦkm(y, x1)

]
dσ(y)

= −Φkm(x1, x2) + Φkm(x1, x2) .

This equality can be viewed as an application of the second Green’s identity. The
Green’s function also satisfies the Sommerfeld radiation condition

lim
|y|→∞

|y|
( y
|y| · ∇y −

√
−1km

)
Φkm(y, x1) = 0 ,

uniformly in all directions y/|y|. Using this property, we substitute
√
−1kmΦkm(y, x2)

for ν · ∇yΦkm(y, x2) in the surface integral over ∂BR, and −
√
−1kmΦkm(y, x1) for

ν · ∇yΦkm(y, x1), and we obtain the desired result. �

2.10.4. Scattering Amplitude and the Optical Theorem.



2.10. HELMHOLTZ-KIRCHHOFF IDENTITY AND OPTICAL THEOREM 89

2.10.4.1. Scattering Coefficients. We first define the scattering coefficients of a
particle D in two dimensions. Assume that k2m is not a Dirichlet eigenvalue for −∆
onD. Then, the solution u to (2.165) (for d = 2) can be represented using the single-

layer potentials SkmD and SkcD by (2.170) where the pair (ϕ, ψ) ∈ L2(∂D)×L2(∂D)
is the unique solution to (2.171). Moreover, by using Proposition 2.53 it follows
that there exists a constant C = C(kc, km, D) such that

(2.207) ‖ϕ‖L2(∂D) + ‖ψ‖L2(∂D) ≤ C(‖ui‖L2(∂D) + ‖∇ui‖L2(∂D)) .

Furthermore, the constant C can be chosen to be scale independent. There exists
δ0 such that if one denotes by (ϕδ, ψδ) the solution of (2.171) with kc and km
respectively replaced by δkc and δkm, then

(2.208) ‖ϕδ‖L2(∂D) + ‖ψδ‖L2(∂D) ≤ C(‖ui‖L2(∂D) + ‖∇ui‖L2(∂D)) .

Recall the Graf’s addition formula:

(2.209) H
(1)
0 (k|x− y|) =

∑

l∈Z

H
(1)
l (k|x|)e

√−1lθxJl(k|y|)e−
√−1lθy for |x| > |y|,

where x = (|x|, θx) and y = (|y|, θy) in polar coordinates and H
(1)
l is the Hankel

function of the first kind of order l and Jl is the Bessel function of order l.
From (2.170) and (2.209), the following asymptotic formula holds as |x| → ∞:

(2.210)

u(x)− ui(x) = −
√
−1

4

∑

l∈Z

H
(1)
l (km|x|)e

√−1lθx

∫

∂D

Jl(km|y|)e−
√−1lθyψ(y)dσ(y) .

Let (ϕl′ , ψl′) be the solution to (2.171) with Jl′(km|x|)e
√−1l′θx in the place of ui(x).

We define the scattering coefficient as follows.

Definition 2.77. The scattering coefficients Wll′ , l, l
′ ∈ Z, associated with the

permittivity and permeability distributions ε, µ and the frequency ω (or kc, km, D)
are defined by

(2.211) Wll′ =Wll′ [ε, µ, ω] :=

∫

∂D

Jl(km|y|)e−
√−1lθyψl′(y)dσ(y) .

We derive the exponential decay of the scattering coefficients. We have the
following lemma for the size of |Wll′ |.

Lemma 2.78. There is a constant C depending on (ε, µ, ω) such that

(2.212) |Wll′ [ε, µ, ω]| ≤
C |l|+|l′|

|l||l||l′||l′| for all l, l′ ∈ Z \ {0} .

Moreover, there exists δ0 such that, for all δ ≤ δ0,

(2.213) |Wll′ [ε, µ, δω]| ≤
C |l|+|l′|

|l||l||l′||l′| δ
|l|+|l′| for all l, l′ ∈ Z \ {0} ,

where the constant C depends on (ε, µ, ω) but is independent of δ.

Proof. Let ui(x) = Jl′(km|x|)e
√−1l′θx and (ϕl′ , ψl′) be the solution to (2.171).

Since

(2.214) Jl′(t) ∼
(−1)l

′

√
2π|l′|

( et

2|l′|
)|l′|
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as l′ → ∞, we have

‖ui‖L2(∂D) + ‖∇ui‖L2(∂D) ≤
C |l′|

|l′||l′|
for some constant C. Thus it follows from (2.207) that

(2.215) ‖ψl′‖L2(∂D) ≤
C |l′|

|l′||l′|
for another constant C. So we get (2.212) from (2.211).

On the other hand, one can see from (2.208) that (2.215) still holds for some
C independent of δ as long as δ ≤ δ0 for some δ0. Note that

(2.216) Wll′ [ε, µ, δω] =

∫

∂D

Jl(δkm|y|)e−
√−1lθyψl′,δ(y)dσ(y) ,

where (ϕl′,δ, ψl′,δ) is the solution to (2.171) with kc and km respectively replaced by

δkc and δkm and Jl′(δkm|x|)e
√−1l′θx in the place of ui(x). So one can use (2.214)

to obtain (2.213). This completes the proof. �

Recall that the family of cylindrical waves {Jn(km|y|)e−
√−1nθy}n form a com-

plete set. We have the completeness relation

(2.217)
δ0(r − r0)δ0(θ − θ0)

r
=
∑

l′∈Z

1

2π

∫ +∞

0

tJl′(tr)Jl′(tr0) dt e
√−1l′(θ−θ0).

If ui is given as

(2.218) ui(x) =
∑

l′∈Z

al′(u
i)Jl′(km|x|)e

√−1l′θx ,

where al′(u
i) are constants, it follows from the principle of superposition that the

solution (ϕ, ψ) to (2.171) is given by

ψ =
∑

l′∈Z

al′(u
i)ψl′ .

Then one can see from (2.210) that the solution u to (2.165) can be represented as
(2.219)

u(x)− ui(x) = −
√
−1

4

∑

l∈Z

H
(1)
l (km|x|)e

√−1lθx
∑

l′∈Z

Wll′al′(u
i) as |x| → ∞ .

In particular, if ui is given by a plane wave e
√−1kmξ·x with ξ being on the unit

circle, then
(2.220)

u(x)−e
√−1kmξ·x = −

√
−1

4

∑

l∈Z

H
(1)
l (km|x|)e

√−1lθx
∑

l′∈Z

Wll′e
√−1l′(π

2 −θξ) as |x| → ∞ ,

where ξ = (cos θξ, sin θξ) and x = (|x|, θx). In fact, from the Jacobi-Anger expansion
of plane waves

(2.221) e
√−1ξ·x =

∑

l∈Z

e
√−1l(π

2 −θξ)Jl(|ξ||x|)e
√−1lθx ,

where x = (|x|, θx) and ξ = (|ξ|, θξ) in the polar coordinates, it follows that

(2.222) e
√−1kmξ·x =

∑

l′∈Z

e
√−1l′(π

2 −θξ)Jl′(km|x|)e
√−1l′θx ,
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and

(2.223) ψ =
∑

l′∈Z

e
√−1l′(π

2 −θξ)ψl′ .

Thus (2.220) holds. It is worth emphasizing that the expansion formula (2.219) or
(2.220) determines uniquely the scattering coefficients Wll′ , for l, l

′ ∈ Z.

Remark 2.79. Let D be a disk of radius R located at the origin in R2. Remark
2.55 yields an explicit expression for the scattering coefficients. In fact, we have

Wll′ = 0, l 6= l′,

Wll = 4
√
−1al, l ∈ Z,

where al is given by (2.174) with n replaced with l.

Remark 2.80. In [27], the concept of scattering coefficients is extended to het-
erogeneous media. The exponential decay of the heterogeneous scattering coefficients
is shown and the relationship between the scattering coefficients and the scattering
amplitude is established.

2.10.4.2. Scattering Amplitude. Let D be a bounded domain in R2 with smooth
boundary ∂D, and let (εm, µm) be the pair of electromagnetic parameters (permit-
tivity and permeability) of R2 \D and (εc, µc) be that of D. Then the permittivity
and permeability distributions are given by

(2.224) ε = εmχ(R
2 \D) + εcχ(D) and µ = µmχ(R

2 \D) + µcχ(D) .

Given a frequency ω, set kc = ω
√
εcµc and km = ω

√
εmµm. For a function ui

satisfying (∆ + k2m)ui = 0 in R2, we consider the total wave u, i.e., the solution to
(2.165).

Suppose that ui is given by a plane wave e
√−1kmξ·x with ξ being on the unit

circle, then (2.220) yields
(2.225)

u(x)−e
√−1kmξ·x = −

√
−1

4

∑

l∈Z

H
(1)
l (km|x|)e

√−1lθx
∑

l′∈Z

Wll′e
√−1l′(π

2 −θξ) as |x| → ∞ ,

where Wll′ , given by (2.211), are the scattering coefficients, ξ = (cos θξ, sin θξ), and
x = (|x|, θx).

The far-field pattern A∞[ε, µ, ω], when the incident field is given by e
√−1kmξ·x,

is defined to be
(2.226)

u(x)−e
√−1kmξ·x = −

√
−1e−

π
√

−1
4

e
√−1km|x|
√

|x|
A∞[ε, µ, ω](θξ, θx)+o(|x|−

1
2 ) as |x| → ∞ .

Recall that

(2.227) H
(1)
0 (t) ∼

√
2

πt
e
√−1(t−π

4 ) as t→ ∞ ,

where ∼ indicates that the difference between the right-hand and left-hand side is
O(t−1). If |x| is large while |y| is bounded, then we have

|x− y| = |x| − |y| cos(θx − θy) +O(
1

|x| ),
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and hence

H
(1)
0 (km|x− y|) ∼ e−

π
√

−1
4

√
2

πkm|x|e
√−1km(|x|−|y| cos(θx−θy)) as |x| → ∞ .

Thus, from (2.170), we get
(2.228)

u(x)− e
√−1kmξ·x ∼ −

√
−1e−

π
√

−1
4

e
√−1km|x|
√
8πkm|x|

∫

∂D

e−
√−1km|y| cos(θx−θy)ψ(y) dσ(y)

as |x| → ∞ and infer that the far-field pattern is given by

(2.229) A∞[ε, µ, ω](θξ, θx) =
1√

8πkm

∫

∂D

e−
√−1km|y| cos(θx−θy)ψ(y) dσ(y) ,

where ψ is given by (2.223).
We now show that the scattering coefficients are basically the Fourier coeffi-

cients of the far-field pattern (the scattering amplitude) which is 2π-periodic func-
tion in two dimensions.

Let

A∞[ε, µ, ω](θξ, θx) =
∑

l∈Z

bl(θξ)e
√−1lθx

be the Fourier series of A∞[ε, µ, ω](θξ, ·). From (2.229) it follows that

bl(θξ) =
1

2π

∫ 2π

0

∫

∂D

e−
√−1km|y| cos(θx−θy)ψ(y) dσ(y) e−

√−1lθx dθx

=
1

2π

∫

∂D

∫ 2π

0

e−
√−1km|y| cos(θx−θy)e−

√−1lθx dθx ψ(y) dσ(θy) .

Since

1

2π

∫ 2π

0

e−
√−1km|y| cos(θx−θy)e−

√−1lθx dθx = Jl(km|y|)e−
√−1l(θy+

π
2 ) ,

we deduce that

bl(θξ) =

∫

∂D

Jl(km|y|)e−
√−1l(θy+

π
2 )ψ(y) dσ(θy) .

Using (2.223) we now arrive at the following theorem.

Theorem 2.81. Let θ and θ′ be respectively the incident and scattered direction.
Then we have

(2.230) A∞[ε, µ, ω](θ, θ′) =
∑

l,l′∈Z

(
√
−1)(l

′−l)e
√−1lθ′Wll′ [ε, µ, ω]e

−√−1l′θ ,

where the scattering coefficients Wll′ are defined by (2.211).

We emphasize that the series in (2.230) is well-defined provided that k2m is not
a Dirichlet eigenvalue for −∆ on D. Moreover, it converges uniformly in θ and θ′

thanks to (2.212). Furthermore, there exists δ0 > 0 such that for any δ ≤ δ0 the
series expansion of A∞[ε, µ, δω](θ, θ′) is well-defined and its convergence is uniform
in δ. This is the key point of our construction of near-cloaking structures. We also
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note that if ui is given by (2.218) then the scattering amplitude, which we denote
by A∞[ε, µ, ω](ui, θ′), is given by

(2.231) A∞[ε, µ, ω](ui, θ′) =
∑

l∈Z

(
√
−1)−le

√−1lθ′
∑

l′∈Z

Wll′al′(u
i) .

The conversion of the far-field to the near field is achieved via formula (2.225).

2.10.4.3. Optical Theorem. Let d = 3. For ℜ
[
u(x)e−

√−1kmt
]
, the averaged

value of the energy flux vector, taken over an interval which is long compared to
the period of the oscillations, is given by

F (x) = −
√
−1km [u(x)∇u(x)− u(x)∇u(x)] .

Consider the outward flow of energy through the sphere ∂BR of radius R and center
the origin:

W =

∫

∂BR

F (x) · ν(x)dσ(x) ,

where ν(x) is the outward normal at x ∈ ∂BR.
As the total field can be written as u = ui + us, the flow can be decomposed

into three parts:

W = Wi +Ws +W ′ ,

where

Wi =−
√
−1β

∫

∂BR

[
ui(x)∇ui(x)− ui(x)∇ui(x)

]
· ν(x) dσ(x) ,

Ws =−
√
−1β

∫

∂BR

[us(x)∇us(x)− us(x)∇us(x)] · ν(x) dσ(x) ,

W ′ =−
√
−1β

∫

∂BR

[
ui(x)∇us(x)− us(x)∇ui(x)− ui(x)∇us(x) + us(x)∇ui(x)

]
· ν(x) dσ(x) ,

where β is a positive constant.

In the case where ui(x) = e
√−1kmξ·x is a plane wave, we can see that Wi = 0:

Wi = −
√
−1β

∫

∂BR

[
ui(x)∇ui(x)− ui(x)∇ui(x)

]
dσ(x) ,

= −
√
−1β

∫

∂BR

[
e−

√−1kmξ·x√−1kmξe
√−1kmξ·x + e

√−1kmξ·xkmde
−√−1kmξ·x

]
· ν(x) dσ(x) ,

= 2βkmξ ·
∫

∂BR

ν(x) dσ(x) ,

= 0 .

In a non absorbing medium with non absorbing scatterers, W is equal to zero
because the electromagnetic energy would be conserved by the scattering process.
However, if there is an absorbing scatterer inside the medium, the conservation of
energy gives the rate of absorption as

Wa = −W .

Therefore, we have

Wa +Ws = −W ′ .
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Here, W ′ is called the extinction rate. It is the rate at which the energy is removed
by the scatterer from the illuminating plane wave, and it is the sum of the rate of
absorption and the rate at which energy is scattered.

Denote by V the quantity V (x) = β
∣∣∣ui(x)∇ui(x)− ui(x)∇ui(x)

∣∣∣. In the case

of a plane wave illumination, V (x) is independent of x and is given by V = 2βkm.

Definition 2.82. The scattering cross-section Qs, the absorption cross-section
Qa and the extinction cross-section are defined by

Qs =
Ws

V
, Qa =

Wa

V
, Qext =

−W ′

V
.

Note that these quantities are independent of x in the case of a plane wave illumi-
nation.

Theorem 2.83 (Optical theorem). Let d = 3. If ui(x) = e
√−1kmξ·x, where ξ

is a unit direction of incidence, then

Qext[ε, µ, ω](ξ) =Qs[ε, µ, ω](ξ) +Qa[ε, µ, ω](ξ) =
4π

km
ℑ [A∞[ε, µ, ω](ξ, ξ)] ,

(2.232)

Qs[ε, µ, ω](ξ) =

∫

|x̂|=1

|A∞[ε, µ, ω](ξ, x̂)|2dσ(x̂)(2.233)

with A∞ being the scattering amplitude defined by

(2.234) (u− ui)(x) =
e
√−1km|x|

|x| A∞[ε, µ, ω]

(
ξ,

x

|x|

)
+O

(
1

|x|2
)
.

Proof. The Sommerfeld radiation condition gives, for any x ∈ ∂BR,

∇us(x) · ν(x) ∼
√
−1kmu

s(x) .(2.235)

Hence, from (2.234) we get

us(x)∇us(x) · ν(x)− us(x)∇us(x) · ν(x) ∼ −2
√
−1km

|x|2
∣∣∣∣A∞[ε, µ, ω]

(
ξ,

x

|x|

)∣∣∣∣
2

,

which yields (2.233). We now compute the extinction rate. We have

∇ui(x) · ν(x) =
√
−1kmξ · ν(x)e

√−1kmξ·x .(2.236)

Therefore, using (2.235) and (2.236), it follows that

ui(x)∇us(x) · ν(x)− us(x)∇ui(x) · ν(x)

∼
[√

−1km
e
√−1km(|x|−ξ·x)

|x| ξ · ν +
√
−1km

e
√−1km(|x|−ξ·x)

|x|

]
A∞[ε, µ, ω]

(
ξ,

x

|x|

)

∼
√
−1kme

√−1km|x|−ξ·ν(x)

|x| (ξ · ν(x) + 1)A∞[ε, µ, ω]

(
ξ,

x

|x|

)
.

For x ∈ ∂BR, we can write

ui(x)∇us(x) · ν(x)− us(x)∇ui(x) · ν(x)

∼
√
−1kme

−√−1kmRν(x)·(ξ−ν(x))

R
(ξ · ν(x) + 1)A∞[ε, µ, ω]

(
ξ,

x

|x|

)
.
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We now use Jones’ lemma

1

R

∫

∂BR

G(ν(x))e−
√−1kmξ·ν(x)dσ(x) ∼ 2π

√
−1

km

(
G(ξ)e−

√−1kmR − G(−ξ)e
√−1kmR

)

as R→ ∞, to obtain
∫

∂BR

[
ui(x)∇us(x)− us(x)∇ui(x)

]
· ν(x) ∼ −4πA∞[ε, µ, ω](ξ, ξ) as R→ ∞ .

Therefore,

W ′ =
√
−14πβ

[
A∞[ε, µ, ω](ξ, ξ)−A∞[ε, µ, ω](ξ, ξ)

]
= −8πβℑ [A∞[ε, µ, ω](ξ, ξ)] .

Since

β
∣∣∣ui(x)∇ui(x)− ui(x)∇ui(x)

∣∣∣ = 2βkm ,

we get the result. � �

In two dimensions, the scattering cross-section Qs[ε, µ, ω] satisfies

(2.237) Qs[ε, µ, ω](θ′) =
∫ 2π

0

∣∣∣∣A∞[ε, µ, ω](θ, θ′)

∣∣∣∣
2

dθ .

As an immediate consequence of Theorem 2.81 we obtain

(2.238) Qs[ε, µ, ω](θ′) = 2π
∑

m∈Z

∣∣∣∣
∑

l∈Z

(
√
−1)−lWll′ [ε, µ, ω]e

√−1lθ′
∣∣∣∣
2

.

Analogously to Theorem 2.83, we can prove that

(2.239) ℑA∞[ε, µ, ω](θ′, θ′) = −
√
km
8π

Qext[ε, µ, ω](θ′), ∀ θ′ ∈ [0, 2π] .

Therefore, for non absorbing scatterers, i.e., Qa = 0, the above optical theorem
leads to a natural constraint on Wll′ . From (2.238) and (2.239), we obtain
(2.240)

ℑ
∑

l,l′∈Z

(
√
−1)l

′−le
√−1(l−l′)θ′Wll′ [ε, µ, ω] = −

√
πkm
2

∑

l′∈Z

∣∣∣∣
∑

l∈Z

(
√
−1)−lWll′ [ε, µ, ω]e

√−1lθ′
∣∣∣∣
2

,

∀ θ′ ∈ [0, 2π].
Since ω 7→ A∞[ε, µ, ω] is analytic in C+, A∞ vanishes sufficiently rapidly as ω →

+∞, and A∞[ε, µ,−ω] = A∞[ε, µ, ω] for real values of ω, the real and imaginary
parts of the scattering amplitude are connected by the Kramers-Kronig relations

(2.241) ℜA∞[ε, µ, ω](ξ, ξ) = cd p.v.

∫ +∞

0

(ω′)(d+1)/2Qext[ε, µ, ω′](ξ)
(ω′)2 − ω2

dω′ ,

and

(2.242) Qext[ε, µ, ω](ξ) = − 2

π
√
εmµm

p.v.

∫ +∞

0

ℜA∞[ε, µ, ω′](ξ, ξ)
(ω′)2 − ω2

dω′ ,

for ξ ∈ Rd, |ξ| = 1, d = 2, 3, where c3 =
√
εmµm/(2π

2) and c2 = −
√√

εmµm/(2π3).
Moreover, we obtain by respectively taking the limits of (2.241) and (2.242) as
ω → 0 the following sum rules:

(2.243) ℜA∞[ε, µ, 0](ξ, ξ) = cd p.v.

∫ +∞

0

(ω′)(d−3)/2Qext[ε, µ, ω′](ξ) dω′ ,
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and
(2.244)

Qext[ε, µ, 0](ξ) = − 2

π
√
εmµm

p.v.

∫ +∞

0

ℜA∞[ε, µ, ω′](ξ, ξ)−ℜA∞[ε, µ, 0](ξ, ξ)

(ω′)2
dω′ .

2.10.5. Numerical Implementation. We now discuss a numerical approach
to the transmission problem (2.167) for the Helmholtz equation. This involves
solving the boundary integral equation (2.171).

We begin by performing the usual boundary discretization procedure as in
Subsection 2.4.5. Suppose that the boundary ∂Ω is parametrized by x(t) for t ∈
[0, 2π). We partition the interval [0, 2π) into N pieces

[t1, t2), [t2, t3), . . . , [tN , tN+1),

with t1 = 0 and tN+1 = 2π. We then approximate the boundary ∂Ω = {x(t) ∈ R2 :
t ∈ [0, 2π)} by x(i) = x(ti) for 1 ≤ i ≤ N . We approximate the density functions
ϕ and ψ with ϕi := ϕ(x(i)) and ψi := ψ(x(i)) for 1 ≤ i ≤ N . We also discretize
the Dirichlet data ui|∂D and Neumann data ∂ui/∂ν|∂D of the incident wave ui by
setting ud = ui(x(j)) and un = ∂ui/∂ν(x(j)) for 1 ≤ i ≤ N . Then the integral
equation (2.171) is represented numerically as

(
S− −S+
1
µc
S′
− − 1

µm
S′
+

)(
ϕ

ψ

)
=

(
ud
un

)
,

where S± and S′
± are the N ×N matrices given by

(S−)ij = Γkm(x(i) − x(j))|T (x(j))|(tj+1 − tj),(2.245)

(S+)ij = Γkc(x(i) − x(j))|T (x(j))|(tj+1 − tj)(2.246)

(S′
−)ij = −1

2
δij +

∂Γkc

∂νx
(x(i) − x(j))|T (x(j))|(tj+1 − tj),(2.247)

(S′
+)ij =

1

2
δij +

∂Γkm

∂νx
(x(i) − x(j))|T (x(j))|(tj+1 − tj),(2.248)

for i 6= j and i, j = 1, 2, . . . , N . The singularity for i = j can be treated as explained
in Subsection 2.4.5. By solving the above linear system, we obtain approximations
for the density functions ϕ and ψ. Then we calculate the numerical solution for u
using (2.170). We can also obtain the scattering coefficients Wll′ numerically by
using the definition (2.216).

Let B be a disk of radius R = 1 located at the origin in R2. Set ω = 2, εm =

1, εc = 1, µm = 1 and µc = 5. Let us assume that ui(x) = J3(kmr)e
√−13θ. In

Figure 2.4 we compare the numerical solution to (2.171) with the exact solution by
evaluating the solutions on the circle |x| = 2.

Next we compare the scattering coefficients Wll obtained numerically for l =
1, 2, . . . , 7, with theoretical results. The comparison is shown in in Table 2.7 and
the decay property of the scattering coefficients is clearly present.

2.11. Scalar Wave Scattering by Small Particles

With the same notation as in Subsection 2.8.4.2, we suppose that the particle
D is of the form D = δB + z, and let u be the solution of (2.165).
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Figure 2.4. The exact solution ue and the numerical solution un
of the transmission problem (2.167) for Helmholtz equation. The
inclusion D is a circular disk with radius 1. The parameters are
ω = 2, εm = 1, εc = 1, µm = 1, and µc = 5. We assume that

ui(x) = J3(kmr)e
√−13θ. The solutions are evaluated on the circle

|x| = 2.

n Theoretical Numerical

1 1.7866− 1.1036
√
−1 1.7866− 1.1011

√
−1

2 −0.9673− 3.7540
√
−1 −0.9601− 3.7545

√
−1

3 −0.6487− 0.1081
√
−1 −0.6487− 0.1081

√
−1

4 −0.0462− 0.0005
√
−1 −0.0462− 0.0005

√
−1

5 −0.0023− 0.0000
√
−1 −0.0023− 0.0000

√
−1

6 −0.0001− 0.0000
√
−1 −0.0001− 0.0000

√
−1

7 −0.0000− 0.0000
√
−1 −0.0000− 0.0000

√
−1

Table 2.7. Scattering coefficients Wll for l = 1, 2, . . . , 7 when D
is a unit circular disk. The parameters are ω = 2, εm = 1, εc =
1, µm = 1 and µc = 5.

In this section we derive an asymptotic expansion of u as δ → 0. For simplicity,
although the asymptotic expansions are valid in the two-dimensional case we only
consider d = 3 in what follows.

We first derive an estimate of the form (2.172) with a constant C independent
of δ.

Proposition 2.84. Let D = δB + z and (ϕ, ψ) ∈ L2(∂D) × L2(∂D) be the
unique solution of (2.171). There exists δ0 > 0 such that for all δ ≤ δ0, there exists
a constant C independent of δ such that

(2.249) ‖ϕ‖L2(∂D) + ‖ψ‖L2(∂D) ≤ C

(
δ−1‖ui‖L2(∂D) + ‖∇ui‖L2(∂D)

)
.
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Proof. After the scaling x = z + δy, (2.171) takes the form




SkcδB [ϕδ]− SkmδB [ψδ] =
1

δ
uiδ

1

µc

∂(SkcδB [ϕδ])

∂ν

∣∣∣∣
−
− 1

µm

∂(SkmδB [ψδ])

∂ν

∣∣∣∣
+

=
1

δµm

∂uiδ
∂ν

on ∂B ,

where ϕδ(y) = ϕ(z + δy), y ∈ ∂B, etc, and the single layer potentials SkcδB and

SkmδB are defined by the fundamental solutions Γkcδ and Γkmδ, respectively. It then
follows from Theorem 2.53 that for δ small enough the following estimate holds:

‖ϕδ‖L2(∂B) + ‖ψδ‖L2(∂B) ≤ Cδ−1‖uiδ‖H1(∂B),

for some constant C independent of δ. By scaling back, we obtain (2.249). �

Fix n ∈ N, define

uin(x) =

n∑

|l|=0

∂lui(z)

l!
(x− z)l ,

and let (ϕn, ψn) be the unique solution of

(2.250)





SkcD [ϕn]− SkmD [ψn] = uin+1

1

µc

∂(SkcD [ϕn])

∂ν

∣∣∣∣
−
− 1

µm

∂(SkmD [ψn])

∂ν

∣∣∣∣
+

=
1

µm

∂uin+1

∂ν

on ∂D.

Then (ϕ − ϕn, ψ − ψn) is the unique solution of (2.250) with the right-hand sides
defined by ui − uin+1. Therefore, by (2.249), we get

(2.251)

‖ϕ− ϕn‖L2(∂D) + ‖ψ − ψn‖L2(∂D)

≤ C

(
δ−1‖ui − uin+1‖L2(∂D) + ‖∇(ui − uin+1)‖L2(∂D)

)
.

By the definition of uin+1, we have

‖ui − uin+1‖L2(∂D) ≤ C|∂D|1/2‖ui − uin+1‖L∞(∂D)

≤ C|∂D|1/2(δkm)n+2 ,

and

‖∇(ui − uin+1)‖L2(∂D) ≤ C|∂D|1/2(δkm)n+1 .

It then follows from (2.251) that

(2.252) ‖ϕ− ϕn‖L2(∂D) + ‖ψ − ψn‖L2(∂D) ≤ C(km)|∂D|1/2δn+1 .

By (2.171), we obtain

(2.253) u(x) = ui(x) + SkmD [ψn](x) + SkmD [ψ − ψn](x), x ∈ K,

where K ⋐ Rd \D. Since dist(D,K) ≥ c0, we get

sup
x∈K, y∈∂D

∣∣∣∣Γkm(x− y)

∣∣∣∣ ≤ C
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for some constant C. Hence, for each x ∈ K, we have from (2.252)

∣∣∣SkmD [ψ − ψn](x)
∣∣∣ ≤

[∫

∂D

|Γkm(x− y)|2 dσ(y)
]1/2

‖ψ − ψn‖L2(∂D)

≤ C|∂D|1/2|∂D|1/2δn+1 ≤ C ′δn+d ,

where C and C ′ are independent of x ∈ K and δ. Thus we conclude that

(2.254) u(x) = ui(x) + SkmD [ψn](x) +O(δn+d) , uniformly in x ∈ K .

For each multi-index l, define (ϕl, ψl) to be the unique solution to

(2.255)





SkcδB [ϕl]− SkmδB [ψl] = xl

1

µc

∂(SkcδB [ϕl])

∂ν

∣∣∣∣
−
− 1

µm

∂(SkmδB [ψl])

∂ν

∣∣∣∣
+

=
1

µm

∂xl

∂ν

on ∂B .

Then, we claim that

ϕn(x) =

n+1∑

|l|=0

δ|l|−1 ∂
lui(z)

l!
ϕl(δ

−1(x− z)) ,

ψn(x) =

n+1∑

|l|=0

δ|l|−1 ∂
lui(z)

l!
ψl(δ

−1(x− z)) .

In fact, the expansions follow from the uniqueness of the solution to the integral
equation (2.168) and the relation

SkmD



n+1∑

|l|=0

δ|l|−1 ∂
lui(z)

l!
ϕl(δ

−1(· − z))


 (x)

=

n+1∑

|l|=0

δ|l|
∂lui(z)

l!
(SkmδB [ϕl])(δ

−1(x− z)) ,

for x ∈ ∂D. It then follows from (2.254) that

(2.256)
u(x) = ui(x) +

n+1∑

|l|=0

δ|l|−1 ∂
lui(z)

l!
SkmD [ψl(δ

−1(· − z))](x)

+O(δn+d) ,

uniformly in x ∈ K. Note that

SkmD [ψl(δ
−1(· − z))](x) =

∫

∂D

Γkm(x− y)ψl(δ
−1(y − z)) dσ(y)

= δd−1

∫

∂B

Γkm(x− (δw + z))ψl(w) dσ(w) .

Moreover, for x ∈ K, z ∈ D, w ∈ ∂B, and sufficiently small δ, we have

Γkm(x− (δw + z)) =

∞∑

|l′|=0

δ|l
′|

l′!
∂l

′

z Γkm(x− z)wl
′
.
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Therefore, we get

SkmD [ψl(δ
−1(· − z))](x) =

∞∑

|l′|=0

δ|l
′|+d−1

l′!
∂l

′

z Γkm(x− z)

∫

∂B

wl
′
ψl(w) dσ(w) .

Define, for multi-indices l and l′ in Nd, the scattering tensors

(2.257) W̃ll′ :=

∫

∂B

wl
′
ψl(w) dσ(w) .

Then we obtain the following theorem from (2.256).

Theorem 2.85. The following pointwise multipolar asymptotic expansion in
K ⋐ Rd \D holds:

(2.258)
u(x) = ui(x) + δd−2

n+1∑

|l′|=0

n−|l′|+1∑

|l|=0

δ|l|+|l′|

l!l′!
∂lui(z)∂l

′

z Γkm(x− z)W̃ll′

+O(δn+d) ,

where the remainder O(δd+n) is dominated by Cδd+n for some C independent of
x ∈ K.

Remark 2.86. In view of (2.170), we obtain the following expansion:

(2.259)
SkmD [ψ](x) = δd−2

n+1∑

|l′|=0

n−|l′|+1∑

|l|=0

δ|l|+|l′|

l!l′!
∂lui(z)∂l

′

z Γkm(x− z)W̃ll′

+O(δn+d) .

Observe that ψl, and hence, W̃ll′ depends on δ, and so does ui. Thus the formula
(2.258) is not a genuine asymptotic formula. However, since it is useful for solving
the inverse problem for the Helmholtz equation, we made a record of it as a theorem.

Remark 2.87. Note that the scattering tensors defined in (2.257) are the basic
building blocks for the full asymptotic expansion of the scattering coefficients given
by (2.211) as δ → 0. In fact, in the three-dimensional case, after scaling (2.171)
Taylor expansions yield
(2.260)

Wpq =
1

km

∑

l,l′∈N3

W̃ll′
(δkm)|l|+|l′|+1

l!l′!
∂l
[
Jp(y)e

√−1pθy
]∣∣
y=0

∂l
′[
Jq(y)e

√−1qθy
]∣∣
y=0

for p, q ∈ N.

Now, observe that by the definition (2.255) of ψl, ‖ψl‖L2(∂B) is bounded, and
hence

|W̃ll′ | ≤ Cll′ , ∀ l, l′ ,
where the constant Cll′ is independent of δ. Since δ is small, we can derive an
asymptotic expansion of (ϕl, ψl) using their definition (2.255). Let us briefly explain
this. Let

Tδ

[
f
g

]
:=




SkcδB [f ]− SkmδB [g]

1

µc

∂(SkcδB [f ])

∂ν

∣∣∣∣
−
− 1

µm

∂(SkmδB [g])

∂ν

∣∣∣∣
+


 on ∂B ,
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and let T0 be the operator when δ = 0. Then the solution (ϕl, ψl) of the integral
equation (2.255) is given by

(2.261)

[
ϕl
ψl

]
=

[
I + T−1

0 (Tδ − T0)

]−1

T−1
0




xl

1

µm

∂xl

∂ν


 .

By expanding Tδ − T0 in a power series of δ, we can derive the expansions of ψl
and W̃ll′ . Let, for l, l′ ∈ Nd, (ϕ̂l, ψ̂l) be the leading-order term in the expansion of

(ϕl, ψl). Then (ϕ̂l, ψ̂l) is the solution of the system of the integral equations

(2.262)





S0
B [ϕ̂l]− S0

B [ψ̂l] = xl

1

µc

∂(S0
B [ϕ̂l])

∂ν

∣∣∣∣
−
− 1

µm

∂(S0
B [ψ̂l])

∂ν

∣∣∣∣
+

=
1

µ0

∂xl

∂ν

on ∂B .

As a simplest case, let us now take n = 1 in (2.258) to find the leading-order term
in the asymptotic expansion of u−ui as δ → 0. We first investigate the dependence

of W̃ll′ on δ for |l| ≤ 1 and |l′| ≤ 1. If |l| ≤ 1, then both sides of the first equation
in (2.262) are harmonic in B, and hence

S0
B [ϕ̂l]− S0

B [ψ̂l] = xl in B .

Therefore we get

∂(S0
B [ϕ̂l])

∂ν

∣∣∣∣
−
− ∂(S0

B [ψ̂l])

∂ν

∣∣∣∣
−
=
∂xl

∂ν
on ∂B .

This identity together with the second equation in (2.262) yields

µc
µm

∂(S0
B [ψ̂l])

∂ν

∣∣∣∣
+

− ∂(S0
B [ψ̂l])

∂ν

∣∣∣∣
−
=

(
1− µc

µm

)
∂xl

∂ν
.

In view of the relation (2.155), we have

µc
µm

(
1

2
I + (K0

B)
∗
)
[ψ̂l]−

(
− 1

2
I + (K0

B)
∗
)
[ψ̂l] =

(
1− µc

µm

)
∂xl

∂ν
,

where (K0
B)

∗ is the Neumann-Poincaré operator defined in (2.6). Therefore, we
have

(2.263) ψ̂l = (λI − (K0
B)

∗)−1

(
∂xl

∂ν

∣∣∣∣
∂B

)
,

where

(2.264) λ :=

µc

µm
+ 1

2(1− µc

µm
)
=

µm

µc
+ 1

2(µm

µc
− 1)

.

Observe that if |l| = 0, then ψ̂l = 0 and S0
B [ϕ̂l] = 1. Hence we obtain ψl = O(δ)

and SkcδB [ϕl] = 1 + O(δ). Moreover, since SkcδB [ϕl] depends on δ analytically and

(∆ + k2cδ
2)SkcδB [ϕl] = 0 in B, we conclude that

(2.265) ψl = O(δ) and SkcδB [ϕl] = 1 +O(δ2) , |l| = 0 .

It also follows from (2.263) that if |l| = |l′| = 1, then

(2.266) W̃ll′ =

∫

∂B

xl
′
(λI − (K0

B)
∗)−1

(
∂yl

∂ν

∣∣∣∣
∂B

)
(x) dσ(x) +O(δ) .
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The first quantity in the right-hand side of (2.266) is the polarization tensor M as
defined in (2.71). In summary, we obtained that

(2.267) W̃ll′ =M +O(δ) , |l| = |l′| = 1 .

Suppose that either l = 0 or l′ = 0. By (2.155) and (2.255), we have

ψl =
∂(SkmδB [ψl])

∂ν

∣∣∣∣
+

− ∂(SkmδB [ψl])

∂ν

∣∣∣∣
−

=
µm
µc

∂(SkcδB [ϕl])

∂ν

∣∣∣∣
−
− ∂xl

∂ν
− ∂(SkmδB [ψl])

∂ν

∣∣∣∣
−
.(2.268)

It then follows from the divergence theorem that
∫

∂B

xl
′
ψl dσ = −k2cδ2

µm
µc

∫

B

xl
′SkcδB [ϕl] dx+ k2mδ

2

∫

B

xl
′SkmδB [ψl] dx(2.269)

+
µm
µc

∫

∂B

∂xl
′

∂ν
SkcδB [ϕl] dσ −

∫

∂B

∂xl
′

∂ν
SkmδB [ψl] dσ .

From (2.269), we can observe the following.

W̃ll′ = −k2cδ2
µm
µc

|B|+O(δ3) = −δ2ω2εcµm|B|+O(δ3) , |l| = |l′| = 0 ,(2.270)

W̃ll′ = O(δ2) , |l| = 1 , |l′| = 0 ,(2.271)

W̃ll′ = O(δ2) , |l| = 0 , |l′| = 1 .(2.272)

In fact, (2.270) and (2.272) follow from (2.265) and (2.269), and (2.271) immediately
follows from (2.269). As a consequence of (2.270), (2.271), (2.272), and (2.259), we
obtain

SkmD [ψ](x) = O(δd) , uniformly on x ∈ K .

We now consider the case |l| = 2 and |l′| = 0. In this case, one can show using
(2.268) that ∫

∂B

ψl dσ = −
∫

B

∆xl dx+O(δ2) .

Therefore, if |l′| = 0, then

(2.273)
∑

|l|=2

1

l!l′!
∂lui(z)W̃ll′ = −∆ui(z)|B|+O(δ2) = k2mu

i(z)|B|+O(δ2) .

So (2.258) together with (2.267)-(2.273) yields the following dipolar expansion
formula.

Theorem 2.88. For any x ∈ K,

u(x) = ui(x)

+ δd
(
∇ui(z)M∇zΓkm(x− z) + k2m(

εc
εm

− 1)|B|ui(z)Γkm(x− z)

)
(2.274)

+O(δd+1) ,

where M is the polarization tensor defined in (2.71) with λ given by (2.264).
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Let us now consider the case when there are several well separated particles.
Let D := ∪ms=1(δBs + zs). The magnetic permeability and electric permittivity of

the particle δBs + zs are µ
(s)
c and ε

(s)
c , s = 1, . . . ,m. By iterating formula (2.258)

we can derive the following theorem.

Theorem 2.89. Suppose that there exists a positive constant C such that |zs−
zs′ | ≥ C for s 6= s′. Then the following pointwise asymptotic expansion in K holds
uniformly:
(2.275)

u(x) = ui(x)

+δd−2
m∑

s=1

n+1∑

|l′|=0

n+1−|l′|∑

|l|=0

δ|l|+|l′|

l!l′!
∂lui(zs)∂

l′

z Γkm(x− zs)W
(s)
ll′ +O(δn+d) .

Here the scattering tensor W
(s)
ll′ is defined by (2.257) with B,µc, εc replaced by

Bs, µ
(s)
c , ε

(s)
c .

A first-order asymptotic expansion similar to (2.274) can be obtained for closely
spaced particles. Let D := ∪ms=1(δBs + z) and let ν(s) be the outward normal to
∂Bs. As before, the magnetic permeability and electric permittivity of the particle

δBs + z are µ
(s)
c and ε

(s)
c , s = 1, . . . ,m.

Let the overall polarization tensor M = (mpq)
d
p,q=1 be defined by

(2.276) mpq :=

m∑

s=1

∫

∂Bs

xpφ
(s)
q (x) dσ(x),

where the densities φ
(s)
q satisfy

(λsI − (K0
Bs

)∗)[φ(s)q ]−
∑

s′ 6=s

∂S0
Bs′

[φ
(s′)
q ]

∂ν(s)
= ν(s)q on ∂Bs

with λs being given by (2.264) with µc replaced by µ
(s)
c .

Theorem 2.90. Let D := ∪ms=1(δBs + z). For any x ∈ K, as δ → 0,

u(x) = ui(x)

+ δd
(
∇ui(z)M∇zΓkm(x− z) + k2m

( m∑

s=1

(
ε
(s)
c

εm
− 1)|Bs|

)
ui(z)Γkm(x− z)

)
(2.277)

+O(δd+1) ,

where M is the overall polarization tensor associated with the particles Bs defined
in (2.276).

Remark 2.91. Note that the polarization tensor of multiple particles has the
same properties as the one associated with a single particle.

2.12. Quasi-Periodic Layer Potentials for the Helmholtz Equation

In this section we collect some notation and well-known results regarding quasi-
periodic layer potentials for the Helmholtz equation. We refer to [190, 330, 345,
367, 449] for the details. This results will be used for the analysis of photonic and
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phononic bandgap structures. In Section 2.13 numerical schemes for the calcula-
tion of periodic Green’s functions will be described. These techniques rely either
on a Fourier series to compute the governing Green’s function or a lattice sum
representation of the Green’s function via the method of images.

We denote by α the quasi-momentum variable in the Brillouin zone B =
[0, 2π)2. We introduce the two-dimensional quasi-periodic Green’s function (or
fundamental solution) Gα,ω, which satisfies

(2.278) (∆ + ω2)Gα,ω(x, y) =
∑

n∈Z2

δ0(x− y − n)e
√−1n·α.

If ω 6= |2πn+ α|, ∀ n ∈ Z2, then by using Poisson’s summation formula

(2.279)
∑

n∈Z2

e
√−1(2πn+α)·x =

∑

n∈Z2

δ0(x− n)e
√−1n·α,

the quasi-periodic fundamental solution Gα,ω can be represented as a sum of aug-
mented plane waves over the reciprocal lattice:

(2.280) Gα,ω(x, y) =
∑

n∈Z2

e
√−1(2πn+α)·(x−y)

ω2 − |2πn+ α|2 .

Moreover, it can also be shown that Gα,ω can be alternatively represented as a sum
of images:

(2.281) Gα,ω(x, y) = −
√
−1

4

∑

n∈Z2

H
(1)
0 (ω|x− n− y|)e

√−1n·α,

where H
(1)
0 is the Hankel function of the first kind of order 0. The series in the

spatial representation (2.281) of the Green’s function converges uniformly for x, y
in compact sets of R2 and ω 6= |2πn + α| for all n ∈ Z2. From (2.281) and the

well-known fact that H
(1)
0 (z) = (2

√
−1/π) ln z + O(1) as z → 0 (see (2.148)), it

follows that Gα,ω(x, y)− (1/2π) ln |x− y| is smooth for all x, y ∈ Y. A disadvantage
of the form (2.280), which is often referred to as the spectral representation of the
Green’s function, is that the singularity as |x− y| → 0 is not explicit.

In all the sequel, we assume that ω 6= |2πn + α| for all n ∈ Z2. Let D be a
bounded domain in R2, with a connected Lipschitz boundary ∂D. Let ν denote
the unit outward normal to ∂D. For ω > 0 let Sα,ω and Dα,ω be the quasi-periodic
single- and double-layer potentials1 associated with Gα,ω on D; that is, for a given
density ϕ ∈ L2(∂D),

Sα,ω[ϕ](x) =
∫

∂D

Gαω(x, y)ϕ(y) dσ(y), x ∈ R2,

Dα,ω[ϕ](x) =

∫

∂D

∂Gαω(x, y)

∂ν(y)
ϕ(y) dσ(y), x ∈ R2 \ ∂D.

Then, Sα,ω[ϕ] and Dα,ω[ϕ] satisfy (∆ + ω2)Sα,ω[ϕ] = (∆ + ω2)Dα,ω[ϕ] = 0 in D
and Y \D where Y is the periodic cell [0, 1)2, and they are α-quasi-periodic. Here
we assume D ⊂ Y .

1From now on we use Sα,ω and Dα,ω instead of Sα,ω
D and D

α,ω
D for layer potentials on D.

This is to keep the notation simple.
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The next formulas give the jump relations obeyed by the double-layer poten-
tial and by the normal derivative of the single-layer potential on general Lipschitz
domains:

∂(Sα,ω[ϕ])
∂ν

∣∣∣∣
±
(x) =

(
± 1

2
I + (K−α,ω)∗

)
[ϕ](x) a.e. x ∈ ∂D,(2.282)

(Dα,ω[ϕ])

∣∣∣∣
±
(x) =

(
∓ 1

2
I +Kα,ω

)
[ϕ](x) a.e. x ∈ ∂D,(2.283)

for ϕ ∈ L2(∂D), where Kα,ω is the operator on L2(∂D) defined by

(2.284) Kα,ω[ϕ](x) = p.v.

∫

∂D

∂Gα,ω(x, y)

∂ν(y)
ϕ(y) dσ(y)

and (K−α,ω)∗ is the L2-adjoint operator of K−α,ω, which is given by

(2.285) (K−α,ω)∗[ϕ](x) = p.v.

∫

∂D

∂Gα,ω(x, y)

∂ν(x)
ϕ(y) dσ(y).

The singular integral operators Kα,ω and (K−α,ω)∗ are bounded on L2(∂D) as an
immediate consequence of the fact that Gα,ω(x, y)− (1/2π) ln |x− y| is smooth for
all x, y.

The following lemma is of use to us.

Lemma 2.92. Suppose that α 6= 0 and ω2 is neither an eigenvalue of −∆ in
D with the Dirichlet boundary condition on ∂D nor in Y \ D with the Dirichlet
boundary condition on ∂D and the α-quasi-periodic condition on ∂Y . Then Sα,ω :
L2(∂D) → H1(∂D) is invertible.

Proof. Suppose that φ ∈ L2(∂D) satisfies Sα,ω[φ] = 0 on ∂D. Then u =
Sα,ω[φ] satisfies (∆ + ω2)u = 0 in D and in Y \D. Therefore, since ω2 is neither
an eigenvalue of −∆ in D with the Dirichlet boundary condition nor in Y \D with
the Dirichlet boundary condition on ∂D and the quasi-periodic condition on ∂Y ,
it follows that u = 0 in Y and thus, φ = ∂u/∂ν|+ − ∂u/∂ν|− = 0, as desired. �

Define

Gα,0(x, y) := Gα(x− y) = −
∑

n∈Z2

e
√−1(2πn+α)·(x−y)

|2πn+ α|2 for α 6= 0,

where Gα is given by (2.130) for d = 2 and

G0,0(x, y) := G♯(x− y) = −
∑

n∈Z2\{0}

e
√−12πn·(x−y)

4π2|n|2 ,

where G♯ is given by (2.115) for d = 2. Note that Gα,0(x, y) for α 6= 0 is a
fundamental solution of the quasi-periodic Laplacian (2.131) in Y , while, in view
of (2.117), G0,0(x, y) satisfies

(2.286) ∆xG
0,0(x, y) = δy − 1 in Y

with periodic Dirichlet boundary conditions on ∂Y . See [67, 45]. The following
lemma is easy to prove. It gives a complete low-frequency asymptotic expansion of
Gα,ω.
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Lemma 2.93. As ω → 0, Gα,ω can be decomposed as

(2.287) Gα,ω(x, y) = Gα,0(x, y)−
+∞∑

l=1

ω2l
∑

n∈Z2

e
√−1(2πn+α)·(x−y)

|2πn+ α|2(l+1)

︸ ︷︷ ︸
:=−Gα,ω

l (x,y)

,

for α 6= 0, while for α = 0, the following decomposition holds:

(2.288) G0,ω(x, y) =
1

ω2
+G0,0(x, y)−

+∞∑

l=1

ω2l
∑

n∈Z2\{0}

e
√−12πn·(x−y)

(4π2)l+1|n|2(l+1)

︸ ︷︷ ︸
:=−G0,ω

l (x,y)

.

Denote by Sα,ωl and (K−α,ω
l )∗, for l ≥ 0 and α ∈ [0, 2π)2, the layer potentials

associated with the kernel Gα,ωl (x, y) so that

(2.289) Sα,ω = Sα,0 +
+∞∑

l=1

Sα,ωl and (Kα,ω)∗ = (Kα,0)∗ +
+∞∑

l=1

(K−α,ω
l )∗.

Lemma 2.94. The operator (1/2) I+(K−α,0)∗ : L2(∂D) → L2(∂D) is invertible.

Before proving Lemma 2.94, let us make a note of the following simple fact. If
u and v are α-quasi-periodic smooth functions, then

(2.290)

∫

∂Y

∂u

∂ν
v dσ = 0.

To prove this, it is enough to see that
∫

∂Y

∂u

∂ν
v =

∫

∂Y

[∂(ue−
√−1α·x)
∂ν

+
√
−1α · νue−

√−1α·x
]
e−

√−1α·xv.

Proof of Lemma 2.94. Let φ ∈ L2(∂D) satisfy ((1/2) I + (K−α,0)∗)[φ] = 0
on ∂D. Observe that if α = 0, then

∫
∂D

φ = 0. In fact, by (2.286) and (2.290), we
have for x ∈ D

D0,0[1](x) = −
∫

Y \D
∆yG

0,0(x, y)dy = |Y \D|,

where | | denotes the volume, and hence

(2.291) (
1

2
I +K0,0)[1] = |Y \D| on ∂D.

Therefore, we get

|Y \D|
∫

∂D

φ dσ =

∫

∂D

(
1

2
I +K0,0)[1]φ dσ =

∫

∂D

(
1

2
I + (K0,0)∗)[φ] dσ = 0.

Consequently, for any α ∈ [0, 2π)2, u = Sα,0[φ] is α-quasi-periodic and satisfies
∆u = 0 in Y \D with

∂u

∂ν

∣∣∣∣
+

= (
1

2
I + (K−α,0)∗)[φ] = 0 on ∂D.

Therefore, it follows from (2.290) that
∫

Y \D
|∇u|2 =

∫

∂Y

∂u

∂ν
u−

∫

∂D

∂u

∂ν

∣∣∣∣
+

u = 0.
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Thus, u is constant in Y \D and hence in D. This implies that

φ =
∂u

∂ν

∣∣∣∣
+

− ∂u

∂ν

∣∣∣∣
−
= 0,

as desired. �

2.13. Computations of Periodic Green’s Functions

In this section, we briefly describe analytical techniques for transforming the
Green’s functions for the Helmholtz equation in periodic domains from the slowly
convergent representations as a series of images or plane waves into forms more
suitable for computation. In particular, methods derived from Kummer’s transfor-
mation, lattice sums, and the use of Ewald’s method are discussed. The main ideas
of these techniques apply to Maxwell’s equations and the Lamé system as well.

2.13.1. Kummer’s Transformation. The convergence of the series (2.280)
and (2.281) can be improved if we use Kummer’s transformation, namely if we
convert the slowly convergent series into two series which converge faster by sub-
tracting and adding back a series which has the same asymptotic behavior as the
troublesome series and which can be summed analytically [279]. We can accelerate
the series in (2.280) by writing

Gα,ω(x, y) =
e
√−1α·(x−y)

ω2 − |α|2 − e
√−1α·(x−y) ∑

n∈Z2,n 6=0

e
√−12πn·(x−y)

4π2|n|2

+
∑

n∈Z2,n 6=0

e
√−1(2πn+α)·(x−y)

(
1

ω2 − |2πn+ α|2 +
1

4π2|n|2
)
.

The terms in the first summation are O(|n|−3) as |n| → +∞ and

∑

n∈Z2,n=(n1,n2) 6=0

e
√−12πn·x

4π2|n|2 =
1

2π2

+∞∑

n1=0

cos 2πn1x1

+∞∑

n2=1

cos 2πn2x2
n2
1 + n2

2

+
1

2π2

+∞∑

n2=0

cos 2πn2x2

+∞∑

n1=1

cos 2πn1x1
n2
1 + n22

:= A1 +A2.

From [45, pp. 54–55],

A1 =
1

24
− ln 2

4π
− 1

4
(x2 − x1) +

1

4
(2x22 − x21)−

1

8π
ln

(
sinh2 πx2 + sin2 πx1

)

+
1

4π

+∞∑

n1=1

cos 2πn1x1
n1

e2πn1x2 + e−2πn1x2

e2πn1 − 1
,

and

A2 =
1

24
− ln 2

4π
− 1

4
(x1 − x2) +

1

4
(2x21 − x22)−

1

8π
ln

(
sinh2 πx1 + sin2 πx2

)

+
1

4π

+∞∑

n1=1

cos 2πn1x2
n1

e2πn1x1 + e−2πn1x1

e2πn1 − 1
,

where the series in A1 and A2 are exponentially convergent.



108 2. LAYER POTENTIALS

This acceleration process can be continued further to speed up the convergence
of the series

∑

n∈Z2,n 6=0

e
√−12πn·(x−y)

(
1

ω2 − |2πn+ α|2 +
1

4π2|n|2
)

if we retain more terms in the expansion

1

ω2 − |2πn+ α|2 = − 1

4π2|n|2 +
α · n

4π3|n|4 + . . . as |n| → +∞.

2.13.2. Lattice Sums. The lattice sum representation of the Green’s function

is an immediate consequence of a separation of variables result for H
(1)
0 . For l ∈ Z,

let H
(1)
l denote the Hankel function of the first kind of order l and let Jl be the

Bessel function of the first kind of order l. Recall that Jl(x) = ℜH(1)
l (x) and

H
(1)
−l (x) = (−1)lH

(1)
l (x) for all x ∈ R. By Graf’s formula, we have for n 6= 0:

(2.292) H
(1)
0 (ω|x− n− y|) =

∑

l∈Z

Jl(ω|x− y|)e
√−1lθx−yH

(1)
l (ω|n|)e

√−1lθn ,

where θn and θx−y are given by

n1 +
√
−1n2 = |n|e

√−1θn , n = (n1, n2),

(x1 − y1) +
√
−1(x2 − y2) = |x− y|e

√−1θx−y , x = (x1, x2), y = (y1, y2).

Define the lattice sums Sαl by

(2.293) Sαl =
∑

n∈Z2,n 6=0

e
√−1n·αH(1)

l (ω|n|)e
√−1lθn .

Note that for α = 0, the four-fold symmetry of the square lattice implies that
S0
l = 0 for l not divisible by four. Moreover,

Sα−l = (−1)lS−α
l .

The Green’s function Gα,ω can then be expressed as

Gα,ω(x, y) = −
√
−1

4
H

(1)
0 (ω|x− y|)−

√
−1

4

∑

l∈Z

Sαl Jl(ω|x− y|)e
√−1lθx−y .

Rearranging terms, we write

(2.294)

Gα,ω(x, y) = −
√
−1

4

[
H

(1)
0 (ω|x− y|) + Sα0 J0(ω|x− y|)

+

+∞∑

l=1

(
Sαl e

√−1lθx−y + S−α
l e−

√−1lθx−y

)
Jl(ω|x− y|)

]
.

In practice, the summation (2.294) is truncated for l < L, leading to an eval-
uation procedure whose cost is proportional to L times the number of evaluation
points. This cost is significantly smaller than that necessary to obtain converged
values of (2.281) [330].

It is worth emphasizing that the lattice sums (2.293) only have to be evaluated
once as they do not depend on the position at which Gα,ω is computed. However,
the computation of Sαl must be performed with care since Sαl becomes very large
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and Jl very small as l increases. The convergence of the series in Sαl can be improved
if we use Kummer’s transformation together with the asymptotic expansion

H
(1)
l (z) ≈

√
2

πz
e
√−1(z−lπ/2−π/4) as z → +∞,

for l ≥ 0.

2.13.3. Ewald’s Method. Ewald’s method was originally developed to treat
long range electrostatic interactions in periodic structures. The key idea behind
Ewald’s method is to split the periodic Green’s function into a spectral part and a
spatial part that, after some careful manipulation, converge rapidly. So our goal in

this section is to determine Gα,k♯,spec and Gα,k♯,spat such that

Gα,k♯ (x, y) = Gα,k♯,spec(x, y) +Gα,k♯,spat(x, y),

is exponentially convergent. We begin by determining an integral representation
for the Hankel function of the first kind of order zero that is often used in the
literature as the starting point for a derivation of the Ewald method applied to a
specific spatial and array configuration.

Lemma 2.95. The Hankel function of the first kind of order zero can be repre-
sented as

H
(1)
0 (kr) =

2√
−1π

∫

γ

t−1 exp

(
r2t2 +

k2

4t2

)
dt,

where γ is an integration path in the complex plane that begins at the origin with

direction e−
√−1π/4, sweeps across the positive real axis until it makes an angle of

e
√−1 arg(k)/2 with that axis, and finally goes to infinity in some direction e

√−1φ,
with φ ∈ (−π/4, π/4).

Proof. We have the following representation for the Hankel function of the
first kind of order zero:

(2.295) H
(1)
0 (z) =

1√
−1π

∫ ∞+π
√−1

−∞
ez sinhωdω, | arg(z)| < π

2
.

Let us fix a particular representation of this path. Denote by

P = {t : −∞ < t ≤ 0}
⋃

{
√
−1t : 0 < t ≤ π}

⋃
{t+

√
−1π : 0 < t <∞}.

We now define a separate contour for the same integrand. Let β > 0 and denote by

qR1 :={−t : 0 ≤ t ≤ R}
⋃

{
√
−1t : 0 < t < β}

⋃
{−t+

√
−1β : 0 ≤ t ≤ R},

qR2 :={−R+
√
−1t : 0 < t < β},

These paths share the same starting point and end point, and as the integrand is
holomorphic in ω, by Cauchy’s integral theorem the integral over the contour is
path independent. Therefore

∫

qR1

ez sinhωdω =

∫

qR2

ez sinhωdω

=

∫ β

0

ez sinh(−R+it)dt.
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Suppose that 0 < arg(z) < π/2, 0 < β < π/2, t ∈ (0, β). Then the integral goes to
0 as R gets large because

ℜ(z sinh(−R+
√
−1t)) = −ℜ(z) cos(t)sinh(R)−ℑ(z) sin(t) cosh(R) < 0.

We have

lim
R→∞

∫

qR1

ez sinhωdω = lim
R→∞

∫

qR2

ez sinhωdω = 0.

So letting R → ∞ we can combine the integrals on the paths qR1 and qR2 with the
integral in (2.295) without changing its value:

H
(1)
0 (z) =

1√
−1π

∫ ∞+π
√−1

−∞
ez sinhωdω +

∫

qR1

ez sinhωdω +

∫

qR2

ez sinhωdω.

Choosing β = π/2−arg(z) for 0 < arg(z) < π/2, and noting that cancellation occurs
due to the how the contours have been defined, we obtain the representation:

H
(1)
0 (z) =

1√
−1π

∫ ∞+π
√−1

−∞+
√−1(π/2−arg(z))

ez sinhωdω, arg(z) <
π

2
.

Rewriting this as

H
(1)
0 (z) =

1√
−1π

∫ ∞+π
√−1

−∞+
√−1(π/2−arg(z))

exp

(
z

2
(eω − e−ω)

)
dω,

and making the substitution s = eω gives

H
(1)
0 (z) =

1√
−1π

∫

γ1

s−1 exp

(
z

2

(
s− 1

s

))
ds,

where γ is a contour that begins at the origin with direction e
√−1(π/2−arg(z)), and

sweeps around the origin to the the point s = −1 before tending to minus infinity
on the negative real axis. Setting z = kr with r > 0, we obtain

H
(1)
0 (kr) =

1√
−1π

∫

γ1

s−1 exp

(
kr

2

(
s− 1

s

))
ds,

Making another substitution, this time with s = −2rt2/k, we arrive at

(2.296) H
(1)
0 (kr) =

2√
−1π

∫

γ2

t−1 exp

(
− r2t2 +

k2

4t2

)
dt,

where γ2 is an integration path in the complex plane that begins at the origin with

direction e−
√−1π/4, sweeps across the positive real axis until it makes an angle of

e
√−1 arg(k)/2 with that axis, and finally goes to infinity in that same direction. �

The path of integration can be altered as long as (i) it begins at begins at the

origin with direction e−
√−1π/4, which ensures convergence as |t| → 0, and (ii) it

must go to infinity in the direction e
√−1φ, with φ ∈ (−π/4, π/4), which ensures

convergence as |t| → ∞.
So we have

−
√
−1

4
H

(1)
0 (kr) = − 1

2π

∫

γ2

e−r
2t2+ k2

4t2

t
dt,
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and then recalling the definition of the quasi-periodic Green’s function

Gα,ω♯ (x, y) = −
√
−1

4

∑

m∈Z

H
(1)
0 (ω|x− y − (m, 0)|)e

√−1mα,

we obtain

(2.297) Gα,ω♯ (x, y) = − 1

2π

∑

m∈Z

e
√−1mα

∫

γ2

e−R
2
mt

2+ ω2

4t2

t
dt,

where Rm =
√

(x2 − y2) + (x1 − y1 −m)2. The next step is to split the path of

integration γ into two parts such
∫
γ2

=
∫∞
0

=
∫ E
0
+
∫∞
E where E is some point on the

positive real axis and the paths in the terms
∫ E
0

and
∫∞
E satisfy the aforementioned

convergence conditions.

Lemma 2.96. Consider a lossy medium such that ℑ(k) > 0. Then the quasi-

periodic Green’s function Gα,k♯ can be split into two parts such that

Gα,k♯ (x, y) = Gα,k♯,spec(x, y) +Gα,k♯,spat(x, y),

with

Gα,k♯,spec(x, y) = −1

4

∑

p∈Z

e−
√−1kxp(x1−y1)
√
−1kyp

×
[
e
√−1kyp|x2−y2|erfc

(√
−1kyp
2E

+ |x2 − y2|E
)

+ e−
√−1kyp|x2−y2|erfc

(√
−1kyp
2E

− |x2 − y2|E
)]
,

Gα,k♯,spat(x, y) = − 1

4π

∑

m∈Z

e
√−1αm

∞∑

q=0

(
k

2E

)2q
1

q!
Eq+1(R

2
mE2),

where kxp = −α + 2πp
d , kyp = −

√
k2 − k2xp, erfc(z) is the complementary error

function

erfc(z) =
2√
π

∫ ∞

z

e−t
2

dt,

and Eq is the qth order exponential integral which is defined as

Eq(z) =

∫ ∞

1

e−zt

tq
dt.

Proof. We first split Equation (2.297) into two parts giving us

(2.298) Gα,k♯,spec(x, y) = − 1

2π

∑

m∈Z

e
√−1mα

∫ E

0

e−R
2
ms

2+ ω2

4s2

s
ds,

and

(2.299) Gα,k♯,spat(x, y) = − 1

2π

∑

m∈Z

e
√−1mα

∫ ∞

E

e−R
2
ms

2+ ω2

4s2

s
ds,

with complex paths of integration as described previously. Note that the conver-

gence of Gα,k♯,spat is already exponential as for large m it can be shown that the terms
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in the series behave like e−n
2E2

/(n2E2). The terms in Gα,k♯,spec on the other hand

decay like 1/
√
m due to the asymptotic behavior of H

(1)
0 (z) for large z. This term

is the one we would like to accelerate.
Using the Poisson summation formula

(2.300)
∑

m∈Z

f(m) =
1

d

∑

p∈Z

f̃(2πp),

where

f̃(β) =

∫ ∞

−∞
f(ξ)e−

√−1βξdξ,

and setting f(m) to be

f(m) = −e
√−1αm

2π

∫ E

0

e−[(x2−y2)2+(x1−y1−m)2]s2+ k2

4s2

s
ds

we obtain

f̃(2πp) = − 1

2π

∫ ∞

−∞
dξ

∫ E

0

ds
e−[(x2−y2)2+(x1−y1−ξ)2]s2+ k2

4s2

s
e−

√−1kxpξ,

where kxp = −α+ 2πp. Noting that the s integral is convergent on the path (0, E)
for E ∈] − ∞,∞[ as ℜ(s2) > 0, we can switch the order of integration. Then

applying the formula
∫∞
−∞ e−aξ

2+bξdξ =
√
π/aeb

2/4a results in

f̃(2πp) = −e
−√−1kxp(x1−y1)

2
√
π

∫ E

0

e−(x2−y2)2s2ek
2
yp/4s

2

s2
ds,

where kyp = −
√
k2 − k2xp and we have taken the negative of the square root in

order to ensure convergence. The Making the change of variables s̃ = 1/s we have

f̃(2πp) = −e
−√−1kxp(x1−y1)

2
√
π

∫ ∞

1/E
e−(x2−y2)2/s̃2e(k

2
yps̃

2)/4ds̃,

and the path of integration maps from (0, E) onto (1/E ,∞) with constraints on the
the path near s = 0 now applying to s̃→ ∞. That is, ℜ(k2zps̃2) < 0 for every p ∈ Z,
ensuring convergence. Finally, using the identity

∫
ea

2x2− b2

x2 dx = −
√
π

4a

[
e2aberfc(ax+

b

x
) + e−2aberfc(ax− b

x
)

]
+ const,

we obtain

f̃(2πp) = −e
−√−1kxp(x1−y1)

4
√
−1kyp

(2.301)

×
[
e
√−1kyp|x2−y2|erfc

(√
−1kyp
2E + |x2 − y2|E

)
(2.302)

+ e−
√−1kyp|x2−y2|erfc

(√
−1kyp
2E − |x2 − y2|E

)]
.(2.303)

Inserting this into Equation (2.300) gives us Gα,k♯,spec.
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Now we turn to Gα,k♯,spat. Although this function is already exponentially con-
vergent we will transform it into a form more suitable for computation. Consider
the integral I in Equation (2.299):

I =

∫ ∞

E

e−R
2
mt

2+ ω2

4t2

s
ds.

It can be shown that after changing variables with u = s2, applying the Taylor

expansion e
k2

4u =
∑∞
q=0(

k
2 )

2q/(q!uq) and then changing variables again with t =

u/E2 we obtain

I =
1

2

∞∑

q=0

(
k

2E

)2q
1

q!
Eq+1(R

2
mE2).

Using this representation of I in Equation (2.299) gives us the desired form of

Gα,k♯,spat. �

The complementary error function converges very quickly and this is the key to

the acceleration of the convergence speed of Gα,k♯,spec. This representation of Gα,k♯,spec
is also efficient in terms of numerical computation as only the E1(z) exponential
integral needs to be evaluated explicitly. The higher order exponential integral
terms can be computed with the recurrence relation Eq+1(z) = 1

q (e
−z − zEq(z))

for q = 1, 2, . . . . Note that the optimal value of the splitting parameter E for
wavelengths somewhat larger or smaller than the periodicity is given by E =

√
π/d.

It is also worth mentioning that very few terms are required in the summations

in Gα,k♯,spec and Gα,k♯,spat to obtain a relative error of less than 1e − 03. Furthermore,
although we assumed that ℑk > 0 in order to obtain these expressions, due to
analytic continuation the expressions actually hold for all k ∈ C.

For the quasi-periodic Neumann-Poincairé operator we require the gradient of
the quasi-periodic Green’s function. We note that

∇Gα,k♯ (x, y) = ∇Gα,k♯,spec(x, y) +∇Gα,k♯,spat(x, y),
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with

∇Gα,k♯,spec(x, y) = −1

4

∑

p∈Z

e−
√−1kxp(x1−y1)
√
−1kyp

{
[−

√
−1x̂kxp −

√
−1ŷkypsgn(x2 − y2)]

× e−
√−1kyp|x2−y2|erfc

(√
−1kyp
2E

− |x2 − y2|E
)

× [−
√
−1x̂kxp +

√
−1ŷkypsgn(x2 − y2)]

× e
√−1kyp|x2−y2|erfc

(√
−1kyp
2E

+ |x2 − y2|E
)

− ẑsgn(x2 − y2)Ee−
√−1kyp|x2−y2|

× erfc′
(√

−1kyp
2E

− |x2 − y2|E
)

+ ẑsgn(x2 − y2)Ee
√−1kyp|x2−y2|

× erfc′
(√

−1kyp
2E

+ |x2 − y2|E
)}

,

∇Gα,k♯,spat(x, y) =
E2

2π

∑

m∈Z

[
x̂(x1 − y1 −m) + ẑ(x2 − y2)

]
e
√−1αm

×
∞∑

q=0

(
k

2E

)2q
1

q!
Eq(R

2
mE2),

where x̂ and ŷ are unit vectors along the x and y axes, respectively, and erfc(z)′ =
− 2√

π
e−z

2

.

Figure 2.5 shows the quasi-periodic Green’s function obtained by using Ewald’s
method in Code Quasi-Periodic Green’s Function Helmholtz.

2.13.4. Numerical Implementation of the Operators Sα,kΩ,♯ and (K−α,k
Ω,♯ )∗.

In this section we discuss the numerical implementation of Sα,kΩ,♯ and (K−α,k
Ω,♯ )∗ as-

suming we are in a low frequency regime. After performing the usual boundary
discretization procedure, as described in Subsection 2.4.5, we represent the infinite

dimensional operator Sα,kΩ,♯ acting on the density ϕ by a finite dimensional matrix

S acting on the coefficient vector ϕi := ϕ(x(i)) for 1 ≤ i ≤ N . That is

Sα,kΩ,♯ [ϕ](x) =

∫

∂Ω

Gα,k♯ (x, y)ϕ(y) dσ(y),

for ψ ∈ L2(∂Ω), is represented numerically as

Sψ̃ =




S11 S12 . . . S1N

S21 S22 . . . S2N

...
. . .

...
SN1 . . . . . . SNN







ϕ1

ϕ2
...
ϕN


 ,

where
Sij = Gα,k♯ (x(i) − x(j))|T (x(j))|(tj+1 − tj), i 6= j,

http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial3/3.2 Quasi-Periodic Green's Function Helmholtz.zip
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(a) ℜ(Gα,k
♯

) (b) ℜ( ∂
∂x2

G
α,k
♯

)

Figure 2.5. The quasi-periodic Green’s function, and the x2 com-
ponent of its gradient, for the Helmholtz equation for a one-
dimensional lattice of Dirac mass source points with periodicity
1. The quasi-momentum parameter α is set to π/8.

andGα,k♯ (x(i)−x(j)) refers to the Ewald representation of the Green’s function. This
discrerization matrix S features singularities in the diagonal terms and therefore
we must approximate these terms by explicit calculation. Let the portion of the
boundary starting at x(i) and ending at x(i+1) be parameterized by s ∈ [0, ε = 2π

N )
and note that ε→ 0 as the number of discretization points N → ∞. Observe that

for Gα,k♯ = Gα,k♯,spec + Gα,kspat,♯ the singularity appears in the Gα,kspat,♯ term precisely
when x = y and m = 0. Therefore

Sii =

∫ ε

0

Gα,k♯ (x(i) − x(s))|T (s)|ds ≈
∫ ε

0

Gα,k♯,spat(x
(i) − x(s))|T (s)|ds,

as ε→ 0. Now retaining only the m = 0 term in Gα,k♯,spat we have

Gα,k♯,spat ≈ − 1

4π

∞∑

q=0

(
k

2E

)2q
1

q!
Eq+1(R

2
0E2),

where R0 =

√
(x

(i)
1 − x1(s))2 + (x

(i)
2 − x2(s))2. Noting that the behavior of the

exponential integrals Eq+1 for small argument is Eq+1(z) = −(−z)q(ln z)/q! gives

Gα,k♯,spat ≈ − 1

4π

∞∑

q=0

(
k

2E

)2q
1

q!

(
− (−R2

0E2)q

q!
ln(R2

0E2)

)

≈ 1

2π
ln(R0E),
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where only the q = 0 term has been retained as R0 ≪ 1. Therefore,

Sii ≈
1

2π

∫ ε

0

ln(E|x(i) − x(s)|)|T (s)|ds

=
|T (0)|ε
2π

(
ln(E|T (0)|ε)− 1

)

=
|T (0)|
N

(
ln

(
2πE
N

|T (0)|
)
− 1

)
.

The discretization matrixK for the quasi-periodic Neumann-Poincairé operator

(K−α,k
Ω,♯ )∗ requires no special treatment since, similarly to Subsection 2.6.4 it is

clear that it features the same singularity as the non-periodic Neumann-Poincairé
operator and thus the usual expression (2.134) holds for the diagonal terms of its
corresponding discretized matrix. We remark that the approximations used for the
diagonal terms of S and K are appropriate for low frequencies but are not stable
when the frequency is high. For instance, the q 6= 0 terms provide a non-negligble

contribution to Gα,k♯,spat when k is high and cannot be ignored. Ewald’s method for

computing Sα,kΩ,♯ and (K−α,k
Ω,♯ )∗ in low frequency regimes is implemented in Code

Quasi-Periodic Green’s Function Helmholtz.

2.13.5. Ewald’s Representation of the Quasi-Biperiodic Green’s Func-
tion for the Helmholtz Equation. The quasi-biperiodic Green’s function, which
was defined in Section 2.12, satisfies

(2.304) (∆ + k2)Gα,k♯ (x, y) =
∑

m∈Z2

δ0(x− y −m)e
√−1m·α.

This Green’s function has the representation

(2.305) Gα,k♯ (x, y) = −
√
−1

4

∑

m∈Z2

H
(1)
0 (kRm)e

√−1m·α,

where Rm =
√
(x1 − y1 −m1)2 + (x2 − y2 −m2)2. Through an analogous proce-

dure to the one used in Section 2.13.3 for the quasi-periodic Green’s function, it
can be shown that there exists a rapidly converging Ewald representation of the
quasi-biperiodic Green’s function such that

Gα,k♯ (x, y) = Gα,k♯,spec(x, y) +Gα,k♯,spat(x, y),

with

Gα,k♯,spec(x, y) = −
∑

p,q∈Z

1

γ2pq
e−γ

2
pq/4Ee−

√−1kpq·(x−y),

and

Gα,k♯,spat(x, y) = − 1

4π

∑

m∈Z2

e
√−1α·m

∞∑

q=0

(
k

2
√
E

)2q
1

q!
Eq+1(R

2
mE),

where

γpq =
√
|k2pq − k2|, kpq = kxpx̂+ kyq ŷ, kxp = −α1 + 2πp, kyq = −α2 + 2πq.

http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial3/3.2 Quasi-Periodic Green's Function Helmholtz.zip
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(a) ℜ(Gα,k
♯

) (b) ℜ( ∂
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Figure 2.6. The quasi-biperiodic Green’s function, and the x1
component of its gradient, for the Helmholtz equation for a two-
dimensional lattice of Dirac mass source points with periodicity 1
in the x1 direction and 2 in the x2 direction. The quasi-momentum
parameter α is set to (π/8, 0).

Taking the gradient of Gα,k♯ (x, y) gives us the representation required for the
quasi-biperiodic Neumann-Poincairé operator. We have

∇Gα,k♯ (x, y) = ∇Gα,k♯,spec(x, y) +∇Gα,k♯,spat(x, y),
with

∇Gα,k♯,spec(x, y) =
√
−1

∑

p,q∈Z

kpq
γ2pq

e−γ
2
pq/4Ee−

√−1kpq·(x−y)

∇Gα,k♯,spat(x, y) = − E
2π

∞∑

m∈Z2

(x− y − m̂)e
√−1α·m̂

×
∞∑

q=0

(
k

2
√
E

)2q
1

q!
Eq(R

2
mE).

The numerical results shown in Figure 2.6 are obtained by using Code Quasi-
Biperiodic Green’s Function Helmholtz.

Remark 2.97. The quasi-biperiodic Green’s function Gα,0♯ (2.288) for the Laplace
equation features infinite series that are very slow to converge. In order to utilize
Ewald’s method and accelerate the convergence we make use of Lemma 2.93. We
already have a Ewald representation corresponding to Gα,0♯ for any α in the Bril-

louin zone [0, 2π)2 and the infinite series in (2.287) and (2.288) are relatively quick
to converge. Therefore this representation of these Green’s functions is appropriate
for efficient numerical implementation.

2.14. Integral Representation of Solutions to the Full Maxwell
Equations

In this section, a few fundamental results related to electromagnetic scattering,
which will be essential in what follows, are recalled.

http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial3/3.3 Quasi-Biperiodic Green's Function Helmholtz.zip
http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial3/3.3 Quasi-Biperiodic Green's Function Helmholtz.zip
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2.14.1. Layer Potentials. Assume that D is bounded, simply connected,
and of class C1,η for η > 0 and let

Hs
T (∂D) =

{
ϕ ∈

(
Hs(∂D)

)3
, ν · ϕ = 0

}

for s = ±1/2.
We introduce the surface gradient, surface divergence and Laplace-Beltrami

operator and denote them by ∇∂D, ∇∂D· and ∆∂D, respectively. We define the

vectorial and scalar surface curl by ~curl∂Dϕ = −ν × ∇∂Dϕ for ϕ ∈ H
1
2 (∂D) and

curl∂Dϕ = −∇∂D · (ν × ϕ) for ϕ ∈ H
1
2

T (∂D), respectively. We recall that

∇∂D · ∇∂D = ∆∂D,

curl∂D ~curl∂D = −∆∂D,

~curl∂Dcurl∂D = −∆∂D +∇∂D∇∂D· ,
∇∂D · ~curl∂D = 0,

curl∂D∇∂D = 0.

We introduce the following functional space:

H
− 1

2

T (div, ∂D) =
{
ϕ ∈ H

− 1
2

T (∂D),∇∂D · ϕ ∈ H− 1
2 (∂D)

}
.

Define the following boundary integral operators and refer to [45, 365] for their
mapping properties:

~SkD[ϕ] : H
− 1

2

T (∂D) −→ H
1
2

T (∂D) or H1
loc(R

3)3

ϕ 7−→ ~SkD[ϕ](x) =
∫

∂D

Γk(x− y)ϕ(y)dσ(y);

Mk
D[ϕ] : H

− 1
2

T (div, ∂D) −→ H
− 1

2

T (div, ∂D)

ϕ 7−→ Mk
D[ϕ](x) =

∫

∂D

ν(x)×∇x ×
(
Γk(x− y)ϕ(y)

)
dσ(y);

LkD[ϕ] : H
− 1

2

T (div, ∂D) −→ H
− 1

2

T (div, ∂D)

ϕ 7−→ LkD[ϕ](x) = ν(x)×
(
k2 ~SkD[ϕ](x) +∇SkD[∇∂D · ϕ](x)

)
.

The following results hold.

Lemma 2.98. The operator ~SkD satisfies the following jump formulas on ∂D:
(
ν ×∇× ~SkD[ϕ]

)∣∣∣
±
= (∓1

2
I +Mk

D)[ϕ],

and (
ν ×∇×∇× ~SkD[ϕ]

)∣∣∣
∂D

= LkD[ϕ],

for ϕ ∈ H
− 1

2

T (div, ∂D).

We will need the following lemma.

Lemma 2.99. The following Helmholtz decomposition holds [156]:

H
− 1

2

T (div, ∂D) = ∇∂DH
3
2 (∂D)⊕ ~curl∂DH

1
2 (∂D).
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Remark 2.100. The Laplace-Beltrami operator ∆∂D : H
3
2
0 (∂D) → H

− 1
2

0 (∂D)

is invertible. Here H
3
2
0 (∂D) and H

− 1
2

0 (∂D) are the zero mean subspaces of H
3
2 (∂D)

and H− 1
2 (∂D), respectively.

The following results on the operator M0
D are of great importance in the anal-

ysis of plasmonic resonances for nanoparticles. We refer to [365] for a proof of the
following compactness property of M0

D.

Lemma 2.101. The operator M0
D : H

− 1
2

T (div, ∂D) −→ H
− 1

2

T (div, ∂D) is a com-
pact operator.

Lemma 2.102. The following identities hold [34, 245]:

M0
D[

~curl∂Dϕ] = ~curl∂DK0
D[ϕ], ∀ϕ ∈ H

1
2 (∂D),

M0
D[∇∂Dϕ] = −∇∂D∆

−1
∂D(K0

D)
∗[∆∂Dϕ] + ~curl∂DRD[ϕ], ∀ϕ ∈ H

3
2 (∂D),

where

(2.306) RD = −∆−1
∂Dcurl∂DM0

D∇∂D.

We now consider solving the problem

(2.307)
(
λI −M0

D

)
[ψ] = ϕ

for (ψ, ϕ) ∈
(
H

− 1
2

T (div, ∂D)
)2

and λ 6∈ σ(M0
D), where σ(M0

D) is the spectrum of

M0
D. Our motivation is to investigate plasmonic resonances for nanoparticles.

Using the Helmholtz decomposition of H
− 1

2

T (div, ∂D) in Lemma 2.99, we can
reduce (2.307) to an equivalent system of equations involving some well known
operators.

Definition 2.103. For u ∈ H
− 1

2

T (div, ∂D), we denote by u(1) and u(2) any two

functions in H
3
2
0 (∂D) and H

1
2 (∂D), respectively, such that

u = ∇∂Du
(1) + ~curl∂Du

(2).

Note that u(1) is uniquely defined and u(2) is defined up to a constant function.

Lemma 2.104. Assume λ 6= 1
2 , then problem (2.307) is equivalent to

(2.308) (λI − M̃D)

(
ψ(1)

ψ(2)

)
=

(
ϕ(1)

ϕ(2)

)
,

where (ϕ(1), ϕ(2)) ∈ H
3
2
0 (∂D)×H

1
2 (∂D) and

M̃D =

(
−∆−1

∂D(K0
D)

∗∆∂D 0
RD K0

D

)
(2.309)

with RD being defined by (2.306).

Proof. Let (ψ(1), ψ(2)) ∈ H
3
2
0 (∂D) × H

1
2 (∂D) be a solution (if there is any)

to (2.308) where (ϕ(1), ϕ(2)) ∈ H
3
2
0 (∂D)×H

1
2 (∂D) satisfies

ϕ = ∇∂Dϕ
(1) + ~curl∂Dϕ

(2).
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We have
(
λI +∆−1

∂D(K0
D)

∗∆∂D

)
[ψ(1)] = ϕ(1),(2.310)

λψ(2) −RD[ψ
(1)]−K0

D[ψ
(2)] = ϕ(2).(2.311)

Taking ∇∂D in (2.310), ~curl∂D in (2.311), adding up and using the identities of
Lemma 2.102 yields

(
λI −M0

D

)
[∇∂Dψ

(1) + ~curl∂Dψ
(2)] = ∇∂Dϕ

(1) + ~curl∂Dϕ
(2).

Therefore

ψ = ∇∂Dψ
(1) + ~curl∂Dψ

(2)

is a solution of (2.307). Conversely, let ψ be the solution to (2.307). There exist

(ψ(1), ψ(2)) ∈ H
3
2
0 (∂D)×H

1
2 (∂D) and (ϕ(1), ϕ(2)) ∈ H

3
2
0 (∂D)×H

1
2 (∂D) such that

ψ = ∇∂Dψ
(1) + ~curl∂Dψ

(2),

ϕ = ∇∂Dϕ
(1) + ~curl∂Dϕ

(2),

and we have

(2.312)
(
λI −M0

D

)
[∇∂Dψ

(1) + ~curl∂Dψ
(2)] = ∇∂Dϕ

(1) + ~curl∂Dϕ
(2).

Taking ∇∂D· in the above equation and using the identities of Lemma 2.102 yields

∆∂D

(
λI +∆−1

∂D(K0
D)

∗∆∂D

)
[ψ(1)] = ∆∂Dϕ

(1).

Since (ψ(1), ϕ(1)) ∈ (H
3
2
0 (∂D))2 we get
(
λI +∆−1

∂D(K0
D)

∗∆∂D

)
[ψ(1)] = ϕ(1).

Taking curl∂D in (2.312) and using the identities of Lemma 2.102 yields

∆∂D(λψ
(2) −RD[ψ

(1)]−K0
D[ψ

(2)]) = ∆∂Dϕ
(2).

Therefore, there exists a constant c such that

λψ(2) −RD[ψ
(1)]−K0

D[ψ
(2)] = ϕ(2) + cχ(∂D).

Since K0
D[χ(∂D)] =

1

2
χ(∂D), we have

λ
(
ψ(2) − c

λ− 1/2

)
−RD[ψ

(1)]−K0
D

[
ψ(2) − c

λ− 1/2

]
= ϕ(2).

Hence,
(
ψ(1), ψ(2) − c

λ− 1/2

)
∈ H

3
2
0 (∂D)×H

1
2 (∂D) is a solution to (2.308). �

Let us now analyze the spectral properties of M̃D defined by (2.309) in

(2.313) H(∂D) := H
3
2
0 (∂D)×H

1
2 (∂D),

equipped with the inner product

〈u, v〉H(∂D) = 〈∆∂Du
(1),∆∂Dv

(1)〉H∗ + 〈u(2), v(2)〉H,

which is equivalent to theH
3
2
0 (∂D)×H 1

2 (∂D)-norm. Note that by abuse of notation

we call u(1) and u(2) the first and second components of any u ∈ H(∂D).
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Define

σ1 = σ(−(K0
D)

∗)\
(
σ(K0

D) ∪ {−1

2
}
)
,

σ2 = σ(K0
D)\σ(−(K0

D)
∗),(2.314)

σ3 = σ(−(K0
D)

∗) ∩ σ(K0
D).

Let λj,1 ∈ σ1, j = 1, 2 . . . and let ϕj,1 be an associated normalized eigenfunction

of (K0
D)

∗ as defined in Theorem 2.8. Note that ϕj,1 ∈ H
− 1

2
0 (∂D) for j ≥ 1. Then,

ψj,1 =

(
∆−1
∂Dϕj,1

(λj,1I −K0
D)

−1RD[∆
−1
∂Dϕj,1]

)

satisfies

M̃D[ψj,1] = λj,1ψj,1,

where M̃D is defined by (2.309).
Let λj,2 ∈ σ2 and let ϕj,2 be an associated normalized eigenfunction of K0

D.
Then,

ψj,2 =

(
0
ϕj,2

)

satisfies

M̃D[ψj,2] = λj,2ψj,2.

Now, we assume for simplicity that the following condition holds.

Condition 2.105. The eigenvalues of (K0
D)

∗ are simple.

Let λj,3 ∈ σ3, let ϕ
(1)
j,3 be the associated normalized eigenfunction of (K0

D)
∗ and

let ϕ
(2)
j,3 be the associated normalized eigenfunction of K0

D. Then,

ψj,3 =

(
0

ϕ
(2)
j,3

)

satisfies

M̃D[ψj,3] = λj,3ψj,3,

and λj,3 has a first-order generalized eigenfunction given by

(2.315) ψj,3,g =

(
c∆−1

∂Dϕ
(1)
j,3

(λj,3I −K0
D)

−1P
span{ϕ(2)

j,3}⊥RD[c∆
−1
∂Dϕ

(1)
j,3 ]

)

for a constant c such that P
span{ϕ(2)

j,3}
RD[c∆

−1
∂Dϕ

(1)
j,3 ] = −ϕ(2)

j,3 . Here, span{ϕ(2)
j,3} is

the vector space spanned by ϕ
(2)
j,3 , span{ϕ

(2)
j,3}⊥ is the orthogonal space to span{ϕ(2)

j,3}
in H(∂D) (see Theorem 2.5), and P

span{ϕ(2)
j,3}

(resp. P
span{ϕ(2)

j,3}⊥ is the orthogonal

(in H(∂D)) projection on span{ϕ(2)
j,3} (resp. span{ϕ(2)

j,3}⊥).
We remark that the function ψj,3,g is determined by the following equation

M̃D[ψj,3,g] = λj,3ψj,3,g + ψj,3.

Consequently, the following result holds.
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Proposition 2.106. The spectrum σ(M̃D) = σ1 ∪ σ2 ∪ σ3 = σ(−(K0
D)

∗) ∪
σ((K0

D)
∗)\{−1

2
} in H(∂D). Moreover, under Condition 2.105, M̃D has eigenfunc-

tions ψj,i associated to the eigenvalues λj,i ∈ σi for j = 1, 2, . . . and i = 1, 2, 3, and
generalized eigenfunctions of order one ψj,3,g associated to λj,3 ∈ σ3, all of which
form a non-orthogonal basis of H(∂D).

Proof. It is clear that λI − M̃D is bijective if and only if λ /∈ σ(−(K0
D)

∗) ∪
σ((K0

D)
∗)\{− 1

2}. Then, it is only left to show that ψj,1, ψj,2, ψj,3, ψj,3,g, j = 1, 2, . . .
form a non-orthogonal basis of H(∂D). Indeed, let

ψ =

(
ψ(1)

ψ(2)

)
∈ H(∂D).

Since ψ
(1)
j,1 ∪ ψ

(1)
j,3,g, j = 1, 2, . . . form an orthogonal basis of H∗

0(∂D), which is

equivalent to H
− 1

2
0 (∂D), there exist ακ, κ ∈ I1 := {(j, 1) ∪ (j, 3, g) : j = 1, 2, . . . }

such that

ψ(1) =
∑

κ∈I1
ακ∆

−1
∂Dψ

(1)
κ ,

and
∑

κ∈I1
|ακ|2 ≤ ∞.

It is clear that ‖ψ(2)
κ ‖

H
1
2 (∂D)

is uniformly bounded with respect to κ ∈ I1. Then

h :=
∑

κ∈I1
ακψ

(2)
κ ∈ H

1
2 (∂D).

Since ψ
(2)
j,2∪ψ

(2)
j,3 , j = 1, 2, . . . form an orthogonal basis ofH(∂D), which is equivalent

to H
1
2 (∂D), there exist ακ, κ ∈ I2 := {(j, 2) ∪ (j, 3) : j = 1, 2, . . . } such that

ψ(2) − h =
∑

κ∈I2
ακψ

(2)
κ ,

and
∑

κ∈I2
|ακ|2 ≤ ∞.

Hence, there exist ακ, κ ∈ I1 ∪ I2 such that

ψ =
∑

κ∈I1∪I2
ακψκ,

and
∑

κ∈I1∪I2
|ακ|2 ≤ ∞.

�

To have the compactness of M̃D, we need the following condition.

Condition 2.107. σ3 is finite.
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Indeed, if σ3 is not finite we have M̃D({ψj,3,g;  ≥ 1}) = {λj,3ψj,g,3+ψj,3; j ≥
1} whose adherence is not compact. However, if σ3 is finite, using Proposition 2.106

we can approximate M̃D by a sequence of finite-rank operators.

Definition 2.108. Let B be the basis of H(∂D) formed by the eigenfunctions

and generalized eigenfunctions of M̃D as stated in Lemma 2.106. For ψ ∈ H(∂D),
we denote by α(ψ, ψκ) the projection of ψ into ψκ ∈ B such that

ψ =
∑

κ

α(ψ, ψκ)ψκ.

The following lemma follows from the Fredholm alternative.

Lemma 2.109. Let

ψ =

(
ψ(1)

ψ(2)

)
∈ H(∂D).

Then,

α(ψ, ψκ) =





〈ψ, ψ̃κ〉H(∂D)

〈ψκ, ψ̃κ〉H(∂D)

, κ = (j, i), i = 1, 2,

〈ψ, ψ̃κ′〉H(∂D)

〈ψκ, ψ̃κ′〉H(∂D)

, κ = (j, 3, g), κ′ = (j, 3),

〈ψ, ψ̃κg
〉H(∂D) − α(ψ, ψκg

)〈ψκg
, ψ̃κg

〉H(∂D)

〈ψκ, ψ̃κg
〉H(∂D)

, κ = (j, 3), κg = (j, 3, g),

where ψ̃κ ∈ Ker(λ̄κI − (M0
D)

∗) for κ = (j, i), i = 1, 2, 3; ψ̃κ ∈ Ker(λ̄κ − (M0
D)

∗)2

for κ = (j, 3, g) and (M0
D)

∗ is the H(∂D)-adjoint of M0
D.

The following remarks are in order.

Remark 2.110. Note that, since ϕj,1 and ϕ
(1)
j,3 form an orthogonal basis of

H∗
0(∂D), equivalent to H

− 1
2

0 (∂D), we also have

α(ψ, ψκ) =

{
〈∆∂Dψ

(1), ϕj,1〉H∗ , κ = (j, 1),
1
c 〈∆∂Dψ

(1), ϕ
(1)
j,3〉H∗ , κ = (j, 3, g),

where c is defined in (2.315).

Remark 2.111. For i = 1, 2, 3, and j = 1, 2, . . . ,

(λI − M̃D)
−1[ψj,i] =

ψj,i
λ− λj,i

,

(λI − M̃D)
−1[ψj,3,g] =

ψj,3,g
λ− λj,3

+
ψj,3

(λ− λj,3)2
.

2.14.2. Layer Potential Formulation for Electromagnetic Scattering.
We consider the scattering problem of a time-harmonic electromagnetic wave inci-
dent on D. The homogeneous medium is characterized by electric permittivity εm
and magnetic permeability µm, while D is characterized by electric permittivity εc
and magnetic permeability µc, both of which depend on the frequency. Define

km = ω
√
εmµm, kc = ω

√
εcµc,
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and
εD = εmχ(R

3 \D) + εcχ(D), µD = εmχ(R
3 \D) + εcχ(D).

For a given incident plane wave (Ei, Hi), solution to the Maxwell equations in
free space

(2.316)

{
∇× Ei =

√
−1ωµmH

i in R3,
∇×Hi = −

√
−1ωεmE

i in R3,

the scattering problem can be modeled by the following system of equations:

(2.317)





∇× E =
√
−1ωµDH in R3 \ ∂D,

∇×H = −
√
−1ωεDE in R3 \ ∂D,

ν × E
∣∣
+
− ν × E

∣∣
− = ν ×H

∣∣
+
− ν ×H

∣∣
− = 0 on ∂D,

subject to the Silver-Müller radiation condition:

lim
|x|→∞

|x|
(√

µm(H −Hi)(x)× x

|x| −
√
εm(E − Ei)(x)

)
= 0(2.318)

uniformly in x/|x|.
Using the boundary integral operators (2.306) and (2.306) and Lemma 2.98,

the solution to (2.317) can be represented as
(2.319)

E(x) =

{
Ei(x) + µm∇× ~SkmD [ψ](x) +∇×∇× ~SkmD [φ](x), x ∈ R3 \D,
µc∇× ~SkcD [ψ](x) +∇×∇× ~SkcD [φ](x), x ∈ D,

and

(2.320) H(x) = −
√
−1

ωµD
(∇× E)(x) x ∈ R3 \ ∂D,

where the pair (φ, ψ) ∈
(
H

− 1
2

T (div, ∂D)
)2

satisfies
(2.321)


µc + µm
2

I + µcMkc
D − µmMkm

D LkcD − LkmD
LkcD − LkmD

(
k2c
2µc

+
k2m
2µm

)
I +

k2c
µc

Mkc
D − k2m

µm
Mkm

D



[
ψ
φ

]

=

[
ν × Ei√

−1ων ×Hi

] ∣∣∣∣∣
∂D

.

From [443], it follows that the system of equations (2.321) on H
− 1

2

T (div, ∂D)×
H

− 1
2

T (div, ∂D) has a unique solution and there exists there a positive constant
C = C(εc, µc, ω) such that
(2.322)
‖ψ‖

H
− 1

2
T (div,∂D)

+‖φ‖
H

− 1
2

T (div,∂D)
≤ C

(
‖Ei×ν‖

H
− 1

2
T (div,∂D)

+‖Hi×ν‖
H

− 1
2

T (div,∂D)

)
.

2.14.3. Low-Frequency Asymptotic Expansions of Layer Potentials.
Low-frequency behaviors of Mk

D and LkD are investigated in the following lemmas.

Lemma 2.112. For ϕ ∈ H
− 1

2

T (div, ∂D), the following asymptotic expansion as
k → 0 holds

Mk
D[ϕ](x) = M0

D[ϕ](x)−
∞∑

j=2

(
√
−1k)jMj

D[ϕ](x),(2.323)
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where

Mj
D[ϕ](x) =

∫

∂D

1

4πj!
ν(x)×∇x × |x− y|j−1ϕ(y)dσ(y).

Moreover, ‖Mj
D‖L

(
H

− 1
2

T (div,∂D)
) is uniformly bounded with respect to j. In partic-

ular, the convergence holds in L
(
H

− 1
2

T (div, ∂D)
)
and Mk

D is analytic in k.

Proof. A Taylor expansion of Γk(x− y) yields

Γk(x− y) = −
∞∑

j=0

(
√
−1k|x− y|)j
j!4π|x− y| = − 1

4π|x− y| +
∞∑

j=1

(
√
−1k)j

4πj!
|x− y|j−1.

Hence, (2.323) holds. Note that from the regularity of |x−y|j−1, j ≥ 2, ‖Mj
D[ϕ]‖

H
− 1

2
T (div,∂D)

is uniformly bounded with respect to j, and therefore, ‖Mj
D‖L

(
H

− 1
2

T (div,∂D)
) is uni-

formly bounded with respect to j as well. �

Lemma 2.113. For ϕ ∈ H
− 1

2

T (div, ∂D), the following asymptotic expansion as
ω → 0 holds

(LkcD − LkmD )[ϕ](x) =

∞∑

j=1

ωj+1LjD[ϕ](x),

where

LjD[ϕ](x) = Cjν(x)×
(∫

∂D

|x− y|j−2ϕ(y)dσ(y)−
∫

∂D

|x− y|j−2(x− y)

j + 1
∇∂D · ϕ(y)dσ(y)

)
,

and

Cj =
(
√
−1)j((

√
εcµc)

j+1 − (
√
εmµm)j+1)

4π(j − 1)!
.

Moreover, ‖LjD‖L
(
H

− 1
2

T (div,∂D)
) is uniformly bounded with respect to j. In particu-

lar, the convergence holds in L
(
H

− 1
2

T (div, ∂D)
)
and LkD is analytic in k.

Proof. The proof is similar to that of Lemma 2.112. �

2.14.4. Coordinate Transformation and Invariance in Electromag-
netism. It is a remarkable fact that Maxwell’s equations under any coordinate
transformation can be written in an identical Cartesian form, if simple transforma-
tions are applied to the electromagnetic parameters and the electromagnetic fields.
As will be shown later, this result is useful for the design of invisibility cloaks.

Suppose that we make a coordinate transformation x 7→ F (x), possibly singu-
lar. LetDF denote the Jacobian matrix. Consider the following Maxwell equations:

∇× E =
√
−1ωµ(x)H in R3,

∇×H = −
√
−1ωε(x)E in R3,

subject to the Silver-Müller radiation condition (2.318), where ε(x) = εm and
µ(x) = µm for |x| large enough and (Ei, Hi) is an incident plane wave.
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Lemma 2.114. Let F be a diffeomorphism of R3 onto R3 such that F (x) is

the identity for |x| large enough. Define Ẽ and H̃ by Ẽ(y) = E(F−1(y)) and

H̃(y) = H(F−1(y)). Then, (Ẽ, H̃) satisfies

∇y × Ẽ(y) =
√
−1ωF⋆[µ](y)H̃(y), in R3,

∇y × H̃(y) = −
√
−1ωF⋆[ε](y)Ẽ(y) in R3,

together with the Silver-Müller radiation condition (2.318), where for a function
q(x),

F⋆[q](y) =
DF (x)q(x)DF t(x)

detDF (x)

with x = F−1(y) and T being the transpose.

A similar result holds for the Helmholtz equation.

Lemma 2.115. Let F be a diffeomorphism of R2 onto R2 such that F (x) is
identity for |x| large enough. Suppose that v is a solution to

∇ · 1
µ
∇v + ω2εv = 0 in R2 ,

and v − vi satisfies the Sommerfeld radiation condition, where vi is an incident
plane wave. Then ṽ defined by ṽ(y) = v(F−1(y)) satisfies

(2.324) ∇y · F⋆[
1

µ
](y)∇y ṽ(y) + ω2 ε(x)

detDF (x)
ṽ(y) = 0 in R2,

and ṽ(y)− vi(F−1(y)) satisfies the Sommerfeld radiation condition.

2.14.5. Multipole Solutions to the Maxwell Equations. For a wave
number k > 0, l′ = −l, . . . , l and l = 1, 2, . . . , the function

(2.325) vll′(k;x) = h
(1)
l (k|x|)Y l′l (x̂)

satisfies the Helmholtz equation ∆v + k2v = 0 in R3 \ {0} and the Sommerfeld
radiation condition:

lim
|x|→∞

|x|(∂vll′
∂|x| (k;x)−

√
−1kvll′(k;x)) = 0.

Here, Y l
′

l is the spherical harmonics defined on the unit sphere S, x̂ = x/|x|, and
h
(1)
l is the spherical Hankel function of the first kind and order l which satisfies the

Sommerfeld radiation condition in three dimensions. Similarly, we define ṽll′(x) by

(2.326) ṽll′(k;x) = jl(k|x|)Y l
′

l (x̂),

where jl is the spherical Bessel function of the first kind. The function ṽll′ satisfies
the Helmholtz equation in all R3.

In the same manner, one can construct solutions to the Maxwell system with
the vector version of spherical harmonics. Define the vector spherical harmonics as

(2.327) Ull′ =
1√

l(l + 1)
∇SY

l′

l (x̂) and Vll′ = x̂× Ull′ ,

for l′ = −l, . . . , l and l = 1, 2, . . . . Here, x̂ ∈ S and ∇S denotes the surface gradient
on the unit sphere S. The vector spherical harmonics defined in (2.327) form a
complete orthogonal basis for L2

T (S), where L
2
T (S) = {u ∈ (L2(S))3 | ν · u = 0}

and ν is the outward unit normal to S.
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Through multiplication of the vector spherical harmonics with the Hankel func-
tion, one can construct the so-called multipole solutions to the Maxwell system.
To keep the analysis simple, one separates the solutions into transverse electric,
(E · x) = 0, and transverse magnetic, (H · x) = 0. Define the exterior transverse
electric multipoles to the Maxwell equations in free space as

(2.328)





ETEll′ (k;x) = −
√
l(l + 1)h

(1)
l (k|x|)Vll′(x̂),

HTE
ll′ (k;x) = −

√
−1

ωµ
∇×

(
−
√
l(l + 1)h

(1)
l (k|x|)Vll′(x̂)

)
,

and the exterior transverse magnetic multipoles as

(2.329)





ETMll′ (k;x) =

√
−1

ωε
∇×

(
−
√
l(l + 1)h

(1)
l (k|x|)Vll′(x̂)

)
,

HTM
ll′ (k;x) = −

√
l(l + 1)h

(1)
l (k|x|)Vll′(x̂).

The exterior electric and magnetic multipole satisfy the radiation condition. In the

same manner, one defines the interior multipoles (ẼTEll′ , H̃
TE
ll′ ) and (ẼTMll′ , H̃TM

ll′ )

with h
(1)
l replaced by jl, i.e.,

(2.330)





ẼTEll′ (k;x) = −
√
l(l + 1)j

(1)
l (k|x|)Vll′(x̂),

H̃TE
ll′ (k;x) = −

√
−1

ωµ
∇× ẼTEll′ (k;x),

and

(2.331)





H̃TM
ll′ (k;x) = −

√
l(l + 1)j

(1)
l (k|x|)Vll′(x̂),

ẼTMll′ (k;x) =

√
−1

ωε
∇× H̃TM

ll′ (k;x).

Note that one has

∇× ETEll′ (k;x) =

√
l(l + 1)

|x| Hl(k|x|)Ull′(x̂) +
l(l + 1)

|x| h
(1)
l (k|x|)Y l′l (x̂)x̂,(2.332)

∇× ẼTEll′ (k;x) =

√
l(l + 1)

|x| Jl(k|x|)Ull′(x̂) +
l(l + 1)

|x| j
(1)
l (k|x|)Y l′l (x̂)x̂,(2.333)

where Hl(t) = h
(1)
l (t) + t

(
h
(1)
l

)′
(t) and Jl(t) = jl(t) + tj′l(t).

The solutions to the Maxwell system can be represented as separated variable
sums of the multipole solutions; see [365, Section 5.3]. With multipole solutions
and the Helmholtz solutions in (2.325) and (2.326), it is also possible to expand the
fundamental solution Γk to the Helmholtz operator.
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Let p be a fixed vector in R3. For |x| > |y|, the following addition formula
holds (see [358, Section 9.3.3]):

Γk(x− y)p =−
∞∑

l=1

√
−1k

l(l + 1)

ε

µ

l∑

l′=−l
ETMll′ (k;x)ẼTMll′ (k; y) · p

−
∞∑

l=1

√
−1k

l(l + 1)

l∑

l′=−l
ETEll′ (k;x)ẼTEll′ (k; y) · p

−
√
−1

k

∞∑

l=1

l∑

l′=−l
∇vll′(k;x)∇ṽll′(k; y) · p,(2.334)

with vll′ and ṽll′ being defined by (2.325) and (2.326).
Plane wave solutions to the Maxwell equations have an expansion using the

multipole solutions as well (see [296]). The incoming wave

Ei(x) =
√
−1k(q × p)× qe

√−1kq·x,

where q ∈ S is the direction of propagation and the vector p ∈ R3 is the direction
of polarization, is expressed as
(2.335)

Ei(x) =
√
−1k

∞∑

l=1

4π(
√
−1)l√

l(l + 1)

l∑

l′=−l

[
−
√
−1
(
Vll′(q)·c

)
ẼTEll′ (x)−

√
ε

µ

(
Ull′(q)·c

)
ẼTMll′ (x)

]
,

where c = (q × p)× q.

2.14.6. Scattering Coefficients and their Properties. This subsection
introduces the notion of scattering coefficients associated to the Maxwell equations
and provides some of their properties. It extends the notions and results established
in the previous section for the Helmholtz equation.

2.14.6.1. Notion of Scattering Coefficients. From (2.334) (with km in the place
of k) and (2.125) it follows that, for sufficiently large |x|,

(2.336) (E − Ei)(x) =

∞∑

l=1

√
−1km

l(l + 1)

l∑

l′=−l

(
αll′E

TE
ll′ (km;x) + βll′E

TM
ll′ (km;x)

)
,

where

αll′ = −
√
−1ωεmµm

∫

∂D

ẼTMll′ (km; y) · ϕ(y)− k2m

∫

∂D

ẼTEll′ (km; y) · ψ(y),

βll′ =
√
−1ωεmµm

∫

∂D

ẼTEll′ (km; y) · ϕ(y)− ω2ε2m

∫

∂D

ẼTMll′ (km; y) · ψ(y).

Let (ϕTEpp′ , ψ
TE
pp′ ) be the solution to (2.321) when

Ei = ẼTEpp′ (km; y) and Hi = H̃TE
pp′ (km; y),

and (ϕTMpp′ , ψ
TM
pp′ ) when

Ei = ẼTMpp′ (km; y) and Hi = H̃TM
pp′ (km; y).

Definition 2.116 (Scattering Coefficients). The scattering coefficients
(
WTE,TE
ll′,pp′ ,WTE,TM

ll′,pp′ ,WTM,TE
ll′,pp′ ,WTM,TM

ll′,pp′

)
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associated with the permittivity and the permeability distributions ε, µ and the fre-
quency ω (or kc, km, D) are defined to be

WTE,TE
ll′,pp′ = −

√
−1ωεmµm

∫

∂D

ẼTMll′ (km; y) · ϕTEpp′ (y) dσ(y)

−k2m
∫

∂D

ẼTEll′ (km; y) · ψTEpp′ (y) dσ(y),

WTE,TM
ll′,pp′ = −

√
−1ωεmµm

∫

∂D

ẼTMll′ (km; y) · ϕTMpp′ (y) dσ(y)

−k2m
∫

∂D

ẼTEll′ (km; y) · ψTMpp′ (y) dσ(y),

WTM,TE
ll′,pp′ =

√
−1ωεmµm

∫

∂D

ẼTEll′ (km; y) · ϕTEpp′ (y) dσ(y)

−ω2ε2m

∫

∂D

ẼTMll′ (km; y) · ψTEpp′ (y) dσ(y),

WTM,TM
ll′,pp′ =

√
−1ωεmµm

∫

∂D

ẼTEll′ (km; y) · ϕTMpp′ (y) dσ(y)

−ω2ε2m

∫

∂D

ẼTMll′ (km; y) ·ψTMpp′ (y) dσ(y).

As will be seen, the scattering coefficients appear naturally in the expansion of
the scattering amplitude. One first obtains the following estimates for the decay of
the scattering coefficients.

Lemma 2.117. There exists a constant C depending on (ε, µ, ω) such that

(2.337)
∣∣∣WTE,TE

ll′,pp′ [ε, µ, ω]
∣∣∣ ≤ Cl+p

llpp

for all l, l′, p, p′ ∈ N \ {0}. The same estimates hold for WTE,TM
ll′,pp′ , WTM,TE

ll′,pp′ , and

WTM,TM
ll′,pp′ .

Proof. Let (ϕ, ψ) be the solution to (2.321) with Ei(y) = ẼTEpp′ (km; y) and

Hi = −
√−1
ωµm

∇× Ei. Recall that the spherical Bessel function jp behaves as

jp(t) =
tp

1× 3× · · · × (2p+ 1)

(
1 +O

(
1

p

))
as p→ ∞,

uniformly on compact subsets of R. Using Stirling’s formula

p! =
√

2πp(p/e)p(1 + o(1)),

one has

(2.338) jp(t) = O

(
Cptp

pp

)
as p→ ∞,

uniformly on compact subsets of R with a constant C independent of p. Thus one
has

∥∥Ei
∥∥
H

− 1
2

T (div,∂D)
+
∥∥Hi

∥∥
H

− 1
2

T (div,∂D)
≤ C ′p

pp



130 2. LAYER POTENTIALS

for some constant C ′. It then follows from (2.322) that

∥∥ϕ
∥∥
L2(∂D)

+
∥∥ψ
∥∥
L2(∂D)

≤ Cp

pp

for another constant C. So one gets (2.337) from the definition of the scattering
coefficients. �

Suppose now that the incoming wave is of the form

(2.339) Ei(x) =

∞∑

p=1

p∑

p′=−p

(
app′Ẽ

TE
pp′ (km;x) + bpp′Ẽ

TM
pp′ (km;x)

)

for some constants app′ and bpp′ . Then the solution (ϕ, ψ) to (2.321) is given by

ϕ =

∞∑

p=1

p∑

p′=−p

(
app′ϕ

TE
pp′ + bpp′ϕ

TM
pp′

)
,

ψ =

∞∑

p=1

p∑

p′=−p

(
app′ψ

TE
pp′ + bpp′ψ

TM
pp′

)
.

By (2.336) and Definition 2.116, the solution E to (2.317) can be represented as
(2.340)

(E − Ei)(x) =

∞∑

l=1

√
−1km

l(l + 1)

l∑

l′=−l

(
αll′E

TE
ll′ (km;x) + βll′E

TM
ll′ (km;x)

)
, |x| → ∞,

where

(2.341)





αll′ =

∞∑

p=1

p∑

p′=−p

(
app′W

TE,TE
ll′,pp′ + bpp′W

TE,TM
ll′,pp′

)
,

βll′ =

∞∑

p=1

p∑

p′=−p

(
app′W

TM,TE
ll′,pp′ + bpp′W

TM,TM
ll′,pp′

)
.

Using (2.340), (2.341), and the behavior of the spherical Bessel functions, the
far-field pattern of the scattered wave (E − Ei) can be estimated. We define the
scattering amplitude A∞[ε, µ, ω] by

(2.342) E(x)− Ei(x) =
e
√−1km|x|

km|x| A∞[ε, µ, ω](x̂) + o(|x|−1) as |x| → ∞.

Since the spherical Bessel function h
(1)
l behaves like





h
(1)
l (t) ∼ 1

t
e
√−1te−

√−1 l+1
2 π as t→ ∞,

(h
(1)
l )′(t) ∼ 1

t
e
√−1te−

√−1 l
2π as t→ ∞,

one can easily see by using (2.332) that




ETEll′ (km;x) ∼ e
√−1km|x|

km|x| e−
√−1 l+1

2 π
(
−
√
l(l + 1)

)
Vll′(x̂) as |x| → ∞,

ETMll′ (km;x) ∼ e
√−1km|x|

km|x|

√
µm
εm

e−
√−1 l+1

2 π
(
−
√
l(l + 1)

)
Ull′(x̂) as |x| → ∞.

Therefore, the following result holds.
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Proposition 2.118. If Ei is given by (2.339), then the corresponding scattering
amplitude can be expanded as

A∞[ε, µ, ω](x̂) =

∞∑

l=1

−(
√
−1)−lkm√
l(l + 1)

l∑

l′=−l

(
αll′Vll′(x̂) + βll′

√
µm
εm

Ull′(x̂)
)
,(2.343)

where αll′ and βll′ are defined by (2.341).

Consider the case where the incident wave Ei is given by a plane wave e
√−1kmd·xc

with d ∈ S and d · c = 0. It follows from (2.335) that

e
√−1k·xc =

∞∑

p=1

4π(
√
−1)p√

p(p+ 1)

p∑

p′=−p

[
−
√
−1
(
Vpp′(d) · c

)
ẼTEpp′ (km;x)−

√
εm
µm

(
Upp′(d) · c

)
ẼTMpp′ (km;x)

]
,

and therefore,

app′ = −4π(
√
−1)p+1

√
p(p+ 1)

(Vpp′(d) · c) and bpp′ = −4π(
√
−1)p√

p(p+ 1)

√
εm
µm

(Upp′(d) · c).

Hence, the scattering amplitude, denoted by A∞[ε, µ, ω](c, d; x̂), is given by (2.343)
with
(2.344)



αll′ =

∞∑

p=1

p∑

p′=−p

4π(
√
−1)p√

p(p+ 1)

[
−
√
−1(Vpp′(d) · c)WTE,TE

ll′,pp′ −
√
εm
µm

(Upp′(d) · c)WTE,TM
ll′,pp′

]
,

βll′ =

∞∑

p=1

p∑

p′=−p

4π(
√
−1)p√

p(p+ 1)

[
−
√
−1(Vpp′(d) · c)WTM,TE

ll′,pp′ −
√
εm
µm

(Upp′(d) · c)WTM,TM
ll′,pp′

]
,

which shows that the scattering coefficients appear in the expansion of the scattering
amplitude.

The low-frequency behavior of the scattering coefficients is now investigated.
The following result holds.

Lemma 2.119. There exists δ0 > 0 such that, for all δ ≤ δ0,
∣∣∣WTE,TE

ll′,pp′ [ε, µ, δω]
∣∣∣ ≤ Cl+p

llpp
δl+p+1,(2.345)

for all l, p ∈ N \ {0}, l′ = −l, . . . , l, p′ = −p, . . . , p, where the constant C depends on

(ε, µ, ω) but is independent of δ. The same estimate holds for WTE,TM
ll′,pp′ , WTM,TE

ll′,pp′ ,

and WTM,TM
ll′,pp′ .

Proof. Let (ϕ, ψ) be the solution to (2.321) with Ei(y) = ẼTEpp′ (δkm; y) and

Hi = −
√−1
δωµm

∇× Ei. Then, from (2.338), it follows that

∥∥Ei,δ
∥∥
H

− 1
2

T (div,∂D)
+
∥∥Hi,δ

∥∥
H

− 1
2

T (div,∂D)
≤ Cp

pp
δp,

where C is independent of δ, and hence

∥∥ϕδ
∥∥
L2(∂D)

+ δ
∥∥ψδ

∥∥
L2(∂D)

≤ Cp

pp
δp

for δ ≤ δ0 for some δ0. So one gets (2.345) from Definition 2.116 of the scattering
coefficients. �
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2.14.6.2. Multi-Layer Structure and its Scattering Coefficients. Here we con-
sider a multi-layered structure and explain how to compute its scattering coeffi-
cients. A numerical example is also presented. The multi-layered structure is de-
fined as follows: For positive numbers r1, . . . , rL+1 with 2 = r1 > r2 > · · · rL+1 = 1,
let

Aj := {x : rj+1 ≤ |x| < rj}, j = 1, . . . , L,

A0 := R3 \B2, AL+1(= D) := {x : |x| < 1},
where B2 denotes the ball of center 0 and radius 2 and

Γj = {|x| = rj}, j = 1, . . . , L+ 1.

Let (µj , εj) be the pair of permeability and permittivity parameters of Aj for j =
1, . . . , L+1. Set µ0 = 1 and ε0 = 1. Then define the permeability and permittivity
distributions of the layered structure to be

(2.346) µ =

L+1∑

j=0

µjχ(Aj) and ε =

L+1∑

j=0

εjχ(Aj).

A0

…
A1

AL

AL+1

PEC

rL rL-1

r1

ϵ1, μ1 

ϵ0, μ0 

ϵL, μL 

…

…

Figure 2.7. A multi-layered structure.

The scattering coefficients
(
WTE,TE

(n,m)(p,q),W
TE,TM
(n,m)(p,q),W

TM,TE
(n,m)(p,q),W

TM,TM
(n,m)(p,q)

)
are

defined as before, namely, if Ei is given as in (2.339), the scattered field E−Ei can
be expanded as (2.340) and (2.341). The transmission condition on each interface
Γj is given by

(2.347) [x̂× E] = [x̂×H] = 0.

Assume that the core AL+1 is perfectly conducting (PEC), that is,

(2.348) E × ν = 0 on ΓL+1 = ∂AL+1.

Thanks to the symmetry of the layered (radial) structure, the scattering coeffi-
cients are much simpler than the general case. In fact, if the incident field is given
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by Ei = ẼTEn,m, then the solution E to (2.317) subject to (2.318) takes the form

(2.349) E(x) = ãjẼ
TE
n,m(x) + ajE

TE
n,m(x), x ∈ Aj , j = 0, . . . , L,

with ã0 = 1. From (2.332) and (2.333), the interface condition (2.347) amounts to



jn(kjrj) h(1)n (kjrj)
1

µj
Jn(kjrj)

1

µj
Hn(kjrj)



[
ãj
aj

]

=




jn(kj−1rj) h(1)n (kj−1rj)
1

µj−1
Jn(kj−1rj)

1

µj−1
Hn(kj−1rj)



[
ãj−1

aj−1

]
, j = 1, . . . , L,(2.350)

where Hn(t) = h
(1)
n (t) + t

(
h
(1)
n

)′
(t) and Jn(t) = jn(t) + tj′n(t), and the boundary

condition on the perfectly conducting surface ΓL+1 is

(2.351)

[
jn(kL) h

(1)
n (kL)

0 0

] [
ãL
aL

]
=

[
0
0

]
.

Since the matrices appearing in (2.350) are invertible, one can see that there exist
aj and ãj , j = 0, 1, . . . L satisfying (2.350) and (2.351). Similarly, one can see that

if the incident field is given by Ei = ẼTMn,m(x), then the solution E takes the form

(2.352) E(x) = b̃jẼ
TM
n,m(x) + bjE

TM
n,m(x), x ∈ Aj , j = 0, 1, . . . , L

for some constants bj and b̃j (b̃0 = 1). One can see now from (2.349) and (2.352)
that the scattering coefficients satisfy

WTE,TM
(n,m)(p,q) =WTM,TE

(n,m)(p,q) = 0 for all (m,n) and (p, q),

WTE,TE
(n,m)(p,q) =WTM,TM

(n,m)(p,q) = 0 if (m,n) 6= (p, q),

and, since (2.349) and (2.352) hold independently of m, one has

WTE,TE
(n,0)(n,0) =WTE,TE

(n,m)(n,m),

WTM,TM
(n,0)(n,0) =WTM,TM

(n,m)(n,m) for − n ≤ m ≤ n.

Moreover, if one writes

WTE
n :=WTE

(n,0)(n,0) and WTM
n :=WTM

(n,0)(n,0),

then one has

(2.353) WTE
n = −

√
−1n(n+ 1)

k0
a0 and WTE

n = −
√
−1n(n+ 1)

k0
b0.

Suppose now that ẼTEn,0 is the incident field and the solution E is given by

E(x) = ãjẼ
TE
n,0 (x) + ajE

TE
n,0 (x), x ∈ Aj , j = 0, . . . , L,

with ã0 = 1, where the coefficients ãj ’s and aj ’s are determined by (2.350) and
(2.351). From (2.350) it follows that

[
ãj
aj

]
=




jn(kjrj) h(1)n (kjrj)
1

µj
Jn(kjrj)

1

µj
Hn(kjrj)



−1 


jn(kj−1rj) h(1)n (kj−1rj)
1

µj−1
Jn(kj−1rj)

1

µj−1
Hn(kj−1rj)



[
ãj−1

aj−1

]
,
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for j = 1, . . . , L. Substituting these relations into (2.351) yields

(2.354)

[
0
0

]
= PTEn [ε, µ, ω]

[
ã0
a0

]
,

where

PTEn [ε, µ, ω] :=

[
pTEn,1 pTEn,2
0 0

]
= (−

√
−1ω)L




L∏

j=1

µ
3
2
j ε

1
2
j rj



[
jn(kL) h

(1)
n (kL)

0 0

]

×
L∏

j=1




1

µj
Hn(kjrj) −h(1)n (kjrj)

− 1

µj
Jn(kjrj) jn(kjrj)







jn(kj−1rj) h(1)n (kj−1rj)
1

µj−1
Jn(kj−1rj)

1

µj−1
Hn(kj−1rj)


 .

(2.355)

Then (2.354) yields

(2.356) WTE
n = −

√
−1n(n+ 1)

k0
a0 = −

√
−1n(n+ 1)

k0

pTEn,1
pTEn,2

.

Similarly, for WTM
n , one looks for another solution E of the form

E(x) = b̃jẼ
TM
n,0 (x) + bjE

TM
n,0 (x), x ∈ Aj , j = 0, . . . , L,

with b̃0 = 1. The transmission conditions become


1

εj
Jn(kjrj)

1

εj
Hn(kjrj)

jn(kjrj) h(1)n (kjrj)



[
b̃j
bj

]

=




1

εj−1
Jn(kj−1rj)

1

εj−1
Hn(kj−1rj)

jn(kj−1rj) h(1)n (kj−1rj)



[
b̃j−1

bj−1

]
, j = 1, . . . , N + 1,(2.357)

and the boundary condition on the inner most layer, which is perfectly conducting,
is

(2.358)

[
Jn(kL) Hn(kL)

0 0

] [
b̃L
bL

]
=

[
0
0

]
.

From (2.357) and (2.358), one obtains

(2.359)

[
0
0

]
= PTMn [ε, µ, ω]

[
b̃0
b0

]
,

where

PTMn [ε, µ, ω] :=

[
pTMn,1 pTMn,2
0 0

]
= (iω)L




L∏

j=1

µ
1
2
j ε

3
2
j rj



[
Jn(kL) Hn(kL)

0 0

]

×
L∏

j=1



h(1)n (kjrj) − 1

εj
Hn(kjrj)

−jn(kjrj)
1

εj
Jn(kjrj)







1

εj−1
Jn(kj−1rj)

1

εj−1
Hn(kj−1rj)

jn(kj−1rj) h(1)n (kj−1rj)


 .

(2.360)
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From the definition of WTM
n and (2.359),

(2.361) WTE
n = −

√
−1n(n+ 1)

k0

b0

b̃0
= −

√
−1n(n+ 1)

k0

pTMn,1
pTMn,2

.

It is worth emphasizing that pTEn,2 6= 0 and pTMn,2 6= 0. In fact, if pTEn,2 = 0, then
(2.354) can be fulfilled with ã0 = 0 and a0 = 1. This means that there exists (µ, ε)
on R3 \D such that the following problem has a solution:





∇× E =
√
−1ωµH in R3 \D,

∇×H = −
√
−1ωεE in R3 \D,

(x× E)
∣∣
+
= 0 on ∂D,

E(x) = ETEn,0 (x) for |x| > 2.

Applying the following Green’s theorem on Ω = {x : 1 < |x| < R},
∫

Ω

(
E ·∆F + curlE · curlF +∇ · E ∇ · F

)
dx

=

∫

∂Ω

(
ν × E · curlF + ν · E (∇ · F )

)
dσ(x)

with F = ETEn,0 (x) and the boundary condition on the perfectly conducting surface

{|x| = 1}, it follows that
∫

|x|=R
(ν × E) ·Hdσ(x) =

√
−1k0

∫

Ω

(|H|2 − |E|2)dx.

In particular, the left-hand side is real-valued. Hence,
∫

|x|=R
|H × ν − E|2dσ(x) =

∫

|x|=R

(
|H × ν|2 + |E|2 − 2ℜ((ν × E) ·H

)
dσ(x)

=

∫

|x|=R

(
|H × ν|2 + |E|2

)
dσ(x).

From the radiation condition, the left-hand side goes to zero as R → ∞, which
contradicts the behavior of the Hankel functions. One can show that pTMn,2 6= 0 in a
similar way.

2.14.6.3. Numerical Example. We now demonstrate how to compute the scat-
tering coefficients WTE

n and WTM
n numerically using Code Scattering Coefficients

for Maxwell’s Equations. For simplicity, we consider only WTE
n . Recall that

(2.362) WTE
n = −

√
−1n(n+ 1)

k0
a0,

with the constant a0 being determined by (2.350) and (2.351). From (2.350), we
obtain

(2.363)

[
ã0/aL
a0/aL

]
= (M−1

1 N1)(M
−1
2 N2) . . . (M

−1
L NL)

[
ãL/aL

1

]
,

where

Mj =




jn(kjrj) h(1)n (kjrj)
1

µj
Jn(kjrj)

1

µj
Hn(kjrj)


 , Nj =




jn(kj−1rj) h(1)n (kj−1rj)
1

µj−1
Jn(kj−1rj)

1

µj−1
Hn(kj−1rj)


 .

http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial6/6.1 Scattering Coefficients for Maxwell's Equations.zip
http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial6/6.1 Scattering Coefficients for Maxwell's Equations.zip
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From (2.351), we immediately see that

ãL
aL

= −h
(1)
n (kLrL+1)

jn(kLrL+1)
.

Therefore, we can compute ã0/aL and a0/aL. But, since ã0 = 1, we can also
compute a0 and then WTE

n .
Now we present a numerical example. We set the parameters for the structure

as follows: the number of layers L is L = 3, the radii of the layers are r1 = 2, r2 =
5/3, r3 = 4/3, r4 = 1, and the material parameters are (ε0, µ0) = (1, 1), (ε0, µ0) =
(0.5, 0.5), (ε0, µ0) = (2, 2), (ε0, µ0) = (0.5, 0.5). The numerical result for WTE

n and
WTM
n for n = 1, 2, . . . , 7 is shown in Table 2.8. The decaying behavior of WTE

n and
WTM
n is clearly shown.

n WTE
n WTM

n

1 −0.9991 + 0.9572
√
−1 −0.7473 + 1.6644

√
−1

2 −0.7527 + 0.0960
√
−1 −0.7650 + 0.0992

√
−1

3 −0.1642 + 0.0022
√
−1 −0.1643 + 0.0023

√
−1

4 −0.0191 + 0.0000
√
−1 −0.0191 + 0.0000

√
−1

5 −0.0013 + 0.0000
√
−1 −0.0013 + 0.0000

√
−1

6 −0.0001 + 0.0000
√
−1 −0.0001 + 0.0000

√
−1

7 −0.0000 + 0.0000
√
−1 −0.0000 + 0.0000

√
−1

Table 2.8. Scattering coefficients for a multi-layer spherical shell.

2.14.7. The Helmholtz-Kirchhoff Theorem. Let

Gkm(x) = εm

(
Γkm(x)I +

1

k2m
D2
xΓkm(x)

)
(2.364)

be the Dyadic Green (matrix valued) function for the full Maxwell equations. The
following Helmholtz-Kirchhoff identity holds.

Proposition 2.120. Let ∂BR be the sphere of radius R and center 0. We have
(2.365)∫

∂BR

(
∂Gkm

∂ν
(x−y)Gkm(z−y)−Gkm(x−y)∂Gkm

∂ν
(z−y)

)
dσ(y) = 2

√
−1ℑGkm(x−z) ,

which yields

(2.366) lim
R→+∞

∫

∂BR

Gkm(x− y)Gkm(z − y) dσ(y) = − 1

km
ℑGkm(x− z) ,

by using the Silver-Müller radiation condition.

2.14.8. The Optical Theorem. The optical cross-section theorem for the
scattering of electromagnetic waves can be stated as follows [265].

Proposition 2.121. Assume that the incident fields are plane waves given by

Ei(x) = ce
√−1kmd·x,

Hi(x) =

√
εm
µm

d× ce
√−1kmd·x,
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where c ∈ R3 and d ∈ S are such that c · d = 0. Then, the extinction cross-section
Qext, defined by

Qext := − 1

|c|2
√
µm
εm

ℜ
[ ∫

∂D

(
Ei × (H −Hi) + (E − Ei)×Hi

)
· ν dσ,

satisfies

Qext =
4π

km
ℑ
[
c ·A∞(c, d, d)

|c|2
]
,

where the scattering amplitude A∞ is defined by (2.343) with αll′ and βll′ are given
by (2.344).

Analogously to the scalar case, the extinction cross-section Qext is defined as
the ratio of the sum of the mean powers absorbed and scattered by D to the mean
intensity power flow in the incident field. The latter quantity is given by

−1

2
ℜ
[
(Ei ×Hi) · d

]

which reduces to
1

2

√
εm
µm

|c|2.

2.14.9. Electromagnetic Scattering by Small Particles. We consider the
scattering problem of a time-harmonic electromagnetic wave incident on a particle
D. The homogeneous medium is characterized by electric permittivity εm and
magnetic permeability µm, while D is characterized by electric permittivity εc and
magnetic permeability µc. We assume that εm, εc, µm, and µc are positive constants
and define

km = ω
√
εmµm, kc = ω

√
εcµc,

and

εD = εmχ(R
3 \D) + εcχ(D), µD = εmχ(R

3 \D) + εcχ(D).

For a given incident plane wave (Ei, Hi), solution to the Maxwell equations
in free space (2.316), the scattering problem can be modeled by the system of
equations (2.317) subject to the Silver-Müller radiation condition (2.318).

Let D = z + δB where B contains the origin and |B| = O(1). The following
result follows from [69, 79, 81]. It gives the leading-order term in the asymptotic
expansion of the scattered electric field Es far-away from the particle.

Theorem 2.122. For D = z+δB ⋐ R3 of class C1,α for α > 0 and K ⋐ R3\D,
the following far-field expansion holds uniformly in K
(2.367)

Es(x) = −
√
−1ωµm
εm

∇×Gkm(x− z)M(λµ, D)Hi(z)− ω2µmGkm(x− z)M(λε, D)Ei(z)

+O(δ4),

where Gkm(x−z) is the Dyadic Green (matrix valued) function for the full Maxwell
equations defined by (2.364) and M(λµ, D) and M(λε, D) are the polarization ten-
sors associated with D and the contrasts λµ and λε given by (2.72) with k = µm/µc
and k = εc/εm, respectively.
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2.15. Integral Representation of Solutions to the Lamé System

Let Ω be a bounded domain in Rd with a connected Lipschitz boundary. Let
λ and µ be the Lamé constants for Ω satisfying the strong convexity condition

(2.368) µ > 0 and dλ+ 2µ > 0.

The corresponding Lamé system is given by

Lλ,µu = µ△u+ (λ+ µ)∇∇ · u,
and the conormal derivative ∂u/∂ν is defined by

(2.369)
∂u

∂ν
= λ(∇ · u)N + µ(∇u+∇ut)N,

where the superscript t denotes the transpose and N is the unit normal to the
boundary ∂Ω. We introduce the symmetric gradient as

(2.370) ∇su :=
1

2
(∇u+∇ut)

and define the elasticity tensor C = (Cijkl)
d
i,j,k,l=1 by

(2.371) Cijkl = λδijδkl + µ(δikδjl + δilδjk).

With this notation, we have

Lλ,µu = ∇ · C∇su,

and
∂u

∂ν
= (C∇su)N.

2.15.1. Fundamental Solutions. In the three-dimensional case, the Kupradze
matrix Γω = (Γωij)

3
i,j=1 of the fundamental solution to the operator Lλ,µ + ω2 is

given by

Γωij(x) = − δij
4πµ|x|e

√
−1ω|x|
cs +

1

4πω2
∂i∂j

e

√
−1ω|x|
cp − e

√
−1ω|x|
cs

|x| ,

where ∂j denotes ∂/∂xj and

cs =
√
µ, cp =

√
λ+ 2µ.

See [306, Chapter 2]. One can easily show that Γωij has the series representation:

Γωij(x) = − 1

4π

+∞∑

n=0

√
−1

n

(n+ 2)n!

(n+ 1

cn+2
s

+
1

cn+2
p

)
ωnδij |x|n−1(2.372)

+
1

4π

+∞∑

n=0

√
−1

n
(n− 1)

(n+ 2)n!

( 1

cn+2
s

− 1

cn+2
p

)
ωn|x|n−3xixj .

If ω = 0, then Γ0 is the Kelvin matrix of the fundamental solution to the Lamé
system; i.e.,

(2.373) Γ0
ij(x) = − γ1

4π

δij
|x| −

γ2
4π

xixj
|x|3 ,

where

(2.374) γ1 =
1

2

(
1

µ
+

1

2µ+ λ

)
and γ2 =

1

2

(
1

µ
− 1

2µ+ λ

)
.
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In the two-dimensional case, the fundamental solution Γω = (Γωij)
2
i,j=1 to the

operator Lλ,µ + ω2, ω 6= 0, is given by
(2.375)

Γωij(x) = −
√
−1

4µ
δijH

(1)
0

(
ω|x|
cs

)
+

√
−1

4ω2
∂i∂j

(
H

(1)
0

(
ω|x|
cp

)
−H

(1)
0

(
ω|x|
cs

))
.

See [6] and [306, Chapter 2]. For ω = 0, we set Γ0 to be the Kelvin matrix of
fundamental solutions to the Lamé system; i.e.,

(2.376) Γ0
ij(x) =

γ1
2π
δij ln |x| −

γ2
2π

xixj
|x|2 .

2.15.2. Single- and Double-Layer Potentials. Analogously to the Laplace
operator, the single- and double-layer potentials for the operator Lλ,µ + ω2 are
defined by

SωΩ [ϕ](x) =
∫

∂Ω

Γω(x− y)ϕ(y) dσ(y), x ∈ Rd,(2.377)

Dω
Ω[ϕ](x) =

∫

∂Ω

∂

∂ν(y)
Γω(x− y)ϕ(y) dσ(y), x ∈ Rd \ ∂Ω,(2.378)

for ϕ ∈ L2(∂Ω)d. Here, the conormal derivative of Γω is defined by

(2.379)
∂

∂ν(y)
Γω(x− y)b =

∂

∂ν(y)

(
Γω(x− y)b

)

for any constant vector b.
The following formulas give the jump relations obeyed by the double-layer

potential and by the conormal derivative of the single-layer potential:

∂(SωΩ [ϕ])
∂ν

∣∣∣
±
(x) =

(
± 1

2
I + (KωΩ)∗

)
[ϕ](x) a.e. x ∈ ∂Ω,(2.380)

(Dω
Ω[ϕ])

∣∣∣
±
(x) =

(
∓ 1

2
I +KωΩ

)
[ϕ](x) a.e. x ∈ ∂Ω,(2.381)

where KωΩ is the operator defined by

KωΩ[ϕ](x) = p.v.

∫

∂Ω

∂Γω(x− y)

∂ν(y)
ϕ(y) dσ(y)(2.382)

and (KωΩ)∗ is the L2-adjoint of K−ω
Ω ; that is,

(KωΩ)∗[ϕ](x) = p.v.

∫

∂Ω

∂Γω(x− y)

∂ν(x)
ϕ(y) dσ(y).

See [306, 187].
Let Ψ be the vector space of all linear solutions to the equation Lλ,µu = 0 and

∂u/∂ν = 0 on ∂Ω, or alternatively,

(2.383) Ψ =

{
ψ : ∂iψj + ∂jψi = 0, 1 ≤ i, j ≤ d

}
.

Define a subspace of L2(∂Ω)d by

L2
Ψ(∂Ω) =

{
f ∈ L2(∂Ω)d :

∫

∂Ω

f · ψ dσ = 0 for all ψ ∈ Ψ

}
.
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In particular, since Ψ contains constant functions, we get∫

∂Ω

f dσ = 0

for any f ∈ L2
Ψ(∂Ω). We also know that if u is smooth and satisfies Lλ,µu = 0 in

Ω, then ∂u/∂ν
∣∣
∂Ω

∈ L2
Ψ(∂Ω).

We recall Green’s formulas for the Lamé system, which can be obtained by
integration by parts. The first formula is∫

∂Ω

u · ∂v
∂ν

dσ =

∫

Ω

u · Lλ,µv +E(u,v),(2.384)

where u ∈ H1(Ω)d, v ∈ H3/2(Ω)d, and

E(u,v) =

∫

Ω

λ(∇ · u)(∇ · v) + µ

2
(∇u+∇ut) · (∇v +∇v

t
).(2.385)

Formula (2.384) yields Green’s second formula
∫

∂Ω

(
u · ∂v

∂ν
− v · ∂u

∂ν

)
=

∫

Ω

(
u · Lλ,µv − v · Lλ,µu

)
,(2.386)

where u, v ∈ H3/2(Ω)d.
Formula (2.386) shows that if u ∈ H3/2(Ω)d satisfies Lλ,µu = 0 in Ω, then

∂u/∂ν
∣∣
∂Ω

∈ L2
Ψ(∂Ω).

2.15.3. Helmholtz Decompositions and Radiation Conditions. Let us
formulate the radiation conditions for the elastic waves when ℑω ≥ 0 and ω 6= 0.

Any smooth solution u to the constant-coefficient equation (Lλ,µ + ω2)u = 0
can be decomposed as follows [306, Theorem 2.5]:

(2.387) u = up + us,

where up and us are given by

up = (κ2s − κ2p)
−1(△+ κ2s)u,

us = (κ2p − κ2s)
−1(△+ κ2p)u,

with

(2.388) κs =
ω

cs
=

ω√
µ

and κp =
ω

cp
=

ω√
λ+ 2µ

.

Then us and up satisfy the equations

(2.389)

{
(△+ κ2s)us = 0, ∇× us = 0,

(△+ κ2p)up = 0, ∇ · up = 0.

We impose on us and up the radiation condition (2.153) for solutions of the
Helmholtz equation by requiring that

(2.390)

{
∂rus(x)−

√
−1κsus(x) = o(r−1),

∂rup(x)−
√
−1κpup(x) = o(r−1),

as r = |x| → +∞.

We say that u satisfies the Sommerfeld-Kupradze radiation condition if it can be
decomposed in the form (2.387) with us and up satisfying (2.389) and (2.390). By a
straightforward calculation, one can see that the single- and double-layer potentials
satisfy the radiation condition. We refer to [5, 306] for details.

We recall the following uniqueness results for the exterior problem [306].
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Lemma 2.123. Let u be a solution to (Lλ,µ+ω2)u = 0 in Rd \Ω satisfying the
radiation condition. If either u = 0 or ∂u/∂ν = 0 on ∂Ω, then u is identically zero
in Rd \ Ω.

In dimension d, the Kupradze matrix Γω can be decomposed into shear and
pressure components [7]:

(2.391) Γω(x) = Γωs (x) + Γωp (x), x ∈ Rd, x 6= 0,

where

(2.392) Γωp (x) = − 1

µκ2s
DΓκp(x) and Γωs (x) =

1

µκ2s
(κ2sI+D)Γκs(x).

Here, the tensor D is defined by

(2.393) D = (∂2ij)
d
i,j=1,

and the functions Γκp
and Γκs

are defined by (2.147).

2.15.4. Transmission Problem. Let λ̃, µ̃ be another pair of Lamé parame-
ters such that

(2.394) (λ− λ̃)(µ− µ̃) ≥ 0, (λ− λ̃)2 + (µ− µ̃)2 6= 0.

Later in this book, we will consider the following transmission problem:

(2.395)





Lλ,µu+ ω2u = 0 in Ω \D,
Lλ̃,µ̃u+ ω2u = 0 in D,

∂u

∂ν
= g on ∂Ω,

u
∣∣
+
− u

∣∣
− = 0 on ∂D,

∂u

∂ν

∣∣
+
− ∂u

∂ν̃

∣∣
− = 0 on ∂D.

Let S̃ωD denote the single-layer potential defined by (2.377) with λ, µ replaced

by λ̃, µ̃. We also denote by ∂u/∂ν̃ the conormal derivative associated with λ̃, µ̃.
We now have the following solvability result which can be viewed as a compact
perturbation result of the case ω = 0.

Theorem 2.124. Suppose that (λ − λ̃)(µ − µ̃) ≥ 0 and 0 < λ̃, µ̃ < +∞.
Suppose that ℑω ≥ 0 and ω2 is not a Dirichlet eigenvalue for −Lλ,µ on D. For any
given (F,G) ∈ H1(∂D)d × L2(∂D)d, there exists a unique pair (f ,g) ∈ L2(∂D)d ×
L2(∂D)d such that




S̃ωD[f ]|− − SωD[g]|+ = F,

∂

∂ν̃
S̃ωD[f ]

∣∣∣
−
− ∂

∂ν
SωD[g]

∣∣∣
+
= G.

If ω = 0 and G ∈ L2
Ψ(∂D), then g ∈ L2

Ψ(∂D). Moreover, if F ∈ Ψ and G = 0,
then g = 0.

Proof. For ω = 0, the theorem is proved in [208]. Here, we only consider the
case ω 6= 0, which can be treated as a compact perturbation of the case ω = 0. In
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fact, let us define the operators T, T0 : L2(∂D)d×L2(∂D)d → H1(∂D)d×L2(∂D)d

by

T (f ,g) :=

(
S̃ωD[f ]|− − SωD[g]|+,

∂

∂ν̃
S̃ωD[f ]

∣∣∣
−
− ∂

∂ν
SωD[g]

∣∣∣
+

)

and

T0(f ,g) :=

(
S̃0
D[f ]|− − S0

D[g]|+,
∂

∂ν̃
S̃0
D[f ]

∣∣∣
−
− ∂

∂ν
S0
D[g]

∣∣∣
+

)
.

It is easily checked that T − T0 is a compact operator. Since we know that T0
is invertible, by the Fredholm alternative, it is enough to show that T is injective.
Suppose that T (f ,g) = 0. Then the function u given by

u(x) :=

{
SωD[g](x), x ∈ Rd \D,
S̃ωD[f ](x), x ∈ D,

is a solution to the transmission problem




Lλ,µu+ ω2u = 0 in Rd \D,
Lλ̃,µ̃u+ ω2u = 0 in D,

u
∣∣
+
− u

∣∣
− = 0 on ∂D,

∂u

∂ν

∣∣
+
− ∂u

∂ν̃

∣∣
− = 0 on ∂D,

satisfying the radiation condition. By the uniqueness of a solution to this trans-
mission problem, see for instance [306, Chapter 3], we have u = 0. From the
assumption on ω, we conclude that f = g = 0. This completes the proof. �

For transmission problems such as (2.395), the following representation formula
holds.

Theorem 2.125. Let ℑω ≥ 0. Suppose that ω2 is not a Dirichlet eigenvalue
for −Lλ,µ on D. Let u be a solution of (2.395) and f := u|∂Ω. Define

(2.396) H(x) := Dω
Ω[f ](x)− SωΩ [g](x), x ∈ Rd \ ∂Ω.

Then u can be represented as

(2.397) u(x) =

{
H(x) + SωD[ψ](x), x ∈ Ω \D,
S̃ωD[φ](x), x ∈ D,

where the pair (φ, ψ) ∈ L2(∂D)d × L2(∂D)d is the unique solution of

(2.398)




S̃ωD[φ]− SωD[ψ] = H|∂D,
∂

∂ν̃
S̃ωD[φ]−

∂

∂ν
SωD[ψ] =

∂H

∂ν

∣∣∣
∂D
.

Moreover, we have

(2.399) H(x) + SωD[ψ](x) = 0, x ∈ Rd \ Ω.
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Proof. We consider the following two-phase transmission problem:

(2.400)





Lλ,µv + ω2v = 0 in (Ω \D)
⋃
(Rd \ Ω),

Lλ̃,µ̃v + ω2v = 0 in D,

v
∣∣
− − v

∣∣
+
= f ,

∂v

∂ν

∣∣
− − ∂v

∂ν

∣∣
+
= g on ∂Ω,

v
∣∣
− − v

∣∣
+
= 0,

∂v

∂ν̃

∣∣
− − ∂v

∂ν

∣∣
+
= 0 on ∂D,

with the radiation condition. This problem has a unique solution. See [306, Chap-
ter 3]. It is easily checked that both v and ṽ defined by

v(x) =

{
u(x), x ∈ Ω,

0, x ∈ Rd \ Ω,
and

ṽ(x) =




H(x) + SωD[ψ](x), x ∈ Rd \

(
D ∪ ∂Ω

)
,

S̃ωD[φ](x), x ∈ D,

are solutions to (2.400). Hence v = ṽ, which concludes the proof of the theorem. �

2.15.5. Eigenvalue Characterization. Let κ be an eigenvalue of −Lλ,µ in
Ω with the Neumann condition on ∂Ω and let u denote an eigenfunction associated
with κ; i.e.,

(2.401)




Lλ,µu+ κu = 0 in Ω,

∂u

∂ν
= 0 on ∂Ω.

We note that since−Lλ,µ is elliptic, it has discrete eigenvalues of finite multiplicities.
The following proposition from [306, Chapter 7] is of importance to us.

Proposition 2.126 (Eigenvalue characterization). The necessary and suffi-
cient condition for (2.401) to have a nontrivial solution is that κ is nonnegative
and

√
κ coincides with one of the characteristic values of (1/2) I − KωΩ. If κ = ω2

0

is an eigenvalue of (2.401) with multiplicity m, then
(
(1/2) I − Kω0

Ω

)
[φ] = 0 has

m linearly independent solutions. Moreover, for every eigenvalue κ > 0,
√
κ is a

simple pole of the operator-valued function ω 7→ ((1/2) I −KωΩ)−1.

2.15.6. Neumann Function. Let 0 ≤ κ1 ≤ κ2 ≤ . . . be the eigenvalues of
−Lλ,µ in Ω with the Neumann condition on ∂Ω. For ω /∈ {√κj}j≥1, let Nω

Ω(x, z)

be the Neumann function for Lλ,µ + ω2 in Ω corresponding to a Dirac mass at z.
That is, Nω

Ω is the solution to

(2.402)




(Lλ,µ + ω2)Nω

Ω(x, z) = −δz(x)I, x ∈ Ω,

∂Nω
Ω

∂ν
(x, z) = 0, x ∈ ∂Ω.

Then the following relation, which can be proved similarly to (2.183), holds (see
[44]):

(2.403)
(
− 1

2
I+KωΩ

)
[Nω

Ω(·, z)](x) = Γω(x, z), x ∈ ∂Ω, z ∈ Ω.
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Let (uj)j≥1 denote the set of orthogonal eigenfunctions associated with (κj)j≥1,
with ‖uj‖L2(Ω) = 1. Then we have the following spectral decomposition:

(2.404) Nω
Ω(x, z) =

+∞∑

j=1

uj(x)uj(z)
t

κj − ω2
.

Here we regard uj as a column vector, and hence uj(x)uj(z)
t is a d × d matrix-

valued function. We refer the reader to [413] for a proof of (2.404).

2.15.7. Dirichlet Function. Now we turn to the properties of the Dirichlet
function. Let 0 ≤ τ1 ≤ τ2 ≤ . . . be the eigenvalues of −Lλ,µ in Ω with the Dirichlet
condition on ∂Ω. For ω /∈ {√τj}j≥1, let Gω

Ω(x, z) be the Dirichlet function for

Lλ,µ + ω2 in Ω corresponding to a Dirac mass at z. That is, for z ∈ Ω, Gω
Ω(·, z) is

the matrix-valued solution to

(2.405)

{
(Lλ,µ + ω2)Gω

Ω(x, z) = −δz(x)I, x ∈ Ω,

Gω
Ω(x, z) = 0, x ∈ ∂Ω.

Then for any x ∈ ∂Ω, and z ∈ Ω we can prove in the same way as (2.403) that

(2.406)
(1
2
I+ (KωΩ)∗

)
[
∂Gω

Ω

∂ν
(·, z)](x) = −∂Γ

ω

∂ν
(x, z).

Moreover, we mention the following important properties of Gω
Ω:

(i) Let (vj)j≥1 denote the set of orthogonal eigenvectors associated with
(τj)j≥1, with ‖vj‖L2(Ω) = 1. Then we have the following spectral de-
composition:

(2.407) Gω
Ω(x, z) =

+∞∑

j=1

vj(x)vj(z)
t

τj − ω2
.

(ii) For x ∈ ∂Ω, z ∈ Ω, y ∈ ∂B, and ǫ→ 0,

(2.408) Gω
Ω(x, ǫy + z) =

+∞∑

|β|=0

1

β!
ǫ|β|∂βzG

ω
Ω(x, z)y

β .

2.15.8. Neumann-Poincaré Operator. The Neumann-Poincaré operator
for the Lamé system K0

Ω is defined by (2.382) for ω = 0. It is connected to Lλ,µ in
the following way. The Dirichlet boundary value problem for the Lamé system

(2.409)

{
Lλ,µu = 0 in Ω,

u = g on ∂Ω,

can be solved by using the double layer potential u = D0
Ω[f ] and finding the solution

of the integral equation

(2.410)

(
1

2
I +K0

Ω

)
[f ] = g on ∂Ω.

In this subsection, we show that K0
Ω can be realized as a self-adjoint operator

on H1/2(∂Ω)d by introducing a new inner product in a way parallel to the case
of the Laplace operator. But, there is a significant difference between Neumann-
Poincaré operators for the Laplace operator and the Lamé operator. The Neumann-
Poincaré operator for the Lamé operator is not compact even if the domain has a
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smooth boundary, which means that we cannot infer directly that the Neumann-
Poincaré operator has point spectrum (eigenvalues). However, it can be shown that
the elasto-static Neumann-Poincaré operator on planar domains with C1,η, η > 0,
boundaries has only point spectrum. In fact, for d = 2, one can show that on such
domains [85]

(2.411) (K0
Ω)

2 − (
µ

2(2µ+ λ)
)2I is compact.

As an immediate consequence of (2.411), it follows that the spectrum of K0
Ω

consists of eigenvalues which accumulate at ±µ/(2(2µ+ λ)). We then explicitly
compute eigenvalues of K0

Ω on disks and ellipses. It turns out that ±µ/(2(2µ+ λ))
are eigenvalues of infinite multiplicities (there are two other eigenvalues of finite
multiplicities) on disks, while on ellipses ±µ/(2(2µ+ λ)) are accumulation points
of eigenvalues, but not eigenvalues, and the rates of convergence to ±µ/(2(2µ+ λ))
are exponential.

Let

(2.412) H∗
Ψ(∂Ω) :=

{
f ∈ H−1/2(∂Ω)d : 〈ψ, f〉1/2,−1/2 = 0 for all ψ ∈ Ψ

}
,

where Ψ is defined by (2.383).
The following lemma collects some facts to be used in the sequel, proofs of

which can be found in [169, 187, 356].

Lemma 2.127. (i) K0
Ω is bounded on H1/2(∂Ω)d, and (K0

Ω)
∗ is on H−1/2(∂Ω)d.

(ii) The spectrum of (K0
Ω)

∗ on H−1/2(∂Ω)d lies in (−1/2, 1/2].
(iii) (1/2)I − (K0

Ω)
∗ is invertible on H∗

Ψ(∂Ω).

(iv) S0
Ω as an operator defined on ∂Ω is bounded from H−1/2(∂Ω)d into H1/2(∂Ω)d.

(v) S0
Ω : H−1/2(∂Ω)d → H1/2(∂Ω)d is invertible in three dimensions.

In two dimensions S0
Ω may not be invertible. In fact, there is a bounded domain

∂Ω on which S0
Ω[ϕ] = 0 on ∂Ω for some ϕ 6= 0.

Lemma 2.128. Ψ is the eigenspace of K0
Ω on H1/2(∂Ω)d corresponding to 1/2.

Proof. Let f ∈ Ψ. Then f = v|∂Ω where v satisfies Lλ,µv = 0 in Ω and
∂v/∂ν = 0 on ∂Ω. So, we have for x ∈ Rd \ Ω

D0
Ω[f ](x) =

∫

∂Ω

∂Γ0

∂ν(y)
(x− y)f(y)dσ(y)

=

∫

∂Ω

[
∂Γ0

∂ν(y)
(x− y)v(y)− Γ0(x− y)

∂v

∂ν(y)

]
dσ(y) = 0.

So we infer from (2.381) that

(2.413) K0
Ω[f ] =

1

2
f .

Conversely, if (2.413) holds, then we have from (2.381) that D0
Ω[f ]|− = f and

D0
Ω[f ](x) = 0 for x ∈ Rd \ Ω. So ∂D0

Ω[f ]/∂ν|− = ∂D0
Ω[f ]/∂ν|+ = 0. It implies that

f ∈ Ψ. This completes the proof. �

Let Nd := d(d+1)
2 , which is the dimension of Ψ. Let {f (j)}Nd

j=1 be a basis of Ψ
such that

(2.414) 〈f (i), f (j)〉1/2,−1/2 = δij ,
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where δij is the Kronecker’s delta. Since ∂S0
Ω[f

(j)]/∂ν|− ∈ H∗
Ψ and 1/2I − (K0

Ω)
∗

is invertible on H∗
Ψ, there is a unique ϕ̃(j) ∈ H∗

Ψ such that
(
1

2
I − (K0

Ω)
∗
)
[ϕ̃(j)] =

∂

∂ν
S0
Ω[f

(j)]|− =

(
−1

2
I + (K0

Ω)
∗
)
[f (j)].

Define ϕ(j) := ϕ̃(j) + f (j). Then, we have

(2.415) (K0
Ω)

∗[ϕ(j)] =
1

2
ϕ(j).

Moreover, we have

(2.416) 〈f (i), ϕ(j)〉1/2,−1/2 = 〈f (i), ϕ̃(j)〉1/2,−1/2 + 〈f (i), f (j)〉1/2,−1/2 = δij ,

which, in particular, implies that the ϕ(j)’s are linearly independent.
Let

(2.417) W := span
{
ϕ(1), . . . , ϕ(Nd)

}
,

and let

(2.418) HW := {f ∈ H1/2(∂Ω)d : 〈f , ϕ〉1/2,−1/2 = 0 for all ϕ ∈W}.
Lemma 2.129. The following results hold.

(i) Each ϕ ∈ H−1/2(∂Ω)d is uniquely decomposed as

(2.419) ϕ = ϕ′ + ϕ′′ := ϕ′ +
Nd∑

j=1

〈f (j), ϕ〉1/2,−1/2ϕ
(j),

and ϕ′ ∈ H∗
Ψ.

(ii) Each f ∈ H1/2(∂Ω)d is uniquely decomposed as

(2.420) f = f ′ + f ′′ := f ′ +
Nd∑

j=1

〈f , ϕ(j)〉1/2,−1/2f
(j),

and f ′ ∈ HW .
(iii) S0

Ω maps W into Ψ, and H∗
Ψ into HW .

(iv) W is the eigenspace of (K0
Ω)

∗ corresponding to the eigenvalue 1/2.

Proof. For ϕ ∈ H−1/2(∂Ω)d, and let ϕ′′ be as in (2.419). Then, one can
immediately see from (2.416) that 〈f (j), ϕ′〉1/2,−1/2 = 0 for all j, and hence ϕ′ ∈ H∗

Ψ.
Uniqueness of the decomposition can be proved easily. (ii) can be proved similarly.

Thanks to (2.415) we have ∂S0
Ω[ϕ

(j)]/∂ν|− = 0, and so S0
Ω[ϕ

(j)]|∂Ω ∈ Ψ. If
ϕ ∈ H∗

Ψ, then

〈S0
Ω[ϕ], ϕ

(j)〉1/2,−1/2 = 〈S0
Ω[ϕ

(j)], ϕ〉1/2,−1/2 = 0

for all j. So, S0
Ω maps H∗

Ψ into HW . This proves (iii).
Suppose that (K0

Ω)
∗[ϕ] = 1/2ϕ and that ϕ admits the decomposition (2.419).

Then (K0
Ω)

∗[ϕ′] = 1/2ϕ′. So we have from (iii) that S0
Ω[ϕ

′] ∈ Ψ, and hence
〈S0

Ω[ϕ
′], ϕ′〉1/2,−1/2 = 0. Since

∫
∂Ω
ϕ′dσ = 0, we have from (2.380)

−〈S0
Ω[ϕ

′], ϕ′〉1/2,−1/2 = 〈S0
Ω[ϕ

′],
∂

∂ν
S0
Ω[ϕ

′]|−〉1/2,−1/2 − 〈S0
Ω[ϕ

′],
∂

∂ν
S0
Ω[ϕ

′]|+〉1/2,−1/2

=

∫

Ω

C∇sS0
Ω[ϕ

′] : ∇sS0
Ω[ϕ

′] dx+

∫

Rd\Ω
C∇sS0

Ω[ϕ
′] : ∇sS0

Ω[ϕ
′] dx,(2.421)
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where C defined by (2.371) is the elasticity tensor associated with (λ, µ) and A :

B =
∑d
i,j=1 aijbij for matrices A = (aij) and B = (bij). So S0

Ω[ϕ
′] ∈ Ψ. Thus we

have ϕ′ = ∂
∂νS0

Ω[ϕ
′]|+ − ∂

∂νS0
Ω[ϕ

′]|− = 0, and hence ϕ ∈ W . Thus (iv) is proved.
This completes the proof. �

2.15.9. Symmetrization of the Neumann-Poincaré Operator. In this
subsection we introduce a new inner product on H−1/2(∂Ω)d (and H1/2(∂Ω)d)
which makes the Neumann-Poincaré operator operator (K0

Ω)
∗ self-adjoint.

In three dimensions, S0
Ω[ϕ](x) = O(|x|−1) as |x| → ∞. Using this fact, one can

show that −S0
Ω is positive-definite. In fact, similarly to (2.421) we obtain

(2.422)

−〈S0
Ω[ϕ], ϕ〉1/2,−1/2 =

∫

Ω

C∇sS0
Ω[ϕ] : ∇sS0

Ω[ϕ] dx+

∫

R3\Ω
C∇sS0

Ω[ϕ] : ∇sS0
Ω[ϕ] dx ≥ 0.

If 〈S0
Ω[ϕ],ϕ〉1/2,−1/2 = 0, then S0

Ω[ϕ] belongs to Ψ. Thus we haveϕ = ∂S0
Ω[ϕ]/∂ν|+−

∂S0
Ω[ϕ]/∂ν|− = 0. So, if we define

(2.423) 〈ϕ,ψ〉H∗ := −〈S0
Ω[ϕ],ϕ〉1/2,−1/2,

it is an inner product on H−1/2(∂Ω)3.
In two dimensions, the same argument shows that −S0

Ω is positive-definite on
H∗

Ψ. In fact, if ϕ ∈ H∗
Ψ, then S0

Ω[ϕ](x) = O(|x|−1) as |x| → ∞, and hence we can
apply the same argument as in three dimensions. However, −S0

Ω may fail to be
positive on W : if Ω is the disk of radius r (centered at 0), then we have

(2.424) S0
Ω[c](x) =

[
α1r ln r −

α2r

2

]
c for x ∈ Ω.

for any constant vector c = (c1, c2)
t. It shows that −S0

Ω can be positive or negative
depending on r. To see (2.424), we note that

S0
Ω[c]i(x) =

α1ci
2π

∫

∂Ω

ln |x− y|dσ(y)− α2

2π

2∑

j=1

cj

∫

∂Ω

(x− y)i(x− y)j
|x− y|2 dσ(y)

= α1ciS[1](x)− α2

(
xic · ∇S[1](x)− c · ∇S[yi](x)

)
,

where S is the electro-static single layer potential, namely,

(2.425) S[f ](x) = 1

2π

∫

∂Ω

ln |x− y|f(y) dσ(y).

It is known (see [31]) that S[1](x) = r ln r and S[yi](x) = − rxi

2 for x ∈ Ω. So we
have (2.424).

We introduce a variance of S0
Ω in two dimensions. For ϕ ∈ H−1/2(∂Ω)2, define

using the decomposition (2.419)

(2.426) S̃0
Ω[ϕ] := S0

Ω[ϕ
′] +

3∑

j=1

〈f (j),ϕ〉1/2,−1/2f
(j).

We emphasize that S̃0
Ω[ϕ] = S0

Ω[ϕ] for all ϕ ∈ H∗
Ψ and S̃0

Ω[ϕ
(j)] = f (j), j = 1, 2, 3.

In view of (2.416) and Lemma 2.129 (iii), we have

(2.427) − 〈S̃0
Ω[ϕ],ϕ〉1/2,−1/2 = −〈S0

Ω[ϕ
′],ϕ′〉1/2,−1/2 +

3∑

j=1

|〈f (j),ϕ〉1/2,−1/2|2.



148 2. LAYER POTENTIALS

So, −S̃0
Ω is positive-definite on H−1/2(∂Ω)2. In fact, since −〈S0

Ω[ϕ
′],ϕ′〉1/2,−1/2 ≥

0, we have−〈S̃0
Ω[ϕ],ϕ〉1/2,−1/2 ≥ 0. If−〈S̃0

Ω[ϕ],ϕ〉1/2,−1/2 = 0, then−〈S0
Ω[ϕ

′],ϕ′〉1/2,−1/2 =

0 and
∑3
j=1 |〈f (j),ϕ〉1/2,−1/2|2 = 0. So, ϕ′ = 0 and 〈f (j),ϕ〉1/2,−1/2 = 0 for all j,

and hence ϕ = 0.

Let us also denote S0
Ω in three dimensions by S̃0

Ω for convenience. Define

(2.428) 〈ϕ,ψ〉H∗ := −〈S̃0
Ω[ψ],ϕ〉1/2,−1/2, ϕ,ψ ∈ H−1/2(∂Ω)d.

Proposition 2.130. 〈·, ·〉H∗ is an inner product on H−1/2(∂Ω)d. The norm
induced by 〈·, ·〉H∗ , denoted by ‖ · ‖∗, is equivalent to the H−1/2-norm.

Proof. Positive-definiteness of−S̃0
Ω implies that S̃0

Ω : H−1/2(∂Ω)d → H1/2(∂Ω)d

is bijective. So, we have

‖ϕ‖−1/2 ≈ ‖S̃0
Ω[ϕ]‖1/2.

Here and throughout this chapter A . B means that there is a constant C such
that A ≤ CB, and A ≈ B means A . B and B . A. It then follows from the
definition (2.428) that

|〈ϕ,ϕ〉H∗ | ≤ ‖ϕ‖H−1/2‖S̃0
Ω[ϕ]‖1/2 . ‖ϕ‖2H−1/2 .

We have from the Cauchy Schwarz inequality

|〈S̃0
Ω[ψ],ϕ〉1/2,−1/2| = |〈ϕ,ψ〉H∗ | ≤ ‖ϕ‖H∗‖ψ‖H∗ . ‖ϕ‖H∗‖S̃0

Ω[ψ]‖H1/2 .

So we have

‖ϕ‖−1/2 = sup
ψ 6=0

|〈S̃0
Ω[ψ],ϕ〉1/2,−1/2|
‖S̃0

Ω[ψ]‖1/2
. ‖ϕ‖∗.

This completes the proof. �

We may define a new inner product on H1/2(∂Ω)d by
(2.429)

〈f ,g〉H := 〈(S̃0
Ω)

−1[f ], (S̃0
Ω)

−1[g]〉H∗ = −〈g, (S̃0
Ω)

−1[f ]〉1/2,−1/2, f ,g ∈ H1/2(∂Ω)d.

Proposition 2.131. 〈·, ·〉H is an inner product on H1/2(∂Ω)d. The norm

induced by 〈·, ·〉, denoted by ‖ · ‖H, is equivalent to ‖ · ‖H1/2 . Moreover, S̃0
Ω is

an isometry between H−1/2(∂Ω)d and H1/2(∂Ω)d.

As for the Laplace operator, the Neumann-Poincaré operator (K0
Ω)

∗ associated

to the Lamé system can be realized as a self-adjoint operator on H−1/2(∂Ω)d using
Plemelj’s symmetrization principle which states that

(2.430) S0
Ω(K0

Ω)
∗ = K0

ΩS0
Ω.

This relation is a consequence of the Green’s formula. In fact, if Lλ,µu = 0 in Ω,
then we have for x ∈ Rd \ Ω

S0
Ω

[
∂u

∂ν
|−
]
(x)−D0

Ω[u|−](x) = 0.

Substituting u(x) = S0
Ω[ϕ](x) for some ϕ ∈ H−1/2(∂Ω)d into the above relation

yields

S0
Ω

(
−1

2
I + (K0

Ω)
∗
)
[ϕ](x) = D0

ΩS0
Ω[ϕ](x), x ∈ Rd \ Ω.
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Letting x approach to ∂Ω, we have from (2.381)

S0
Ω

(
−1

2
I + (K0

Ω)
∗
)
[ϕ](x) =

(
−1

2
I +K0

Ω

)
S0
Ω[ϕ](x), x ∈ ∂Ω.

So we have (2.430).

The relation (2.430) holds with S0
Ω replaced by S̃0

Ω, namely,

(2.431) S̃0
Ω(K0

Ω)
∗ = K0

ΩS̃0
Ω.

In fact, if ϕ ∈W , then (K0
Ω)

∗[ϕ] = 1/2ϕ and S̃0
Ω[ϕ] ∈ Ψ. So, we have

S̃0
Ω(K0

Ω)
∗[ϕ] = K0

ΩS̃0
Ω[ϕ].

This proves (2.431).

Proposition 2.132. The Neumann-Poincaré operators (K0
Ω)

∗ and K0
Ω are self-

adjoint with respect to 〈·, ·〉H∗ and 〈·, ·〉H, respectively.

Proof. According to (2.431), we have

〈ϕ, (K0
Ω)

∗[ψ]〉H∗ = −〈S̃0
Ω(K0

Ω)
∗[ψ],ϕ〉1/2,−1/2 = −〈K0

ΩS̃0
Ω[ψ],ϕ〉1/2,−1/2

= −〈S̃0
Ω[ψ], (K0

Ω)
∗[ϕ]〉1/2,−1/2 = 〈(K0

Ω)
∗[ϕ],ψ〉H∗ .

So (K0
Ω)

∗ is self-adjoint. That K0
Ω is self-adjoint can be proved similarly. �

2.15.10. Spectrum of the Neumann-Poincaré Operators on Smooth
Planar Domains. In this subsection we prove (2.411) when ∂Ω is C1,η for some
η > 0. For that purpose we look into K0

Ω in more explicit form. The definition
(2.379) and straightforward computations show that

(2.432)
∂

∂ν(y)
Γ0(x− y) =

µ

2µ+ λ
K1(x, y)−K2(x, y),

where

K1(x, y) =
ny(x− y)t − (x− y)nty

ωd|x− y|d ,(2.433)

K2(x, y) =
µ

2µ+ λ

(x− y) · ny
ωd|x− y|d I+

2(µ+ λ)

2µ+ λ

(x− y) · ny
ωd|x− y|d+2

(x− y)(x− y)t,(2.434)

where ωd is 2π if d = 2 and 4π if d = 3, and I is the d× d identity matrix. Let

(2.435) Tj [ϕ](x) := p.v.

∫

∂Ω

Kj(x, y)ϕ(y) dσ(y), x ∈ ∂Ω, j = 1, 2,

so that

(2.436) K0
Ω =

µ

2µ+ λ
T1 −T2.

Note that each term of K2 has the term (x− y) ·Ny. Since ∂Ω is C1,η, we have

|(x− y) ·Ny| ≤ C|x− y|1+η

for some constant C because of orthogonality of x− y and Ny. So we have

|K2(x, y)| ≤ C|x− y|−d+1+α.

So T2 is compact on H1/2(∂Ω)d (see, for example, [217]), and T1 is responsible for
non-compactness of K.
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2.15.11. Compactness of (K0
Ω)

2 − (µ/(2(2µ+ λ)))2I and Spectrum.

Proposition 2.133. Let Ω be a bounded C1,η domain in R2 for some η > 0.
Then (K0

Ω)
2 − (µ/(2(2µ+ λ)))2I is compact on H1/2(∂Ω)2.

Proof. In view of (2.436), it suffices to show that T2
1 − 1

4I is compact.
In two dimensions we have

K1(x, y) =
1

2π|x− y|2
[

0 K(x, y)
−K(x, y) 0

]
,

where
K(x, y) := −n2(y)(x1 − y1) + n1(y)(x2 − y2).

Let

(2.437) R[ϕ](x) =
1

2π
p.v.

∫

∂Ω

K(x, y)

|x− y|2ϕ(y) dσ(y).

Then we have

(2.438) T1[ϕ] =

[
R[ϕ2]
−R[ϕ1]

]
.

For x ∈ ∂Ω, set Ωǫ := Ω \ Bǫ(x) where Bǫ(x) is the disk of radius ǫ centered
at x. For ϕ ∈ H1/2(∂Ω), let u be the solution to ∆u = 0 in Ω with u = ϕ on ∂Ω.
Since

∇×
( x− y

|x− y|2
)
= 0, x 6= y,

we obtain from Stokes’ formula

R[ϕ](x) = lim
ǫ→0

1

2π

∫

∂Ωǫ

−(x1 − y1)n2(y) + (x2 − y2)n1(y)

|x− y|2 ϕ(y) dσ(y)

= lim
ǫ→0

1

2π

∫

Ωǫ

−(x1 − y1)∂2u(y) + (x2 − y2)∂1u(y)

|x− y|2 dy.

Let v be a harmonic conjugate of u in Ω and ψ := v|∂Ω so that

(2.439) ψ = T [ϕ],

where T is the Hilbert transformation on ∂Ω. Then we have from the divergence
theorem

R[ϕ](x) = lim
ǫ→0

1

2π

∫

Ωǫ

(x1 − y1)∂1v(y) + (x2 − y2)∂2v(y)

|x− y|2 dy

= lim
ǫ→0

1

2π

∫

∂Ωǫ

(x− y) ·Ny
|x− y|2 ψ(y) dσ(y).

Observe that
1

2π

∫

∂Ωǫ

(x− y) ·Ny
|x− y|2 ψ(y) dσ(y)

is the electro-static double layer potential of y, and x /∈ Ωǫ. So by the jump formula
of the the double layer potential (see [217]), we have

lim
ǫ→0

1

2π

∫

∂Ωǫ

(x− y) ·Ny
|x− y|2 ψ(y) dσ(y) = −1

2
ψ(x) +K[ψ](x),

where

(2.440) K[ψ](x) :=
1

2π

∫

∂Ω

(x− y) ·Ny
|x− y|2 ψ(y) dσ(y), x ∈ ∂Ω.
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It is worth mentioning that K is the electro-static Neumann-Poincaré operator.
So far we have shown that

(2.441) R[ϕ] = −1

2
T [ϕ] +KT [ϕ].

Since T is bounded and K is compact on H1/2(∂Ω), we have

(2.442) R = −1

2
T + compact operator.

Since T 2 = −I, we infer that R2+ 1
4I is compact, and so is T2

1− 1
4I. This completes

the proof. �

Since (K0
Ω)

2 − (µ/(2(2µ+ λ)))2I is compact and self-adjoint, it has eigenval-
ues converging to 0. The proof of Proposition 2.133 shows that neither K0

Ω −
(µ/(2(2µ+ λ)))I nor K0

Ω+(µ/(2(2µ+ λ)))I is compact, so we obtain the following
theorem.

Theorem 2.134. Let Ω be a bounded domain in R2 with C1,η boundary for
some η > 0.

(i) The spectrum of K0
Ω on H1/2(∂Ω)2 consists of eigenvalues accumulating

at ±µ/(2(2µ+ λ)), and their multiplicities are finite if they are not equal
to µ/(2(2µ+ λ)) or −µ/(2(2µ+ λ)).

(ii) The spectrum of (K0
Ω)

∗ on H−1/2(∂Ω)2 is the same as that of K0
Ω on

H1/2(∂Ω)2.
(iii) The set of linearly independent eigenfunctions of K0

Ω makes a complete

orthogonal system of H1/2(∂Ω)2.

(iv) ϕ is an eigenfunction of (K0
Ω)

∗ on H−1/2(∂Ω)2 if and only if S̃0
Ω[ϕ] is an

eigenfunction of K0
Ω on H1/2(∂Ω)2.

2.15.12. Spectral Expansion of the Fundamental Solution. Let {ψj}
be a complete orthonormal (with respect to the inner product 〈·, ·〉H∗) system of
H∗

Ψ consisting of eigenfunctions of (K0
Ω)

∗ on ∂Ω in two dimensions. Then they,

together with ϕ(j), j = 1, 2, 3, defined in Subsection 2.15.9, make an orthonormal
system of H−1/2(∂Ω)d. Then by Theorem 2.134 (iv) {S0

Ω[ψj ]} together with f (i)

is a complete orthonormal system of H1/2(∂Ω)d with respect to the inner product
〈·, ·〉H.

Let Γ0(x−y) be the Kelvin matrix defined in (2.376). If x ∈ R2\Ω and y ∈ ∂Ω,
then there are (column) vector-valued functions aj and bi such that

(2.443) Γ0(x− y) =

∞∑

j=1

aj(x)S0
Ω[ψj ](y)

t +

3∑

i=1

bi(x)f
(i)(y)t.

It then follows that

∫

∂Ω

Γ0(x− y)ψl(y) dσ(y) =

∞∑

j=1

aj(x)〈S0
Ω[ψj ], ψl〉1/2,−1/2 +

3∑

i=1

bi(x)〈f (i), ψl〉1/2,−1/2

= −
∞∑

j=1

aj(x)〈ψj , ψl〉H∗ +

3∑

i=1

bi(x)〈ϕ(i), ψl〉H∗ = −al(x).
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In other words, we obtain al(x) = −S0
Ω[ψl](x). Likewise one can show bi(x) =

S̃0
Ω[ϕ

(i)](x). So, we obtain

Γ0(x−y) = −
∞∑

j=1

S0
Ω[ψj ](x)S0

Ω[ψj ](y)
t+

3∑

i=1

S̃0
Ω[ϕ

(i)](x)f (i)(y)t, x ∈ R2\Ω, y ∈ ∂Ω.

Since both sides of the above are solutions of the Lamé equation in y for a fixed x,
we obtain the following theorem from the uniqueness of the solution to the Dirichlet
boundary value problem.

Theorem 2.135 (expansion in 2D). Let Ω be a bounded domain in R2 with
C1,η boundary for some η > 0 and let {ψj} be a complete orthonormal system of

H∗
Ψ consisting of eigenfunctions of (K0

Ω)
∗. Let Γ0(x − y) be the Kelvin matrix of

the fundamental solution to the Lamé system. It holds that
(2.444)

Γ0(x−y) = −
∞∑

j=1

S0
Ω[ψj ](x)S0

Ω[ψj ](y)
t+

3∑

i=1

S̃0
Ω[ϕ

(i)](x)f (i)(y)t, x ∈ R2\Ω, y ∈ Ω.

In three dimensions one can prove the following theorem similarly. We empha-
size that it has not been proven that the Neumann-Poincaré operator on smooth
domains has a discrete spectrum.

Theorem 2.136 (expansion in 3D). Let Ω be a bounded domain in R3. Suppose
that the Neumann-Poincaré operator (K0

Ω)
∗ admits eigenfunctions {ψj} which form

a complete orthonormal system of H−1/2(∂Ω)d. It holds that

(2.445) Γ0(x− y) = −
∞∑

j=1

S0
Ω[ψj ](x)S0

Ω[ψj ](y)
t, x ∈ R3 \ Ω, y ∈ Ω.

Theorems 2.135 and 2.136 extend formula (2.32) to the Kelvin matrix of the
fundamental solution to the Lamé system. Using explicit forms of eigenfunctions to
be derived in the next subsection, one can compute in two dimensions the expansion
formula on disks and ellipses explicitly.

2.15.13. Spectrum of the Neumann-Poincaré Operator on Disks and
Ellipses. In this subsection we write down spectrum of the Neumann-Poincaré
operator on disks and ellipses. Detailed derivation of the spectrum is presented in
[85].

Suppose that Ω is a disk. The spectrum of (K0
Ω)

∗ is as follows:

Eigenvalues:

(2.446)
1

2
, − λ

2(2µ+ λ)
, ±µ/(2(2µ+ λ)).

It is worth mentioning that the second eigenvalue above is less than 1/2 in absolute
value because of the strong convexity condition (2.368).

Eigenfunctions:

(i) 1/2:

(2.447) (1, 0)t, (0, 1)t, (y,−x)t,
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(ii) − λ
2(2µ+λ) :

(2.448) (x, y)t,

(iii) µ/(2(2µ+ λ)):

(2.449)

[
cosmθ
sinmθ

]
,

[
− sinmθ
cosmθ

]
, m = 2, 3, . . . ,

(iv) −µ/(2(2µ+ λ)):

(2.450)

[
cosmθ
− sinmθ

]
,

[
sinmθ
cosmθ

]
, m = 1, 2, . . . .

We emphasize that these eigenfunctions are not normalized.

We now describe eigenvalues and eigenfunctions on ellipses. Suppose that Ω is
an ellipse of the form

(2.451)
x21
a2

+
x22
b2

< 1, a ≥ b > 0.

Set R :=
√
a2 − b2. Then the elliptic coordinates (ρ, ω) are defined by

(2.452) x1 = R cosh ρ cosω, x2 = R sinh ρ sinω, ρ ≥ 0, 0 ≤ ω ≤ 2π,

in which the ellipse Ω is given by ∂Ω = {(ρ, ω) : ρ = ρ0}, where ρ0 is defined to be
a = R cosh ρ0 and b = R sinh ρ0. Define

(2.453) h0(ω) := R

√
sinh2 ρ0 + sin2 ω.

To make expressions short we set

(2.454) q := (λ+ µ) sinh 2ρ0

and

(2.455) γ±n :=
√
e4nρ0µ2 + (λ+ µ)(λ+ 3µ) + nq(±2e2nρ0µ+ nq).

The spectrum of (K0
Ω)

∗ is as follows

Eigenvalues:

(2.456)
1

2
, kj,n, j = 1, . . . , 4,

where

k1,n =
e−2nρ0

2(λ+ 2µ)
(−qn+ γ−n ), n ≥ 1,

k2,n =
e−2nρ0

2(λ+ 2µ)
(qn+ γ+n ), n ≥ 2,

k3,n =
e−2nρ0

2(λ+ 2µ)
(−qn− γ−n ), n ≥ 1,

k4,n =
e−2nρ0

2(λ+ 2µ)
(qn− γ+n ), n ≥ 1.

(2.457)

Eigenfunctions:

(i) 1/2:

(2.458)
1

h0(ω)

[
1
0

]
,

1

h0(ω)

[
0
1

]
,

1

h0(ω)

[(
(λ+ µ)e−2ρ0 − (λ+ 3µ)

)
sinω(

(λ+ µ)e−2ρ0 + (λ+ 3µ)
)
cosω

]
,
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(ii) kj,n, j = 1, 2, 3, 4:

ϕ1,n = ψ1,n +
pn

(µ/(2(2µ+ λ))) + k1,n
ψ3,n, n ≥ 1,

ϕ2,n = ψ2,n +
pn

(µ/(2(2µ+ λ))) + k2,n
ψ4,n, n ≥ 2,

ϕ3,n =
(µ/(2(2µ+ λ))) + k3,n

pn
ψ1,n +ψ3,n, n ≥ 1,

ϕ4,n =
(µ/(2(2µ+ λ))) + k4,n

pn
ψ2,n +ψ4,n, n ≥ 1,

(2.459)

where

(2.460) pn =

(
1

2
− (µ/(2(2µ+ λ)))

)
e−2nρ0 ,

and

ψ1,n(ω) =
1

h0(ω)

[
cosnω
sinnω

]
, ψ2,n(ω) =

1

h0(ω)

[
− sinnω
cosnω

]
,

ψ3,n(ω) =
1

h0(ω)

[
cosnω
− sinnω

]
, ψ4,n(ω) =

1

h0(ω)

[
sinnω
cosnω

]
.

(2.461)

A remark on k2,1 in (2.457) is in order. It is given by

k2,1 =
e−2ρ0

2(λ+ 2µ)
(q + γ+1 ),

where
γ+1 :=

√
e4ρ0µ2 + (λ+ µ)(λ+ 3µ) + q(2e2ρ0µ+ q).

Since

µ2e4ρ0 + (λ+ µ)(λ+ 3µ) + q(2e2ρ0µ+ q) =
1

4

[
(λ+ 3µ)e2ρ0 + (λ+ µ)e−2ρ0

]2
,

we have λ2,1 = 1
2 and the corresponding eigenfunction is

ϕ2,1 = h−1
0 (ω)

[(
(λ+ µ)e−2ρ0 − (λ+ 3µ)

)
sinω(

(λ+ µ)e−2ρ0 + (λ+ 3µ)
)
cosω

]
.

So it is listed as an eigenfunction for 1/2.
Let us now look into the asymptotic behavior of eigenvalues as n → ∞. One

can easily see from the definition (2.455) that

γ±n = µe2nρ0 ± qn∓ (λ+ µ)(λ+ 3µ)q

2µ2
ne−2nρ0 + e−2nρ0O(1),

where O(1) indicates constants bounded independently of n. So one infer from
(2.457) that

k1,n =
µ

2(2µ+ λ)
− q

λ+ 2µ
ne−2nρ0 + n2e−4nρ0O(1),

k2,n =
µ

2(2µ+ λ)
+

q

λ+ 2µ
ne−2nρ0 + n2e−4nρ0O(1),

k3,n = − µ

2(2µ+ λ)
− (λ+ µ)(λ+ 3µ)q

4µ2 (λ+ 2µ)
ne−4nρ0 + e−4nρ0O(1),

k4,n = − µ

2(2µ+ λ)
+

(λ+ µ)(λ+ 3µ)q

4µ2 (λ+ 2µ)
ne−4nρ0 + e−4nρ0O(1),

(2.462)
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as n → ∞. In particular, we see that k1,n and k2,n converge to µ
2(2µ+λ) while k3,n

and k4,n to − µ
2(2µ+λ) as n → ∞. We emphasize that the convergence rates are

exponential.

2.15.14. The Helmholtz-Kirchhoff Identities. We now discuss the reci-
procity property and derive the Helmholtz-Kirchhoff identities for elastic media.

From now on, we set Γω(x, y) := Γω(x− y) for x 6= y.

2.15.15. Reciprocity Property and Helmholtz-Kirchhoff Identities.
An important property satisfied by the fundamental solution Γω is the reciprocity
property. If the medium is not homogeneous, then the following holds:

(2.463) Γω(y, x) = [Γω(x, y)]
t
, x 6= y.

If the medium is homogeneous, then one can see from (2.15.1) and (2.375) that
Γω(x, y) is symmetric and

(2.464) Γω(y, x) = Γω(x, y), x 6= y.

Identity (2.463) states that the nth component of the displacement at x due to
a point source excitation at y in themth direction is identical to themth component
of the displacement at y due to a point source excitation at x in the nth direction.

Proposition 2.137. Let Ω be a bounded Lipschitz domain. For all x, z ∈ Ω,
we have
(2.465)∫

∂Ω

[
∂Γω(x, y)

∂ν(y)
Γω(y, z)− Γω(x, y)

∂Γ
ω
(y, z)

∂ν(y)

]
dσ(y) = −2

√
−1ℑ{Γω(x, z)}.

Proof. Our goal is to show that for all real constant vectors p and q, we have

∫

∂Ω

[
q · ∂Γ

ω(x, y)

∂ν(y)
Γ
ω
(y, z)p− q · Γω(x, y)∂Γ

ω
(y, z)

∂ν(y)
p

]
dσ(y)

= −2
√
−1q · ℑ {Γω(x, z)}p.

Taking scalar products of equations

(Lλ,µ + ω2)Γω(y, x)q = δx(y)q and (Lλ,µ + ω2)Γ
ω
(y, z)p = δz(y)p

with Γ
ω
(y, z)p and Γω(y, x)q respectively, subtracting the second result from the

first, and integrating with respect to y over Ω, we obtain

∫

Ω

[
(Γ

ω
(y, z)p) · Lλ,µ(Γω(y, x)q)− Lλ,µ(Γω(y, z)p) · (Γω(y, x)q)

]
dy

= −p · (Γω(z, x)q) + q · (Γω(x, z)p) = −2
√
−1q · ℑ {Γω(x, z)}p,

where we have used the reciprocity relation (2.463).
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Using the form of the operator Lλ,µ, this gives

−2
√
−1q · ℑ {Γω(x, z)}p =

∫

Ω

λ

[
(Γ

ω
(y, z)p) · {∇∇ · (Γω(y, x)q)}

−(Γω(y, x)q) ·
{
∇∇ · (Γω(y, z)p)

}]
dy

+

∫

Ω

µ

[
(Γ

ω
(y, z)p) · {(∆ +∇∇·)(Γω(y, x)q)}

−(Γω(y, x)q) ·
{
(∆ +∇∇·)(Γω(y, z)p)

}]
dy.

We recall that, for two functions u,v : Rd → Rd, we have

(∆u+∇(∇ · u)) · v = 2∇ ·
[
∇suv

]
− 2∇su : ∇sv,

∇(∇ · u) · v = ∇ ·
[
(∇ · u)v

]
− (∇ · u)(∇ · v),

where ∇u = (∂jui)
d
i,j=1 and ∇s is the symmetric gradient defined by (2.370).

Therefore, we find

−2
√
−1q · ℑ {Γω(x, z)}p

=

∫

Ω

λ
[
∇ ·
{
[∇ · (Γω(y, x)q)](Γω(y, z)p)

}

−∇ ·
{
[∇ · (Γω(y, z)p)](Γω(y, x)q)

}]
dy

+

∫

Ω

µ
[
∇ ·
{(

(∇Γω(y, x)q) +∇(Γω(y, x)q)t
)
Γ
ω
(y, z)p

}

− ∇ ·
{(

∇(Γ
ω
(y, z)p+∇(Γ

ω
(y, z)p))t

)
Γω(y, x)q

}]
dy.

Now, we use the divergence theorem to get

−2
√
−1q · ℑ {Γω(x, z)}p

=

∫

∂Ω

λ
[
N ·

{
[∇ · (Γω(y, x)q)](Γω(y, z)p)

}

−N ·
{
[∇ · (Γω(y, z)p)](Γω(y, x)q)

}]
dσ(y)

+

∫

∂Ω

µ
[
N ·

{(
∇(Γω(y, x)q) + (∇(Γω(y, x)q))t

)
Γ
ω
(y, z)p

}

− N ·
{(

∇(Γ
ω
(y, z)p) + (∇(Γ

ω
(y, z)p))t

)
Γω(y, x)q

}]
dσ(y)

=

∫

∂Ω

λ
[
(Γ

ω
(y, z)p) · {∇ · (Γω(y, x)q)N}

−(Γω(y, x)q) ·
{
∇ · (Γω(y, z)p)N

}]
dσ(y)

+

∫

∂Ω

µ
[
(Γ

ω
(y, z)p) ·

{(
∇(Γω(y, x)q) + (∇(Γω(y, x)q))t

)
N
}

−(Γω(y, x)q) ·
{(

∇(Γ
ω
(y, z)p) + (∇(Γ

ω
(y, z)p))t

)
N
}]

dσ(y),
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and therefore, using the definition of the conormal derivative,

−2
√
−1q · ℑ {Γω(x, z)}p

=

∫

∂Ω

[
(Γ

ω
(y, z)p) · ∂Γ

ω(y, x)q

∂ν(y)
− (Γω(y, x)q) · ∂Γ

ω
(y, z)p

∂ν(y)

]
dσ(y)

=

∫

∂Ω

[
q · ∂Γ

ω(x, y)

∂ν(y)
Γ
ω
(y, z)p− q · Γω(x, y)∂Γ

ω
(y, z)

∂ν(y)
p

]
dσ(y),

which is the desired result. Note that for establishing the last equality we have
used the reciprocity relation (2.463). �

The proof of Proposition 2.137 uses only the reciprocity relation and the di-
vergence theorem. Consequently, Proposition 2.137 also holds in a heterogeneous
medium.

Next, we define, respectively, the Helmholtz decomposition operators Hp and
Hs for w ∈ L2(Ω)d by

(2.466) Hp [w] := ∇φw and Hs [w] := ∇×ψw,

where φw is a solution to

(2.467)

∫

Ω

∇φw · ∇p dx =

∫

Ω

w · ∇p dx ∀ p ∈ H1(Ω),

and ψw satisfy ∇×ψw = w −∇φw together with

(2.468)

{ ∇ ·ψw = 0 in Ω,

ψw ·N = (∇×ψw) ·N = 0 on ∂Ω.

The following lemma holds.

Lemma 2.138 (Properties of the Helmholtz decomposition operators). Let the
Lamé parameters (λ, µ) be constants satisfying (2.368). We have the orthogonality
relations

(2.469) HsHp = HpHs = 0.

Moreover, Hs and Hp commute with Lλ,µ: For any smooth vector field w in Ω,

(2.470) Hα[Lλ,µw] = Lλ,µHα[w], α = p, s.

Proof. We only prove (2.470). The orthogonality relations (2.469) are easy
to see. Let Hs[w] = ∇φw and let Hp[w] = ∇×ψw. Then we have

Lλ,µw = (λ+ 2µ)∇∆φw + µ∇×∆ψw,

and therefore,

Hs[Lλ,µw] = (λ+ 2µ)∇∆φw = Lλ,µHs[w],

and

Hp[Lλ,µw] = µ∇×∆ψw = Lλ,µHp[w]

as desired. �

The following proposition is an important ingredient in the analysis of elasticity
imaging.
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Proposition 2.139. Let Ω be a bounded Lipschitz domain. For all x, z ∈ Ω,
we have

(2.471)

∫

∂Ω

[
∂Γωs (x, y)

∂ν(y)
Γωp (y, z)− Γωs (x, y)

∂Γωp (y, z)

∂ν(y)

]
dσ(y) = 0.

Proof. First, we note that Γωp (y, x) and Γωs (y, x) are solutions of

(2.472) (Lλ,µ + ω2)Γωp = Hp [δ0I] and (Lλ,µ + ω2)Γωs = Hs [δ0I] .

Here,

Hp [δ0I] = ∇∇ · (Γ0I), Hs [δ0I] = ∇×∇× (Γ0I),

where Γ0 is defined by (2.2).
Then we proceed as in the proof of the previous proposition to find:

∫

∂Ω

[
∂Γωs (x, y)

∂ν(y)
Γωp (y, z)− Γωs (x, y)

∂Γωp (y, z)

∂ν(y)

]
dσ(y)

=

∫

Ω

[
Hs[δxI](y)Γωp (y, z)− Γωs (x, y)Hp[δzI](y)

]
dy

= [Hs[δ0I] ∗ Γωp (·, z)](x)− [Γωs (x, ·) ∗ Hp[δ0I]](z),

where ∗ denotes the convolution product. Using the fact that Γωp = Hp[Γω] and
(2.469) we get

Hs[Hs[δ0I] ∗ Γωp (·, z)] = 0 and Hp[Hs[δ0I] ∗ Γωp (·, z)] = 0.

Therefore, we conclude

[Hs[δ0I] ∗ Γωp (·, z)](x) = 0.

Similarly, we have

[Γωs (x, ·) ∗ Hp[δ0I]](z) = 0,

which gives the desired result. �

Finally the following proposition shows that the elastodynamic reciprocity the-
orem (Proposition 2.137) holds for each wave component in a homogeneous medium.

Proposition 2.140. Let Ω be a bounded Lipschitz domain. For all x, z ∈ Ω
and α = p, s,
(2.473)∫

∂Ω

[
∂Γωα(x, y)

∂ν(y)
Γωα(y, z)− Γωα(x, y)

∂Γωα(y, z)

∂ν(y)

]
dσ(y) = −2

√
−1ℑ{Γωα(x, z)}.

Proof. As both cases, α = p and α = s, are similar, we only provide a proof
for α = p. For α = p, we have as in the previous proof

∫

∂Ω

[
∂Γωp (x, y)

∂ν(y)
Γωp (y, z)− Γωp (x, y)

∂Γωp (y, z)

∂ν(y)

]
dσ(y)

= [Hp[δ0I] ∗ Γωp (·, z)](x)− [Γωp (x, ·) ∗ Hp[δ0I]](z).

We can write

[Hp[δ0I] ∗ Γωp (·, z)](x) = [Hp[δ0I] ∗ Γωp (·)](x− z)

and

[Γωp (x, ·) ∗ Hp[δ0I]](z) = [Γωp (·) ∗ Hp[δ0I]](z − x) = [Hp[δ0I] ∗ Γωp (·)]](x− z).
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Therefore,

∫

∂Ω

[
∂Γωp (x, y)

∂ν(y)
Γωp (y, z)− Γωp (x, y)

∂Γωp (y, z)

∂ν(y)

]
dσ(y) = −2

√
−1ℑ{Γωp (x, z)},

where the last equality results from (2.469). �

We emphasize that the proofs of Propositions 2.139 and 2.140 require the
medium to be homogeneous (so that Hs and Hp commute with Lλ,µ), and we
cannot expect these propositions to be true in a heterogeneous medium because of
mode conversion between pressure and shear waves.

2.15.16. Approximation of the Conormal Derivative. In this subsec-
tion, we derive an approximation of the conormal derivative

∂Γω(x, y)/∂ν(y), y ∈ ∂Ω, x ∈ Ω.

In general this approximation involves the angles between the pressure and shear
rays and the normal direction on ∂Ω. This approximation becomes simple when Ω is
a ball with very large radius, since in this case all rays are normal to ∂Ω (Proposition
2.141). It allows us to use a simplified version of the Helmholtz-Kirchhoff identities
in order to analyze elasticity imaging.

Proposition 2.141. If N(y) = ŷ − x (:= (y − x)/|x − y|) and |x − y| ≫ 1,
then, for α = p, s,

(2.474)
∂Γωα(x, y)

∂ν
=

√
−1ωcαΓ

ω
α(x, y) + o

(
1

|x− y|(d−1)/2

)
.

Proof. We only prove here the proposition for d = 3. The case d = 2 follows
from exactly the same arguments. Moreover, it is enough to show that for all
constant vectors q,

∂Γωα(x, y)q

∂ν
=

√
−1ωcαΓ

ω
α(x, y)q+ o

(
1

|x− y|

)
, α = p, s.

Pressure component: Recall from (2.392) that

Γωp (x, y) = − 1

ω2
DΓωp (x, y) =

1

c2p
Γωp (x, y)ŷ − x⊗ ŷ − x+ o

(
1

|x− y|

)
,

where ⊗ denotes the tensor product between vectors, so we have

Γωp (x, y)q =
1

c2p
Γωp (x, y) (ŷ − x · q) ŷ − x+ o

(
1

|x− y|

)
.
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Therefore,

∂Γωp (x, y)q

∂ν
= λ∇y ·

(
Γωp (x, y)q

)
N(y)

+µ
[
∇y(Γ

ω
p (x, y)q) + (∇y(Γ

ω
p (x, y)q))

t
]
N(y)

=
ŷ − x · q

c3p

√
−1ωΓωp (x, y)

[
λ ŷ − x · ŷ − xN + 2µ(ŷ − x⊗ ŷ − x)N

]

+o

(
1

|y − x|

)

=
ŷ − x · q

c3p

√
−1ωΓωp (x, y)

[
λN + 2µ(ŷ − x ·N)ŷ − x

]
+ o

(
1

|y − x|

)

=
ŷ − x · q

c3p

√
−1ωΓωp (x, y)

[
λ
(
N − ŷ − x

)
+ 2µ

(
(ŷ − x ·N)− 1

)
ŷ − x

]

+
√
−1ωcpΓ

ω
p (x, y)q+ o

(
1

|y − x|

)
.

In particular, when N = ŷ − x, we have

∂Γωp (x, y)q

∂ν
=

√
−1ωcpΓ

ω
p (x, y)q+ o

(
1

|y − x|

)
.

Shear components: As

Γωs (x, y) =
1

ω2

(
κ2sI+D

)
Γωs (x, y)

=
1

c2s
Γωs (x, y)

(
I− ŷ − x⊗ ŷ − x

)
+ o

(
1

|x− y|

)
,

we have

Γωs (x, y)q =
1

c2s
Γωs (x, y)

(
q−

(
ŷ − x · q

)
ŷ − x

)
+ o

(
1

|x− y|

)
.

Therefore,

∂Γωs (x, y)q

∂ν
= λ∇y · (Γωs (x, y)q)N(y) + µ [∇y(Γ

ω
s (x, y)q)

+(∇y(Γ
ω
s (x, y)q))

t
]
N(y).

Now, remark that

λ∇ · (Γωs (x, y)q)N = λ

√
−1ω

c3s
Γωs (x, y)

[(
q−

(
ŷ − x · q

)
ŷ − x

)
· ŷ − x

]
N

+o

(
1

|x− y|

)

= o

(
1

|x− y|

)
,
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and

µ
[
∇(Γωs (x, y)q) +∇(Γωs (x, y)q)

t
]
N

= µ

√
−1ω

c3s
Γωs (x, y)

[
q⊗ ŷ − x+ ŷ − x⊗ q− 2

(
ŷ − x · q

)
ŷ − x⊗ ŷ − x

]
N

+o

(
1

|x− y|

)

= µ

√
−1ω

c3s
Γωs (x, y)

[(
ŷ − x ·N

)
q+

(
q ·N

)
ŷ − x− 2

(
ŷ − x · q

)(
ŷ − x ·N

)
ŷ − x

]

+o

(
1

|x− y|

)

= µ

√
−1ω

c3s
Γωs (x, y)

[(
ŷ − x ·N

)
− 1
] [

q−
(
ŷ − x · q

)
ŷ − x

]

+µ

√
−1ω

c3s
Γωs (x, y)

[(
q ·N −

(
ŷ − x · q

)(
ŷ − x ·N

))
ŷ − x

]√
−1ωcsΓ

ω
s (x, y)

+o

(
1

|x− y|

)
.

In particular, when N = ŷ − x, we have

∂Γωs (x, y)q

∂ν
=

√
−1ωcsΓ

ω
s (x, y)q+ o

(
1

|y − x|

)
.

This completes the proof. �

The following is a direct consequence of Propositions 2.139, 2.140, and 2.141.

Proposition 2.142 (Helmholtz-Kirchhoff Identities). Let Ω ⊂ Rd be a ball
with radius R. Then, for all x, z ∈ Ω, we have

(2.475) lim
R→+∞

∫

∂Ω

Γωα(x, y)Γ
ω
α(y, z)dσ(y) = − 1

ωcα
ℑ{Γωα(x, z)}, α = p, s,

and

(2.476) lim
R→+∞

∫

∂Ω

Γωs (x, y)Γ
ω
p (y, z)dσ(y) = 0.

2.15.17. The Scattering Coefficients and the Scattering Amplitude.
This subsection is dedicated to defining the elastic scattering coefficients in two
dimensions. We first recall some background material on cylindrical eigenfunctions
of the Lamé equation and present the multipolar expansions of the exterior scattered
elastic field.

Consider a time harmonic incident elastic field U satisfying

(2.477) (Lλ,µ + ω2)U(x) = 0, ∀x ∈ R2.

Then the total displacement field due to D, represented by u, satisfies the trans-
mission problem
(2.478)




(Lλ,µ + ω2)u(x) = 0, ∀x ∈ R2 \D,
(Lλ̃,µ̃ + ω2)u(x) = 0, ∀x ∈ D,

(u−U)(x) satisfies Kupradze’s radiation condition when |x| → ∞ .
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The total field u admits the integral representation

(2.479) u(x, ω) =

{
U(x, ω) + SωD[ψ](x, ω), x ∈ R2 \D,
S̃ωD[ϕ](x, ω), x ∈ D,

where unknown densities ϕ,ψ ∈ L2(∂D)2 satisfy the system of integral equations

(2.480)




S̃ωD −SωD
∂

∂ν̃
S̃ωD
∣∣∣
−

− ∂

∂ν
SωD
∣∣∣
+



(
ϕ

ψ

)
=




U

∂U

∂ν



∣∣∣∣∣
∂D

.

2.15.17.1. Cylindrical Elastic Waves and Multipolar Expansions. We define x̂ :=
x/|x| for all x ∈ R2 \ {0} and write S := {x ∈ R2 : x · x = 1}. The position
vector x ∈ R2 can be equivalently expressed as x = (|x| cosϕx, |x| sinϕx) where
ϕx ∈ [0, 2π) denotes the polar angle of x. Denote by {êr, êθ} the orthonormal basis
vectors for the polar coordinate system in two dimensions, that is,

êr = (cosϕx, sinϕx), êθ = −(sinϕx, cosϕx).

Consider the surface vector harmonics in two-dimensions

Pm(x̂) = e
√−1mϕx êr and Sm(x̂) = e

√−1mϕx êθ for all m ∈ Z.(2.481)

It is known, see [360] for instance, that these cylindrical surface vector potentials
enjoy the orthogonality properties

∫

S

Pn(x̂) ·Pm(x̂)dσ(x̂) = 2πδnm,(2.482)

∫

S

Sn(x̂) · Sm(x̂)dσ(x̂) = 2πδnm,(2.483)

∫

S

Pm(x̂) · Sm(x̂)dσ(x̂) = 0,(2.484)

for all n,m ∈ Z, where δnm is the Kronecker’s delta function and dσ is the infini-
tesimal differential element on S.

LetH
(1)
m and Jm be cylindrical Hankel and Bessel functions of first kind of order

m ∈ Z, respectively. Then, for each κ > 0, we construct the functions vm(·, κ) and
wm(·, κ) by

vm(x, κ) := H(1)
m (κ|x|)e

√−1mϕx and wm(x, κ) := Jm(κ|x|)e
√−1mϕx .(2.485)

It is easy to verify that vm are outgoing radiating solutions (i.e., satisfying the
Sommerfeld radiation condition) to the Helmholtz equation ∆v+κ2v = 0 in R2\{0}
and that wm are entire functions to ∆v + κ2v = 0 in R2 respectively.

Using surface vector harmonics Pm, Sm and functions vm, wm, we define

HP
m(x, κp) :=∇vm(x, κp)

=κp

(
H(1)
m (κp|x|)

)′
Pm(x̂) +

√
−1m

|x| H(1)
m (κp|x|)Sm(x̂),(2.486)

Hs
m(x, κs) :=∇× (êzvm(x, κs))

=

√
−1m

|x| H(1)
m (κs|x|)Pm(x̂)− κs

(
H(1)
m (κs|x|)

)′
Sm(x̂),(2.487)
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and

JPm(x, κp) :=∇wm(x, κp)

=κp (Jm(κp|x|))′ Pm(x̂) +

√
−1m

|x| Jm(κp|x|)Sm(x̂),(2.488)

Jsm(x, κs) :=∇× (êzwm(x, κs))

=

√
−1m

|x| Jm(κs|x|)Pm(x̂)− κs (Jm(κs|x|))′ Sm(x̂),(2.489)

for all κα > 0 and m ∈ Z, where êz = (0, 0, 1) is a unit normal vector to the
(x1, x2)−plane and

(
H(1)
m

)′
(t) :=

d

dt

[
H(1)
m (t)

]
and (Jm)

′
(t) :=

d

dt
[Jm(t)] .(2.490)

For simplicity, we suppress the dependence of Jαm and Hα
m on wavenumbers κα,

α = p, s, henceforth.
The functions Jpm and Jsm are the interior longitudinal and transverse eigen-

vectors of the Lamé system in R2. Similarly, Hp
m and Hs

m are the exterior eigen-
vectors of the Lamé system in R2\{0} [94]. The following result on the completeness
and linear independence of the interior eigenvectors (Jpm,J

s
m) and exterior eigen-

vectors (Hp
m, H

s
m) with respect to L2(∂D)2−norm holds. The interested readers

are referred to [424, Lemmas 1-3] for further details.

Lemma 2.143. Let D ⊂ R2 be a bounded simply connected domain containing
origin and ∂D be a closed Lyapunov curve. Then the set {Hp

m, H
s
m : m ∈ Z} is

complete and linearly independent in L2(∂D)2. Moreover, if ω2 is not a Dirichlet
eigenvalue of the Lamé equation on D, then the set {Jpm,Jsm : m ∈ Z} is also
complete and linearly independent in L2(∂D)2.

As a direct consequence of Lemma 2.143, corresponding to every incident field
U satisfying (2.477), there exist constants apm, a

s
m ∈ C for all m ∈ Z such that

U(x) =
∑

m∈Z

(asmJsm(x) + apmJpm(x)) , x ∈ R2.(2.491)

In particular, a general plane incident wave of the form

U(x) =
1

c2s
e
√−1κsx·d d⊥ +

1

c2p
e
√−1κpx·d d

= −
(√

−1

c2sκs
∇×

[
êz e

√−1κsx·d
]
+

√
−1

c2pκp

[
∇e

√−1κpx·d
])

(2.492)

can be written in the form (2.491) with

aβm := aβm(U) = −
√
−1

c2βκβ
e
√−1m(π/2−θ), β ∈ {P, S},(2.493)

where d = (cos θ, sin θ) ∈ S is the direction of incidence and d⊥ is a vector perpen-
dicular to d. In fact, this decomposition is a simple consequence of Jacobi-Anger

decomposition (2.221) of the scalar plane wave e
√−1κx·d.
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Moreover, according to [447], for all x, y ∈ R2 such that |x| > |y| and for any
vector p ∈ R2 independent of x,

(2.494)

Γω(x, y)p = −
√−1
4c2s

∑
n∈Z

Hs
n(x)

[
Jsn(y) · p

]

−
√
−1

4c2p

∑

n∈Z

Hp
n(x)

[
Jpn(y) · p

]
.

2.15.17.2. Scattering Coefficients of Elastic Particles. Note that the multipolar
expansion (2.494) of the fundamental solution Γω enables us to derive the expansion

SωD[ψ](x) = −
√−1
4c2p

∑
n∈Z

Hp
n(x)

∫
∂D

[
Jpn(y) ·ψ(y)

]
dσ(y)

−
√−1
4c2s

∑
n∈Z

Hs
n(x)

∫
∂D

[
Jsn(y) ·ψ(y)

]
dσ(y)(2.495)

for all x ∈ R2 \D sufficiently far from the boundary ∂D. Consequently, by virtue
of expansion (2.495) and the integral representation (2.479), the scattered field can
be expanded as

u(x)−U(x) = −
√
−1

4

∑

n∈Z

[
bsn
c2s
Hs
n(x) +

bpn
c2p
Hp
n(x)

]
,(2.496)

where

bαn =
∫
∂D

[
Jαn(y) ·ψ(y)

]
dσ(y), α ∈ {p, s}, ∀ n ∈ Z.(2.497)

Definition 2.144. Let
(
ϕβm,ψ

β
m

)
, m ∈ Z, be the solution of (2.480) corre-

sponding to U = Jβm. Then the elastic scattering coefficientsWα,β
m,n(=Wα,β

m,n[D,λ0, λ1, µ0, µ1, ω])

of D ⋐ R2 are defined by

(2.498) Wα,β
m,n :=

∫

∂D

[
Jαn(y) ·ψβm(y)

]
dσ(y)

for m,n ∈ Z, where α and β indicate wavemodes p or s.

Analogously to Lemma 2.78, the following result on the decay rate of the elastic
scattering coefficients holds.

Lemma 2.145. There exist constants Cα,β > 0 for each wave-mode α, β = p, s
such that

∣∣∣Wα,β
m,n[D,λ0, λ1, µ0, µ1, ω]

∣∣∣ ≤
C

|n|+|m|−2
α,β

|n||n|−1|m||m|−1
(2.499)

for all m,n ∈ Z and m,n→ ∞.

2.15.17.3. Connections with Scattered Field and Far-Field Amplitudes. Con-
sider a general plane incident field U of the form (2.492) admitting decomposition
(2.491)- (2.493). By superposition principle the solution (ϕ,ψ) of (2.480) is given
by

ψ(x) =
∑

m∈Z

[
apmψ

p
m + asmψ

s
m

]
and ϕ(x) =

∑

m∈Z

[
apmϕ

p
m + asmϕ

s
m

]
.(2.500)

This, together with Definition 2.144 of the scattering coefficients and the expansion
(2.496), renders the asymptotic expansion

u(x)−U(x) =
∑

n∈Z

[γpnH
p
n(x) + γsnH

s
n(x)](2.501)
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of the scattered field for all x ∈ R2 \D sufficiently far from ∂D, where

γβn =
∑

m∈Z

(
dpmW

β,P
m,n + dsmW

β,S
m,n

)
, β ∈ {p, s},(2.502)

with

dβm := −
√
−1

4c2β
aβm = − 1

4c4βκβ
e
√−1m(π/2−θ).(2.503)

In order to substantiate the connection between the elastic scattering coef-
ficients and far-field scattering amplitudes we recall that the cylindrical Hankel

functions H
(1)
n admit the far-field behavior

H(1)
n (κ|x|) = e

√−1κ|x|
√
|x|

√
2

πκ
e−

√−1π(n/2+1/4) +O
(
|x|−3/2

)
(2.504)

(
H(1)
n (κ|x|)

)′
=

√
−1κ

e
√−1κ|x|
√
|x|

√
2

πκ
e−

√−1π(n/2+1/4) +O
(
|x|−3/2

)
(2.505)

as |x| → ∞ (see, for instance, [377, Formulas 10.2.5 and 10.17.11]). Consequently,
the far-field behavior of the functions Hp

n and Hs
n can be predicted as

Hp
n(x) ∼

e
√−1κp|x|
√

|x|
A∞,P
n Pn(x̂) and Hs

n(x) ∼
e
√−1κs|x|
√
|x|

A∞,S
n Sn(x̂), as |x| → ∞,

(2.506)

where

(2.507) A∞,P
n := (

√
−1 + 1)κpe

−√−1nπ/2

√
κp
π

and

(2.508) A∞,S
n := −(

√
−1 + 1)κse

−√−1nπ/2

√
κs
π
.

Thus, for all x ∈ R2 \D such that |x| → ∞ the scattered field (u −U) in (2.501)
admits the asymptotic expansion

u(x)−U(x) =
e
√−1κp|x|
√
|x|

∑

n∈Z

[
γpnA

∞,P
n Pn(x̂)

]
+
e
√−1κs|x|
√
|x|

∑

n∈Z

[
γsnA

∞,S
n Sn(x̂)

]
.

(2.509)

On the other hand, the Kupradze radiation condition guarantees the existence of
two analytic functions u∞

p : S → C2 and u∞
s : S → C2 such that

u(x)−U(x) =
e
√−1κs|x|
√
|x|

u∞
P (x̂) +

e
√−1κp|x|
√
|x|

u∞
S (x̂) +O

(
1

|x|3/2
)
, as |x| → ∞.

(2.510)

The functions u∞
P and u∞

S are respectively known as the longitudinal and transverse
far-field patterns or the scattering amplitudes. Comparing (2.509) and (2.510) the
following result is readily proved, which substantiates that the far-field scattering
amplitudes admit natural expansions in terms of scattering coefficients.
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Theorem 2.146. Let U be the incident plane field given by (2.491). Then the
corresponding longitudinal and transverse scattering amplitudes can be written as

u∞
P [D,λ0, λ1, µ0, µ1, ω](x̂) =

∑

n∈Z

γpnA
∞,P
n Pn(x̂)(2.511)

u∞
S [D,λ0, λ1, µ0, µ1, ω](x̂) =

∑

n∈Z

γsnA
∞,S
n Sn(x̂),(2.512)

where the coefficients γpn and γsn are defined in (2.502).

2.15.18. Elastic Scattering by Small Particles. Suppose that an elastic
inclusion D in Rd is given by D = δB + z, where B is a bounded Lipschitz domain

in Rd. Suppose that D has the pair of Lamé constants (λ̃, µ̃) satisfying (2.368)
and (2.394) and denote by ρ̃ its density. Let y ∈ Rd \ D and assume that there
exists c0 > 0 such that dist(y,D) > c0. Let u0(x) = Γω(x, y)θ be an incident
displacement field, where θ is a unit vector in Rd.

Let uδ be the solution to the transmission problem
(2.513)



(Lλ,µ + ω2ρ)uδ = 0 in Rd \D,
(Lλ̃,µ̃ + ω2ρ̃)uδ = 0 in D,

uδ
∣∣
− = uδ

∣∣
+

on ∂D,

∂uδ
∂ν̃

∣∣∣∣
−
=
∂uδ
∂ν

∣∣∣∣
+

on ∂D,

uδ(x)− u0(x) satisfies the Sommerfeld-Kupradze radiation condition as |x| → +∞.

The leading-order term in the asymptotic expansion of uδ − u0 as δ → 0 is
expressed in terms of the elastic moment tensor, a concept that extends the notion
of polarization tensors to linear elasticity.

The elastic moment tensor associated with the domain B and the Lamé pa-

rameters (λ, µ; λ̃, µ̃) is defined as follows: For i, j = 1, . . . , d, let fij and gij solve

(2.514)





S̃0
B [fij ]|− − S0

B [gij ]|+ = xiej |∂B ,
∂

∂ν̃
S̃0
B [fij ]

∣∣∣∣
−
− ∂

∂ν
S0
B [gij ]

∣∣∣∣
+

=
∂(xiej)

∂ν
|∂B ,

where (e1, . . . , ed) is the canonical basis of Rd. Then the elastic moment tensor

M := (mijpq)
d
i,j,p,q=1 is defined by

(2.515) mijpq :=

∫

∂B

xpeq · gij dσ.

The following lemma holds [45]. It gives an equivalent representation of M.

Lemma 2.147. Suppose that 0 < λ̃, µ̃ < +∞. For i, j, p, q = 1, . . . , d,

(2.516) mijpq =

∫

∂B

[
−∂(xpeq)

∂ν
+
∂(xpeq)

∂ν̃

]
· vij dσ,
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where vij is the unique solution of the transmission problem

(2.517)





Lλ,µvij = 0 in Rd \B,
Lλ̃,µ̃vij = 0 in B,

vij |+ − vij |− = 0 on ∂B,

∂vij
∂ν

∣∣∣∣
+

− ∂vij
∂ν̃

∣∣∣∣
−
= 0 on ∂B,

vij(x)− xiej = O(|x|1−d) as |x| → +∞.

Proof. Note first that vij defined by

(2.518) vij(x) :=

{
S0
B [gij ](x) + xiej , x ∈ Rd \B,

S̃0
B [fij ](x), x ∈ B,

is the solution of (2.517). Using (2.380) (for ω = 0) and (2.514) we compute

mijpq =

∫

∂B

xpeq · gij dσ

=

∫

∂B

xpeq·
[ ∂
∂ν

S0
Bgij

∣∣
+
− ∂

∂ν
S0
B [gij ]

∣∣
−

]
dσ

= −
∫

∂B

xpeq ·
∂(xiej)

∂ν
dσ −

∫

∂B

xpeq·
[ ∂
∂ν

S0
B [gij ]

∣∣
− − ∂

∂ν̃
S̃0
B [fij ]

∣∣
−

]
dσ

= −
∫

∂B

∂(xpeq)

∂ν
· xiej dσ −

∫

∂B

[∂(xpeq)
∂ν

· S0
B [gij ]−

∂(xpeq)

∂ν̃
· S̃0

B [fij ]
]
dσ

=

∫

∂B

[
− ∂(xpeq)

∂ν
+
∂(xpeq)

∂ν̃

]
· S̃0

B [fij ] dσ,

and hence (2.516) is established. �

The following symmetry and positive-definiteness properties of the elastic mo-
ment tensor hold [45, 64].

Theorem 2.148. Let M be the elastic moment tensor associated with the do-
main B, and (λ̃, µ̃) and (λ, µ) be the Lamé parameters of B and the background,
respectively. Then,

Symmetry: For p, q, i, j = 1, . . . , d,

(2.519) mijpq = mijqp, mijpq = mjipq, and mijpq = mpqij .

Positive-definiteness: Suppose that (2.394) holds. If µ̃ > µ (µ̃ < µ , resp.), then M is positive
(negative, resp.) definite on the space MS

d of d× d symmetric matrices.

The following asymptotic expansion of uδ − u0 as δ → 0 holds [22, 24].

Theorem 2.149. Let K ⋐ Rd \ D. For ωδ ≪ 1, the following asymptotic
expansion holds uniformly for all x ∈ K:

uδ(x)− u0(x) = −δd
(
∇u0(z) : M∇zΓ

ω(x, z)(2.520)

+ω2(ρ− ρ̃)|B|Γω(x, z)u0(z)
)
+O(δd+1).
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2.16. Quasi-Periodic Layer Potentials for the Lamé System

In this section we collect some notation and well-known results regarding quasi-
periodic layer potentials for the Lamé system in R2. We refer to [345, 408, 253]
for the details. Ewald’s method described in Subsection 2.13.3 can be used to
efficiently compute quasi-periodic layer potentials for the Lamé system.

As before, we assume that the unit cell Y = [0, 1)2 is the periodic cell and
the quasi-momentum variable, denoted by α, ranges over the Brillouin zone B =
[0, 2π)2. We introduce the two-dimensional quasi-periodic fundamental solution
Gα,ω for ω 6= 0, which satisfies

(2.521) (Lλ,µ + ω2)Gα,ω(x, y) =
∑

n∈Z2

δ0(x− y − n)e
√−1n·αI,

where I denotes the identity matrix. Here we assume that κs, κp 6= |2πn + α| for
all n ∈ Z2 where κs and κp are given by (2.388).

Using Poisson’s summation formula (2.279), we have
∑

n∈Z2

δ0(x− y − n)e
√−1n·αI =

∑

n∈Z2

e
√−1(2πn+α)·(x−y)I.

We plug this equation into (2.521) and then take the Fourier transform of both
sides of (2.521) to obtain

Ĝα,ωij (ξ, y) =(2π)2
[
δij
c2s

1

κ2s − ξ2
+
ξiξj
ω2

(
1

κ2p − ξ2
− 1

κ2s − ξ2

)]

×
∑

n∈Z2

e−
√−1(2πn+α)·yδ0(ξ + 2πn+ α),

where ξ2 = ξ·ξ and ̂ denotes the Fourier transform. Then taking the inverse Fourier
transform, we can see that the quasi-periodic fundamental solution Gα,ω = (Gα,ωij )
can be represented as a sum of augmented plane waves over the reciprocal lattice:

Gα,ωij (x, y) =
δij
c2s

∑

n∈Z2

e
√−1(2πn+α)·(x−y)

κ2s − |2πn+ α|2

+
κ2s − κ2p
ω2

∑

n∈Z2

e
√−1(2πn+α)·(x−y)(2πn+ α)i(2πn+ α)j
(κ2p − |2πn+ α|2)(κ2s − |2πn+ α|2) .(2.522)

Moreover, it can also be easily shown that

Gα,ω(x, y) =
∑

n∈Z2

Γω(x− n− y)e
√−1n·α,

where Γω is the Green’s matrix defined by (2.375).
When ω = 0, we define Gα,0 by

(2.523)

Gα,0ij (x, y) :=
1

µ

∑

n∈Z2

e
√−1(2πn+α)·(x−y)

( −δij
|2πn+ α|2

+
λ+ µ

λ+ 2µ

(2πn+ α)i(2πn+ α)j
|2πn+ α|4

)

if α 6= 0, while if α = 0, we set

(2.524) G0,0
ij (x, y) :=

1

µ

∑

n 6=(0,0)

e
√−12πn·(x−y)

( −δij
|2πn|2 +

λ+ µ

λ+ 2µ

4π2ninj
|2πn|4

)
.
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Then Gα,0 is quasi-periodic and satisfies

Lλ,µGα,0(x, y) =
∑

n∈Z2

δ0(x− y − n)I if α 6= 0,(2.525)

Lλ,µG0,0(x, y) =
∑

n∈Z2

δ0(x− y − n)I − I.(2.526)

See [59, 45] for a proof.
LetD be a bounded domain in R2 with a connected Lipschitz boundary ∂D. Let

Sα,ω and Dα,ω be the quasi-periodic single- and double-layer potentials associated
with Gα,ω; that is, for a given density ϕ ∈ L2(∂D)2,

Sα,ω[ϕ](x) =
∫

∂D

Gα,ω(x, y)ϕ(y) dσ(y), x ∈ R2,

Dα,ω[ϕ](x) =

∫

∂D

∂Gα,ω(x, y)

∂ν(y)
ϕ(y) dσ(y), x ∈ R2 \ ∂D,

where ∂/∂ν(y) denotes the conormal derivative with respect to y ∈ ∂D. Then,
Sα,ω[ϕ] and Dα,ω[ϕ] are solutions to

(Lλ,µ + ω2)u = 0

in D and Y \D and they are α-quasi-periodic.
The next formulas give the jump relations obeyed by the quasi-periodic double-

layer potential and by the conormal derivative of the quasi-periodic single-layer
potential on general Lipschitz domains:

∂(Sα,ω[ϕ])
∂ν

∣∣∣∣
±
(x) =

(
± 1

2
I + (K−α,ω)∗

)
[ϕ](x) a.e. x ∈ ∂D,(2.527)

(Dα,ω[ϕ])

∣∣∣∣
±
(x) =

(
∓ 1

2
I +Kα,ω

)
[ϕ](x) a.e. x ∈ ∂D,(2.528)

for ϕ ∈ L2(∂D)2, where Kα,ω is the operator on L2(∂D)2 defined by

(2.529) Kα,ω[ϕ](x) = p.v.

∫

∂D

∂Gα,ω(x, y)

∂ν(y)
ϕ(y) dσ(y)

and (K−α,ω)∗ is the L2-adjoint operator of K−α,ω, which is given by

(2.530) (K−α,ω)∗[ϕ](x) = p.v.

∫

∂D

∂Gα,ω(x, y)

∂ν(x)
ϕ(y) dσ(y).

The formulas (2.527) and (2.528) hold because Gα,ω(x, y) has the same kind of
singularity at x = y as that of Γω(x− y).

The following lemma will be of use in the next chapter.

Lemma 2.150. For any constant vector φ

(2.531) (
1

2
I +K0,0)[φ] = |Y \D|φ on ∂D,

and for any ψ ∈ L2(∂D)2,

(2.532)

∫

∂D

(
1

2
I + (K0,0)∗

)
[ψ] = |Y \D|

∫

∂D

ψ.
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Proof. By Green’s formula and (2.526) we have for any constant vector φ

D0,0[φ](x) =

∫

D

Lλ,µG0,0(x, y)φdy = φ−
∫

D

φ,

and hence, since ((1/2) I +K0,0)[φ] = D0,0[φ]|−, we readily get (2.531).
The identity (2.532) is a consequence of (2.531). In fact, for any constant vector

φ, we have
∫

∂D

φ ·
(
1

2
I + (K0,0)∗

)
[ψ] =

∫

∂D

(
1

2
I +K0,0

)
[φ] · ψ

= |Y \D|
∫

∂D

φ · ψ,

from which (2.532) follows immediately. �

2.17. Concluding Remarks

In this chapter, we have briefly reviewed layer potential techniques associated
with the Laplacian, the Helmholtz equation, the Maxwell equations, and the time-
harmonic elasticity system. Our main concern has been on the one hand to charac-
terize the eigenvalues of the Laplacian and Lamé systems with Dirichlet or Neumann
boundary conditions as characteristic values of certain layer potentials which are in
general meromorphic operator-valued functions and on the other hand, to analyze
the Neumann-Poincaré operators associated with the Laplacian and the Lamé sys-
tems. We have also introduced Helmholtz-Kirchhoff identities which play a key role
in the analysis of resolution in imaging and investigated quasi-periodic layer poten-
tials for the Helmholtz equation and the time-harmonic elasticity system. We have
provided spectral and spatial representations of the Green’s functions in periodic
domains and described analytical techniques for transforming them from slowly
convergent representations into forms more suitable for computation. These results
will be useful for studying photonic and phononic crystals.



CHAPTER 3

Perturbations of Cavities and Resonators

3.1. Introduction

This chapter is devoted to investigating perturbations in optical cavities and
resonators. Optical cavities and resonators attracted much interest in photonic
technologies in recent years. Several different designs for resonators have been
studied experimentally and theoretically with a particular emphasis on high quality
factor cavities. The detection of nanoparticles inside cavities and the design of a
resonator which possesses a resonance with the largest possible quality factor have
been considered challenging problems in photonics.

Resonance is a solution to the wave equation which is spatially localized while
its dependence time is harmonic except for decay due to radiation. Finding res-
onance in a linear wave equation with a radiation boundary condition involves
solving a nonlinear eigenvalue problem. The quality factor of a resonator can be
defined as the ratio between the real and imaginary parts of a resonance.

In this chapter, the theory of Gohberg and Sigal is used to establish an asymp-
totic theory for perturbations in eigenvalue problems due to the presence of small
particles inside a cavity.

Using integral equations we formulate the nonlinear eigenvalue problem for a
resonator as a characteristic value problem for a meromorphic operator-valued func-
tion. Then, on one hand, Muller’s method can be used for computing resonances
and on the other hand, the generalized argument principle yields a sensitivity anal-
ysis of the quality factor with respect to the material properties of the resonator.

3.2. Optical Cavities

3.2.1. Eigenvalue Perturbations Due to Small Particles. In this section
we provide a rigorous derivation of a full asymptotic formula for perturbations in
the eigenvalues caused by the presence of a conductive particle of small diameter
with conductivity different from that of the background. To fix ideas, we con-
sider Neumann boundary conditions on the boundary of the background medium.
Dirichlet, Robin or mixed boundary conditions can be treated in exactly the same
way; see Section 2.9.

Let 0 = µ1 < µ2 ≤ . . . be the eigenvalues of −∆ in Ω with Neumann conditions,
namely, the eigenvalues of the problem:

(3.1)





∆u+ µu = 0 in Ω,

∂u

∂ν
= 0 on ∂Ω,

arranged in an increasing sequence and counted according to multiplicity. Let
(uj)j≥1 be an orthonormal basis of L2(Ω) of normalized eigenvectors. Fix j and
suppose that the eigenvalue µj is simple. It is proved in [9, 10, 445] that the

171
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eigenvalues are generically simple. As we said in the introduction, by generic, we
mean the existence of arbitrary small deformations of ∂Ω such that in the deformed
domain the eigenvalue is simple. However, note that our assumption is not essential
in what follows and is made only for ease of exposition. In fact, we will dwell briefly
on the splitting of nonsimple eigenvalues in Section 2.9.6.

Fix j and suppose that the unperturbed eigenvalue µj is simple. Then there
exists a simple eigenvalue µǫj , near µj , associated to the normalized eigenfunction
uǫj , satisfying the following problem:

(3.2)





∆uǫ + ω2uǫ = 0 in Ω \D,

∆uǫ +
ω2

k
uǫ = 0 in D,

uǫ|+ − uǫ|− = 0 on ∂D,

∂uǫ

∂ν

∣∣∣
+
− k

∂uǫ

∂ν

∣∣∣
−
= 0 on ∂D,

∂uǫ

∂ν
= 0 on ∂Ω,

with ω =
√
µǫj and the conductivity k of the particle D is such that 0 < k 6= 1.

From Chapter 2, we know that the solution of (3.2) can be represented as

(3.3) u(x) =

{
Dω

Ω[u|∂Ω](x) + SωD[φ](x) in Ω \D,
S

ω√
k

D [θ](x) in D,

where the triplet of densities (ψ := u|∂Ω, φ, θ) ∈ L2(∂Ω)×L2(∂D)×L2(∂D) satisfies
the following system of integral equations:

(3.4)





(1
2
I −KωΩ

)
[ψ]− SωD[φ] = 0 on ∂Ω,

Dω
Ω[ψ] + SωD[φ]− S

ω√
k

D [θ] = 0 on ∂D,

ǫ

[
∂

∂ν

(
Dω

Ω[ψ] + SωD[φ]
)∣∣∣

+
− k

∂

∂ν

(
S

ω√
k

D [θ]
)∣∣∣

−

]
= 0 on ∂D,

for ω =
√
µǫj .

By using the jump formula (2.155), we reduce the eigenvalue problem to the
calculation of the asymptotic expressions of the characteristic values of the operator-
valued function Aǫ(ω) given by

ω 7→ Aǫ(ω) :=




1

2
I −KωΩ −SωD 0

Dω
Ω SωD −S

ω√
k

D

ǫ
∂

∂ν
Dω

Ω ǫ(
1

2
I + (KωD)∗) −ǫk(−1

2
I + (K

ω√
k

D )∗)



.

We shall now expand the operator-valued function Aǫ(ω) in terms of ǫ. We
need the following lemma.
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Lemma 3.1. Let ψ ∈ L2(∂Ω) and let ϕ ∈ L2(∂D). Define ϕ̃(x) = ǫϕ(ǫx + z)
for x ∈ ∂B. Then, we have

SωD[ϕ](ǫx+ z) = − 1

4π

+∞∑

n=0

1

n!
(
√
−1ωǫ)n

∫

∂B

|x− y|n−1ϕ̃(y) dσ(y), x ∈ ∂B,

Dω
Ω[ψ](ǫx+ z) =

+∞∑

n=0

ǫn
∑

|α|=n

1

α!
∂αDω

Ω[ψ](z)x
α, x ∈ ∂B,

SωD[ϕ](x) =
+∞∑

n=0

(−1)nǫn+1
∑

|α|=n

1

α!
∂αΓω(x− z)

(∫

∂B

yαϕ̃(y) dσ(y)
)
, x ∈ ∂Ω.

Proof. For any x̃, ỹ ∈ ∂D, we have

SωD[ϕ](x̃) =
∫

∂D

Γω(x̃− ỹ)ϕ(ỹ) dσ(ỹ).

By the change of variables x̃ = ǫx+ z and ỹ = ǫy + z, we obtain that

SωD[ϕ](x̃) = ǫ2
∫

∂B

Γω(ǫ(x− y))ϕ(ǫy + z) dσ(y)

= ǫ

∫

∂B

Γω(ǫ(x− y))ϕ̃(y) dσ(y).

The first two formulas immediately follow from the following Taylor expansion of
Γω(ǫx) as ǫ→ 0:

Γω(ǫx) = − 1

4πǫ

+∞∑

n=0

1

n!
(
√
−1ωǫ)n|x|n−1.

Since (∆+ ω2)Dω
Ω[ψ] = 0 in Ω, Dω

Ω[ψ] is a smooth function in Ω and its Taylor
expansion at z yields

Dω
Ω[ψ](ǫx+ z) =

+∞∑

n=0

ǫn
∑

|α|=n

1

α!
∂αDω

Ω[ψ](z)x
α.

Finally, for any x ∈ ∂Ω, it is easy to see that

SωD[ϕ](x) =
∫

∂D

Γω(x− ỹ)ϕ(ỹ) dσ(ỹ)

= ǫ

∫

∂B

Γω(x− z − ǫy)ϕ̃(y) dσ(y)

= ǫ

∫

∂B

+∞∑

n=0

(−1)nǫn
∑

|α|=n

1

α!
∂αΓω(x− z)yαϕ̃(y) dσ(y)

=

+∞∑

n=0

(−1)nǫn+1
∑

|α|=n

1

α!
∂αΓω(x− z)

∫

∂B

yαϕ̃(y) dσ(y),

which completes the proof of the lemma. �

With Lemma 3.1 in hand, we only need to write the expansion of ∂Dω
Ω/∂ν and

(KωD)∗.
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On one hand, we have, for ψ ∈ L2(∂Ω),

∂

∂ν
Dω

Ω[ψ](ǫx+ z) =

+∞∑

n=1

ǫn
∑

|α|=n

1

α!
∂αDω

Ω[ψ](z)
∂xα

∂ν
, x ∈ ∂B, d = 2, 3.

On the other hand, using the Taylor expansion, we get

∂

∂ν(x)
Γω(ǫ(x−y)) =





〈x− y, ν(x)〉
2π|x− y|2

[
1 +

+∞∑

n=1

(−1)n
(ωǫ)2n

22nn!(n− 1)!
|x− y|2n

×
(
ln(ωǫ|x− y|) + ln η +

1

2n
−

n∑

j=1

1

j

)]
, d = 2,

−〈x− y, ν(x)〉
4π|x− y|2

[
− 1

ǫ|x− y|

+
+∞∑

n=0

(
1

n!
− 1

(n+ 1)!
)(
√
−1ω)n+1ǫn|x− y|n

]
, d = 3,

and obtain the following expansions.

Lemma 3.2. Let ϕ ∈ L2(∂D). Define ϕ̃(x) = ǫϕ(ǫx + z), x ∈ ∂B. Then, for
x ∈ ∂B, we have

ǫ(KωD)∗[ϕ](ǫx+ z) = (K0
B)

∗[ϕ̃](x) +
+∞∑

n=1

(−1)n
(ωǫ)2n

22n+1πn!(n− 1)!

×
∫

∂B

〈x− y, ν(x)〉|x− y|2(n−1)

(
ln(ωǫ|x− y|) + ln η +

1

2n
−

n∑

j=1

1

j

)
ϕ̃(y) dσ(y),

for d = 2, while for d = 3,

ǫ(KωD)∗[ϕ](ǫx+ z) = (K0
B)

∗[ϕ̃](x)

− 1

4π

+∞∑

n=1

(
1

n!
− 1

(n+ 1)!
)(
√
−1ωǫ)n+1

∫

∂B

〈x− y, ν(x)〉|x− y|n−2ϕ̃(y) dσ(y),

where (K0
B)

∗ is given by (2.6).

Define φ̃(x) = ǫφ(ǫx+ z) and θ̃(x) = ǫθ(ǫx+ z), x ∈ ∂B. By Lemmas 3.1 and
3.2, the system of equations (3.4) now takes the form

Ãǫ(ω)




ψ

φ̃

θ̃


 = 0,

where in three dimensions Ãǫ(ω) has the expansion

(3.5) Ãǫ(ω) =

+∞∑

n=0

(ωǫ)nAn(ω),



3.2. OPTICAL CAVITIES 175

with

A0(ω) :=




1

2
I −KωΩ 0 0

Dω
Ω[·](z) S0

B −S0
B

0
1

2
I + (K0

B)
∗ −k(−1

2
I + (K0

B)
∗)


 ,

and, for n ≥ 1, writing An(ω) = ((An(ω))ll′)l,l′=1,2,3, we have

(An(ω))11 = (An(ω))13 = 0,

(An(ω))12 = (−1)nω−n ∑

|α|=n−1

1

α!
∂αΓω(x− z)

(∫

∂B

yα · dσ(y)
)
,

(An(ω))22 = − 1

4π

1

n!

√
−1

n
∫

∂B

|x− y|n−1 · dσ(y),

(An(ω))23 =
1

4π

1

n!
(

√
−1√
k

)n
∫

∂B

|x− y|n−1 · dσ(y),

(An(ω))21 =
1

ωn

∑

|α|=n

1

α!
∂αDω

Ω[·](z)xα,

(An(ω))31 =
1

ωn

∑

|α|=n

1

α!
∂αDω

Ω[·](z)
∂xα

∂ν
,

(A1(ω))32 = (A1(ω))33 = 0, and

(An(ω))32 = − 1

4π

(
1

(n− 1)!
− 1

n!

)√
−1

n
∫

∂B

〈x− y, ν(x)〉|x− y|n−3 · dσ(y),

(An(ω))33 =
k

4π
(

1

(n− 1)!
− 1

n!
)(

√
−1√
k

)n
∫

∂B

〈x− y, ν(x)〉|x− y|n−3 · dσ(y),

for n ≥ 2. Similarly, one can compute an analogous asymptotic expansion for Aǫ(ω)
in two dimensions.

In three dimensions, it can be shown that



S0
B −S0

B

1

2
I + (K0

B)
∗ −k(−1

2
I + (K0

B)
∗)




is invertible. In fact, the inverse is given by

1

k − 1



k(λI − (K0

B)
∗)−1

(1
2
I − (K0

B)
∗)(S0

B)
−1 (λI − (K0

B)
∗)−1

−(λI − (K0
B)

∗)−1
(1
2
I + (K0

B)
∗)(S0

B)
−1 (λI − (K0

B)
∗)−1


 ,

where λ := (k + 1)/(2(k − 1)). Therefore the invertibility of A0(ω) holds for any
ω /∈ {√µj}j≥1. This is also the case for A0(ω) in two dimensions.

Before proceeding from the generalized argument principle to construct the
complete asymptotic expansions for µǫj with respect to ǫ, we provide a rigorous

study of the integral operator-valued function ω 7→ Ãǫ(ω), when ω is in a small
complex neighborhood of

√
µj . The next three lemmas, analogous to Lemmas 2.66,

2.67, and 2.68, are immediate.
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Lemma 3.3. The operator-valued function Ãǫ(ω) is Fredholm analytic with in-

dex 0 in C (while in the two-dimensional case in C \
√
−1R−) and (Ãǫ)

−1(ω) is
a meromorphic function. If ω is a real characteristic value of the operator-valued

function Ãǫ (or equivalently, a real pole of (Ãǫ)
−1(ω)), then there exists j such that

ω =
√
µǫj.

Lemma 3.4. Any
√
µj is a simple pole of the operator-valued function (A0)

−1(ω).

Lemma 3.5. Let ω0 =
√
µj and suppose that µj is simple. Then there exists a

positive constant δ0 such that for |δ| < δ0, the operator-valued function ω 7→ Ãǫ(ω)
has exactly one characteristic value in Vδ0(ω0), where Vδ0(ω0) is a disk of center
ω0 and radius δ0 > 0. This characteristic value is analytic with respect to ǫ in
]− ǫ0, ǫ0[. Moreover, the following assertions hold:

(i) M(Ãǫ(ω); ∂Vδ0) = 1,

(ii) (Ãǫ)
−1(ω) = (ω − ωǫ)

−1Lǫ +Rǫ(ω),

(iii) Lǫ : Ker((Ãǫ(ωǫ))
∗) → Ker(Ãǫ(ωǫ)),

where Rǫ(ω) is a holomorphic function with respect to (ǫ, ω) ∈ ] − ǫ0, ǫ0[×Vδ0(ω0)
and Lǫ is a finite-dimensional operator.

We are now ready to apply the generalized argument principle. Since we deal
with simple characteristic values, the relevant formula will be as follows, which is
an immediate consequence of Theorem 1.14.

Lemma 3.6. Let ω0 =
√
µj and suppose that µj is simple. Then ωǫ =

√
µǫj is

given by

(3.6) ωǫ − ω0 =
1

2π
√
−1

tr

∫

∂Vδ0

(ω − ω0)Ãǫ(ω)
−1 d

dω
Ãǫ(ω)dω.

Substituting the formula (3.5) into (3.6), we obtain the following complete
asymptotic expansion with respect to ǫ for the eigenvalue perturbations in the
three-dimensional case.

Theorem 3.7 (Eigenvalue perturbations). The following asymptotic expansion
holds:

(3.7) ωǫ − ω0 =
1

2
√
−1π

+∞∑

p=1

1

p

+∞∑

n=p

ǫn tr

∫

∂Vδ0

Bn,p(ω)dω,

where

Bn,p(ω) = (−1)p
∑

n1+...+np=n

ni≥1

A0(ω)
−1An1

(ω) . . .A0(ω)
−1Anp

(ω)ωn.

Proof. If ǫ is small enough, then the following Neumann series converges
uniformly with respect to ω in ∂Vδ0 :

Ãǫ(ω)
−1 =

+∞∑

p=0

[
A0(ω)

−1(A0(ω)− Ãǫ(ω))
]p

A0(ω)
−1,

and hence we may deduce that ωǫ − ω0 is equal to

1

2π
√
−1

+∞∑

p=0

tr

∫

∂Vδ0

(ω − ω0)
[
A0(ω)

−1(A0(ω)− Ãǫ(ω))
]p

A0(ω)
−1 d

dω
Ãǫ(ω)dω.
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As in the proof of Theorem 2.69, by using the property (1.4) of the trace
together with identity (2.196) we have

tr

∫

∂Vδ0

(ω − ω0)
1

p

d

dω

[
A0(ω)

−1(A0(ω)− Ãǫ(ω))
]p
dω

=tr

[∫

∂Vδ0

(ω − ω0)
[
A0(ω)

−1(A0(ω)− Ãǫ(ω))
]p−1

A0(ω)
−1 d

dω
(A0(ω)−Aǫ(ω))dω

−
∫

∂Vδ0

(ω − ω0)
[
A0(ω)

−1(A0(ω)−Aǫ(ω))
]pA0(ω)

−1 d

dω
A0(ω)dω

]
,

and therefore,

ωǫ − ω0 = − 1

2
√
−1π

+∞∑

p=1

tr

∫

∂Vδ0

(ω − ω0)
1

p

d

dω

[
A0(ω)

−1(A0(ω)−Aǫ(ω))
]p
dω

+
1

2π
√
−1

tr

∫

∂Vδ0

(ω − ω0)A0(ω)
−1 d

dω
A0(ω)dω.

Since ω0 is a simple pole of A0(ω)
−1 and A0(ω) is analytic, we readily get

∫

∂Vδ0

(ω − ω0)A0(ω)
−1 d

dω
A0(ω)dω = 0.

Thus, it follows that

ωǫ − ω0 = − 1

2π
√
−1

+∞∑

p=1

tr

∫

∂Vδ0

(ω − ω0)
1

p

d

dω

[
A−1

0 (ω)(A0(ω)−Aǫ(ω))
]p
dω.

Now, a simple integration by parts yields

ωǫ − ω0 =
1

2π
√
−1

+∞∑

p=1

1

p
tr

∫

∂Vδ0

[
A0(ω)

−1(A0(ω)−Aǫ(ω))

]p
dω.

Notice from (3.5) that
(
A0(ω)

−1(A0(ω)−Aǫ(ω))

)p

= (−1)p
+∞∑

n=p

ǫn
∑

n1+...+np=n

ni≥1

A0(ω)
−1An1(ω) . . .A0(ω)

−1Anp(ω)ω
n.

Therefore, upon inserting this into the latter formula, we arrive at the desired
asymptotic expansion (3.7). �

As a simplest case, let us now find the leading-order term in the asymptotic
expansion of µǫj − µj as ǫ → 0. By (3.7), the leading-order of the expansion of
ωǫ − ω0 is the ǫ-order term and its coefficient is given by

(3.8) − 1

2
√
−1π

tr

∫

∂Vδ0

A0(ω)
−1A1(ω)ωdω.

We can now recover the following result from [71, 69] giving the leading-order
term in the asymptotic expansion of the eigenvalue perturbations.
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Corollary 3.8. Suppose µj is a simple eigenvalue associated with the nor-
malized eigenfunction uj. The following asymptotic expansion holds:

(3.9) µǫj − µj = ǫd∇uj(z) ·M(λ(k), B)∇uj(z) + o(ǫd),

where M(λ(k), B), defined by (2.73), is the polarization tensor associated with the
domain B and the conductivity k.

In view of the positivity properties of M , we can then deduce from formula
(3.9) the sign of the variation of a given eigenvalue in terms of the conductivity of
the particle. Furthermore, the Hashin-Shtrikman bounds (2.80) and (2.81) lead, in
view of (3.9), to perturbation bounds for the eigenvalues.

Turning now to the behavior of the perturbed eigenfunction near the particle
D or at the boundary Ω, we can prove from [71] that the following inner and outer
expansions of the perturbed eigenfunction with respect to ǫ hold.

Lemma 3.9. Let uǫj be the normalized eigenfunction associated with µǫj.

(i) The following inner expansion holds for x near z:

(3.10) uǫj(x) = uj(z) + ǫ

d∑

l=1

∂luj(z)ψl

(
x− z

ǫ

)
+ o(ǫ),

where ψl is defined by
{
∇ · (1 + (k − 1)χ(B))∇ψl = 0 in Rd,

ψl(x)− xl = O(|x|1−d) as |x| → +∞.
(3.11)

(ii) The following outer expansion holds uniformly for x ∈ ∂Ω:

(3.12) (uǫj − uj)(x) = −ǫd∇uj(z) ·M(λ(k), B)∇Nωj

Ω (x, z) + o(ǫd),

where Nj is the solution to

(3.13)





(∆x + ω2
j )N

ωj

Ω (x, y) = −δy + uj(x)uj(y) in Ω,

∂Nωj

Ω

∂ν
= 0 on ∂Ω,

∫

Ω

Nωj

Ω uj = 0.

Proof. We only outline the derivation of the asymptotic expansions (3.10)
and (3.12) of uǫj leaving the details to the reader.

Note first that one can show that the polarization tensor M = (mll′) can be
rewritten as

mll′ = (k − 1)

∫

∂B

ψl
∂xl′

∂ν
dσ = (k − 1)

∫

∂B

∂ψl
∂ν

∣∣∣∣
−
xl′ dσ,(3.14)

where ψl is the solution to (3.11).
For any f ∈ L2

0(Ω), define T
ǫ[f ] = vǫ, where vǫ is the solution to





∇ · (1 + (k − 1)χ(D))∇vǫ = −f in Ω,

∂vǫ

∂ν
= 0 on ∂Ω,
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and T [f ] = v, where v is the solution to




∆v = −f in Ω,

∂v

∂ν
= 0 on ∂Ω.

Now let V be a disk centered at 1/ω2
j , with radius small enough. For any

µ ∈ ∂V , we get

(µ− T )−1[ul] =
1

µ− 1

ω2
l

ul, ∀ l.

On the other hand, we have

(·, uǫj)uǫj =
1

2π
√
−1

∫

∂V

(µ− T ǫ)−1 dµ;

see for instance [411]. Thus, it follows from

(µ− T ǫ)−1[uj ] = (µ− T )−1[uj ] + (µ− T )−1(T ǫ − T )(µ− T )−1[uj ] + h.o.t.

=
1

µ− 1

ω2
j

[
uj + (µ− T )−1(T ǫ − T )[uj ] + h.o.t.

]

that

(3.15) (·, uǫj)uǫj = uj +
1

2π
√
−1

∫

∂V

1

µ− 1

ω2
j

(µ− T )−1(T ǫ − T )[uj ] dµ+ h.o.t.

Here h.o.t. stands for higher-order term. Set Ψl(x) := ψl(x) − xl. According to
[71], the following expansion with respect to ǫ holds;

(T ǫ − T )[uj ] =
ǫ

ω2
j

d∑

l=1

∂luj(z)Ψl(
x− z

ǫ
) + h.o.t. in Ω,

and consequently,

(µ− T )−1(T ǫ − T )[uj ] =
ǫ

ω2
j

d∑

l=1

∂luj(z)(µ− T )−1[Ψl(
· − z

ǫ
)] + h.o.t. in Ω.

From the definition of T , we can readily get

(µ− T )−1[Ψl(
· − z

ǫ
)] =

1

µ

[
Ψl(

· − z

ǫ
) +

1

µ

∫

Ω

N
1/

√
µ

Ω (·, y)Ψl(
y − z

ǫ
) dy

]
,

where N
1/

√
µ

Ω is defined by (2.179). But

Ψl(
· − z

ǫ
) +

1

µ

∫

Ω

N
1/

√
µ

Ω (·, y)Ψl(
y − z

ǫ
) dy

= (1− k)

∫

∂D

N
1/

√
µ

Ω (·, y)∂ψl
∂ν

∣∣∣∣
−
(
y − z

ǫ
) dσ(y) + h.o.t.

Therefore, we get from the definition (3.14) of the polarization tensor and the fact
that ψl is harmonic in B that for x ∈ ∂Ω,
(3.16)

Ψl(
x− z

ǫ
)+

1

µ

∫

Ω

N
1/

√
µ

Ω (x, y)Ψl(
y − z

ǫ
) dy = −ǫd−1

d∑

l′=1

mll′∂l′N
1/

√
µ

Ω (x, z)+ h.o.t.
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Inserting (3.16) into (3.15) and using the spectral decomposition (2.180) of N
1/

√
µ

Ω ,
we finally obtain

(3.17) (·, uǫj)uǫj = uj − ǫd∇uj(z) ·M(λ(k), B)∇Nωj

Ω (x, z) + h.o.t. on ∂Ω,

where Nωj

Ω is defined by (3.13) or equivalently by the following spectral represen-
tation:

Nωj

Ω (x, z) =
∑

l 6=j

ul(x)ul(z)

ω2
l − ω2

j

, x 6= z ∈ Ω.

Since

(uǫj , uj)
2 = 1 +

ǫd(1− k)

2π
√
−1ω2

j

d∑

l=1

∂luj(z)

×
∫

∂B

∂ψl
∂ν

∣∣∣∣
−
(y)

(∫

∂V

1

µ(µ− 1

ω2
j

)

∫

Ω

N
1/

√
µ

Ω (x, ǫy + z)uj(x) dx

)
dσ(y) + h.o.t.

= 1 + o(ǫd),

by using once again (2.180), the desired outer expansion follows immediately from
(3.17).

The inner expansion follows in exactly the same manner as the outer expansion
by observing that

(1− k)

∫

∂D

N
1/

√
µ

Ω (x, y)
∂ψl
∂ν

∣∣∣∣
−
(
y − z

ǫ
) dσ(y)

= (k − 1)

∫

∂D

Γ0(x, y)
∂ψl
∂ν

∣∣∣∣
−
(
y − z

ǫ
) dσ(y) + h.o.t.

= Ψl(
x− z

ǫ
) + h.o.t.,

for x near z, where Γ0 is the fundamental solution of the Laplacian given by (2.2).
�

Note that if we consider the eigenvalue problem

(3.18)





∆uǫj + µǫju
ǫ
j = 0 in Ω \D,

∆uǫj + k µǫju
ǫ
j = 0 in D,

uǫj |+ − uǫj |− = 0 on ∂D,

∂uǫj
∂ν

∣∣∣
+
−
∂uǫj
∂ν

∣∣∣
−
= 0 on ∂D,

∂uǫj
∂ν

= 0 on ∂Ω,

then a much simpler formula than (3.9) holds. In fact, if we suppose that µj
is a simple eigenvalue associated with the normalized eigenfunction uj (satisfying∫
Ω
(1 + (k − 1)χ(D))|uj |2 = 1), then we have

(3.19) µǫj − µj = (1− k)|D||uj(z)|2 + o(ǫd).

See, for example, [69] for the details and for a higher-order expansion. Moreover,

(uǫj − uj)(x) = −µj(1− k)|D|uj(z)N
√
µj

Ω (x, z) + o(|D|)
holds uniformly in x ∈ ∂Ω.
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3.2.2. Eigenvalue Perturbations Due to Shape Deformations. Let Dǫ

be an ǫ-perturbation of D; i.e., let h ∈ C2(∂D) and ∂Dǫ be given by

∂Dǫ =

{
x̃ : x̃ = x+ ǫh(x)ν(x), x ∈ ∂D

}
.

Consider the following eigenvalue problem:

(3.20)





∆uǫ + ω2uǫ = 0 in Ω \Dǫ,

∆uǫ +
ω2

k
uǫ = 0 in Dǫ,

uǫ|+ − uǫ|− = 0 on ∂Dǫ,

∂uǫ

∂ν

∣∣∣
+
− k

∂uǫ

∂ν

∣∣∣
−
= 0 on ∂Dǫ,

∂uǫ

∂ν
= 0 on ∂Ω.

In exactly the same manner as in the previous section, we reduce the eigenvalue
problem (3.20) to the calculation of the asymptotic expressions of the characteristic
values of the operator-valued function Aǫ(ω) given by

ω 7→ Aǫ(ω) :=




1

2
I −KωΩ −SωDǫ

0

Dω
Ω SωDǫ

−S
ω√
k

Dǫ

∂

∂ν
Dω

Ω

1

2
I + (KωDǫ

)∗ −k(−1

2
I + (K

ω√
k

Dǫ
)∗)



.

To derive a full asymptotic expansion of the perturbations in the eigenvalues,
we shall expand the operator-valued function Aǫ(ω) in terms of ǫ. For this purpose,
we only need to construct high-order expansions of SωDǫ

and (KωDǫ
)∗.

Suppose that ω0 is a simple eigenvalue of (3.20) for ǫ = 0. Let Vδ0 be a disk of
center ω0 and radius δ0 > 0 so that ω0 is the only characteristic value of A0(ω) in
Vδ0 .

With (2.141) and (2.146) in hand, we write

Aǫ(ω) =

+∞∑

n=0

(ωǫ)nAn(ω) for ω ∈ Vδ0 .

Therefore, from

ωǫ − ω0 =
1

2π
√
−1

tr

∫

∂Vδ0

(ω − ω0)Aǫ(ω)
−1 d

dω
Aǫ(ω)dω,

we obtain the following complete asymptotic expansion for the eigenvalue pertur-
bations due to a shape deformation of the particle.

Theorem 3.10 (Eigenvalue perturbations). For ǫ small enough, the following
asymptotic expansion holds:

(3.21) ωǫ − ω0 =
1

2
√
−1π

+∞∑

p=1

1

p

+∞∑

n=p

ǫn tr

∫

∂Vδ0

Bn,p(ω)dω,

where

Bn,p(ω) = (−1)p
∑

n1+...+np=n

ni≥1

A0(ω)
−1An1(ω) . . .A0(ω)

−1Anp(ω)ω
n.
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The leading-order of the expansion of ωǫ − ω0 is the ǫ-order term and its coef-
ficient is given by

− 1

2
√
−1π

tr

∫

∂Vδ0

A0(ω)
−1A1(ω)ωdω.

Tedious calculations yield

(3.22) ωǫ − ω0 = ǫ
k − 1

2ω0

∫

∂D

h

[
k(
∂u0

∂ν
|−)2 + (

∂u0

∂T
)2
]
dσ +O(ǫ2),

where u0 satisfying
∫
Ω
|u0|2 = 1 is the normalized eigenvalue of (3.20) for ǫ = 0.

As will be seen later, this is exactly the shape derivative of ωǫ. Another way of
deriving (3.22) is given in [18]. It is based on fine gradient estimates from [328] (see
also [327]) together with Osborn’s result on spectral approximation for compact
operators in [379].

Let v be the solution to

(3.23)





∆v + ω2
0v = 0 in Ω \D,

∆v + ω2
0v = 0 in D,

v|+ − v|− = −h∂u
0

∂ν
|− on ∂D,

∂v

∂ν

∣∣∣
+
− k

∂v

∂ν

∣∣∣
−
= − ∂

∂T
h
∂u0

∂T
on ∂D,

∂v

∂ν
= 0 on ∂Ω,

∫

Ω

v u0 = 0.

It can be shown that the asymptotic expansion of uǫ

(3.24) uǫ − u0 = ǫ(k − 1)v + o(ǫ)

holds uniformly on ∂Ω.
Observe that if we define Nω0

Ω,D as the solution to





(
∇ · (1 + (k − 1)χ(D))∇+ ω2

0

)
Nω0

Ω,D(x, y) = −δy + u0(x)u0(y) in Ω,

∂Nω0

Ω,D

∂ν
= 0 on ∂Ω,

∫

Ω

Nω0

Ω,Du
0 = 0,

then v admits the following integral representation:

v(x) =

∫

∂D

h(y)

[
∂u0

∂T
(y)

∂Nω0

Ω,D

∂T
(x, y) + k

∂u0

∂ν

∣∣∣∣
−
(y)

∂Nω0

Ω,D

∂ν

∣∣∣∣
−
(x, y)

]
dσ(y).
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In exactly the same manner as in the derivation of (3.22), if we consider the
eigenvalue problem





∆uǫ + ω2uǫ = 0 in Ω \Dǫ,

∆uǫ +
ω2

k
uǫ = 0 in Dǫ,

uǫ|+ − uǫ|− = 0 on ∂Dǫ,

∂uǫ

∂ν

∣∣∣
+
− ∂uǫ

∂ν

∣∣∣
−
= 0 on ∂Dǫ,

∂uǫ

∂ν
= 0 or uǫ = 0 on ∂Ω,

or equivalently,

(3.25)





∆uǫ + ω2(χ(Ω \Dǫ) +
1

k
χ(Dǫ))u

ǫ = 0 in Ω,

∂uǫ

∂ν
= 0 or uǫ = 0 on ∂Ω,

we can prove that the following asymptotic formula holds:

(3.26) ωǫ − ω0 =
ǫ

2
ω0(

1

k
− 1)

∫

∂D

h|u0|2 dσ +O(ǫ2),

where u0 is the eigenvalue of (3.25) for ǫ = 0 satisfying the normalization
∫

Ω

(
χ(Ω \D) +

1

k
χ(D)

)
|u0|2 = 1.

Furthermore, the asymptotic expansion of uǫ

(3.27) uǫ − u0 = ǫω2
0(1−

1

k
)w + o(ǫ)

holds uniformly on ∂Ω, where





∆w + ω2
0w = 0 in Ω \D,

∆w + ω2
0w = 0 in D,

w|+ − w|− = 0 on ∂D,

∂w

∂ν

∣∣∣
+
− ∂w

∂ν

∣∣∣
−
= hu0 on ∂D,

∂w

∂ν
= 0 or w = 0 on ∂Ω,

∫

Ω

w u0 = 0.

Remark 3.11. In [69, 80], asymptotic formulas for perturbations in the eigen-
values of the full Maxwell equations due to the presence of small dielectric particles
are derived.

3.3. Optical Resonators

3.3.1. Integral Formulation of Resonances. The integral formulation de-
scribed below can be applied to resonance problems for Maxwell’s and elasticity
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equations. However, for simplicity, we will limit the presentation to a scalar prob-
lem. Consider the solution u to the following problem:

(3.28)

{
∆u+ ω2n(x)u = 0,

u satisfies the Sommerfeld radiation condition.

We assume that n − 1 is compactly supported in a bounded domain D ⊂ Rd for
d = 2, 3, and is assumed to be known.

Keeping in mind that (2.147) holds for ω ∈ C, we can formally rewrite the
solution to (3.28) in integral form

(3.29) u(x) + ω2

∫

D

(n(y)− 1)Γω(x− y)u(y)dy = 0 , x ∈ Rd.

We call a particular ω ∈ C a resonance if it yields nontrivial solutions u(x)
of (3.29). Hence, resonance is a solution to the wave equation which is spatially
localized while its time dependence is harmonic except for decay due to radiation.
The decay rate, which is proportional to the imaginary part of the resonance value,
depends on the material properties of the resonator. If ω is a resonance, then we
call (nontrivial) functions u satisfying (3.28) the resonant modes.

Define the operator A0(ω) as

A0(ω)[u] = u(x) + ω2

∫

D

(n(y)− 1)Γω(x− y)u(y)dy.

Notice that the adjoint A∗
0(ω) of A0(ω) is given by

A∗
0(ω)[v] = v(x) + (n(x)− 1)ω2

∫

D

Γω(x− y)v(y)dy.

Now given n(x), we have the nonlinear eigenvalue problem A0(ω)[u] = 0, which
can be solved using Muller’s method. We can easily prove that ω0 is a resonance if
and only if it is a characteristic value of the meromorphic operator-valued function
ω 7→ A0(ω).

3.3.2. Optimization of the Quality Factor. We define the quality factor
Q as

Q = |ℜωℑω |,
where ω ∈ C is a resonance. The quality factor is inversely proportional to the
decay rate.

In order to compute the sensitivity of Q to changes in n(x), we can make use
of the generalized argument principle.

Write nǫ(x) = n(x) + ǫµ(x), where µ is compactly supported in D and ǫ is a
small parameter and let ω0 be a characteristic value of A0(ω). Denote by Aǫ(ω) the
operator-valued function associated with nǫ. Then there exists a positive constant
δ0 such that for |δ| < δ0, the operator-valued function ω 7→ Aǫ(ω) has exactly
one characteristic value in Vδ0(ω0), where Vδ0(ω0) is a disk of center ω0 and radius
δ0 > 0.

Analogously to Lemma 3.6, we have

ωǫ − ω0 =
1

2
√
−1π

tr

∫

∂Vδ0

(ω − ω0)Aǫ(ω)
−1 d

dω
Aǫ(ω)dω,
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and hence, the leading-order of the expansion of ωǫ−ω0 is the ǫ-order term and its
coefficient is given by

(3.30) − 1

2π
√
−1

tr

∫

∂Vδ0

A0(ω)
−1A(µ)

1 (ω)ωdω,

where the operator A(µ)
1 is defined by

A(µ)
1 (ω)[u] = ω2

∫

Ω

µ(y)Γω(x− y)u(y)dy.

Formula (3.30) yields the Fréchet derivative of the quality factor Q with respect
to n. Given an admissible set of functions n(x), optimal control can be used to
maximize the quality factor of the resonator D.

3.4. Elastic Cavities

Let Ω be an elastic medium in R3 with a connected Lipschitz boundary whose
Lamé constants are λ, µ. We consider the eigenvalue problem for the Lamé system
of linear elasticity:

(3.31) Lλ,µu+ κu = µ△u+ (λ+ µ)∇∇ · u+ κu = 0 in Ω,

with the Neumann boundary condition ∂u/∂ν = 0 on ∂Ω. Here the conormal
derivative ∂u/∂ν is defined by (2.369).

Suppose that Ω contains a small particle D of the form D = z + ǫB, where B
is a bounded Lipschitz domain containing the origin, ǫ is a small parameter, and
z indicates the location of the particle. Due to the presence of the particle D, the
eigenvalues of the domain Ω are perturbed. Our goal in this section is to find an
asymptotic expansion for the perturbation of eigenvalues due to the presence of the
particle. Let κ1 ≤ κ2 ≤ . . . be the eigenvalues of (3.31) and let κǫ1 ≤ κǫ2 ≤ . . . be
the eigenvalues in the presence of the particle. The main result of this section is a
complete asymptotic expansion of κǫj − κj as ǫ→ 0.

The main ingredients in deriving the results of this section are again the integral
equations and the theory of meromorphic operator-valued functions. Using integral
representations of solutions to the harmonic oscillatory linear elastic equation, we
reduce this problem to the study of characteristic values of integral operators in
the complex plane.

The elastic particles we deal with are soft particles. A soft particle is character-
ized by the transmission conditions on its boundary. We will explicitly calculate the
leading-order term, which is of order ǫ3, the volume of the particle, and is expressed
in terms of the eigenfunctions and the elastic moment tensor. We confine our at-
tention to the eigenvalues of the Neumann boundary value problem. The Dirichlet
boundary case can be treated in a similar way with only minor modifications of the
techniques presented here. We also confine our attention to the three-dimensional
case. The two-dimensional case can be dealt with in an almost identical way.

We now investigate the perturbation of eigenvalues due to the presence of a
small soft elastic particle. Suppose that the elastic medium Ω contains a small
particle D of the form D = z + ǫB, whose Lamé constants are λ̃, µ̃ satisfying
(λ − λ̃)(µ − µ̃) ≥ 0 and 0 < λ̃, µ̃ < +∞. Let κk be an eigenvalue of −Lλ,µ
and let κǫk be the perturbed eigenvalue in the presence of the particle. Then the
eigenfunction uǫk corresponding to the (simple) eigenvalue κǫk is the solution to

(2.395) with ω2 = κǫk. Recall that S̃ωD and K̃ωD denote the single-layer potential and
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the boundary integral operator, respectively, defined by (2.377) and (2.382) with

λ, µ replaced by λ̃, µ̃.
Let u be the solution to

(3.32)





Lλ,µu+ ω2u = 0 in Ω \D,
Lλ̃,µ̃u+ ω2u = 0 in D,

∂u

∂ν
= g on ∂Ω,

u
∣∣
+
− u

∣∣
− = 0 on ∂D,

∂u

∂ν

∣∣
+
− ∂u

∂ν̃

∣∣
− = 0 on ∂D.

We may assume as before that ω2 is not a Dirichlet eigenvalue for −Lλ,µ on D.
By Theorem 2.125, u can be represented as

(3.33) u =

{
Dω

Ω[ψ] + SωD[φ] in Ω \D,
S̃ωD[θ] in D,

where ψ, φ, and θ satisfy the system of integral equations

(3.34)





(
1

2
I−KωΩ)[ψ]− SωD[φ] = 0 on ∂Ω,

Dω
Ω[ψ] + SωD[φ]− S̃ωD[θ] = 0 on ∂D,

∂(Dω
Ω[ψ])

∂ν
+
∂(SωD[φ])

∂ν

∣∣∣
+
− ∂(S̃ωD[θ])

∂ν̃

∣∣∣
−
= 0 on ∂D.

Conversely, (φ, ψ, θ) ∈ L2(∂Ω)3 × L2(∂D)3 × L2(∂D)3 satisfying (3.34) yields the
solution to (3.32) via the representation formula (3.33).

In order to derive an asymptotic expansion for κǫ, we begin by establishing the
following, which generalizes Lemma 3.1 to the elasticity case.

Lemma 3.12. Let ψ ∈ L2(∂Ω)3 and φ ∈ L2(∂D)3. If φ̃(x) = ǫφ(ǫx + z) for
x ∈ ∂B, then we have

SωD[φ](x) =
+∞∑

n=0

(−1)nǫn+1
∑

|α|=n

1

α!
∂αΓω(x− z)

∫

∂B

yαφ̃(y)dσ(y), x ∈ ∂Ω,(3.35)

Dω
Ω[ψ](ǫx+ z) =

+∞∑

n=0

ǫn
∑

|α|=n

1

α!
∂α(Dω

Ωψ)(z)x
α, x ∈ ∂B,(3.36)

and for x ∈ ∂B and i = 1, 2, 3,
(3.37)

SωD[φ]i(ǫx+ z)

= − 1

4π

+∞∑

n=0

(ǫω)n
(
√
−1)n

(n+ 2)n!

[(n+ 1

cn+2
T

+
1

cn+2
L

)
ǫij

∫

∂B

|x− y|n−1φ̃j(y) dσ(y)

−
(n− 1

cn+2
T

− n− 1

cn+2
L

)∫

∂B

|x− y|n−3(xi − yi)(xj − yj)φ̃j(y) dσ(y)

]
,

where SωD[φ]i denotes the ith component of SωD[φ].
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Proof. The series (3.36) is exactly a Taylor expansion of Dω
Ω[ψ](ǫx+ z) at z.

By a change of variables, we have that, for any x ∈ ∂Ω,

SωD[φ](x) =
∫

∂D

Γω(x− ỹ)φ(ỹ)dσ(ỹ) = ǫ

∫

∂B

Γω(x− z − ǫy)φ̃(y)dσ(y).

Using the Taylor expansion of Γω(x−z−ǫy) at x−z, we readily get (3.35). Similarly,
(3.37) immediately follows from a change of variables and (2.372). This completes
the proof. �

Let ϕ(x) = ǫφ(ǫx+ z) and ϑ(x) = ǫθ(ǫx+ z). Then using Lemma 3.12, (3.34)
can be written as follows:

Aω
ǫ



ψ
ϕ
ϑ


 = 0, Aω

ǫ =

+∞∑

n=0

(ωǫ)nAω
n ,

where

Aω
0 =




(1
2
I−KωΩ

)
0 0

Dω
Ω[·](z) S0

B −S̃0
B

0
1

2
I+ (K0

B)
∗ 1

2
I− (K̃0

B)
∗


 ,

and for n = 1, 2, . . ., Aω
n is equal to




0
(−1)n

ωn

∑

|α|=n−1

1

α!
∂
α
Γ

ω(x− z)

∫

∂B

y
α · dσ(y) 0

1

ωn

∑

|α|=n

1

α!
x
α
∂
αDω

Ω(·)(z) Sn −S̃n

1

ωn

∑

|α|=n

1

α!

∂(xαI)

∂ν
∂
αDω

Ω(·)(z) Kn −K̃n




.

Here Sn is the operator from L2(∂B)3 into H1(∂B)3 defined by

Sn[ϕ]i =
3∑

j=1

(
Sn
)
ij
[ϕj ],

with

(
Sn
)
ij
= − 1

4π

(
√
−1)n

(n+ 2)n!

(n+ 1

cn+2
T

+
1

cn+2
L

)
ǫij

∫

∂B

|x− y|n−1 · dσ(y)

+
1

4π

(
√
−1)n(n− 1)

(n+ 2)n!

( 1

cn+2
T

− 1

cn+2
L

)∫

∂B

|x− y|n−3(xi − yi)(xj − yj) · dσ(y),

and Kn = ∂Sn/∂ν. The operators S̃n and K̃n are defined in exactly the same way

with cT and cL replaced by c̃T =
√
µ̃ and c̃L =

√
λ̃+ 2µ̃.

With this notation, the following theorem holds.

Theorem 3.13 (Eigenvalue perturbations). Let κj be a simple Neumann eigen-
value for −Lλ,µ in Ω without the particle and let κǫj be the Neumann eigenvalue
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when Ω contains the particle. Let ω0 :=
√
κj and ωǫ :=

√
κǫj. Then we have

ωǫ − ω0 =
1

2
√
−1π

+∞∑

p=1

1

p

+∞∑

n=p

ǫn tr

∫

∂Vj

Bn,p(ω)dω,(3.38)

where

Bn,p(ω) = (−1)p
∑

n1+···+np=n

ni≥1

(Aω
0 )

−1Aω
n1
. . . (Aω

0 )
−1Aω

np
ωn.(3.39)

We now state the following theorem.

Theorem 3.14. Let κk be a simple Neumann eigenvalue for −Lλ,µ in Ω without
the particle, let κǫk be the Neumann eigenvalue when Ω contains the particle, and
let uk be the corresponding eigenfunction such that ‖uk‖L2(Ω) = 1. Then we have

(3.40) κǫk − κk = ǫ3
3∑

i,j,p,q=1

mij
pq∂i(uk)j(z)∂p(uk)q(z) +O(ǫ4),

where (uk)j denotes the jth component of uk and M = (mij
pq) defined by (2.515) is

the elastic moment tensor associated with B and the elastic parameters λ̃ and µ̃.

We note that because of the symmetry of the elastic moment tensor mij
pq =

mji
pq = mij

qp (see (2.519)), (3.40) can be written in a more compact form using the
standard notation of the contraction and the strain for tensors:

(3.41) κǫk − κk = ǫ3E(uk)(z) :ME(uk)(z) +O(ǫ4),

where a : b =
∑
ij aijbij for two matrices a and b and

(3.42) E(uk) =
1

2
(∇uk +∇utk).

Here, the superscript t denotes the transpose.
It is worth mentioning that if the particle is harder (softer, resp.) than the

background, i.e., µ̃ > µ and λ̃ ≥ λ (µ̃ < µ and λ̃ ≤ λ, resp.), then M is positive
(negative, resp.) definite (see Theorem 2.148), and hence κǫk > κk (κǫk > κk,
resp) provided that ǫ is small enough and E(uk)(z) 6= 0. Formula (3.41) makes it
possible to deduce the sign of the variation of a given eigenvalue in terms of the
elastic parameters of the particle.

Proof of Theorem 3.14. We first observe from (3.38) that the ǫ-order term
is given by

(3.43) − 1

2
√
−1π

tr

∫

∂Vk

(Aω
0 )

−1Aω
1ωdω,

the ǫ2-order term is given by

(3.44)
1

2
√
−1π

tr

∫

∂Vk

[
− (Aω

0 )
−1Aω

2 +
1

2

(
(Aω

0 )
−1Aω

1

)2
]
ω2dω,
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and the ǫ3-order term is given by

(3.45)

1

2
√
−1π

tr

∫

∂Vk

[
− (Aω

0 )
−1Aω

3 + (Aω
0 )

−1Aω
1 (Aω

0 )
−1Aω

2

−1

3

(
(Aω

0 )
−1Aω

1

)3
]
ω3 dω.

Introduce

(3.46)




S0
B −S̃0

B

1

2
I+ (K0

B)
∗ 1

2
I− (K̃0

B)
∗




−1

=

(
A1 A2

A3 A4

)
,

where the invertibility is guaranteed by Theorem 2.124. As another direct conse-
quence of this theorem, we also have that

A1(f), A2(g) ∈ L2
Ψ(∂B)(3.47)

for any f ∈ H1(∂B)3 and g ∈ L2
Ψ(∂B) and

A1(f) = 0 for any f ∈ Ψ.(3.48)

Explicit calculations show that
(
Aω

0

)−1
takes the following form:

(
Aω

0

)−1
=




(1
2
I−KωΩ

)−1
0 0

0 A1 A2

(S̃0
B)

−1[I]
(
Dω

Ω(
1

2
I−KωΩ)−1[·]

)
(z) A3 A4


 .

Since Ai, i = 1, 2, 3, 4, are independent of ω, we have

tr

∫

∂Vk

(Aω
0 )

−1Aω
nω

ndω = 0(3.49)

for any integer n.

From (3.47) and (3.48) we readily find
(
Aω

0

)−1Aω
1ω is equal to




0 T1 0
∑

|α|=1

(
A1(x

αI) +A2

(∂(xαI)
∂ν

))
∂αDω

Ω[·](z) 0 0

∑

|α|=1

(
A3(x

αI) +A4

(∂(xαI)
∂ν

))
∂αDω

Ω[·](z) T2 −ωA3S̃1



,

where

T1 = −
(1
2
I−KωΩ

)−1
Γω(x− z)

∫

∂B

· dσ(y),

T2 = −(S̃0
B)

−1Dω
Ω

[(1
2
I−KωΩ

)−1
Γω(x− z)

]
(z)

∫

∂B

· dσ(y) +A3S1.

Using (3.47), we can write that
∫

∂B

A1(x
αI) +A2

(∂(xαI)
∂ν

)
dσ(y) = 0 if |α| = 1
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and easily check that

tr

∫

∂Vk

(
(Aω

0 )
−1Aω

1

)n
ωndω = 0,(3.50)

for any integer n. Now combining (3.43)–(3.45), (3.49), and (3.50) gives

(3.51) ωǫ − ω0 =
ǫ3

2
√
−1π

tr

∫

∂Vk

(Aω
0 )

−1Aω
1 (Aω

0 )
−1Aω

2ω
3dω +O(ǫ4).

Indeed, we have

(
Aω

0

)−1Aω
2ω

2 =




0 T3 0

T5 ω2(A1S2 +A2K2) −ω2(A1S̃2 +A2K̃2)

T6 T4 −ω2(A3S̃2 +A4K̃2)


 ,

where

T3 =
∑

|α|=1

(1
2
I−KωΩ

)−1
∂αΓω(x− z)

∫

∂B

yα · dσ(y),

T4 =
∑

|α|=1

(S̃0
B)

−1(I)Dω
Ω

[(1
2
I−KωΩ

)−1
∂αΓω(x− z)

]
(z)

∫

∂B

yα · dσ(y)

+ ω2(A3S2 +A4K2),

T5 =
∑

|α|=2

1

α!

(
A1(x

αI) +A2

(∂(xαI)
∂ν

))
∂αDω

Ω(·)(z),

T6 =
∑

|α|=2

1

α!

(
A3(x

αI) +A4

(∂(xαI)
∂ν

))
∂αDω

Ω(·)(z).

Using the following identity, whose proof will be given later,

1

2
√
−1π

tr

∫

∂Vk

(
T1T5 − ω2T2(A1S̃2 +A2K̃2)

)
dω = 0,(3.52)

it follows from (3.52) that

1

2
√
−1π

tr

∫

∂Vk

(Aω
0 )

−1Aω
1 (Aω

0 )
−1Aω

2ω
3dω

=
1

2
√
−1π

tr
∑

|α|=1

∫

∂Vk

(
A1(x

αI) +A2

(∂(xαI)
∂ν

))
∂αDω

Ω[T3(·)](z) dω

=
1

2
√
−1π

tr
∑

|α|=1

(
A1(x

αI) +A2

(∂(xαI)
∂ν

))∫

∂Vk

∂αDω
Ω[T3(·)](z) dω.(3.53)

By (2.403) and (2.404) we have

(1
2
I−KωΩ

)−1
∂αΓω(· − z)(x) = −∂αz

(1
2
I−KωΩ

)−1
[Γω(· − z)](x)

=

+∞∑

j=1

1

κj − ω2
uj(x)∂

αuj(z)
t.(3.54)

By Green’s formula, the following relation holds:

(3.55) Dω
Ω[uj ](z) = uj(z) + (κj − ω2)

∫

Ω

Γω(z − y)uj(y)dy.
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Combining (3.55) with (2.404), we obtain

(3.56)

1

2
√
−1π

∫

∂Vj

Dω
Ω[N

ω
Ω(·, z)](z)dω =

1

2
√
−1π

uj(z)uj(z)
t

∫

∂Vj

1

κj − ω2
dω

=
−1

2
√
κj

uj(z)uj(z)
t.

We also have from (3.55) that

(3.57) ∂αDω
Ω[uk](z) = ∂αuk(z) + (κk − ω2)

∫

Ω

∂αΓω(z − y)uk(y) dy.

Using (3.54) and (3.57), it follows that

1

2
√
−1π

∫

∂Vk

∂αDω
Ω[T3(·)](z) dω = − 1

2
√
κk

∑

|β|=1

∂αuk(z)∂
βuk(z)

t

∫

∂B

yβ · dσ(y).
(3.58)

Substituting (3.58) into (3.53), we obtain

1

2
√
−1π

tr

∫

∂Vk

(Aω
0 )

−1Aω
1 (Aω

0 )
−1Aω

2ω
3dω

(3.59)

= − 1

2
√
κk

tr
∑

|α|=|β|=1

(
A1(x

αI) +A2

(∂(xαI)
∂ν

))
∂αuk(z)∂

βuk(z)
t

∫

∂B

yβ · dσ(y)

= − 1

2
√
κk

tr
∑

|α|=|β|=1

∂αuk(z)∂
βuk(z)

t

∫

∂B

yβ
(
A1(x

αI) +A2

(∂(xαI)
∂ν

))
dσ(y)

= − 1

2
√
κk

∑

|α|=|β|=1

∂βuk(z)
t

[ ∫

∂B

yβ
(
A1(x

αI) +A2

(∂(xαI)
∂ν

))
dσ(y)

]
∂αuk(z).

But, by the definition of A1 and A2, the (i, j)-component of
∫

∂B

yβ
(
A1(x

αI) +A2

(∂(xαI)
∂ν

))
dσ(y)

is equal to −mαj
βi . Now, plugging (3.59) into (3.51), we arrive as desired at the

following asymptotic formula:

ωǫ − ω0 =
ǫ3

2
√
κk

3∑

i,j,α,β=1

mαj
βi ∂β(uk)i(z)∂α(uk)j(z) +O(ǫ4).

In order to complete the proof of the theorem, we verify identity (3.52). As
before, it is easy to see that

1

2
√
−1π

tr

∫

∂Vk

T1T5dω

= − 1

2
√
κk

∑

|α|=2

1

α!
uk(z)

t

[ ∫

∂B

(
A1(x

αI) +A2

(∂(xαI)
∂ν

))
dσ(y)

]
∂αuk(z)

= − 1

2
√
κk

uk(z)
t

∫

∂B

A2

(∂u(2)
k

∂ν

)
dσ(y),
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where u
(2)
k (x) =

∑

|α|=2

1

α!
xα∂αuk(z). Using (3.56), we also have

1

2
√
−1π

tr

∫

∂Vk

ω2T2(A1S̃2 +A2K̃2) dω

= − 1

2
√
−1π

tr

∫

∂Vk

ω2Dω
Ω

[(1
2
I−KωΩ

)−1
Γω(x− z)

]
(z)

∫

∂B

A2K̃2(S̃0
B)

−1dσ(y) dω

= −
√
κk
2

truk(z)uk(z)
t

∫

∂B

A2K̃2(S̃0
B)

−1 dσ(y)

= −
√
κk
2

uk(z)
t

∫

∂B

A2K̃2(S̃0
B)

−1 [uk(z)] dσ(y).

Inserting the Taylor expansion of uk at z into (Lλ,µ + κk)uk = 0 yields

Lλ,µu(2)
k + κkuk(z) = 0.(3.60)

Since S̃ωB = S̃0
B +

+∞∑

n=1

ωnS̃n, we get

Lλ̃,µ̃S̃2(S̃0
B)

−1 [uk(z)] + uk(z) = 0.(3.61)

By the definition of An and the jump relation of a single-layer, we have

A2(f) =
∂

∂ν
S0
BA2(f)

∣∣∣
+
− ∂

∂ν
S0
BA2(f)

∣∣∣
−
= f +

∂

∂ν̃
S̃0
BA4(f)

∣∣∣
−
− ∂

∂ν
S0
BA2(f)

∣∣∣
−
,

and hence
∫

∂B

A2(f)dσ =

∫

∂B

fdσ.(3.62)

From (3.60), (3.61), and (3.62), we conclude that

∫

∂B

A2

(∂u(2)
k

∂ν

)
− κkA2K̃2(S̃0

B)
−1 [uk(z)] dσ(y)

=

∫

∂B

∂u
(2)
k

∂ν
− κkK̃2(S̃0

B)
−1 [uk(z)] dσ(y)

=

∫

B

Lλ,µu(2)
k − κkLλ̃,µ̃S̃2(S̃0

B)
−1 [uk(z)] dy = 0,

which completes the proof. �

3.5. Eigenvalue Perturbations Due to Shape Deformations

Let Ω ⋐ R2. As in Subsection 3.2.2, we consider Dǫ to be an ǫ-perturbation of
D ⋐ Ω. The boundary ∂Dǫ is then given by

∂Dǫ =

{
x̃ : x̃ = x+ ǫh(x)N(x), x ∈ ∂D

}
,

where h ∈ C2(∂D). Here N is the outward normal to ∂D, T denotes the tangential
vector, and τ is the curvature of ∂D.
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Consider the following eigenvalue problem:

(3.63)





Lλ,µuǫ + ω2
ǫu

ǫ = 0 in Ω \Dǫ,

Lλ̃,µ̃uǫ + ω2
ǫu

ǫ = 0 in Dǫ,

∂uǫ

∂ν
= 0 on ∂Ω,

uǫ
∣∣
+
− uǫ

∣∣
− = 0 on ∂Dǫ,

∂uǫ

∂ν

∣∣
+
− ∂uǫ

∂ν̃

∣∣
− = 0 on ∂Dǫ,

with the normalization
∫
Ω
|uǫ|2 = 1.

The following theorem from [19] holds.

Theorem 3.15. The leading-order term in the perturbations of the eigenvalues
due to the interface changes is given by

ω2
ǫ − ω2

0 = ǫ

∫

∂D

h(x)M[u0](x) : E(u0)(x) dσ(x) + o(ǫ),

where E(u0) is defined by (3.42) and

M[u0] = a∇ · u0I + bE(u0) + c

(
∂(u0 · T )
∂T

+ τu0 · ν
)
T ⊗ T + d

∂(u0 ·N)

∂N
N ⊗N,

with 



a = (λ̃− λ)
λ+ 2µ

λ̃+ 2µ̃
,

b = 2(µ̃− µ)
µ

µ̃
,

c = 2(µ̃− µ)

(
2λ̃+ 2µ̃− λ

λ̃+ 2µ̃
− µ

µ̃

)
,

d = 2(µ̃− µ)
µ̃λ− µλ̃

µ̃(λ̃+ 2µ̃)
.

Here, I is the identity matrix, a ⊗ b := aibj is the tensor product between vectors
in R2, and T is the tangent vector to ∂D.

3.6. Concluding Remarks

In this chapter we have rigorously derived asymptotic expansions for the eigen-
values of the Laplacian and the Lamé system in singularly perturbed cavities. These
asymptotics are with respect to the size of the perturbation. We have also formu-
lated the problem of finding resonances of an optical resonator as a characteristic
value problem for a meromorphic operator-valued function.
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CHAPTER 4

Diffraction Gratings

4.1. Introduction

Diffractive optics is a fundamental yet vigorously growing technology which
continues to be a source of novel optical devices. Significant recent technology ad-
vances have led to the development of high precision micromachining techniques
which permit the creation of gratings (periodic structures) and other diffractive
structures with tiny features. Current and potential application areas include cor-
rective lenses, antireflective interfaces, beam splitters, and sensors. Because of the
small structural features, light propagation in micro-optical structures is generally
governed by diffraction. In order to accurately predict the energy distributions of
an incident field in a given structure, the numerical solution of the full Maxwell
equations is required. If the field configurations are built up of harmonic electro-
magnetic waves that are transverse, then the Maxwell equations can be reduced
to two scalar Helmholtz equations. Computational models also allow the exciting
possibility of obtaining completely new structures through the solution of optimal
design problems.

The basic electromagnetic theory of gratings has been studied extensively since
Rayleigh’s time (1907). Recent advances have been greatly accelerated due to sev-
eral new approaches and numerical methods including differential methods, integral
methods, analytical continuation, and variational methods, to name but a few.

Diffractive optical elements, as opposed to the traditional optical lenses, have
many advantages. They are light, small, and inexpensive. Often diffractive struc-
tures exhibit certain periodicity. There are two classes of grating structures:

• linear grating (one-dimensional gratings),
• crossed gratings (biperiodic or two-dimensional gratings).

The chapter begins with basic electromagnetic theory for diffraction gratings.
We introduce the basic physics and present the system of Maxwell’s equations as
well as the two fundamental polarizations. The well-known grating formula is also
derived. Then the method of boundary variations is also discussed. This method
is based on the observation that since electromagnetic fields behave analytically
with respect to perturbations of a scattering surface, they can be represented by
convergent power series in a perturbation parameter. The effects of small defects
in a diffraction grating is addressed using an integral representation formulation.

4.2. Electromagnetic Theory of Gratings

4.2.1. Time-Harmonic Maxwell’s Equations. The electromagnetic wave
propagation is governed by Maxwell’s equations. Throughout, we shall restrict our

attention to time-harmonic electromagnetic fields with time dependence (e−
√−1ωt),

197
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i.e.,

E(x, t) = E(x)e−
√−1ωt ,(4.1)

H(x, t) = H(x)e−
√−1ωt(4.2)

for some operating frequency ω > 0 with E and H being respectively the electric
and magnetic field.

The time-harmonic Maxwell equations take the following form:

∇× E =
√
−1ωµH,(4.3)

∇×H = −
√
−1ωεE,(4.4)

where µ is the magnetic permeability and ε is the electric permittivity. Note that
from (4.3) and (4.4), it follows that

∇ · (εE) = 0,(4.5)

∇ · (µH) = 0.(4.6)

The fields are further assumed to be nonmagnetic and µ = µ0 (usually the
magnetic permeability of vacuum). Then (4.6) becomes

∇ ·H = 0.

It follows from (4.3-4.4) that the following jump conditions hold:

• the tangential components of E and H must be continuous crossing an
interface,

• the normal components of εE and H must be continuous crossing an
interface.

In a homogeneous and isotropic medium, ε does not depend on x. By taking
the curl of (4.3) we obtain that

−∆E +∇(∇ · E) =
√
−1ωµ0∇×H.

Using (4.4), we have
−∆E +∇(∇ · E) = ω2εµ0E

or the Helmholtz equation

(4.7) ∆E + k2E = 0

with k = ω
√
εµ0.

Similarly, H satisfies
∆H + k2H = 0.

Note that in a dielectric medium k2 is real and positive. The wavelength λ is given
by λ = (2π)/k.

4.2.2. Grating Geometry and Fundamental Polarizations. Through-
out, a grating is always assumed to be infinitely wide.

Figure 4.1 shows the grating geometry. We denote the period, height, and
incident angle by Λ, h, and θ, respectively.

An alternative way to specify the periodicity is by means of ε.
For a 1-D grating (linear grating):

ε(x1 + nΛ, x2) = ε(x1, x2), n ∈ Z.

In the case of a crossed grating with period Λ = (Λ1,Λ2) we have

ε(x1 + n1Λ1, x2 + n2Λ2, x3) = ε(x1, x2, x3), ∀ n1, n2 ∈ Z.
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Incident plane wave

Region I

Region II

Figure 4.1. Grating geometry.

We assume that above the interface ε is real and positive. However, below the
interface the parameter ε can be real which corresponds to a dielectric medium;
complex corresponding to an absorbing or lossy medium; or perfectly conducting.

In the next three sections we shall discuss two separate cases: The perfectly
conducting grating and the dielectric grating.

Suppose that a grating is illuminated under the incidence θ by a plane wave of
unit amplitude propagating in Region I (Figure 4.1). The incident vector Ki lies
in the (x1, x2) plane

Ki = k1(sin θ,− cos θ, 0).

The electromagnetic fields are assumed to be independent of x3. We consider the
following two fundamental cases of polarization: TE (transverse electric) and TM
(transverse magnetic).

In TE polarization, the electric field is parallel to the grooves or points in the
x3 direction, i.e.,

E = u(x1, x2)e3

where u is a scalar function and (e1, e2, e3) is an orthonormal basis of R3.
In TM polarization, the magnetic field is parallel to the grooves

H = u(x1, x2)e3.

As we shall see, the resulting Maxwell equations in these two polarizations can
be quite different.

4.2.3. Perfectly Conducting Gratings. In this section, the grating is as-
sumed to be perfectly conducting. In order to treat the two fundamental polariza-
tions simultaneously, we denote u = E3(x1, x2) in TE polarization; = H3(x1, x2) in
TM polarization, where the subscript 3 stands for the third component. Assume
that the grating is expressed by x2 = f(x1). Then u = 0 in Region II (x2 < f(x1)).
In Region I, the field u satisfies

(4.8) ∆u+ k2u = 0 if x2 > f(x1).

We next derive the boundary condition of u on x2 = f(x1). Using the jump
conditions and that E is zero in Region II, we have

(4.9) ν × E = 0 on x2 = f(x1),

where ν is the outward normal to Region II.
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In TE polarization, E = (0, 0, u), hence (4.9) implies that

(4.10) u(x1, f(x1)) = 0,

i.e., a homogeneous Dirichlet boundary condition.
In TM polarization, H = (0, 0, u). We obtain by using Maxwell’s equations

and the condition (4.9) that

(4.11)
∂u

∂ν

∣∣∣∣
x2=f(x1)

= 0,

which is a homogeneous Neumann boundary condition.
Define the scattered field as the difference between the total field u and the

incident field ui = e
√−1(αx1−βx2)

(4.12) us = u− ui.

Here,

(4.13)

{
α = k1 sin θ,

β = k1 cos θ.

Since the incident field ui satisfies the Helmholtz equation everywhere, we can easily
show that

(4.14) ∆us + k21u
s = 0 for x2 > f(x1).

From (4.10) and (4.11), us satisfies either one of the following boundary conditions:
TE polarization:

(4.15) us = −ui on x2 = f(x1).

TM polarization:

(4.16)
∂us

∂ν
= −∂u

i

∂ν
on x2 = f(x1).

Next, since the problem is posed in an unbounded domain, a radiation condition is
needed. We assumed that us is bounded when x2 goes to infinity and consisted of
outgoing plane waves. This radiation condition is also referred to as the outgoing
wave condition.

The grating problem can be stated as: find a function that satisfies the Helmholtz
equation (4.14), a boundary condition on {x2 = f(x1)}, and the outgoing wave con-
dition.

Motivated by uniqueness, we shall seek the so–called “quasi–periodic” solutions,

i.e., solutions us such that us(x1, x2)e
−√−1αx1 is a periodic function of period Λ

with respect to x1 for every x2. In fact, if the grating problem attains a unique
solution then we want to show that

v(x1, x2) = u(x1, x2)e
−√−1αx1

is a periodic function of period Λ, i.e.,

v(x1 + Λ, x2) = v(x1, x2)

or equivalently

(4.17) us(x1 + Λ, x2)e
−√−1αΛ = us(x1, x2).

Because of uniqueness, if w(x1, x2) = us(x1 + Λ, x2)e
−√−1αΛ is also a solution of

the grating problem, then it must be identical to us. It is obvious that w satisfies
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the Helmholtz equation (4.14). The boundary conditions (4.15) and (4.16) are also
satisfied by observing that ui is a quasi-periodic function and using the boundary
condition of us.

4.2.4. Grating Formula. Since us(x1, x2)e
−√−1αx1 is periodic in x1, it fol-

lows by using a Fourier series expansion that

us(x1, x2) = e
√−1αx1

∑

n∈Z

Vn(x2)e
√−1n 2π

Λ x1

=
∑

n∈Z

Vn(x2)e
√−1αnx1(4.18)

with

(4.19) αn = α+
2πn

Λ
,

or equivalently,

(4.20) αn = k1 sin θ + n
2π

Λ
.

Thus, in order to solve for us it suffices to determine Vn(x2).
Now in the region {x2 > max{f(x1)}}, us(x1, x2) satisfies the Helmholtz equa-

tion. Substituting (4.18) into the Helmholtz equation gives

∑

n∈Z

[
d2Vn(x2)

dx22
+ (k21 − α2

n)Vn(x2)

]
e
√−1n 2π

Λ x1 = 0.

Hence
d2Vn(x2)

dx22
+ (k21 − α2

n)Vn(x2) = 0.

Define

(4.21) βn =





√
k21 − α2

n k21 > α2
n,

√
−1
√
α2
n − k21 k21 ≤ α2

n.

Then, solving the simple ordinary differential equation yields

Vn(x2) = Ane
−βnx2 +Bne

√−1βnx2 .

The radiation condition implies that An = 0. Actually if |k1| ≥ |αn| then e−
√−1βnx2

represents incoming waves instead. If |k1| < |αn| then e−
√−1βnx2 is unbounded

when x2 goes to infinity. Therefore we arrive at the Rayleigh expansion of the form

us(x1, x2) =
∑

|αn|<k1
Bne

√−1αnx1+
√−1βnx2 “outgoing waves”

+
∑

|αn|≥k1
Bne

√−1αnx1+
√−1βnx2 “evanescent waves”.(4.22)

Denote

U = {n, |αn| < k1}.
Each term (n ∈ U) of the outgoing waves in (4.22) represents a propagating plane
wave, which is called the scattered wave in the nth order. If |n| is large (n 6∈ U), then

the corresponding term in (4.22) represents an evanescent wave Bne
−|βn|x2e

√−1αnx1
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θ2 θ−2

θ1 θ−1

θ0
θ

Figure 4.2. Geometric interpretation of the grating formula.

which propagates along the x1-axis and is exponentially damped with respect to
x2. The scattered wave in the nth order takes the form:

(4.23) ψn(x1, x2) = Bne
√−1αnx1+

√−1
√
k21−α2

n x2 for n ∈ U.

Since |αn/k1| < 1, we denote

(4.24)
αn
k1

= sin θn, −
π

2
< θn <

π

2
.

From (4.19), we have

(4.25)
αn
k1

= sin θn = sin θ +
2πn

k1Λ

and (4.23) becomes

(4.26) ψn(x1, x2) = Bne
√−1k1(x1 sin θn+x2 cos θn),

where θn is the angle of diffraction.
Thus we have derived the following grating formula:

(4.27) sin θn = sin θ + n
λ1
Λ

or k1 sin θn = k1 sin θ +
n2π

Λ
,

where λ1 is the wavelength in Region I and

k1 =
2π

λ1
.

In the next theorem we state a reciprocity property.

Theorem 4.1. Let θ and θn be the angle of incidence and the angle of diffrac-
tion of the nth order, respectively. Then when the angle of incidence is θ′ = −θn,
the nth scattered order propagates in the direction defined by θ′n = −θ.

The grating efficiency En is the measurement of energy in the nth propagating
order. It is defined as

(4.28) En =
φsn
φi
,

where φi and φsn are the fluxes of the Poynting vectors associated with the incident
wave and the nth scattered wave respectively through a unit rectangle in which one
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θ
θn −θ

−θn

Figure 4.3. The reciprocity theorem.

side is parallel to the x1-axis while the other is parallel to the x3-axis. It is easy to
show that

(4.29) En = |Bn|2
cos θn
cos θ

.

We next state a simple result which is convenient in many applications. The
proof is based on integration by parts.

Lemma 4.2. Assume that u1 and u2 are two functions which satisfy the Helmholtz
equation

∆u+ k2u = 0

and either a homogeneous Dirichlet or a Neumann boundary condition. Then for
any x2 > max f(x1),

(4.30)

∫ Λ

0

(u1
∂u2
∂x2

− u2
∂u1
∂x2

)dx1 = 0.

Theorem 4.3 (The conservation of energy).

(4.31)
∑

n∈U
En = 1.

This is to say, the incident energy is equal to the scattered energy.

Proof. Let u be a solution of the Helmholtz equation with either the Dirichlet
or the Neumann boundary condition. Since k1 is real, u also satisfies the equation
and the boundary condition. By applying Lemma 4.2 to u and u, we get

(4.32)
1

Λ

∫ Λ

0

(
∂u

∂x2
− u

∂u

∂x2

)
dx1 = 0 for x2 > max f(x1)

or

(4.33)
1

Λ
ℑ
{∫ Λ

0

u
∂u

∂x2

}
= 0 for x2 > max f(x1).

Next,

u = e
√−1αx1−

√−1βx2 +
∑

n∈U
Bne

√−1αnx1+
√−1βnx2

+
∑

n 6∈U
Bne

√−1αnx1+
√−1βnx2(4.34)
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and

u = e−
√−1αx1+

√−1βx2 +
∑

n∈U
Bne

−√−1αnx1−
√−1βnx2

+
∑

n 6∈U
Bne

−√−1αnx1−
√−1βnx2 .(4.35)

Substituting (4.34) and (4.35) into (4.33), we find

β =
∑

n∈U
βn|Bn|2,

or equivalently ∑

n∈U
En = 1.

�

4.2.5. Dielectric Gratings. Recall that Region II is filled with a material of
real permittivity ε2.

The solution of the grating problem satisfies:
In Region I,

(4.36) ∆u+ k21u = 0 if x2 > f(x1).

In Region II,

(4.37) ∆u+ k22u = 0 if x2 < f(x1).

Also, outgoing wave conditions are satisfied by us = u− ui (for x2 → +∞) and by
u (for x2 → −∞).

From the jump conditions and Maxwell’s equations, we have that u is continu-
ous, ∂u/∂ν is continuous in TE polarization, and (1/ε)∂u/∂ν is continuous in TM
polarization.

Again, the quasi-periodicity of the field follows from the uniqueness of the
solution. Then for x2 > max f(x1)

(4.38) u(x1, x2) = e
√−1αx1

∑

n∈Z

Vn(x2)e
√−1n 2π

Λ x1 .

Substituting (4.38) into (4.36) and (4.37), we obtain the Rayleigh expansion outside
the groove

(4.39) u(x1, x2) = e(
√−1αx1−

√−1βx2) +
∑

Rne
√−1αnx1+

√−1βn1x2

with αn = k1 sin θ + n 2π
Λ and β2

n1 = k21 − α2
n.

If x2 < min f(x1)

u(x1, x2) =
∑

n∈Z

Tn e
√−1αnx1−

√−1βn2x2

with

β2
n2 = k22 − α2

n.

These two expansions contain propagating and evanescent waves depending on the
value of n.

For j = 1, 2 denote by

Uj = {n, β2
nj > 0}.
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Then if n ∈ U1, α
2
n < k21, we have

(4.40) αn = k1 sin θ + n
2π

Λ
= k1 sin θn1, −π

2
< θn1 <

π

2
,

βn1 = k1 cos θn1,

and Rne
√−1αnx1+

√−1βn1x2 represents a plane wave propagating in the θn1 direction.
Similarly, if n ∈ U2, then

(4.41) αn = k2 sin θ + n
2π

Λ
= k2 sin θn2, −π

2
< θn2 <

π

2
,

βn2 = k2 cos θn2,

and Tne
√−1αnx1−

√−1βn2x2 stands for a transmitted plane wave propagating in the
θn2 direction.

Equations (4.40) and (4.41) are the grating formulas.

4.3. Variational Formulations

4.3.1. Model Problems: TE and TM Polarizations. Consider a time-
harmonic electromagnetic plane wave incident on a slab of some optical material in
R3, which is periodic in the x1 direction. Throughout, the medium is assumed to be
nonmagnetic and invariant in the x3 direction. We study the diffraction problem
in TM (traverse magnetic) polarization, i.e., the magnetic field is transversal to
the (x1, x2)-plane. The case when the electric field is transversal to the (x1, x2)-
plane is called TE (transverse electric) polarization. These two polarizations are
of primary importance since any other polarization may be decomposed into a
simple combination of them. The differential equations derived from time harmonic
Maxwell’s equations are quite different for the TE and TM cases: In the TE case,
(∆ + k2)u = 0, where E (the electric field vector) = u(x1, x2)e3; In the TM case,

∇ · ( 1

k2
∇u) + u = 0,

where the magnetic field vector H(x) = u(x1, x2)e3. In both cases, k = ω
√
εµ0 =

ωq, where q is the index of refraction of the medium.
Let us first specify the problem geometry. Let S1 and S2 be two simple curves

embedded in the strip

Ω = {(x1, x2) ∈ R2 : −b < x2 < b},

where b is some positive constant. The medium in the region Ω between S1 and S2

is inhomogeneous. Above the surface S1 and below the surface S2, the media are
assumed to be homogeneous. The entire structure is taken to be periodic in the
x1-direction. Without loss of generality, we assume that S1 and S2 are periodic of
period Λ with respect to Z.

Let Ω1 = {x = (x1, x2) ∈ R2 : x2 > b}, Ω2 = {x = (x1, x2) ∈ R2 : x2 < −b}.
Define the boundaries Γ1 = {x2 = b}, Γ2 = {x2 = −b}. Assume that S1 > S2

pointwise, i.e., if (x1, x2) ∈ S1 and (x1, x
′
2) ∈ S2, then x2 > x′2. The curves S1 and

S2 divide Ω into three connected components. Denote the component which meets

Γ1 by Ω+
1 ; the component which meets Γ2 by Ω+

2 ; and let Ω0 = Ω \
(
Ω

+

1 ∪ Ω
+

2

)
.
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Suppose that the whole space is filled with material with a periodic dielectric
coefficient function ε of period Λ,

ε(x) =





ε1 in Ω+
1 ∪ Ω1,

ε0(x) in Ω0,
ε2 in Ω+

2 ∪ Ω2,

where ε0(x) ∈ L∞, ε1 and ε2 are constants, ε1 is real and positive, and ℜ ε2 > 0,
ℑ ε2 ≥ 0. The case ℑ ε2 > 0 accounts for materials which absorb energy (see, for
instance, [138]). For convenience, we also need the “index of refraction” q =

√
εµ0

q(x) =





q1 in Ω+
1 ∪ Ω1,

q0(x) in Ω0,
q2 in Ω+

2 ∪ Ω2,

where ε is the dielectric constant and µ0 is the free space magnetic permeability.
We want to solve the Helmholtz equation derived from Maxwell’s system of

equations

(4.42) ∇ · ( 1
q2

∇u) + ω2u = 0 in R2,

when an incoming plane wave

ui(x1, x2) = e
√−1αx1−

√−1βx2

is incident on S from Ω1, where α and β are given by (4.13) with −π/2 < θ < π/2
being the angle of incidence.

We are interested in “quasi-periodic” solutions u, that is, solutions u(x1, x2)

such that u(x1, x2)e
−√−1αx1 are Λ-periodic. Define uα(x1, x2) = u(x1, x2)e

−√−1αx1 .
It is easily seen that if u satisfies (4.42) then uα satisfies

(4.43) ∇α · ( 1
q2

∇αuα) + ω2uα = 0 in R2,

where the operator ∇α is defined by

∇α = ∇+
√
−1(α, 0).

We expand uα in a Fourier series:

(4.44) uα(x1, x2) =
∑

n∈Z

u(n)α (x2)e
√−1 2πn

Λ x1 ,

where

u(n)α (x2) =
1

Λ

∫ Λ

0

uα(x1, x2)e
−√−1 2πn

Λ x1dx1.

Introduce the sets

Γ′
1 = {x ∈ R2 : x2 = b1} , Γ′

2 = {x2 = −b1},
with 0 < b1 < b being such that Ω0 ⊆ {−b1 < x2 < b1}. Let

D1 = {x ∈ R2 : x2 > b1} and D2 = {x ∈ R2 : x2 < −b1}.
Define for j = 1, 2 the coefficients

(4.45) βnj (α) = e
√−1γn

j /2|k2j − α2
n|1/2 = e

√−1γn
j /2|ω2q2j − α2

n|1/2, n ∈ Z,

αn is defined by (4.19), kj = ωqj , and

(4.46) γnj = arg(k2j − α2
n), 0 ≤ γnj < 2π.
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We assume that

(4.47) k2j 6= α2
n for all n ∈ Z, j = 1, 2.

This condition excludes “resonance” cases and ensures that a fundamental solution
for (4.43) exists inside D1 and D2. In particular, for real k2, we have the following
equivalent form of (4.45)

βnj (α) =





√
k2j − α2

n, k2j > α2
n,

√
−1
√
α2
n − k2j , k2j < α2

n.

Notice that if ℑkj > 0, then (4.47) is certainly satisfied.
From the knowledge of the fundamental solution (see, for instance, [170] and

[195]), it follows that inside D1 and D2, uα can be expressed as a sum of plane
waves:

(4.48) uα|Dj
=
∑

n∈Z

anj e
±√−1βn

j (α)x2+
√−1 2πn

Λ x1 , j = 1, 2,

where the anj are complex scalars.
We next impose a radiation condition on the scattering problem. Since βnj is

real for at most finitely many n, there are only a finite number of propagating plane
waves in the sum (4.48), the remaining waves are exponentially damped (so-called
evanescent waves) or radiate (unbounded) as |x2| → ∞. We will insist that uα
is composed of bounded outgoing plane waves in D1 and D2, plus the incident
incoming wave ui in D1.

From (4.44) and (4.48) we then have the condition that
(4.49)

u(n)α (x2) =





u
(n)
α (b)e

√−1βn
1 (α)(x2−b) in D1 for n 6= 0,

u
(0)
α (b)e

√−1β(x2−b) + e−
√−1βx2 − e

√−1β(x2−2b) in D1 for n = 0,

u
(n)
α (−b)e−

√−1βn
2 (α)(x2+b) in D2.

From (4.49) we can then calculate the normal derivative of unα(x2) on Γj , j = 1, 2:

(4.50)
∂u

(n)
α

∂ν

∣∣∣∣∣
Γj

=





√
−1βn1 (α)u

(n)
α (b) on Γ1 for n 6= 0,√

−1βu
(0)
α (b)− 2

√
−1βe−

√−1βb on Γ1 for n = 0,√
−1βn2 (α)u

(n)
α (−b) on Γ2.

Thus from (4.48) and (4.50), it follows that

∂uα
∂ν

∣∣∣∣
Γ1

=
∑

n∈Z

√
−1βn1 (α)u

(n)
α (b)e

√−1 2πn
Λ x1 − 2

√
−1βe−

√−1βb,(4.51)

∂uα
∂ν

∣∣∣∣
Γ2

=
∑

n∈Z

√
−1βn2 (α)u

(n)
α (−b)e

√−1 2πn
Λ x1 ,(4.52)

where the outward normal vector ν = (0, 1) on Γ1 and = (0,−1) on Γ2.
In particular, the above discussion yields the following simple result.

Lemma 4.4. Suppose that α2
n > k21. Then

u(n)α (b) = u(n)α (b1)e
−(b−b1)

√
α2

n−k21 .

Similarly, if α2
n > |k2|2, then

|u(n)α (−b)| = |u(n)α (−b1)|e−(b−b1) sin(γn
2 /2)

4
√

(α2
n−ℜ(k22))

2+(ℑ(k22))
2
.
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Proof. The first identity is a simple consequence of (4.49) since k21 is real.
Recall that from (4.46),

γn2 = arg(ℜ(k22)− α2
n +

√
−1ℑ(k22)).

Using (4.49), we have

u(n)α (−b) = u(n)α (−b1)e−(b−b1)|βn
2 |(sin(γn

2 /2)−
√−1 cos(γn

2 /2))

and hence

|u(n)α (−b)| = |u(n)α (−b1)|e−(b−b1) sin(γn
2 /2)

4
√

(α2
n−ℜ(k22))

2+(ℑ(k22))
2,

which completes the proof. �

Remark 4.5. Actually, when α2
n ≫ |k2|2, the angle γn2 /2 ≤ π/2 will approach

π/2. Thus, there exists a fixed constant σ0, such that

(4.53) δ0 ≤ sin(γn2 /2) ≤ 1 .

Since the fields uα are Λ-periodic in x1, we can move the problem from R2 to
the quotient R2/(ΛZ× {0}). In what follows, we shall identify Ω with the cylinder
Ω/(ΛZ × {0}), and similarly for the boundaries Γj ≡ Γj/ΛZ. Thus from now on,
all functions defined on Ω and Γj are implicitly Λ-periodic in the x1 variable.

For functions f ∈ H
1
2 (Γj) (the Sobolev space of Λ-periodic complex valued

functions), define, in the sense of distributions, the operator Tαj by

(4.54) Tαj [f ](x1) =
∑

n∈Z

√
−1βnj (α)f

(n)e
√−1 2πn

Λ x1 ,

where

f (n) =
1

Λ

∫ Λ

0

f(x1)e
−√−1 2πn

Λ x1 dx1.

It is necessary in our study to understand the continuity properties of the above
“Dirichlet-to-Neumann” maps. Fortunately, this is trivial by observing that Tαj is
a standard pseudo-differential operator (a convolution operator) of order one from
the definition of βnj (α). Thus the standard theory on pseudo-differential operators
(see, for instance, [441]) applies.

Lemma 4.6. For j = 1, 2, the operator Tαj : H
1
2 (Γj) → H− 1

2 (Γj) is continuous.

The scattering problem can be formulated as follows: find uα ∈ H1(Ω) such
that

∇α · ( 1
q2

∇αuα) + ω2uα = 0 in Ω,(4.55)

Tα1 [uα]−
∂uα
∂ν

= 2
√
−1βe−

√−1βb on Γ1,(4.56)

Tα2 [uα]−
∂uα
∂ν

= 0 on Γ2.(4.57)
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An equivalent form of the above system is

∇α · ( 1
q2

∇αũα) + ω2ũα = −f in Ω,(4.58)

Tα1 [ũα]−
∂ũα
∂ν

= 0 on Γ1,(4.59)

Tα2 [ũα]−
∂ũα
∂ν

= 0 on Γ2,(4.60)

where f ∈ (H1(Ω))′ and ũα = uα− u0 with u0 a fixed smooth function. In fact, u0
may be constructed in the following way: Let u0 be a smooth Λ-periodic function
supported near the boundary Γ1. It can be further arranged that u0(x1, b) = 0 and

−∂x2u0 = 2
√
−1βe−

√−1βb on Γ1. Clearly, ũα = uα − u0 solves the above equation
with f = ∇α · ( 1

q2∇αu0) + ω2u0 ∈ (H1(Ω))′, the dual space of H1(Ω).

For simplicity of notation, we shall denote ũα by uα. One can then write down
an equivalent variational form: Given f ∈ (H1(Ω))′, find uα ∈ H1(Ω) such that

(4.61) a(uα, φ) = 〈f, φ〉 , ∀φ ∈ H1(Ω),

here the sesquilinear form is defined by

a(w1, w2) =

∫

Ω

1

q2
∇w1 · ∇w2 −

∫

Ω

(ω2 − α2

q2
)w1w2 −

√
−1α

∫

Ω

1

q2
(∂x1

w1)w2

+
√
−1α

∫

Ω

1

q2
w1∂x1w2 −

∫

Γ1

1

q21
Tα1 [w1]w2 −

∫

Γ2

1

q22
Tα2 [w1]w2,

where
∫
Γj

represents the dual pairing of H− 1
2 (Γj) with H

1
2 (Γj).

We first state the existence and uniqueness of the solution to the continuous
scattering problem. The proof is from [104, 112, 192].

Theorem 4.7. For all but a countable set of frequencies ωj, |ωj | → +∞, the
diffraction problem has a unique solution uα ∈ H1(Ω).

For simplicity, from now on, we shall remove the subscript and superscript
and denote uα, T

α
j by u, Tj , respectively. In the proof of Theorem 4.7, we denote

k21 = k21ω
2 to illustrate the explicit dependence on the frequency parameter ω.

Proof. Write a(w1, w2) = B1(w1, w2) + ω2B2(w1, w2) where

B1(w1, w2) =

∫

Ω

1

q2
∇w1 · ∇w2 + 2

∫

Ω

α2

q2
w1w2 −

√
−1α

∫

Ω

1

q2
(∂x1

w1)w2

+
√
−1α

∫

Ω

1

q2
w1∂x1w2 −

∫

Γ1

1

q21
T1[w1]w2 −

∫

Γ2

1

q22
T2[w1]w2,

B2(w1, w2) = −
∫

Ω

(1 +
α2

k2
)w1w2 .

It follows that

B1(u, u) =

∫

Ω

1

q2
|∇u|2+2

∫

Ω

α2

q2
|u|2−2α

∫

Ω

1

q2
ℑ(u ∂x1u)−

∫

Γ1

1

q21
T1[u]u−

∫

Γ2

1

q22
T2[u]u.
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Next denote 1
q2 = 1

εµ0
by σ′ −

√
−1σ′′. Clearly, σ′ > 0 and σ′′ ≥ 0. Also, denote

1
q22

by σ′
2 −

√
−1σ′′

2 , where σ
′
2 > 0 and σ′′

2 ≥ 0. Thus

ℜ{B1(u, u)} =

∫

Ω

σ′|∇u|2 + 2

∫

Ω

α2σ′|u|2 − 2α

∫

Ω

σ′ℑ(u ∂x1
u)

−ℜ{
∫

Γ1

1

q21
T1[u]u+

∫

Γ2

1

q22
T2[u]u}

≥
∫

Ω

σ′

2
|∇u|2 −ℜ{

∫

Γ1

1

q21
T1[u]u+

∫

Γ2

1

q22
T2[u]u},

and

−ℑ{B1(u, u)} =

∫

Ω

σ′′|∇u|2 + 2

∫

Ω

α2σ′′|u|2 − 2α

∫

Ω

σ′′ℑ(u ∂x1
u)

+ℑ{
∫

Γ1

1

q21
T1[u]u+

∫

Γ2

1

q22
T2[u]u}

≥
∫

Ω

σ′′

2
|∇u|2 + ℑ{

∫

Γ1

1

q21
T1[u]u+

∫

Γ2

1

q22
T2[u]u}.

Further,

−
∫

Γ1

1

q21
T1[u]u = −

∑ 1

q21
Λ
√
−1βn1 |u(n)|2

=
∑ 1

q21
Λ(ℑβn1 ) |u(n)|2 −

√
−1
∑ 1

n2
1

Λℜβn1 |u(n)|2,

and it is easy to see that

−
∫

Γ2

1

q22
T2[u]u = −

∑ 1

q22

√
−1Λβn2 |u(n)(−b)|2

=
∑

n

Λ|βn2 ||u(n)(−b)|2pn

where pn = p′n −
√
−1p′′n with

p′n = −σ′′
2 cos(γn2 /2) + σ′

2 sin(γ
n
2 /2)

and

p′′n = σ′
2 cos(γ

n
2 /2) + σ′′

2 sin(γn2 /2).

Recall that

γn2 = arg(ℜ(k22)− α2
n +

√
−1ℑ(k22))

and 0 ≤ γn2 < 2π. Then it follows that p′′n > 0 for all n and the set {n : p′n < 0} is
finite. It is also easy to verify that |p′′n| > |p′n| for n ∈ {n : p′n < 0}. Moreover, for
fixed ω /∈ B where B is defined by

B := {ω : βnj (ω) = 0, j = 1, 2},

we have

|βnj | ≥ C(1 + |n|2)1/2, j = 1, 2.
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Combining the above estimates, we have

|B1(u, u)| ≥ C

[ ∫

Ω

|∇u|2 + ||u||2H1/2(Γ1)
+
∑

n∈Λ

(|p′′n| − |p′n|)|u(n)(−b)|2

+
∑

n 6∈Λ

|p′′n||u(n)(−b)|2
]

≥ C[

∫

Ω

|∇u|2 + ||u||2H1/2(Γ1)
+ ||u||2H1/2(Γ2)

]

≥ C||u||2H1(Ω),

where the last inequality may be obtained by applying some standard elliptic esti-
mates; see [236]. Therefore, we have shown that

(4.62) |B1(u, u)| ≥ C‖u‖2H1(Ω),

i.e., B1 is a bounded coercive sesquilinear form over H1(Ω). The Lax-Milgram
lemma then gives the existence of a bounded invertible map A1 = A1(ω) : H

1(Ω) →
(H1(Ω))′ such that 〈A1u, v〉 = B1(u, v), where

′ represents the dual space. More-
over, A−1

1 is bounded. Notice that the operator A2 : H1(Ω) → (H1(Ω))′ defined by
〈A2u, v〉 = B2(u, v) is compact and independent of ω.

Holding ω0 /∈ B fixed, consider the operator A(ω0, ω) = A1(ω0) + ω2A2. Since
A1 is bounded invertible and A2 is compact, we see that A(ω0, ω)

−1 exists by
Fredholm theory for all ω /∈ E(ω0), where E(ω0) is some discrete set. It is clear that

‖A1(ω)−A1(ω0)‖ → 0, as ω → ω0.

Thus, since ‖A(ω, ω)−A(ω0, ω)‖ = ‖A1(ω)−A1(ω0)‖ is small for |ω−ω0|sufficiently
small, it follows from the stability of bounded invertibility (see, for instance, Kato
[290, Chapter 4]) that A(ω, ω)−1 exists and is bounded for |ω − ω0| sufficiently
small, ω /∈ E(ω0). Since ω0 > 0 can be an arbitrary real number, we have shown
that A(ω, ω)−1 exists for all but a discrete set of points. �

4.3.2. Biperiodic Structures. Consider a time-harmonic electromagnetic
plane wave incident on a biperiodic structure in R3. The periodic structure sepa-
rates two homogeneous regions. The medium inside the structure is heterogeneous.
The diffraction problem is then to predict energy distributions of the reflected and
transmitted waves. In this chapter, we study some mathematical aspects of the
diffraction problem. We introduce a variational formulation of the diffraction prob-
lem by dielectric gratings. Our main result is concerned with the well-posedness of
the model problem. It is shown that for all but possibly a discrete set of frequen-
cies, there is a unique quasi-periodic weak solution to the diffraction problem. Our
proof is based on the Hodge decomposition and a compact embedding result. An
energy conservation for the weak solution is also proved. An important step of our
approach is to reduce the original diffraction problem with an infinite configuration
to another problem with a bounded domain. This is done by introducing a pair of
transparent boundary conditions. We emphasize that the variational approach is
very general. In particular, the material coefficients ε and µ are only assumed to be
bounded functions. The geometry can be extremely general as well. The incident
angles and grating shapes may be arbitrary. Moreover, a class of finite element
methods can be formulated based on the variational approach.
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4.3.3. Diffraction Problem. We first specify the geometry of the problem.
Let Λ1 and Λ2 be two positive constants, such that the material functions ε and µ
satisfy, for any n1, n2 ∈ Z,

ε(x1 + n1Λ1, x2 + n2Λ2, x3) = ε(x1, x2, x3),

µ(x1 + n1Λ1, x2 + n2Λ2, x3) = µ(x1, x2, x3) .

In addition, it is assumed that, for some fixed positive constant b and sufficiently
small δ > 0,

ε(x) = ε1 , µ(x) = µ1 for x3 > b− δ,

ε(x) = ε2 , µ(x) = µ2 for x3 < −b+ δ,

where ε1, ε2, µ1, and µ2 are positive constants. All of these assumptions are
physical.

We make the following general assumptions: ε(x), µ(x), and β(x) are all real
valued L∞ functions, ε(x) ≥ ε0 and µ(x) ≥ µ0, where ε0 and µ0 are positive
constants.

Let Ω = {x ∈ R3 : −b < x3 < b}, Ω1 = {x ∈ R3 : x3 > b}, Ω2 = {x ∈ R3 : x3 <
−b}.

Consider a plane wave in Ω1

(4.63) Ei = se
√−1q·x , Hi = pe

√−1q·x ,

incident on Ω. Here q = (α1, α2,−β) = ω
√
ε1µ1(cos θ1 cos θ2, cos θ1 sin θ2,− sin θ1)

is the incident wave vector whose direction is specified by θ1 and θ2, with 0 < θ1 < π
and 0 < θ2 ≤ 2π. The vectors s and p satisfy

(4.64) s =
1

ωε1
(p× q) , q · q = ω2ε1µ1 , p · q = 0.

We are interested in biperiodic solutions, i. e., solutions E and H such that the
fields Eα, Hα defined by, for α = (α1, α2, 0),

Eα = e−
√−1α·xE(x1, x2, x3),(4.65)

Hα = e−
√−1α·xH(x1, x2, x3),(4.66)

are periodic in the x1-direction of period Λ1 and in the x2-direction of period Λ2.
Denote

∇α = ∇+
√
−1α = ∇+

√
−1(α1, α2, 0) .

It is easy to see from (4.3) and (4.4) that Eα and Hα satisfy

∇α×
( 1
µ
∇α × Eα

)
− ω2εEα = 0,(4.67)

∇α × Eα =
√
−1ωµ(x)Hα.(4.68)

In order to solve the system of differential equations, we need boundary con-
ditions in the x3 direction. These conditions may be derived by the radiation
condition, the periodicity of the structure, and the Green functions. To do so, we
can expand Eα in a Fourier series since it is Λ periodic:

(4.69) Eα(x) = Eiα(x) +
∑

n∈Z

U (n)
α (x3)e

√−1(
2πn1
Λ1

x1+
2πn2
Λ2

x2),
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where Eiα(x) = Ei(x)e−
√−1α·x and

U (n)
α (x3) =

1

Λ1Λ2

∫ Λ1

0

∫ Λ2

0

(Eα(x)− Eiα(x))e
−√−1(

2πn1
Λ1

x1+
2πn2
Λ2

x2)dx1dx2.

Denote

Γ1 = {x ∈ R3 : x3 = b} and Γ2 = {x3 = −b}.
Define for j = 1, 2 the coefficients

(4.70) β
(n)
j (α) =

{ √
ω2εjµj − |αn|2, ω2εjµj > |αn|2 ,√
−1
√
|αn|2 − ω2εjµj , ω2εjµj < |αn|2,

where

αn = α+ (2πn1/Λ1, 2πn2/Λ2, 0).

We assume that ω2εjµj 6= |αn|2 for all n ∈ Z2, j = 1, 2. This condition excludes
“resonances”.

For convenience, we also introduce the following notation:

Λ+
j = {n ∈ Z2 : ℑ(β(n)

j ) = 0},
Λ−
j = {n ∈ Z2 : ℑ(β(n)

j ) 6= 0}.
Observe that inside Ωj (j = 1, 2), ε = εj and µ = µj , Maxwell’s equations then
become

(4.71) (∆α + ω2εjµj)Eα = 0 ,

where ∆α = ∆+ 2
√
−1α · ∇ − |α|2.

Since the medium in Ωj (j = 1, 2) is homogeneous, the method of separation
of variables implies that Eα can be expressed as a sum of plane waves:
(4.72)

Eα|Ωj
= Eiα(x) +

∑

n=(n1,n2)∈Z2

A
(n)
j e±

√−1β
(n)
j x3+

√−1(
2πn1
Λ1

x1+
2πn2
Λ2

x2), j = 1, 2,

where the A
(n)
j are constant (complex) vectors, where Eiα(x) = 0 in Ω2.

We next impose a radiation condition on the scattering problem. Due to the
(infinite) periodic structure, the usual Sommerfeld or Silver-Müller radiation con-
dition is no longer valid. Instead, the following radiation condition based on the
diffraction theory is employed: Since βnj is real for at most finitely many n, there are
only a finite number of propagating plane waves in the sum (4.72), the remaining
waves are exponentially decaying (or unbounded) as |x3| → ∞. We will insist that
Eα is composed of bounded outgoing plane waves in Ω1 and Ω2, plus the incident
(incoming) wave in Ω1.

From (4.69) and (4.70) we deduce

(4.73) E(n)
α (x3) =

{
U

(n)
α (b)e

√−1β
(n)
1 (x3−b) in Ω1,

U
(n)
α (−b)e−

√−1β
(n)
2 (x3+b) in Ω2.

By matching the two expansions (4.69) and (4.72), we get

A
(n)
1 = U (n)

α (b)e−
√−1β

(n)
1 b on Γ1,(4.74)

A
(n)
2 = U (n)

α (−b)e−
√−1β

(n)
2 b on Γ2.(4.75)
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Furthermore, since in the regions {x : x3 > b− δ} ∪ {x : x3 < −b+ δ},
∇ · E = 0 , ∇ · Ei = 0

or

∇α · Eα = 0 , ∇α · Eiα = 0,

we have from (4.72) that

αn · U (n)
α (b) + β

(n)
1 U

(n)
α,3 (b) = 0 on Γ1,(4.76)

αn · U (n)
α (−b)− β

(n)
2 U

(n)
α,3 (−b) = 0 on Γ2.(4.77)

Lemma 4.8. There exist boundary pseudo-differential operators Bj (j = 1, 2)
of order one, such that

ν × (∇α × (Eα − Eiα)) = B1P [Eα − Eiα] on Γ1,(4.78)

ν × (∇α × Eα) = B2P [Eα] on Γ2,(4.79)

where the operator Bj is defined by
(4.80)

Bj [f ] = −
√
−1

∑

n∈Z2

1

β
(n)
j

{(β(n)
j )2(f

(n)
1 , f

(n)
2 , 0)+(αn ·f (n))αn}e

√−1(
2πn1
Λ1

x1+
2πn2
Λ2

x2),

where P is the projection onto the plane orthogonal to ν, i.e.,

P [f ] = −ν × (ν × f),

and

f (n) = Λ−1
1 Λ−1

2

∫ Λ1

0

∫ Λ2

0

f(x)e−
√−1(

2πn1
Λ1

x1+
2πn2
Λ2

x2)dx1dx2.

Here ν is the outward normal to Ω.

The proof may be given by using the expansion (4.72) together with (4.74–4.77),
and some simple calculation.

Remark 4.9. The Dirichlet-to-Neumann operator B carries the information
on radiation condition in an explicit form. Here it is crucial to assume that β(n) is
nonzero.

We introduce the L2 scalar product

〈f, g〉 =
∫

A

fg ,

where A is the domain.
Denote by B∗

j the adjoint of Bj , that is,

〈Bj [f ], g〉 =
〈
f, B∗

j [g]
〉
,

for any f and g in L2(Γj).
It is easily seen that the adjoint operator of Bj in the above lemma is given by

(4.81)

B∗
j [f ] =

√
−1

∑

n∈Z2

1

β
(n)

j

{(β(n)

j )2(f
(n)
1 , f

(n)
2 , 0) + (αn · f (n))αn}e

√−1(
2πn1
Λ1

x1+
2πn2
Λ2

x2).

Define

Λ = Λ1Z× Λ2Z× {0} ⊂ R3.
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Since the fields Eα are Λ-periodic, we can move the problem from R3 to the quotient
space R3/Λ. For the remainder of the section, we shall identify Ω with the cube
Ω/Λ, and similarly for the boundaries Γj ≡ Γj/Λ. Thus from now on,

all functions defined on Ω and Γj are implicitly Λ-periodic.

Define ∇α· by ∇α · u = (∂x1
+

√
−1α1)u1 + (∂x2

+
√
−1α2)u2.

Let Hm be themth order L2-based Sobolev spaces of complex valued functions.
We denote byHm

p (Ω) the subset of all functions inHm(Ω) which are the restrictions

to Ω of the functions in Hm
loc(R

2 × (−b, b)) that are Λ-periodic. Similarly we define
Hm
p (Ωj) and Hm

p (Γj). In the future, for simplicity, we shall drop the subscript p.

We shall also drop the subscript α from Eα, E
i
α, ∇α, and ∇α·.

Therefore, the diffraction problem can be reformulated as follows:

(4.82)





∇× ( 1µ∇× E)− ω2εE = 0 in Ω,

ν × (∇× E) = B1P [E]− f on Γ1,
ν × (∇× E) = B2P [E] on Γ2,

where

(4.83) f =
1

µ1
(B1P [E

i]|Γ1 − ν × (∇× Ei)|Γ1).

The weak form of the above boundary value problem is to find E ∈ H(curl,Ω),
such that for any F ∈ H(curl,Ω)

∫

Ω

1

µ
∇× E · ∇ × F(4.84)

−
∫

Ω

ω2εE · F +

∫

Γ1

1

µ1
B1P [E] · F +

∫

Γ2

1

µ2
B2P [E] · F =

∫

Γ1

f · F .

4.3.4. The Hodge Decomposition and a Compactness Result. We present
a version of the Hodge decomposition and compactness lemma. The results are cru-
cial in the proof of our theorem on existence and uniqueness. We also state a useful
trace regularity estimate. We remark that for simplicity, no attempt is made to
give the most general forms of these results.

Let us begin with a simple property of the operator Bj . From now on, we
define ∇Γj · as the surface divergence on Γj .

Proposition 4.10. For j = 1, 2 and q ∈ H1(Ω)

−ℜ
∫

Γj

BjP [∇q] · ∇q ≥ 0 .
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Proof. Using the definitions of the operator Bj in (4.80) and β
(n)
j in (4.70),

we have by integration by parts on the surface

−ℜ
∫

Γj

BjP [∇q] · ∇q = ℜ
∫

Γj

∇Γ ·BjP [∇q] · q

= ℜ
∑

n∈Z2

{√
−1β

(n)
j |αn|2|q(n)|2 +

√
−1

β
(n)
j

|αn|2|q(n)|2
}

=
∑

n∈Λ−
j

(−|β(n)
j |2 + |αn|2)
|β(n)
j |

|αn|2|q(n)|2

=
∑

n∈Λ−
j

εjµjω
2 |αn|2

|β(n)
j |

|q(n)|2 ≥ 0.

Recall that ∇, ∇·, are the shorthand notations of ∇+
√
−1α, ∇α·, respectively. �

Lemma 4.11. For any function f ∈ (H1(Ω))′ which is smooth near Γ1 and Γ2,
the boundary value problem

(4.1)





∇ · (ε∇p) = f in Ω,

ε1
∂p
∂ν = − 1

µ1
∇Γ ·B1P [∇p] on Γ1,

ε2
∂p
∂ν = − 1

µ2
∇Γ ·B2P [∇p] on Γ2,

has a unique solution in H1
0 (Ω) = {q : q ∈ H1(Ω),

∫
Ω
q = 0}.

Proof. We examine the weak form of the boundary value problem (4.1). For
any q ∈ H1

0 (Ω), multiplying both sides of (4.1) by q and integrating over Ω yield
∫

Ω

∇ · (ε∇p) · q =
∫

Ω

f · q.

After using the boundary conditions integration by parts gives that

(4.2)

∫

Ω

ε∇p ·∇q+
∫

Γ1

1

µ1
∇Γ ·B1P [∇p] · q+

∫

Γ2

1

µ2
∇Γ ·B2P [∇p] · q = −

∫

Ω

f · q .

Denote the left-hand side of (4.2) by b(p, q). Keeping in mind that p and q are
periodic, from integration by parts on the boundary, we obtain

b(p, q) =

∫

Ω

ε∇p · ∇q −
∫

Γ1

1

µ1
B1P [∇p] · P [∇q]−

∫

Γ2

1

µ2
B2P [∇p] · P [∇q].

The variational problem takes the form: to find p ∈ H1
0 (Ω), such that

b(p, q) = −
∫

Ω

f · q, ∀q ∈ H1
0 (Ω).

It is now obvious from Proposition 4.10 that

ℜ b(p, p) =

∫

Ω

ε|∇p|2 −ℜ
{∫

Γ1

1

µ1
B1P [∇p] · P [∇p] +

∫

Γ2

1

µ2
B2P [∇p] · P [∇p]

}

≥ C||∇p||2L2(Ω).

Therefore by a version of Poincaré’s inequality (
∫
Ω
p = 0), we obtain

ℜ b(p, p) ≥ C‖p‖2H1(Ω).

The proof is complete by a direct application of the Lax-Milgram lemma. �
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Next, we present an embedding result. Let W (Ω) be a functional space defined
by

{
u : u ∈ H(curl,Ω), ∇ · (εu) = 0 in Ω, and(4.3)

ω2εju · ν = − 1

µj
∇Γ ·BjP [u] on Γj , j = 1, 2

}
.(4.4)

Lemma 4.12. The embedding from W (Ω) to L2(Ω) is compact.

Proof. Let u be a function in W (Ω). Define an extension of u by

ũ =





u1 in Ω1,

u in Ω,

u2 in Ω2,

where uj (j = 1, 2) satisfies

∇×∇× uj − ω2εjµjuj = 0 in Ωj ,

uj × ν = u× ν on Γj ,

the radiation condition at the infinity.

Since the medium in Ωj is homogeneous, it may be shown that

(4.5) ω2εjuj · ν = − 1

µj
∇Γ ·BjP [u] on Γj , j = 1, 2.

In the following, we outline the proof of (4.5). In fact, it is easy to see that the
function uj satisfies the boundary condition

ν ×∇× uj = BjP [uj ].

Hence

(4.6) ∇Γ · (ν ×∇× uj) = ∇Γ · (BjP [uj ]).
But

∇Γ · (ν ×∇× uj) = −(∇×∇× uj) · ν,
which together with the Maxwell equation for uj yield that

(4.7) − ω2εjµjuj · ν = ∇Γ ·BjP [uj ].
From (4.6), (4.7), the boundary identity (4.5) follows.

Therefore from [ũ× ν] = 0, it follows that [ũ · ν] = 0 on Γj and then

∇ · (εũ) = 0 in Ω ∪ Ω1 ∪ Ω2.

It follows from [ũ × ν] = 0 on Γj and the radiation condition that ũ ∈ H(curl, D)

for any bounded domain D ⊂ Ω ∪ Ω1 ∪ Ω2.
Now let {ũj} be a sequence of functions in W that converges weakly to zero in

W (Ω). Construct a cutoff function χ with the properties: χ is supported in Ω̃ ⋑ Ω

and χ = 1 in Ω. Here Ω̃ = {−b′ ≤ x3 ≤ b′, 0 < x1 < Λ1, 0 < x2 < Λ2} with
b′ > b.

Hence

{χũj} ⊂ W̃ =
{
v : v ∈ H(curl, Ω̃), ∇ · (εv) = 0, ν × v = 0 on x3 = b′,−b′

}
.
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It follows from a well known result of Weber [454] that the embedding from W̃ (Ω̃)

to L2(Ω̃) is compact. Therefore the sequence {ũj} converges strongly to zero in
L2(Ω), which completes the proof. �

We now state a useful trace regularity result.

Proposition 4.13. Let D be a bounded domain. For any η > 0, there is a
constant C(η) such that the following estimate

‖ν × u‖H−1/2(∂D) ≤ η‖∇ × u‖L2(D) + C(η)‖u‖L2(D)

holds.

Proof. The proof is straightforward. For the sake of completeness, we sketch
it here.

For any function φ ∈ H1/2(∂D), consider an auxiliary problem
{ ∇×∇× w + 1

η2w = 0 in D ,

−ν × (ν × w) = φ on ∂D.

The result of the proposition follows immediately from estimating |〈ν×, φ〉|. �

4.3.5. Existence and Uniqueness of a Solution. In this section, we in-
vestigate questions on existence and uniqueness for the model problem. Our main
result is as follows.

Theorem 4.14. For all but possibly a countable set of frequencies ωj, ωj →
+∞, the variational problem (4.84) admits a unique weak solution E in H(curl,Ω).

Proof. The proof is based on the Lax-Milgram lemma. We first decompose
the field E into two parts

E = u+∇p , u ∈ H(curl,Ω), p ∈ H1(Ω).

By choosing E = u+∇p, F = v in (4.84), we arrive at
∫

Ω

1

µ
∇× u · ∇ × v(4.1)

−ω2

∫

Ω

εu · v +
∫

Γ1

1

µ1
B1P [u] · v +

∫

Γ2

1

µ2
B2P [u] · v

−ω2

∫

Ω

ε∇p · v +
∫

Γ1

1

µ1
B1P [∇p] · v +

∫

Γ2

1

µ2
B2P [∇p] · v =

∫

Γ1

f · v.

Similarly by choosing E = u+∇p, F = ∇q in (4.84), we get

−ω2

∫

Ω

εu · ∇q +
∫

Γ1

1

µ1
B1P [u] · ∇q +

∫

Γ2

1

µ2
B2P [u] · ∇q(4.2)

−ω2

∫

Ω

ε∇p · ∇q +
∫

Γ1

1

µ1
B1P [∇p] · ∇q +

∫

Γ2

1

µ2
B2P [∇p] · ∇q =

∫

Γ1

f · ∇q.

We use the following Hodge decomposition:

E = u+∇p ,
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where p ∈ H1(Ω) and u ∈ W (Ω). The functional space W consists of all functions
U ∈ H(curl,Ω) that satisfy

(4.3)





∇ · (εu) = 0 in Ω,

ω2ε1u · ν = − 1
µ1
∇Γ ·B1P [u] on Γ1,

ω2ε2u · ν = − 1
µ2
∇Γ ·B2P [u] on Γ2.

The fact that this decomposition is valid follows from Lemma 4.11. Actually, it is
obvious to see that for any given E, Lemma 4.11 implies that there is a function p,
such that ∇ · (ε∇p) = ∇ · (εE) and the suitable boundary conditions. Therefore,
u = E −∇p solves the problem (4.3).

Moreover, according to Lemma 4.12, the embedding from W (Ω) to L2(Ω) is
compact. We point out that the embedding from H(curl,Ω) to L2(Ω) is not com-
pact.

Denote the left-hand sides of (4.1), (4.2) by a1(u, v), a2(p, q), respectively.
After some simple calculation, we obtain for u, v ∈W , p, q ∈ H1 that

(4.4)

a1(u, v) =

∫

Ω

1

µ
∇× u · ∇ × v

−ω2

∫

Ω

εu · v + 1

µ1

∫

Γ1

B1P [u] · v +
1

µ2

∫

Γ2

B2P [u] · v

−
∫

Γ1

1

µ1
p ∇Γ · ((B∗

1 −B1)P [v]

−
∫

Γ2

1

µ2
p ∇Γ · ((B∗

2 −B2)P [v])

and

(4.5)

a2(p, q) = −ω2

∫

Ω

ε∇p · ∇q

+
1

µ1

∫

Γ1

B1P [∇p] · ∇q +
∫

Γ2

1

µ2
B2P [∇p] · ∇q.

By taking v = u, q = p, we deduce from (4.4), (4.5) that

(4.6)

a1(u, u)− a2(p, p) =

∫

Ω

d|∇ × u|2

−ω2

∫

Ω

ε|u|2 + 1

µ1

∫

Γ1

B1P [u]u+
1

µ2

∫

Γ2

B2P [u] · u

−
∫

Γ1

1

µ1
p ∇Γ · ((B∗

1 −B1)P [v])−
∫

Γ2

1

µ2
p ∇Γ · ((B∗

2 −B2)P [v])

+ω2

∫

Ω

ε|∇p|2

− 1

µ1

∫

Γ1

B1P [∇p] · ∇p−
∫

Γ2

1

µ2
B2P [∇p] · ∇p =

∫

Γ1

f · (u−∇p).
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Thus, we have

(4.7)

ℜ
{
a1(u, u)− a2(p, p)

}
≥ d0‖∇ × u‖2L2(Ω) +∇× u · u)

−ω2

∫

Ω

ε|u|2 + ℜ
{ 1

µ1

∫

Γ1

B1P [u]u+
1

µ2

∫

Γ2

B2P [u] · u
}

−ℜ
{∫

Γ1

1

µ1
p ∇Γ · ((B∗

1 −B1)P [v]) +

∫

Γ2

1

µ2
p ∇Γ · ((B∗

2 −B2)P [v])
}

+ω2

∫

Ω

ε|∇p|2 −ℜ
{ 1

µ1

∫

Γ1

B1P [∇p] · ∇p−
∫

Γ2

1

µ2
B2P [∇p) · ∇p

}
.

We now estimate the terms on the right-hand side of (4.7) one by one.
It follows from the boundary condition (4.80) that

ℜ
∫

Γj

1

µj
BjP [u]u =

1

µj

∑

n∈Λ−
j

{
|β(n)
j ||P [u(n)]|2 − 1

|β(n)
j |

|αn · P [u(n)]|2
}

≥ 1

µj

∑

n∈Λ−
j

1

|β(n)
j |

(|β(n)
j |2 − |αn|2)|P [u(n)]|2

≥ −ω2εj ||ν × u||2H−1/2(Γj)
,

where to get the last estimate, we have used the expression (4.70). An application
of Proposition 4.13 then leads to

ℜ
{∫

Γ1

1

µ1
B1P [u]u+

∫

Γ2

1

µ2
B2P [u]u

}
≥ −η‖∇ × u‖2L2(Ω) − C(η)||u||2L2(Ω) .

We next estimate the term

−ℜ
{∫

Γj

1

µj
p ∇Γ · ((B∗

j −Bj)P [v])
}
.

From (4.80) and (4.81),

∇Γ · ((B∗
j −Bj)P [v])

= ∇Γ ·
∑

n∈Z2

{
(
√
−1β

(n)
j +

√
−1β

(n)

j )(v
(n)
1 , v

(n)
2 , 0) + (

√
−1

β
(n
j )

+

√
−1

β
(n)

j

)(αn · v(n))αn
}
e
√−1(

2πn1
Λ1

x1+
2πn2
Λ2

x2)

= −
∑

n∈Λ+
j

2
{
|β(n)
j |αn · v(n) + 1

|β(n)
j |

αn · v(n)|αn|2
}
e
√−1(

2πn1
Λ1

x1+
2πn2
Λ2

x2).
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Thus

−ℜ
{∫

Γj

1

µj
p ∇Γ · ((B∗

j −Bj)P [v])
}

= ℜ
∑

n∈Λ+
j

2

µj
p(n)

{
|β(n)
j |αn · v(n) + 1

|β(n)
j |

αn · v(n)|αn|2
}

= ℜ
∑

n∈Λ+
j

{
2ω2εj |β(n)

j |−1p(n)αn · v(n)
}

≤ C‖p‖H1/2(Γj)‖ν × v‖H−1/2(Γj).

Hence Proposition 4.13 and the trace theorem may be used once again to obtain
that

−
∑

j=1,2

ℜ
{∫

Γj

1

µj
p ∇Γ·((B∗

j −Bj)P [v])
}
≤ η‖p‖2H1(Ω)+η‖∇×v‖L2(Ω)+C(η)‖v‖L2(Ω).

Finally by Proposition 4.10

−ℜ
∫

Γj

1

µj
BjP [∇p] · ∇p = ℜ

∫

Γj

1

µj
∇Γ ·BjP [∇p] · p ≥ 0.

Combining the above estimates, we have shown for any u ∈ W and p ∈ H1 that
the following Garding type estimate holds:

ℜ
{
a1(u, u)− a2(p, p)

}
≥ C1‖u‖2H(curl,Ω) + C2‖p‖2H1(Ω) − C3(‖u‖2L2(Ω) + ‖p‖2L2(Ω)).

Denote the left-hand side of (4.84) by aω(E,F ). Since the embedding from W to
L2 is compact and the dependence of the bilinear form a(, ) on ω is analytic outside

a discrete set Λ (the set of resonances frequencies ω
(n)
j = 1

εj
|αn|2, n ∈ Z2, j = 1, 2),

the meromorphic Fredholm theorem holds. To prove the theorem it suffices then
to find a frequency ω ∈ C \ Λ such that the bilinear form aω(, ) is injective. Let
us choose ω =

√
−1λ, for some positive constant λ. If E ∈ H(curl,Ω) is such that

aiλ(E,F ) = 0 for any F ∈ H(curl,Ω) then define the extension of E by

Ẽ =





E1 in Ω1,

E in Ω ,

E2 in Ω2,

where Ej (j = 1, 2) is the unique solution in Hloc(curl,Ωj) of the Maxwell equations

∇×∇× Ej − ω2εjµjEj = 0 in Ωj ,(4.8)

Ej × ν = E × ν on Γj ,(4.9)

the radiation condition at the infinity.(4.10)

From the (transparent) boundary condition satisfied by E on Γj it follows that

[Ẽ × ν] = [
1

µ
∇× Ẽ × ν] = [εẼ · ν] = 0

on Γj . Moreover, since ω is a pure complex number, Ẽ is exponentially decaying

as |x3| → +∞. It follows that Ẽ is a solution in H(curl,R3) (i.e., of finite energy)
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of the homogeneous Maxwell equations and so,
∫

R3

1

µ
|∇ × Ẽ|2 = 0,

which implies that Ẽ = 0 in R3. The uniqueness of a solution to the problem for
this particular choice of frequency ω gives the claim. The proof is complete. �

4.3.6. Energy Conservation. In this section we study the energy distribu-
tion for our diffraction problem. In general, the energy is distributed away from the
grating structure through the propagating plane waves which consist of propagating
reflected modes in Ω1 and propagating transmitted modes in Ω2. It is measured by
the coefficients of each term of the sum (4.72).

Since no energy absorption takes place, the coefficients of propagating reflected
plane waves are

rn = E(n)(b)e−
√−1β

(n)
1 b for n 6= 0, n ∈ Λ+

1 ,

r0 = U (0)(b)e−
√−1β

(0)
1 b for n = 0,

where again Λ+
1 = {n ∈ Z2 : ℑ(β(n)

1 ) = 0}. Hence, the energy of each reflected
mode may be defined as

β
(n)
1 |rn|2
β

and the total energy of all reflected modes is

Er =
1

β

∑

n∈Λ+
1

β
(n)
1 |rn|2.

Similarly, the coefficients of each propagating transmitted mode are

tn = E(n)(−b)e−
√−1β

(n)
2 b for n ∈ Λ+

2

where Λ+
2 = {n ∈ Z2 : ℑ(β(n)

2 ) = 0}. The energy of each transmitted mode is
defined by

µ1β
(n)
2 |tn|2
µ2β

and the total energy of all transmitted modes is

Et =
µ1

µ2β

∑

n∈Λ+
2

β
(n)
2 |tn|2.

Remark 4.15. In optics literature, the numbers Er and Et are called reflected
and transmitted efficiencies, respectively. They represent the proportion of energy
distributed in each propagating mode. The sum of reflected and transmitted effi-
ciency is referred to as the grating efficiency [400].

The following result states that in the case of no energy absorption the total
energy is conserved, i.e., the incident energy is the same as the total energy of the
propagating waves.

Theorem 4.16. Assume that the material coefficients ε0(x), ε1, ε2, µ(x), µ1,
and µ2 are all real and positive. Then

Er + Et = |s|2 .
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Thus the total energy that leaves the medium is the same as that of the incident
field.

Proof. Multiplying both sides of the equation (4.82) by E and integrating it
over Ω, we obtain

(4.1)

∫

Ω

d|∇ × E|2

−
∫

Ω

ω2ε|E|2 +
∫

Γ1

1

µ1
B1P [E] · E +

∫

Γ2

1

µ2
B2P [E] · E =

∫

Γ1

f · (E),

where f is defined by (4.83).
Taking the imaginary part of (4.1), we get

∑

n∈Λ+
1

1

µ1
β
(n)
1 |E(n)|2 +

∑

n∈Λ+
2

1

µ2
β
(n)
2 |E(n)|2 =

1

µ1
ℑ
(
2
√
−1β

∫

Γ1

s · Ee−
√−1βb dx

)
.

The proof is completed by noting that

|r0|2 = |U (0)e−
√−1βb|2 = |(E(0) − (Ei)(0))e−

√−1βb|2

= |E(0)|2 − 2ℜ (s · E(0)e−
√−1βb) + |s|2.

�

4.4. Boundary Integral Formulations

The boundary integral equation method was one of the first methods in grating
theory. It has been used for the investigation of diffraction gratings of different
kinds. In this section we present boundary integral formulations for scattering
problems by dielectric periodic and biperiodic gratings.

4.4.1. Dielectric Periodic Gratings. In this section we establish an integral
formulation for the diffraction problem from a one-dimensional dielectric grating.
We consider (4.36) and (4.37) subject to the quasi-periodic radiation conditions
on us derived in Subsection 4.2.5. As before, we denote the period Λ and let
Γ = {x2 = f(x1)}/(ΛZ \ {0}).

We introduce the quasi-periodic Green’s function for the grating, which satisfies

(4.2) (∆ + k2)Gα,k(x, y) =
∑

n∈Z

δ0(x− y − (nΛ, 0))e
√−1nαΛ.

We have

(4.3) Gα,k(x, y) = −
√
−1

4

∑

n∈Z

H
(1)
0 (k|x− (nΛ, 0)− y|)e

√−1nαΛ,

where H
(1)
0 is the Hankel function of the first kind of order 0.

If k 6= |αn|, ∀ n ∈ Z, where αn is defined by (4.19), then by using Poisson’s
summation formula

(4.4)
∑

n∈Z

e
√−1( 2πn

Λ +α)x1 =
∑

n∈Z

δ0(x1 − nΛ)e
√−1nαΛ,

we can equivalently represent Gα,k as

(4.5) Gα,k(x, y) =
∑

n∈Z

e
√−1αn(x1−y1)+

√−1βn(x2−y2)

k2 − α2
n

,
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where βn is given by

(4.6) βn =

{ √
k2 − α2

n k2 > α2
n,√

−1
√
α2
n − k2 k2 < α2

n.

Let Sα,kΓ be the quasi-periodic single-layer potential associated with Gα,k on Γ;
that is, for a given density ϕ ∈ L2(Γ),

Sα,kΓ [ϕ](x) =

∫

Γ

Gα,k(x, y)ϕ(y) dσ(y), x ∈ R2.

Analogously to (2.165), u can be represented using the single layer potentials Sα,k1Γ

and Sα,k2Γ as follows:

(4.7) u(x) =

{
ui(x) + Sα,k1Γ [ψ](x), x ∈ {x = (x1, x2) : x2 > f(x1)} ,
Sα,k2Γ [ϕ](x), x ∈ {x = (x1, x2) : x2 < f(x1)} ,

where the pair (ϕ, ψ) ∈ L2(Γ)× L2(Γ) satisfies

(4.8)





Sα,k2Γ [ϕ]− Sα,k1Γ [ψ] = ui

∂(Sα,k2Γ [ϕ])

∂ν

∣∣∣∣∣
−
− ∂(Sα,k1Γ [ψ])

∂ν

∣∣∣∣∣
+

=
∂ui

∂ν

on Γ.

Theorem 4.17. For all but possibly a countable set of frequencies ωj, ωj →
+∞, the system of integral equations (4.8) has a unique solution (ϕ, ψ) ∈ H−1/2(Γ)×
H−1/2(Γ).

Proof. Since the Fredholm alternative applies for (4.8), it is enough to prove
uniqueness. Let (ϕ, ψ) ∈ H−1/2(Γ)×H−1/2(Γ) be a solution to (4.8) and let v be
given by (4.7) with ui = 0. Then, v satisfies the variational problem (4.61) and
Theorem 4.7 yields that for all but a discrete set of ω, v = 0. �

4.4.2. Dielectric Biperiodic Gratings. We consider the diffraction prob-
lem in Subsection 4.3.3. We denote by Γ = {x3 = f(x1, x2)}/((Λ1Z \ {0})× Λ2Z \
{0})), where λj is the period of the grating in the direction xj for j = 1, 2. Suppose
that

ε(x) = ε1 , µ(x) = µ1 for x3 > f(x1, x2),

ε(x) = ε2 , µ(x) = µ2 for x3 < f(x1, x2),

where ε1, ε2, µ1, and µ2 are positive constants.
Analogously to (2.319), the electric field E can be represented as

(4.9) E(x) =





Ei(x) + µm∇× ~Sα,k1Γ [ϕ](x) +∇×∇× ~Sα,k1Γ [ψ](x),

x ∈ {x = (x1, x2, x3) : x3 > f(x1, x2)},
µc∇× ~Sα,k2Γ [ϕ](x) +∇×∇× ~Sα,k2Γ [ψ](x),

x ∈ {x = (x1, x2, x3) : x3 < f(x1, x2)},
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where the pair (ϕ, ψ) ∈
(
H

− 1
2

T (div,Γ)
)2

satisfies
(4.10)


µ2 + µ1

2
I + µ2Mα,k2

Γ − µ1Mα,k1
Γ Lα,k2Γ − Lα,k1Γ

Lα,k2Γ − Lα,k1Γ

(
k22
2µ2

+
k21
2µ1

)
I +

k2m
µ2

Mα,k2
Γ − k21

µ1
Mα,k1

Γ



[
ϕ
ψ

]

=

[
ν × Ei√

−1ων ×Hi

] ∣∣∣∣∣
Γ

,

where Lα,kΓ and Mα,k
Γ are respectively defined by (2.306) and (2.306) with Γk re-

placed with Gα,k and ∂D with Γ.
The following result can be proved similarly to Theorem 4.17.

Theorem 4.18. For all but possibly a countable set of frequencies ωj, ωj →
+∞, the system of integral equations (4.10) has a unique solution (ϕ, ψ) ∈

(
H

− 1
2

T (div,Γ)
)2
.

4.5. Optimal Design of Grating Profiles

For simplicity, we focus the presentation to the dielectric periodic gratings
described in Section 4.4.1. Assume that the material above the periodic interface
S := {x2 = f(x1)} has refractive index k1 and the material below the interface has
index k2. Both k1 and k2 are assumed to be real. Define

aS(x) =

{
k21 if x is above S,

k22 if x is below S.

Let b > max |f(x1)| and let an incoming plane wave

ui = e
√−1αx1−

√−1βx3

be incident on S from x2 > f(x1) with

α = ωk1 sin θ, β = ωk1 cos θ,

and −π/2 < θ < π/2 being the angle of incidence.
Then consider the scattering problem

(∆α + aS)u = 0 in {−b < x2 < b},(4.11)

(Tα1 − ∂

∂x2
)u = 2

√
−1βe−

√−1βb on {x2 = b},(4.12)

(Tα2 − ∂

∂x2
)u = 0 on {x2 = −b},(4.13)

where ∆α = △ + 2
√
−1α∂x1 − α2, and periodic boundary conditions are assumed

in x1. The operators Tαj , j = 1, 2, are defined by (4.54).
Suppose that the materials, the period of the structure, and the frequency of

the incoming waves are fixed. There are then a fixed number of propagating modes,
each of which corresponds to an index n for which the propagation constant βnj is
real-valued. Let us define the set of indices of the reflected propagating modes

Pr = {n ∈ Z : βn1 (α) ∈ R},
and indices of transmitted modes

Pt = {m ∈ Z : βm2 (α) ∈ R}.
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The coefficients of each propagating reflected mode are determined by the trace of
the solution u on the artificial boundary {x2 = b}:

rn = un(b)e
−√−1β1b for n 6= 0, n in Pr,

r0 = u0(b)e
−√−1βb − constant for n = 0,

where

un(x2) =
1

Λ

∫ Λ

0

u(x1, x2)e
−√−1 2πn

Λ x1dx1.

Similarly, the coefficients of the propagating transmitted modes are

tm = um(−b)e−
√−1β2b for m in Pt.

Writing the reflection and transmission coefficients as vectors

r = (rn)n∈Pr
, t = (tm)m∈Pt

,

denote the pair (r, t) = F . The coefficients rn and tm, and hence F , are functions
of the interface profile S. Denote this dependence by F (S).

A general optimal design problem is to find a profile S such that F (S) is as
close as possible to some specified diffraction pattern g. Asking that F (S) is close
to g in a least-squares sense, one obtains the problem

(4.14) min
S∈S

J(S) = ‖F (S)− g‖2,

where S is some admissible class of profiles. One could of course generalize further
and specify a range of incidence angles or a range of frequencies (or both).

To implement the least squares approach, we calculate the gradient of the cost
functional (4.14) with respect to the interface profile S. The representation formula
(4.7) is useful. From Section 2.7, the calculation of the sensitivity of u on x2 = b
with respect to changes of the profile is straightforward and therefore, the Fréchet
derivative of J can be easily obtained.

4.6. Numerical Implementation

In this section we use the boundary integral representation of the dielectric
periodic grating described in subsection 4.4.1 to numerically determine the electric
field in the case of a periodic array of spherical particles located on the x1-axis.
Denote by Ω1 and Ω2 the region outside the particles and the region representing
the particles, respectively. Let εj and µj represent the corresponding material
parameters. Let kj = ω

√
εjµj (j = 1, 2) be the wavenumber outside and inside the

particles, respectively.
The discretization of the system is performed in precisely the same manner as

described in Subsection 2.13.4 and leads to the system of equations

(
S− −S+
1
µ2
S′
− − 1

µ1
S′
+

)(
ϕ

ψ

)
=

(
ud
1
µ1
un

)
,
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where S± and S′
± are N ×N matrices given by

(S−)ij = Gα,k2(x(i) − x(j))|T (x(j))|(tj+1 − tj),(4.15)

(S+)ij = Gα,k1(x(i) − x(j))|T (x(j))|(tj+1 − tj)(4.16)

(S′
−)ij = −1

2
δij +

∂Gα,k2

∂νx
(x(i) − x(j))|T (x(j))|(tj+1 − tj),(4.17)

(S′
+)ij =

1

2
δij +

∂Gα,k1

∂νx
(x(i) − x(j))|T (x(j))|(tj+1 − tj),(4.18)

for i 6= j and i, j = 1, 2, . . . , N , and where Gα,k is the quasi-periodic Green’s
function defined by (4.2). Once we solve this system for the density functions ϕ
and ψ, the electric field can be calculated using

(4.19) u(x) =

{
ud(x) + S+[ψ](x), x ∈ Ω1 ,

S−[ϕ](x), x ∈ Ω2 .

Since Gα,k is extremely slow to converge we must use the Ewald representation of
the Green’s function to accelerate the convergence; see Subsection 2.13.3. Recall
that the Ewald representation of the quasi-periodic Green’s function is given by

Gα,k(x, y) = Gα,kspec(x, y) +Gα,kspat(x, y),

with

Gα,kspec(x, y) = − 1

4Λ

∑

n∈Z

e−
√−1αn(x1−y1)
√
−1βn

×
[
e
√−1βn|x2−y2|erfc

(√
−1βn
2E

+ |x2 − y2|E
)

+ e−
√−1βn|x2−y2|erfc

(√
−1βn
2E

− |x2 − y2|E
)]
,

Gα,kspat(x, y) = − 1

4π

∑

m∈Z

e
√−1αmΛ

∞∑

q=0

(
k

2E

)2q
1

q!
Eq+1(R

2
mE2),

where αn = −α + 2πn
Λ , βn = −

√
k2 − α2

n, erfc(z) is the complementary error
function

erfc(z) =
2√
π

∫ ∞

z

e−t
2

dt,

and Eq is the qth order exponential integral which is defined as

Eq(z) =

∫ ∞

1

e−zt

tq
dt.

We set Λ = 1 and the radius of the particles to be 0.4. We set the incident plane

wave to be ui(x1, x2) = 3e
√−1(αx1−βx2) where α = k1 sin(θ), β = k1 cos(θ) with

θ = π/8. As we are considering a non-magnetic material we set the permeability
to be µ1 = µ2 = 1. For the permittivity we set ε1 = 1 and ε2 = 5. We set
the operating frequency to be ω = 1. The resulting incident, scattered, and total
fields are shown in Figure 4.4. These numerical results are obtained using Code
One-Dimensional Dielectric Diffraction Grating.

http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial7/7.1 1-D Dielectric Diffraction Grating.zip
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(a) ui (b) us

(c) u (d) u

Figure 4.4. The incident electric field, scattered electric field, and
total electric field for a dielectric grating consisting of a periodic
array of spherical particles on the x1-axis.

4.7. Concluding Remarks

In this chapter we have established uniqueness and existence results for solu-
tions to electromagnetic scattering problems by gratings. We refer the reader to
[89, 204, 205, 206] for the analysis of the scattering of elastic waves by diffraction
gratings. The results of Section 2.7 together with those in the previous section can
be used to perform optimal design of periodic interfaces that give rise to a speci-
fied diffraction pattern. Note that by making assumption (4.47), we have excluded
Wood anomalies. In [146, 147], a methodology based on use of a certain shifted
Green function is introduced. It provides a solver for problems of scattering by
gratings which is valid and accurate, in particular, at and around Wood anomaly
frequencies, at which the quasi-periodic Green function ceases to exist.



CHAPTER 5

Photonic Band Gaps

5.1. Introduction

Photonic crystals are structures constructed from electromagnetic materials ar-
ranged in a periodic array. They have attracted enormous interest in the last decade
because of their unique optical and electromagnetic properties. Such structures
have been found to exhibit interesting spectral properties with respect to classical
wave propagation, including the appearance of band gaps [456, 278, 414].

In order to study the propagation of light in a photonic crystal, we shall use the
Maxwell equations. In general the electromagnetic fields are complicated functions
of time and space. If the field configurations are built up of harmonic electromag-
netic waves that are transverse, we can reduce the Maxwell equations to two scalar
Helmholtz equations. Throughout this chapter, we will focus on this scalar model
which is also the underlying model for the acoustic analog of photonic crystals.

Our aim is to analyze the contrast and geometry dependence of the band gap
of the frequency spectrum for waves in photonic crystals. We consider photonic
crystals consisting of a background medium which is perforated by an array of
arbitrary-shaped holes periodic along each of the two orthogonal coordinate axes
in the plane. The background medium is of higher index. It has been proved that
the high contrast of a photonic crystal favors spectral gaps; see [218, 259, 260,
423, 463, 464, 280].

In this chapter we adopt the high-contrast model to give a full understanding of
the relationship between variations in the index ratio or in the geometry of the holes
and variations in the band gap structure of the photonic crystal. We provide such
a high-order sensitivity analysis using a boundary integral approach with rigorous
justification based on the generalized Rouché theorem.

Carrying out a band structure calculation for a given photonic crystal involves
a family of eigenvalue problems, as the quasi-momentum is varied over the first
Brillouin zone. We show that these eigenvalues are the characteristic values of
meromorphic operator-valued functions that are of Fredholm type of index zero.
We then proceed from the generalized Rouché theorem to construct their complete
asymptotic expressions as the index ratio goes to infinity. We also provide their
complete expansions in terms of infinitesimal changes in the geometry of the holes.

Our integral formulation in this chapter of the photonic band gap problem offers
an efficient approach to the computation of the band gap structure which is based
on a combination of boundary element methods and Muller’s method described in
Section 1.6.

In this chapter we confine our attention to the two-dimensional case to demon-
strate our approach and results. The asymptotic results for the band gap structure

229
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with respect to the index ratio and the geometry of the holes can be obtained in
three dimensions with only minor modifications of the techniques presented here.

5.2. Floquet Transform

In this section, the Floquet transform, which in the periodic case plays the
role of the Fourier transform, is established and the structure of spectra of periodic
elliptic operators is discussed.

Let f(x) be a function decaying sufficiently fast. We define the Floquet trans-
form of f as follows:

(5.1) U [f ](x, α) =
∑

n∈Zd

f(x− n)e
√−1α·n.

This transform is an analogue of the Fourier transform for the periodic case. The
parameter α is called the quasi-momentum, and it is an analogue of the dual variable
in the Fourier transform. If we shift x by a period m ∈ Zd, then we get the Floquet
condition

(5.2) U [f ](x+m,α) = e
√−1α·mU [f ](x, α),

which shows that it suffices to know the function U [f ](x, α) on the unit cell Y :=
[0, 1)d in order to recover it completely as a function of the x-variable. Moreover,
U [f ](x, α) is periodic with respect to the quasi-momentum α:

(5.3) U [f ](x, α+ 2πm) = U [f ](x, α), m ∈ Zd.

Therefore, α can be considered as an element of the torus Rd/(2πZd). Another way
of saying this is that all information about U [f ](x, α) is contained in its values for
α in the fundamental domain B of the dual lattice 2πZd. This domain is referred
to as the (first) Brillouin zone.

The following result is an analogue of the Plancherel theorem when one uses the
Fourier transform. Suppose that the measures dα and the dual torus Rd/(2πZd)
are normalized. The following theorem holds. See [305] for a proof.

Theorem 5.1 (Plancherel-type theorem). The transform

U : L2(Rd) → L2(Rd/(2πZd), L2(Y ))

is isometric. Its inverse is given by

U−1[g](x) =

∫

Rd/(2πZd)

g(x, α) dα,

where the function g(x, α) ∈ L2(Rd/(2πZd), L2(Y )) is extended from Y to all x ∈ Rd

according to the Floquet condition (5.2).

The books [288, 305, 411] give more detailed treatments of this subject.

5.3. Structure of Spectra of Periodic Elliptic Operators

In this section we will briefly discuss spectral properties of periodic elliptic
operators. See [411, 305, 431, 304] for details and references.

Consider a linear partial differential operator L(x, ∂x), whose coefficients are
periodic with respect to Zd, d = 2, 3. A natural question is about the type of
spectrum (absolutely continuous, singular continuous, point) of L (see Appendix
A). It is not hard to prove that for a periodic elliptic operator of any order, the



5.4. BOUNDARY INTEGRAL FORMULATION 231

singular continuous spectrum is empty. For any second-order periodic operator
of elliptic type, it is likely that no eigenvalues can arise. Although it has been
unanimously believed by physicists for a long time, proving this statement turns
out to be a difficult mathematical problem. See [304].

Due to periodicity, the operator commutes with the Floquet transform

U [Lf ](x, α) = L(x, ∂x)U [f ](x, α).
For each α, the operator L(x, ∂x) now acts on functions satisfying the corresponding
Floquet condition (5.2). In other words, although the differential expression of the
operator stays the same, its domain changes with α. Denoting this operator by
L(α), we see that the Floquet transform U expands the periodic partial differential
operator L in L2(Rd) into the direct integral of operators

(5.4)

∫ ⊕

Rd/(2πZd)

L(α) dα.

The key point in the direct fiber decomposition (5.4) is that the operators L(α) act
on functions defined on a torus, while the original operator acts in Rd.

If L is a self-adjoint operator, one can prove the main spectral statement:

(5.5) σ(L) =
⋃

α∈B
σ(L(α)),

where σ denotes the spectrum.
If L is elliptic, the operators L(α) have compact resolvents and hence discrete

spectra. If L is bounded from below, the spectrum of L(α) accumulates only at
+∞. Denote by µn(α) the nth eigenvalue of L(α) (counted in increasing order with
their multiplicity). The function α 7→ µn(α) is continuous in B. It is one branch
of the dispersion relations and is called a band function. We conclude that the
spectrum σ(L) consists of the closed intervals (called the spectral bands)

[
min
α
µn(α),max

α
µn(α)

]
,

where minα µn(α) → +∞ when n → +∞. In dimension d ≥ 2, the spectral
bands normally do overlap, which makes opening gaps in the spectrum of L a
mathematically hard problem. But, it is still conceivable that at some locations
the bands might not overlap and hence open a gap in the spectrum. It is commonly
believed that the number of gaps one can open in a periodic medium in dimension
d ≥ 2 is finite. In the case of the periodic Schrödinger operator, this constitutes the
Bethe-Sommerfeld conjecture. Since the major and inspirational work by Skriganov
[430], significant progress has been made on this problem. See, for example, [304,
288, 394, 395, 289, 396].

5.4. Boundary Integral Formulation

5.4.1. Problem Formulation. The photonic crystal we consider in this chap-
ter consists of a homogeneous background medium of constant index k which is
perforated by an array of arbitrary-shaped holes periodic along each of the two
orthogonal coordinate axes in R2. These holes are assumed to be of index 1. We
assume that the structure has unit periodicity and define the unit cell Y := [0, 1]2.
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We seek eigenfunctions u of

(5.6)

{
∇ · (1 + (k − 1)χ(Y \D))∇u+ ω2u = 0 in Y,

e−
√−1α·xu is periodic in the whole space,

where χ(Y \D) is the indicator function of Y \D. Problem (5.6) can be rewritten
as

(5.7)





k∆u+ ω2u = 0 in Y \D,
∆u+ ω2u = 0 in D,

u|+ = u|− on ∂D,

k
∂u

∂ν

∣∣∣
+
=
∂u

∂ν

∣∣∣
−

on ∂D,

e−
√−1α·xu is periodic in the whole space.

For each quasi-momentum variable α, let σα(D, k) be the (discrete) spectrum of
(5.6). Then the spectral band of the photonic crystal is given by

⋃

α∈[0,2π]2

σα(D, k).

We shall investigate the behavior of σα(D, k) when k → +∞ in Section 5.5 and
that under perturbation of D in Section 5.7.

Note first that if D is invariant under the transformations

(5.8) (x1, x2) 7→ (−x1,−x2), (x1, x2) 7→ (−x1, x2), (x1, x2) 7→ (x2, x1),

then all possible eigenvalues associated with (5.7) for any α ∈ [0, 2π]2 must occur
with α restricted to the triangular region (the reduced Brillouin zone)

(5.9) T :=

{
α = (α1, α2) : 0 ≤ α1 ≤ π, 0 ≤ α2 ≤ α1

}
.

Consequently, to search for band gaps associated with D with the symmetries (5.8),
it suffices to take α ∈ T rather than α ∈ [0, 2π]2.

Note also that a change of variables x′ = sx and a simultaneous change of the
spectral parameter ω′ = sω reduce the problem (5.7) to the similar one with the
rescaled material property (1 + (k − 1)χ(sY \ sD)). This means that in rescaling
the material property of a medium, we do not need to recompute the spectrum,
since its simple rescaling would suffice. Another important scaling property deals
with the values of the material property. It is straightforward to compute that if
we multiply the material property by a scaling factor s, the spectral problem for
the new material parameter s(1+(k−1)χ(sY \ sD)) can be reduced to the old one
by rescaling the eigenvalues according to the formula ω′ =

√
sω. These two scaling

properties mean that there is no fundamental length nor a fundamental material
property value for the spectral problem (5.7) [304].

Suppose now that ω2 is not an eigenvalue of −∆ in Y \ D with the Dirichlet
boundary condition on ∂D and the quasi-periodic condition on ∂Y and ω2/k is
not an eigenvalue of −∆ in D with the Dirichlet boundary condition. Following
the same argument as in (3.3), one can show that the solution u to (5.6) can be
represented as

(5.10) u(x) =

{
Sα,ω[φ](x), x ∈ D,

H(x) + Sα,
ω√
k [ψ](x), x ∈ Y \D,
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for some densities φ and ψ in L2(∂D), where the function H is given by

H(x) = −Sα,
ω√
k

Y [
∂u

∂ν
|∂Y ] +Dα, ω√

k

Y [u|∂Y ], x ∈ Y.

Here, the quasi-periodic single- and double layer potentials are introduced in Section
2.12. In order to keep the notation simple, we use Sα,ω and Dα,ω instead of Sα,ωD

and Dα,ω
D for layer potentials on D.

Now by (2.290) we have H ≡ 0, and hence

(5.11) u(x) =

{
Sα,ω[φ](x), x ∈ D,

Sα,
ω√
k [ψ](x), x ∈ Y \D.

A proof of the representation formula (5.11) will be given later in Section 5.8.
In view of the transmission conditions in (5.7), the pair (φ, ψ) ∈ L2(∂D) ×

L2(∂D) satisfies the following system of integral equations:

(5.12)





Sα,ω[φ]− Sα,
ω√
k [ψ] = 0 on ∂D,

(
− 1

2
I + (K−α,ω)∗

)
[φ]− k

(1
2
I + (K−α, ω√

k )∗
)
[ψ] = 0 on ∂D.

The converse is also true. If (φ, ψ) ∈ L2(∂D) × L2(∂D) is a nonzero solution of
(5.12), then u given by (5.11) is an eigenfunction of (5.6) associated to the eigenvalue
ω2.

Suppose α 6= 0. Let Aα,k(ω) be the operator-valued function defined by

(5.13) Aα,k(ω) :=




Sα,ω −Sα,
ω√
k

1

k

(
1

2
I − (K−α,ω)∗

)
1

2
I + (K−α, ω√

k )∗


 .

Then, ω2 is an eigenvalue corresponding to u with a given quasi-momentum α if
and only if ω is a characteristic value of Aα,k.

For α = 0, let Ã0,k be given by

(5.14) Ã0,k(ω) :=




S0,ω −1

k
S0, ω√

k

1

2
I − (K0,ω)∗

1

2
I + (K0, ω√

k )∗


 .

By a change of functions, it is easy to see that ω is a characteristic value of

Ã0,k if and only if ω2 is an eigenvalue of (5.6) for α = 0.
Consequently, we have now a new way of looking at the spectrum of (5.6) by

examining the characteristic values of Aα,k and Ã0,k.
The following lemma will be useful later.

Lemma 5.2. The operator-valued function Aα,k is Fredholm analytic with index
0 in C \

√
−1R−. Moreover, ω 7→ (Aα,k)−1(ω) is a meromorphic function and its

poles are on the real axis.

Proof. Because of the logarithmic behavior of quasi-periodic Green’s func-
tions, we shall restrict the set on which we define the operator Aα,k to C\

√
−1R−.

To see that the operator-valued function Aα,k is Fredholm analytic with index 0 in
C \

√
−1R−, it suffices to write

Aα,k(ω) =




Sα,0 −Sα,0
1

2k
I

1

2
I


+




Sα,ω − Sα,0 −Sα,
ω√
k + Sα,0

1

k
(K−α,ω)∗ (K−α,ω)∗


 := Aα+Bα(ω).
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Since Aα is invertible and Bα is compact and analytic in ω, it follows that Aα,k

is Fredholm analytic with index 0. By the generalization of the Steinberg theorem
given in Chapter 1 (Theorem 1.16), the invertibility of Aα,k(ω) at ω = 0 shows
that ω 7→ (Aα,k)−1(ω) is a meromorphic function. Let ω0 be a pole of (Aα,k)−1(ω).
Then ω0 is a characteristic value of Aα,k. Set (φ, ψ) to be a root function associated
with ω0. Define

u(x) =

{
Sα,ω0 [φ](x), x ∈ D,

Sα,
ω0√
k [ψ](x), x ∈ Y \D.

Then, integrating by parts, we obtain that
∫

Y

(1 + (k − 1)χ(Y \D))|∇u|2 − ω2
0

∫

Y

|u|2 = 0,

which shows that ω0 is real. �

It can be easily seen that the same result holds for Ã0,k.

5.4.2. Numerical Approach for Band Structure Calculations. Band
structure calculations reduce then to the computation of the characteristic values
of Aα,k for α moving through the Brillouin zone. It is important to note that in this
formulation, one is no longer seeking eigenvalues of a differential equation. Instead
one is seeking nontrivial solutions to a homogeneous linear system in which the
spectral parameter ω plays a nonlinear role. The advantage gained is that we avoid
having to discretize the whole cell Y , but only discretize the material interfaces
themselves. To find such solutions numerically, we first have to discretize all the
integrals in (5.13) and (5.14).

After the integrals are discretized, we obtain a rather involved linear system
which, for a fixed value of ω, we can write in the form Aα,k(ω)[x] = 0. The
unknown vector x represents point values of the densities φ and ψ on ∂D. Thus,
if N points are used to discretize ∂D, there are 2N unknowns. Lemma 5.2 ensures
that the entries of the matrix Aα,k are analytic, nonlinear functions of ω. Finding
the characteristic values corresponds to finding values of ω for which the system
of equations Aα,k(ω)[x] = 0 has nontrivial solutions. An efficient strategy first
described in [172] is based on determining a new function of ω:

f(ω) :=
1

〈x,Aα,k(ω)−1[y]〉 ,

where x and y are two fixed random vectors. It is straightforward to verify that
the function f(ω) is an analytic function of its argument. Moreover, since

||Aα,k(ω)−1|| = +∞

when ω corresponds to a characteristic value, we have that f(ω) = 0. In short, the
singular matrix problem has been turned into a complex root finding process for
the function. Muller’s method described in Section 1.6 can be used to find complex
roots of f(ω). This approach is both efficient and robust [172, 186]. In this section
we discuss the details of its implementation and present numerical examples.
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5.4.2.1. Empty Resonance. The appropriate Green’s function for the layer po-
tentials used in the previous section is the quasi-biperiodic Green’s function Gα,ω♯
which satisfies

(5.15) (∆ + ω2)Gα,ω♯ (x, y) =
∑

m∈Z2

δ0(x− y −m)e
√−1m·α.

If ω 6= |2πm+ α|, ∀ m ∈ Z2, then Gα,ω♯ has the spectral representation (2.280). In
the context of the standard boundary integral approach to numerical computation,
when the parameters ω and α are such that ω ∼ |2πm + α| for any m ∈ Z2, the
quasi-periodic Green’s function Gα,ω♯ can have highly aberrant behavior that makes

determining characteristic values of Aα,k(ω) impossible. This phenomenon, which
is known as empty resonance, is due to the resonance of the empty unit cell Y with
refractive index 1 everywhere and quasi-periodic boundary conditions.

In order to deal with this issue it is necessary to use an approach that is less
susceptible to the problem, or an approach that avoids it altogether. We will
briefly discuss the Barnett-Greengard method [123] for quasi-periodic fields which
was developed specifically to tackle the problem of empty resonances. We will
then present a numerical example in which the photonic crystal band structure is
calculated using the multipole method and incorporates lattice sums, an approach
which was found to be much less susceptible to the empty resonance problem.

5.4.2.2. Barnett-Greengard Method. The Barnett-Greengard method avoids the
problem of empty resonances by introducing a new integral representation for the
problem that doesn’t use the quasi-periodic Green’s function. Instead, the usual
free-space Green’s function is used and the quasi-periodicity is enforced through
auxiliary layer potentials defined on the boundary of the unit cell.

The quasi-periodicity condition in 5.6 can equivalently be written as a set of
boundary conditions on the unit cell Y . Let L represent the left wall of the unit

cell and B represent the bottom wall. Define a := e
√−1k1 and b := e

√−1k2 . Then
the quasi-periodicity condition can be stated as:

u|L+e1 = au|L
∂u
∂ν |L+e1 = a∂u∂ν |L
u|B+e2 = bu|B
∂u
∂ν |B+e2 = b∂u∂ν |B .

Recall that the usual boundary integral formulation enables the determination of
characteristic values of the operator valued functionAα,k(ω) given in 5.13 by finding
the values ω such that the equation

Aα,k(ω)[Ψ] = 0,

has a non-trivial solution Ψ ∈ L2(∂D) × L2(∂D). We note that the elements of
Aα,k(ω) are quasi-periodic layer potentials. The Barnett-Greengard method uses
an analogous equation

Eα,k(ω)[Ψ] = κ,

where

Eα,k(ω) :=
(
A B
C Q

)
, Ψ =

(
η
ξ

)
, κ =

(
m
d

)
,
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and the operators A,B,C, and Q, which will be explained shortly, involve layer
potentials which utilize the free-space Green’s function. η represents surface poten-
tials for the inclusion, and ξ represents auxiliary surface potentials defined on the
boundary of the unit cell. m and d are called the mismatch and the discrepancy,
respectively. m represents the amount by which the matching conditions at the
interface fail to be satisfied and is defined as:

m :=

(
u|+ − u|−
∂u
∂ν |+ − ∂u

∂ν |−

)
.

The discrepancy d represents the amount by which the the quasi-periodicity con-
ditions on the boundary of unit cell fail to be satisfied:

d :=




u|L − a−1u|L+e1
∂u
∂ν |L − a−1 ∂u

∂ν |L+e1
u|B − b−1u|B+e2
∂u
∂ν |B − b−1 ∂u

∂ν |B+e2


 .

The aim is to find non-trivial surface potentials such that the mismatch and dis-
crepancy are both zero. With that in mind, the characteristic values of the operator
valued function Eα,k(ω) are the values ω such that the equation

Eα,k(ω)Ψ = 0,

has a non-trivial solution Ψ ∈ L2(∂D)4.
Before we discuss the operators used to construct Eα,k(ω) let us introduce the

generalized layer potentials:

S̃D1,D2
[ϕ](x) =

∫

∂D2

∑

m,n∈{−1,0,1}
ambnGω(x, y +me1 + ne2)ϕ(y) dσ(y),

D̃D1,D2
[ϕ](x) =

∫

∂D2

∑

m,n∈{−1,0,1}
ambn

∂Gω

∂ν(y)
(x, y +me1 + ne2)ϕ(y) dσ(y),

D̃∗
D1,D2

[ϕ](x) =

∫

∂D2

∑

m,n∈{−1,0,1}
ambn

∂Gω

∂ν(x)
(x, y +me1 + ne2)ϕ(y) dσ(y),

T̃D1,D2
[ϕ](x) =

∫

∂D2

∑

m,n∈{−1,0,1}
ambn

∂2Gω

∂ν(x)∂ν(y)
(x, y +me1 + ne2)ϕ(y) dσ(y)

for x ∈ D1.
These layer potentials involve summations over the nearest 3 × 3 neighboring

images. This direct summation over the nearest neighbors, such that their contri-
bution will be excluded from the auxiliary quasi-periodic representation, has been
found to result in much improved convergence rates in the fast multipole literature.
If the curves D1 and D2 both represent the inclusion D we drop subscripts and

use the notation S̃ω for the generalized single layer potential, and similarly for the
other layer potentials.

Now we are in position to describe the role of the operators A,B,C, and Q.
These operators are arrived at by substituting the representation formula

u(x) =

{
S[φ](x) +D[ψ](x) x ∈ D,

S̃[φ](x) + D̃[ψ](x) + uQP [ξ](x) x ∈ Y \D,
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into the expressions for m and d. uQP is an auxiliary field that is represented by a
set of layer potentials on the specific borders of the neighboring cells that touch the
borders of the unit cell, and ξ represents the auxiliary densities, associated with
uQP which are defined on these borders. The operator A is similar to the Aα,k(ω)
operator in the usual boundary integral formulation. It describes the effect of the
inclusion densities on the mismatch and is defined as

A :=

(
I 0
0 I

)
+

(
D̃ − D S̃ − S
T̃ − T D̃∗ −D∗

)
.

The operator C describes the effect of the inclusion densities on the discrepancy
and is defined as:

C :=




D̃L,∂D − a−1D̃L+e1,∂D −S̃L,∂D − a−1S̃L+e1,∂D
T̃L,∂D − a−1T̃L+e1,∂D −D̃∗

L,∂D − a−1D̃∗
L+e1,∂D

D̃B,∂D − b−1D̃B+e2,∂D −S̃ωB,∂D − b−1S̃B+e2,∂D

T̃B,∂D − b−1T̃B+e2,∂D −D̃∗
B,∂D − b−1D̃∗

B+e2,∂D


 .

Due to symmetry and translation invariance it can be shown that significant can-
cellation occurs when summing over the nearest neighbor terms, and therefore the
operator C can be further optimized.

The operator Q describes the effect of the auxiliary densities on the discrepancy
and is defined as:

Q := I +

(
QLL QLB
QBL QBB

)

where

QLL :=




∑

m∈{−1,1},n∈{−1,0,1}
mambkDL,L+me1+ne2 −

∑

m∈{−1,1},n∈{−1,0,1}
mambkSL,L+me1+ne2

∑

m∈{−1,1},n∈{−1,0,1}
mambkTL,L+me1+ne2 −

∑

m∈{−1,1},n∈{−1,0,1}
mambkD∗

L,L+me1+ne2


 ,

QLB :=




∑

m∈{0,1}
bm(aDL,B+e1+me2 − a−2DL,B−2e1+me2)

∑

m∈{0,1}
bm(−aSL,B+e1+me2 + a−2SL,B−2e1+me2)

∑

m∈{0,1}
bm(aTL,B+e1+me2 − a−2TL,B−2e1+me2)

∑

m∈{0,1}
bm(−aD∗

L,B+e1+me2 + a−2D∗
L,B−2e1+me2)




QBL :=




∑

m∈{0,1}
am(bDB,L+me1+e2 − b−2DB,L+me1−2e2)

∑

m∈{0,1}
am(−bSB,L+me1+e2 + b−2SB,L+me1−2e2)

∑

m∈{0,1}
am(bTB,L+me1+e2 − b−2TB,L+me1−2e2)

∑

m∈{0,1}
am(−bD∗

B,L+me1+e2 + b−2D∗
B,L+me1−2e2)




QBB :=




∑

m∈{−1,1},n∈{−1,0,1}
mambkDB,B+me1+ne2 −

∑

m∈{−1,1},n∈{−1,0,1}
mambkSB,B+me1+ne2

∑

m∈{−1,1},n∈{−1,0,1}
mambkTB,B+me1+ne2 −

∑

m∈{−1,1},n∈{−1,0,1}
mambkD∗

B,B+me1+ne2


 .

Again, due to symmetry and translational invariance the terms of the operator Q
are subject to cancellation.
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Finally, the operator B, which describes the effect of the auxiliary densities on
the mismatch, is defined as:

B :=
∑

m∈[0,1],n∈{−1,0,1}
ambn

( D∂D,L+me1+ne2 −S∂D,L+me1+ne2 0 0
T∂D,L+me1+ne2 −D∗

∂D,L+me1+ne2
0 0

)
+

∑

m∈{−1,0,1},n∈{0,1}
ambn

(
0 0 D∂D,B+me1+ne2 −S∂B,L+me1+ne2
0 0 T∂D,B+me1+ne2 −D∗

∂D,B+me1+ne2

)
.

By avoiding the use of the quasi-periodic Green’s function, the Barnett-Greengard
method can be used for photonic band structure calculations that are free from the
issue of empty resonance.

5.4.2.3. Multipole Expansion Method. When D is a circular disk of radius R,
the integral equation admits an explicit representation. In this case, the solution

can be represented as a sum of cylindrical waves Jn(kr)e
√−1nθ or H

(1)
n (kr)e

√−1nθ.
Here we give a multipole expansion interpretation of the integral operator Aα,k. It
results in a numerical scheme which is much more efficient than one obtained with
the usual discretization.

Recall that, for each fixed k, α, we have to find a characteristic value of Aα,k(ω)

defined by (6.15) where ω in the original operator Aα,k is replaced by
√
kω. The

corresponding solution is associated to transverse magnetic mode and k represents
the permittivity of the inclusion.

From the above expression, we see that Aα,k is represented in terms of the
single layer potential only. So it is enough to derive a multipole expansion version
of the single layer potential.

Before computing Sα,ω[ϕ], let us first consider the single layer potential SωD[ϕ]
for a single disk D. We adopt the polar coordinates (r, θ). Then, since D is a
circular disk, the density function ϕ = ϕ(θ) is a 2π-periodic function. So it admits
the following Fourier series expansion:

ϕ =
∑

n∈Z

ane
√−1nθ,

for some coefficients an. So we only need to compute u := SωD[e
√−1nθ] which

satisfies

(5.16)





∆u+ ω2u = 0 in R2 \D,
∆u+ ω2u = 0 in D,

u|+ = u|− on ∂D,

∂u

∂ν

∣∣∣
+
− ∂u

∂ν

∣∣∣
−
= e

√−1nθ on ∂D,

u satisfies the Sommerfeld radiation condition.

The above equation can be easily solved by using the separation of variables tech-
nique in polar coordinates. It gives

(5.17) SωD[e
√−1nθ] =




cJn(ωR)H

(1)
n (ωr)e

√−1nθ, |r| > R,

cH(1)
n (ωR)Jn(ωr)e

√−1nθ, |r| ≤ R,

where c = −√−1πR
2 .
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Now we compute the quasi-periodic single layer potential Sα,ω[e
√−1nθ]. Since

Gα,ω♯ (x, y) = −
√
−1

4

∑

m∈Z2

H
(1)
0 (ω|x− y −m|)e

√−1m·α,

we have

Sα,ω[e
√−1nθ] = SωD[e

√−1nθ] +
∑

m∈Z2,m 6=0

SωD+m[e
√−1nθ]e

√−1m·α

= SωD[e
√−1nθ] + cJn(ωR)

∑

m∈Z2

H(1)
n (ωrm)e

√−1nθme
√−1m·α.

Here, D + m means a translation of a disk D by m and (rm, θm) are the polar
coordinates with respect to the center of D+m. By applying the following addition
theorem:

H(1)
n (ωrm)e

√−1nθm =
∑

l∈Z

(−1)n−lH(1)
n−l(ω|m|)e

√−1n arg(m)Jl(ωr)e
√−1lθ,

we obtain

(5.18) Sα,ω[e
√−1nθ] = SωD[e

√−1nθ] + cJn(ωR)
∑

l∈Z

(−1)n−lQn−lJl(ωr)e
√−1lθ,

where Qn is so called the lattice sum defined by

Qn :=
∑

m∈Z2,m 6=0

H(1)
n (ω|m|)e

√−1n arg(m)e
√−1m·α.

So, from (5.17) and (5.18), we finally obtain the explicit representation of Sα,ω.
For numerical computation, we should consider the truncated series

N∑

n=−N
anSα,ω[e

√−1nθ],

instead of Sα,ω[ϕ] =∑n∈Z
anSα,ω[e

√−1nθ] for some sufficiently large N ∈ N. Then,

using e
√−1nθ as a basis, we have the following matrix representation of the operator

Sα,ω:

Sα,ω[ϕ]|∂D ≈




S−N,−N S−N,−(N−1) · · · S−N,N
S−(N−1),−N S−(N−1),−(N−1) · · · S−(N−1),N

...
. . .

...
SN,−N · · · · · · SNN







a−N
a−(N−1)

...
aN


 ,

where Sm,n is given by

Sm,n = cJn(ωR)H
(1)
n (ωR)δmn + cJn(ωR)(−1)n−mQn−mJm(ωR).

Similarly, we also have the following matrix representation for ∂Sα,ω

∂ν |± on ∂D:

∂Sα,ω
∂ν

[ϕ]
∣∣∣
±
≈




S′±
−N,−N S′±

−N,−(N−1) · · · S′±
−N,N

S′±
−(N−1),−N S′±

−(N−1),−(N−1) · · · S′±
−(N−1),N

...
. . .

...
S′±
N,−N · · · · · · S′±

NN







a−N
a−(N−1)

...
aN


 ,
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where S′±
m,n is given by

S′±
m,n =

ω

2

[
± 1 + c

(
Jn · (H(1)

n )′ + J ′
n ·H(1)

n

)
(ωR)

]
δmn

+ cJn(ωR)(−1)n−mQn−mωJ
′
m(ωR).

The matrix representation of Aα,k(ω) immediately follows.
5.4.2.4. Computing the Lattice Sum Efficiently. Unfortunately, the series in the

definition of Qαn suffers from very slow convergence. Here we provide an alternative
representation which converges very quickly. For n > 0, Qαn can be represented as

Qn = QGn +∆Qn

where ∆Qn is given by

∆Qn =
∑

m∈Z

1

γm

(
e
√−1nθm

e−
√−1α(2)e−

√−1γm − 1
+ (−1)n

e
√−1nθm

e−
√−1α(2)e−

√−1γm − 1

)
,

βm = α(1) + 2πm, θm = sin−1(βm/ω), γm =
√
ω2 − β2

m,

and QGn is given by

QG0 = −1− 2
√
−1

π
(−ψ(1) + ln

ω

4π
)− 2

√
−1

γ̃0
− 2

√
−1(ω2 + 2β2

0)

(2π)3
ζ(3)

− 2
√
−1
∑

m∈Z

1

γ̃m
+

1

γ̃−m
− 1

mπ
− ω2 + 2β2

0

(2πm)3
,

QG2l = −2
√
−1

e−2
√−1lθ0

γ̃0
− 2

√
−1
∑

m∈Z

e−2
√−1lθm

γ̃m
+
e2

√−1lθ−m

γ̃−m
− (−1)l

mπ

( ω

4mπ

)2l

− 2
√
−1

(−1)l

π
(
ω

4π
)2lζ(2l + 1) +

√
−1

lπ

+

√
−1

π

l∑

m=1

(−1)m22m
(l +m− 1)!

(2m)!(l −m)!

(2π
ω

)2m
B2m(

α(1)

2π
),

QG2l−1 = 2
√
−1
∑

m∈Z

e−
√−1(2l−1)θm

γ̃m
− e

√−1(2l−1)θ−m

γ̃−m
+

√
−1

(−1)lβ0l

(mπ)2

( ω

4mπ

)2l−1

− 2
√
−1

e−i(2l−1)θ0

γ̃0
+ 2

(−1)lβ0l

π2

( ω
4π

)2l−1

ζ(2l + 1)

− 2

π

l−1∑

m=0

(−1)m22m
(l +m− 1)!

(2m+ 1)!(l −m− 1)!

(2π
ω

)2m+1

B2m+1(
α(1)

2π
),

where Bm is the Bernoulli polynomial and

γ̃m =

{√
ω2 − β2

m, ω ≥ βm,

−
√
−1
√
β2
m − ω2, ω < βm.
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5.4.2.5. Numerical Example. Now we present a numerical example in which we
assume D is a circular disk of radius R = 0.42 and k = ∞. We use Code Photonic
Crystal Band Structure. The computed band structure is shown in Figure 5.1. The
truncation parameter for the cylindrical waves is set to be N = 8. The points Γ, X
and M represent α = (0, 0), α = (π, 0) and α = (π, π), respectively. We plot the
characteristic values ω along the boundary of the triangle ΓXM . A band gap is
clearly present.

Figure 5.1. The band structure for a biperiodic array of circular
cylinders each with radius R = 0.42 and k = ∞. The frequency is
normalized to be ω/(πc) where c is the speed of light.

5.5. Sensitivity Analysis with Respect to the Index Ratio

Let us now turn to the sensitivity of the band gap with respect to the contrast
and/or the shape of the inclusion.

http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial8/8.1 Photonic Crystal Band Structure.zip
http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial8/8.1 Photonic Crystal Band Structure.zip
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Expanding the operator-valued function Aα,k in terms of k and small pertur-
bations of the shape of D, we calculate asymptotic expressions of its characteristic
values with the help of the generalized Rouché theorem.

5.5.1. Preliminary Results. The following lemma, which is an immediate
consequence of (2.289), gives a complete asymptotic expansion of Aα,k as k → +∞.

Let Sα,ωl and (K−α,ω
l )∗ be given by (2.289). Let the operators

Aα
0 (ω) =




Sα,ω −Sα,0

0
1

2
I + (K−α,0)∗


 ,

Aα
1 (ω) =




0 −Sα,ω1(1
2
I − (K−α,ω)∗

)
(K−α,ω

1 )∗


 ,

and, for l ≥ 2,

Aα
l (ω) =

(
0 −Sα,ωl

0 (K−α,ω
l )∗

)
.

Lemma 5.3. Suppose α 6= 0. We have

(5.19) Aα,k(ω) = Aα
0 (ω) +

+∞∑

l=1

1

kl
Aα
l (ω).

We now have the following lemma for the characteristic values of Aα
0 .

Lemma 5.4. Suppose α 6= 0. Then ωα0 ∈ R is a characteristic value of Aα
0 if

and only if (ωα0 )
2 is either an eigenvalue of −∆ in D with the Dirichlet boundary

condition or an eigenvalue of −∆ in Y \D with the Dirichlet boundary condition
on ∂D and the quasi-periodic condition on ∂Y .

Proof. Suppose that ω = ωα0 ∈ R is a characteristic value of Aα
0 . Then there

is (φ, ψ) 6= 0 such that

(5.20)





Sα,ω[φ]− Sα,0[ψ] = 0,
(1
2
I + (K−α,0)∗

)
[ψ] = 0

on ∂D.

It then follows from Lemma 2.94 that ψ = 0 and hence Sα,ω[φ] = 0 on ∂D. Since
φ 6= 0, Sα,ω[φ] 6= 0 either in D or in Y \D and hence (ωα0 )

2 is either an eigenvalue
of −∆ in D with the Dirichlet boundary condition or an eigenvalue of −∆ in Y \D
with the Dirichlet boundary condition on ∂D and the quasi-periodic condition on
∂Y , and Sα,ω[φ] is an associated eigenfunction.

Conversely if (ωα0 )
2 is an eigenvalue of −∆ in D with the Dirichlet boundary

condition, then by Green’s representation formula, we have

u(x) = −Sα,ω
[∂u
∂ν

∣∣∣
∂D

]
, x ∈ D.

Thus (5.20) holds with (φ, ψ) = (∂u/∂ν|∂D, 0). The other case can be treated
similarly using (2.290). This completes the proof. �
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At this moment let us invoke the results in [260] (see also [218, 259, 423]).
In [260], it is shown, by a completely different argument which involves the conver-
gence of quadratic forms, that the spectrum of (5.6) for α 6= 0 accumulates near the
spectrum of −∆ in D with the Dirichlet boundary condition on ∂D as k → +∞.
According to this result, the eigenvalue of the exterior problem is not realized as
a limit of eigenvalues of the problem (5.6). In fact, the limit of the corresponding
eigenfunctions is given by

u(x) =

{
Sα,ω[φ], x ∈ D,

Sα,0[ψ] = 0, x ∈ Y \D,
where the pair (φ, ψ) is defined by (5.20). If (ωα0 )

2 is an eigenvalue for the exterior
problem and not for the interior problem, then Sα,ω[φ] = 0 in D and hence u = 0
in Y .

The following lemma was first proved in [260, 259].

Lemma 5.5. Let (ω0)2 (with ω0 > 0) be a simple eigenvalue of −∆ in D with
the Dirichlet boundary condition. There exists a unique eigenvalue (ωα,k)2 (with
ωα,k > 0) of (5.6) lying in a small complex neighborhood V of ω0. Indeed, ω0 and
ωα,k are simple poles of (Aα

0 )
−1 and (Aα,k)−1, respectively.

5.5.2. Full Asymptotic Expansion. Combining now the generalized Rouché
theorem together with Lemma 5.3, we are able to derive complete asymptotic for-
mulas for the characteristic values of ω 7→ Aα,k(ω). Applying Theorem 1.14 yields
that

ωα,k − ω0 =
1

2
√
−1π

tr

∫

∂V

(ω − ω0)(Aα,k)−1(ω)
d

dω
Aα,k(ω)dω.

Suppose that the quasi-momentum α 6= 0. We obtain the following complete as-
ymptotic expansion for the eigenvalue perturbations ωα,k − ω0.

Theorem 5.6. Let V be as in Lemma 5.5. Suppose α 6= 0. Then the following
asymptotic expansion holds:

(5.21) ωα,k − ω0 =
1

2
√
−1π

+∞∑

p=1

1

p

+∞∑

n=p

1

kn
tr

∫

∂V

Bαn,p(ω)dω,

where

(5.22) Bαn,p(ω) = (−1)p
∑

n1+...+np=n

ni≥1

(Aα
0 )

−1(ω)Aα
n1
(ω) . . . (Aα

0 )
−1(ω)Aα

np
(ω)

and

(5.23) (Aα
0 )

−1(ω) =




(Sα,ω)−1 (Sα,ω)−1Sα,0(1
2
I + (K−α,0)∗)−1

0 (
1

2
I + (K−α,0)∗)−1


 .

5.5.3. Leading-Order Term. Let us compute the leading-order term in the
expansion of ωα,k − ω0. Let u0 be the (normalized) eigenvector associated to the
simple eigenvalue (ω0)2 and let ϕ := ∂u0/∂ν|− so that

(5.24) u0(x) = −Sα,ω0

[ϕ](x) for x ∈ D.

We first establish the following lemma.
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Lemma 5.7. The following identity holds:

(5.25)
〈
ϕ,

d

dω
Sα,ω[ϕ]

∣∣
ω=ω0

〉
= −2ω0

∫

D

|u0|2.

Proof. From (2.278), it follows that

∆
d

dω
Gα,ω(x, y) + ω2 d

dω
Gα,ω(x, y) = −2ωGα,ω(x, y),

and therefore,

d

dω
Gα,ω(x, y) = −2ω

∫

Y

Gα,ω(x, z)Gα,ω(z, y)dz.

Consequently, for any ψ ∈ L2(∂D),

dSα,ω[ψ](x)
dω

=
d

dω

∫

∂D

Gα,ω(x, y)ψ(y) dσ(y)

=

∫

∂D

d

dω
Gα,ω(x, y)ψ(y) dσ(y)

=− 2ω

∫

Y

Gα,ω(x, z)

∫

∂D

Gα,ω(z, y)ψ(y) dσ(y)dz

=− 2ω

∫

Y

Gα,ω(x, z)Sα,ω[ψ](z)dz.

Using the fact that

Sα,ω0

[ϕ] =

{
−u0 in D,
0 in Y \D,

we compute

〈
ϕ,
dSα,ω[ϕ]
dω

∣∣∣∣
ω=ω0

〉
=

∫

∂D

ϕ(x)
dS−α,ω

dω
[ϕ](x)

∣∣∣∣
ω=ω0

dσ(x)

= −2ω0

∫

∂D

ϕ(x)

∫

Y

Gα,ω
0

(x, z)S−α,ω0

[ϕ](z)dz dσ(x)

= −2ω0

∫

∂D

∫

∂D

∫

Y

Gα,ω
0

(x, z)G−α,ω0

(y, z)ϕ(x)ϕ(y)dzdσ(x) dσ(y)

= −2ω0

∫

Y

∣∣∣∣
∫

∂D

Gα,ω
0

(x, z)ϕ(x)dσ(x)

∣∣∣∣
2

dz

= −2ω0

∫

Y

∣∣∣∣Sα,ω
0

[ϕ](z)

∣∣∣∣
2

dz

= −2ω0

∫

D

|u0(z)|2 dz,

which yields the desired formula. �

We are now ready to prove the following theorem.

Theorem 5.8. Let vα be the unique α-quasi-periodic solution to

(5.26)





∆vα = 0 in Y \D,
∂vα

∂ν

∣∣∣
+
=
∂u0

∂ν

∣∣∣
−

on ∂D.
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The following asymptotic expansion holds:

(5.27) ωα,k − ω0 = −1

k

∫

Y \D
|∇vα|2

2ω0

∫

D

|u0|2
+O(

1

k2
) as k → +∞.

Proof. Because of (5.24), we get

(
1

2
I − (K−α,ω0

)∗)[ϕ] = ϕ.

Moreover, since ω0 is the only simple pole in V of the mapping ω 7→ (Sα,ω)−1, we
can write [78]

(Sα,ω)−1 =
1

ω − ω0
T +Qα,ω,

where the operator-valued function Qα,ω is holomorphic in ω in V , T : L2(∂D) →
span{ϕ} is such that TSα,ω0

= Sα,ω0

T = 0, and

T
d

dω
Sα,ω

∣∣∣∣
ω=ω0

=
1

||ϕ||2L2

〈ϕ, ·〉ϕ

is the orthogonal projection from L2(∂D) into span{ϕ}. Here (·, ·) is the L2-inner
product on ∂D. It can also be shown that

(5.28) T =
1

〈
ϕ,

d

dω
Sα,ω[ϕ]

∣∣
ω=ω0

〉
〈
ϕ, ·
〉
ϕ.

It then follows from the residue theorem that

1

2
√
−1π

tr

∫

∂V

(Aα
0 )

−1(ω)Aα
1 (ω)dω = tr

[
TSα,0

(1
2
I+(K−α,0)∗

)−1(1
2
I−(K−α,ω0

)∗
)]
.

Let

vα(x) := Sα,0
(1
2
I + (K−α,0)∗

)−1
[ϕ](x), x ∈ Y \D.

Then vα is the unique α-quasi-periodic solution to (5.26) and

1

2
√
−1π

tr

∫

∂V

(Aα
0 )

−1(ω)Aα
1 (ω)dω =

1

||ϕ||2L2

〈ϕ, Tvα〉.

Therefore, we have from (5.21)

ωα,k − ω0 = − 1

k||ϕ||2L2

〈ϕ, Tvα〉+O(
1

k2
) as k → +∞.

By virtue of (5.28), it follows that

1

||ϕ||2L2

〈ϕ, Tvα〉 = 1
〈
ϕ,

d

dω
Sα,ω[ϕ]

∣∣
ω=ω0

〉
〈
ϕ, vα

〉
.

Integration by parts yields

〈ϕ, vα〉 = −
∫

Y \D
|∇vα|2,

and hence we obtain (5.27) from Lemma 5.7. This completes the proof. �
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Note that if u0 is normalized, then (5.27) can be rewritten as

(5.29) (ωα,k)2 − (ω0)2 = −1

k

∫

Y \D
|∇vα|2 +O(

1

k2
) as k → +∞.

5.5.4. Periodic Case. Turning now to the periodic case (α = 0), we first
introduce the following notation. Let χY denote the constant function 1 on Y . Let

the operator ∆̃ be acting on span{χ(Y ), H1
0 (D)}, with

(5.30) ∆̃u :=





−∆(u|D) in D,

1

|Y \D|

∫

∂D

∂

∂ν
(u|D) in Y \D.

See [260]. It is worth mentioning that the eigenvalue problem for ∆̃ can be written
as 




∆u+ ω2u = 0 in D,

u+
1

|Y \D|

∫

D

u = 0 on ∂D.

Define the sequence of operator-valued functions (Ã0
l )l∈N by

(5.31) Ã0
0(ω) =




S0,ω − 1

ω2

∫

∂D
1

2
I − (K0,ω)∗

1

2
I + (K0,0)∗


 ,

(5.32) Ã0
1(ω) =

(
0 −S0,0

0 (K0,ω
1 )∗

)
, Ã0

l (ω) =

(
0 −S0,ω

l−1

0 (K0,ω
l )∗

)

for l ≥ 2, and set

(5.33) B̃0
n,p(ω) = (−1)p

∑

n1+...+np=n

ni≥1

(Ã0
0)

−1(ω)Ã0
n1
(ω) . . . (Ã0

0)
−1(ω)Ã0

np
(ω).

Here, the operators S0,ω
l and (K0,ω

l )∗ are given by (2.289) with α = 0.

The following complete asymptotic expansion of Ã0,k as k → +∞ holds:

Ã0,k(ω) = Ã0
0(ω) +

+∞∑

l=1

1

kl
Ã0
l (ω).

On the other hand, we have the following lemma on the characteristic value of Ã0
0,

whose proof will be given in Section 5.9.

Lemma 5.9. Suppose that (ω̃0)2 (with ω̃0 > 0) is not an eigenvalue of −∆ in
Y \D with Dirichlet boundary condition on ∂D and the periodic condition on ∂Y .

Then (ω̃0)2 is an eigenvalue of ∆̃ if and only if ω̃0 is a characteristic value of the

operator-valued function Ã0
0.

Analogously to Theorem 5.6, the asymptotic formula for α = 0 follows from a
direct application of Theorem 1.14.
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Theorem 5.10. Suppose α = 0. Let (ω̃0)2 (with ω̃0 > 0) be a simple eigenvalue

of ∆̃. There exists a unique eigenvalue (ω0,k)2 (with ω0,k > 0) of (5.6) lying in a
small complex neighborhood of (ω̃0)2 and the following asymptotic expansion holds:

(5.34) ω0,k − ω̃0 =
1

2
√
−1π

+∞∑

p=1

1

p

+∞∑

n=p

1

kn
tr

∫

∂V

B̃0
n,p(ω)dω,

where V is a small complex neighborhood of ω̃0 and B̃0
n,p(ω) is given by (5.33).

5.5.5. The case when |α| is of order 1/
√
k. In this subsection we derive

an asymptotic expansion which is valid for |α| of order O(1/
√
k), not just for fixed

α 6= 0 or α = 0, as has been considered in the previous subsections. We give the
limiting behavior of ωα,k in this case.

Recall that we seek for the characteristic value of the operator-valued function
ω 7→ Aα,k(ω) where Aα,k(ω) is given in (5.13). One of the difficulties in dealing

with the operator when |α| is of order 1/
√
k is that Aα,k(ω) has a singularity at

ω2 = |α|2/k as one can see from the first formula in Subsection 2.13.1. In order
to avoid this difficulty, we use an argument different from those in the previous
sections.

Note that finding a characteristic value of Aα,k(ω) is equivalent to finding a
nonzero (ϕ, ψ) satisfying

(5.35)





Sα,ω[ϕ]− Sα,
ω√
k [ψ] = 0,

1

k

(
1

2
I − (K−α,ω)∗

)
[ϕ] +

(
1

2
I + (K−α, ω√

k )∗
)
[ψ] = 0

on ∂D. If such a pair (ϕ, ψ) exists, then ϕ 6= 0. In fact, if ϕ = 0, then

Sα,
ω√
k [ψ] = 0 and

∂Sα,
ω√
k [ψ]

∂ν

∣∣∣∣
+

=

(
1

2
I + (K−α, ω√

k )∗
)
[ψ] = 0 on ∂D.

If k is so large that ω2/k is not a Dirichlet eigenvalue on D, then it follows that

Sα,
ω√
k [ψ] = 0 in D and Y \D, and hence ψ = 0. Therefore finding a nonzero (ϕ, ψ)

satisfying (5.35) amounts to finding a nonzero ϕ satisfying
[(

1

2
I − (K−α,ω)∗

)
+ k

(
1

2
I + (K−α, ω√

k )∗
)
(Sα,

ω√
k )−1Sα,ω

]
[ϕ] = 0

on ∂D. Thus finding a characteristic value of Aα,k(ω) is equivalent to finding a
characteristic value of the operator-valued function

(5.36) ω 7→
(
1

2
I − (K−α,ω)∗

)
+ kN

α, ω√
kSα,ω,

where we put

(5.37) N
α, ω√

k :=

(
1

2
I + (K−α, ω√

k )∗
)
(Sα,

ω√
k )−1.

Note that N
α, ω√

k can be extended to the Dirichlet-to-Neumann map for

∆ +
ω2

k
on Y \D
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with α-quasi-periodic condition on ∂Y , which is defined for

ω2

k
< min
α∈ ]−π,π]2

κ(α).

Here κ(α) is the smallest eigenvalue of −∆ with the Dirichlet boundary condition

on ∂D and quasi-periodicity on ∂Y . Furthermore, N
α, ω√

k depends smoothly both
on ω and α. Therefore, we have the expansion

N
α, ω√

k = Nα,0 +
ω2

k

d

d(t2)
Nα,t

∣∣
t=0

+O

(
1

k2

)
.

A further expansion in terms of α yields

(5.38) N
α, ω√

k = Nα,0 +
ω2

k
Ṅ +O

( |α|
k

)
+

(
1

k2

)
,

where

(5.39) Ṅ :=
d

d(t2)
N0,t

∣∣
t=0

.

The expansion (5.38) was first obtained by Friedlander [218].

In order to obtain a better understanding of the operator Ṅ , let us consider
the following problem for t small:





∆ut + t2ut = 0 in Y \D,
ut = f on ∂D,

ut and
∂ut
∂ν

are periodic on ∂Y.

Since

N0,t[f ] =
∂ut
∂ν

|∂D,
one can see that

(5.40) Ṅ [f ] =
∂w

∂ν

∣∣∣∣
∂D

,

where w = ∂ut/∂(t
2)|∂D, which is the solution to





∆w + u0 = 0 in Y \D,
w = 0 on ∂D,

w and
∂w

∂ν
are periodic on ∂Y.

Using (5.40), we can derive relevant estimates for Ṅ . We have

‖Ṅ [f ]‖H−1/2(∂D) =

∥∥∥∥
∂w

∂ν

∥∥∥∥
H−1/2(∂D)

≤ C‖w‖H1(D) ≤ C ′‖u0‖H−1(D).

Therefore, we have for example

(5.41) ‖Ṅ [f ]‖H−1/2(∂D) ≤ C‖f‖H1/2(∂D).

It should be noted that the estimate (5.41) is not optimal.
The following lemma will be useful.
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Lemma 5.11. Let u1, u2, . . . be the eigenfunctions corresponding to 0 ≤ ωα,k1 ≤
ωα,k2 ≤ . . .. For a given constant M there exists C such that

(5.42)

∥∥∥∥uj −
1

|∂D|

∫

∂D

uj

∥∥∥∥
H1/2(∂D)

≤ C

(
|α|+ 1

k

)
‖uj‖H1(D)

for all j satisfying ωα,kj ≤M . Furthermore,

(5.43)

∣∣∣∣
∫

D

uiuj +

∫

∂D

Ṅ [ui|∂D]uj
∣∣∣∣ ≤ C

(
|α|+ 1

k

)
‖ui‖H1(D)‖uj‖H1(D),

provided that ωα,ki 6= ωα,kj . If ωα,ki = ωα,kj for some i 6= j, then we can choose ui
and uj in such a way that (5.43) holds.

Proof. We get from (5.38) that

N0,0

[
uj −

1

|∂D|

∫

∂D

uj

]
=

1

k

(
∂uj
∂ν

− (ωαj )
2Ṅ [uj |∂D]

)

+ (N0,0 −Nα,0)[uj |∂D] +O(|α|) +O

(
1

k

)
.

Note that N0,0 is the Dirichlet-to-Neuman map defined on ∂D for the Laplacian
in Y \D with the periodic boundary condition on ∂Y , and hence it is invertible as

an operator from H
1/2
0 (∂D) into H

−1/2
0 (∂D), where the subscript 0 indicates the

zero-mean value (in a weak sense for H
−1/2
0 (∂D)). Since Nα,0 −N0,0 = O(|α|) as

an operator from H1/2(∂D) into H−1/2(∂D), (5.41) leads to
∥∥∥∥uj −

1

|∂D|

∫

∂D

uj

∥∥∥∥
H1/2(∂D)

≤ C

(
|α|+ 1

k

)
‖uj‖H1/2(∂D),

from which (5.42) follows.
To prove (5.43), we introduce a notation for the quadratic form: Let

(5.44) E(u, v) :=

∫

D

∇u · ∇v dx.

Since Nα,ωα,k
i is the Dirichlet-to-Neuman map for the exterior problem, it follows

from the divergence theorem that

(ωα,ki )2
(∫

D

uiuj +

∫

∂D

Ṅ [ui|∂D]uj
)

= E(ui, uj)−
∫

∂D

(
kNα,ωα,k

i − (ωα,ki )2Ṅ

)
[ui|∂D]uj .

We also have

(ωα,kj )2
(∫

D

ui · uj +
∫

∂D

Ṅ [ui|∂D]uj
)

= E(ui, uj)−
∫

∂D

(
ui kN

α,ωα,k
j [uj |∂D]− (ωα,ki )2Ṅ [ui|∂D]

)
uj

= E(ui, uj)−
∫

∂D

(
kNα,ωα,k

j − (ωα,kj )2Ṅ

)
[ui|∂D]uj ,
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where the last equality holds thanks to the fact that the Dirichlet-to-Neuman map
is self-adjoint. Consequently,

(
(ωα,ki )2 − (ωα,kj )2

)(∫

D

uiuj +

∫

∂D

Ṅ [ui|∂D]uj
)

=

∫

∂D

(
(kNα,ωα,k

j − (ωα,kj )2Ṅ)− (kNα,ωα,k
i − (ωα,ki )2Ṅ)

)
[ui|∂D]uj

=

∫

∂D

(
(kNα,ωα,k

j − kNα,0 − (ωα,kj )2Ṅ)

− (kNα,ωα,k
i − kNα,0 − (ωα,ki )2Ṅ)

)
[ui|∂D]uj .

Hence, (5.43) follows from (5.38), and the proof is complete. �

The estimate (5.42) shows that if |α| and 1/k are small enough, then uj is
almost constant on ∂D, which is in good agreement with the case when α = 0.

5.6. Photonic Band Gap Opening

In this section we discuss the photonic band gap opening in the limiting case
as k tends to +∞. We will not include proofs in this section since very similar ones
will be given in Section 6.3.

Let ωj be the eigenvalues of −∆ in D with Dirichlet conditions and let ω̃j be

the eigenvalues of ∆̃ defined in (5.30). Then the following min-max characterization
of ωj and ω̃j is proved in [260] (see also Lemma 6.16):

(5.45) ω2
j = min

Nj

max
u∈Nj ,‖u‖L2(D)=1

E(u, u),

and

(5.46) ω̃2
j = min

Nj

max
u∈Nj ,‖u‖L2(D)=1

E(u, u)

1−
∣∣
∫

D

u
∣∣2
,

where the minimum is taken over all j -dimensional subspaces Nj of H1
0 (D) and

the quadratic form E is defined by (5.44). Using the min-max characterization, one
can show the following interlacing relation:

(5.47) ωj ≤ ω̃j ≤ ωj+1, j = 1, 2, . . . .

One can also show the following: For any ε > 0 and j, there exist c1 and c2
sufficiently small such that we have

(5.48) ω̃j − ǫ ≤ ωα,kj+1 ≤ ωj+1

for |α| ≤ c1 and k > 1/c2. See Lemma 6.18.
Since 0 is an eigenvalue of the periodic problem with multiplicity 1, combining

formulas (5.21), (5.34), and (5.48) shows that the spectral bands converge, as k →
+∞, to

(5.49) [0, ω1] ∪ [ω̃1, ω2] ∪ [ω̃2, ω3] ∪ . . . ,
and hence we have a band gap if and only if the following holds:

(5.50) ωj < ω̃j for some j.
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It is proved in [260] that the spectral bands converge to (5.49) in a somewhat
different way and (5.50) holds provided that

∫
D
uj 6= 0 where uj is an eigenfunction

corresponding to ω2
j .

As we will see in the next chapter, the situation for the phononic crystal is
more subtle and complicated. Among other reasons, it is because, unlike the case
of the Laplace operator, 0 is an eigenvalue of the periodic problem for the Lamé
system with multiplicity 2 (in two dimensions).

5.7. Sensitivity Analysis with Respect to Small Perturbations in the
Geometry of the Holes

Suppose that D is of class C2. Let Dǫ be an ǫ-perturbation of D; i.e., let
h ∈ C1(∂D) and ∂Dǫ be given by

∂Dǫ =

{
x̃ : x̃ = x+ ǫh(x)ν(x), x ∈ ∂D

}
.

Define the operator-valued function Aα
ǫ by

Aα
ǫ : ω 7→




Sα,ωDǫ
−Sα,

ω√
k

Dǫ

1

k

(
1

2
I − (K−α,ω

Dǫ
)∗
)

1

2
I + (K−α, ω√

k

Dǫ
)∗


 .

Write
∂Gα,ω

∂ν(x)
(x, y) =

1

2π

〈x− y, ν(x)〉
|x− y|2 +Rα,ω(x, y),

where Rα,ω(x, y) is smooth for all x and y. Following Section 3.2.2, we have a
uniformly convergent expansion for the length element dσǫ(ỹ) on ∂Dǫ; i.e.,

dσǫ(ỹ) =
+∞∑

n=0

ǫnσ(n)(y)dσ(y),

where σ(n) are bounded functions, and easily prove that the following lemma holds.

Lemma 5.12. Let Ψǫ be the diffeomorphism from ∂D onto ∂Dǫ given by Ψǫ(x) =
x+ ǫh(x)ν(x). Let N ∈ N. There exist C depending only on N , the C2-norm of D,
and ‖h‖C1(∂D) such that for any ϕ̃ ∈ L2(∂Dǫ),

∥∥∥∥∥S
α,ω
Dǫ

[ϕ̃] ◦Ψǫ − Sα,ω[ϕ]−
N∑

n=1

ǫnS(n)
α,ω[ϕ]

∥∥∥∥∥
L2(∂D)

≤ CǫN+1||ϕ||L2(∂D)

and
∥∥∥∥∥((K

−α,ω
Dǫ

)∗[ϕ̃]) ◦Ψǫ − (Kα,ω)∗ϕ−
N∑

n=1

ǫnK(n)
α,ω[ϕ]

∥∥∥∥∥
L2(∂D)

≤ CǫN+1‖ϕ‖L2(∂D),

where ϕ := ϕ̃ ◦Ψǫ. Here

S(n)
α,ω[ϕ](x) =

n∑

l=0

∑

|β|=l

1

β!

∫

∂D

∂βGα,ω(x, y)(h(x)ν(x)−h(y)ν(y))lσ(n−l)(y)ϕ(y)dσ(y),
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and

K(n)
α,ω[ϕ](x) = K(n)

ω [ϕ](x)

+

n∑

l=0

∑

|β|=l

1

β!

∫

∂D

∂βRα,ω(x, y)(h(x)ν(x)− h(y)ν(y))lσ(n−l)(y)ϕ(y) dσ(y),

and the bounded operators K(n)
ω = K(n)

D,ω are defined in (2.146).

The sensitivity analysis with respect to small perturbations in the geometry of
the holes consists of expanding, based on Lemma 5.12, Aα

ǫ in terms of ǫ to calculate
asymptotic expressions of its characteristic values. This can be done in exactly the
same manner as in Theorem 5.6.

5.8. Proof of the Representation Formula

In this section we provide a proof of representation formula (5.10) which plays
a central role in our analysis.

Theorem 5.13. Suppose that ω2 is not an eigenvalue for −∆ in Y \ D with
Dirichlet boundary condition on ∂D and quasi-periodic boundary condition on ∂Y
and assume ω2/k is not an eigenvalue for −∆ in D with Dirichlet boundary condi-
tion on ∂D. Then, for any eigenfunction u of (5.6), there exists one and only one
pair (φ, ψ) ∈ L2(∂D)×L2(∂D) such that u has the representation (5.11). Moreover,
(φ, ψ) is the solution to the integral equation (5.12). The mapping u 7−→ (φ, ψ) from
solutions of (5.6) to solutions of the system of integral equations (5.12) is one-to-
one.

We first prove the following lemma.

Lemma 5.14. Suppose that u is an eigenfunction of (5.6). Then

u|∂D ⊥ Ker(S−α,ω).

Here S−α,ω is considered an operator from L2(∂D) into H1(∂D).

Proof. To prove this lemma, we observe that, since (∆ + ω2)u = 0 in D,

u(x) = Dα,ω [u|∂D] (x)− Sα,ω
[
∂u

∂ν

∣∣∣
−

]
(x), x ∈ D,

and consequently,

1

2
u|∂D = Kα,ω [u|∂D]− Sα,ω

[
∂u

∂ν

∣∣∣
−

]
.

Let φ ∈ Ker(S−α,ω). Because of the assumption on ω2, we immediately deduce
that S−α,ω[φ] = 0 in Y \D, and hence

(5.51)




S−α,ω[φ] = 0,

1

2
φ+ (Kα,ω

)∗
[φ] = 0

on ∂D.
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Then, we have

1

2
〈u|∂D, φ〉 = 〈Kα,ω [u|∂D] , φ〉 −

〈
Sα,ω

[
∂u

∂ν

∣∣∣
−

]
, φ

〉

= 〈u|∂D, (Kα,ω)∗[φ]〉 −
〈
∂u

∂ν

∣∣∣
−
,S−α,ω[φ]

〉

= −1

2
〈u|∂D, φ〉 − 0,

which proves the lemma. �

Proof of Theorem 5.13. We first note that the problem of finding (φ, ψ) is
equivalent to solving the two equations

(5.52)





Sα,ω[φ] = u|∂D on ∂D,
(
− 1

2
I + (K−α,ω)∗

)
[φ] =

∂u

∂ν

∣∣∣
−

on ∂D

and

(5.53)





Sα,
ω√
k [ψ] = u|∂D on ∂D,

(1
2
I + (K−α, ω√

k )∗
)
[ψ] =

∂u

∂ν

∣∣∣
+

on ∂D.

Here we only consider the problem of finding φ, the solution to (5.52); the problem
of finding ψ can be solved in the same way.

From Lemma 5.14 it follows that there exists φ0 ∈ L2(∂D) such that

Sα,ω[φ0 + φ] = u|∂D on ∂D, ∀φ ∈ Ker(Sα,ω).
Hence, to show existence of a solution to (5.52), it suffices to prove that there exists
φ ∈ Ker(Sα,ω) such that the second equation in (5.52) is satisfied by φ0+φ. Thanks
to the second equation in (5.51), this equation becomes

(5.54) φ =
∂ (Sα,ω[φ0]− u)

∂ν

∣∣∣
−
,

and then, we only need to show that

∂ (Sα,ω[φ0]− u)

∂ν

∣∣∣
−
∈ Ker(Sα,ω),

which is an immediate consequence of the fact that Sα,ω[φ0] − u is a solution to
∆ + ω2 in D with the Dirichlet boundary condition. We have then proved the
existence of a solution to (5.52).

Suppose now that we have two solutions φ1 and φ2 to (5.52). Then, because of
the assumption on ω2, we have Sα,ω[φ1 − φ2] = 0 in Y \D, and hence

(1
2
I + (K−α,ω)∗

)
[φ1 − φ2] = 0 on ∂D.

By the second equation in (5.52), we have φ1 = φ2.
So far, we have shown that there are unique φ and ψ satisfying (5.52) and

(5.53), respectively. The jump conditions satisfied by u immediately show that the
pair (φ, ψ) satisfies the system of integral equations (5.12).

Conversely, suppose that (φ, ψ) is a nontrivial solution to the system of integral
equations (5.12). Then defining u by (5.11), we only need to show that u is not
trivial to conclude that u is an eigenfunction of (5.6). Suppose that u = 0 in Y .
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Then Sα,ω[φ] = 0 inD, and by the assumption on ω2, we deduce that Sα,ω[φ] = 0 in
Y \D. Finally, from the jump of the normal derivative of Sα,ω[φ] on ∂D, we deduce
that φ = 0. The assumption on ω2/k leads to ψ = 0. This is in contradiction to
the fact that (φ, ψ) 6= (0, 0). This completes the proof. �

5.9. Characterization of the Eigenvalues of ∆̃

Let ω̃0 be a characteristic value of the operator-valued function Ã0
0. Let (φ, ψ)

be a root function associated with ω̃0. Set

u = S0,ω[φ]− 1

ω̃2
0

∫

∂D

ψ

and

c =
1

ω̃2
0 |Y \D|

∫

∂D

(−1

2
I + (K0,ω)∗)[φ].

It follows from (2.291) that

c =
1

ω̃2
0

∫

∂D

ψ,

and therefore, −∆(u + c) = ω̃2
0(u + c) in D and u = 0 on ∂D. Thus, we conclude

that ω̃2
0 is an eigenvalue of ∆̃.

Conversely, assume that ω̃2
0 (with ω̃0 > 0) is an eigenvalue of ∆̃ associated with

u+ c, where u ∈ H1
0 (D), and

c =
1

|Y \D|ω̃2
0

∫

∂D

∂u

∂ν
.

Let φ be a solution to

(5.55) (
1

2
I − (K0,ω̃0)∗)[φ] =

∂u

∂ν
on ∂D.

Such a solution exits even though ω̃2
0 is an eigenvalue of the Laplacian in D with

Neumann boundary condition since in this case ∂u/∂ν is orthogonal in L2 to the
associated Neumann eigenvector. Set

(5.56) ψ = −(
1

2
I + (K0,0)∗)−1

[
∂u

∂ν

]
.

Then, (φ, ψ) satisfies



S0,ω̃0 − 1

ω̃2
0

∫

∂D

1

2
I − (K0,ω̃0)∗

1

2
I + (K0,0)∗



(
φ

ψ

)
= 0,

which proves that ω̃0 is a characteristic value of Ã0
0.

5.10. Maximizing Band Gaps in Photonic Crystals

Let Y denote the periodic unit cell [0, 1)2. To study the optimal design of
photonic band gaps, we consider the quasi-periodic eigenvalue problems:

(5.57) − (∇+
√
−1α) · (∇+

√
−1α)uα = (ωα)2q(x)uα

and

(5.58) − (∇+
√
−1α)

1

q(x)
· (∇+

√
−1α)vα = (ωα)2vα,
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where α is in the Brillouin zone and the density function q(x) is given by

(5.59) q(x) =

{
q1 for x ∈ Ω \D,
q2 for x ∈ D.

The eigenvalue problem (5.57) is for the transverse magnetic polarization while
(5.58) is for the transverse electric polarization.

The spectrum of (5.57) (resp. (5.58)) is composed of a sequence of nonnegative
eigenvalues, each of finite multiplicity. Repeating them according to multiplicity,
we denote them

0 ≤ ωα1 ≤ ωα2 ≤ ωα3 . . .→ +∞.

If we use the level set method (see Appendix B.2) to represent the interface
∂D, then

q(x) =

{
q1 for {x, φ(x) < 0},
q2 for {x, φ(x) > 0}.

A typical design goal is to maximize the band gap in the transverse magnetic
or the transverse electric case. In both cases, we write [185, 286, 257, 159]

(5.60) J [D] = inf
α
ωαj+1 − sup

α
ωαj

and maximize J [D] with respect to the level set function φ. An analysis of the
problem shows that it may be nonsmooth, i.e., Lipschitz continuous but not differ-
entiable with respect to φ, for several reasons [185]. First of all, the inf and sup in
the definition of J are nonsmooth functions. Moreover, multiple eigenvalues intro-
duce a nondifferentiability with respect to φ. However, one can still use generalized
gradients and bundle optimization techniques to overcome this difficulty.

The generalized gradient of a locally Lipschitz function is defined as follows
[176, Chapter 2]. Let X be a real Banach space and let f : X → R be Lipschitz
near a given point x ∈ X. Define

f̃(x, v) := lim sup
y→x,t→0+

f(y + tv)− f(y)

t
.

The generalized gradient of f at x, denoted ∂f(x), is the (nonempty) weak*-
compact subset of X∗ (the dual space of continuous linear functionals on X) whose

support function is f̃(x, ·). Thus ζ ∈ ∂f(x) if and only if f̃(x, v) ≥ (ζ, v) for all v
in X. It is also worth noticing that if f admits a Gâteaux derivative f ′G(x) at x,
then f ′G(x) ∈ ∂f(x). Moreover, if f is continuously differentiable at x, then ∂f(x)
reduces to a singleton: ∂f(x) = {f ′(x)}.

Let co denote the convex hull, i.e., the set of all convex combinations of elements
in the given set. Returning now to our optimal design problem, the generalized
gradient of ωαj with respect to φ can be written as follows [185, 286]:

∂φω
α
j ⊂ co

{
− 1

2
(q2 − q1)ω

α
j |uα|2 : uα ∈ V(j)

TM (q, α)

}
,

in the transverse magnetic case, and

∂φω
α
j ⊂ co

{
1

2ωαj
(
1

q2
− 1

q1
)|(∇+

√
−1α)vα|2 : vα ∈ V(j)

TE(q, α)

}
,
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in the TE case, where V(j)
TM (and V(j)

TE) are the span of all eigenfunctions uα (and
vα) associated with the eigenvalue ωαj , respectively, and satisfying the normalization∫
Y
q|uα|2 = 1 and

∫
Y
|vα|2 = 1. The shape derivatives of J [D] are given by

dSJ [D] =

∫

∂D

VTM (or VTE) θ · ν dσ,

where the velocities which give the ascent direction for the optimization are [185,
286]

(5.61)

VTM ⊂ co

{
− 1

2
(q2 − q1)ω

α
j+1|uα|2 : uα ∈ V(j+1)

TM (q, α)

}

−co

{
− 1

2
(q2 − q1)ω

α
j |uα|2 : uα ∈ V(j)

TM (q, α)

}

and

(5.62)

VTE ⊂ co

{
1

2ωαj+1

(
1

q2
− 1

q1
)|(∇+

√
−1α)vα|2 : vα ∈ V(j+1)

TE (q, α)

}

−co

{
1

2ωαj
(
1

q2
− 1

q1
)|(∇+

√
−1α)vα|2 : vα ∈ V(j)

TE(q, α)

}
.

5.11. Photonic Cavities

Let k be a positive constant and let k(x) be a periodic function with period 1
in x1 and x2 such that

k(x) =

{
k in Y \D,
1 in D.

Consider the solution u to the following problem:

(5.63) ∇ · k(x)∇u+ ω2n(x)u = 0.

Suppose that n(x) − 1 is compactly supported in a bounded domain Ω ⊂ R2, and
is assumed to be known. Ω is a localized defect inserted into the photonic crystal.
It can be proved that the introduction of a localized defect does not change the
essential spectrum of the operator.

Assume that the operator ∇ · k(x)∇ has a gap in the spectrum and seek for
ω inside the bandgap such that (5.63) has a nontrivial solution. As in Chapter
3.3, we can use an integral formulation to compute ω. We can formally rewrite the
solution to (5.63) in integral form

(5.64) u(x) + ω2

∫

Ω

(n(y)− 1)Gω(x, y)u(y)dy = 0 , x ∈ R2,

where Gω is the Green’s function of ∇·k(x)∇+ω2 in R2. Notice that for frequencies
in the band gap, Gω is exponentially decaying. We have [180]

(5.65) |Gω(x, y)| = O
(
e−Cdist(ω2,σ(−∇·k(x)∇))

)
as |x− y| → ∞

with C being a positive constant and σ(−∇·k(x)∇) is the spectrum of −∇·k(x)∇.
We call ω a defect mode if its value in (5.64) yields nontrivial solutions u(x) of

(5.64). Hence, in view of (5.65), a defect mode is a solution to the wave equation
which is exponentially localized in the defect while its time dependence is har-
monic and can be computed by the same approach as the one presented in Chapter
3.3. Moreover, using the generalized argument principle, we can also compute the
sensitivity of the defect modes with respect to n and Ω.
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5.12. Concluding Remarks

In this chapter we have first discussed the structure of spectra of periodic
elliptic operators. The main tool of the theory is the Floquet transform. We
have also performed a high-order sensitivity analysis of the spectral properties of
high contrast band gap materials, consisting of a background medium which is
perforated by a periodic array of holes, with respect to the index ratio and small
perturbations in the geometry of the holes. The asymptotic expansions have been
obtained by transforming the spectral problem into a system of equations involving
singular integral operators, a Taylor expansion of the associated kernels, and the
generalized Rouché theorem. The leading-order terms in our expansions have been
explicitly computed.

Our approach in this chapter will be extended in the next chapter to the equa-
tions of linear elasticity.





CHAPTER 6

Phononic Band Gaps

6.1. Introduction

In the past decade there has been a steady growth of interest in the propaga-
tion of elastic waves through inhomogeneous materials. The ultimate objective of
these investigations has been the design of the so-called phononic band gap ma-
terials or phononic crystals. The most recent research in this field has focused
on theoretical and experimental demonstrations of band gaps in two-dimensional
and three-dimensional structures constructed of high contrast elastic materials ar-
ranged in a periodic array. This type of structure prevents elastic waves in certain
frequency ranges from propagating and could be used to generate frequency filters
with control of pass or stop bands, as beam splitters, as sound or vibration protec-
tion devices, or as elastic waveguides. See, for example, [448, 186, 307, 427].

To mathematically formulate the problem investigated in this chapter, set D
to be a connected domain with Lipschitz boundary lying inside the open square
(0, 1)2. As in Chapter 5, an important example of phononic crystals consists of a
background elastic medium of constant Lamé parameters λ and µ which is perfo-
rated by an array of arbitrary-shaped inclusions Ω =

⋃
n∈Z2(D+ n) periodic along

each of the two orthogonal coordinate axes in the plane. These inclusions have

Lamé constants λ̃, µ̃. The shear modulus µ of the background medium is assumed
to be larger than that of the inclusion µ̃. Then we investigate the spectrum of the
self-adjoint operator defined by

(6.1) u 7→ −∇ · (C∇u) = −
2∑

j,k,l=1

∂

∂xj

(
Cijkl

∂uk
∂xl

)
,

which is densely defined on L2(R2)2. Here the elasticity tensor C is given by

(6.2) Cijkl :=

(
λχ(R2\Ω)+λ̃ χ(Ω)

)
δijδkl+

(
µχ(R2\Ω)+µ̃ χ(Ω)

)
(δikδjl+δilδjk),

where χ(Ω) is the indicator function of Ω.
In this chapter we adopt this specific two-dimensional model to understand the

relationship between the contrast of the shear modulus and the band gap structure
of the phononic crystal. We will also consider the case of two materials with different
densities in order to investigate the relation between the density contrast and the
band gap structure.

By Floquet theory in Section 5.2, the spectrum of the Lamé system with pe-
riodic coefficients is represented as a union of bands, called the phononic band
structure. Carrying out a band structure calculation for a given phononic crystal
involves a family of eigenvalue problems, as the quasi-momentum is varied over the
first Brillouin zone. The problem of finding the spectrum of (6.1) is reduced to a

259
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family of eigenvalue problems with quasi-periodicity condition; i.e.,

∇ · (C∇u) + ω2u = 0 in R2,(6.3)

with the periodicity condition

(6.4) u(x+ n) = e
√−1α·nu(x) for every n ∈ Z2.

Here the quasi-momentum α varies over the Brillouin zone [0, 2π)2. Each of these
operators has compact resolvent so that its spectrum consists of discrete eigenvalues
of finite multiplicity. We show that these eigenvalues are the characteristic values of
meromorphic operator-valued functions that are of Fredholm type of index zero. As
in Chapter 5, this yields a natural and efficient approach to the computation of the
band gap phononic structure which is based on a combination of boundary element
methods and Muller’s method for finding complex roots of scalar equations. See
Section 1.6. Following Chapter 5, we proceed from the generalized Rouché theorem
to construct complete asymptotic expressions for the characteristic values as the
Lamé parameter µ of the background goes to infinity. For α 6= 0, we prove that the
discrete spectrum of (6.3) accumulates near the Dirichlet eigenvalues of the Lamé
system in D as µ goes to infinity. We then obtain a full asymptotic formula for the
eigenvalues. The leading-order term is of order µ−1 and can be calculated explicitly.
For the periodic case α = 0, we establish a formula for the asymptotic behavior
of the eigenvalues. It turns out that their limiting set is generically different from
that for α 6= 0. We also consider the case when |α| is of order 1/√µ and derive an
asymptotic expansion for the eigenvalues in this case as well. Not surprisingly, this
formula tends continuously to the previous ones as α

√
µ goes to zero or to infinity.

We finally provide a criterion for exhibiting gaps in the band structure. As we
said before, the existence of those spectral gaps implies that the elastic waves in
those frequency ranges are prohibited from travelling through the elastic body. Our
criterion shows that the smaller the density of the matrix, the wider the band gap,
provided that the criterion is fulfilled. This phenomenon was reported in [202]
where it was observed that periodic elastic composites, whose matrix has lower
density and higher shear modulus compared to those of inclusions, yield better
open gaps.

6.2. Asymptotic Behavior of Phononic Band Gaps

The phononic crystal we consider in this chapter is a homogeneous elastic
medium of Lamé constants λ, µ which contains a periodic (with respect to the
lattice Z2) array of arbitrary-shaped inclusions Ω =

⋃
n∈Z2(D + n). These inclu-

sions have Lamé constants λ̃, µ̃.
We use the same notation as in Chapter 5. Let Y = (0, 1)2 denote the fun-

damental periodic cell. For each quasi-momentum α ∈ [0, 2π)2, set σα(D) to be
the (discrete) spectrum of the operator defined by (6.1) with the condition that
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e−
√−1α·xu is periodic. In other words, σα(D) is the spectrum of the problem

(6.5)





Lλ,µu+ ω2u = 0 in Y \D,
Lλ̃,µ̃u+ ω2u = 0 in D,

u
∣∣
+
− u

∣∣
− = 0 on ∂D,

∂u

∂ν

∣∣
+
− ∂u

∂ν̃

∣∣
− = 0 on ∂D,

e−
√−1α·xu is periodic in the whole space.

Recall that Lλ̃,µ̃ denotes the elastostatic system corresponding to the Lamé con-

stants λ̃ and µ̃ and ∂/∂ν̃ is the corresponding conormal derivative.
By the standard Floquet theory briefly described in Section 5.2, the spectrum

of (6.5) has the band structure given by

(6.6)
⋃

α∈[0,2π)2

σα(D).

The main objective of this section is to investigate the behavior of σα(D) as µ →
+∞.

6.2.1. Integral Representation of Quasi-Periodic Solutions. In this sub-
section, we obtain the integral representation formula for the solution to (6.5). We

denote by S̃ω, D̃ω, and K̃ω the layer potentials on ∂D associated with the Lamé

parameters (λ̃, µ̃).
We first prove the following lemma.

Lemma 6.1. Suppose that ω2 is not an eigenvalue for −Lλ,µ in D with the
Dirichlet boundary condition on ∂D. Let u be a solution to (6.5). Then we have

u|∂D ⊥ Ker S̃ω and u|∂D ⊥ Ker(Sα,ω)∗.
Here S̃ω and Sα,ω are considered to be operators on L2(∂D)2.

Proof. We first observe that, since (Lλ̃,µ̃ + ω2)u = 0 in D, we have

(6.7) u(x) = D̃ω [u|∂D] (x)− S̃ω
[
∂u

∂ν̃

∣∣∣
−

]
(x), x ∈ D,

and consequently by (2.156) it follows that

(6.8)
1

2
u|∂D = K̃ω [u|∂D]− S̃ω

[
∂u

∂ν̃

∣∣∣
−

]
.

Let φ ∈ Ker(S̃ω); i.e., S̃ω[φ] = 0 on ∂D. By Lemma 2.123, we have S̃ω[φ] = 0

in R2 \D and hence (1/2)φ+ (K̃ω
)∗
[φ] = 0 by (2.155). Then we have from (6.8)

1

2
〈u|∂D, φ〉 =

〈
K̃ω [u|∂D] , φ

〉
−
〈
S̃ω
[
∂u

∂ν̃

∣∣∣
−

]
, φ

〉

=
〈
u|∂D, (K̃ω)∗[φ]

〉
−
〈
∂u

∂ν̃

∣∣∣
−
, S̃ω[φ]

〉

= −1

2
〈u|∂D, φ〉 ,

which implies 〈u|∂D, φ〉 = 0, and hence u|∂D ⊥ Ker S̃ω.
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Observe that if u is α-quasi-periodic, then

Dα,ω
Y [u|∂Y ] = 0 and Sα,ωY

[
∂u

∂ν

∣∣∣
+

]
= 0 on ∂Y,

where Dα,ω
Y and Sα,ωY are the (α-quasi-periodic) double- and single-layer potentials

on ∂Y . Thus we have

u(x) = −Dα,ω [u|∂D] (x) + Sα,ω
[
∂u

∂ν

∣∣∣
+

]
(x), x ∈ Y \D,

and consequently,

1

2
u|∂D = −Kα,ω [u|∂D] + Sα,ω

[
∂u

∂ν

∣∣∣
+

]
.

Let φ ∈ Ker(Sα,ω)∗. Since (Sα,ω)∗ = S−α,ω, we have

S−α,ω[φ] = 0 on ∂D.

Since ω2 is not a Dirichlet eigenvalue of −Lλ,µ in D, we immediately get

S−α,ω[φ] = 0 in D,

and hence

−1

2
φ+ (Kα,ω

)∗
[φ] = 0 on ∂D.

Therefore, we can deduce that

1

2
〈u|∂D, φ〉 = −〈Kα,ω [u|∂D] , φ〉+

〈
Sα,ω

[
∂u

∂ν

∣∣∣
+

]
, φ

〉

= −〈u|∂D, (Kα,ω)∗[φ]〉+
〈
∂u

∂ν

∣∣∣
+
,S−α,ω[φ]

〉

= −1

2
〈u|∂D, φ〉 ,

which implies 〈u|∂D, φ〉 = 0. This completes the proof. �

We now establish a representation formula for solutions of (6.5).

Theorem 6.2. Suppose that ω2 is not an eigenvalue for −Lλ,µ in D with the
Dirichlet boundary condition on ∂D. Then, for any solution u of (6.5), there exists
one and only one pair (φ, ψ) ∈ L2(∂D)2 × L2(∂D)2 such that

(6.9) u(x) =

{
S̃ω[φ](x), x ∈ D,

Sα,ω[ψ](x), x ∈ Y \D.
Moreover, (φ, ψ) satisfies

(6.10)




S̃ω[φ]− Sα,ω[ψ] = 0 on ∂D,
(1
2
I − (K̃ω)∗

)
[φ] +

(1
2
I + (K−α,ω)∗

)
[ψ] = 0 on ∂D,

and the mapping u 7−→ (φ, ψ) from solutions of (6.5) in H1(Y )2 to solutions to the
system of integral equations (6.10) in L2(∂D)2 × L2(∂D)2 is a one-to-one corre-
spondence.
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Proof. We first note that the problem of finding (φ, ψ) satisfying (6.9) and
(6.10) is equivalent to solving the following two systems of equations:

(6.11)




S̃ω[φ] = u|∂D on ∂D,
(
− 1

2
I + (K̃ω)∗

)
[φ] =

∂u

∂ν̃

∣∣∣
−

on ∂D

and

(6.12)




Sα,ω[ψ] = u|∂D on ∂D,
(1
2
I + (K−α,ω)∗

)
[ψ] =

∂u

∂ν

∣∣∣
+

on ∂D.

In order to find φ satisfying (6.11), it suffices to find φ satisfying S̃ω[φ] = u in
D. Suppose for a moment that the following holds:

(6.13) ℑS̃ω =

{
φ : φ ⊥ Ker S̃ω

}
.

It then follows from Lemma 6.1 that there exists φ0 ∈ L2(∂D)2 such that

(6.14) S̃ω[φ0] = u|∂D on ∂D.

Observe that if ω 6= 0, then the solution to the Dirichlet problem for Lλ,µ+ω2 may

not be unique, and hence (6.14) does not imply S̃ω[φ0] = u in D. However, since

(Lλ,µ + ω2)(u− S̃ω[φ0]) = 0 in D, we get by Green’s formula

u− S̃ω[φ0] = −S̃ω
[
∂

∂ν̃

(
u− S̃ω[φ0]

) ∣∣∣
−

]
in D,

and therefore,

u = S̃ω
[
φ0 −

∂

∂ν̃

(
u− S̃ω[φ0]

) ∣∣∣
−

]
in D.

To prove the uniqueness of φ satisfying (6.11), it suffices to show that the
solution to 



S̃ω[φ] = 0 on ∂D,
(
− 1

2
I + (K̃ω)∗

)
[φ] = 0 on ∂D

is zero. By the first equation in the above and Lemma 2.123, S̃ω[φ] = 0 in R2 \D
and hence

φ =
∂

∂ν̃
S̃ω[φ]

∣∣∣
+
− ∂

∂ν̃
S̃ω[φ]

∣∣∣
−
= 0.

Similarly, we can show existence and uniqueness of ψ satisfying

u = Sα,ω[ψ] in Y \D,
which yields (6.12). To complete the proof, we shall verify that (6.13) holds. Let
G be a subspace of H1(∂Ω) such that

G :=

{
φ : φ ⊥ Ker S̃ω

}
.

Since
〈S̃ωφ, ψ〉 = 〈φ, S̃ωψ〉, ∀φ, ψ ∈ L2(∂Ω),

it is easy to see that ℑ S̃ω ⊂ G. It remains then to show that

dimH1(∂Ω)/ℑ S̃ω ≤ dimH1(∂Ω)/G.
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Let φ1, φ2, . . . , φn be an orthonormal basis of Ker S̃ω. Since H1(∂Ω) is dense in

L2(∂Ω), we can take φ̃1, φ̃2, . . . , φ̃n in H1(∂Ω) such that ‖φj − φ̃j‖L2(∂Ω) ≤ ǫ for all

j. Then φ̃1, φ̃2, . . . , φ̃n is linearly independent in H1(∂Ω)/G. To see this, suppose
that

a1φ̃1 + · · ·+ anφ̃n ∈ G.

By taking the inner products with the φj ’s, we obtain


φ1 · φ̃1 . . . φ1 · φ̃n

...

φn · φ̃1 . . . φn · φ̃n






a1
...
an


 = 0.

Since 

φ1 · φ̃1 . . . φ1 · φ̃n

...

φn · φ̃1 . . . φn · φ̃n




is invertible (as it is a small perturbation of the identity), we have a1 = . . . = an = 0.
Hence,

dimH1(∂Ω)/ℑ S̃ω = dim Ker S̃ω ≤ dimH1(∂Ω)/G,

and we can conclude that G = ℑ S̃ω. �

Let Aα,µ(ω) be the operator-valued function of ω defined by

(6.15) Aα,µ(ω) :=




S̃ω −Sα,ω
1

2
I − (K̃ω)∗ 1

2
I + (K−α,ω)∗


 .

By Theorem 6.2, ω2 is an eigenvalue corresponding to the quasi-momentum α if
and only if ω is a characteristic value of Aα,µ(ω). Consequently, we now have a new
way of computing the spectrum of (6.5) parallel to our formulation in the previous
chapter of the band structure problem for photonic crystals. This way consists
of examining the characteristic values of Aα,µ(ω). Based on Muller’s method for
finding complex roots of scalar equations, a boundary element method similar to
the one developed in Subsection 5.4.2 for photonic crystals can be designed for
computing phononic band gaps.

6.2.2. Full Asymptotic Expansions. Expanding the operator-valued func-
tions Aα,µ(ω) in terms of µ as µ → +∞, we can calculate asymptotic expressions
of their characteristic values with the help of the generalized Rouché theorem, and
this is what we do in this subsection.

We begin with the following asymptotic expansion of Gα,ωij (x, y) in (2.522).

Lemma 6.3. Let τl = 1− (cT /cL)
2l
. As µ→ +∞,

(6.16)

Gα,ωij (x, y) =

+∞∑

l=1

ω2(l−1)

µl

∑

n∈Z2

e
√−1(2πn+α)·(x−y)

( −δij
|2πn+ α|2l

+τl
(2πn+ α)i(2πn+ α)j

|2πn+ α|2(l+1)

)
,
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for fixed α 6= 0, while for α = 0,

G0,ω
ij (x, y) =

δij
ω2

+
+∞∑

l=1

ω2(l−1)

(2π)2lµl

∑

n∈Z2\{0}
e2π

√−1n·(x−y)
(
− δij
|n|2l + τl

ninj
|n|2(l+1)

)
.

(6.17)

The derivations of (6.16) and (6.17) are straightforward. In fact, since

1

k2T − |2πn+ α|2 =
1

ω2

µ
− |2πn+ α|2

= −
+∞∑

k=0

ω2k

µk|2πn+ α|2(k+1)
,

one easily shows that (6.16) and (6.17) hold.
We can write (6.16) and (6.17) as

(6.18) Gα,ω(x, y) =

+∞∑

l=1

1

µl
Gα,ω
l (x, y)

and

(6.19) G0,ω(x, y) =
1

ω2
I +

+∞∑

l=1

1

µl
G0,ω
l (x, y),

where the definitions of Gα,ω
l (x, y) and G0,ω

l (x, y) are obvious from (6.16) and

(6.17). We note that Gα,ω
l (x, y) and G0,ω

l (x, y) are dependent upon µ because
of the factor τl. However, since |τl| ≤ C for some constant C independent of µ
and l, this will not affect our subsequent analysis. We also note that Gα,ω

1 (x, y) is
independent of ω and

(6.20) Gα,ω
1 (x, y) = µGα,0(x, y),

where Gα,0(x, y) is the quasi-periodic fundamental function defined in (2.523).

Denote by Sα,ωl and (K−α,ω
l )∗, for l ≥ 1 and α ∈ [0, 2π)2, the single-layer

potential and the boundary integral operator associated with the kernel Gα,ω
l (x, y)

as defined in (2.530) so that

(6.21) Sα,ω =

+∞∑

l=1

1

µl
Sα,ωl and (K−α,ω)∗ =

+∞∑

l=1

1

µl
(K−α,ω

l )∗.

Lemma 6.4. The operator (1/2) I + (K−α,0)∗ : L2(∂D)2 → L2(∂D)2 is invert-
ible.

Before proving Lemma 6.4, let us make a note of the following simple fact: If
u and v are α-quasi-periodic, then

(6.22)

∫

∂Y

∂u

∂ν
· vdσ = 0.

To prove this, we observe that
∫

∂Y

∂u

∂ν
· v =

∫

∂Y

∂(e−
√−1α·xu)
∂ν

· e−
√−1α·xv +

√
−1

∫

∂Y

[
λα · (e−

√−1α·xu)N

+ µ

(
2α1N1 + α2N2 α1N2

α2N1 α1N1 + 2α2N2

)
(e−

√−1α·xu)
]
· e−

√−1α·xv.
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Here N = (N1, N2) is the outward unit normal to the unit cell Y . Then the inte-
grands over the opposite sides of ∂Y have the same absolute values with different
signs and therefore the integration over ∂Y is zero.

Proof of Lemma 6.4. For α 6= 0, we show the injectivity of (1/2) I+(K−α,0)∗.
Since (1/2) I + (K0)∗ and (K−α,0)∗ − (K0)∗ are compact, then from the Fredholm
alternative, the result follows. Suppose φ ∈ L2(∂D)2 satisfies

(
1

2
I + (K−α,0)∗)[φ] = 0 on ∂D.

Then by (2.527), u := Sα,0[φ] satisfies




Lλ,µu = 0 in Y \D,
∂u

∂ν

∣∣∣
+
= 0 on ∂D,

u is α-quasi-periodic in the whole space.

Therefore, it follows from (6.22) that
∫

Y \D

(
λ|∇ · u|2 + µ

2
|∇u+∇ut|2

)
=

∫

∂Y

∂u

∂ν
· u−

∫

∂D

∂u

∂ν

∣∣∣∣
+

· u = 0.

Thus, u is constant in Y \D and hence in D. Thus, we get

φ =
∂u

∂ν

∣∣∣
+
− ∂u

∂ν

∣∣∣
−
= 0.

For the periodic case α = 0, the proof follows the same lines. Since (K0,0)∗ −
(K0)∗ is compact, it suffices to show the injectivity of (1/2) I + K0,0. Let φ ∈
L2(∂D)2 satisfying ((1/2) I +K0,0)[φ] = 0 on ∂D. Then u := D0,0[φ] satisfies

{
Lλ,µu = 0 in D,

u|− = 0 on ∂D,

and therefore u = 0 in D. Furthermore, if ((1/2) I + K0,0)[φ] = 0, we can show

that φ ∈ H1(∂D)2 and ∂(D0,0[φ])/∂ν
∣∣∣
+
= ∂(D0,0[φ])/∂ν

∣∣∣
−
. See [5] for the details.

Then we have 



Lλ,µu = 0 in Y \D,
∂u

∂ν

∣∣∣
+
= 0 on ∂D,

u is periodic in the whole space.

Therefore, it follows that
∫

Y \D

(
λ|∇ · u|2 + µ

2
|∇u+∇ut|2

)
=

∫

∂Y

∂u

∂ν
· u−

∫

∂D

∂u

∂ν

∣∣∣∣
+

· u = 0.

Thus, u is constant in Y \D, and hence φ = u|− −u|+ is constant. By (2.531), we
obtain that

0 = (
1

2
I +K0,0)[φ] = |Y \D|φ,

which implies that φ must be zero. This completes the proof. �
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We now derive complete asymptotic expansions of eigenvalues as µ→ +∞. We
deal with three cases separately: α 6= 0 (not of order O(1/

√
µ)), α = 0, and |α| of

order O(1/
√
µ).

6.2.2.1. The case α 6= 0. The following lemma, which is an immediate con-
sequence of (6.21), gives a complete asymptotic expansion of Aα,µ(ω) defined in
(6.15) as µ→ +∞.

Lemma 6.5. Suppose α 6= 0. Let

(6.23) Aα
0 (ω) =




S̃ω 0
1

2
I − (K̃ω)∗ 1

2
I + (K−α,0)∗


 ,

and, for l ≥ 1,

(6.24) Aα
l (ω) =




0 −Sα,ωl

0
1

µ
(K−α,ω

l+1 )∗


 .

Then we have

(6.25) Aα,µ(ω) = Aα
0 (ω) +

+∞∑

l=1

1

µl
Aα
l (ω).

All the operators are defined on L2(∂D)2 × L2(∂D)2.

Note that it is just for convenience that there is 1/µ in the definition of Aα
l (ω).

This of course does not affect any of our asymptotic results.

Lemma 6.6. Suppose α 6= 0. Then the following assertions are equivalent:

(i) ωα,0 ∈ R is a characteristic value of Aα
0 (ω),

(ii) ωα,0 ∈ R is a characteristic value of S̃ω,
(iii) (ωα,0)2 is an eigenvalue of −Lλ̃,µ̃ in D with the Dirichlet boundary con-

dition.

Moreover, if u is an eigenfunction of −Lλ̃,µ̃ in D with the Dirichlet boundary

condition, then ϕ := ∂u/∂ν|− is a root function of S̃ω. Conversely, if ϕ is a root

function of S̃ω, then u := −S̃ω[ϕ] is an eigenfunction of −Lλ̃,µ̃ in D with the
Dirichlet boundary condition.

Proof. By Lemma 6.4, (1/2) I + (K−α,0)∗ is invertible. Thus characteristic

values of Aα
0 (ω) coincide with those of S̃ω. On the other hand, Green’s identity

(6.7) shows that the characteristic values of S̃ω are exactly the eigenvalues of −Lλ̃,µ̃
in D with the Dirichlet boundary condition. The last statements of Lemma 6.6 also
follow from (6.7). �

Lemma 6.7. Every eigenvector of S̃ω has rank one.

Proof. Let φ be an eigenvector of S̃ω associated with the characteristic value

ω0; i.e., S̃ω0

[φ] = 0 on ∂D. Suppose that there exists φω, holomorphic in a neigh-

borhood of ω0 as a function of ω, such that φω
0

= φ and

S̃ω[φω] = (ω2 − (ω0)2)ψω
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for some ψω. Let uω(x) := S̃ω[φω](x), x ∈ D. Then uω satisfies
{
(Lλ̃,µ̃ + ω2)uω = 0 in D,

uω = (ω2 − (ω0)2)ψω on ∂D.

By Green’s formula, we have

(ω2 − (ω0)2)

∫

D

uω · uω0 =

∫

D

uω · Lλ̃,µ̃uω0 − Lλ̃,µ̃uω · uω0

=

∫

∂D

uω · ∂u
ω0

∂ν̃
= (ω2 − (ω0)2)

∫

∂D

ψω · ∂u
ω0

∂ν̃
.

Dividing by ω2 − (ω0)2 and letting ω → ω0, we arrive at

∫

D

|uω0 |2 =

∫

∂D

ψω
0 · ∂u

ω0

∂ν̃
.

Therefore, we conclude that ψω
0

is not identically zero. This completes the proof.
�

By Lemma 6.4 and the fact that S̃ω is Fredholm, we know thatAα
0 (ω) is normal.

Moreover, Lemma 6.7 says that the multiplicity of Aα
0 (ω) at each eigenvalue (ω0)2

of −Lλ̃,µ̃ is equal to the dimension of Ker S̃ω0

. Combining this fact with Theorem
1.15, we obtain the following lemma.

Lemma 6.8. For each eigenvalue (ω0)2 of −Lλ̃,µ̃ and sufficiently large µ, there
exists a small neighborhood V of ω0 > 0 such that Aα,ω is normal with respect to

∂V and M(Aα,ω, ∂V ) = dimKer S̃ω0

.

Let (ω0)2 (with ω0 > 0) be a simple eigenvalue of −Lλ̃,µ̃ in D with the Dirichlet
boundary condition. There exists a unique eigenvalue (ωα,µ)2 (with ωα,µ > 0) of
(6.5) lying in a small complex neighborhood V of ω0. Combining the generalized
Rouché theorem with Lemma 6.5 we are now able to derive complete asymptotic
formulas for the characteristic values of ω 7→ Aα,µ(ω). Theorem 1.14 yields that

(6.26) ωα,µ − ω0 =
1

2
√
−1π

tr

∫

∂V

(ω − ω0)Aα,µ(ω)−1 d

dω
Aα,µ(ω)dω.

Then we obtain the following complete asymptotic expansion for the eigenvalue
perturbations ωα,µ − ω0. It is proof is similar to that of Theorem 3.7.

Theorem 6.9. Suppose α 6= 0. Then, for sufficiently large µ, the following
asymptotic expansion holds:

ωα,µ − ω0 =
1

2π
√
−1

+∞∑

p=1

1

p

+∞∑

n=p

1

µn
tr

∫

∂V

Bαn,p(ω) dω,(6.27)

where

Bαn,p(ω) = (−1)p
∑

n1+···+np=n

ni≥1

Aα
0 (ω)

−1Aα
n1
(ω) . . .Aα

0 (ω)
−1Aα

np
(ω).(6.28)
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6.2.2.2. The case α = 0. We now deal with the periodic case (α = 0). By
(6.17) we have

(6.29) A0,µ(ω) = A0
0(ω) +

+∞∑

l=1

1

µl
A0
l (ω),

where

(6.30) A0
0(ω) =




S̃ω − 1

ω2

∫

∂D

· dσ
1

2
I − (K̃ω)∗ 1

2
I + (K0,0)∗




and, for l ≥ 1,

(6.31) A0
l (ω) =




0 −S0,ω
l

0
1

µ
(K0,ω

l+1)
∗


 .

Here we consider the following eigenvalue problem:




(Lλ̃,µ̃ + ω2)u = 0 in D,

u+
1

|Y \D|

∫

D

u = 0 on ∂D.
(6.32)

We note that it has a discrete spectrum and its eigenvalues are nonnegative since
we have

∫

D

λ̃|∇ · u|2 + µ̃

2
|∇u+∇ut|2 =

∫

∂D

u · ∂u
∂ν̃

−
∫

D

u · Lλ̃,µ̃u

= − 1

|Y \D|

∫

D

u ·
∫

∂D

∂u

∂ν̃
+ ω2

∫

D

|u|2

=
ω2

|Y \D|

∣∣∣∣
∫

D

u

∣∣∣∣
2

+ ω2

∫

D

|u|2.

The eigenvalue of (6.32) is related to the characteristic value of A0(ω) as follows.

Lemma 6.10. Equation (6.32) has a nonzero solution if and only if ω is a
characteristic value of the operator-valued function A0

0(ω).

Proof. Suppose that there exists a nonzero pair (φ, ψ) such that

A0
0(ω)

(
φ
ψ

)
= 0,

or equivalently,

S̃ω[φ]− 1

ω2

∫

∂D

ψ dσ = 0 on ∂D,(6.33)

(
1

2
I − (K̃ω)∗

)
[φ] +

(
1

2
I + (K0,0)∗

)
[ψ] = 0 on ∂D.(6.34)
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In particular, φ is nonzero by the invertibility of (1/2) I + (K0,0)∗. Let u := S̃ω[φ].
Then we have

1

|Y \D|

∫

D

u = − 1

ω2|Y \D|

∫

∂D

∂u

∂ν̃

= − 1

ω2|Y \D|

∫

∂D

(
− 1

2
I + (K̃ω)∗

)
[φ]

= − 1

ω2|Y \D|

∫

∂D

(
1

2
I + (K0,0)∗

)
[ψ]

= − 1

ω2

∫

∂D

ψ,

where the last equality follows from (2.532). Therefore, by (6.33), u is a nonzero
solution to (6.32).

Suppose that (6.32) has a nonzero solution u. Following the same argument as
in the proof of Theorem 6.2, we can see that there exists φ such that

(6.35)




S̃ω[φ] = u|∂D on ∂D,
(
− 1

2
I + (K̃ω)∗

)
[φ] =

∂u

∂ν̃
on ∂D.

If we set

ψ = (
1

2
I + (K0,0)∗)−1

[
∂u

∂ν̃

]
,

then (φ, ψ) satisfies

A0
0(ω)

(
φ
ψ

)
= 0.

This completes the proof. �

We also have the following lemma.

Lemma 6.11. Every eigenvector of A0
0(ω) has rank one.

Proof. Suppose that

(
φ
ψ

)
is an eigenvector of A0

0(ω) with rank m associated

with characteristic value ω0; i.e., there exist φω and ψω, holomorphic as functions

of ω, such that φω
0

= φ, ψω
0

= ψ, and

A0
0(ω)

(
φω

ψω

)
= (ω − ω0)m

(
φ̃ω

ψ̃ω

)
,

for some

(
φ̃ω

ψ̃ω

)
∈ L2(∂D)2. In other words, the following identities hold on ∂D:

S̃ω[φω]− 1

ω2

∫

∂D

ψωdσ = (ω − ω0)mφ̃ω,

(
1

2
I − (K̃ω)∗

)
[φω] +

(
1

2
I + (K0,0)∗

)
[ψω] = (ω − ω0)mψ̃ω.
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It then follows from (2.532) that

S̃ω[φω]− 1

|Y \D|ω2

∫

∂D

(
− 1

2
I + (K̃ω)∗

)
[φω] dσ

= S̃ω[φω]− 1

|Y \D|ω2

∫

∂D

(1
2
I + (K0,0)∗

)
[ψω] dσ +

(ω − ω0)m

|Y \D|ω2

∫

∂D

ψ̃ωdσ

= S̃ω[φω]− 1

ω2

∫

∂D

ψωdσ +
(ω − ω0)m

|Y \D|ω2

∫

∂D

ψ̃ωdσ

= (ω − ω0)m
(
φ̃ω +

1

|Y \D|ω2

∫

∂D

ψ̃ωdσ

)
.

Let

ηω :=

(
φ̃ω +

1

|Y \D|ω2

∫

∂D

ψ̃ωdσ

)
and uω := S̃ω[φω].

Then uω satisfies




(Lλ̃,µ̃ + ω2)uω = 0 in D,

uω =
1

|Y \D|ω2

∫

∂D

∂uω

∂ν̃

∣∣∣∣
−
dσ + (ω − ω0)mηω on ∂D.

By Green’s formula, we have

(ω2 − (ω0)2)

∫

D

uω · uω0 =

∫

∂D

uω · ∂u
ω0

∂ν̃
− uω0 · ∂u

ω

∂ν̃
dσ

=

(
1

ω2
− 1

(ω0)2

)
1

|Y \D|

∫

∂D

∂uω

∂ν̃
dσ ·
∫

∂D

∂uω0

∂ν̃
dσ + (ω − ω0)m

∫

∂D

ηω · ∂u
ω0

∂ν̃
dσ.

Dividing by ω2 − (ω0)2 and letting ω → ω0, we obtain

∫

D

∣∣uω0 ∣∣2 + 1

|Y \D|(ω0)4

∣∣∣∣∣

∫

∂D

∂uω
0

∂ν̃
dσ

∣∣∣∣∣

2

= lim
ω→ω0

(ω − ω0)m

ω2 − (ω0)2

∫

∂D

ηω
0 · ∂u

ω0

∂ν̃
dσ.

Since the term on the left is nonzero, we conclude that m = 1. This completes the
proof. �

Analogously to Theorem 6.9, the following asymptotic formula for α = 0 holds.

Theorem 6.12. Suppose α = 0. Let (ω̃0)2 (with ω̃0 > 0) be a simple eigenvalue
of (6.32). Then there exists a unique characteristic value ω0,µ > 0 of A0(ω) lying
in a small complex neighborhood V of ω̃0 and the following asymptotic expansion
holds:

ω0,µ − ω̃0 =
1

2π
√
−1

+∞∑

p=1

1

p

+∞∑

n=p

1

µn
tr

∫

∂V

Bn,p(ω)dω,(6.36)

where

Bn,p(ω) = (−1)p
∑

n1+···+np=n

ni≥1

A0
0(ω)

−1A0
n1
(ω) . . .A0

0(ω)
−1A0

np
(ω).(6.37)
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6.2.3. The case when |α| is of order 1/
√
µ. In this subsection we derive

an asymptotic expansion which is valid for |α| of order O(1/
√
µ), not just for fixed

α 6= 0 or α = 0, as was considered in the previous subsections. We give the limiting
behavior of ωα,µ in this case. The argument of this subsection is similar to that
of Subsection 5.5.5. The only difference is that while the operators in Subsection
5.5.5 are scaled by k, we deal with unscaled operators here, since there are two
parameters µ and λ.

For exactly the same reason as in Section 5.5.5, we consider the operator

Nα,ω :=

(
1

2
I + (Kα,ω)∗

)
(Sα,ω)−1

,

which can be extended to the Dirichlet-to-Neumann map on ∂D for Lλ,µ + ω2

in Y \ D with the Dirichlet boundary condition on ∂D and the quasi-periodicity
condition on ∂Y . Note that the Dirichlet-to-Neumann map is defined for

ω2 < min
α∈ ]−π,π]2

κ(α),

where κ(α) is the smallest eigenvalue of −Lλ,µ with the Dirichlet boundary con-
dition on ∂D and quasi-periodicity on ∂Y . It is easy to see that κ(α) behaves
like O(µ) as µ → +∞. Furthermore, Nα,ω depends smoothly both on ω and α.
In particular, since (1/µ)Sα,ω and (1/2) I + (Kα,ω)∗ depends on ω2/µ, so does
(1/µ)Nα,ω, and hence we have the expansion

(6.38) Nα,ω = Nα,0 + ω2Ṅ +O(|α|) +O

(
1

µ

)
,

where

Ṅ :=
d

d(ω2)
N0,ω

∣∣
ω=0

.

As for (5.41), we can show that Ṅ : H1/2(∂D) 7→ H−1/2(∂D) is bounded. Note
that

(6.39) Nα,0 = O(µ)

in the operator-norm from H1/2(∂D) into H−1/2(∂D), as µ→ +∞.
The following lemma, which is an analogous to Lemma 5.11 for the photonic

band gap, will be used later.

Lemma 6.13. Let u1,u2, . . . be the eigenfunctions corresponding to 0 ≤ ωα,µ1 ≤
ωα,µ2 ≤ . . .. For a given constant M there exists C such that

(6.40)

∥∥∥∥uj −
1

|∂D|

∫

∂D

uj

∥∥∥∥
H1/2(∂D)2

≤ C‖uj‖H1(D)2

(
|α|+ 1

µ

)
,

for all j satisfying ωα,µj ≤M . Furthermore,

(6.41)

∣∣∣∣
∫

D

ui · uj +
∫

∂D

Ṅ [ui|∂D] · uj
∣∣∣∣ ≤ C‖ui‖H1(D)2‖uj‖H1(D)2

(
|α|+ 1

µ

)
,

provided that ωα,µi 6= ωα,µj . If ωα,µi = ωα,µj for some i 6= j, then we can choose ui
and uj in such a way that (6.41) holds.
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Proof. In view of (6.38), we have

1

µ
N0,0

[
uj −

1

|∂D|

∫

∂D

uj

]
=

1

µ

∂uj
∂ν̃

− 1

µ
(ωα,µj )2Ṅ [uj |∂D]

+
1

µ
(N0,0 −Nα,0)[uj |∂D] +O(|α|) +O(

1

µ
).

Since Nα,0 = N0,0 + O(µ|α|), we can derive (6.40) in exactly the same way as in
Lemma 5.11.

To prove (6.41), let Ẽ be given by (2.385) with (λ, µ) replaced with (λ̃, µ̃);
namely

Ẽ(u,v) =

∫

D

λ̃(∇ · u)(∇ · v) + µ̃

2
(∇u+∇ut) · (∇v +∇v

t
).(6.42)

We then obtain from the divergence theorem, as we did in the proof of Lemma 5.11,

(ωα,µi )2
(∫

D

ui · uj +
∫

∂D

Ṅ [ui|∂D] · uj
)

= Ẽ(ui,uj)−
∫

∂D

(
Nα,ωα,µ

i − (ωα,µi )2Ṅ

)
[ui|∂D] · uj

and

(ωα,µj )2
(∫

D

ui · uj +
∫

∂D

Ṅ [ui|∂D] · uj
)

= Ẽ(ui,uj)−
∫

∂D

(Nα,ωα,µ
j − (ωα,µj )2Ṅ)[ui|∂D] · uj .

It then follows that

(
(ωα,µi )2 − (ωα,µj )2

)(∫

D

ui · uj +
∫

∂D

Ṅ [ui|∂D] · uj
)

=

∫

∂D

(
(Nα,ωα,µ

j − (ωα,µj )2Ṅ)− (Nα,ωα,µ
i − (ωα,µi )2Ṅ)

)
[ui|∂D] · uj

=

∫

∂D

(
(Nα,ωα,µ

j −Nα,0 − (ωα,µj )2Ṅ)− (Nα,ωα,µ
i −Nα,0 − (ωα,µi )2Ṅ)

)
[ui|∂D] · uj .

Hence, (6.41) holds and the proof is complete. �

The estimate (6.40) shows that uj is almost constant on ∂D and there is a
function ũj with a constant value on ∂D satisfying

(6.43) ‖ ũj − uj‖H1(D)2 ≤ C‖uj‖H1(D)2

(
|α|+ 1

µ

)
.

In fact, it is quite easy to find such a function. Let wj be the solution to




Lλ̃,µ̃wj = 0 in D,

wj = uj −
1

|∂D|

∫

∂D

uj on ∂D.

Then, thanks to (6.40), we have

‖wj‖H1(D)2 ≤ C‖uj‖H1(D)2

(
|α|+ 1

µ

)
,
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and hence ũj = uj −wj does the job.

6.2.4. Derivation of the Leading-Order Terms. For α 6= 0, let us write
down explicitly the leading-order term in the expansion of ωα,µ − ω0. We first
observe that

Aα
0 (ω)

−1 =




(S̃ω)−1 0
(
1

2
I + (K−α,0)∗

)−1 (
1

2
I − (K̃ω)∗

)
(S̃ω)−1

(
1

2
I + (K−α,0)∗

)−1


 .

Next, we prove the following lemma.

Lemma 6.14. Let u0 be an eigenvector associated to the simple eigenvalue (ω0)2

and let ϕ := ∂u0/∂ν̃|− on ∂D. Then we have, in a neighborhood of ω0,

(6.44) (S̃ω)−1 =
1

ω − ω0
T +Qω,

where Qω are operators in L(H2(∂D)2, L2(∂D)2) holomorphic in ω and T is defined
by

(6.45) T (f) := − 〈f, ϕ〉ϕ
2ω0

∫

D

|u0|2
,

where 〈 , 〉 is the inner product on L2(∂D)2.

Proof. By Lemma 6.7, there are operators T andQω in L(H2(∂D)2, L2(∂D)2)

such that (S̃ωD)−1 takes the form

(6.46) (S̃ω)−1 =
1

ω − ω0
T +Qω,

where Qω is holomorphic in ω. Since

(6.47) I = S̃ω(S̃ω)−1 =
1

ω − ω0
S̃ωT + S̃ωQω,

by letting ω → ω0, we have

(6.48) S̃ω0

D T = 0.

Similarly, we can show that

(6.49) T S̃ω0

D = 0.

It then follows from (6.48) and (6.49) that

ImA = Ker S̃ω0

= span{ϕ} and KerA = Im S̃ω0

= span{ϕ}⊥.
Here span{ϕ} denotes the vector space spanned by ϕ. Therefore

(6.50) T = C〈·, ϕ〉ϕ,
for some constant C.

By Green’s formula, we have for x ∈ D,

S̃ω[ϕ](x) = S̃ω
[
∂u0

∂ν

∣∣∣
−

]
(x)− D̃ω

[
u0
]
(x)

= (ω2 − (ω0)2)

∫

D

Γ̃ω(x− y)u0(y)dy − u0(x).(6.51)
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In particular, we get

(6.52) S̃ω[ϕ](x) = (ω2 − (ω0)2)

∫

D

Γ̃ω(x− y)u0(y)dy, x ∈ ∂D.

Expanding Γ̃ω(x− y) in ω gives

(6.53) S̃ω[ϕ](x) = 2ω0(ω − ω0)

∫

D

Γ̃ω
0

(x− y)u0(y)dy + (ω − ω0)2Aω,

for some function Aω holomorphic in ω. Therefore, it follows that

(6.54) (S̃ω)−1

[
2ω0

∫

D

Γ̃ω
0

(x− y)u0(y)dy

]
=

1

ω − ω0
ϕ+Bω,

where Bω is holomorphic in ω, which together with (6.46) implies that

(6.55) T

[
2ω0

∫

D

Γ̃ω
0

(· − y)u0(y)dy

]
= ϕ.

Note that if we take ω = ω0 in (6.51), then

(6.56) u0(x) = −S̃ω0

[ϕ](x), x ∈ D.

It then follows from (6.50) and (6.55) that

1 = C

〈
2ω0

∫

D

Γ̃ω
0

(x− y)u0(y)dy, ϕ

〉

= 2Cω0
〈
u0, S̃ω[ϕ]

〉
= −2Cω0

∫

D

|u0|2.

This completes the proof. �

Because of (6.56), we have

(6.57) (
1

2
I − (K̃ω0

)∗)[ϕ] = ϕ on ∂D.

Observe from (6.23) and (6.24) that the diagonal elements of Aα
0 (ω)

−1Aα
1 (ω) are 0

and

−
(1
2
I +(K−α,0)∗

)−1
=
(1
2
I − (K̃ω0

)∗
)
(S̃ω)−1Sα,ω1 +an operator holomorphic in ω.

Identity (6.20) implies that Sα,ω1 = µSα,0, and hence (6.44) yields

1

2π
√
−1

tr

∫

∂V

Aα
0 (ω)

−1Aα
1 (ω)dω = −µ tr

[
TSα,0

(1
2
I+(K−α,0)∗

)−1(1
2
I−(K̃ω0

)∗
)]
.

Since ImT = span{ϕ}, it follows from (6.57) that

tr
[
TSα,0

(1
2
I + (K−α,0)∗

)−1(1
2
I − (K̃ω0

)∗
)]

=

〈[
TSα,0

(
1
2I + (K−α,0)∗

)−1( 1
2I − (K̃ω0

)∗
)]
[ϕ], ϕ

〉

||ϕ||2L2(∂D)

=

〈[
TSα,0

(
1
2I + (K−α,0)∗

)−1
]
[ϕ], ϕ

〉

||ϕ||2L2(∂D)

.
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We set

vα(x) := µSα,0
(
1

2
I + (K−α,0)∗

)−1

[ϕ](x), x ∈ Y \D.

Then vα is the unique α-quasi-periodic solution to




Lλ,µvα = 0 in Y \D,
∂vα

∂ν

∣∣∣
+
= µ

∂u0

∂ν̃

∣∣∣
−

on ∂D,

and

1

2π
√
−1

tr

∫

∂V

Aα
0 (ω)

−1Aα
1 (ω)dω =

1

||ϕ||2L2

〈ϕ, Tvα〉

=
1

µ

∫

Y \D
λ|∇ · vα|2 + µ

2
|∇vα + (∇vα)t|2

2ω0

∫

D

|u0|2
.

Thus the following corollary holds.

Corollary 6.15. Suppose α 6= 0. Then the following asymptotic formula
holds:

(6.58) ωα,µ − ω0 = − 1

µ

∫

Y \D

λ

µ
|∇ · vα|2 + 1

2
|∇vα + (∇vα)t|2

2ω0

∫

D

|u0|2
+O

(
1

µ2

)

as µ→ +∞.

The formula (6.58) may be rephrased, like (5.29), as

(ωα,µ)2 − (ω0)2 = − 1

µ

∫

Y \D

λ

µ
|∇ · vα|2 + 1

2
|∇vα + (∇vα)t|2 +O

(
1

µ2

)
,

assuming that u0 is normalized.

When α = 0, it does not seem to be likely that we can explicitly compute the
leading-order term in a closed form as in the case α 6= 0. However, we can compute
the leading-order term in the asymptotic expansion of ω0,µ − ω̃0.

Let u0 be the (normalized) eigenvector of (6.32) associated with the simple

eigenvalue ω̃0. Let (φ̃0, ψ̃0) satisfy (6.35) with u replaced by u0 and ω = ω̃0. Since
ω̃0 is the only simple pole in V of the mapping ω 7→ A0

0(ω)
−1, one can prove that

A0
0(ω)

−1 =
1

ω − ω̃0

(
d

dω
A0

0(ω)

∣∣∣∣
ω=ω̃0

(
φ̃0
ψ̃0

)
·
(
φ̃0
ψ̃0

))−1
(
(·, φ̃0) φ̃0 0

0 (·, ψ̃0) ψ̃0

)

+ an operator-valued function holomorphic in ω,

which allows us to make explicit the leading-order term in the expansion of ω0,µ−ω̃0.
Similar calculations and expressions in the transition region (|α| = O(1/

√
µ)) can

be derived as well.
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6.3. Criterion for Gap Opening

Following Chapter 5, we provide in this subsection a criterion for gap opening
in the spectrum of the operator given by (6.1) as µ→ +∞.

Let ωj be the eigenvalues of −Lλ̃,µ̃ in D with the Dirichlet boundary condition.
Let ω̃j denote the eigenvalues of (6.32). We first prove the following min-max
characterization of ωj and ω̃j .

Lemma 6.16. The following min-max characterizations of ω2
j and ω̃2

j hold:

(6.59) ω2
j = min

Nj

max
u∈Nj ,||u||=1

Ẽ(u,u)

and

(6.60) ω̃2
j = min

Nj

max
u∈Nj ,||u||=1

Ẽ(u,u)

1−
∣∣
∫

D

u
∣∣2
,

where the minimum is taken over all j-dimensional subspaces Nj of (H1
0 (D))2.

Recall that H1
0 (D) is the set of all functions in H1(D) with zero-trace on ∂D and

Ẽ is given by (6.42).

Proof. The identity (6.59) is well known [290]. Note that if v satisfies the
Dirichlet condition on ∂D, then ṽ := v −

∫
D
v satisfies the boundary condition

(6.61) ṽ +
1

|Y \D|

∫

D

ṽ = 0 on ∂D.

Conversely, if ṽ satisfies (6.61), then

v := ṽ +
1

|Y \D|

∫

D

ṽ

obviously satisfies the Dirichlet boundary condition.
Observe that the operator with the boundary condition in (6.32) is not self-

adjoint, and hence Poincaré’s min-max principle cannot be applied. So we now
introduce an eigenvalue problem whose eigenvalues are exactly those of (6.32). Let
H = span{H2

0 (D), χ(Y )} in L2(Y ) where H2
0 (D) is regarded as a subspace of L2(Y )

by extending the functions to be 0 in Y \D. Let G be the closure of H in L2(Y ).
Define the operator T : H×H → G × G by

Tu =





−Lλ̃,µ̃u on D,

1

|Y \D|

∫

D

Lλ̃,µ̃u on Y \D.

The constant value of Tu in Y \D was chosen so that
∫
Y
Tu = 0. Then one can

easily see that T is a densely defined self-adjoint operator on H×H and

(6.62) 〈Tu,v〉Y = Ẽ(u,v) for u,v ∈ H ×H.
Here 〈 , 〉Y denotes the inner-product on L2(Y )2. One can also show that nonzero
eigenvalues of T are eigenvalues of (6.32) and vice versa.

LetMj be a j-dimensional subspace of H×H perpendicular to constant vectors
which are eigenvectors corresponding to the eigenvalue zero. Then by Poincaré’s
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min-max principle, we have

ω̃2
j = min

Mj

max
u∈Mj

〈Tu,u〉Y
〈u,u〉Y

= min
Mj

max
u∈Mj

Ẽ(u,u)

〈u,u〉Y

= min
Nj

max
v∈Nj

Ẽ(v −
∫

D

v,v −
∫

D

v)

〈v −
∫

D

v,v −
∫

D

v〉Y

= min
Nj

max
v∈Nj

Ẽ(v,v)

〈v,v〉D − |
∫

D

v|2
,

where 〈 , 〉D denotes the inner-product on L2(D)2, which completes the proof of the
lemma. �

Lemma 6.17. The eigenvalues ωj and ω̃j interlace in the following way:

(6.63) ωj ≤ ω̃j ≤ ωj+2, j = 1, 2, . . . .

Proof. Lemma 6.16 ensures that the first inequality in (6.63) is trivial. Then
we only have to prove the second one. Let uj denote the normalized eigenvector
associated with ωj . Let Nj+2 denote the span of the eigenvectors u1, . . . ,uj+2 and

let Ñ be the subspace of Nj+2 composed of all the elements in Nj+2 which have

zero integral over D. Since the set of constant vectors has dimension 2, Ñ is of
dimension greater than j. Therefore, we have ω̃j ≤ ωj+2, as desired. �

We will also need the following lemma.

Lemma 6.18. For any ǫ > 0 and j, there exist c1 and c2 sufficiently small such
that we have

(6.64) ω̃j − ǫ ≤ ωα,µj+2 ≤ ωj+2

for |α| ≤ c1 and µ > 1/c2.

Proof. The second inequality easily follows from the min-max principle for
eigenvalues with Dirichlet boundary condition on ∂D and with quasi-periodicity on
∂Y .

To prove the first inequality, let u1, . . . ,uj be eigenfunctions corresponding to
(ωα,µ1 )2, . . . , (ωα,µj )2, respectively, satisfying

∫

D

|ui|2 +
∫

∂D

Ṅ [ui|∂D] · ui = 1,
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together with the orthogonality condition (6.41). For u =

j∑

i=1

ciui, we have, with

the aid of (6.41) and the divergence theorem, that

Ẽ(u,u)−
∫

∂D

Nα,0[u|∂D] · u
∫

D

|u|2 +
∫

∂D

Ṅ [u|∂D] · u

=

j∑

i=1

c2i (ω
α,µ
j )2

(∫

D

|ui|2 +
∫

∂D

Ṅ [ui|∂D] · ui
)

j∑

i=1

c2i

(∫

D

|ui|2 +
∫

∂D

Ṅ [ui|∂D] · ui
) +O(|α|) +O(

1

µ
).

Hence, we have

(ωα,µj )2 = max
u∈〈u1,...,uj〉

Ẽ(u,u)−
∫

∂D

Nα,0[u|∂D] · u
∫

D

|u|2 +
∫

∂D

Ṅ [u|∂D] · u
+O(|α|) +O(

1

µ
),(6.65)

where 〈u1, . . . ,uj〉 denotes the span of the eigenvectors u1, . . . ,uj (i.e., Nj).
Since

−
∫

∂D

Nα,0[u|∂D] · u ≥ 0,

we get

(ωα,µj )2 ≥ max
u∈〈u1,...,uj〉

Ẽ(u,u)∫

D

|u|2 +
∫

∂D

Ṅ [u|∂D] · u
+O(|α|) +O(

1

µ
).(6.66)

Let ũi, i = 1, . . . , j, be an approximation of uj with constant values on ∂D
satisfying (6.43). Then, one can see that

(ωα,µj )2 ≥ max
u∈〈ũ1,...,ũj〉

Ẽ(u,u)∫

D

|u|2 +
∫

∂D

Ṅ [u|∂D] · u
+O(|α|) +O

(
1

µ

)
.(6.67)

By the definition of Ṅ , we can easily check that
∫

∂D

Ṅ [U] ·U = |Y \D||U|2

for any constant vector U, and hence we obtain

(ωα,µj )2 ≥ max
u∈〈ṽ1,...,ṽj〉

Ẽ(u,u)∫

D

|u|2 + |Y \D||u|∂D|2
+O(|α|) +O

(
1

µ

)
.

Thus we get

ωj(α)
2 ≥ min

Nj

max
u∈Nj

Ẽ(u,u)∫

D

|u|2 + |Y \D||u|∂D|2
+O(|α|) +O

(
1

µ

)
,(6.68)
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where Nj is a j-dimensional subspace of H1(D)2 of elements with constant values
a.e. on ∂D. Recalling that

ω̃2
j−2 = min

Nj

max
u∈Nj

Ẽ(u,u)∫

D

|u|2 + |Y \D||u|∂D|2
,

we finally arrive at

(ωαj )
2 ≥ ω̃2

j−2 +O(|α|) +O

(
1

µ

)
,

which gives the desired result. �

Since 0 is an eigenvalue of the periodic problem with multiplicity 2, combining
formulas (6.27), (6.36), and Lemma 6.18 shows that the spectral bands converge,
as µ→ +∞, to

(6.69) [0, ω1] ∪ [0, ω2]
⋃

j≥1

[ω̃j , ωj+2],

and hence we have a band gap if and only if the following holds:

(6.70) ωj+1 < ω̃j for some j (criterion for gap opening).

Observe that by (6.59) and (6.60) the gap opening criterion is equivalent to

(6.71) min
Nj+1

max
u∈Nj+1,||u||=1

Ẽ(u,u) < min
Nj

max
u∈Nj ,||u||=1

Ẽ(u,u)

1−
∣∣
∫

D

u
∣∣2
,

where Nj is a j-dimensional subspace of H1
0 (∂D)2.

To find conditions on the inclusion D so that the gap opening criterion is
satisfied by rigorous analysis is unlikely. However, finding such conditions by means
of numerical computations will be of great importance. It should be emphasized
that the criterion (6.70) is for the case when the matrix and the inclusion have the
same density, assumed to be equal to 1.

6.4. Gap Opening Criterion When Densities Are Different

We now consider periodic elastic composites such that the matrix and the
inclusion have different densities.

Suppose that the density of the matrix is ρ while that of the inclusion is 1 (after
normalization). The Lamé parameters are the same as before. In this case, the first
equation of the eigenvalue problem (6.5) has to be replaced by

(6.72) Lλ,µu+ ρω2u = 0 in Y \D.
Hence we can show by exactly the same analysis that the asymptotic expansions
(6.27) and (6.36) hold if we replace the operators (6.30) and (6.24) (and (6.31))
with the new operators (depending on the density ρ) given by

(6.73) A0
0(ω) =




S̃ω − 1

ρω2

∫

∂D

· dσ
1

2
I − (K̃ω)∗ 1

2
I + (K0,0)∗



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and

(6.74) Aα
l (ω) = ρl−1




0 −Sα,ωl

0
ρ

µ
(K−α,ω

l+1 )∗


 , l ≥ 1,

respectively, and the eigenvalue problem (6.32) with the eigenvalue problem




(Lλ̃,µ̃ + ω2)u = 0 in D,

u+
1

ρ|Y \D|

∫

D

u = 0 on ∂D.
(6.75)

Let {ω̃j} be the set of eigenvalues of (6.75). In order to express ω̃j using the
min-max principle, we define 〈 , 〉Y by

(6.76) 〈u,v〉Y =

∫

D

u · v + ρ

∫

Y \D
u · v.

We also define T, as before, by

(6.77) Tu =





−Lλ̃,µ̃u on D,

1

ρ|Y \D|

∫

D

Lλ̃,µ̃u on Y \D.

Then T is self-adjoint with respect to 〈 , 〉Y . By Poincaré’s min-max principle
again, we have

ω̃2
j = min

Mj

max
u∈Mj

〈Tu,u〉Y
〈u,u〉Y

= min
Mj

max
u∈Mj

Ẽ(u,u)

〈u,u〉Y

= min
Nj

max
v∈Nj

Ẽ(v,v)〈
v − 1

|D|+ ρ|Y \D|

∫

D

v,v − 1

|D|+ ρ|Y \D|

∫

D

v

〉

Y

= min
Nj

max
v∈Nj

Ẽ(v,v)

〈v,v〉D − 1

|D|+ ρ|Y \D|
∣∣
∫

D

v
∣∣2
,

where Mj and Nj are the same as in the proof of Lemma 6.16. Therefore, we have
the following min-max characterization of the eigenvalues of problem (6.75):

(6.78) ω̃2
j = min

Nj

max
u∈Nj

Ẽ(u,u)

〈u,u〉D − 1

|D|+ ρ|Y \D|
∣∣
∫

D

u
∣∣2
.

We then get a band gap criterion for the different density case which is equivalent
to (6.70):

(6.79) min
Nj+1

max
u∈Nj+1,||u||=1

Ẽ(u,u) < min
Nj

max
u∈Nj ,||u||=1

Ẽ(u,u)

1− 1

|D|+ ρ|Y \D|
∣∣
∫

D

u
∣∣2
.
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It is quite interesting to compare (6.79) with (6.71). If ρ < 1, then

(6.80) min
Nj

max
u∈Nj ,||u||=1

Ẽ(u,u)

1− |
∫

D

u|2
< min

Nj

max
u∈Nj ,||u||=1

Ẽ(u,u)

1− 1

|D|+ ρ|Y \D|
∣∣
∫

D

u
∣∣2
,

which shows that the smaller the density ρ, the wider the band gap, provided that
(6.70) is fulfilled. This phenomenon was reported by Economou and Sigalas [202]
who observed that periodic elastic composites whose matrix has lower density and
higher shear modulus compared to those of inclusions yield better open gaps. The
analysis of this chapter agrees with these experimental findings.

6.5. Concluding Remarks

In this chapter we have reduced band structure calculations for phononic crys-
tals to the problem of finding the characteristic values of a family of meromorphic
integral operators. We have also provided complete asymptotic expansions of these
characteristic values as the shear modulus goes to infinity, established a connection
between the band gap structure and the Dirichlet eigenvalue problem for the Lamé
operator, and given a criterion for gap opening as the shear modulus becomes large.
The leading-order terms in the expansions of the characteristic values were explicitly
computed. An asymptotic analysis for the band gap structure in three-dimensions
can be provided with only minor modifications of the techniques presented here.
Our results in this chapter open the road to numerous numerical and analytical
investigations on phononic crystals and could, in particular, be used for systematic
optimal design of phononic structures as well as for efficient computations of the
band structure problem.
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CHAPTER 7

Plasmonic Resonances for Nanoparticles

7.1. Introduction

Driven by the search for new materials with interesting and unique proper-
ties, the field of nanoparticle research has grown immensely in recent decades
[329]. Plasmon resonant nanoparticles have unique capabilities such as enhanc-
ing the brightness and directivity of light, confining strong electromagnetic fields,
and the outcoupling of light into advantageous directions [418]. Recent advances in
nanofabrication techniques have made it possible to construct complex nanostruc-
tures such as arrays using plasmonic nanoparticles as components. A reason for
the thriving interest in optical studies of plasmon resonant nanoparticles is due to
their recently proposed use as labels in molecular biology [272]. New types of can-
cer diagnostic nanoparticles are constantly being developed. Nanoparticles are also
being used in thermotherapy as nanometric heat-generators that can be activated
remotely by external electromagnetic fields [99].

The optical response of plasmon resonant nanoparticles is dominated by the
appearance of plasmon resonances over a wide range of wavelengths [329]. For
individual particles or very low concentrations of non-interacting nanoparticles in
a solvent, separated from one another by distances larger than the wavelength,
these resonances depend on the electromagnetic parameters of the nanoparticle,
those of the surrounding material, and the particle shape and size. High scattering
and absorption cross sections and strong near-fields are unique effects of plasmonic
resonant nanoparticles. In order to profit from them, a rigorous understanding of
the interactive effects between the particle size and shape and the contrasts in the
electromagnetic parameters is required. One of the most important parameters in
the context of applications is the position of the resonances in terms of wavelength
or frequency. A longstanding problem is to tune this position by changing the
particle size or the concentration of the nanoparticles in a solvent [235, 329]. It
was experimentally observed, for instance, in [235, 419] that the scaling behavior
of nanoparticles is critical. The question of how the resonant properties of plas-
monic nanoparticles develops with increasing size or/and concentration is therefore
fundamental.

In this chapter we use the full Maxwell equations for light propagation in order
to analyze plasmonic resonances for nanoparticles. We mathematically define the
notion of plasmonic resonance. At the quasi-static limit, we show that plasmon res-
onances in nanoparticles can be treated as an eigenvalue problem for the Neumann-
Poincaré integral operator and unfortunately, they are size-independent. Then we
analyze the plasmon resonance shift and broadening with respect to changes in size
and shape, using the layer potential techniques associated with the full Maxwell

285
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equations. We give a rigorous detailed description of the scaling behavior of plas-
monic resonances to improve our understanding of light scattering by plasmonic
nanoparticles beyond the quasi-static regime. On the other hand, we present an
effective medium theory for resonant plasmonic systems. We treat a composite ma-
terial in which plasmonic nanoparticles are embedded and isolated from each other.
The particle dimension and interparticle distances are considered to be infinitely
small compared with the wavelength of the interacting light. We extend the validity
of the Maxwell-Garnett effective medium theory in order to describe the behavior
of a system of plasmonic resonant nanoparticles. We show that by homogenizing
plasmonic nanoparticles one can obtain high-contrast or negative parameter mate-
rials, depending on how the frequencies used correspond to the plasmonic resonant
frequency.

7.2. Quasi-Static Plasmonic Resonances

7.2.1. Uniform Validity of Small-Volume Expansions. We consider the
scattering problem of a time-harmonic electromagnetic wave incident on a particle
D. The homogeneous medium is characterized by electric permittivity εm and
magnetic permeability µm, while D is characterized by electric permittivity εc and
magnetic permeability µc, both of which depend on the frequency. Define

km = ω
√
εmµm, kc = ω

√
εcµc,

and

εD = εmχ(R
3 \D) + εcχ(D), µD = εmχ(R

3 \D) + εcχ(D).

For a given incident plane wave (Ei, Hi), solution to the Maxwell equations in free
space (2.316), the scattering problem can be modeled by the system of equations
(2.317) subject to the Silver-Müller radiation condition (2.318).

Let D = z+ δB where B contains the origin and |B| = O(1). For any x ∈ ∂D,
let x̃ = x−z

δ ∈ ∂B and define for each function f defined on ∂D, a corresponding
function defined on B as follows

(7.1) η(f)(x̃) = f(z + δx̃).

The following result follows from [34]. It is a refinement of Theorem 2.122. Its
proof is sketched at the end of this chapter.

Theorem 7.1. Let

dσ = min
{
dist

(
λµ, σ((K0

D)
∗) ∪ −σ((K0

D)
∗)
)
, dist

(
λε, σ((K0

D)
∗) ∪ −σ((K0

D)
∗)
)}
.

Then, for D = z + δB ⋐ R3 of class C1,α for α > 0, the following uniform far-field
expansion holds
(7.2)

Es(x) = −
√
−1ωµm
εm

∇×Gkm(x− z)M(λµ, D)Hi(z)− ω2µmGkm(x− z)M(λε, D)Ei(z)

+O(
δ4

dσ
),

where Gkm(x−z) is the Dyadic Green (matrix valued) function for the full Maxwell
equations defined by (2.364) and M(λµ, D) and M(λε, D) are the polarization ten-
sors associated with D and the contrasts λµ and λε given by (2.72) with k = µc/µc
and k = εc/εm, respectively.
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Suppose that εc and µc are changing with respect to the angular frequency ω
while εm and µm are independent of ω. Because of causality, the real and imaginary
parts of εc and µc obey Kramers-Kronig relations

(7.3)

ℜF (ω) = − 1

π
p.v.

∫ +∞

−∞

ℑF (ω′)
ω − ω′ dω

′,

ℑF (ω) = 1

π
p.v.

∫ +∞

−∞

ℜF (ω′)
ω − ω′ dω

′,

F (ω) = εc(ω) or µc(ω). The permittivity and permeability of plasmonic nanopar-
ticles in the infrared spectral regime can be described by the Drude model given
by

(7.4) εc(ω) = εm
(
1− ω2

p

ω(ω +
√
−1τ−1)

)
, µc(ω) = µm

(
1−F ω2

ω2 − ω2
0 +

√
−1τ−1

)
,

where ωp is the plasma frequency of the bulk material, τ−1 is the damping coeffi-
cient, F is a filling factor, and ω0 is a localized plasmon frequency.

Definition 7.2. We call ω a quasi-static plasmonic resonance if dσ(ω) ≪ 1.

Notice that, in view of (2.72), if ω is a quasi-static plasmonic resonance, then
at least one of the polarization tensors M(λε, D) and M(λµ, D) blows up.

Assume that the incident fields are plane waves given by

Ei(x) = pe
√−1kmd·x,

Hi(x) = d× pe
√−1kmd·x,

where p ∈ R3 and d ∈ R3 with |d| = 1 are such that p · d = 0.
From Taylor expansions on the formula of Theorem 7.1, it follows that the

following far-field asymptotic expansion holds:

Es(x) = −e
√−1km|x|

4π|x|

(
ωµmkme

√−1km(d−x̂)·z(x̂× I
)
M(λµ, D)(d× p)

−k2me
√−1km(d−x̂)·z(I − x̂x̂t

)
M(λε, D)p

)
+O(

1

|x|2 ) +O(
δ4

dσ
)

as |x| → +∞, where x̂ = x/|x| and t denotes the transpose. Therefore, up to an

error term of order O( δ
4

dσ
), the scattering amplitude A∞ defined by (2.342) is given

by
(7.5)

A∞(x̂) = ωµmkme
√−1km(d−x̂)·z(x̂×I

)
M(λµ, D)(d×p)−k2me

√−1km(d−x̂)·z(I−x̂x̂t
)
M(λε, D)p.

Formula (7.5) allows us to compute the extinction cross-section Qext in terms of
the polarization tensors associated with the particle D and the material parameter
contrasts. Moreover, an estimate for the blow up of the extinction cross-section
Qext at the plasmonic resonances follows immediately from (2.72).

Theorem 7.3. We have

Qext =
4π

km|p|2ℑ
[
p ·
[
ωµmkm

(
d× I

)
M(λµ, D)(d× p)− k2m

(
I − ddt

)
M(λε, D)p

]]
.
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7.2.1.1. Shape Derivative of Quasi-Static Plasmonic Resonances. In order to
compute the shape derivative of quasi-static plasmonic resonances, it suffices to
compute the shape derivative of eigenvalues of the Neumann-Poincaré operator
(K0

D)
∗.
Let Dǫ be given by

∂Dǫ =

{
x̃ : x̃ = x+ ǫh(x)ν(x), x ∈ ∂D

}
,

where h ∈ C1(∂D) and 0 < ǫ≪ 1. From Lemma 2.44, we have

((K0
Dǫ

)∗[·]) ◦Ψǫ = (K0
D)

∗[·] + ǫK(1)
D [·] +O(ǫ2),

where K(1)
D : L2(∂D) → L2(∂D) is defined by (2.144).

Assume that λj is a simple eigenvalue of (K0
D)

∗ associated to the eigenfunction
ϕj . Then, there exists an eigenvalue λǫj of (K0

Dǫ
)∗ in a small neighborhood of λj

and the following asymptotic formula for λǫj as ǫ→ 0 holds:

λǫj = λj + ǫ〈K(1)
D [φj ], φj〉L2(∂D) +O(ǫ2).

The shape derivative of λj is therefore given by 〈K(1)
D [φj ], φj〉L2(∂D).

7.3. Effective Medium Theory for Suspensions of Plasmonic
Nanoparticles

In this section we derive effective properties of a system of plasmonic nanopar-
ticles. To begin with, we consider a bounded and simply connected domain Ω ⋐ R3

of class C1,α for α > 0, filled with a composite material that consists of a matrix
of constant electric permittivity εm and a set of periodically distributed plasmonic
nanoparticles with (small) period η and electric permittivity εc.

Let Y = (−1/2, 1/2)3 be the unit cell and denote δ = ηβ for β > 0. We set the
(rescaled) periodic function

γ = εmχ(Y \D̄) + εcχ(D),

whereD = δB with B ⋐ R3 being of class C1,α and the volume of B, |B|, is assumed
to be equal to 1. Thus, the electric permittivity of the composite is given by the
periodic function

γη(x) = γ(x/η),

which has period η. Now, consider the problem

(7.6) ∇ · γη∇uη = 0 in Ω

with an appropriate boundary condition on ∂Ω. Then, there exists a homogeneous,
generally anisotropic, permittivity γ∗, such that the replacement, as η → 0, of the
original equation (7.6) by

∇ · γ∗∇u0 = 0 in Ω

is a valid approximation in a certain sense. The coefficient γ∗ is called an effective
permittivity. It represents the overall macroscopic material property of the periodic
composite made of plasmonic nanoparticles embedded in an isotropic matrix.

The (effective) matrix γ∗ = (γ∗pq)p,q=1,2,3 is defined by [45]

γ∗pq =
∫

Y

γ(x)∇up(x) · ∇uq(x)dx,
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where up, for p = 1, 2, 3, is the unique solution to the cell problem

(7.7)





∇ · γ∇up = 0 in Y,

up − xp periodic (in each direction) with period 1,∫
Y
up(x)dx = 0.

Using Green’s formula, we can rewrite γ∗ in the following form:

(7.8) γ∗pq = εm

∫

∂Y

uq(x)
∂up
∂ν

(x)dσ(x).

The matrix γ∗ depends on η as a parameter and cannot be written explicitly.
Let S0

D,♯ and (K0
D,♯)

∗ be the single layer potential and the Neumann-Poincaré
operator, respectively, associated with the periodic Green’s function G♯ defined in
(2.115) for d = 3.

From Theorem 2.40, we get

γ∗pq = εm

∫

∂Y

(
yq + Cq + S0

D,♯[φq](y)
)∂
(
yp + S0

D,♯[φp](y)
)

∂ν
dσ(y),

where

(7.9) φp(y) = (λεI − (K0
D,♯)

∗)−1[νp](y) for y in ∂D,

and p = 1, 2, 3.
Because of the periodicity of S0

D,♯[φp], we get

(7.10) γ∗pq = εm

(
δpq +

∫

∂Y

yq
∂S0

D,♯[φp]

∂ν
(y)dσ(y)

)
.

In view of the periodicity of S0
D,♯[φp], the divergence theorem applied on Y \D̄ and

Lemma 2.39 yields
∫

∂Y

yq
∂S0

D,♯[φp]

∂ν
(y) =

∫

∂D

yqφp(y)dσ(y).

Let

ψp(y) = φp(δy) for y ∈ ∂B.

Then, by (7.10), we obtain

(7.11) γ∗ = εm(I + fP ),

where f = |D| = δ3(= η3β) is the volume fraction of D and P = (Ppq)p,q=1,2,3 is
given by

(7.12) Ppq =

∫

∂B

yqψp(y)dσ(y).

Now we proceed with the computation of P and prove the main result of this
section, which shows the validity of the Maxwell-Garnett theory uniformly with
respect to the frequency under the assumptions that

(7.13) f ≪ dist(λε(ω), σ((K0
B)

∗))3/5 and (I − δ3R−1
λε(ω)

T0)
−1 = O(1),

where R−1
λε(ω)

and T0 are to be defined and dist(λε(ω), σ((K0
D)

∗)) is the distance

between λε(ω) and the spectrum of (K0
B)

∗.
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Theorem 7.4. Assume that (7.13) holds. Then we have

(7.14) γ∗ = εm
(
I + fM(I − f

3
M)−1

)
+O

( f8/3

dist(λε(ω), σ((K0
B)

∗))2

)
,

uniformly in ω. Here,M =M(λε(ω), B) is the polarization tensor (2.71) associated
with B and λε(ω).

Proof. In view of Lemma 2.38 and (7.9), we can write, for x ∈ ∂D,

(λε(ω)I − (K0
D)

∗)[φp](x)−
∫

∂D

∂R(x− y)

∂ν(x)
φp(y)dσ(y) = νp(x),

which yields, for x ∈ ∂B,

(λε(ω)I − (K0
B)

∗)[ψp](x)− δ2
∫

∂B

∂R(δ(x− y))

∂ν(x)
ψp(y)dσ(y) = νp(x).

By virtue of Lemma 2.38, we get

∇R(δ(x− y)) = −δ
3
(x− y) +O(δ3)

uniformly in x, y ∈ ∂B. Since
∫
∂B

ψp(y)dσ(y) = 0, we now have

(Rλε(ω) − δ3T0 + δ5T1)[ψp](x) = νp(x),

and so

(7.15) (I − δ3R−1
λε(ω)

T0 + δ5R−1
λε(ω)

T1)[ψp](x) = R−1
λε(ω)

[νp](x),

where

Rλε(ω)[ψp](x) = (λε(ω)I − (K0
B)

∗)[ψp](x),

T0[ψp](x) =
ν(x)

3
·
∫

∂B

yψp(y)dσ(y),

‖T1‖L(H∗(∂B),H∗(∂B)) = O(1).

Here,H∗(∂B) is defined by (2.18) with Ω replaced with B. Since (K0
B)

∗ : H∗(∂B) →
H∗(∂B) is a self-adjoint, compact operator (see Theorem 2.8), it follows that

(7.16) ‖(λε(ω)I − (K0
B)

∗)−1‖L(H∗(∂B),H∗(∂B)) ≤
c

dist(λε(ω), σ((K0
B)

∗))

for a constant c.
It is clear that T0 is a compact operator. From the fact that the imaginary part

of Rλε(ω) is nonzero, it follows that I − δ3R−1
λε(ω)

T0 is invertible.

Under the assumption that

(I − δ3R−1
λε(ω)

T0)
−1 = O(1),

δ5 ≪ dist(λε(ω), σ((K0
B)

∗)),

we get from (7.15) and (7.16)

ψp(x) = (I − δ3R−1
λε(ω)

T0 + δ5R−1
λε(ω)

T1)
−1R−1

λε(ω)
[νp](x),

= (I − δ3R−1
λε(ω)

T0)
−1R−1

λε(ω)
[νp](x) +O

( δ5

dist(λε(ω), σ((K0
B)

∗))

)
.
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Therefore, we obtain the estimate for ψp

ψp = O
( 1

dist(λε(ω), σ((K0
B)

∗))

)
.

Now, we multiply (7.15) by yq and integrate over ∂B. We can derive from the
estimate of ψp that

P (I − f

3
M) =M +O

( δ5

dist(λε(ω), σ((K0
B)

∗))2

)
,

and therefore,

P =M(I +
f

3
M)−1 +O

( δ5

dist(λε(ω), σ((K0
B)

∗)2

)

with P being defined by (7.12). Since f = δ3 and

M = O
( δ3

dist(λε(ω), σ((K0
B)

∗))

)
,

it follows from (7.11) that the Maxwell-Garnett formula (7.14) holds (uniformly in
the frequency ω) under the assumption (7.13) on the volume fraction f . �

Remark 7.5. As a corollary of Theorem 7.4, we see that in the case when

fM = O(1), which is equivalent to the scale f = O
(
dist(λε(ω), σ((K0

B)
∗))
)
, the

matrix fM(I − f
3M)−1 may have a negative-definite symmetric real part. On the

other hand, if dist(λε(ω), σ((K0
B)

∗)) = O(f1+β) for 0 < β < 2/3, then the effective
matrix γ∗ may be very large. This provides evidence of the possibility of constructing
negative and high-contrast materials using plasmonic nanoparticles in appropriate
regimes.

7.4. Shift in Plasmonic Resonances Due to the Particle Size

In this section we analyze the shift of the plasmon resonance with changes in
size of the nanoparticle.

Let M̃B be defined by (2.309) with D replaced with B and let σj , j = 1, 2, 3, be
given by (2.314). For simplicity we assume that Conditions 2.105 and 2.107 hold.

We consider the original system of integral equations (2.321) for a given incident
plane wave (Ei, Hi). With the same notation as in Section 2.14, the following result
holds by using Lemmas 2.112 and 2.113.

Lemma 7.6. Let η be defined by (7.1). The system of equations (2.321) can be
rewritten as follows:

WB(δ)

(
η(ψ)
ωη(φ)

)
=




η(ν × Ei)

µm − µc
η(
√
−1ν ×Hi)

εm − εc




∣∣∣∣∣
∂B

,(7.17)

where
(7.18)

WB(δ) =




λµI −MB + δ2
µmMkm

B,2 − µcMkc
B,2

µm − µc
+O(δ3)

1

µm − µc
(δLB,1 + δ2LB,2) +O(δ3)

1

εm − εc
(δLB,1 + δ2LB,2) +O(δ3) λεI −MB + δ2

εmMkm
B,2 − εcMkc

B,2

εm − εc
+O(δ3)


 ,
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and the material parameter contrasts λµ and λε are given by

(7.19) λµ =
µc + µm

2(µm − µc)
, λε =

εc + εm
2(εm − εc)

.

It is clear that

WB(0) = WB,0 =

(
λµI −MB 0

0 λεI −MB

)
.

Moreover,

WB(δ) = WB,0 + δWB,1 + δ2WB,2 +O(δ3),

in the sense that

‖WB(δ)−WB,0 − δWB,1 − δ2WB,2‖ ≤ Cδ3

for a constant C independent of δ. Here ‖A‖ = supi,j ‖Ai,j‖
H

− 1
2

T (div,∂B)
for any

operator-valued matrix A with entries Ai,j .

We are now interested in finding W−1
B (δ). The following result holds.

Lemma 7.7. The system of equations (2.321) is equivalent to

WB(δ)




η(ψ)(1)

η(ψ)(2)

ωη(φ)(1)

ωη(φ)(2)


 =




η(ν × Ei)(1)

µm − µc
η(ν × Ei)(2)

µm − µc
η(
√
−1ν ×Hi)(1)

εm − εc
η(
√
−1ν ×Hi)(2)

εm − εc




∣∣∣∣∣
∂B

,(7.20)

where

WB(δ) = WB,0 + δWB,1 + δ2WB,2 +O(δ3)

with

WB,0 =

(
λµI − M̃B O

O λεI − M̃B

)
,

WB,1 =




O
1

µm − µc
L̃B,1

1

εm − εc
L̃B,1 O


 ,

WB,2 =




1

µm − µc
M̃µ

B,2

1

µm − µc
L̃B,2

1

εm − εc
L̃B,2

1

εm − εc
M̃ε

B,2


 ,
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and

M̃B =

(
−∆−1

∂B(K0
B)

∗∆∂B 0
RB K0

B

)
,

M̃µ
B,2 =

(
∆−1
∂B∇∂B · (µmMkm

B,2 − µcMkc
B,2)∇∂B ∆−1

∂B∇∂B · (µmMkm
B,2 − µcMkc

B,2)
~curl∂B

−∆−1
∂Bcurl∂B(µmMkm

B,2 − µcMkc
B,2)∇∂B −∆−1

∂Bcurl∂B(µmMkm
B,2 − µcMkc

B,2)
~curl∂B

)
,

M̃ε
B,2 =

(
∆−1
∂B∇∂B · (εmMkm

B,2 − εcMkc
B,2)∇∂B ∆−1

∂B∇∂B · (εmMkm
B,2 − εcMkc

B,2)
~curl∂B

−∆−1
∂Bcurl∂B(εmMkm

B,2 − εcMkc
B,2)∇∂B −∆−1

∂Bcurl∂B(εmMkm
B,2 − εcMkc

B,2)
~curl∂B

)
,

L̃B,s =

(
∆−1
∂B∇∂B · LB,s∇∂B ∆−1

∂B∇∂B · LB,s ~curl∂B
−∆−1

∂Bcurl∂BLB,s∇∂B −∆−1
∂Bcurl∂BLB,s ~curl∂B

)

for s = 1, 2.
Moreover, the eigenfunctions of WB,0 in H(∂B)2 are given by

Ψ1,j,i =

(
ψj,i
O

)
, j = 0, 1, 2, . . . ; i = 1, 2, 3,

Ψ2,j,i =

(
O
ψj,i

)
, j = 0, 1, 2, . . . ; i = 1, 2, 3,

associated to the eigenvalues λµ − λj,i and λε − λj,i, respectively, and generalized
eigenfunctions of order one

Ψ1,j,3,g =

(
ψj,3,g
O

)
,

Ψ2,j,3,g =

(
O

ψj,3,g

)
,

associated to eigenvalues λµ − λj,3 and λε − λj,3, respectively, all of which form a
non-orthogonal basis of H(∂B)2. Here, H(∂B) is defined by (2.313) with D replaced
with B.

Proof. The proof follows directly from Lemmas 2.104 and 2.106. �

We regard the operatorWB(δ) as a perturbation of the operatorWB,0 for small
δ. Using perturbation theory, we can derive the perturbed eigenvalues and their
associated eigenfunctions in H(∂B)2.
We denote by Γ =

{
(k, j, i) : k = 1, 2; j = 1, 2, . . . ; i = 1, 2, 3

}
the set of indices

for the eigenfunctions of WB,0 and by Γg =
{
(k, j, 3, g) : k = 1, 2; j = 1, 2, . . .

}
the

set of indices for the generalized eigenfunctions. We denote by γg the generalized
eigenfunction index corresponding to eigenfunction index γ and vice-versa. We also
denote by

(7.21) τγ =

{
λµ − λj,i, k = 1,
λε − λj,i, k = 2.

Condition 7.8. λµ 6= λε.

In the following we will only consider γ ∈ Γ for which there is no generalized
eigenfunction index associated. In other words, we only consider γ = (k, i, j) ∈ Γ
such that λj,i ∈ σ1 ∪ σ2 (see (2.314) for the definitons). We call this subset Γsim.
Note that Conditions 2.105 and 7.8 imply that the eigenvalues of WB,0 indexed by
γ ∈ Γsim are simple.
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Theorem 7.9. As δ → 0, the perturbed eigenvalues and eigenfunctions indexed
by γ ∈ Γsim have the following asymptotic expansions:

τγ(δ) = τγ + δτγ,1 + δ2τγ,2 +O(δ3),(7.22)

Ψγ(δ) = Ψγ + δΨγ,1 +O(δ2),

where

τγ,1 =
〈WB,1Ψγ , Ψ̃γ〉H(∂B)2

〈Ψγ , Ψ̃γ〉H(∂B)2
= 0,

τγ,2 =
〈WB,2Ψγ , Ψ̃γ〉H(∂B)2 − 〈WB,1Ψγ,1, Ψ̃γ〉H(∂B)2

〈Ψγ , Ψ̃γ〉H(∂B)2
,(7.23)

(τγ −WB,0)Ψγ,1 = −WB,1Ψγ .

Here, Ψ̃γ′ ∈ Ker(τ̄γ′ −W ∗
B,0) and W

∗
B,0 is the H(∂B)2 adjoint of WB,0.

Using Lemma 2.109 and Remark 2.111 we can solve Ψγ,1. Indeed,

Ψγ,1 =
∑

γ′∈Γ
γ′ 6=γ

α(−WB,1Ψγ ,Ψγ′)Ψγ′

τγ − τγ′
+
∑

γ′
g∈Γg

γ′ 6=γ

α(−WB,1Ψγ ,Ψγ′
g
)

(
Ψγ′

g

τγ − τγ′
+

Ψγ′

(τγ − τγ′)2

)

+ α(−WB,1Ψγ ,Ψγ)Ψγ .

By abuse of notation,

α(x,Ψγ) =

{
α(x1, ψκ) γ = (1, j, i), κ = (j, i),
α(x2, ψκ) γ = (2, j, i), κ = (j, i),

(7.24)

for

x =

(
x1
x2

)
∈ H(∂B)2

with α being introduced in Definition 2.108.

Consider now the degenerate case γ ∈ Γ\Γsim =: Γdeg = {γ = (k, i, j) ∈ Γ
s.t λj,i ∈ σ3}. It is clear that, for γ ∈ Γdeg, the algebraic multiplicity of the
eigenvalue τγ is 2 while the geometric multiplicity is 1. In this case every eigenvalue
τγ and associated eigenfunction Ψγ will split into two branches, as δ goes to zero,
represented by a convergent Puiseux series as

τγ,h(δ) = τγ + (−1)hδ1/2τγ,1 + (−1)2hδ2/2τγ,2 +O(δ3/2), h = 0, 1,(7.25)

Ψγ,h(δ) = Ψγ + (−1)hδ1/2Ψγ,1 + (−1)2hδ2/2Ψγ,2 +O(δ3/2), h = 0, 1,

where τγ,j and Ψγ,j can be recovered by recurrence formulas; see Section 2.9.6.
Recall that the electric and magnetic parameters, εc and µc, depend on the

frequency of the incident field, ω, following a Drude model. Therefore, the eigen-
values of the operator WB,0 and the perturbation in the eigenvalues depend on the
frequency as well, that is,

τγ(δ, ω) = τγ(ω) + δ2τγ,2(ω) +O(δ3), γ ∈ Γsim,

τγ,h(δ, ω) = τγ + δ1/2(−1)hτγ,1(ω) + δ2/2(−1)2hτγ,2(ω) +O(δ3/2), γ ∈ Γdeg, h = 0, 1.

In the sequel, we will omit frequency dependence to simplify the notation. However,
we will keep in mind that all these quantities are frequency dependent.

We first state the following result.
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Proposition 7.10. If ω is a quasi-static plasmonic resonance (as stated in
Definition 7.2), then |τγ | ≪ 1 and is locally minimized for some γ ∈ Γ with τγ
being defined by (7.21).

Then we recall two different notions of plasmonic resonance [70].

Definition 7.11. (i) We say that ω is a plasmonic resonance if |τγ(δ)| ≪
1 and is locally minimized for some γ ∈ Γsim or |τγ,h(δ)| ≪ 1 and is locally
minimized for some γ ∈ Γdeg, h = 0, 1.

(ii) We say that ω is a first-order corrected quasi-static plasmonic resonance
if |τγ + δ2τγ,2| ≪ 1 and is locally minimized for some γ ∈ Γsim or |τγ +

δ1/2(−1)hτγ,1| ≪ 1 and is locally minimized for some γ ∈ Γdeg, h = 0, 1.
Here, the correction terms τγ,2 and τγ,1 are defined by (7.23) and (7.25).

Note that quasi-static resonance is size independent and is therefore a zero-
order approximation of the plasmonic resonance in terms of the particle size while
the first-order corrected quasi-static plasmonic resonance depends on the size of the
nanoparticle.

We are interested in solving equation (7.20)

WB(δ)[Ψ] = f,

where

Ψ =




η(ψ)(1)

η(ψ)(2)

ωη(φ)(1)

ωη(φ)(2)


 , f =




η(ν × Ei)(1)

µm − µc
η(ν × Ei)(2)

µm − µc
η(
√
−1ν ×Hi)(1)

εm − εc
η(
√
−1ν ×Hi)(2)

εm − εc




∣∣∣∣∣
∂B

for ω close to the resonance frequencies, i.e., when τγ(δ) is very small for some
γ’s ∈ Γsim or τγ,h(δ) is very small for some γ’s ∈ Γdeg, h = 0, 1. In this case,
the major part of the solution would be the contributions of the excited resonance
modes Ψγ(δ) and Ψγ,h(δ).
It is important to remark that problem (2.321) could be ill-posed if either ℜ(εc) ≤ 0
or ℜ(µc) ≤ 0 (the imaginary part being very small), and these are precisely the
cases for which we will find the resonances described above. In fact, what we do
is solve the problem for the cases ℜ(εc) > 0 or ℜ(µc) > 0 and then, analytically
continue the solution to the general case. The resonances are the values of ω for
which this analytic continuation ”almost” ceases to be valid.
We introduce the following definition.

Definition 7.12. We call J ⊂ Γ an index set of resonances if the τγ ’s are
close to zero when γ ∈ Γ and are bounded from below when γ ∈ Γc. More precisely,
we choose a threshold number η0 > 0 independent of ω such that

|τγ | ≥ η0 > 0 for γ ∈ Jc.

From now on, we shall use J as our index set of resonances. For simplicity, we
assume throughout this paper that the following condition holds.
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Condition 7.13. We assume that λµ 6= 0, λε 6= 0 or equivalently, µc 6= −µm,
εc 6= −εm.

It follows that the set J is finite.
Consider the space EJ = span{Ψγ(δ),Ψγ,h(δ); γ ∈ J, h = 0, 1}. Note that, under
Condition 7.13, EJ is finite dimensional. Similarly, we define EJc as the spanned by
Ψγ(δ),Ψγ,h(δ); γ ∈ Jc, h = 0, 1 and eventually other vectors to complete the base.
We have H(∂B)2 = EJ ⊕ EJc .

We define PJ(δ) and PJc(δ) as the (non-orthogonal) projection into the finite-
dimensional space EJ and infinite-dimensional space EJc , respectively. It is clear
that, for any f ∈ H(∂B)2

f = PJ(δ)[f ] + PJc(δ)[f ].

Moreover, we have an explicit representation for PJ(δ)

(7.26) PJ(δ)[f ] =
∑

γ∈J∩Γsim

αδ(f,Ψγ(δ))Ψγ(δ) +
∑

γ∈J∩Γdeg
h=0,1

αδ(f,Ψγ,h(δ))Ψγ,h(δ).

Here, as in Lemma 2.109,

αδ(f,Ψγ(δ)) =
〈f, Ψ̃γ(δ)〉H(∂B)2

〈Ψγ(δ), Ψ̃γ(δ)〉H(∂B)2
, γ ∈ J ∩ Γsim,

αδ(f,Ψγ,h(δ)) =
〈f, Ψ̃γ,h(δ)〉H(∂B)2

〈Ψγ,h(δ), Ψ̃γ,h(δ)〉H(∂B)2
, γ ∈ J ∩ Γdeg, h = 0, 1,

where Ψ̃γ ∈ Ker(τ̄γ,h(δ)−W ∗
B(δ)), Ψ̃γ,h ∈ Ker(τ̄γ,h(δ)−W ∗

B(δ)) and W
∗
B(δ) is the

H(∂B)2-adjoint of WB(δ).
We are now ready to solve the equationWB(δ)Ψ = f . In view of Remark 2.111,

(7.27)

Ψ =W−1
B (δ)[f ] =

∑

γ∈J∩Γsim

αδ(f,Ψγ(δ))Ψγ(δ)

τγ(δ)
+

∑

γ∈J∩Γdeg
h=0,1

αδ(f,Ψγ,h(δ))Ψγ,h(δ)

τγ,h(δ)
+W−1

B (δ)PJc(δ)[f ].

The following lemma holds.

Lemma 7.14. The norm ‖W−1
B (δ)PJc(δ)‖L(H(∂B)2,H(∂B)2) is uniformly bounded

in ω and δ.

Proof. Consider the operator

WB(δ)|Jc : PJc(δ)H(∂B)2 → PJc(δ)H(∂B)2.

We can show that for every ω and δ, dist(σ(WB(δ)|Jc), 0) ≥ η0
2 , where σ(WB(δ)|Jc)

is the discrete spectrum of WB(δ)|Jc . Here and throughout the paper, dist denotes
the distance. Then, it follows that

‖W−1
B (δ)PJc(δ)[f ]‖ = ‖W−1

B (δ)|JcPJc(δ)[f ]‖ .
1

η0
exp(

C1

η20
)‖PJc(δ)[f ]‖ .

1

η0
exp(

C1

η20
)‖f‖,

where the notation A . B means that A ≤ CB for some constant C independent
of A and B. �

Finally, we are ready to state our main result in this section.
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Theorem 7.15. Let η be defined by (7.1). Under Conditions 2.105, 2.107, 7.8
and 7.13, the scattered field Es = E−Ei due to a single plasmonic particle has the
following representation:

Es = µm∇× ~SkmD [ψ](x) +∇×∇× ~SkmD [φ](x) x ∈ R3\D̄,
where

ψ = η−1
(
∇∂Bψ̃

(1) + ~curl∂Bψ̃
(2)
)
,

φ =
1

ω
η−1

(
∇∂Bφ̃

(1) + ~curl∂Bφ̃
(2)
)
,

Ψ =




ψ̃(1)

ψ̃(2)

φ̃(1)

φ̃(2)


 =

∑

γ∈J∩Γsim

α(f,Ψγ)Ψγ +O(δ)

τγ(δ)
+

∑

γ∈J∩Γdeg

ζ1(f)Ψγ + ζ2(f)Ψγ,1 +O(δ1/2)

τγ,0(δ)τγ,1(δ)
+O(1),

and

ζ1(f) =
〈f, Ψ̃γ,1〉H(∂B)2τγ − 〈f, Ψ̃γ〉H(∂B)2(τγ,1 + τγ

a2
a1
)

a1
,

ζ2(f) =
〈f, Ψ̃γ〉H(∂B)2

a1
,

a1 = 〈Ψγ , Ψ̃γ,1〉H(∂B)2 + 〈Ψγ,1, Ψ̃γ〉H(∂B)2 ,

a2 = 〈Ψγ , Ψ̃γ,2〉H(∂B)2 + 〈Ψγ,2, Ψ̃γ〉H(∂B)2 + 〈Ψγ,1, Ψ̃γ,1〉H(∂B)2 .

Proof. Recall that

Ψ =
∑

γ∈J∩Γsim

αδ(f,Ψγ(δ))Ψγ(δ)

τγ(δ)
+

∑

γ∈J∩Γdeg
h=0,1

αδ(f,Ψγ,h(δ))Ψγ,h(δ)

τγ,h(δ)
+W−1

B (δ)PJc(δ)[f ].

By Lemma 7.14, we have W−1
B (δ)PJc(δ)[f ] = O(1).

If γ ∈ J ∩ Γsim, an asymptotic expansion on δ yields

αδ(f,Ψγ(δ))Ψγ(δ) = α(f,Ψγ)Ψγ +O(δ).

If γ ∈ J ∩ Γdeg then 〈Ψγ , Ψ̃γ〉H(∂B)2 = 0. Therefore, an asymptotic expansion on δ
yields

αδ(f,Ψγ,h(δ))Ψγ,h(δ) =
(−1)h〈f, Ψ̃γ〉H(∂B)2Ψγ

δ−1/2a1
+

1

a1

((
〈f, Ψ̃γ,1〉H(∂B)2 − 〈f, Ψ̃γ〉H(∂B)2

a2
a1

)
Ψγ + 〈f, Ψ̃γ〉H(∂B)2Ψγ,1

)

+O(δ1/2)

with

a1 = 〈Ψγ , Ψ̃γ,1〉H(∂B)2 + 〈Ψγ,1, Ψ̃γ〉H(∂B)2 ,

a2 = 〈Ψγ , Ψ̃γ,2〉H(∂B)2 + 〈Ψγ,2, Ψ̃γ〉H(∂B)2 + 〈Ψγ,1, Ψ̃γ,1〉H(∂B)2 .

Since τγ,h(δ) = τγ + δ1/2(−1)hτγ,1 +O(δ), the result follows by adding the terms

αδ(f,Ψγ,0(δ))Ψγ,0(δ)

τγ,0(δ)
and

αδ(f,Ψγ,1(δ))Ψγ,1(δ)

τγ,1(δ)
.
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The proof is then complete. �

Corollary 7.16. Assume the same conditions as in Theorem 7.15. Under the
additional condition that

(7.28) min
γ∈J∩Γsim

|τγ(δ)| ≫ δ3, min
γ∈J∩Γdeg

|τγ(δ)| ≫ δ,

we have

Ψ =
∑

γ∈J∩Γsim

α(f,Ψγ)Ψγ +O(δ)

τγ + δ2τγ,2
+

∑

γ∈J∩Γdeg

ζ1(f)Ψγ + ζ2(f)Ψγ,1 +O(δ1/2)

τ2γ − δτ2γ,1
+O(1).

Corollary 7.17. Assume the same conditions as in Theorem 7.15. Under the
additional condition that

(7.29) min
γ∈J∩Γsim

|τγ(δ)| ≫ δ2, min
γ∈J∩Γdeg

|τγ(δ)| ≫ δ1/2,

we have

Ψ =
∑

γ∈J∩Γsim

α(f,Ψγ)Ψγ +O(δ)

τγ
+

∑

γ∈J∩Γdeg

α(f,Ψγ)Ψγ
τγ

+ α(f,Ψγ,g)

(
Ψγ,g
τγ

+
Ψγ
τ2γ

)
+O(1).

Proof. We have

lim
δ→0

W−1
B (δ)Pspan{Ψγ,0(δ),Ψγ,1(δ)}[f ] = lim

δ→0

αδ(f,Ψγ,0(δ))Ψγ,0(δ)

τγ,0(δ)
+
αδ(f,Ψγ,1(δ))Ψγ,1(δ)

τγ,1(δ)

= W−1
B,0(δ)Pspan{Ψγ ,Ψγg}[f ]

=
α(f,Ψγ)Ψγ

τγ
+ α(f,Ψγ,g)

(
Ψγ,g
τγ

+
Ψγ
τ2γ

)
,

where γ ∈ J ∩ Γdeg, f ∈ H(∂B)2 and PspanE is the projection into the linear space
generated by the elements in the set E. �

Remark 7.18. Note that for γ ∈ J ,

τγ ≈ min
{
dist

(
λµ, σ((K0

B)
∗) ∪ −σ((K0

B)
∗)
)
, dist

(
λε, σ((K0

B)
∗) ∪ −σ((K0

B)
∗)
)}
.

It is clear, from Remark 7.18, that resonances can occur when exciting the
spectrum of (K0

B)
∗ or/and that of −(K0

B)
∗. We substantiate in the following that

only the spectrum of (K0
B)

∗ can be excited to create the plasmonic resonances in
the quasi-static regime.
Recall that

f =




η(ν × Ei)(1)

µm − µc
η(ν × Ei)(2)

µm − µc
η(
√
−1ν ×Hi)(1)

εm − εc
η(
√
−1ν ×Hi)(2)

εm − εc




∣∣∣∣∣
∂B

,

and therefore,

f1 :=
η(ν × Ei)(1)

µm − µc
=

∆−1
∂B∇∂B · η(ν × Ei)

µm − µc
.
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Now, suppose γ = (1, j, 1) ∈ J (recall that J is the index set of resonances). Then
τγ = λµ − λ1,j , where λ1,j ∈ σ1 = σ(−(K0

B)
∗)\σ((K0

B)
∗). From Remark 2.110,

α(f,Ψγ) = 〈∆∂Bf1, ϕj,1〉H∗ = α(f,Ψγ) =
1

µm − µc
〈∇∂B · η(ν × Ei), ϕj,1〉H∗ ,

where ϕj,1 ∈ H∗
0(∂B) is a normalized eigenfunction of (K0

B)
∗(∂B).

A Taylor expansion of Ei gives, for x ∈ ∂D,

Ei(x) =

∞∑

β∈N3

(x− z)β∂βEi(z)

|β|! .

Thus,

η(ν × Ei)(x̃) = η(ν)(x̃)× Ei(z) +O(δ),

and

∇∂B · η(ν × Ei)(x̃) = −η(ν)(x̃) · ∇ × Ei(z) +O(δ)

= O(δ).

Therefore, the zeroth-order term of the expansion of ∇∂B · η(ν × Ei) in δ is zero.
Hence,

α(f,Ψγ) = 0.

In the same way, we have

α(f,Ψγ) = 0,

α(f,Ψγg ) = 0

for γ = (2, j, 1) ∈ J and γg such that γ ∈ J .
As a result we see that the spectrum of−(K0

B)
∗ is not excited in the zeroth-order

term. However, we note that σ(−(K0
B)

∗) can be excited in higher-order terms.
Finally, we sketch a proof of Theorem 7.1. From (2.319), we have

Es(x) = µm∇× ~SkmD [ψ](x) +∇×∇× ~SkmD [φ](x), x ∈ R3 \D,
where ψ and φ are determined by (7.17). Since WB(δ) = WB,0 + O(δ), formula
(7.2) follows by using the identities stated in Lemma 2.102.

7.4.1. Numerical Examples. Here we present numerical examples to demon-
strate the shift of the plasmonic resonance. The first example involves a spherical
nanoparticle of radius R with permittivity ǫc. For the permittivity ǫc, we use
Drude’s model as follows: ǫc(ω) = 1 − ω2

p/(ω(ω +
√
−1γ)) where ωp = 5.8(eV )

and γ = 0.2. We compute the extinction cross-section Qext as a function of the
operating wavelength λ = 2πc/ω. Due to spherical symmetry, it can be shown that
Qext has the following simple representation

Qext =
2

(kmR)2

∞∑

n=1

(2n+ 1)ℜ
{ √

−1km
n(n+ 1)

(WTE
n +WTM

n )
}
,

where WTE
n and WTM

n are the scattering coefficients of a spherical structure. We
have already seen in section 2.14 how to computeWTE

n andWTM
n using Code Scat-

tering Coefficients for Maxwell’s Equations . We use Code Plasmonic Resonance
Shift to repeatedly plot Qext while changing the radius R from 5 nm to 30 nm in
Figure 7.1. The shift of the plasmonic resonance is clearly shown.

http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial6/6.1 Scattering Coefficients for Maxwell's Equations.zip
http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial6/6.1 Scattering Coefficients for Maxwell's Equations.zip
http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial9/9.1 Plasmonic Resonance Shift.zip
http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial9/9.1 Plasmonic Resonance Shift.zip
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We also present numerical example of a spherical shell with outer radius R and
inner radius R/2. We also assume the outer sphere has the permittivity ǫc and the
inner sphere has the same permittivity as background. In Figure 7.1, we plot Qext

for the shell for various values of radius R. Again, the shift of plasmon resonance
is clearly shown.

7.5. Plasmonic Resonance for a System of Spheres

Confining light at the nanoscale is challenging due to the diffraction limit.
Strongly localized surface plasmon modes in singular metallic structures, such as
sharp tips and two nearly touching surfaces, offer a promising route to overcome
this difficulty. Recently, transformation optics has been applied to analyze various
structural singularities and then provides novel physical insights for a broadband
nanofocusing of light.

Among three-dimensional singular structures, the system of nearly touching
spheres is of fundamental importance. In the narrow gap regions, a large field en-
hancement occurs. The significant spectral shift of resonance mode also occurs due
to the plasmon hybridization. A cluster of plasmonic spheres such as a heptamer
and a octamer can support collective resonance modes such as Fano resonances. For
theoretical investigations of these phenomena, the numerical computation plays a
important role. Unfortunately, in the nearly touching case, it is quite challeng-
ing to compute the field distribution in the gap accurately. In fact, the required
computational cost dramatically increases as the spheres get closer. The multipole
expansion method requires a large number of spherical harmonics and the finite
element method (or boundary element method) requires very fine mesh in the gap.
Moreover, the linear systems to be solved are ill-conditioned. So conventional nu-
merical methods are time consuming or inaccurate for this extreme case.

Here we present a hybrid numerical scheme that overcomes difficulty. The
key idea of our hybrid scheme is to clarify the connection between Transformation
Optics and the image charge method. The developed code is Code Plasmonic
Resonance for Nearly Touching Spheres.

7.5.1. Two Metallic Spheres. We consider the two metallic spheres which
are shown in Figure 7.2. The permittivity ǫ of each individual sphere is modeled
as ǫ = 1−ω2

p/(ω(ω+
√
−1γ)) where ω is the operating frequency, ωp is the plasma

frequency and γ is the damping parameter. We fit Palik’s data [390] for silver
by adding a few Lorentz terms. We shall assume that the plasmonic spheres are
small compared to optical wavelengths so that the quasi-static approximation can
be adopted.

7.5.2. Transformation Optics. Let us briefly review the transformation op-
tics approach by Pendry et al. [397]. To transform two spheres into a concentric
shell, Pendry et al. introduced the inversion transformation Φ defined as

(7.30) r′ = Φ(r) = R2
T (r−R0)/|r−R0|2 +R′

0

where R0,R
′
0 and RT are given parameters. This inversion mapping induces the

inhomogeneous permittivity ǫ′(r′) = R2
T |r′ −R′

0|ǫ in the transformed space. Then,
by taking advantage of the symmetry of the shell, the electric potential can be
represented in terms of the following basis functions:

(7.31) Mm
n,±(r) = |r′ −R′

0|(r′)±(n+ 1
2 )− 1

2Y mn (θ′, φ′)

http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial9/9.2 Plasmonic Resonance for Nearly Touching Spheres.zip
http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial9/9.2 Plasmonic Resonance for Nearly Touching Spheres.zip
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Figure 7.1. Extinction cross-section Qext for a spherical
nanoparticle and a shell of radius R. We change the radius R
from 5(nm) to 30(nm). The inner radius of the shell is set to be
R/2. The shift of plasmon resonance is clearly shown.
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a

x y

z

ε0 = 1
B−

ε

δ 2d

B+

R

b

ε
0 = R2

T |r0 −R0

0|ε

R0

R00

R0

0
δ
0

Figure 7.2. Two spheres and the transformation optics inversion
mapping. (a) Two identical spheres, each of radius R and per-
mittivity ǫ, are separated by a distance δ. The distance between
their centers is 2d. The background permittivity is ǫ0 = 1. (b)
The transformation optics inversion mapping transforms the lower
sphere B− (or the upper sphere B+) into a sphere of radius R′ (or
a hollow sphere of radius R′′) centered at the origin, respectively.

R
(0,0,‐zk)

‐u0 ‐u1 ‐u2

x

u2 u1 u0

(0,0,+zk)

z
R

……

B+B‐

Figure 7.3. Image charges for two spheres. Red and green
circles represent image charges placed along the z-axis.

where, {Y mn } are the spherical harmonics. We will call Mm
n,± a transformation

optics basis.
Let us assume that two plasmonic spheres B+ ∪ B− are placed in a uniform

incident field (0, 0, E0ℜ{e
√−1ωt}). Then the (quasi-static) electrical potential V

outside the two spheres can be represented in the following form:

(7.32) V (r) = −E0z +

∞∑

n=0

An
(
M0

n,+(r)−M0
n,−(r)

)

Here, the coefficients An can be determined by solving some tridiagonal system.
Unfortunately, it cannot be solved analytically.
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7.5.3. Method of Image Charges. Now we discuss the method of images.
Since the imaging rule for a pair of cylinders is simple, an exact image series solu-
tion and its properties can be easily derived. However, for two dielectric spheres, an
exact solution cannot be obtained due to the appearance of a continuous line image
source. Poladian observed in [401] that the continuous source can be well approxi-
mated by a point charge and then derived an approximate but analytic image series
solution. Let us briefly review Poladian’s solution for two dielectric spheres. Let
τ = (ǫ− 1)/(ǫ+ 1), s = cosh−1(d/R) and α = R sinh s. Suppose that two point
charges of strength ±1 are located at (0, 0,±z0) ∈ B±, respectively. By Poladian’s
imaging rule, they produce an infinite series of image charges of strength ±uk at
(0, 0,±zk) for k = 0, 1, 2, . . ., where zk and uk are given by

(7.33) zk = α coth(ks+ s+ t0), uk = τk
sinh(s+ t0)

sinh(ks+ s+ t0)
.

Here, the parameter t0 is such that z0 = α coth(s + t0). See Figure 7.3. The
potential U(r) generated by all the above image charges is given by

(7.34) U(r) =

∞∑

k=0

uk(Γ(r− zk)− Γ(r+ zk))

where zk = (0, 0, zk) and Γ(r) = 1/(4π|r|).
Let us consider the potential V outside the two spheres when a uniform incident

field (0, 0, E0ℜ{e
√−1ωt}) is applied. Let p0 be the induced polarizability when a sin-

gle sphere is subjected to the uniform incident field, that is, p0 = E0R
32τ/(3− τ).

Using the potential U(r), we can derive an approximate solution for V (r). For
|τ | ≈ 1, we have

(7.35) V (r) ≈ −E0z + 4πp0
∂(U(r))

∂z0

∣∣∣
z0=d

+QU(r)|z0=d,

where Q is a constant chosen so that the right-hand side in equation (7.35) has no
net flux on the surface of each sphere. The accuracy of the approximate formula,
equation (7.35), improves as |ǫ| increases and it becomes exact when |ǫ| = ∞.
Moreover, its accuracy is pretty good even if the value of |ǫ| is moderate.

We now explain the difficulty involved in applying the the image series solution,
equation (7.35), to the case of plasmonic spheres. In view of the expressions for uk,
equation (7.33), we can see that equation (7.35) is not convergent when |τ | > es.
For plasmonic materials such as gold and silver, the real part of the permittivity
ǫ is negative over the optical frequencies and this means that the corresponding
parameter |τ | can attain any value in the interval (es,∞). Moreover, it turns out
that all the plasmonic resonant values for τ are contained in the set {τ ∈ C : |τ | >
es}. So, equation (7.35) cannot describe the plasmonic interaction between the
spheres due to the non-convergence.

7.5.4. Analytical Solution for Two Plasmonic Spheres. Here we present
an analytic approximate solution for two plasmonic spheres in a uniform incident

field (0, 0, E0ℜ{e
√−1ωt}). More importantly, we shall see that our analytical ap-

proximation completely captures the singular behavior of the exact solution. This
feature is essential in developing our hybrid numerical scheme.

The solution which is valid for two plasmonic spheres can be derived by es-
tablishing the explicit connection between transformation optics and the method
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Figure 7.4. Exact solution vs Analytic approximation. a,
Field enhancement plot as a function of frequency ω for various
separation distances δ. The solid lines represent the approximate
analytical solution and the dashed lines represent the exact solu-
tion. Two identical silver spheres of radius 30 nm are considered.
b, Same as a but for the absorption cross section.

of image charges. We can convert the image series into a transformation optics-
type solution by using the explicit connection formula. The result is shown in the
following theorem.

Theorem 7.19. If |τ | ≈ 1, the following approximation for the electric potential
V (r) holds: for r ∈ R3 \ (B+ ∪B−),

(7.36) V (r) ≈ −E0z +

∞∑

n=0

Ãn

(
M0

n,+(r)−M0
n,−(r)

)

where the coefficient Ãn is given by

(7.37)

Ãn = E0
2τα

3− τ
· 2n+ 1− γ0
e(2n+1)s − τ

γ0 =

∞∑

n=0

2n+ 1

e(2n+1)s − τ

/ ∞∑

n=0

1

e(2n+1)s − τ
.

As expected, the above approximate expression is valid even if |τ | > es. There-
fore, it can furnish useful information about the plasmonic interaction between the
two spheres. As a first demonstration, let us investigate the (approximate) reso-

nance condition, that is, the condition for τ at which the coefficients Ãn diverge.
One might conclude that the resonance condition is given by τ = e(2n+1)s. How-

ever, one can see that Ãn has a removable singularity at each τ = e(2n+1)s. In fact,
the (approximate) resonance condition turns out to be

(7.38)

∞∑

n=0

1

e(2n+1)s − τ
= 0.

In other words, the plasmonic resonance happens when τ is one of the zeros of
equation (7.38). It turns out that the zeros {τn}∞n=0 lie on the positive real axis
and satisfy, for n = 0, 1, 2, . . .,

(7.39) e(2n+1)s < τn < e(2n+3)s.
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The above estimate helps us understand the asymptotic behavior of the resonance
when two spheres get closer. As the separation distance δ goes to zero, the param-
eter s also goes to zero (in fact, s = O(δ1/2)). Then, in view of equation (7.39),
τn will converge to 1 and the corresponding permittivity ǫn goes to infinity. This
means that a red-shift of the (bright) resonance modes occurs. Since the approxi-
mate analytical formula for V becomes more accurate as |ǫ| increases, we can expect
that accuracy improves as the separation distance goes to zero. It also indicates
that our formula captures the singular nature of the field distribution completely.
Furthermore, the difference between τn and τn+1 decreases, which means that the
spectrum becomes almost continuous.

We now derive approximate formulas for the field at the gap and for the ab-
sorption cross section. From Theorem 7.19, we obtain the following:

(7.40)

E(0, 0, 0) ≈ E0 − E0
8τ

3− τ

[ ∞∑

n=0

(2n+ 1)2

e(2n+1)s − τ
(−1)n

−γ0
∞∑

n=0

2n+ 1

e(2n+1)s − τ
(−1)n

]
.

In the quasi-static approximation, the absorption cross section σa is defined
by σa = ωℑ{p}, where p is the polarizability of the system of two spheres. From
Theorem 7.19, σa is approximated as follows:

(7.41)

σa ≈ ωE0
8τα3

3− τ

[ ∞∑

n=0

(2n+ 1)2

e(2n+1)s − τ

−
( ∞∑

n=0

2n+ 1

e(2n+1)s − τ

)2/ ∞∑

n=0

1

e(2n+1)s − τ

] .

We compare the above approximate formulas with the exact ones. Figure 7.4
represents respectively the field enhancement and the absorption cross section σa as
functions of the frequency ω for various distances ranging from 0.001 nm to 10 nm.
The strong accuracy of our approximate formulas over broad ranges of frequencies
and gap distances is clearly shown. As mentioned previously, the accuracy improves
as the spheres get closer. It is also worth highlighting the red-shift of the plasmonic
resonance modes as the separation distance δ goes to zero.

7.5.5. Hybrid Numerical Scheme for a Many-Spheres System. Now
we consider a system involving an arbitrary number of plasmonic spheres. If all the
spheres are well separated, then the multipole expansion method is efficient and
accurate for computing the field distribution. However, when the spheres are close
to each other, the problem becomes very challenging since the charge densities on
each sphere are nearly singular. To overcome this difficulty, Cheng and Greengard
[171, 173] developed a hybrid numerical scheme combining the multipole expansion
method and the method of images.

Let us briefly explain the main idea of Cheng and Greengard’s method. In
the standard multipole expansion method, the potential is represented as a sum of
general multipole sources Ylm(r) = Y ml (θ, φ)/rl+1 located at the center of each of
the spheres. Suppose that a pair of spheres is close to touching. For convenience, let
us identify the pair as B+∪B−. A multipole source Ylm located at the center of B+

generates an infinite sequence of image multipole sources by Poladian’s imaging rule.
Let us denote the resulting image multipole potential by U+

lm. We also define U−
lm
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Figure 7.5. Multipole expansion method versus Hybrid scheme.
a) d) Two examples of three spheres configuration. (b) and (c)
The field enhancement at point A as a function of frequency for
the configuration (a) using the multipole expansion method and
the hybrid method, respectively. The parameters are given as R =
30 nm, δ = 0.25 nm and β = 80◦. The uniform incident field

(0, 0,ℜ{e
√−1ωt}) is applied. (e) (f) Same as (b) and (c) but for

the configuration (d).

in a similar way. Roughly speaking, Cheng and Greengard modified the multipole
expansion method by replacing a multipole source Ylm with its corresponding image
multipole series U±

lm.

Since the image series U±
lm captures the close-to-touching interactions analyti-

cally, their scheme is very efficient and highly accurate even if the distance between
the spheres is extremely small. However, the image multipole series U±

lm are not
convergent for |τ | > es. Hence it cannot be applied to cluster of plasmonic spheres.
Therefore, in order to extend Cheng and Greengard’s method to the plasmonic case,
it is essential to establish an explicit connection between the image multipole series
U±
lm and transformation optics. We develop a hybrid numerical scheme valid for

plasmonics spheres by replacing the image multipole series with its transformation
optics version.

Next, we present numerical examples to illustrate the hybrid method. We
consider two examples of the three-spheres configuration. We provide a comparison
between multipole expansion method and the hybrid method by plotting the field
enhancement at the gap center A. For the numerical implementation, only a finite
number of the multipoles Ylm or hybrid multipoles U±

lm should be used. Let L
be the truncation number for the order l. In Figures 7.5 b) and 7.5 e), the field
enhancement is computed using the standard multipole expansion method. The
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computations give inaccurate results even if we include a large number of multipole
sources with L = 50. On the contrary, the hybrid method gives pretty accurate
results even for small values of L such as L = 2 and 5 (Figures 7.5 c) and 7.5
f)). Furthermore, 99% accuracy can be achieved using only L = 20. For each
hybrid multipole U±

lm, the transformation optics harmonics are included up to order
n = 300 to ensure convergence and we note that the multipole can be evaluated
very efficiently.

To achieve 99.9% accuracy at the first resonant peak, it is necessary to set
L = 150 in the multipole expansion method which means a 68, 400× 68, 400 linear
system needs to be solved. However, the same accuracy can be achieved with
only L = 23 in the hybrid method. The corresponding linear system has size
1, 725×1, 725 and it can be solved 2, 000 times faster than the multipole expansion
method.

7.6. Concluding Remarks

In this chapter we have analyzed plasmonic resonances for nanoparticles. We
have estimated the plasmon resonance shift due to changes in size and shape of the
nanoparticles. We have derived effective electromagnetic parameters of a composite
material in which plasmonic nanoparticles are embedded. We have shown that by
homogenizing plasmonic nanoparticles one can obtain high-contrast or negative
material parameters, depending on how the frequencies used correspond to the
plasmonic resonant frequency. These results will play a key role in later chapters in
the analysis of super-resolution imaging mechanisms and sub-wavelength bandgap
crystals.





CHAPTER 8

Imaging of Small Particles

8.1. Introduction

In this chapter we consider, in the presence of noise, the detection and localiza-
tion of small particles from multi-static measurements. Multistatic imaging usually
involves two steps. The first consists in recording the waves generated by the par-
ticles on an array of receivers. The second step consists in processing the recorded
data in order to estimate some relevant features of the particles. We apply the
asymptotic formulas derived in Theorems 2.88, 2.122, and 2.149 for the purpose of
identifying the locations and certain properties of small particles. We introduce di-
rect (non-iterative) reconstruction algorithms that take advantage of the smallness
of the particles, in particular, the MUltiple Signal Classification algorithm (MU-
SIC), reverse-time migration, and Kirchhoff migration. We analyze their resolution
and stability with respect to noise in the measurements. Resolution analysis is to
estimate the size of the finest detail that can be reconstructed from the data while
stability analysis is to quantify the localization error in the presence of noise. We
refer the reader to [37] for more details on these direct imaging algorithms.

Taking into account the sparsity of the problem of imaging small particles, we
show that it can be recast to a joint sparse recovery problem and outline the algo-
rithm proposed in [314]. In [168], other l1 minimization-based imaging methods
are designed for locating small particles. In particular, a hybrid approach combining
the use of singular value decomposition with l1 norm minimization is introduced.

8.2. Scalar Wave Imaging of Small Particles

8.2.1. MUSIC-type Method. Let BR := {|x| < R}. Let D be a small
particle with location at z ∈ BR and electromagnetic parameters εc and µc. Let
xi, i = 1, . . . , N be equi-distributed points along the boundary ∂BR for N ≫ 1.
The array of N elements {x1, . . . , xN} is used to detect the particle. The array of
elements {x1, . . . , xN} is operating both in transmission and in reception. Let usj
be the scattered wave by D corresponding to the incident wave Γkm(x− xj). From
Theorem 2.88 it follows that

usj(x) = δd
(
∇zΓkm(z − xj)M∇zΓkm(x− z) + k2m(

εc
εm

− 1)|B|Γkm(z − xj)Γkm(x− z)

)

+O(δd+1),

where M is the polarization tensor defined in (2.71) with λ given by (2.264).
Suppose for the sake of simplicity that D is a disk. Define the N × N data

matrix by

(8.1) Aω :=
(
usj(xi)

)
i,j
,

309
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and introduce the N -dimensional vector fields g(j)(zS), for zS ∈ BR and j =
1, . . . , d+ 1, by
(8.2)

g(j)(zS) =
1√∑N

i=1 |ej · ∇zΓkm(zS − xi)|2

(
ej ·∇zΓkm(zS−x1), . . . , ej ·∇zΓkm(z−xN )

)t
,

for j = 1, . . . , d, and

(8.3) g(d+1)(zS) =
1√∑N

i=1 |Γkm(zS − xi)|2

(
Γkm(zS −x1), . . . ,Γkm(zS −xN )

)t
,

where {e1, . . . , ed} is an orthonormal basis of Rd.
Let g(zS) be the N ×d matrix whose columns are g(1)(zS), . . . , g(d)(zS). Then,

from (2.82), (8.1) can be written as

Aω ≈ τµg(z)g(z)
t
+ τεg

(d+1)(z)g(d+1)(z)
t
,

where

τµ := 2|D|µm − µc
µm + µc

(
N∑

i=1

|∇zΓkm(z − xi)|2) ,

τε := |D|k2m(
εc
εm

− 1)(

N∑

i=1

|Γkm(z − xi)|2) .

Let P be the orthogonal projection onto the range of Aω. The MUSIC-type imaging
functional is defined by

(8.4) IMU(z
S , ω) :=

( d+1∑

j=1

‖(I − P )[g(j)](zS)‖2
)−1/2

.

This functional has large peaks only at the locations of the particles [37].

8.2.2. Reverse-Time Migration and Kirchhoff Imaging. A backpropagation-
type imaging functional at a single frequency ω for the particle D is given for
zS ∈ BR by

(8.5) IBP(z
S , ω) :=

d+1∑

j=1

usj(xj)g
(j)(zS) · g(j)(zS) ,

where g(j) are defined by (8.2) and (8.3).
For sufficiently large N , we have

1

N

N∑

j=1

Γkm(xj − zS)Γkm(xj − zS) ∼ ℑΓkm(z − zS),

and

1

N

N∑

j=1

∇zΓkm(xj − zS) · ∇zΓkm(xj − zS)t ∼ ℑΓkm(z − zS)
z − zS

|z − zS |
( z − zS

|z − zS |
)t
,

where A ∼ B means A ≈ CB for some constant C.
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Therefore,

IBP(z
S , ω) ∼

{
sinc(km|z − zS |) for d = 3 ,

J0(km|z − zS |) for d = 2,

where sinc(s) = sin(s)/s is the sinc function and J0 is the Bessel function of the
first kind and of order zero.

These formulas show that the resolution of the imaging functional is the stan-
dard diffraction limit. It is of the order of half the wavelength 2π/km.

Note that IBP uses only the diagonal terms of the response matrix Aω, defined
by (8.1). Using the whole matrix, we arrive at the Kirchhoff migration functional:

(8.6) IKM(zS , ω) =

d+1∑

j=1

g(j)(zS) ·Aωg(j)(zS) .

Remark 8.1. Suppose for the sake of simplicity that µc = µm. In this case the
response matrix is

Aω = τεg
(d+1)(z)g(d+1)(z)

t

and we can prove that IMU is a nonlinear function of IKM [40]. In fact, we have

IKM(zS , ω) = τε

(
1− I−2

MU(z
S , ω)

)
.

It is worth pointing out that this transformation improves neither the stability nor
the resolution.

Moreover, in the presence of additive measurement noise with variance k2mσ
2
noise,

the response matrix can be written as

Aω = τεg
(d+1)(z)g(d+1)(z)

t
+ σnoisekmW ,

where W is a complex symmetric Gaussian matrix with mean zero and variance 1.
Let E and Var denote the mean and the variance, respectively. According to

[40], the Signal-to-Noise Ratio (SNR) of the imaging functional IKM, defined by

SNR(IKM) =
E[IKM(z, ω)]

Var(IKM(z, ω))1/2
,

is then equal to

(8.7) SNR(IKM) =
τε

kmσnoise
.

For the MUSIC algorithm, the peak of IMU is affected by measurement noise.
We have

IMU(z, ω) =

{
|τε|
σnoise

if τε ≫ σnoise,

1 if |τε| ≪ kmσnoise .

Remark 8.2. Consider m closely spaced particles ∪ms=1(δBs + z) and let the
magnetic permeability and electric permittivity of the particle δBs + z, for s =

1, . . . ,m, be given by µ
(s)
c and ε

(s)
c . In view of Theorem 2.90, only the position z,

the overall polarization tensor M defined by (2.276), and
∑m
s=1

(
(
ε(s)c

εm
−1)|Bs|

)
can

be reconstructed from measured far-field data.
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8.2.3. Joint Sparse Recovery. In this subsection we show that the problem
of imaging small particles can be recast to a joint sparse recovery problem. The
following algorithm was proposed in [314].

Let us first recall the Lippmann-Schwinger representation of usj . We have
(8.8)

usj(x) =

∫

D

(
(
1

µc
− 1

µm
)∇yΓkm(x−y)·∇zu

s
j(y)+k

2
m(

εc
εm

−1)Γkm(x−y)usj(y)
)
dy, x ∈ Rd.

Then we approximate ∇usj and usj in the search domain ΩS by either piecewise
constant functions or splines as

∇usj(y) =




∑L
l=1 α

(1)
l,j φ

(1)(y, yl)
...∑L

l=1 α
(d)
l,j φ

(d)(y, yl)


 ,

and

usj(y) =

L∑

l=1

α
(d+1)
l,j φ(d+1)(y, yl),

where {yl}Ll=1, for some L ∈ N, are finite sampling points of ΩS and φ(n)(y, yl) is
the basis function of the nth coordinate with n ∈ {1, . . . , d+ 1}.

With these definitions at hand, we obtain from (8.8) the following matrix equa-
tion:

(8.9) Aω = [S(1), . . . , S(d+1)]




(α
(1)
l,j )l,j
...

(α
(d+1)
l,j )l,j


 ,

where Aω is the data matrix and S = [S(1), . . . , S(d+1)] is the sensing matrix with

(S(n))i,l = (
1

µc
− 1

µm
)

∫

ΩS

(∇yΓkm(xi − y) · en)φ(n)(y, yl)dy

for n = 1, . . . , d, and

(S(d+1))i,l = k2m(
εc
εm

− 1)

∫

ΩS

Γkm(xi − y)φ(d+1)(y, yl)dy.

Here, (e1, . . . , ed) is an orthonormal basis of Rd. Let X =




(α
(1)
l,j )l,j
...

(α
(d+1)
l,j )l,j


. The

solution X to (8.9) has a pairwise joint sparsity meaning that (α
(1)
l,j ), . . . , (α

(d+1)
l,j )

are nonzero at the rows corresponding to the particle’s location. Based on (8.9),
we can formulate in the presence of measurement noise the following joint sparse
recovery problem:

min
X

‖X‖0 subject to ‖Aω − SX‖2F ≤ η,

where ‖X‖0 denotes the number of rows that have nonzero elements in the matrix
X, η is a small (regularization) parameter, and ‖ ‖F denotes the Frobenius norm.
We refer to [314] for an implementation of this algorithm.
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8.3. Electromagnetic Imaging

Let BR := {|x| < R}. With the notation of Subsection 2.14.9, we denote by D
a small elastic particle (with location at z ∈ BR and electromagnetic parameters εc
and εc). Let xi, i = 1, . . . , N be equi-distributed points along the boundary ∂BR for
N ≫ 1. The array of N elements {x1, . . . , xN} is used to detect the particle. Let
θ1, . . . ,θN be the corresponding unit directions of the incident fields/observation
directions. For the sake of simplicity, we suppose that D is a ball and µc = µm.
We choose the incident electric field to be such that

(8.10) Ei(x) = Gkm(x− xj)θj , x ∈ R3,

where Gkm(x−z) is the Dyadic Green (matrix valued) function for the full Maxwell
equations defined by (2.364). Let Esj denote the solution to (2.317) corresponding

to the incident field Ei given by (8.10).
The asymptotic expansion (2.122) yields

(8.11)
Esj (x) = 3k2m

εm − εc
2εm + εc

|D|Gkm(x− z)Gkm(z − xj)θj

+O(δ4).

Here we have used the explicit formula (2.84) of the polarization tensor for a ball
in three dimensions.

The measured data is the N ×N matrix given by

(8.12) Aω :=

(
Esj (xi) · θi

)

i,j

.

Introduce the N -dimensional vector fields g(j)(zS), for zS ∈ BR and j = 1, 2, 3, by
(8.13)

g(j)(zS) =
1√∑N

i=1 |ej ·Gkm(zS − xi)θi|2

(
ej ·Gkm(zS−x1)θ1, . . . , ej ·Gkm(zS−xN )θN

)t
.

With this at hand, the MUSIC, reverse-time migration, Kirchhoff, and joint
sparse recovery algorithms described in the previous subsection can be easily ex-
tended to the electromagnetic case [43]. The performance of reverse-time migration
and Kirchhoff algorithms in the presence of measurement noise is investigated in
[136].

8.4. Elasticity Imaging

8.4.1. MUSIC-type Method. Let d = 2 and let BR := {|x| < R}. Let D

be a small elastic particle (with location at z ∈ BR and Lamé parameters λ̃ and µ̃).
Let xi, i = 1, . . . , N be equi-distributed points along the boundary ∂BR for N ≫ 1.
The array of N elements {x1, . . . , xN} is used to detect the particle. Let θ1, . . . ,θN
be the corresponding unit directions of incident fields/observation directions. The
array of elements {x1, . . . , xN} is operating both in transmission and in reception.
For the sake of simplicity, we take d = 2. We choose the incident displacement field
to be such that

(8.14) u
(j)
0 (x) = Γω(x, xj)θj , x ∈ R2,

and denote by u
(j)
δ the solution to (2.513) corresponding to the incident field u

(j)
0 .
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From the asymptotic expansion (2.520), we have

(8.15)

(u
(j)
δ − u

(j)
0 )(x) = −δ2

(
∇zΓ

ω(x, z) : M∇z(Γ
ω(z, xj)θj)

+ω2(ρ− ρ̃)|B|Γω(x, z)Γω(z, xj)θj
)
+O(δ3).

The measured data is the N ×N matrix given by

(8.16) Aω :=

(
(u

(j)
δ − u

(j)
0 )(xi) · θi

)

i,j

.

For any point x ∈ R2, let us introduce the N × 2 matrix of the incident field
emitted by the array of N transmitters G(x, ω), which will be called the Green
matrix, and the N × 3 matrix of the corresponding independent components of the
stress tensors S(x, ω), which will be called the stress matrix:

G(x, ω) = (Γω(x, x1)θ1, . . . ,Γ
ω(x, xN )θN )

t
,(8.17)

S(x, ω) = (s1(x), . . . , sN (x))
t
,(8.18)

where

sj(x) = [σ
(j)
11 (x), σ

(j)
22 (x), σ

(j)
12 (x)]

t, σ(j)(x) = C∇s(Γω(x, xj)θj),

where C is the elasticity tensor defined by (2.371).
One can see from (8.15) and (8.16) that the data matrix Aω is factorized as

follows:

Aω = −δ2H(z, ω)D(ω)Ht(z, ω),(8.19)

where

(8.20) H(x, ω) = [S(x, ω), G(x, ω)]

and D(ω) is a symmetric 5× 5 matrix given by

(8.21) D(ω) =

(
L[M] 0
0 ω2(ρ− ρ̃)|B|I

)

for some linear operator L.
Consequently, the data matrix Aω is the product of three matrices Ht(z, ω),

D(ω) and H(z, ω). The physical meaning of the above factorization is the following:
the matrix Ht(z, ω) is the propagation matrix from the transmitter points toward
the particle located at the point z, the matrix D(ω) is the scattering matrix and
H(z, ω) is the propagation matrix from the particle toward the receiver points.

Recall that MUSIC is essentially based on characterizing the range of the data
matrix Aω, which is the so-called signal space, forming projections onto its null
(noise) spaces, and computing its singular value decomposition.

From the factorization (8.19) of Aω and the fact that the scattering matrix D
is nonsingular (so, it has rank 5), the standard argument from linear algebra yields
that, if N ≥ 5 and if the propagation matrix H(z, ω) has maximal rank 5 then the
ranges Range(H(z, ω)) and Range(A) coincide.

The following is a MUSIC characterization of the location of the elastic particle
and is valid if N is sufficiently large.

Proposition 8.3. Suppose that N ≥ 5. Let a ∈ C5 \ {0}, then
H(zS)a ∈ Range(Aω) if and only if zS = z.
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In other words, any linear combination of the column vectors of the propagation
matrix H(zS , ω) defined by (8.20) belongs to the range of Aω (signal space) if and
only if the points zS and z coincide.

If the dimension of the signal space, s (≤ 5), is known or is estimated from the

singular value decomposition of Aω, defined by Aω = VΣU
t
, then the MUSIC

algorithm applies. Furthermore, if vi denote the column vectors of the matrix V
then for any vector a ∈ C5 \ {0} and for any space point zS within the search
domain, a map of the estimator IMU(z

S , ω) defined as the inverse of the Euclidean
distance from the vector H(zS , ω)a to the signal space by

(8.22) IMU(z
S , ω) =

(
√√√√

N∑

i=s+1

|vi ·H(zS , ω)a|2
)−1/2

peaks (to infinity, in theory) at the center z of the particle. The visual aspect
of the peak of IMU at z depends upon the choice of the vector a. A common
choice which means that we are working with all the significant singular vectors
is a = (1, 1, . . . , 1)t. However, we emphasize the fact that a choice of the vector
a in (8.22) with dimension (number of nonzero components) much lower than 5
still permits one to image the elastic particle with our MUSIC-type algorithm. See
the numerical results below. It is worth mentioning that the estimator IMU(z

S , ω)
is obtained via the projection of the linear combination of the column vectors of
the Green matrix G(zS) onto the noise subspace of the Aω for a signal space of
dimension l if the dimension of a is l.

Let us also point out here that the function IMU(z
S , ω) does not contain any

information about the shape and the orientation of the particle. Yet, if the position
of the particle is found (approximately at least) via observation of the map of
IMU(z

S , ω), then one could attempt, using the decomposition (8.19), to retrieve
the elastic moment tensor of the particle (which is of order δ2).

Finally, it is worth emphasizing that in dimension 3, the matrix D is 9× 9 and
is of rank 9. For locating the particle, the number N then has to be larger than
9. We also mention that the MUSIC algorithm developed here applies to the crack
location problem in the time-harmonic regime.

8.4.2. Reverse-Time Migration and Kirchhoff Imaging. Suppose for
simplicity that a small elastic particle (with location at z ∈ BR) has only a density
contrast and set θj = θ for all j. Formula (8.15) simplifies to

(u
(j)
δ − u

(j)
0 )(x) = −δ2ω2(ρ− ρ̃)|B|Γω(x, z)Γω(z, xj)θ +O(δ3).

Thus, for a search point zS ∈ BR, it follows by using (2.475) that

1

N

N∑

i=1

Γωα(z
S , xi)(u

(j)
δ − u

(j)
0 )(xi)

≃ δ2

cα
ω(ρ− ρ̃)|B|(ℑΓωα(z

S , z))Γω(z, xj)θ.

We introduce the reverse-time migration imaging functional IRM,α(z
S , ω) for α = p

or s given by

(8.23)
1

N2

N∑

i,j=1

Γωα(z
S , xj)θ ·

N∑

i=1

Γωα(z
S , xi)(u

(j)
δ − u

(j)
0 )(xi).
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(a) µ (b) ε (c) MUSIC reconstruction

Figure 8.1. From left to right: The magnetic particle with coef-
ficient µ, the electrical particle with coefficient ε, and the recon-
structed fields using MUSIC algorithm.

IRM,α(z
S , ω) consists in backpropagating with the α-Green function the data set{

(u
(j)
δ − u

(j)
0 )(xi)

}
both from the source point xj and the receiver point xi.

Using (2.475) and the reciprocity property (2.463) we obtain that

IRM,α(z
S , ω) ≃ − δ

2

c2α
(ρ− ρ̃)|B||ℑΓωα(z

S , z)θ|2.

The imaging functional IRM,α(z
S , ω) attains then its maximum (if ρ < ρ̃) or mini-

mum (if ρ > ρ̃) at zS = z.
The imaging functional IRM,α(z

S , ω) can be simplified as follows to yield the
so-called Kirchhoff migration imaging functional IKM,α(z

S , ω) given by

(8.24)
1

N2

N∑

i,j=1

e−
√−1κα(|xj−zS |+|zS−xi|)θ · (u(j)

δ − u
(j)
0 )(xi).

The function IKM,α also attains its maximum at zS = z. In this simplified version,
backpropagation is approximated by travel time migration.

Remark 8.4. The joint sparse recovery framework in Subsection 8.2.3 was
extended to allow for the accurate reconstruction of elastic particles in [457].

8.5. Numerical Illustrations

In this section we present a numerical example for direct imaging of small
particles with MUSIC. We use Code Direct Imaging With MUSIC. We consider two
particles: one magnetic and the second dielectric, as shown in Figures 8.1(a) and
8.1(b). We give in Figure 8.1(c) a map of IMU(z

S , ω) obtained via the projection
of the linear combination of the matrix g(zS) onto the noise space of Aω.

8.6. Concluding Remarks

In this chapter we have introduced direct algorithms for small particle detec-
tion. We have seen that the MUSIC algorithm is based on characterizing the range
of the data while reverse-time migration and Kirchhoff imaging are based on ex-
tracting phase information from the data in order to locate the particles. Based

http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial1/5.2 Direct Imaging With MUSIC.zip
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on Lippmann-Schwinger integral formulations, we have also provided a joint sparse
recovery framework for small particles.

As a direct consequence of Helmholtz-Kirchhoff identities, we have also shown
that the resolution limit, defined as the minimum distance required between two
small particles to distinguish between them, is of the order of half the the operating
wavelength. The purpose of the next chapter is to investigate super-resolution
imaging mechanisms.





CHAPTER 9

Super-Resolution Imaging

9.1. Introduction

Super-resolution has many applications in nanophotonics. It is being intensively
investigated as a technique that can potentially focus electromagnetic radiation in
a region of the order of a few nanometers beyond the diffraction limit of light and
thereby cause an extraordinary enhancement of the electromagnetic fields [272].

As shown in the previous chapter, the resolution in the homogeneous space for
far-field imaging systems is limited by half the operating wavelength, which is a
direct consequence of Helmholtz-Kirchhoff identities. In order to differentiate point
sources or small particles which are located less than half the wavelength apart,
super-resolution techniques have to be used.

While many techniques exist in practice, here we are only interested in the one
using resonant media. The resolution enhancement in resonant media has been
demonstrated in various recent experiments [91, 316, 317, 318, 319]. The basic
idea is the following: suppose that we have sources or particles that are placed inside
a domain of typical size of order of the wavelength of the wave the sources can emit,
and we want to differentiate them by making measurements in the far-field. While
this is impossible in the homogeneous space, it is possible if the medium around
these sources or particles is changed so that the point spread function, which is the
imaginary part of the Green function in the new medium, displays a much sharper
peak than the homogeneous one and thus can resolve sub-wavelength details. The
key issue in such an approach is to design the surrounding medium so that the
corresponding Green function has the tailored property.

9.2. Super-Resolution Imaging in High-Contrast Media

In this section, we present the mathematical theory for realizing this approach
by using high-contrast media. We show that in high-contrast media, the super-
resolution is due to the propagating sub-wavelength resonant modes excited in
the media and is limited by the finest structure in these modes. For the sake of
simplicity, we consider inverse source problems. The problem of imaging small
particles can be handled by a similar approach.

9.2.1. Inverse Source Problems. We consider the following inverse source
problem in a general medium characterized by refractive index n(x):

∆u+ k2n(x)u = f,

u satisfies the Sommerfeld radiation condition.

We assume that n − 1 is compactly supported in a bounded domain D ⋐ Rd

for d = 2, 3, and is assumed to be known. We are interested in imaging f , which
can be either a function in L2(D) or consists of a finite number of point sources

319
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supported in D, from the scattered field u in the far-field. Denote by Φk(x, y) the
corresponding Green function for the media, that is, the solution to

∆xΦk(x, y) + k2n(x)Φk(x, y) = δy(x),

Φk satisfies the Sommerfeld radiation condition

with δy being the Dirac mass at y, we have

u(x) = KD[f ](x) :=

∫

D

Φk(x, y)f(y) dy.

The inverse source problem of reconstructing f from u for fixed frequency is
well-known to be ill-posed for general sources; see, for instance, [17, 45, 116].
While there are many methods of reconstructing f from u, we concentrate on the
following three most common ones in the literature:

(i) Time reversal based method;
(ii) Minimum L2-norm solution; and
(iii) Minimum L1-norm solution.

9.2.2. Time Reversal Based Method. We first present some basics about
the time-reversal-based method. The imaging functional is given as follows:

(9.1) I(x) =

∫

Γ

Φk(x, z)u(z) ds(z) = K∗DKD[f ](x),

where Γ is a closed surface in the far-field where the measurements are taken, and
K∗D is the adjoint of KD viewed as a linear operator from the space L2(D) to L2(Γ).
Physically, the operator K∗D corresponds to time-reversing the observed field. This
imaging method is the simplest and perhaps the mostly used one in practice.

The resolution of this imaging method can be derived from the Helmholtz-
Kirchhoff identity. As a corollary of Theorem 2.76, the following result holds.

Corollary 9.1. We have

I(x) = K
∗
DKD[f ](x) ≈ −1

k

∫

D

ℑΦk(x, y)f(y) dy.

If we take f to be a point source, we obtain the point spread function of the
imaging functional, which shows that the time-reversal based method has resolution
limited by ℑΦk(x, y).

9.2.3. Minimum L2-Norm Solution. We now consider the second method
which is based on L2-minimization. We assume that the source f ∈ L2(D). The
method is given as follows:

(9.2) min ‖g‖L2(D) subject to KD[g] = u,

which can be relaxed in the presence of noise as follows:

(9.3) min ‖g‖L2(D) subject to ‖KD[g]− u‖2L2(Γ) < δ

with δ > 0 being a given small parameter.
In order to obtain an explicit formula for this method, we consider the singular

value decomposition for the operator

KD : L2(D) → L2(Γ).
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We have
KD =

∑

l≥0

σlPl,

where σl is the lth singular value and Pl is the associated projection. The ill-
posedness of the inverse source problem is due to the fast decay of the singular
values to zero; see, for instance, [45, 432].

By a direct calculation, one can show that the minimum L2-norm solution to
(9.2) is given by

(9.4) I(x) =
∑

l≥0

P ∗
l Pl
σ2
l

K∗DKD[f ](x),

while the regularized one, which is the solution to (9.3) is given by

(9.5) Iα(x) =
∑

l≥0

P ∗
l Pl

σ2
l + α

K∗DKD[f ](x),

with α as a function of δ introduced in (9.3) being chosen by Morozov’s discrepancy
principle; see, for instance, [240].

9.2.4. Minimum L1-Norm Solution. The method of minimum L1-norm
solution is proposed in [162, 163]. Assume that f is equal to a superposition of
separate point sources. The method of minimum L1-norm solution is to solve the
minimization problem

min ‖g‖L1(D) subject to K∗DKD[g] = K∗D[u],

or its relaxed version, which reads as

min ‖g‖L1(D) subject to ‖K∗DKD[g]− K∗D[u]‖2L2(Γ) < δ.

In [162, 163], it is shown that under a minimum separation condition for the point
sources, the inverse source problem is well posed. A main feature of their approach
is that the L1-minimization can pull out small spikes even though they may be
completely buried in the side lobes of large ones.

It is worth emphasizing that without any a priori information, the resolution
of the raw image, which is obtained by time-reversal method, is determined by the
imaginary part of the Green function in the associated media.

9.2.5. The Special Case of Homogeneous Medium. In a homogeneous
medium, we have n ≡ 1. For simplicity, we consider the case d = 3 and recall that

Φk(x, y) = Γk(x− y) = −e
√−1k|x−y|

4π|x− y| .

In the far-field, where k|y| = O(1) and k|x| ≫ 1, we have |x−y| ≈ |x|− x̂ ·y, where
x̂ = x

|x| . Thus,

u(x) = −
∫

D

e
√−1k|x−y|

4π|x− y| f(y) dy ≈ −e
√−1k|x|

4π|x| f̂(kx̂),

where f̂ is the Fourier transform of f .
If we make measurements on the surface ∂BR, the sphere of radius R and center

the origin, then we have

u(x) = −e
√−1kR

4πR
f̂(kx̂).
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Using the time-reversal method, we have for R large enough

I(z) ≈ 1

16π2R2

∫

∂BR

∫

D

e
√−1kx̂·(y−z)f(y) dy ds(x) =

1

4π

∫

D

f(y)
sin k|z − y|
k|z − y| dy,

where the imaging functional I is defined by (9.1) with Γ = ∂BR.

9.2.6. Green Function in High-Contrast Media. Throughout this sec-
tion, we set the wavenumber k to be the unit and suppress its presence in what
follows. We assume that the wave speed in the free space is one. The free-space
wavelength is given by 2π. We consider the following Helmholtz equation with a
delta source term:

∆xΦ(x, x0) + Φ(x, x0) + τn(x)χ(D)(x)Φ(x, x0) = δ(x− x0) in Rd,(9.6)

where χ(D) is the characteristic function of D, which has size of order of the free-
space wavelength, n(x) is a positive function of order one in the space of C1(D)
and τ ≫ 1 is the contrast. We denote by Φ0(x, x0) the free-space Green’s function
Γ1(x− x0).

Write Φ = v +Φ0, we can show that

(9.7) ∆v + v = −τn(x)χ(D)(v +Φ0).

Thus,

v(x, x0) = −τ
∫

D

n(y)Φ0(x, y)

(
v(y, x0) + Φ0(y, x0)

)
dy.

Define

(9.8) KD[f ](x) = −
∫

D

n(x)Φ0(x, y)f(y) dy.

Then, v = v(x) = v(x, x0) satisfies the following integral equation:

(9.9) (I − τKD)[v] = τKD[Φ(·, x0)],
and hence,

v(x) = (
1

τ
− KD)

−1KD[Φ(·, x0)].
In what follows, we present properties of the integral operator KD.

Lemma 9.2. The operator KD is compact from L2(D) to L2(D). In fact, KD is
bounded from L2(D) to H2(D). Moreover, KD is a Hilbert-Schmidt operator.

Lemma 9.3. Let σ(KD) be the spectrum of KD defined by (9.8). We have

(i) σ(KD) = {0, λ1, λ2, . . . , λn, . . .}, where |λ1| ≥ |λ2| ≥ |λ3| ≥ . . . and λn →
0;

(ii) {0} = σ(KD)\σp(KD) with σp(KD) being the point spectrum of KD.

Proof. We need only to prove the second assertion. Assume that KD[u] =∫
D
Φ0(x, y)n(y)u(y) dy = 0. We have 0 = (△ + 1)KD[u] = nu, which shows that

u = 0. The assertion is then proved. �

Lemma 9.4. Let KD be defined by (9.8). Then, λ ∈ σ(KD) if and only if there
is a non-trivial solution in H2

loc(R
d) to the following problem:

(∆ + 1)u(x) = 1
λn(x)u(x) in D,(9.10)

(∆ + 1)u = 0 in Rd\D,(9.11)

u satisfies the Sommerfeld radiation condition.(9.12)
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Proof. Assume that KD[u] = λu. We define ũ(x) =
∫
D
Φ0(x, y)n(y)u(y) dy,

where x ∈ Rd. Then ũ satisfies the required equations. �

Notice that the resonant modes have sub-wavelength structures in D for |λ| < 1
and can propagate into the far-field. It is these sub-wavelength propagating modes
that cause super-resolution.

Lemma 9.5. Let Hj denote the generalized eigenspace of the operator KD for
the eigenvalue λj. The following decomposition holds:

L2(D) =

∞⋃

j=1

Hj .

Proof. By the same argument as the one in the proof of Lemma 9.3, we can
show that Ker K∗D = {0}. As a result, we have

KD
(
L2(D)

)
=
(
Ker K∗D

)⊥
= L2(D),

and the lemma is proved. �

Lemma 9.6. There exists a basis {uj,l,k}, 1 ≤ l ≤ mj , 1 ≤ k ≤ nj,l for Hj such
that

KD(uj,1,1, . . . , uj,mj ,nj,mj
) = (uj,1,1, . . . , uj,mj ,nj,mj

)



Jj,1

. . .

Jj,mj


 ,

where Jj,l is the canonical Jordan matrix of size nj,l in the form

Jj,l =




λj 1
. . .

. . .

λj 1
λj


 .

Proof. This follows from the Jordan theory applied to the linear operator
KD|Hj

: Hj → Hj on the finite dimensional space Hj . �

We denote Γ = {(j, l, k) ∈ N × N × N; 1 ≤ l ≤ mj , 1 ≤ k ≤ nj,l} the set of
indices for the basis functions. We introduce a partial order on N × N × N. Let
γ = (j, k, l) ∈ Γ, γ′ = (j′, l′, k′) ∈ Γ, we say that γ′ � γ if one of the following
conditions are satisfied:

(i) j > j′;
(ii) j = j′, l > l′;
(iii) j = j′, l = l′, k ≥ k′.

By the Gram-Schmidt orthonormalization process, the following result is obvi-
ous.

Lemma 9.7. There exists an orthonormal basis {eγ : γ ∈ Γ} for L2(D) such
that

eγ =
∑

γ′�γ
aγ,γ′uγ′ ,

where aγ,γ′ are constants and aγ,γ 6= 0.
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We can regard A = {aγ,γ′}γ,γ′∈Γ as a matrix. It is clear that A is upper-
triangular and has non-zero diagonal elements. Its inverse is denoted by B =
{bγ,γ′}γ,γ′∈Γ which is also upper-triangular and has non-zero diagonal elements.
We have

uγ =
∑

γ′�γ
bγ,γ′eγ′ .

Lemma 9.8. The functions {eγ(x)eγ′(y)} form a normal basis for the Hilbert
space L2(D ×D). Moreover, the following completeness relation holds:

δ(x− y) =
∑

γ

eγ(x)eγ(y).

By standard elliptic theory, we have Φ(x, x0) ∈ L2(D × D) for fixed τ . Thus
we have

(9.13) Φ(x, x0) =
∑

γ,γ′

αγ,γ′eγ(x)eγ′(x0),

for some constants αγ,γ′ satisfying

∑

γ,γ′

|αγ,γ′ |2 = ‖Φ(x, x0)‖2L2(D×D) <∞.

To analyze the Green function Φ, we need to find the constants αγ,γ′ . To do
so, we first note that

Φ0(x, x0) =
1

n(x0)
KD[δ(· − x0)].

Thus,

Φ(x, x0) = Φ0(x, x0) + (
1

τ
− KD)

−1K2D[δ(· − x0)]

= Φ0(x, x0) +
1

n(x0)

∑

γ

eγ(x0)(
1

τ
− KD)

−1K2D[eγ ].

We next compute ( 1τ − KD)
−1K2D[eγ ]. For ease of notation, we define uj,l,k = 0

for k ≤ 0. We have

KD[uj,l,k] = λjuj,l,k + uj,l,k−1 for all j, l, k,

and

K2D[uj,l,k] = λ2juj,l,k + 2λjuj,l,k−1 + uj,l,k−2 for all j, l, k.

On the other hand, for z /∈ σ(KD), we have

(z − KD)
−1[uj,l,k] =

1

z − λj
uj,l,k +

1

(z − λj)2
uj,l,k−1 + . . .+

1

(z − λj)k
uj,l,1,
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and therefore, it follows that

(z − KD)
−1K2D[uj,l,k] =

λ2j
z − λj

uj,l,k +
λ2j

(z − λj)2
uj,l,k−1 · · ·+

λ2j
(z − λj)k

uj,l,1

+
2λj
z − λj

uj,l,k−1 +
2λj

(z − λj)2
uj,l,k−2 · · ·+

2λj
(z − λj)k−1

uj,l,1

+
1

z − λj
uj,l,k−2 +

1

(z − λj)2
uj,l,k−3 · · ·+

1

(z − λj)k−2
uj,l,1

=
λ2j

z − λj
uj,l,k +

( λ2j
(z − λj)2

+
2λj
z − λj

)
uj,l,k−1

+
( λ2j
(z − λj)3

+
2λj
z − λj

+
1

z − λj

)
uj,l,k−2

+ . . .+
( λ2j
(z − λj)k

+
2λj

(z − λj)k−1
+

1

(z − λj)k−2

)
uj,l,1

=
∑

γ′

dγ,γ′uγ′ ,

where we have introduced the matrix D = {dγ,γ′}γ,γ′∈Γ, which is upper-triangular
and has block-structure.

With these calculations, by taking z = 1/τ , we arrive at the following result.

Theorem 9.9. The following expansion holds for the Green function

(9.14) Φ(x, x0) = Φ0(x, x0) +
∑

γ∈Γ

∑

γ′′′∈Γ

αγ,γ′′′eγ(x0)eγ′′′(x),

where

αγ,γ′′′ =
1

n(x0)

∑

γ′�γ

∑

γ′′�γ′

aγ,γ′dγ′,γ′′ bγ′′ ,γ′′′ .

Moreover, for τ−1 belonging to a compact subset of R \
(
R ∩ σ(KD)

)
, we have

the following uniform bound:
∑

γ,γ′

|αγ,γ′ |2 <∞.

Alternatively, if we start from the identity,

δ(x− x0) =
∑

γ′′

eγ′′(x)eγ′′(x0)

=
∑

γ′′

∑

γ′�γ′′

∑

γ′′′�γ′′

aγ′′,γ′aγ′′,γ′′′uγ′(x)uγ′′′(x0),

then we can obtain an equivalent expansion for the Green function in terms of the
basis of resonant modes.

Theorem 9.10. The following expansion holds for the Green function:

(9.15) Φ(x, x0) = Φ0(x, x0) +
∑

γ′′∈Γ

∑

γ′′′�γ′′

∑

γ�γ′′

βγ′′ ,γ,γ′′′uγ(x)uγ′′′ (x0),
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where

(9.16) βγ′′ ,γ,γ′′′ =
1

n(x0)

∑

γ′�γ′′

aγ′′ ,γ′′′aγ′′ ,γ′dγ′,γ .

Here, the infinite summation can be interpreted as follows:
(9.17)

lim
γ0→∞

∑

γ′′≤γ0

∑

γ′�γ′′

∑

γ′′′�γ′′

βγ′′ ,γ,γ′′′uγ(x)uγ′′′ (x0) = Φ(x, x0)−Φ0(x, x0) in L2(D×D).

In order to have some idea of the expansions of the Green function Φ(x, y), we
compare them to the expansion of the Green function in the homogeneous space,
i.e. Φ0(x, y). For this purpose, we introduce the matrix H = {hγ,γ′}γ,γ′∈Γ, which
is defined by

KD[uγ ] =
∑

γ′

hγ,γ′uγ′ .

In fact, we have

hj,l,k,j′,l′,k′ = λjδj,j′δl,l′δk,k′ + δj,j′δl,l′δk−1,k′ ,

where δ denotes the Kronecker symbol.

Lemma 9.11. (i) In the normal basis {eγ}γ∈Γ, the following expansion
holds for the Green function Φ0(x, x0):

(9.18) Φ0(x, x0) =
∑

γ∈Γ

∑

γ′′′∈Γ

α̃γ,γ′′′eγ(x0)eγ′′′(x),

where

α̃γ,γ′′′ =
1

n(x0)

∑

γ′�γ

∑

γ′′�γ′

aγ,γ′hγ′,γ′′ bγ′′ ,γ′′′ .

Moreover, we have the following uniform bound:
∑

γ,γ′

|α̃γ,γ′ |2 < C <∞.

(ii) In the basis of resonant modes {uγ}γ∈Γ, the following expansion holds for
the Green function Φ0(x, x0):

(9.19) Φ0(x, x0) =
∑

γ′′∈Γ

∑

γ′′′�γ′′

∑

γ�γ′′

β̃γ′′ ,γ,γ′′′uγ(x)uγ′′′ (x0),

where

(9.20) β̃γ′′ ,γ,γ′′′ =
1

n(x0)

∑

γ′�γ′′

aγ′′ ,γ′′′aγ′′ ,γ′hγ′,γ .

Here, the infinite summation can be interpreted as follows:

lim
γ0→∞

∑

γ′′≤γ0

∑

γ′′′�γ′′

∑

γ�γ′′

β̃γ′′ ,γ,γ′′′uγ(x)uγ′′′ (x0) = Φ0(x, x0) in L2(D ×D).
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Based on the resonance expansions of the Green functions in high-contrast me-
dia and in the free space, we can now propose an explanation for the super-resolution
phenomenon. Observe that the difference between the coefficients βγ′′ ,γ,γ′′′ and

β̃γ′′ ,γ,γ′′′ in (9.16) and (9.20) are the quantities dγ,γ′ and hγ,γ′ (aγ′′ ,γ′ are con-

stants). If, for example, we consider the special case where the spaces Hj are of
dimension one, then we have

dγ,γ′ = δγ,γ′
λ2j

z − λj
, hγ,γ′ = δγ,γ′λj ,

and therefore,

dγ,γ′ =
1

z
λj

− 1
hγ,γ′ ,

which shows that the contribution to the Green function Φ of the sub-wavelength
resonant mode uγ is amplified when z is close to λj .

Therefore, we can see that the imaginary part of Φ may have sharper peak
than that of Φ0 due to the excited sub-wavelength resonant modes. When the
high contrast is properly chosen (the frequency is fixed), one or several of these
sub-wavelength resonance modes can be excited, and they dominate over the other
ones in the expansion of the Green function Φ. It is those sub-wavelength modes
that essentially determine the behavior of Φ and hence the associated resolution in
the media. Therefore, we can expect super-resolution to occur in this case.

Remark 9.12. Using the Maxwell-Garnett effective medium theory for Maxwell’s
equations derived in Section (7.3) for dilute periodic distributions of plasmonic
nanoparticles, one can see that near plasmonic resonances the effective (or overall)
permittivity ε∗ is high. By investigating the spectral properties of the operator

E|Ω 7→
∫

Ω

(ε∗(y)− εm)Gkm(x, y)dy, x ∈ Ω,

where Gkm is defined by (2.364) with km = ω
√
εmµm, one can extend our results in

this section to the case of the full Maxwell equations and give evidence of the super-
resolution phenomenon for electromagnetic waves in composite materials made of
plasmonic nanoparticles.

9.2.7. Numerical Illustrations. Here we consider a more general situation
than in the previous theoretical analysis and explain how to compute the Green’s
function numerically. We also present a numerical example in which a high-contrast
medium is represented as a disk.

9.2.7.1. Solving an Integral Equation for the Green’s Function. The Green’s
function Φ is the solution to the following problem:

(9.21)





∇ · 1
µ
∇Φ(·, x0) + ω2εΦ(·, x0) =

1

µc
δx0 in Rd,

Φ(·, x0) satisfies the Sommerfeld radiation condition.
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It can be shown that the above problem is equivalent to the following system of
equations:

(9.22)





(∆ + k2c )Φ(·, x0) = δx0 in D,

(∆ + k2m)Φ(·, x0) = 0 in Rd \D,
Φ(·, x0)|+ = Φ(·, x0)|− on ∂D,

1

µm

∂Φ(·, x0)
∂ν

∣∣∣
+
=

1

µc

∂Φ(·, x0)
∂ν

∣∣∣
−

on ∂D,

Φ(·, x0) satisfies the Sommerfeld radiation condition.

Note that the wave number kc plays the role of the high contrast parameter anal-
ogously to τ in the previous theoretical analysis.

Let Φkc0 be the free space Green’s function with wave number kc. Since Φkc0
satisfies

(9.23) (∆ + k2c )Φ
kc
0 (·, x0) = δx0 in Rd,

we see that v := Φ− Φkc0 satisfies ∆v + k2cv = 0 in D. Therefore we can represent
the Green’s function Φ using the single layer potential as follows:

(9.24) Φ(x, x0) =

{
Φkc0 (x, x0) + SkcD [ϕ](x), x ∈ D,

SkmD [ψ](x), x ∈ Rd \D.

Next we determine the densities ϕ and ψ. From the transmission conditions on
∂D and the jump relations for the single layer potentials, we get
(9.25)



SkcD [ϕ]− SkmD [ψ] = −Φkc0 (·, x0)
1

µc
(−1

2
I + (KkcD )∗)[ϕ]

∣∣∣∣
−
− 1

µm
(
1

2
I + (KkmD )∗)[ψ]

∣∣∣∣
+

= − 1

µc

∂Φkc0 (·, x0)
∂ν

on ∂D.

The above system of integral equations has the same form as that of (2.171). We
have already discussed how to solve that system of equations numerically in Chapter
2.

9.2.7.2. Explicit Expression of Green’s Function for a Disk. Let D be a disk of
radius R located at the origin. Then it can be shown that the explicit solution is
given by

(9.26) Φ(r, θ) =




−
√
−1

4
H

(1)
0 (kcr) + aJ0(kcr), |r| ≤ R,

bH
(1)
0 (kmr), |r| > R,

where (r, θ) are the polar coordinates and the constants a and b are given by

a = −
√
−1

4

km
µm
H

(1)
0 (kcR)(H

(1)
0 )′(kmR)− kc

µc
H

(1)
0 (kmR)(H

(1)
0 )′(kcR)

kc
µc
H

(1)
0 (kmR)J ′

0(kcR)− km
µm
J0(kcR)(H

(1)
0 )′(kmR)

,

b = −
√
−1

4

kc
µc
H

(1)
0 (kcR)J

′
0(kcR)− kc

µc
(H

(1)
0 )′(kcR)J0(kcR)

kc
µc
H

(1)
0 (kmR)J ′

0(kcR)− km
µm
J0(kcR)(H

(1)
0 )′(kmR)

.
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9.2.7.3. Resonant Wavenumber kc for a Disk. It is also worth emphasizing
that we can derive resonant values for kc. From the expressions for a and b, we can
immediately see that the nth resonant value kc,n is nth zero of

(9.27)
kc
µc
H

(1)
0 (kmR)J

′
0(kcR)−

km
µm

J0(kcR)(H
(1)
0 )′(kmR) = 0.

So the resonant values for kc can be computed using Muller’s method. When we
solve the above equation, we need to be careful because µc depends on kc via
µc = k2c/(ω

2ǫc).
9.2.7.4. Numerical Example. Let D be a circular disk of radius R = 2 centered

at the origin O in R2. We fix ω = 1, ǫc = ǫm = 1 and µm = 1. Then µc is
determined by µc = k2c .

First, let us compute the distribution of the resonant values for kc. To do
this, we plot the term on the left-hand side of (9.27) as a function of kc. The plot
is shown in Figure 9.1 and it shows that there are many local maximum points
which converge to zero as their corresponding wave number kc increases. This
reflects the fact that the resonant values kc,n (or the corresponding eigenvalues of
the operator KD) are complex numbers and 1/kc,n converges to zero as n → ∞.
This is in accordance with our previous theoretical analysis of the super-resolution
phenomenon because a large wavenumber kc plays the role of the high contrast
parameter τ .

n kc(An) kc(Bn)
1 1.86 2.74
2 3.48 4.32
3 5.08 5.9

Table 9.1. Corresponding value of kc to the points An and Bn.

Next we determine how the shape of ℑΦ changes as a function of kc. We choose
three local maximum (or minimum) points A1, A2 and A3 (or B1, B2 and B3) as
shown in Figure 9.1. At the point A1, A2 or A3, we expect that the corresponding
ℑΦ does not have a sharp peak because the term on the left-hand side of (9.27) is
not small, which means kc is not close to a resonant value. On the other hand, we
expect that ℑΦ has a sharper peak than that of ℑΦkm0 at the points B1, B2 and
B3. The (approximate) numerical values of kc corresponding to the points An and
Bn are shown in Table 9.1.

First we consider the non-resonant case. In Figure 9.2, we plot ℑΦ when kc =
kc(An), n = 1, 2, 3 over the line segment from (−R, 0) to (R, 0). The dotted line

represents the imaginary part of Φkm0 . The blue circles and the red lines represent
the exact values and the numerically computed values, respectively. We note that
in this case the peak is not sharper than that of the free space Green’s function, as
shown in Figure 9.2.

Next, we consider the resonant case. In Figure 9.3, we plot ℑΦ when kc =
kc(Bn), n = 1, 2, 3 over the line segment from (−R, 0) to (R, 0). In contrast to the
previous case, in the case of a resonant kc the peak is sharper than that of the free
space Green’s function. Also the sub-wavelength structure of the resonant mode is
clearly shown in Figure 9.3.
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Figure 9.1. The plot for the term on the left-hand side of (9.27)
as a function of kc. D is a disk with radius R = 2. The parameters
are ω = 1, εm = 1, εc = 1, µm = 1 and µc is determined by µc =
k2c/(εcω

2). Three local maximums (or minimums) are marked as
An (or Bn), respectively.

Code Super-resolution in High Contrast Media was used to generate the nu-
merical results shown in Table 9.1 and Figures 9.1, 9.2, and 9.3.

9.3. Super-Resolution in Resonant Structures

By modifying the homogeneous spaces with sub-wavelength resonators, we can
introduce propagating sub-wavelength resonance modes to the space which encode
sub-wavelength information in a neighborhood of the space embedded by the sub-
wavelength resonators, thus yielding a Green’s function whose imaginary part ex-
hibits sub-wavelength peaks, thereby breaking the resolution limit (or diffraction
limit) in the homogeneous space. In this section, using the fact that plasmonic
particles are ideal sub-wavelength resonators, we consider the possibility of super-
resolution by using a system of identical plasmonic particles.

9.3.1. Multiple Plasmonic Nanoparticles. We consider the scattering of
an incident time harmonic wave ui by multiple weakly coupled plasmonic nanopar-
ticles in three dimensions. For ease of exposition, we consider the case of L particles
with an identical shape and use the Helmholtz equation for light propagation.

We write Dl = zl + δD̃, l = 1, 2, . . . , L, where D̃ is centered at the origin.

Moreover, we denote D0 = δD̃ as our reference nanoparticle and let

D =

L⋃

l=1

Dl, εD = εmχ(R
3\D̄) + εcχ(D̄), µD = µmχ(R

3\D̄) + µcχ(D).

We assume that the following conditions hold.

http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial1/5.3 Super-resolution in High Contrast Media
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Figure 9.2. The plot for ℑΦ when kc = kc(An), n = 1, 2, 3 over
the line segment from (−R, 0) to (R, 0). The dotted line represents

the imaginary part of Φkm0 . The blue circles and the red lines
represent the exact values and the numerically computed values,
respectively. In this case the peak is not sharper than that of the
free space Green’s function.

Condition 9.13. We assume that the numbers εm, µm, εc, µc are dimensionless

and are of order one. We also assume that the particle D̃ has size of order one and
ω is dimensionless and is of order o(1).
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Figure 9.3. The plot for ℑΦ when kc = kc(Bn), n = 1, 2, 3 over
the line segment from (−R, 0) to (R, 0). The dotted line represents

the imaginary part of Φkm0 . The blue circles and the red lines
represent the exact values and the numerically computed values,
respectively. In this case the peak is sharper than that of the free
space Green’s function. Also the sub-wavelength structure of the
resonant mode is clearly shown.

Condition 9.14. Let

(9.28) λ =
µm + µc

2(µm − µc)
.
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We assume that λ 6= 0 or equivalently, µc 6= −µm.

Condition 9.15. The size δ of the particles is a small parameter and the
distances between neighboring particles are of order one.

The scattering problem can be modeled by the following Helmholtz equation:

(9.29)





∇ · 1

µD
∇u+ ω2εDu = 0 in R3\∂D,

u+ − u− = 0 on ∂D,

1

µm

∂u

∂ν

∣∣∣∣
+

− 1

µc

∂u

∂ν

∣∣∣∣
−
= 0 on ∂D,

us := u− ui satisfies the Sommerfeld radiation condition.

Let

ui(x) = e
√−1kmd·x,

Fl,1(x) = −ui(x)
∣∣
∂Dl

= −e
√−1kmd·x∣∣

∂Dl
,

Fl,2(x) = −∂u
i

∂ν
(x)

∣∣∣∣
∂Dl

= −
√
−1kme

√−1kmd·xd · ν(x)
∣∣
∂Dl

,

and define the operator KkDp,Dl
by

KkDp,Dl
[ψ](x) =

∫

∂Dp

∂Γk(x− y)

∂ν(x)
ψ(y)dσ(y), x ∈ ∂Dl.

Analogously, we define

SkDp,Dl
[ψ](x) =

∫

∂Dp

Γk(x− y)ψ(y)dσ(y), x ∈ ∂Dl.

The solution u of (9.29) can be represented as follows:

u(x) =





ui +

L∑

l=1

SkmDl
[ψl], x ∈ R3\D̄,

L∑

l=1

SkcDl
[φl], x ∈ D,

where φl, ψl ∈ H− 1
2 (∂Dl) satisfy the following system of integral equations





SkmDl
[ψl]− SkcDl

[φl] +
∑

p 6=l
SkmDp,Dl

[ψp] = Fl,1,

1

µm

(1
2
I + (KkmDl

)∗
)
[ψl] +

1

µc

(1
2
I − (KkcDl

)∗
)
[φl]

+
1

µm

∑

p 6=l
KkmDp,Dl

[ψp] = Fl,2,

and 



Fl,1 = −ui on ∂Dl,

Fl,2 = − 1

µm

∂ui

∂ν
on ∂Dl.
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9.3.2. First-Order Correction to Plasmonic Resonances and Field Be-
havior at Plasmonic Resonances in the Multi-Particle Case. We consider
the scattering in the quasi-static regime, i.e., when the incident wavelength is much
greater than one. With proper dimensionless analysis, we can assume that ω ≪ 1.
As a consequence, SkcD is invertible. Note that

φl = (SkcDl
)−1
(
SkmDl

[ψl] +
∑

p 6=l
SkmDp,Dl

[ψp]− Fl,1
)
.

We obtain the following equation for ψl’s,

AD(w)[ψ] = f,

where

AD(w) =




AD1(ω)
AD2

(ω)
. . .

ADL
(ω)


+




0 A1,2(ω) . . . A1,L(ω)
A2,1(ω) 0 . . . A2,L(ω)

... . . . 0
...

AL,1(ω) . . . AL,L−1(ω) 0


 ,

ψ =




ψ1

ψ2

...
ψL


 , f =




f1
f2
...
fL


 ,

with

(9.30) ADl
(ω) =

1

µm

(1
2
I + (KkmDl

)∗
)
+

1

µc

(1
2
I − (KkcDl

)∗
)
(SkcDl

)−1SkmDl
,

and

Al,p(ω) =
1

µc

(1
2
I − (KkcDl

)∗
)
(SkcDl

)−1SkmDp,Dl
+

1

µm
KkmDp,Dl

,

fl = Fl,2 +
1

µc

(1
2
I − (KkcDl

)∗
)
(SkcDl

)−1[Fl,1].

For j = 1, . . . , L, letH∗(∂Dj) andH(∂Dj) be respectively defined by (2.18) and
(2.20) with Ω replaced with Dj . We first consider the operators SkDj

and (KkDj
)∗.

The following asymptotic expansions hold. Its proof is immediate.

Lemma 9.16. (i) Regarded as operators from H∗(∂Dj) into H(∂Dj), we
have

SkDj
= S0

Dj
+ kSDj ,1 + k2SDj ,2 +O(k3δ3),

where S0
Dj

= O(1) and SDj ,m = O(δm);

(ii) Regarded as operators from H(∂Dj) into H∗(∂Dj), we have

(SkDj
)−1 = (S0

Dj
)−1 + kBDj ,1 + k2BDj ,2 +O(k3δ3),

where S−1
Dj

= O(1) and BDj ,m = O(δm);

(iii) Regarded as operators from H∗(∂Dj) into H∗(∂Dj), we have

(KkDj
)∗ = (K0

Dj
)∗ + k2O(δ2),

where (K0
Dj

)∗ = O(1).

We also need the following result.
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Lemma 9.17. (i) Regarded as an operator from H∗(∂Dj) into H(∂Dl) we
have,

SkDj ,Dl
= Sj,l,0,0 + Sj,l,0,1 + Sj,l,0,2 + kSj,l,1 + k2Sj,l,2,0 +O(δ4) +O(k2δ2).

Moreover,

Sj,l,m,n = O(δn+1).

(ii) Regarded as an operator from H∗(∂Dj) into H∗(∂Dl), we have

KkDj ,Dl
= Kj,l,0,0 +O(k2δ2).

Moreover,

Kj,l,0,0 = O(δ2).

Finally, the following asymptotic expansions hold.

Lemma 9.18. (i) Regarded as operators from H∗(∂Dj) into H∗(∂Dj), we
have

ADj
(ω) = ADj ,0 +O(δ2ω2),

(ii) Regarded as operators from H∗(∂Dl) into H∗(∂Dp), we have

Al,p(ω) =
1

µc

(1
2
I−(K0

Dl
)∗
)
(S0
Dl
)−1
(
Sp,l,0,1+Sp,l,0,2

)
+

1

µm
Kp,l,0,0+O(δ2ω2)+O(δ4).

Moreover,

(1
2
I − (K0

Dl
)∗
)
◦ (S0

Dl
)−1 ◦ Sp,l,0,1 = O(δ2),

(1
2
I − (K0

Dl
)∗
)
◦ (S0

Dl
)−1 ◦ Sp,l,0,2 = O(δ3),

Kp,l,0,0 = O(δ2).

Proof. The proof of (i) follows from Lemma 9.16. We now prove (ii). Recall
that

1

2
I − (KkcDl

)∗ =
1

2
I − (K0

Dl
)∗ +O(δ2ω2),

(SkcDl
)−1 = (S0

Dl
)−1 − kc(S0

Dl
)−1SDl,1(S0

Dl
)−1 +O(δ2ω2),

SkmDp,Dl
= Sp,l,0,0 + Sp,l,0,1 + Sp,l,0,2 + kmSp,l,1 + k2mSp,l,2,0 +O(δ4) +O(ω2δ2)

KkmDp,Dl
= Kp,l,0,0 +O(ω2δ2).

Using the identity

(1
2
I − (K0

Dl
)∗
)
(S0
Dl
)−1[χ(Dl)] = 0,



336 9. SUPER-RESOLUTION IMAGING

we can derive that

Al,p(ω) =
1

µc

(1
2
I − (K0

Dl
)∗
)
(SkcDl

)−1SkmDp,Dl
+

1

µm
Kp,l,0,0 +O(δ2ω2)

=
1

µc

(1
2
I − (K0

Dl
)∗
)
(S0
Dl
)−1SkmDp,Dl

+
1

µm
Kp,l,0,0 +O(δ2ω2)

=
1

µc

(1
2
I − (K0

Dl
)∗
)
(S0
Dl
)−1
(
Sp,l,0,0 + Sp,l,0,1 + Sp,l,0,2 + kmSp,l,1 + k2mSp,l,2,0 +O(δ4)

)

+
1

µm
Kp,l,0,0 +O(δ2ω2)

=
1

µc

(1
2
I − (K0

Dl
)∗
)
(S0
Dl
)−1
(
Sp,l,0,1 + Sp,l,0,2

)
+

1

µm
Kp,l,0,0 +O(δ2ω2) +O(δ4).

The rest of the lemma follows from Lemmas 9.16 and 9.17. �

Denote by H∗(∂D) = H∗(∂D1) × . . . × H∗(∂DL), which is equipped with the
inner product

〈ψ, φ〉H∗ =
L∑

l=1

〈ψl, φl〉H∗(∂Dl).

With the help of Lemma 9.18, the following result is obvious.

Lemma 9.19. Regarded as an operator from H∗(∂D) into H∗(∂D), we have

A(ω) = AD,0 +AD,1 +O(ω2δ2) +O(δ4),

where

AD,0 =




AD1,0

AD2,0

. . .
ADL,0


 , AD,1 =




0 AD,1,12 AD,1,13 . . .
AD,1,21 0 AD,1,23 . . .

. . .
AD,1,L1 . . . AD,1,LL−1 0




with

ADl,0 =
( 1

2µm
+

1

2µc

)
I − (

1

µc
− 1

µm
)(K0

Dl
)∗,

AD,1,pq =
1

µc

(1
2
I − (K0

Dp
)∗
)
(S0
Dp

)−1
(
Sq,p,0,1 + Sq,p,0,2

)
+

1

µm
Kq,p,0,0.

It is evident that

(9.31) AD,0[ψ] =
∞∑

j=0

L∑

l=1

τj〈ψ, ϕj,l〉H∗ϕj,l,

where

τj =
1

2µm
+

1

2µc
−
( 1

µc
− 1

µm

)
λj ,(9.32)

ϕj,l = ϕjel(9.33)

with el being the standard basis of RL and (λj , ϕj) being the eigenvalues and
associated eigenfunctions of the operator (K0

D1
)∗.

We consider A(ω) as a perturbation to the operator AD,0 for small ω and
small δ. Using a standard perturbation argument, we can derive the perturbed
eigenvalues and eigenfunctions.
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In what follows, we only use the first order perturbation theory and derive the
leading order term, i.e., the perturbation due to the term AD,1. For each l, we
define an L× L matrix Rl by letting

Rl,pq =
〈
AD,1[ϕl,p], ϕl,q

〉
H∗ ,

=
〈
AD,1[ϕlep], ϕleq

〉
H∗
,

=
〈
AD,1,pq[ϕl], ϕl

〉
H∗ .

Lemma 9.20. The matrix Rl = (Rl,pq)p,q=1,...,L has the following explicit ex-
pression:

Rl,pp = 0,

Rl,pq =
3

4πµc
(λj −

1

2
)

∑

|α|=|β|=1

∫

∂D0

∫

∂D0

(zp − zq)
α+β

|zp − zq|5
xαyβϕl(x)ϕl(y)dσ(x)dσ(y)

+
( 1

4πµc
− 1

4πµm

)
(λj −

1

2
)

∫

∂D0

∫

∂D0

x · y
|zp − zq|3

ϕl(x)ϕl(y)dσ(x)dσ(y)

= O(δ3), p 6= q.

Proof. It is clear that Rl,pp = 0. For p 6= q, we have

Rl,pq = RIl,pq +RIIl,pq +RIIIl,pq,

where

RIl,pq =
1

µc

〈(1
2
I − (K0

Dp
)∗
)
(S0
Dp

)−1Sq,p,0,1[ϕl], ϕl
〉
H∗(∂Dl)

,

RIIl,pq =
1

µc

〈(1
2
I − (K0

Dp
)∗
)
(S0
Dp

)−1Sq,p,0,2[ϕl], ϕl
〉
H∗(∂Dl)

,

RIIIl,pq =
1

µm

〈
Kq,p,0,0[ϕl], ϕl

〉
H∗(∂Dl)

.

We first consider RIl,pq. By the following identity

(1
2
I − (K0

Dp
)∗
)
SDl

[ϕl] = S0
Dl

(1
2
I −K0

Dp

)
[ϕl] = (λj −

1

2
)ϕl,

we obtain

RIl,pq = − 1

µc

〈(1
2
I − (K0

Dp
)∗
)
(S0
Dp

)−1Sq,p,0,1[ϕl],S0
Dl
[ϕl]
〉
L2(∂Dl)

,

=
1

µc
(λj −

1

2
)
〈
Sq,p,0,1[ϕl],S0

Dl
[ϕl]
〉
L2(∂Dl)

.

Using the explicit representation of Sq,p,0,1, we further conclude that

RIl,pq = 0.
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Similarly, we have

RIIl,pq =
1

µc
(λj −

1

2
)
〈
Sq,p,0,2[ϕl],S0

Dl
[ϕl]
〉
L2(∂Dl)

,

=
1

µc
(λj −

1

2
)

∑

|α|=|β|=1

∫

∂D0

∫

∂D0

(3(zp − zq)
α+β

4π|zp − zq|5
xαyβ +

δαβx
αyβ

4π|zp − zq|3
)
ϕl(x)ϕl(y)dσ(x)dσ(y)

=
3

4πµc
(λj −

1

2
)

∑

|α|=|β|=1

∫

∂D0

∫

∂D0

(zp − zq)
α+β

|zp − zq|5
xαyβϕl(x)ϕl(y)dσ(x)dσ(y)

+
1

4πµc
(λj −

1

2
)
∑

|α|=1

∫

∂D0

∫

∂D0

1

|zp − zq|3
xαyαϕl(x)ϕl(y)dσ(x)dσ(y).

Finally, note that

Kq,p,0,0[ϕl] =
1

4π|zp − zq|3
a · ν(x) = 1

4π|zp − zq|3
3∑

m=1

amνm(x),

where am =
〈
(y − zq)m, ϕl

〉
L2(∂Dq)

, and a = (a1, a2, a3)
t.

Therefore, we have

RIIIl,pq = − 1

µm

〈
Kq,p,0,0[ϕl], ϕl

〉
H∗(∂Dl)

= − 1

4π|zp − zq|3µm
〈
a · ν(x), ϕl

〉
H∗(∂Dl)

= − 1

4π|zp − zq|3µm

〈(1
2
I − (K0

Dp
)∗
)
(S0
Dp

)−1(a · (x− zp)), ϕl

〉

H∗(∂Dl)

= − 1

4π|zp − zq|3µm
(λj −

1

2
)
〈
a · (x− zp), ϕl

〉
L2(∂Dp)

= − 1

4π|zp − zq|3µm
(λj −

1

2
)

∫

∂D0

∫

∂D0

x · yϕl(x)ϕl(y)dσ(x)dσ(y).

This completes the proof of the lemma.
�

We now have an explicit formula for the matrix Rl. It is clear that Rl is
symmetric, but not self-adjoint. For ease of presentation, we assume the following
condition.

Condition 9.21. Rl has L-distinct eigenvalues.

We remark that Condition 9.21 is not essential for our analysis. Without this
condition, the perturbation argument is still applicable, but the results may be
quite complicated. We refer to [290] for a complete description of the perturbation
theory.

Let τj,l and Xj,l = (Xj,l,1, . . . , Xj,l,L)
t, l = 1, 2, . . . , L, be the eigenvalues and

normalized eigenvectors of the matrix Rj . We remark that each Xj,l may be com-
plex valued and may not be orthogonal to other eigenvectors.

Under perturbation, each τj splits into the following L eigenvalues of A(ω),

(9.34) τj,l(ω) = τj + τj,l +O(δ4) +O(ω2δ2).
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The associated perturbed eigenfunctions have the following form

(9.35) ϕj,l(ω) =

L∑

p=1

Xj,l,pepϕj +O(δ4) +O(ω2δ2).

We are interested in solving the equation AD(ω)[ψ] = f when ω is close to the
resonance frequencies, i.e., when τj(ω) are very small for some j’s. In this case, the
major part of the solution would be based on the excited resonance modes ϕj,l(ω).

For this purpose, we introduce the index set of resonances J just as we did in
(7.12) for the single particle case.

Definition 9.22. We call J ⊂ N index set of resonances if the τj,l(ω)’s are
close to zero when j ∈ J and are bounded from below when j ∈ Jc. More precisely,
we choose a threshold number η0 > 0 independent of ω such that

|τj,l(ω)| ≥ η0 > 0 for j ∈ Jc.

For simplicity, we assume that the following conditions hold.

Condition 9.23. Each eigenvalue λj, j ∈ J , of the operator (K0
D1

)∗ is simple.

Moreover, we have ω2 ≪ δ.

We define

PJ(ω)ϕj,m(ω) =

{
ϕj,m(ω), j ∈ J,
0, j ∈ Jc.

In fact,

(9.36) PJ(ω) =
∑

j∈J
Pj(ω) =

∑

j∈J

1

2π
√
−1

∫

γj

(ξ −AD(ω))
−1dξ,

where γj is a Jordan curve in the complex plane enclosing only the eigenvalues
τj,l(ω) for l = 1, 2, . . . , L among all the eigenvalues.

To obtain an explicit representation of PJ(ω), we consider the adjoint operator
AD(ω)

∗. By a similar perturbation argument, we can obtain its perturbed eigen-
value and eigenfunctions. Note that the adjoint matrix R̄tj = R̄j has eigenvalues τj,l
and corresponding eigenfunctions Xj,l. Then the eigenvalues and eigenfunctions of
AD(ω)

∗ have the following form

τ̃j,l(ω) = τj + τj,l +O(δ4) +O(ω2δ2),

ϕ̃j,l(ω) = ϕ̃j,l +O(δ4) +O(ω2δ2),

where

ϕ̃j,l =

L∑

p=1

X̃j,l,pepϕj

with X̃j,l,p being a multiple of Xj,l,p.
We normalize ϕ̃j,l in a way such that the following holds:

〈ϕj,p, ϕ̃j,q〉H∗(∂D) = δpq,

which is also equivalent to the following condition

Xj,p
t
X̃j,q = δpq.

Then, we can show that the following result holds.
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Lemma 9.24. In the space H∗(∂D), as ω goes to zero, we have

f = ωf0 +O(ω2δ
3
2 ),

where f0 = (f0,1, . . . , f0,L)
t with

f0,l = −
√
−1

√
εmµme

√−1kmd·zl
(

1

µm
d · ν(x) + 1

µc

(1
2
I − (K0

Dl
)∗
)
(S0
Dl
)−1[d · (x− z)]

)
= O(δ

3
2 ).

Proof. We first show that

‖u‖H∗(∂D0) = δ
3
2+m‖u‖H∗(∂D̃), ‖u‖H(∂D0) = δ

1
2+m‖u‖H(∂D̃)

for any homogeneous function u such that u(δx) = δmu(x). Indeed, we have

η(u)(x) = δmu(x). Since ‖η(u)‖H∗(∂D̃) = δ−
3
2 ‖u‖H∗(∂D0), we obtain

‖u‖H∗(∂D0) = δ
3
2 ‖η(u)‖H∗(∂D̃) = δ

3
2+m‖u‖H∗(∂D̃),

which proves our first claim. The second claim follows in a similar way. Using this
result, we arrive at the desired asymptotic result. �

Denote by Z = (Z1, . . . , ZL), where Zj =
√
−1kme

√−1kmd·zj . We are ready to
present our main result in this section.

Theorem 9.25. Under Conditions 9.13, 9.14, 9.15, and 9.21, the scattered
field due to L plasmonic particles in the quasi-static regime has the following rep-
resentation

us =

L∑

l

SkmDl
[ψl],

where ψ = (ψ1, . . . , ψL)
t has the following asymptotic expansion:

ψ =
∑

j∈J

L∑

l=1

〈
f, ϕ̃j,l(ω)

〉
H∗ϕj,l(ω)

τj,l(ω)
+AD(ω)

−1(PJc(ω)f)

=
∑

j∈J

L∑

l=1

〈d · ν(x), ϕj〉H∗(∂D0)ZX̃j,l ϕj,l +O(ω2δ
3
2 )

λ− λj +
(

1
µc

− 1
µm

)−1
τj,l +O(δ4) +O(δ2ω2)

+O(ωδ
3
2 ).

Proof. The proof is similar to that of Theorem 7.15. �

As a consequence, the following result holds.

Corollary 9.26. With the same notation as in Theorem 9.25 and under the
additional condition that

min
j∈J

|τj,l(ω)| ≫ ωqδp,

for some integer p and q, and

τj,l(ω) = τj,l,p,q + o(ωqδp),

we have

ψ =
∑

j∈J

L∑

l=1

〈d · ν(x), ϕj〉H∗(∂D0)ZX̃j,l ϕj,l +O(ω2δ
3
2 )

τj,l,p,q
+O(ωδ

3
2 ).

9.3.3. Super-Resolution by Using Plasmonic Nanoparticles.
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9.3.3.1. Asymptotic Expansion of the Scattered Field. In order to illustrate the
superfocusing phenomenon, we set

ui(x) = Γkm(x− x0) = −e
√−1km|x−x0|

4π|x− x0|
.

Lemma 9.27. In the space H∗(∂D), as ω goes to zero, we have

f = f0 +O(ωδ
3
2 ) +O(δ

5
2 ),

where f0 = (f0,1, . . . , f0,L)
t with

f0,l = − 1

4π|zl − x0|3
(

1

µm
(zl − x0) · ν(x) +

1

µc
(
1

2
I − (K0

Dl
)∗)(S0

Dl
)−1[(zl − x0) · (x− zl)]

)
= O(δ

3
2 ).

Proof. Recall that

fl = Fl,2 +
1

µc

(1
2
I − (KkcDl

)∗
)
(SkcDl

)−1[Fl,1].

We can show that

Fl,2 = − 1

µm

∂ui

∂ν
= − 1

4πµm|zl − x0|3
(zl−x0) ·ν(x)+O(δ

5
2 )+O(ωδ

3
2 ) in H∗(∂Dl).

Besides,

ui(x)|∂Dl
= −e

√−1km|zl−x0|

4π|zl − x0|
χ(∂Dl)+

1

4π|zl − x0|3
(zl−x0)·(x−zl)+O(δ

5
2 )+O(ωδ

3
2 ) in H(∂Dl).

Using the identity ( 12I − (K0
Dl
)∗)(S0

Dl
)−1[χ(∂Dl)] = 0, we obtain that

1

µc

(1
2
I−(KkcDl

)∗
)
(SkcDl

)−1[Fl,1] = − 1

4π|zl − x0|3µc
(
1

2
I−(K0

Dl
)∗)(S0

Dl
)−1[(zl−x0)·(x−zl)].

This completes the proof of the lemma. �

We now derive an asymptotic expansion of the scattered field in an intermediate
regime which is neither too close to the plasmonic particles nor too far away. More
precisely, we consider the following domain

Dδ,k =
{
x ∈ R3; min

1≤l≤L
|x− zl| ≫ δ, max

1≤l≤L
|x− zl| ≪

1

k

}
.

Lemma 9.28. Let ψl ∈ H∗(∂Dl) and let v(x) = SkDl
[ψl](x). Then we have for

x ∈ Dδ,k,

v(x) = Γk(x− zl)
( 1

|x− zl|
−
√
−1k

) x− zl
|x− zl|

·
∫

∂D0

yψl(y)dσ(y) +O(δ
5
2 )‖ψl‖H∗(∂Dl)

+Γk(x− zl)

∫

∂D0

ψl(y)dσ(y).

Moreover, the following estimates hold

v(x) = O(δ
3
2 ) if

∫

∂D0

ψl(y)dσ(y) = 0,

v(x) = O(δ
1
2 ) if

∫

∂D0

ψl(y)dσ(y) 6= 0.
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Proof. We only consider the case when l = 0. The other case follows similarly
or by coordinate translation. We have

v(x) = SkD[ψ](x) =
∫

∂D0

Γk(x− y)ψ(y)dσ(y) = −
∫

∂D0

e
√−1k|x−y|

4π|x− y| ψ(y)dσ(y).

Since

Γk(x− y) = Γk(x) +
∑

|α=1|

∂Γk(x)

∂yα
yα +

∑

m≥2

∑

|α=m|

∂mΓk(x)

∂yα
yα,

and

∂Γk(x)

∂yα
= −e

√−1k|x|

4π|x|
( 1

|x| −
√
−1k

) x
|x| = Γk(x)

( 1

|x| −
√
−1k

)xα
|x| ,

we obtain the required identity for the case l = 0. The estimate follows from the
fact that

‖yα‖H(∂D0) = O(δ
2|α|+1

2 ).

This completes the proof of the lemma. �

Denote by

Sj,l(x, k) = Γk(x− zl)
x− zl

|x− zl|2
·
∫

∂D0

yϕj(y)dσ(y),

Sl(x, k) = Γk(x− zl)

∫

∂D0

ϕ0(y)dσ(y),

Hj,l(x0) = − 1

4π|zl − x0|3
〈
(zl − x0) · ν(x), ϕj

〉
H∗(∂D0)

.

It is clear that the following size estimates hold

Sj,l(x, k) = O(δ
3
2 ), Sl(x, k) = O(δ

1
2 ), Hj,l(x0) = O(δ

3
2 ) for j 6= 0, H0,l(x0) = 0.

Theorem 9.29. Under Conditions 9.13, 9.14, 9.15, and 9.21, the Green func-
tion Φkm(x, x0) in the presence of L plasmonic particles has the following represen-
tation in the quasi-static regime: for x ∈ Dδ,km ,

Φkm(x, x0) = Γkm(x− x0)

+
∑

j∈J

L∑

l=1

Hj,p(x0)X̃j,l,pXj,l,qSj,q(x, km) +O(δ4) +O(ωδ3)

λ− λj +
(

1
µc

− 1
µm

)−1
τj,l +O(δ4) +O(δ2ω2)

+O(δ3).

Proof. With ui(x) = Γkm(x− x0), we have

ψ =
∑

j∈J

∑

1≤l≤L
aj,lϕj,l +

∑

1≤l≤L
a0,lϕ0,l +O(δ

3
2 ),

where

aj,l = 〈f, ϕ̃j,l〉H∗(∂D) = 〈f0, ϕ̃j,l〉H∗(∂D) +O(ωδ
3
2 ) +O(δ

5
2 ),

= (
1

µc
− 1

µm
)X̃j,l,pHj,p(x0) +O(ωδ

3
2 ) +O(δ

5
2 ),

a0,l = 〈f, ϕ̃0,l〉H∗(∂D) = O(δ
5
2 ).
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By Lemma 9.28,

SkmD [ϕj,l](x) =
∑

1≤p≤L
SkmD [Xj,l,pϕjep](x) =

∑

1≤p≤L
Xj,l,pSkmDp

[ϕj ](x)

=
∑

1≤p≤L
Xj,l,pSj,p(x, km) +O(δ

5
2 ) +O(ωδ

3
2 ).

On the other hand, for j = 0, we have

SkmD [ϕ0,l](x) = O(δ
1
2 ),

τ0,l(ω) = τ0 +O(δ4) +O(δ2ω2) = O(1).

Therefore, we can deduce that

us = SkmD [ψ](x) =
∑

j∈J

∑

1≤l≤L
aj,lSkmD [ϕj,l] +

∑

1≤l≤L
a0,lSkmD [ϕ0,l] +O(δ3),

=
∑

j∈J

L∑

l=1

1

τj,l(ω)

(
(
1

µc
− 1

µm
)Hj,p(x0)X̃j,l,pXj,l,qSj,q(x, km) +O(ωδ3) +O(δ4)

)

+O(δ3),

=
∑

j∈J

L∑

l=1

Hj,p(x0)X̃j,l,pXj,l,qSj,q(x, km) +O(ωδ3) +O(δ4)

λ− λj +
(

1
µc

− 1
µm

)−1
τj,l +O(δ4) +O(δ2ω2)

+O(δ3).

�

9.3.4. Asymptotic Expansion of the Imaginary Part of the Green’s
Function. As a consequence of Theorem 9.29, we obtain the following result on
the imaginary part of the Green function.

Theorem 9.30. Assume the same conditions as in Theorem 9.29. Under the
additional assumption that

λ− λj +
( 1

µc
− 1

µm

)−1
τj,l ≫ O(δ4) +O(δ2ω2),

ℜ
(
λ− λj +

( 1

µc
− 1

µm

)−1
τj,l

)
. ℑ

(
λ− λj +

( 1

µc
− 1

µm

)−1
τj,l

)

for each l and j ∈ J , we have

ℑΦkm(x, x0) = ℑΓkm(x− x0) +O(δ3) +

∑

j∈J

L∑

l=1

ℜ
(
Hj,p(x0)X̃j,l,pXj,l,qSj,q(x, 0) +O(ωδ3) +O(δ4)

)

×ℑ


 1

λ− λj +
(

1
µc

− 1
µm

)−1
τj,l


 ,

where x, x0 ∈ Dδ,km .

Note that ℜ
(
Hj,p(x0)X̃j,l,pXj,l,qSj,q(x, 0)

)
= O(δ3). Under the conditions in

Theorem 9.30, if we have additionally that

ℑ


 1

λ− λj +
(

1
µc

− 1
µm

)−1
τj,l


 = O(

1

δ3
)
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for some plasmonic frequency ω, then the term in the expansion of ℑΦkm(x, x0)
which is due to resonance has size one and exhibits a sub-wavelength peak with
width of order one. This breaks the diffraction limit 1/km in the free space. We also
note that the term ℑΓkm(x− x0) has size O(ω). Thus, we can conclude that super-
resolution (super-focusing) can indeed be achieved by using a system of plasmonic
particles.

Remark 9.31. The results of this section on the super-resolution effect obtained
by using a finite system of plasmonic nanoparticles can be extended to the full
Maxwell equations.

9.4. Super-Resolution Based on Scattering Tensors

9.4.1. Multipolar Expansion. In this subsection we use the same notation
as in Section (8.2). We consider for the sake of simplicity the two-dimensional
case. We let BR := {|x| < R} and D be a small particle located at z ∈ BR
with electromagnetic parameters εc and µc. We set xi, i = 1, . . . , N to be equi-
distributed points along the boundary ∂BR for N ≫ 1. The array of N elements
{x1, . . . , xN} is used to detect the particle. The array of elements {x1, . . . , xN} is
operating both in transmission and in reception. Let usj be the wave scattered by
D = z + δB corresponding to the incident wave Γkm(x− xj).

From the multipolar expansion (2.258), it follows that

(9.37)
usj(x) =

n+1∑

|l′|=0

n−|l′|+1∑

|l|=0

δ|l|+|l′|

l!l′!
∂lΓkm(x− z)∂l

′

z Γkm(xj − z)W̃ll′

+O(δn+2) ,

where W̃ll′ is the scattering tensor defined by (2.257).
Therefore, the entries aωij of the data matrix Aω introduced in (8.1) can be

approximated as follows:

(9.38) aωij = g(xi, z)Wg(xj , z)
t +O(δn+2) ,

where g(xi, z) is a row vector of size (n+ 1)× (n+ 2)/2, which is given by

(9.39) g(xi, z) =
( 1
l!
∂lΓkm(xi − z)

)
|l|≤n ,

and W is defined by

(9.40) W =
(
δ|l|+|l′|W̃ll′

)
|l|,|l′|≤n .

If δ is small, then high-order terms in (9.37) can be neglected. In this case, the
analysis of the data matrix reduces to the one in Section 8.2, which is based on the
dipolar approximation (2.274). As δ increases, more and more multipolar terms
could be included in formula (9.38) in order to approximate the data matrix. For
fixed δ, the number of multipolar terms (or the maximal resolving order) which can
be robustly reconstructed from the measured data depends only on the signal-to-
noise ratio and can be estimated as a function of the signal-to-noise ratio [76].

In view of (9.39), the signal space of the data matrix Aω becomes richer. The
set of the singular vectors consists of the Green function and its derivatives. In order
to locate the particle, exactly the same imaging functionals constructed in Section
8.2 can be used. They peak at the location of the particle. However, the significant
singular values are perturbed, even those associated with the dipolar approximation
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(2.274). Indeed, when δ is increasing, new significant singular values can merge.
Those are related to higher-order multipolar terms. They can be expressed in terms

of the scattering tensors W̃ll′ . These new singular values, which are intermediate
between the three larger ones (in the case of a single particle) and zero, contain
some information on the particle and give a better approximation of its shape and
electromagnetic parameters.

9.4.2. Reconstruction Procedure. In this subsection we first present for-
mulas for the reconstruction of the size and material parameters of the particle
from the data matrix Aω. Then we introduce optimal control and dictionary-based
matching approaches to identify the shape of the particle.

Once the location z of the particle is estimated for instance by using MUSIC
algorithm, the matrix W can be recovered from the data matrix Aω. The size |D|
and the electric permittivity ε can be estimated as follows:

|D| = 1

k2m
|W̃(2,0),(0,0)|

and

εc =
|W̃(2,0),(0,0)|
ω2µm|D| .

By (2.266) we know that (W̃ll′)|l|=|l′|=1 is approximately the polarization tensor
associated with D and λ given by (2.264). Therefore, by (2.103) and (2.104) an
equivalent ellipse can be computed and an estimate of µc can be found.

Once the equivalent ellipse is reconstructed we can use it as an initial guess and
minimize using an optimal control scheme the discrepancy between the computed
and measured matrix W; see [49]. The level set method can be implemented in
order to reconstruct separately closely spaced particles [39].

In [76], a dictionary matching approach is proposed. It is an alternative to the
optimal control approach. It relies on learning the geometric features contained
in the matrix data. In the dictionary matching approach, we identify and classify
a particle, knowing in advance that the latter belongs to a certain collection of
particles. The method relies on computing the invariants under rigid motions from
the extracted scattering tensors and allows us to handle the scaling within certain
ranges. A particle is classified by comparing its invariants with those of a set of
learned shapes at multiple-frequencies. The larger the frequency band used, the
better the classification performance of the dictionary matching algorithm.

The reconstruction results obtained by the optimal control method and the
dictionary matching approach are far beyond the resolution limit.

9.5. Concluding Remarks

In this chapter, we have provided a mathematical theory to explain the super-
resolution mechanism in high-contrast media. We have investigated the behavior
of the Green’s functions of high-contrast media. Our resonance expansions of the
Green’s functions, which were first derived in [83], are the key to mathematically
explaining the super-resolution mechanism in high-contrast media. From (9.15)
and (9.17), we have proved that the super-resolution is due to propagating sub-
wavelength resonant modes. It is worth mentioning that in (9.15) and (9.17), we
have observed that a phenomenon of mixing of modes occurs. This is essentially
due to the non-hermitian nature of the operator KD.
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CHAPTER 10

Near-Cloaking

10.1. Introduction

To cloak a target is to make it invisible with respect to probing by electromag-
netic or elastic waves. Extensive work has been produced on cloaking in the context
of electromagnetic and elastic waves. Many schemes for cloaking are currently un-
der active investigation. These include interior cloaking, where the cloaking region
is inside the cloaking device, and exterior cloaking in which the cloaking region is
outside the cloaking device.

In this chapter, we focus on interior cloaking and describe effective near-
cloaking structures for electromagnetic and elastic scattering problems. The focus
of the next chapter will be placed on exterior cloaking.

In interior cloaking, the difficulty is to construct material parameter distribu-
tions of a cloaking structure such that any target placed inside the structure is
undetectable to waves. One approach is to use transformation optics (also called
the scheme of changing variables) [303, 243, 143, 446, 254, 409]. The princi-
ple behind transformation optics is to use a coordinate transformation to derive
the spatial dependent material parameters to guide the wave. Transformation op-
tics takes advantage of the fact that the equations governing electromagnetic and
acoustic wave propagation have transformation laws under change of variables; see
Subsection 2.14.4. They are form invariant under coordinate transformations. This
allows one to design structures that bend waves around a hidden region, returning
them to their original path on the far side. The change of variables based cloaking
method uses a singular transformation to boost the material properties so that it
makes a cloaking region look like a point to outside measurements. However, this
transformation induces the singularity of material constants in the transversal di-
rection (also in the tangential direction in two dimensions), which causes difficulty
both in the theory and applications. To overcome this weakness, so called ‘near-
cloaking’ is naturally considered, which is a regularization or an approximation of
singular cloaking. Instead of the singular transformation, one can use a regular
one to push forward the material parameters, in which a small ball is blown up
to the cloaking region [299, 298]. Enhanced cloaking can be achieved by using
a cancellation technique [56, 57]. The first stage of this approach involves de-
signing a multi-coated structure around a small perfect insulator to significantly
reduce its effect on boundary or scattering cross-section measurements. The multi-
coating cancels the generalized polarization tensors or the scattering coefficients of
the cloaking device. One then obtains a near-cloaking structure by pushing for-
ward the multi-coated structure around a small object via the standard blow-up
transformation technique.

349
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The purpose of this chapter is to review the cancellation technique. We first
design a structure coated around a particle to have vanishing generalized polariza-
tion tensors of lower orders and show that the order of perturbation due to a small
particle can be reduced significantly. We then obtain a near-cloaking structure by
pushing forward the multi-coated structure around a small object via the usual
blow-up transformation.

When considering near-cloaking for the Helmholtz equation, we construct struc-
tures such that their first scattering coefficients vanish. Analogously to the quasi-
static limit, we prove that, after applying transformation optics, structures with
vanishing scattering coefficients enhance near-cloaking. We emphasize that such a
structure achieves near-cloaking for a band of frequencies. We also show that near-
cloaking for the Helmholtz equation becomes increasingly difficult as the cloaked
object becomes bigger or the operating frequency becomes higher. The difficulty
scales inversely proportionally to the object diameter or the frequency.

Finally, the cancellation technique is extended to the full Maxwell equations
and the Lamé system.

The results of this chapter are from [56, 57, 58, 1].

10.2. Near-Cloaking in the Quasi-Static Limit

To explain the principle of construction of cloaking structures, we review the
results on the quasi-static model obtained in [56].

Let Ω be a domain in R2 containing 0 possibly with multiple components with
smooth boundary. For a contrast λ, recall that the generalized polarization tensors
Mαβ(λ,Ω) associated with Ω and λ are defined in (2.69).

Let Pm(x) be the complex-valued polynomial

(10.1) Pm(x) = (x1 +
√
−1x2)

m :=
∑

|α|=m
amα x

α +
√
−1

∑

|β|=m
bmβ x

β .

Using polar coordinates x = re
√−1θ, the above coefficients amα and bmβ can also be

characterized by

(10.2)
∑

|α|=m
amα x

α = rm cosmθ, and
∑

|β|=m
bmβ x

β = rm sinmθ .

We introduce the following combination of generalized polarization tensors us-
ing the coefficients in (10.1):

M cc
mn =

∑

|α|=m

∑

|β|=n
amα a

n
βMαβ ,(10.3)

M cs
mn =

∑

|α|=m

∑

|β|=n
amα b

n
βMαβ ,(10.4)

Msc
mn =

∑

|α|=m

∑

|β|=n
bmα a

n
βMαβ ,(10.5)

Mss
mn =

∑

|α|=m

∑

|β|=n
bmα b

n
βMαβ .(10.6)



10.2. NEAR-CLOAKING IN THE QUASI-STATIC LIMIT 351

For a given harmonic function H in R2, consider

(10.7)

{
∇·
(
σ0χ(R

2 \ Ω) + σχ(Ω)
)
∇u = 0 in R2 ,

u(x)−H(x) = O(|x|−1) as |x| → ∞ ,

where σ0 and σ are conductivities (positive constants) of R2\Ω and Ω, respectively.
If the harmonic function H admits the expansion

H(x) = H(0) +
∞∑

n=1

rn
(
acn(H) cosnθ + asn(H) sinnθ

)

with x = (r cos θ, r sin θ), then, we have the following formula

(u−H)(x) = −
∞∑

m=1

cosmθ

2πmrm

∞∑

n=1

(
M cc
mna

c
n(H) +M cs

mna
s
n(H)

)

−
∞∑

m=1

sinmθ

2πmrm

∞∑

n=1

(
Msc
mna

c
n(H) +Mss

mna
s
n(H)

)
as r = |x| → ∞ ,(10.8)

where M cc
mn,M

cs
mn,M

sc
mn, and M

sc
mn are defined by (10.3)–(10.6).

In order to make u look like H for large |x|, we construct structures with van-
ishing generalized polarization tensors for all |n|, |m| ≤ N . We call such structures
GPT-vanishing structures of orderN . To do so, we use a disc with multiple coatings.
Let Ω be a disc of radius r1. For a positive integer N , let 0 < rN+1 < rN < · · · < r1
and define

(10.9) Aj := {rj+1 < r = |x| ≤ rj}, j = 1, 2, . . . , N .

Let A0 = R2 \ Ω and AN+1 = {r ≤ rN+1}. Set σj to be the conductivity of Aj for
j = 1, 2, . . . , N + 1, and σ0 = 1. Let

(10.10) σ =

N+1∑

j=0

σjχ(Aj) .

Because of the symmetry of the disc, one can easily see that

(10.11) M cs
mn[σ] =Msc

mn[σ] = 0 for all m,n ,

(10.12) M cc
mn[σ] =Mss

mn[σ] = 0 if m 6= n ,

and

(10.13) M cc
nn[σ] =Mss

nn[σ] for all n .

Let Mn =M cc
nn, n = 1, 2, . . . , for the simplicity of notation. Let

(10.14) ζj :=
σj − σj−1

σj + σj−1
, j = 1, . . . , N + 1 .

One can prove that [56]

(10.15) |Mn| ≤ 2πnr2n1 for all n ∈ N.

The following is a characterization of GPT-vanishing structures. Again, see [56].
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Proposition 10.1. If there are nonzero constants ζ1, . . . , ζN+1 (|ζj | < 1) and
r1 > · · · > rN+1 > 0 such that

(10.16)

N+1∏

j=1

[
1 ζjr

−2l
j

ζjr
2l
j 1

]
is an upper triangular matrix for l = 1, 2, . . . , N,

then (Ω, σ), given by (10.9), (10.10), and (10.14), is a GPT-vanishing structure of
order N , i.e., Ml = 0 for l ≤ N . More generally, if there are nonzero constants
ζ1, ζ2, ζ3, . . . (|ζj | < 1) and r1 > r2 > r3 > . . . such that rn converges to a positive
number, say r∞ > 0, and

(10.17)

∞∏

j=1

[
1 ζjr

−2l
j

ζjr
2l
j 1

]
is an upper triangular matrix for every l,

then (Ω, σ), given by (10.9), (10.10), and (10.14), is a GPT-vanishing structure
with Ml = 0 for all l.

Let (Ω, σ) be a GPT-vanishing structure of order N of the form (10.10). We
take r1 = 2 so that Ω is the disk of radius 2, and rN+1 = 1. We assume that
σN+1 = 0 which amounts to the structure being insulated along ∂B1. For small
δ > 0, let

(10.18) Ψ 1
δ
(x) =

1

δ
x, x ∈ R2 .

Then, (B2δ, σ ◦Ψ 1
δ
) is a GPT-vanishing structure of order N and it is insulated on

∂Bδ.
For a given domain Ω and a subdomain B ⋐ Ω, we introduce the Dirichlet-to-

Neumann map ΛΩ,B [σ] as

(10.19) ΛΩ,B [σ](f) = σ
∂u

∂ν

∣∣∣∣
∂Ω

,

where u is the solution to

(10.20)





∇ · σ∇u = 0 in Ω \B ,
∂u

∂ν
= 0 on ∂B ,

u = f on ∂Ω ,

where ν is the outward normal to ∂B. Note that with Ω = B2, ΛΩ,Bδ
[σ ◦Ψ 1

δ
] may

be regarded as small perturbation of ΛΩ,∅[1] if Ml = 0 for all l ≤ N . A complete
asymptotic expansion of ΛΩ,Bδ

[σ ◦ Ψ 1
δ
] as δ → 0 can be obtained and it can be

proved that

(10.21)
∥∥∥ΛB2,Bδ

[
σ ◦Ψ 1

δ

]
− ΛB2,∅[1]

∥∥∥ ≤ Cδ2N+2

for some constant C independent of δ, where the norm is the operator norm from
H1/2(∂Ω) into H−1/2(∂Ω). In fact, if f admits the Fourier expansion f(θ) =∑

n∈Z

fne
√−1nθ, then we have

(
ΛB2,Bδ

[
σ ◦Ψ 1

δ

]
− ΛB2,∅[1]

)
(f) =

∑

n∈Z

|n|(δ/2)2|n|M|n|
2π|n| − (δ/2)2|n|M|n|

fne
√−1nθ.
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From (10.15) , it follows that as δ → 0,

|Mn|δ2n ≤ Cδ2N+2 for all n ∈ N

for some constant C independent of n and hence, (10.21) holds; see [56]. We then
push forward σ ◦Ψ 1

δ
by the change of variables Fδ,

(10.22) Fδ(x) :=





( 3− 4δ

2(1− δ)
+

1

4(1− δ)
|x|
) x
|x| for 2δ ≤ |x| ≤ 2 ,

(1
2
+

1

2δ
|x|
) x
|x| for δ ≤ |x| ≤ 2δ ,

x

δ
for |x| ≤ δ ,

in other words,

(10.23) (Fδ)⋆(σ ◦Ψ 1
δ
) =

(DFδ)(σ ◦Ψ 1
δ
)(DFδ)

t

|det(DFδ)|
◦ F−1

δ .

Note that Fδ maps |x| = δ onto |x| = 1, and is the identity on |x| = 2. So by
invariance of the Dirichlet-to-Neumann map, we have

(10.24) ΛB2,B1

[
(Fδ)⋆(σ ◦Ψ 1

δ
)
]
= ΛB2,Bδ

[
σ ◦Ψ 1

δ

]
.

Identity (10.24) can be proved using the divergence theorem [143]. Thus we obtain
the following theorem from [56], which shows that, using GPT-vanishing structures
we achieve enhanced near-cloaking.

Theorem 10.2. Let the conductivity profile σ be a GPT-vanishing structure of
order N such that σN+1 = 0. There exists a constant C independent of δ such that

(10.25)
∥∥∥ΛB2,B1

[
(Fδ)⋆(σ ◦Ψ 1

δ
)
]
− ΛB2,∅[1]

∥∥∥ ≤ Cδ2N+2 .

Remark 10.3. It is worth emphasizing that the conductivities of the constructed
near-cloaking devices are anisotropic. Nevertheless, they can be approximated by
concentric isotropic homogeneous coatings [38, 409]. The approximation is in
the sense that it minimizes the discrepancy between the associated Dirichlet-to-
Neumann maps for only the first few eigenvectors.

Remark 10.4. If we consider the spectra of the Laplacian with Dirichlet or
Neumann boundary conditions inside on one hand the near-cloaking device of order
N and on the other hand the homogeneous disk of conductivity one, then one can
show that the first eigenvalues are approximately the same (up to an error of order
of δ2N+2).

10.3. Near-Cloaking for the Helmholtz Equation

Analogously to the quasi-static case, in order to achieve enhanced near-cloaking
for the Helmholtz equation, we construct multi-coated structures such that their
first scattering coefficients vanish. Then by pushing forward the multi-coated struc-
tures via the transformation optics, we obtain enhanced cloaking with respect to
scattering cross-section measurements.
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10.3.1. Scattering Coefficients. Let D be a bounded domain in R2 with
smooth boundary ∂D, and let (ε0, µ0) be the pair of electromagnetic parameters
(permittivity and permeability) of R2 \ D̄ and (εc, µc) be that of D. Then the
permittivity and permeability distributions are given by

(10.26) ε = ε0χ(R
2 \ D̄) + εcχ(D) and µ = µ0χ(R

2 \ D̄) + µcχ(D) .

Given a frequency ω, set kc = ω
√
εcµc and k0 = ω

√
ε0µ0. For a function ui

satisfying (∆+ k20)u
i = 0 in R2, we consider the scattered wave u, i.e., the solution

to (2.165).

Suppose that ui is given by a plane wave e
√−1k0ξ·x with ξ being on the unit

circle, then (2.220) yields (2.225), where Wnm, given by (2.211), are the scattering
coefficients, ξ = (cos θξ, sin θξ), and x = (|x|, θx).

Let far-field pattern A∞[ε, µ, ω], when the incident field is given by e
√−1k0ξ·x,

be defined by (2.226). As shown in Theorem 2.81, the scattering coefficients are
the Fourier coefficients of A∞[ε, µ, ω].

The scattering cross-section Qs[ε, µ, ω] is defined by

(10.27) Qs[ε, µ, ω](θ′) :=

∫ 2π

0

∣∣∣∣A∞[ε, µ, ω](θ, θ′)

∣∣∣∣
2

dθ .

It is worth recalling that the optical theorem (Theorem 2.83) leads to a natural
constraint on Wnm. In fact, (2.239) or equivalently (2.240) holds.

In the next subsection, we compute the scattering coefficients of multiply coated
inclusions and provide structures whose scattering coefficients vanish. Such struc-
tures will be used to enhance near-cloaking. Any target placed inside such struc-
tures will have nearly vanishing scattering cross-section Qs, uniformly in the direc-
tion θ′.

10.3.2. S-Vanishing Structures. The purpose of this subsection is to con-
struct multiply layered structures whose scattering coefficients vanish. We call such
structures S-vanishing structures. We design a multi-coating around an insulated
inclusion D, for which the scattering coefficients vanish. The computations of the
scattering coefficients of multi-layered structures (with multiple phase electromag-
netic materials) follow in exactly the same way as in Subsection 2.10.4. The system
of two equations (2.171) should be replaced by a system of 2× the number of phase
interfaces (−1 if the core is perfectly insulating).

For positive numbers r1, . . . , rL+1 with 2 = r1 > r2 > · · · > rL+1 = 1, let

Aj := {x : rj+1 ≤ |x| < rj}, j = 1, . . . , L, A0 := R2 \A1 ,

and
AL+1(= D) := {x : |x| < 1} .

Let (µj , εj) be the pair of permeability and permittivity of Aj for j = 0, 1, . . . , L+1.
Set µ0 = 1 and ε0 = 1. Let

(10.28) µ =

L+1∑

j=0

µjχ(Aj) and ε =

L+1∑

j=0

εjχ(Aj) .

In this case the scattering coefficient Wnm =Wnm[µ, ε, ω] can be defined using
(2.219). In fact, if u is the solution to

(10.29) ∇ · 1
µ
∇u+ ω2εu = 0 in R2
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with the outgoing radiation condition on u − U where U is given by (2.218), then
u− U admits the asymptotic expansion (2.219) with k0 = ω

√
ε0µ0.

Exactly like the conductivity case, one can show using symmetry that

(10.30) Wnm = 0 if m 6= n.

Let us define Wn by

(10.31) Wn :=Wnn .

Our purpose is to design, given N and ω, material parameters µ and ε so that
Wn[µ, ε, ω] = 0 for |n| ≤ N . We call such a structure (µ, ε) an S-vanishing structure

of order N at frequency ω. Since H
(1)
−n = (−1)nH

(1)
n and J−n = (−1)nJn, we have

(10.32) W−n =Wn ,

and hence it suffices to consider Wn only for n ≥ 0.
Moreover, from Lemma 2.78 it follows that there exists δ0 such that, for all

δ ≤ δ0,

(10.33) |Wn[ε, µ, δω]| ≤
C2n

n2n
δ2n for all n ∈ N \ {0} ,

where the constant C depends on (ε, µ, ω) but is independent of δ.
Furthermore, note that (2.240) leads to

(10.34) ℑm
∑

n∈Z

Wn[ε, µ, ω] = −
√
πω

2

∑

n∈Z

∣∣∣∣Wn[ε, µ, ω]

∣∣∣∣
2

.

Let kj := ω
√
µjεj for j = 0, 1, . . . , L. We assume that µL+1 = +∞, which

amounts to the solution satisfying the zero Neumann condition on |x| = rL+1(= 1).
To compute Wn for n ≥ 0, we look for solutions un to (10.29) of the form
(10.35)

un(x) = a
(n)
j Jn(kjr)e

√−1nθ + b
(n)
j H(1)

n (kjr)e
√−1nθ, x ∈ Aj , j = 0, . . . , L ,

with a
(n)
0 = 1. Note that

(10.36) Wn = 4
√
−1b

(n)
0 .

The solution un satisfies the transmission conditions

un|+ = un|− and
1

µj−1

∂un
∂ν

∣∣∣
+
=

1

µj

∂un
∂ν

∣∣∣
−

on |x| = rj

for j = 1, . . . , L, which reads



Jn(kjrj) H(1)
n (kjrj)√

εj
µj
J ′
n(kjrj)

√
εj
µj

(
H(1)
n

)′
(kjrj)



[
a
(n)
j

b
(n)
j

]

=




Jn(kj−1rj) H(1)
n (kj−1rj)√

εj−1

µj−1
J ′
n(kj−1rj)

√
εj−1

µj−1

(
H(1)
n

)′
(kj−1rj)



[
a
(n)
j−1

b
(n)
j−1

]
.(10.37)

The Neumann condition ∂un

∂ν

∣∣
+
= 0 on |x| = rL+1 amounts to

(10.38)

[
0 0

J ′
n(kL)

(
H

(1)
n

)′
(kL)

][
a
(n)
L

b
(n)
L

]
=

[
0
0

]
.
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Combining (10.37) and (10.38), we obtain

(10.39)

[
0
0

]
= P (n)[ε, µ, ω]

[
a
(n)
0

b
(n)
0

]
,

where

P (n)[ε, µ, ω] :=

[
0 0

p
(n)
21 p

(n)
22

]
= (−π

2

√
−1ω)L




L∏

j=1

µjrj



[

0 0

J ′
n(kL)

(
H

(1)
n

)′
(kL)

]

×
L∏

j=1




√
εj
µj

(
H(1)
n

)′
(kjrj) −H(1)

n (kjrj)

−
√
εj
µj
J ′
n(kjrj) Jn(kjrj)







Jn(kj−1rj) H(1)
n (kj−1rj)√

εj−1

µj−1
J ′
n(kj−1rj)

√
εj−1

µj−1

(
H(1)
n

)′
(kj−1rj)


 .

In order to have a structure whose scattering coefficients Wn vanishes up to

the Nth order, we need to have b
(n)
0 = 0 (when a

(n)
0 = 1) for n = 0, . . . , N , which

amounts to

(10.40) p
(n)
21 = 0 for n = 0, . . . , N ,

because of (10.39). We emphasize that p
(n)
22 6= 0. In fact, if p

(n)
22 = 0, then (10.39)

can be fulfilled with a
(n)
0 = 0 and b

(n)
0 = 1. It means that there exists (µ, ε) on

R2 \D such that the following problem has a solution:

(10.41)





∇ · 1
µ
∇u+ ω2εu = 0 in R2 \D ,

∂u

∂ν

∣∣∣
+
= 0 on ∂D ,

u(x) = H
(1)
n (k0r)e

√−1nθ for |x| = r > 2 ,

which is not possible.
We note that (10.40) is a set of conditions on (µj , εj) and rj for j = 1, . . . , L.

In fact, p
(n)
21 is a nonlinear algebraic function of µj , εj and rj , j = 1, . . . , L. We

are not able to show existence of (µj , εj) and rj , j = 1, . . . , L, satisfying (10.40)
even if it is quite important to do so. But the solutions (at fixed frequency) can be
computed numerically in the same way as in the conductivity case.

We now consider the S-vanishing structure for all (low) frequencies. Let ω be
fixed and we look for a structure (µ, ε) such that

(10.42) Wn[µ, ε, δω] = 0 for all |n| ≤ N and δ ≤ δ0

for some δ0. Such a structure may not exist. Even numerically, it does not seem to
exist. So instead we look for a structure such that

(10.43) Wn[µ, ε, δω] = o(δ2N ) for all |n| ≤ N and δ → 0 .

We call such a structure an S-vanishing structure of order N at low frequencies.
To investigate the behavior of Wn[µ, ε, δω] as δ → 0, we need the asymptotic

expansions of Bessel functions for small arguments. We have

(10.44) H(1)
ν (x) ≈ −

√
−12νΓ(ν)

π
x−ν for fixed ν and x→ 0 .
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For n ∈ N, we also recall that, as x→ 0,

Jn(x) =
xn

2n

(
1

Γ(n+ 1)
−

1
4x

2

Γ(n+ 2)
+

( 14x
2)2

2!Γ(n+ 3)
− ( 14x

2)3

3!Γ(n+ 4)
+ . . .

)
,(10.45)

Yn(x) = − ( 12x)
−n

π

n−1∑

l=0

(n− l − 1)!

l!
(
1

4
x2)l +

2

π
ln(

1

2
x)Jn(x)

− ( 12x)
n

π

∞∑

l=0

(ψ(l + 1) + ψ(n+ l + 1))
(− 1

4x
2)l

l!(n+ l)!
,(10.46)

where ψ(1) = −γ and

ψ(n) = −γ +

n−1∑

l=1

1

l
for n ≥ 2

with γ being the Euler constant.
Plugging formulas (10.45) and (10.46) into (10.39), we obtain

P (0)[ε, µ, δω] = (−π
2

√
−1δω)L




L∏

j=1

µjrj






0 0

−kL
2
δ +O(δ3)

2
√
−1

πkL
δ−1 +O(δ ln δ)




×
L∏

j=1




2
√
−1

πωµjrj
δ−1 +O(δ ln δ)

4

π2

(
1

ωµj−1rj
− 1

ωµjrj

)
ln δ

δ
+O(δ−1)

rj
2
ωεj

(
1− εj−1

εj

)
δ +O(δ3)

2i

πωµj−1rj
δ−1 +O(δ ln δ)




= δ−1




0 0

O(δ2)
2
√
−1

πkL

L∏

j=1

µj
µj−1

+O(δ)


 ,

(10.47)

and, for n ≥ 1,

P (n)[ε, µ, δω] = (−
√
−1

π

2
δω)L




L∏

j=1

µjrj






0 0
nkn−1

L

2nΓ(n+ 1)
δn−1 +O(δn)

√
−12nΓ(n+ 1)

πkn+1
L

δ−n−1 +O(δ−n)




×
L∏

j=1




√
εj
µj

√
−12nΓ(n+ 1)

π(kjrj)n+1
δ−n−1 +O(δ−n)

√
−12nΓ(n)

π(kjrj)n
δ−n +O(δ−n+1)

−
√
εj
µj

n(kjrj)
n−1

2nΓ(n+ 1)
δn−1 +O(δn)

(kjrj)
n

2nΓ(n+ 1)
δn +O(δn+1)




×




(kj−1rj)
n

2nΓ(n+ 1)
δn +O(δn+1) −

√
−12nΓ(n)

π(kj−1rj)n
δ−n +O(δ−n+1)

√
εj−1

µj−1

n(kj−1rj)
n−1

2nΓ(n+ 1)
δn−1 +O(δn)

√
εj−1

µj−1

√
−12nΓ(n+ 1)

π(kj−1rj)n+1
δ−n−1 +O(δ−n)


 ,
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and hence

P (n)[ε, µ, δω] =
1

2L




0 0
nkn−1

L

2nΓ(n+ 1)
δn−1 +O(δn)

√
−12nΓ(n+ 1)

πkn+1
L

δ−n−1 +O(δ−n)




×
L∏

j=1



aj(bj + 1) + o(1) cj(bj − 1)δ−2n + o(δ−2n)

bj − 1

cj
δ2n + o(δ2n)

bj + 1

aj
+ o(1)


 ,

(10.48)

where

aj :=

(
kj−1

kj

)n
, bj :=

µj
µj−1

, cj :=

√
−122nΓ(n)Γ(n+ 1)

π(kj−1kjr2j )
n

,

with kj = ω
√
εjµj .

From the above calculations of the leading order terms of P (n)[ε, µ, δω] and the

expansion formula of Jn(t) and Yn(t), we see that p
(n)
21 and p

(n)
22 admit the following

expansions:
(10.49)

p
(n)
21 (µ, ε, t) = tn−1


f (n)0 (µ, ε) +

(N−n)∑

l=1

L+1∑

j=0

f
(n)
l,j (µ, ε)t2l(ln t)j + o(t2N−2n)




and
(10.50)

p
(n)
22 (µ, ε, t) = t−n−1


g(n)0 (µ, ε) +

(N−n)∑

l=1

L+1∑

j=0

g
(n)
l,j (µ, ε)t

2l(ln t)j + o(t2N−2n)




for t = δω and some functions f
(n)
0 , g

(n)
0 , f

(n)
l,j , and g

(n)
l,j independent of t.

Lemma 10.5. For any pair of (µ, ε), we have

(10.51) g
(n)
0 (µ, ε) 6= 0 .

Proof. For n = 0, it follows from (10.47) that

g
(0)
0 (µ, ε) =

2
√
−1

π
√
εLµL

L∏

j=1

µj
µj−1

6= 0 .

Suppose n > 0. Assume that there exists a pair of (µ, ε) such that g
(n)
0 (µ, ε) = 0.

Then the solution given by (10.35) with a
(n)
0 = 0 and b

(n)
0 = 1 satisfies

(10.52)





∇ · 1
µ
∇u+ δ2ω2εu = 0 in R2 \D ,

∂u

∂ν

∣∣∣
+
= o(δ−n) on ∂D ,

u(x) = H
(1)
n (δk0r)e

√−1nθ for |x| = r > 2 .
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Let v(x) := limδ→0 δ
nu(x). Then using (10.44) it follows that v satisfies

(10.53)





∇ · 1
µ
∇v = 0 in R2 \D ,

∂v

∂ν

∣∣∣
+
= 0 on ∂D ,

v(x) = −
√
−12nΓ(n)

πkn0
r−ne

√−1nθ for |x| = r > 2 ,

which is impossible. Thus g
(n)
0 (µ, ε) 6= 0, as desired and the proof is complete. �

Equations (10.49) and (10.50) together with the above lemma give us the fol-
lowing proposition.

Proposition 10.6. For n ≥ 1, let Wn be defined by (10.31). We have

(10.54) Wn[µ, ε, t] = t2n


W 0

n [µ, ε] +

(N−n)∑

l=1

Ml∑

j=0

W l,j
n [µ, ε]t2l(ln t)j


+ o(t2N ) ,

where t = δω, Ml := (L + 1)l (L being the number of layers), and the coefficients
W 0
n [µ, ε] and W

l,j
n [µ, ε] are independent of t.

To construct an S-vanishing structure of order N at low frequencies, we need
to have a pair (µ, ε) of the form (10.28) satisfying
(10.55)
W 0
n [µ, ε] = 0, and W l,j

n [µ, ε] = 0 for 0 ≤ n ≤ N, 1 ≤ l ≤ (N − n), 1 ≤ j ≤Ml .

As in the conductivity case, it should be emphasized that one does not know if
a solution exists for any order N . Nevertheless, numerical constructions of such
structures for small N are given in the last subsection.

10.3.3. Enhancement of Near-Cloaking. In this subsection we show that
the S-vanishing structures (after applying transformation optics) enhance the near-
cloaking.

Let (µ, ε) be an S-vanishing structure of order N at low frequencies, i.e., (10.55)
holds, and it is of the form (10.28). It follows from (2.213), Theorem 2.81, and
Proposition 10.6 that

(10.56) A∞[µ, ε, δω](θ, θ′) = o(δ2N )

uniformly in (θ, θ′) if δ ≤ δ0 for some δ0.
Let

(10.57) Ψδ(x) =
1

δ
x, x ∈ R2 .

Then we have

(10.58) A∞
[
µ ◦Ψδ, ε ◦Ψδ, ω

]
= A∞[µ, ε, δω] .

To see this, let u be the solution to

(10.59)





∇ · 1

(µ ◦Ψδ)(x)
∇u(x) + ω2(ε ◦Ψδ)(x)u(x) = 0 in R2 \Bδ ,

∂u

∂ν
= 0 on ∂Bδ ,

(u− U) satisfies the outgoing radiation condition,
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where U(x) = e
√−1k0(cos θ,sin θ)·x. Here Bδ is the disk of radius δ centered at 0.

Define for y = x/δ

ũ(y) :=
(
u ◦Ψ−1

δ

)
(y) =

(
u ◦Ψ 1

δ

)
(y) and Ũ(y) =

(
U ◦Ψ 1

δ

)
(y) .

Then, we have

(10.60)





∇ · 1

µ(y)
∇yũ(y) + δ2ω2ε(y)ũ(y) = 0 in R2 ,

∂ũ

∂ν
= 0 on ∂B1 ,

(ũ− Ũ) satisfies the outgoing radiation condition.

From the definition (2.229) of the far-field pattern A∞, we get

(u− U)(x) ∼ −
√
−1e−

π
√

−1
4

e
√−1k0|x|
√

|x|
A∞

[
µ ◦Ψδ, ε ◦Ψδ, ω

]
(θ, θ′) as |x| → ∞ ,

and

(ũ− Ũ)(y) ∼ −
√
−1e−

π
√

−1
4

e
√−1δk0|y|
√
|y|

A∞[µ, ε, δω](θ, θ′) as |y| → ∞ ,

where x = |x|(cos θ′, sin θ′). So, we have (10.58). It then follows from (10.56) that

(10.61) A∞
[
µ ◦Ψδ, ε ◦Ψδ, ω

]
(θ, θ′) = o(δ2N ) .

We also obtain from (2.238)

(10.62) Qs
[
µ ◦Ψδ, ε ◦Ψδ, ω

]
(θ′) = o(δ4N ) .

It is worth emphasizing that (µ ◦ Ψδ, ε ◦ Ψδ) is a multi-coated structure of radius
2δ.

We now apply a transformation to the structure (µ ◦Ψδ, ε ◦Ψδ) to blow up the
small disk of radius δ.

For a small number δ, let Fδ be the diffeomorphism defined by

(10.63) Fδ(x) :=





x for |x| ≥ 2,
( 3− 4δ

2(1− δ)
+

1

4(1− δ)
|x|
) x
|x| for 2δ ≤ |x| ≤ 2,

(1
2
+

1

2δ
|x|
) x
|x| for δ ≤ |x| ≤ 2δ,

x

δ
for |x| ≤ δ .

We then get from (10.61), (10.62), and Lemma 2.114 the main result of this section.

Theorem 10.7. If (µ, ε) is an S-vanishing structure of order N at low frequen-
cies, then there exists δ0 such that

(10.64) A∞
[
(Fδ)⋆(µ ◦Ψδ), (Fδ)⋆(ε ◦Ψδ), ω

]
(θ, θ′) = o(δ2N )

and

(10.65) Qs
[
(Fδ)⋆(µ ◦Ψδ), (Fδ)⋆(ε ◦Ψδ), ω

]
(θ′) = o(δ4N )

for all δ ≤ δ0, uniformly in θ and θ′. Moreover, the cloaking enhancement, given
by (10.64) and (10.65), is achieved for all frequencies smaller than ω.
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Since (10.43) holds if we replace ω by ω′ ≤ ω, the cloaking enhancement is
achieved for all the frequencies smaller than ω. Then it is worth comparing (10.64)
with (10.56). In (10.56), (µ, ε) is a multiply layered structure between radius 1 and
2 in which each layer is filled with an isotropic material, and enhanced near-cloaking
is achieved for low frequencies δω with δ ≤ δ0. On the other hand, in (10.64) the
frequency ω does not have to be small. In fact, (10.64) says that for any frequency
ω there is a radius δ which yields the enhanced near-cloaking up to o(δ2N ).

10.4. Near-Cloaking for the Full Maxwell Equations

In this section, the scattering coefficients vanishing approach is used to con-
sider near-cloaking for the full Maxwell equations. As in the previous section, these
S-vanishing structures are, prior to using the transformation optics in Subsection
2.14.4, layered-structures designed so that their first scattering coefficients WTE

n

and WTM
n defined in Subsection 2.14.6.2 vanish. We therefore construct multilay-

ered structures whose scattering coefficients vanish, which are called S-vanishing
structures for the full Maxwell equations.

10.4.1. Scattering Coefficients of Multilayered Structures. The scat-

tering coefficients
(
WTE,TE

(n,m)(p,q),W
TE,TM
(n,m)(p,q),W

TM,TE
(n,m)(p,q),W

TM,TM
(n,m)(p,q)

)
are defined in

Subsection 2.14.6.2, namely, if Ei given as in (2.339), the scattered field E−Ei can
be expanded as (2.340) and (2.341). The transmission condition on each interface
Σj is given by (2.347).

Assume that the core AL+1 is perfectly conducting, namely,

(10.66) E × ν = 0 on ΣL+1 = ∂AL+1.

In Subsection 2.14.6.2, using the symmetry of the layered radial structure, the
scattering coefficients are reduced toWTE

n andWTM
n , given by (2.356) and (2.361).

The multi-layered structure is defined as follows: For positive numbers r1, . . . , rL+1

with 2 = r1 > r2 > · · · rL+1 = 1, let

Aj := {x : rj+1 ≤ |x| < rj}, j = 1, . . . , L,

A0 := R3 \B2,

and

AL+1(= D) := {x : |x| < 1},
where B2 denotes the central ball of radius 2 and

Σj = {|x| = rj}, j = 1, . . . , L+ 1.

Let (µj , ǫj) be the pair of permeability and permittivity parameters of Aj for j =
1, . . . , L+ 1. Set µ0 = 1 and ǫ0 = 1. Then define

(10.67) µ =

L+1∑

j=0

µjχ(Aj) and ǫ =

L+1∑

j=0

ǫjχ(Aj),

which are permeability and permittivity distributions of the layered structure.
To construct the S-vanishing structure at a fixed frequency ω, one looks for

(µ, ǫ) such that

WTE
n [ǫ, µ, ω] = 0, WTM

n [ǫ, µ, ω] = 0, n = 1, . . . , N,
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for some N . More ambitiously one may look for a structure (µ, ǫ) for a fixed ω such
that

WTE
n [µ, ǫ, δω] = 0, WTM

n [µ, ǫ, δω] = 0

for all 1 ≤ n ≤ N and δ ≤ δ0 for some δ0. Such a structure may not exist. So
instead one looks for a structure such that

(10.68) WTE
n [µ, ǫ, δω] = o(δ2N+1), WTM

n [µ, ǫ, δω] = o(δ2N+1),

for all 1 ≤ n ≤ N and δ ≤ δ0 for some δ0. Such a structure is called an S-
vanishing structure of order N at low frequencies. In the following subsection,
the scattering coefficients are expanded at low frequencies and conditions for the
magnetic permeability and the electric permittivity to be an S-vanishing structure
are derived.

Recall that from Lemma 2.119 it follows that there exists δ0 > 0 such that, for
all δ ≤ δ0,

∣∣WTE
n [ε, µ, δω]

∣∣ ≤ C2n

n2n
δ2n+1,(10.69)

for all n ∈ N \ {0}, where the constant C depends on (ε, µ, ω) but is independent
of δ. The same estimate holds for WTM

n .
Suppose now that (µ, ǫ) is an S-vanishing structure of order N at low fre-

quencies. Let the incident wave Ei be given by a plane wave e
√−1δk·xc with

|k| = k0(= ω
√
ε0µ0) and k · c = 0. From (2.344), the corresponding scattering

amplitude, A∞[µ, ǫ, δω](c, k̂ := k/|k|; x̂ := x/|x|), is given by (2.343) with the
following αn,m and βn,m:





αn,m =
4π(

√
−1)n√

n(n+ 1)
(Vn,m(k̂) · c)WTE

n [µ, ǫ, δω],

βn,m = − 4π(
√
−1)n√

n(n+ 1)

1√
−1ωµ0

(Un,m(k̂) · c)WTM
n [µ, ǫ, δω].

Applying (2.345) and (10.68),

(10.70) A∞[µ, ǫ, δω](c, k̂; x̂) = o(δ2N+1)

uniformly in (k̂, x̂) if δ ≤ δ0. Thus using such a structure, the visibility of the
scattering amplitude is greatly reduced.

10.4.2. Asymptotic Expansion of the Scattering Coefficients. The spher-
ical Bessel functions of the first and second kinds have the series expansions

jn(t) =

∞∑

l=0

(−1)ltn+2l

2ll!1× 3× · · · × (2n+ 2l + 1)

and

yn(t) = − (2n)!

2nn!

∞∑

l=0

(−1)lt2l−n−1

2ll!(−2n+ 1)(−2n+ 3) . . . (−2n+ 2l − 1)
.

So, using the notation of double factorials, which is defined by

n!! :=





n× (n− 2)× · · · × 3× 1 if n > 0 is odd,
n× (n− 2)× · · · × 4× 2 if n > 0 is even,
1 if n = −1, 0,
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one has

(10.71) jn(t) =
tn

(2n+ 1)!!

(
1 + o(t)

)
for t≪ 1

and

(10.72) yn(t) = −
(
(2n− 1)!!

)
t−n+1

(
1 + o(t)

)
for t≪ 1.

One now computes PTEn [ǫ, µ, t] for small t. For n ≥ 1,

PTEn [ǫ, µ, t] = (−
√
−1t)L




L∏

j=1

µ
3
2
j ǫ

1
2
j rj






znL
(2n+ 1)!!

tn + o(tn)
−
√
−1Q(n)

zn+1
L

t−n−1

0 0




×
L∏

j=1







√
−1Q(n)n

µj(zjrj)n+1
t−n−1 + o(t−n−1)

√
−1Q(n)

(zjrj)n+1
t−n−1 + o(t−n−1)

−(n+ 1)(zjrj)
n

µj(2n+ 1)!!
tn + o(tn)

(zjrj)
n

(2n+ 1)!!
tn + o(tn)







(zj−1rj)
n

(2n+ 1)!!
tn + o(tn)

−
√
−1Q(n)

(zj−1rj)n+1
t−n−1 + o(t−n−1)

(n+ 1)(zj−1rj)
n

µj−1(2n+ 1)!!
tn + o(tn)

√
−1Q(n)n

µj−1(zj−1rj)n+1
t−n−1 + o(t−n−1)





 ,

where zj =
√
ǫjµj and Q(n) = (2n− 1)!!. One then has

P
TE
n [ǫ, µ, t] =




znL
(2n+ 1)!!

t
n + o(tn)

−
√
−1Q(n)

zn+1

L

t
−n−1 + o(t−n−1)

0 0


×

L∏

j=1




Q(n)znj−1

(2n+ 1)!!znj

(
n+

(n+ 1)µj

µj−1

)(
1 + o(1)

)
(−

√
−1)

(Q(n))2n

znj z
n+1

j−1 r
2n+1

j

(
1− µj

µj−1

)
t
−2n−1

(
1 + o(1)

)

√
−1

znj−1z
n+1

j r2n+1

j (n+ 1)

((2n+ 1)!!)2
(
1− µj

µj−1

)
t
2n+1

(
1 + o(1)

) Q(n)zn+1

j

(2n+ 1)!!zn+1

j−1

(
n+ 1 +

nµj

µj−1

)(
1 + o(1)

)


 .

Similarly, for the transverse magnetic case, one has

P
TM
n [ǫ, µ, t] =



(n+ 1)znL
(2n+ 1)!!

t
n + o(tn)

−
√
−1nQ(n)

zn+1

L

t
−n−1 + o(t−n−1)

0 0


×

L∏

j=1




Q(n)znj−1

(2n+ 1)!!znj

(
(n+

ǫj

ǫj−1

(n+ 1)

)(
1 + o(1)

)
(−

√
−1)

(Q(n))2n

znj z
n+1

j−1 r
2n+1

j

(
1− ǫj

ǫj−1

)
t
−2n−1

(
1 + o(1)

)

√
−1

znj−1z
n+1

j r2n+1

j (n+ 1)

((2n+ 1)!!)2

(
1− ǫj

ǫj−1

)
t
2n+1

(
1 + o(1)

) Q(n)zn+1

j

(2n+ 1)!!zn+1

j−1

(
n+ 1 +

ǫj

ǫj−1

n

)(
1 + o(1)

)


 .

Using the behavior of spherical Bessel functions for small arguments, one can
see that pTEn,1 and pTEn,2 admit the following expansions:

(10.73) pTEn,1 [µ, ǫ, t] = tn

(
N−n∑

l=0

fTEn,l (µ, ǫ)t
2l + o(t2N−2n)

)

and

(10.74) pTEn,2 [µ, ǫ, t] = t−n−1

(
N−n∑

l=0

gTEn,l (µ, ǫ)t
2l + o(t2N−2n)

)
.
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Similarly, pTMn,1 and pTMn,2 have the following expansions:

(10.75) pTMn,1 [µ, ǫ, t] = tn

(
N−n∑

l=0

fTMn,l (µ, ǫ)t2l + o(t2N−2n)

)

and

(10.76) pTMn,2 [µ, ǫ, t] = t−n−1

(
N−n∑

l=0

gTMn,l (µ, ǫ)t2l + o(t2N−2n)

)

for t = δω and some functions fTEn,l , g
TE
n,l , f

TM
n,l , and g

TM
n,l independent of t.

Lemma 10.8. For any pair of (µ, ǫ), one has

(10.77) gTEn,0 (µ, ǫ) 6= 0

and

(10.78) gTMn,0 (µ, ǫ) 6= 0.

Proof. Assume that there exists a pair of (µ, ǫ) such that gTEn,0 (µ, ǫ) = 0.

Since pTEn,2 [µ, ǫ, δω] = o(δ−n−1), the solution given by (2.349) with a0 = 1 and
ã0 = 0 satisfies





∇×
(
1

µ
∇× E

)
− δ2ω2ǫE = 0 in R3 \D,

∇ · E = 0 in R3 \D,
(ν × E)

∣∣
+
= o(δ−(n+1)) on ∂D,

E(x) = h(1)n (δk0|x|)Vn,0(x̂) for |x| > 2.

Let V (x) = limδ→0 δ
n+1E(x). Using (10.72) one knows that the limit V satisfies





∇×
(
1

µ
∇× V

)
= 0 in R3 \D,

∇ · V = 0 in R3 \D,
(ν × V )

∣∣
+
= 0 on ∂D,

V (x) = −
(
(2n− 1)!!)Vn,0(x̂) for |x| > 2.

Since Vn,0(x̂) = O(|x|−1), one gets V (x) = 0 by Green’s formula, which is a
contradiction. Thus gTEn,0 (µ, ǫ) 6= 0. In a similar way, (10.78) can be proved. �

From Lemma 10.8, one obtains the following result.

Proposition 10.9. One has

WTE
n [µ, ǫ, t] = t2n+1

N−n∑

l=0

WTE
n,l [µ, ǫ]t

2l + o(t2N+1)

and

WTM
n [µ, ǫ, t] = t2n+1

N−n∑

l=0

WTM
n,l [µ, ǫ]t2l + o(t2N+1),

where t = δω and the coefficients WTE
n,l [µ, ǫ] and W

TM
n,l [µ, ǫ] are independent of t.
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Hence, if one has (µ, ǫ) such that

(10.79) WTE
n,l [µ, ǫ] =WTM

n,l [µ, ǫ] = 0, for all 1 ≤ n ≤ N, 0 ≤ l ≤ (N − n),

(µ, ǫ) satisfies (10.68); in other words, it is an S-vanishing structure of order N at
low frequencies. It is quite challenging to construct (µ, ǫ) analytically satisfying
(10.79). The next subsection presents some numerical examples of such structures.

10.4.3. Enhancement of Near Cloaking. In this section one constructs a
cloaking structure based on the following lemma.

Lemma 10.10. Let F be an orientation-preserving diffeomorphism of R3 onto
R3 such that F (x) is identity for |x| large enough. If (E,H) is a solution to

(10.80)





∇× E =
√
−1ωµH in R3,

∇×H = −
√
−1ωǫE in R3,

(E − Ei, H −Hi) is radiating,

then (Ẽ, H̃) defined by (Ẽ(y), H̃(y)) =
(
(DF )−TE(F−1(y)), (DF )−TH(F−1(y))

)

satisfies 



∇× Ẽ =
√
−1ω(F∗µ)H̃ in R3,

∇× H̃ = −
√
−1ω(F∗ǫ)Ẽ in R3,

(Ẽ − Ẽi, H̃ − H̃i) is radiating,

where (Ẽi(y), H̃i(y)) =
(
(DF )−TEi(F−1(y)), (DF )−THi(F−1(y))

)
,

(F∗µ)(y) =
DF (x)µ(x)DFT (x)

det(DF (x))
, and (F∗ǫ)(y) =

DF (x)ǫ(x)DFT (x)

det(DF (x))
,

with x = F−1(y) and DF is the Jacobian matrix of F .
Hence,

A[µ, ǫ, ω] = A[F∗µ, F∗ǫ, ω].

To compute the scattering amplitude which corresponds to the material pa-
rameters before the transformation, one considers the following scaling function,
for small parameter δ,

Ψ 1
δ
(x) =

1

δ
x, x ∈ R3.

Then one has the following relation between the scattering amplitudes which cor-
respond to two sets of differently scaled material parameters and frequency:

(10.81) A∞
[
µ ◦Ψ 1

δ
, ǫ ◦Ψ 1

δ
, ω
]
= A∞[µ, ǫ, δω].

To see this, consider (E,H) which satisfies




(∇× E) (x) =
√
−1ω

(
µ ◦Ψ 1

δ

)
(x)H(x) for x ∈ R3 \Bδ,

(∇×H) (x) = −
√
−1ω

(
ǫ ◦Ψ 1

δ

)
(x)E(x) for x ∈ R3 \Bδ,

x̂× E(x) = 0 on ∂Bδ,
(E − Ei, H −Hi) is radiating,

with the incident wave Ei(x) = e
√−1k·xĉ and Hi = 1√−1ωµ0

∇× Ei with k · ĉ = 0

and |k| = k0. Here Bδ is the ball of radius δ centered at the origin. Set y = 1
δx

and define
(
Ẽ(y), H̃(y)

)
:=
((
E ◦Ψ−1

1
δ

)
(y),

(
H ◦Ψ−1

1
δ

)
(y)
)
=
((
E ◦Ψδ

)
(y),

(
H ◦Ψδ

)
(y)
)



366 10. NEAR-CLOAKING

and (
Ẽi(y), H̃i(y)

)
:=
((
Ei ◦Ψδ

)
(y),

(
Hi ◦Ψδ

)
(y)
)
.

Then, one has




(
∇y × Ẽ

)
(y) =

√
−1δωµ(y)H̃(y) for y ∈ R3 \B1(

∇y × H̃
)
(y) = −

√
−1δωǫ(y)Ẽ(y) for y ∈ R3 \B1,

ŷ × Ẽ(y) = 0 on ∂B1,

(Ẽ − Ẽi, H̃ − H̃i) is radiating

Remind that the scattered wave can be represented using the scattering amplitude
as follows:

(E − Ei)(x) ∼ e
√−1k0|x|

k0|x|
A∞

[
µ ◦Ψ 1

δ
, ǫ ◦Ψ 1

δ
, ω
]
(c, k̂; x̂) as |x| → ∞,

and

(Ẽ − Ẽi)(y) ∼ e
√−1k0δ|y|

k0δ|y|
A∞ [µ, ǫ, ω] (c, k̂; x̂) as |y| → ∞.

Since the left-hand sides of the previous equations are coincident, one has (10.81).
Suppose that (µ, ǫ) is an S-vanishing structure of order N at low frequencies as

in Section 10.4. From (10.70) and (10.81), one has

(10.82) A∞
[
µ ◦Ψ 1

δ
, ǫ ◦Ψ 1

δ
, ω
]
(c, k̂; x̂) = o(δ2N+1)

Then, one defines the diffeomorphism Fδ as

Fδ(x) :=





x for |x| ≥ 2,( 3− 4δ

2(1− δ)
+

1

4(1− δ)
|x|
) x
|x| for 2δ ≤ |x| ≤ 2,

(1
2
+

1

2δ
|x|
) x
|x| for δ ≤ |x| ≤ 2δ,

x

δ
for |x| ≤ δ.

One then gets from (10.82) and Lemma 10.10 the main result of this chapter.

Theorem 10.11. If (µ, ǫ) is an S-vanishing structure of order N at low fre-
quencies, then there exists δ0 such that

A∞
[
(Fδ)∗(µ ◦Ψ 1

δ
), (Fδ)∗(ǫ ◦Ψ 1

δ
), ω
]
(c, k̂; x̂) = o(δ2N+1),

for all δ ≤ δ0, uniformly in (k̂, x̂).

Remark that the cloaking structure
(
(Fδ)∗(µ ◦Ψ 1

δ
), (Fδ)∗(ǫ ◦Ψ 1

δ
)
)
in Theorem

10.11 satisfies the perfect electric conductor boundary condition on |x| = 1.

10.4.4. Numerical Implementation. This section provides numerical ex-
amples of S-vanishing structures of order N at low frequencies based on (10.79).
As in previous sections, we use a gradient descent method for a suitable energy func-
tional. We symbolically compute the scattering coefficients. In the place of spherical
Bessel functions and spherical Hankel functions, we use their low-frequency expan-
sions and symbolically compute WTE

n and WTM
n to obtain WTE

n,l and WTM
n,l . We

use Code Near Cloaking for Maxwell’s Equations.

http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial11/11.1 Near Cloaking for Maxwell's Equations.zip
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The following example is an S-vanishing structure of order N = 2 made of 6
multilayers. The radii of the concentric disks are rj = 2 − j−1

6 for j = 1, . . . , 7.

From Proposition 10.9, the nonzero leading terms of WTE
n [µ, ǫ, t] and WTM

n [µ, ǫ, t]
up to t5 are

• [t3, t5] terms in WTE
1 [µ, ǫ, t], i.e., WTE

1,0 ,W
TE
1,1 ,

• [t3, t5] terms in WTM
1 [µ, ǫ, t], i.e., WTM

1,0 ,WTM
1,1 ,

• [t5] term in WTE
2 [µ, ǫ, t], i.e., WTE

2,0 ,

• [t5] term in WTM
2 [µ, ǫ, t], i.e., WTM

2,0 .

Consider the mapping

(10.83) (µ, ǫ) −→ (WTE
1,0 ,W

TE
1,1 ,W

TM
1,0 ,WTM

1,1 ,WTE
2,0 ,W

TM
2,0 ),

where, µ = (µ1, . . . , µ6) and ǫ = (ǫ1, . . . , ǫ6). One looks for (µ, ǫ) which has the
right-hand side of (10.83) as small as possible. Since (10.83) is a nonlinear equation,
one solves it iteratively. Initially, one wets µ = µ(0) and ǫ = ǫ(0). One iteratively
modifies (µ(i), ǫ(i))

(10.84) [µ(i+1) ǫ(i+1)]T = [µ(i) ǫ(i)]T −A†
i b

(i),

where A†
i is the pseudo-inverse of

Ai :=
∂(WTE

1,0 ,W
TE
1,1 , . . . ,W

TM
2,0 )

∂(µ, ǫ)

∣∣∣
(µ,ǫ)=(µ(i),ǫ(i))

,

and

b(i) =




WTE
1,0

WTE
1,1
...

WTM
2,0




∣∣∣∣∣∣∣∣∣
(µ,ǫ)=(µ(i),ǫ(i))

.

Example 1. Figure 10.1 and Figure 10.2 show computational results of 6-layers S-
vanishing structure of orderN = 2. One sets r = (2, 116 , . . . ,

7
6 ), µ

(0) = (3, 6, 3, 6, 3, 6)

and ǫ(0) = (3, 6, 3, 6, 3, 6) and modify them following (10.84) with the constraints
that µ and ǫ belongs to the interval between 0.1 and 10. The obtained material
parameters are µ = (0.1000, 1.1113, 0.2977, 2.0436, 0.1000, 1.8260) and
ǫ = (0.4356, 1.1461, 0.2899, 1.8199, 0.1000, 3.1233), respectively. Differently from
the no-layer structure with the perfect electric conductor condition at |x| = 1, the
obtained multilayer structure has the nearly zero coefficients of WTE

n [µ, ǫ, t] and
WTM
n [µ, ǫ, t] up to t5.

10.5. Near-Cloaking for the Elasticity System

As an application of the elastic scattering coefficients introduced in Subsection
2.15.17.2 we consider the elastic cloaking problem. The aim here is to construct
an effective near cloaking structure at a fixed frequency to make the objects inside
the unit disk invisible. We extend the approach of the previous sections. To this
end, we first design S-vanishing structures by canceling the first elastic scattering
coefficients in the next subsection.
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Figure 10.1. This figure shows the graph of the material pa-
rameters and the corresponding coefficients in WTE

n [µ, ǫ, t] and
WTM
n [µ, ǫ, t] up to t5. The first row is of the no-layer case, and

the second row is of 6-layers S-vanishing structure of order N = 2
which is explained in Example 1. In the third column, the y-axis
shows (WTE

1,0 ,W
TE
1,1 ,W

TM
1,0 ,WTM

1,1 ,WTE
2,0 ,W

TM
2,0 ) from the left to the

right.

10.5.1. S-vanishing Structures. For positive numbers rj (j = 1, 2, . . . , L+
1) with 2 = r1 > r2 > · · · > rL+1 = 1 we construct a multi-layered structure by
defining

A0 :=
{
x ∈ R2 : |x| > 2

}

Aj :=
{
x ∈ R2 : rj+1 ≤ |x| < rj

}
, j = 1, . . . , L

AL+1 :=
{
x ∈ R2 : |x| < 1

}
.

Let (λj , µj , ρj) be the Lamé parameters and densities of Aj for j = 0, . . . , L + 1.
In particular, λ0, µ0 and ρ0 are the parameters of the background medium. In the
sequel, the piecewise constant parameters λ, µ and ρ are redefined as

λ =

L+1∑

j=0

λj χ(Aj), µ =

L+1∑

j=0

µj χ(Aj), and ρ =

L+1∑

j=0

ρj χ(Aj),(10.85)

in accordance with the aforementioned multi-layered structure. The scattering
coefficients Wα,β

m,n =Wα,β
m,n(λ, µ, ρ, ω) can be defined analogously to (2.498) and the

total field u = (u1, u2)
t solves the equation

(10.86) Lλ,µu+ ρω2u = 0 in R2.

Since the multi-layered structure is circularly symmetric it is easy to check that

Wα,β
m,n = 0 for all α, β ∈ {P, S} and n 6= m.

Therefore, we have the following definition of the S-vanishing structures.
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Figure 10.2. This figure shows the graph of WTE
n [µ, ǫ, t] and

WTM
n [µ, ǫ, t] for various values of t. The first row is of the no-

layer case, and the second row if of 6-layers S-vanishing structure
of order N = 2 which is explained in Example 1. The values of
WTE
n andWTM

n are much smaller in the S-vanishing structure than
in the no-layer structure.

Definition 10.12 (S-vanishing Structure). The medium (λ, µ, ρ) defined by
(10.85) is called an S-vanishing structure of order N at frequency ω if Wα,β

n,n = 0
for all |n| ≤ N and α, β ∈ {P, S}. Analogously, it is called an S-vanishing structure
for compressional (resp. shear) waves ifWα,P

n,n = 0 (resp. Wα,S
n,n = 0) for all |n| ≤ N

and α ∈ {P, S}.

In the rest of this subsection we aim to construct an S-vanishing structure for
general elastic waves. To facilitate the later analysis we adopt the notation Tλ,µ
for the surface traction operator ∂/∂ν associated with elastic moduli λ and µ. In
order to design the envisioned structure it suffices to construct (λ, µ, ρ) such that
Wα,β
n := Wα,β

n,n = 0 for all 0 ≤ n ≤ N and α, β ∈ {P, S}. We assume that D is a
cavity, that is, the scattered field u satisfies the traction-free boundary condition
TλL+1,µL+1

u := ∂u/∂ν = 0 on |x| = 1. Note that the two-dimensional surface
traction admits the expression

Tλ,µw = 2µ(ν · ∇w1, ν · ∇w2) + λN ∇ · w + µT (∂2w1 − ∂1w2), w = (w1, w2),

in terms of the normal and tangent vectors N = (n1, n2) and T = (−n1, n2) on the
surface respectively. Here and in the sequel we use the notation Tλ,µw to indicate
the dependance of ∂w/∂ν on the parameters λ and µ. We look for solutions un to
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(10.86) of the form

un(x) = ân,Pj JPn (x)+ â
n,S
j JSn(x)+a

n,P
j HP

n (x)+a
n,S
j HS

n (x), x ∈ Aj , j = 0, . . . , L,

with the unknown coefficients ân,αj , an,αj ∈ C, to be determined later. Intuitively,
one should look for solutions un whose coefficients fulfill the relations

ân,P0 ân,S0 6= 0 and an,P0 = an,S0 = 0 for all n = 0, . . . , N.(10.87)

Note that by (2.496) and (2.497), the scattering coefficients in this case turn out to
be

{
Wα,P
n =

√
−14ρ0c

2
αa

n,α
0 = 0 when ân,P0 = 1 and ân,S0 = 0,

Wα,S
n =

√
−14ρ0c

2
αa

n,α
0 = 0 when ân,P0 = 0 and ân,S0 = 1,

(10.88)

where cP and cS are the pressure and shear wave speeds, respectively. The solution
un satisfies the transmission conditions
(10.89)
un|+ = un|− and Tλj−1,µj−1un|+ = Tλj ,µjun|− on |x| = rj , ∀j = 1, . . . , L.

Fairly easy calculations indicate that on |x| = r

êr · [Tλ,µHP
n (x)] = 2µ

∂2vn(x, κP )

∂r2
+ λ∆vn(x, κP )

= 2µκ2P (H
(1)
n )′′(rκP )e

√−1nϕx − λκ2PH
(1)
n (rκP )e

√−1nϕx

=
1

r2

(
−2µrκp(H

(1)
n )′(rκP ) + (2µn2 − (λ+ 2µ)r2κ2p)H

(1)
n (rκP )

)
e
√−1nϕx ,

=:
1

r2
BPn (rκP , λ, µ)e

√−1nϕx ,

and

êθ · [Tλ,µHP
n (x)] = 2µ

(
− 1

r2
∂vn(x, κP )

∂ϕx
+

1

r

∂2vn(x, κP )

∂r∂ϕx

)

=
1

r2
(2
√
−1µn)

(
−H(1)

n (rκP ) + rκP (H
(1)
n )′(rκP )

)
e
√−1nϕx

=:
1

r2
CPn (rκP , λ, µ)e

√−1nϕx ,

where

BPn (t, λ, µ) := −2µt(H(1)
n )′(t) + (2µn2 − (λ+ 2µ)t2)H(1)

n (t),

CPn (t, λ, µ) := (2
√
−1µn)

(
−H(1)

n (t) + t(H(1)
n )′(t)

)
.

In the sequel, we use the shorthand notation BPn,j = BPn (rjκP , λj , µj) and C
P
n,j =

CPn (rjκP , λj , µj) for simplicity. It holds that

Tλj ,µjH
P
n (x) =

1

r2j

(
BPn,j Pn(x̂) + CPn,j Sn(x̂)

)
on |x| = rj .

Analogously, we obtain

Tλj ,µj
HS
n (x) =

1

r2j

(
BSn,j Pn(x̂) + CSn,j Sn(x̂)

)
on |x| = rj ,
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with

BSn,j =B
S
n (t)

∣∣
t=rjκS

:= (2
√
−1µn)

(
H(1)
n (rjκS) + rjκS

(
H(1)
n

)′
(rjκS)

)
,

CSn,j =C
S
n (t)

∣∣
t=rjκS

:= 2µ(rjKS)
(
H(1)
n

)′
(rjκS) +

(
−2µn2 + 3µ(rjκS)

2H(1)
n (rjκS)

)
,

and

Tλj ,µj
Jαn(x) =

1

r2j

(
B̂αn,j Pn(x̂) + Ĉαn,j Sn(x̂)

)
, α = P, S,

where B̂αn,j and Ĉαn,j are defined in the same way as Bαn,j and Cαn,j with H
(1)
n

replaced by Jn. Hence, the transmission conditions in (10.89) can be written as

(10.90)
1

r2j−1

Mn,j−1(â
n,P
j−1, â

n,S
j−1, a

n,P
j−1, a

n,S
j−1)

t =
1

r2j
Mn,j(â

n,P
j , ân,Sj , an,Pj , an,Sj )t,

for j = 1, . . . , L, where Mn,j , j = 0, . . . , L, n = 0, . . . , N , is the 4× 4 matrix defined
by

Mn,j :=




tj,PJ
′
n(tj,P )

√
−1nJn(tj,S) tj,P (H

(1)
n )′(tj,P )

√
−1nH

(1)
n (tj,S)√

−1nJn(tj,P ) −tj,SJ
′
n(tj,S) inH

(1)
n (tj,P ) −tj,SH(1)

n (tj,S)

B̂Pn,j(tj,P ) B̂Sn,j(tj,S) BPn,j(tj,P ) BSn,j(tj,S)

ĈPn,j(tj,P ) ĈSn,j(tj,P ) CSn,j(tj,S) CSn,j(tj,S)



,

tj,α := rjκα.

The traction-free boundary condition on |x| = rL+1 = 1 amounts to

(10.91) Mn,L+1(â
n,P
L , ân,SL , an,PL , an,SL )t = (0, 0, 0, 0)t,

for n = 0, . . . , N with

Mn,L+1 :=




0 0 0 0
0 0 0 0

B̂Pn,L B̂Sn,L BPn,L BSn,L
ĈPn,L ĈSn,L CPn,L CSn,L


 .

Combining (10.90) and (10.91) we obtain




Q(n)(ân,P0 , ân,S0 , an,P0 , an,S0 )t = (0, 0, 0, 0)t,

Q(n) = Q(n)(λ, µ, ρω2) :=

(
rL
r0

)2

Mn,L+1

×∏L
j=1 M

−1
n,jMn,j−1 =

(
0 0

Q
(n)
21 Q

(n)
22

)
,

(10.92)

where Q
(n)
21 ,Q

(n)
22 are 2× 2 matrix functions of λ, µ and ρω2.

Exactly like the acoustic case in Section 10.3 one can show that the determinant

of Q
(n)
22 is non-vanishing. Therefore, it suffices to look for the parameters λj , µj , ρj

(j = 1, 2, . . . , L) from the nonlinear algebraic equations

(Q
(n)
21 )i,k(λ, µ, ρω

2) = 0, i, k = 1, 2, n = 1, 2 . . . .

We are interested in a nearly S-vanishing structure of order N at low frequencies,
that is, a structure (λ, µ, ρ) such that

Wα,β
n (λ, µ, ρ, ω) = o(ω2N ) for all α, β ∈ {P, S}, |n| ≤ N, as ω → 0.
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To this end, we need to study the asymptotic behavior of Wα,β
n (λ, µ, ρ, ω) as ω

tends to zero. In view of (10.88) and (10.92) we find out that

(10.93)
(Wα,P

n ,Wα,S
n )t =

√
−14ρ0c

2
α (a

n,P
0 , an,S0 )t

= −
√
−14ρ0c

2
α (Q

(n)
22 )−1 Q

(n)
21 (ân,P0 , ân,S0 )t

where ân,P0 and ân,S0 are selected depending on (10.88).
Let Wn denote the 2× 2 matrix

Wn =

(
WP,P
n WS,P

n

WP,S
n WS,S

n

)
.

Then, the following result based on relation (10.93) elucidates the low frequency
asymptotic behavior of Wn.

Theorem 10.13. For all n ∈ N, we have

Wn(λ, µ, ρ, ω) = ω2n


Vn,0(λ, µ, ρ) +

N−n∑

l=0

(L+1)l∑

j=0

ω2l (lnω)j Vn,l,j(λ, µ, ρ)


+Υn

(10.94)

as ω → 0, where the matrices Vn,0 and Vn,l,j are defined by

Vn,0 =

(
VP,P
n,0 VS,P

n,0

VP,S
n,0 VS,S

n,0

)
and Vn,l,j =

(
VP,P
n,l,j VS,P

n,l,j

VP,S
n,l,j VS,S

n,l,j ,

)

in terms of some V α,βn,0 and V α,βn,l,j dependent on λ, µ, ρ but independent of ω. The

residual matrix Υn = (Υnik)i,k=1,2 is such that |Υnik| ≤ Cω2N , for all i, k = 1, 2,
where the constant C ∈ R+ is independent of ω.

The analytic expressions of the quantities Vα,β
n,0 and Vα,β

n,l,j in terms of λj ,
µj and ρj are very complicated, but can be extracted by, for example, using the
symbolic toolbox of MATLAB. Theorem 10.13 follows from (10.93) and the low-

frequency asymptotics of Q
(n)
22 (λ, µ, ρω2) and Q

(n)
21 (λ, µ, ρω2) as ω → 0. The latter

can be derived based on the definition given in (10.92) in combination with the
expansion formulas for Bessel and Neumann functions and their derivatives for small
arguments. For the sake of completeness below we sketch the proof of Theorem
10.13.

Proof of Theorem 10.13. Recall that for t→ 0

Jn(t) =
tn

2nΓ(n+ 1)
+O(tn+1),

J ′
n(t) =

ntn−1

2nΓ(n+ 1)
+O(tn+1),

Yn(t) =− 2nΓ(n)

πtn
+O(t−n+1),

Y ′
n(t) =

2nΓ(n+ 1)

πtn+1
+O(t−n).
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Hence, by the definition of Bαn (t, λ, µ), C
α
n (t, λ, µ), B̂

α
n (t, λ, µ) and Ĉαn (t, λ, µ), we

have

BPn (t, λ, µ) = −CSn (t, λ, µ) = −
√
−1µ2n+1Γ(n+ 1)

πtn
+O(t−n+1)

CPn (t, λ, µ) = −BSn (t, λ, µ) = −µn2
n+1Γ(n+ 1)

πtn
+O(t−n+1)

B̂Pn (t, λ, µ) = −ĈSn (t, λ, µ) = −
√
−1µntn

2n−1Γ(n+ 1)
+O(tn+1)

ĈPn (t, λ, µ) = −B̂Sn (t, λ, µ) = − µn2tn

2n−1Γ(n+ 1)
+O(tn+1),

as t → 0. Inserting the previous asymptotic behavior into the expression of Mn,j

we get

Mn,j =

(
A11 A12

A21 A22

)
(10.95)

where

A11 =
n

2nΓ(n+ 1)

(
tn−1
j,P

√
−1tnj,S√

−1tnj,P −tn−1
j,S

)
+O(ωn),

A12 =
2nΓ(n+ 1)

π

(√
−1t−n−1

j,P t−nj,S
t−nj,P −

√
−1t−n−1

j,S

)
+O(ω−n),

A21 = − µn

2n−1Γ(n+ 1)

(√
−1tnj,P ntnj,S
ntnj,P −

√
−1tn−1

j,S

)
+O(ωn+1),

A22 = −2n+1µΓ(n+ 1)

π

(√
−1t−nj,P t−nj,S
t−nj,P −

√
−1t−n−1

j,S

)
+O(ω−n+1).

This implies that

Mn,j =

(
O(ωn−1) O(ω−n−1)

O(ωn) O(ω−n)

)
, j = 1, . . . , L,(10.96)

Mn,L =

(
0 0

O(ωn) O(ω−n)

)
as ω → 0.(10.97)

Moreover, the inverse of Mn,j can be expressed as

M−1
n,j =

(
A−1

11 +A−1
11 A12B

−1A21A
−1
11 −A−1

11 A12B
−1

−B−1A21A
−1
11 B−1

)
,

where B is the Schur complement of A22, that is,

B := A22 −A21A
−1
11 A12.

Since

A−1
11 = O(ω−n+1), A−1

11 A12 = O(ω−2n), A21A
−1
11 = O(ω) and B−1 = O(ωn),

it follows that

M−1
n,j =

(
O(ω−n+1) O(ω−n)

O(ωn+1) O(ωn)

)
as ω → 0.(10.98)
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Inserting (10.96), (10.97) and (10.98) into the expression (10.92) of Q(n) and
then making use of the series expansions of Jn, Yn, J

′
n and Y ′

n we find out that

Q
(n)
21 (λ, µ, ρω2) = ωn


Γn,0(λ, µ, ρ) +

N−n∑

l=1

L+1∑

j=0

Γ
(j)
n,l(λ, µ, ρ)ω

2l(lnω)j + o
(
ω2(N−n)

)



Q
(n)
22 (λ, µ, ρω2) = ω−n


Hn,0(λ, µ, ρ) +

N−n∑

l=1

L+1∑

j=0

H
(j)
n,l (λ, µ, ρ)ω

2l(lnω)j + o
(
ω2(N−n)

)

 ,

which together with (10.93) yields (10.94). Here, the remaining o(ω2(N−n)) terms
are understood element-wisely for the matrices. �

In order to construct a nearly S-vanishing structure of order N at low frequen-
cies, thanks to Theorem 10.13 we need to determine the parameters λj , µj and ρj
from the equations

Vα,β
n,0 (λ, µ, ρ) = Vα,β

n,l,j(λ, µ, ρ) = 0,

for all 0 ≤ n ≤ N , 1 ≤ l ≤ (N−n), 1 ≤ j ≤ (L+1)l and α, β ∈ {P, S}. Numerically,
this can be achieved by applying, for example, the gradient descent method to the
minimization problem

min
λj ,µj ,ρj

∑

α,β∈{P,S}




∣∣∣Vα,β

n,0

∣∣∣
2

+

N−n∑

l=0

(L+1)l∑

j=0

∣∣∣Vα,β
n,l,j

∣∣∣
2



 .

10.5.2. Enhancement of Near Cloaking. The aim of this section is to show
that the nearly S-vanishing structures constructed in Subsection 10.5.1 can be used
to enhance the cloaking effect in elasticity. The enhancement of near cloaking
is based on the idea of transformation optics used in the previous sections. Let
(λ, µ, ρ) be a nearly S-vanishing structure of order N at low frequencies, taking the
form of (10.85). This implies that for some fixed ω > 0 there exists ǫ0 > 0 such
that ∣∣Wα,β

m,n[λ, µ, ρ, ǫω]
∣∣ = o(ǫ2N ), |n| ≤ N, ǫ ≤ ǫ0.

On the other hand, recall from the proof of Lemma 2.145 that

∣∣Wα,β
n [λ, µ, ρ, ǫω]

∣∣ ≤
C

2|n|−2
α,β

|n|2|n|−2
ǫ2|n|−2(10.99)

≤
C

2|n|−2
α,β

|n|2|n|−2
ǫ2N−2 for all |n| ≥ N, ǫ ≤ ǫ0.(10.100)

Hence, by Theorem 2.146, the far-field elastic scattering amplitudes can be esti-
mated by

u∞
α [λ, µ, ρ, ǫω](x̂, x̂′) = o(ǫ2N−2), α = P, S, as ǫ→ 0(10.101)

uniformly in all observation directions x̂ and incident directions x̂′. Introduce the
transformation on R2:

Ψǫ(x) :=
1

ǫ
x, x ∈ R2.

Then arguing as in the acoustic and electromagnetic case we have

u∞
α [λ ◦Ψǫ, µ ◦Ψǫ, ρ ◦Ψǫ, ω] = u∞

α [λ, µ, ρ, ǫω] = o(ǫ2N−2) for all ǫ ≤ ǫ0.
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Note that the medium (λ◦Ψǫ, µ◦Ψǫ, ρ◦Ψǫ) is a homogeneous multi-coated structure
of radius 2ǫ.

We now apply the transformation invariance of the Lamé system to the medium
(λ ◦Ψǫ, µ ◦Ψǫ, ρ ◦Ψǫ). Recall that the elastic wave propagation in such a homoge-
neous isotropic medium can be restated as

∇ · (C : ∇u) + ω2(ρ ◦Ψǫ)u = 0 in R2,

where C = (Cijkl)
N
i,j,k,l=1 is the fourth-rank stiffness tensor defined by

Cijkl(x) = (λ ◦Ψǫ) δi,jδk,l + (µ ◦Ψǫ) (δi,kδj,l + δi,lδj,k),(10.102)

and the action of C on a matrix A = (aij)i,j=1,2 is defined as

C : A = (C : A)2i,j=1 =


 ∑

k,l=1,2

Cijkl akl



i,j=1,2

.(10.103)

In the case of a generic anisotropic elastic material, the stiffness tensor satisfies the
following symmetries
(10.104)
major symmetry: Cijkl = Cklij , minor symmetries: Cijkl = Cjikl = Cijlk,

for all i, j, k, l = 1, 2. Let x̃ = (x̃1, x̃2) = Fǫ(x) : R2 → R2 be a bi-Lipschitz and
orientation-preserving transformation such that Fǫ({|x| < ǫ}) = {|x̃| < 1} and the
region |x| ≥ 2 remains invariant under the transformation. This implies that we
have blown up a small traction-free disk of radius ǫ < 1 to the unit disk centered
at the origin. The push-forwards of C and ρ are defined respectively by

(Fǫ)∗C :=Ĉ =
(
Ĉiqkp(x̃)

)2
i,q,k,p=1

=


 1

det(M)




∑

l,j=1,2

Cijkl
∂x̃p
∂xl

∂x̃q
∂xj





∣∣∣∣
x=F−1

ǫ (x̃)



i,q,k,p=1,2

,

(Fǫ)∗ρ :=ρ̂ =

(
ρ

det(M)

) ∣∣∣∣
x=F−1

ǫ (x̃)

, M =

(
∂x̃i
∂xj

)

i,j=1,2

.

We need the following lemma (see, for instance, [266, 352]).

Lemma 10.14. The function u is a solution to ∇· (C : ∇u)+ω2ρu = 0 in R2 if

and only if û = u◦ (Fǫ)−1 satisfies ∇̂ · (Ĉ : ∇̂û)+ω2ρ̂û = 0 in R2, where ∇̂ denotes
the gradient operator with respect to the transformed variable x̃.

Applying the above lemma to the Lamé system (10.102) we obtain the following
result.

Theorem 10.15. If (λ, µ, ρ) is a nearly S-vanishing structure of order N at
low frequencies, there exists ǫ0 > 0 such that

u∞
α [(Fǫ)∗C, (Fǫ)∗(ρ ◦Ψǫ), ω](x, x′) = o(ǫ2N−2), α = P, S,

for all ǫ < ǫ0, uniformly in all x and x′. Here the stiffness tensor C is defined by
(10.102). Moreover, an elastic medium ((Fǫ)∗C, (Fǫ)∗(ρ ◦ Ψǫ)) in 1 < |x| < 2 is a
nearly cloaking device for the hidden region |x| < 1.

Theorem 10.15 implies that for any frequency ω and any integer number N
there exist ǫ0 = ǫ0(ω,N) > 0 and the elastic medium ((Fǫ)∗C, (Fǫ)∗(ρ ◦ Ψǫ)) with
ǫ < ǫ0 such that the nearly cloaking enhancement can be achieved at the order
o(ǫ2N−2). We finish this section with the following remarks.
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Remark 10.16. Unlike the acoustic and electromagnetic case, the transformed
elastic tensor (Fǫ)∗C is not anisotropic, since it possesses the major symmetry only.
Note that the transformed mass density (Fǫ)∗(ρ◦Ψǫ) is still isotropic. In fact, it has
been pointed out by Milton, Briane and Willis [352] that the invariance of the Lamé
system can be achieved only if one relaxes the assumption on the minor symmetry of
the transformed elastic tensor. This has led Norris and Shuvalov [372] and Parnell
[393] to explore the elastic cloaking by using Cosserat material or by employing
non-linear pre-stress in a neo-Hookean elastomeric material.

Remark 10.17. We have designed an enhanced nearly cloaking device for gen-
eral incoming elastic plane waves. A device for cloaking only compressional or shear
waves can be analogously constructed by using the corresponding elastic scattering
coefficients.

10.6. Concluding Remarks

In this chapter, near-cloaking examples for electromagnetic and acoustic waves
have been shown. Based on the scattering coefficients vanishing approach, cloaking
devices that achieve an enhanced interior cloaking effect have been designed. Such
cloaking devices have been obtained via blow-up using the transformation optics of
multicoated domains. The cloaking devices have anisotropic material parameters.
Nevertheless, they can be approximated by concentric isotropic homogeneous coat-
ings [409]. For wave propagation problems, when considering near-cloaking for the
Helmholtz or Maxwell equations, it was proved in [38] that cloaking is increasingly
difficult as the cloaked object becomes bigger or the operating frequency becomes
higher. The difficulty scales proportionally to the object diameter of the frequency.
Another important observation made in [38] is that the reduction factor of the
scattering cross-section is higher in the backscattering region than in the forwarded
one. This is due to the creeping waves propagating in the shadow region. As a
consequence, the cloaking problem becomes easier if only scattered waves at cer-
tain angles are visible. The constructions proposed in this chapter can be extended
to the enhanced reshaping problem. In [38], it was also shown how to make any
target look like a disc with homogeneous physical parameters.



CHAPTER 11

Anomalous Resonance Cloaking and Shielding

11.1. Introduction

In this chapter, we consider the dielectric problem with a source term, which
models the quasi-static (zero-frequency) transverse magnetic regime. The cloaking
of the source is achieved in a region external to a plasmonic structure. The plas-
monic structure consists of a shell having relative permittivity −1 +

√
−1δ with δ

modeling losses.
The cloaking issue is directly linked to the existence of anomalous localized

resonance (ALR), which is tied to the fact that an elliptic system of equations
can exhibit localization effects near the boundary of ellipticity. The plasmonic
structure exhibits ALR if, as the loss parameter δ goes to zero, the magnitude of
the quasi-static in-plane electric field diverges throughout a specific region (with
sharp boundary not defined by any discontinuities in the relative permittivity),
called the anomalous resonance region, but converges to a smooth field outside
that region. The anomalous feature of the resonance is that it is not associated to a
finite dimensional eigenvalue and a forcing term at or near the resonant frequency.
Instead, the resonance here is associated to an infinite dimensional kernel of the
limiting (non-elliptic) operator. The localized feature of the resonance refers to the
fact that the resonance is spatially localized.

To state the problem, let Ωe be a bounded domain in R2 and let Ωi be a domain
whose closure is contained in Ωe. Throughout this chapter, we assume that Ωe and
Ωi are smooth. For a given loss parameter δ > 0, the permittivity distribution in
R2 is given by

(11.1) εδ =





1 in R2 \ Ωe ,
−1 +

√
−1δ in Ωe \ Ωi ,

1 in Ωi .

We may consider the configuration as a core with permittivity 1 coated by the shell
Ωe \ Ωi with permittivity −1 +

√
−1δ. This structure is called a superlens. It is

inserted into a medium with permittivity 1. It turns out that quite interesting
behavior happens in the limit as δ → 0. The superlens acts as an exterior cloaking
device for certain sources since the resonance cancels the effect of those sources.

For a given function f compactly supported in R2 satisfying

(11.2)

∫

R2

fdx = 0

(which physically is required by conservation of charge), we consider the following
dielectric problem:

(11.3) ∇ · εδ∇Vδ = αf in R2 ,

377
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with the decay condition Vδ(x) → 0 as |x| → ∞.
A fundamental problem is to identify those sources f such that when α = 1

then first

(11.4) Eδ :=

∫

Ωe\Ωi

δ|∇Vδ|2dx→ ∞ as δ → 0 .

and second Vδ remains bounded outside some radius a:

(11.5) |Vδ(x)| < C, when |x| > a

for some constants C and a independent of δ (which requires that the ball Ωa :=
{|x| < a} contains the entire region of anomalous localized resonance). The quantity
Eδ is proportional to the electromagnetic power dissipated into heat by the time
harmonic electrical field averaged over time. Hence (11.4) implies an infinite amount
of energy dissipated per unit time in the limit δ → 0 which is unphysical. If instead
we choose α = 1/

√
Eδ then the source αf will produce the same power independent

of δ and the new associated solution Vδ (which is the previous solution Vδ multiplied
by α) will approach zero outside the radius a: cloaking due to anomalous localized
resonance (CALR) occurs. The conditions (11.4) and (11.5) are sufficient to ensure
CALR: a necessary and sufficient condition is that (with α = 1) Vδ/

√
Eδ goes to

zero outside some radius as δ → 0. We also consider a weaker blow-up of the energy
dissipation, namely,

(11.6) lim sup
δ→0

Eδ = ∞ .

We say that weak CALR takes place if (11.6) holds (in addition to (11.5)). Then the
(renormalized) source f/

√
Eδ will be essentially invisible for an infinite sequence of

small values of δ tending to zero (but would be visible for values of δ interspersed
between this sequence if CALR does not additionaly hold).

The aim of this chapter is to review a general method based on the poten-
tial theory to study cloaking due to anomalous resonance. Using layer potential
techniques, we reduce the problem to a singularly perturbed system of integral
equations. The system is non-self-adjoint. A symmetrization technique can be ap-
plied in the general case. In the case of an annulus (Ωi is the disk of radius ρi and
Ωe is the concentric disk of radius ρe), it is known [353] that there exists a critical
radius (the cloaking radius)

(11.7) ρ⋆ =
√
ρ3eρi

−1 .

such that any finite collection of dipole sources located at fixed positions within the
annulus Ωρ⋆ \Ωe is cloaked. We show that if f is an integrable function supported

in E ⊂ Ωρ⋆ \Ωe satisfying (11.2) and the Newtonian potential of f does not extend
as a harmonic function in Ωρ⋆ , then weak CALR takes place. Moreover, we show
that if the Fourier coefficients of the Newtonian potential of f satisfy a mild gap
condition, then CALR takes place. Conversely we show that if the source function
f is supported outside Ωρ⋆ then (11.4) does not happen and no cloaking occurs.

In this chapter, we also show that a cylindrical superlens can also act as a new
kind of electrostatic shielding device if the core is eccentric to the shell. Electrostatic
shielding is the phenomenon that is observed when a Faraday cage operates to block
the effects of an electric field. Such a cage can block the effects of an external field
on its internal contents, or the effects of an internal field on the outside environment.
While such a conventional device shields a region enclosed by the device, a superlens
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with an eccentric core can shield a non-coated region which is located outside the
device. Moreover, the size of the shielded region can be arbitrarily large while that
of the device is fixed. We call this phenomenon shielding at a distance. The key
element to study in the eccentric case is the Möbius transformation via which a
concentric annulus is transformed into an eccentric one. We also provide various
numerical examples to show the cloaking and shielding effects due to anomalous
resonance.

This chapter is organized as follows. In Section 11.2 we transform the problem
into a system of integral equations using layer potentials. In Section 11.3, we treat
the special case of an annulus. In Section 11.4 we investigate the conditions required
for shielding at a distance and geometric features such as the location and size of
the shielded region. The results on cloaking are from [31] and those on shielding
at a distance are from [460]. As shown in this chapter, plasmonic resonance effects
have many applications in cloaking and shielding. This is one of the reasons why the
development of negative index metamaterials is another very much-studied research
area [141, 142, 325, 433].

11.2. Layer Potential Formulation

As in Chapter 2, for ∂Ωi or ∂Ωe, we denote, respectively, the single and double
layer potentials of a function φ ∈ L2 as S0

Ωi
[φ] and D0

Ωe
[φ]. We also introduce the

associated Neumann-Poincaré operators K0
Ωi

and K0
Ωe

.
Let F be the Newtonian potential of f , i.e.,

(11.8) F (x) =

∫

R2

Γ(x, y)f(y)dy, x ∈ R2 .

Then F satisfies ∆F = f in R2, and the solution Vδ to (11.3) may be represented
as

(11.9) Vδ(x) = F (x) + S0
Ωi
[φi](x) + S0

Ωe
[φe](x)

for some functions φi ∈ L2
0(∂Ωi) and φe ∈ L2

0(∂Ωe) (L
2
0 is the collection of all square

integrable functions with the integral zero). The transmission conditions along the
interfaces ∂Ωe and ∂Ωi satisfied by Vδ read

(−1 +
√
−1δ)

∂Vδ
∂ν

∣∣∣
+
=
∂Vδ
∂ν

∣∣∣
−

on ∂Ωi ,

∂Vδ
∂ν

∣∣∣
+
= (−1 +

√
−1δ)

∂Vδ
∂ν

∣∣∣
−

on ∂Ωe .

Hence the pair of potentials (φi, φe) is the solution to the following system of integral
equations:





(−1 +
√
−1δ)

∂S0
Ωi
[φi]

∂νi

∣∣∣
+
− ∂S0

Ωi
[φi]

∂νi

∣∣∣
−
+ (−2 +

√
−1δ)

∂S0
Ωe

[φe]

∂νi
= (2−

√
−1δ)

∂F

∂νi
on ∂Ωi ,

(2−
√
−1δ)

∂S0
Ωi
[φi]

∂νe
+
∂S0

Ωe
[φe]

∂νe

∣∣∣
+
− (−1 +

√
−1δ)

∂S0
Ωe

[φe]

∂νe

∣∣∣
−
= (−2 +

√
−1δ)

∂F

∂νe
on ∂Ωe .

Note that we have used the notation νi and νe to indicate the outward normal on
∂Ωi and ∂Ωe, respectively. Using the jump formula (2.8) for the normal derivative
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of the single layer potentials, the above equations can be rewritten as

(11.10)



−zδI + (K0

Ωi
)∗

∂

∂νi
S0
Ωe

∂

∂νe
S0
Ωi

zδI + (K0
Ωe

)∗



[
φi
φe

]
= −




∂F

∂νi
∂F

∂νe




on L2
0(∂Ωi)× L2

0(∂Ωe), where we set

(11.11) zδ =

√
−1δ

2(2−
√
−1δ)

.

Note that the operator in (11.10) can be viewed as a compact perturbation of the
operator

(11.12) Rδ :=

[−zδI + (K0
Ωi
)∗ 0

0 zδI + (K0
Ωe

)∗

]
.

From Lemma 2.2, it follows that the eigenvalues of (K0
Ωi
)∗ and (K0

Ωe
)∗ lie in

the interval (− 1
2 ,

1
2 ]. Observe that zδ → 0 as δ → 0 and that there are sequences

of eigenvalues of (K0
Ωi
)∗ and (K0

Ωe
)∗ approaching 0 since (K0

Ωi
)∗ and (K0

Ωe
)∗ are

compact. So 0 is the essential singularity of the operator valued meromorphic
function

λ ∈ C 7→ (λI + (K0
Ω)

∗)−1 .

This causes a serious difficulty in dealing with (11.10). We emphasize that (K0
Ωe

)∗

is not self-adjoint in general. In fact, (K0
Ωe

)∗ is self-adjoint only when ∂Ωe is a circle
(or a sphere in three dimensions).

Let H = L2(∂Ωi)×L2(∂Ωe). We write (11.10) in a slightly different form. We
first apply the operator [

−I 0
0 I

]
: H → H

to (11.10). Then the equation becomes

(11.13)



zδI − (K0

Ωi
)∗ − ∂

∂νi
S0
Ωe

∂

∂νe
S0
Ωi

zδI + (K0
Ωe

)∗



[
φi
φe

]
=




∂F

∂νi

− ∂F

∂νe


 .

Let the Neumann-Poincaré-type operator K∗ : H → H be defined by

(11.14) K∗ :=



−(K0

Ωi
)∗ − ∂

∂νi
S0
Ωe

∂

∂νe
S0
Ωe

(K0
Ωe

)∗


 ,

and let

(11.15) Φ :=

[
φi
φe

]
, g :=




∂F

∂νi

− ∂F

∂νe


 .

Then, (11.13) can be rewritten in the form

(11.16) (zδI+K∗)[Φ] = g ,
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where I is given by

I =

[
I 0
0 I

]
.

11.3. Anomalous Resonance in an Annulus

In this section we consider the anomalous resonance when the domains Ωe and
Ωi are concentric disks. We calculate the explicit form of the limiting solution.
Throughout this section, we set Ωe = {|x| < ρe} and Ωi = {|x| < ρi}, where
ρe > ρi.

According to (2.44) and (2.45), if Φ is given by

Φ =
∑

n 6=0

[
φni
φne

]
e
√−1nθ ,

then

K∗[Φ] =
∑

n 6=0




(ρi/ρe)
|n|−1

2
φne

(ρi/ρe)
|n|+1

2
φni


 e

√−1nθ .

Thus, if g is given by

g =
∑

n 6=0

[
gni
gne

]
e
√−1nθ ,

the integral equations (11.16) are equivalent to

(11.17)





zδφ
n
i +

(ρi/ρe)
|n|−1

2
φne = gni ,

zδφ
n
e +

(ρi/ρe)
|n|+1

2
φni = gne ,

for every |n| ≥ 1. It is readily seen that the solution Φ = (φi, φe) to (11.17) is given
by

φi = 2
∑

n 6=0

2zδg
n
i − (ρi/ρe)

|n|−1gne
4z2δ − (ρi/ρe)2|n|

e
√−1nθ ,

φe = 2
∑

n 6=0

2zδg
n
e − (ρi/ρe)

|n|+1gni
4z2δ − (ρi/ρe)2|n|

e
√−1nθ .

If the source is located outside the structure, i.e., f is supported in R2 \ Ωe,
then the Newtonian potential of f , F , is harmonic in Ωe and

(11.18) F (x) = c−
∑

n 6=0

gne

|n|ρ|n|−1
e

r|n|e
√−1nθ ,

for |x| ≤ ρe, where g is defined by (11.15). Thus we have

(11.19) gni = −gne (ρi/ρe)|n|−1 .

Here, gne is the Fourier coefficient of − ∂F
∂νe

on Γe, or in other words,

(11.20) − ∂F

∂νe
=
∑

n 6=0

gne e
√−1nθ .
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We then get

(11.21)





φi = −2
∑

n 6=0

(2zδ + 1)(ρi/ρe)
|n|−1gne

4z2δ − (ρi/ρe)2|n|
e
√−1nθ ,

φe = 2
∑

n 6=0

(2zδ + (ρi/ρe)
2|n|)gne

4z2δ − (ρi/ρe)2|n|
e
√−1nθ .

Therefore, from (2.37) we find that
(11.22)

S0
D[φi](x)+S0

Ω[φe](x) =
∑

n 6=0

2(ρ
2|n|
i − ρ

2|n|
e )zδ

|n|ρ|n|−1
e (4z2δ − (ρi/ρe)2|n|)

gne
r|n|

e
√−1nθ, ρe < r = |x| ,

and

S0
D[φi](x) = −

∑

n 6=0

ρ
2|n|
i (2zδ + 1)

|n|ρ|n|−1
e ((ρi/ρe)2|n| − 4z2δ )

gne
r|n|

e
√−1nθ, ρi < r = |x| < ρe ,

(11.23)

S0
Ω[φe](x) =

∑

n 6=0

(2zδ + (ρi/ρe)
2|n|)

|n|ρ|n|−1
e ((ρi/ρe)2|n| − 4z2δ )

gne r
|n|e

√−1nθ, ρi < r = |x| < ρe .

(11.24)

We next obtain the following lemma which provides essential estimates for the
investigation of this section.

Lemma 11.1. There exists δ0 such that

(11.25) Eδ :=

∫

Ωe\Ωi

δ|∇Vδ|2 ≈
∑

n 6=0

δ|gne |2
|n|( δ24 + (ρi/ρe)2|n|)

uniformly in δ ≤ δ0.

Proof. Using (11.18), (11.23), and (11.24), one can see that

Vδ(x) = c+ ρe
∑

n 6=0

[
ρ
2|n|
i

r|n|
(2zδ + 1)− (4z2δ + 2zδ)r

|n|
]

gne e
√−1nθ

|n|ρ|n|e (4z2δ − (ρi/ρe)2|n|)
.

Then straightforward computations yield that

Eδ ≈ ρ2e
∑

n 6=0

δ(1− (ρi/ρe)
2|n|)

∣∣∣∣
2zδ + 1

4z2δ + (ρi/ρe)2|n|

∣∣∣∣
2

(4|zδ|2 − (ρi/ρe)
2|n|)

|gne |2
|n| .

If δ is sufficiently small, then one can also easily show that

|4z2δ − (ρi/ρe)
2|n|| ≈ δ2

4
+ (ρi/ρe)

2|n| .

Therefore we get (11.25) and the proof is complete. �

We next investigate the behavior of the series in the right-hand side of (11.25).
Let

(11.26) Nδ =
ln(δ/2)

ln(ρi/ρe)
.
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If |n| ≤ Nδ, then (δ/2) ≤ (ρi/ρe)
|n|, and hence

(11.27)
∑

n 6=0

δ|gne |2
|n|( δ24 + (ρi/ρe)2|n|)

≥
∑

0 6=|n|≤Nδ

δ|gne |2
|n|( δ24 + (ρi/ρe)2|n|)

≥ 1

2

∑

0 6=|n|≤Nδ

δ|gne |2
|n|(ρi/ρe)2|n|

.

Suppose that

(11.28) lim sup
|n|→∞

|gne |2
|n|(ρi/ρe)|n|

= ∞.

Then there is a subsequence {nk} with |n1| < |n2| < . . . such that

(11.29) lim
k→∞

|gnk
e |2

|nk|(ρi/ρe)|nk| = ∞.

If we take δ = 2(ρi/ρe)
|nk|, then Nδ = |nk| and

(11.30)
∑

0 6=|n|≤Nδ

δ|gne |2
|n|(ρi/ρe)2|n|

= (ρi/ρe)
|nk|

∑

0 6=|n|≤|nk|

|gne |2
|n|(ρi/ρe)2|n|

≥ |g|nk|
e |2

|nk|(ρi/ρe)|nk| .

Thus we obtain from (11.25) that

(11.31) lim
k→∞

E(ρi/ρe)
|nk| = ∞ .

We emphasize that (11.28) is not enough to guarantee (11.4). We now impose
an additional condition for CALR to occur. We assume that {gne } satisfies the
following gap property:

GP : There exists a sequence {nk} with |n1| < |n2| < . . . such that

lim
k→∞

(ρi/ρe)
|nk+1|−|nk| |gnk

e |2
|nk|(ρi/ρe)|nk| = ∞ .

If GP holds, then we immediately see that (11.28) holds, but the converse is not true.
If (11.28) holds, i.e., there is a subsequence {nk} with |n1| < |n2| < . . . satisfying
(11.29) and the gap |nk+1| − |nk| is bounded, then GP holds. In particular, if

(11.32) lim
n→∞

|gne |2
|n|(ρi/ρe)|n|

= ∞ ,

then GP holds.
Assume that {gne } satisfies GP and {nk} is such a sequence. Let δ = 2(ρi/ρe)

α

for some α and let k(α) be the number such that

|nk(α)| ≤ α < |nk(α)+1|.

Then, we have
(11.33)
∑

0 6=|n|≤Nδ

δ|gne |2
|n|(ρi/ρe)2|n|

= (ρi/ρe)
α
∑

0 6=|n|≤α

|gne |2
|n|(ρi/ρe)2|n|

≥ (ρi/ρe)
|nk(α)+1|−|nk(α)| |gnk(α)

e |2
|nk(α)|(ρi/ρe)|nk(α)|

→ ∞ ,

as α→ ∞.
We obtain the following lemma.
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Lemma 11.2. If (11.28) holds, then

(11.34) lim sup
δ→0

Eδ = ∞ .

If {gne } satisfies the condition GP, then

(11.35) lim
δ→0

Eδ = ∞ .

Suppose that the source function is supported inside the radius ρ⋆ =
√
ρ3eρ

−1
i .

Then its Newtonian potential cannot be extended harmonically in |x| < ρ⋆ in
general. So, if F is given by

(11.36) F = c−
∑

n 6=0

anr
|n|e

√−1nθ, r < ρe ,

then the radius of convergence is less than ρ⋆. Thus we have

(11.37) lim sup
|n|→∞

|n||an|2ρ2|n|⋆ = ∞ ,

i.e., (11.28) holds. The GP condition is equivalent to the existence of {nk} with
|n1| < |n2| < . . . such that

(11.38) lim
k→∞

(ρi/ρe)
|nk+1|−|nk||nk||ank

|2ρ2|nk|
⋆ = +∞ .

The following is the main theorem of this section.

Theorem 11.3. Let f be a source function supported in R2 \ Ωe and F be the
Newtonian potential of f .

(i) If F does not extend as a harmonic function in Ωρ⋆ := {|x| < ρ⋆}, then
weak CALR occurs, i.e.,

(11.39) lim sup
δ→0

Eδ = ∞

and (11.5) holds with a = ρ2e/ρi.
(ii) If the Fourier coefficients of F satisfy (11.38), then CALR occurs, i.e.,

(11.40) lim
δ→0

Eδ = ∞

and (11.5) holds with a = ρ2e/ρi.
(iii) If F extends as a harmonic function in a neighborhood of Ωρ⋆ , then CALR

does not occur, i.e.,

(11.41) Eδ < C

for some C independent of δ.

Proof. If F does not extend as a harmonic function in Ωρ⋆ , then (11.28)
holds. Thus we have (11.39). If (11.38) holds, then (11.40) holds by Lemma 11.2.
Moreover, by (11.22), we see that

|Vδ| ≤ |F |+
∑

n 6=0

∣∣∣∣∣
2(ρ

2|n|
i − ρ

2|n|
e )zδ

|n|ρ|n|−1
e (4z2δ − (ρi/ρe)2|n|)

gne
r|n|

∣∣∣∣∣ ≤ |F |+ C
∑

n 6=0

δρ
|n|
e

( δ
2

4 + (ρi/ρe)2|n|)|n|r|n|

≤ |F |+ C
∑

n 6=0

ρ
2|n|
e

|n|ρ|n|i r|n|
< C, if r = |x| > ρ2e

ρi

for some constants C which may differ at each occurrence.
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If F extends as a harmonic function in a neighborhood of Ωρ⋆ , then the power
series of F , which is given by (11.18), converges for r < ρ⋆ + 2ǫ for some ǫ > 0.
Therefore there exists a constant C such that

|gne |
|n|ρ|n|−1

e

≤ C
1

(ρ⋆ + ǫ)|n|

for all n. It then follows that

(11.42) |gne | ≤ C(ρ2e(ρi/ρe)
−1 + ρeǫ)

−|n|/2ρ|n|e ≤ ((ρi/ρe)
−1 + ǫ)−|n|/2

for all n. This tells us that
∑

n 6=0

δ|gne |2
|n|(δ2 + (ρi/ρe)2|n|)

≤
∑

n 6=0

|gne |2
2|n|(ρi/ρe)|n|

≤
∑

n 6=0

1

2|n|(1 + ǫ(ρi/ρe))|n|
.

This completes the proof. �

If f is a dipole in Ωρ⋆ \Ωe, i.e., f(x) = a ·∇δy(x) for a vector a and y ∈ Ωρ⋆ \Ωe
where δy is the Dirac delta function at y, then F (x) = a · ∇Γ(x, y). From the
following expansion of the fundamental solution of the Laplacian:

(11.43)
(−1)|α|

α!
∂αΓ(x, 0) =

−1

2π|α|

[
a|α|α

cos |α|θ
r|α|

+ b|α|α

sin |α|θ
r|α|

]
,

we have

(11.44) Γ(x, y) =

∞∑

n=1

−1

2πn

[
cosnθy
rny

rn cosnθ +
sinnθy
rny

rn sinnθ

]
+ C .

Then we see that the Fourier coefficients of F have the growth rate r−ny and satisfy
(11.38), and hence CALR takes place. Similarly CALR takes place for a sum of
dipole sources at different fixed positions in Ωρ⋆ \ Ωe. We mention that this fact
was found in [353].

If f is a quadrapole, i.e.,

f(x) = A : ∇∇δy(x) =
2∑

i,j=1

aij
∂2

∂xi∂xj
δy(x)

for a 2× 2 matrix A = (aij) and y ∈ Ωρ⋆ \ Ωe. Then

F (x) =

2∑

i,j=1

aij
∂2Γ(x, y)

∂xi∂xj
.

Thus CALR takes place. This is in agreement with the numerical result in [370].
If f is supported in R2 \ Ωρ⋆ , then F is harmonic in a neighborhood of Ωρ⋆ ,

and hence CALR does not occur by Theorem 11.3. In fact, we can say more about
the behavior of the solution Vδ as δ → 0 which is related to the observation in
[369, 354] that in the limit δ → 0 the annulus itself becomes invisible to sources
that are sufficiently far away.

Theorem 11.4. If f is supported in R2 \ Ωρ⋆ , then (11.41) holds (with α = 1
in (11.3)). Moreover, we have

(11.45) sup
|x|≥ρ⋆

|Vδ(x)− F (x)| → 0 as δ → 0 .
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Proof. Since supp f ⊂ R2 \ Ωρ⋆ , the power series of F , which is given by
(11.18), converges for r < ρ⋆ + 2ǫ for some ǫ > 0.

According to (11.22), if ρe < r = |x|, then we have

Vδ(x)− F (x) =
∑

n 6=0

2(ρ
2|n|
e − ρ

2|n|
i )zδ

|n|ρ|n|−1
e ((ρi/ρe)2|n| − 4z2δ )

gne
r|n|

e
√−1nθ .

If |x| = ρ⋆, then the identity

(ρ
2|n|
e − ρ

2|n|
i )zδ

|n|ρ|n|−1
e ((ρi/ρe)2|n| − 4z2δ )

gne

ρ
|n|
⋆

=
(1− (ρi/ρe)

2|n|)zδ
((ρi/ρe)|n| − 4z2δ (ρi/ρe)

−|n|)

gne ρ
|n|
⋆

|n|ρ|n|−1
e

holds and∣∣∣∣
(1− (ρi/ρe)

2|n|)zδ
((ρi/ρe)|n| − 4z2δ (ρi/ρe)

−|n|)

∣∣∣∣ ≤
∣∣∣∣

1

(z−1
δ (ρi/ρe)|n| − zδ(ρi/ρe)−|n|)

∣∣∣∣

≤
∣∣∣∣

1

ℑm(z−1
δ (ρi/ρe)|n| − zδ(ρi/ρe)−|n|)

∣∣∣∣ =
(

δ

4 + δ2
(ρi/ρe)

−|n| +
1

δ
(ρi/ρe)

|n|
)−1

.

It then follows from (11.42) that

|Vδ(x)−F (x)| ≤ 2
∑

n 6=0

(
δ

4 + δ2
(ρi/ρe)

−|n| +
1

δ
(ρi/ρe)

|n|
)−1

ρe
|n|

(
(ρi/ρe)

−1

(ρi/ρe)−1 + ǫ

)|n|/2
,

and hence

|Vδ(x)− F (x)| → 0 as δ → 0 .

Since Vδ − F is harmonic in |x| > ρe and tends to 0 as |x| → ∞, we obtain (11.45)
by the maximum principle. This completes the proof. �

Theorem 11.4 shows that any source supported outside Ωρ⋆ cannot make the
blow-up of the power dissipation happen and hence is not cloaked. In fact, it is
known that we can recover the source f from its Newtonian potential F outside
Ωρ⋆ since f is supported outside Ωρ⋆ (see [270]). Therefore we infer from (11.45)
that f may be recovered approximately by observing Vδ outside Ωρ⋆ .

11.4. Shielding at a Distance

The aim of this section is to investigate the conditions required for shielding
at a distance and geometric features such as the location and size of the shielded
region. The key element to study in the eccentric case is the Möbius transformation
via which a concentric annulus is transformed into an eccentric one. The electro-
static properties of the eccentric superlens can be derived in a straightforward way
from those of the concentric case since the Möbius transformation is a conformal
mapping.

We let Ωi and Ωe denote circular disks centered at the origin with the radii ρi
and ρe, respectively. We assume that 0 < ρi < ρe < 1.

As in the previous section, the core (Ωi) and the background (R2 \ Ωe) are
assumed to be occupied by the isotropic material of permittivity 1 and the shell
(Ωe \ Ωi by the plasmonic material of permittivity −1 +

√
−1δ. The obtained

concentric superlens geometry is described in Figure 11.1(a).
Identifying R2 as C, Ωi and Ωe can be represented as

Ωi =
{
z ∈ C : |z| < ρi

}
and Ωe =

{
z ∈ C : |z| < ρe

}
.
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We also assume the annulus structure to be small compared to the operating wave-
length so that it can adopt the quasi-static approximation. Then (the quasi-static)
electric potential Vδ satisfies

(11.46) ∇ · ǫδ∇Vδ = f in C,

where f represents an electrical source. We assume that f is a point multipole
source of order n located at a location z0 ∈ R2\Ωe. Then the potential F generated
by the source f can be represented as

F (z) =

n∑

k=1

ℜ{ck(z − z0)
−k}, z ∈ C,

with complex coefficients ck’s. When n = 1, the source f (or the potential F )
means a point dipole source.

Then, from the previous section, the anomalous localized resonance can be
summarized as follows.

(i) the dissipation energy Wδ diverges as the loss parameter δ goes to zero if
and only if a point source f is located inside the region Ω∗ := {|z| < ρ∗},
where ρ∗ :=

√
ρ3e/ρi and Wδ is given by

(11.47) Wδ := ℑ
∫

R2

ǫδ|∇Vδ|2 dx = δ

∫

Ωe\Ωi

|∇Vδ|2.

Let us call Ω∗ (or ρ∗) the critical region (or the critical radius), respectively.
(ii) the electric field −∇Vδ stays bounded outside some circular region regard-

less of δ. More precisely, we have

(11.48) |∇Vδ(z)| ≤ C, z ∈ Ωb := {|z| > ρ2e/ρi},
for some constant C independent of δ. Here, the subscript ‘b’ in Ωb
indicates the boundedness of the electric field. Let us call Ωb the calm
region.

11.4.1. Möbius Transformation. In this subsection, we show that the con-
centric annulus can be transformed into an eccentric one by applying the Möbius
transformation Φ defined as

(11.49) ζ = Φ(z) := a
z + 1

z − 1

with a given positive number a. We shall also discuss how the critical region is
transformed depending on the ciritical parameter ρ∗.

The function Φ is a conformal mapping from C \ {1} to C \ {a}. It maps the
point z = 1 to infinity, infinity to ζ = a, and z = 0 to ζ = −a. It maps a circle
centered at the origin, say Sρ := {z ∈ C : |z| = ρ}, to the circle given by

(11.50) Φ(Sρ) = {z ∈ C : |z − c| = r}, where c = a
ρ2 + 1

ρ2 − 1
and r =

2a

|ρ− ρ−1| .

So the concentric circles Sρ’s with ρ 6= 1 are transformed to eccentric ones in ζ-
plane; see Figure 11.2.

Let us discuss how the concentric superlens described in Section 11.3 is geo-
metrically transformed by the mapping Φ. Note that for 0 < ρ < 1, the trans-
formed circle Φ(Sρ) always lies in the left half-plane of C. Since we assume that
0 < ρi < ρe < 1, the concentric annulus in z-plane is changed to an eccentric one
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Figure 11.1. Cloaking due to the anomalous localized resonance:
(a) shows the structure of the superlens with concentric core; (b)
illustrates the cloaking effect.
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Figure 11.2. The Möbius transformation Φ defined in (11.49)
maps 0, ∞, 1 to −a, +a, ∞, respectively. The left figure shows
radial coordinate curves {|z| = ρ}, ρ > 0, and the right figure their
images transformed by Φ with a = 1. Concentric circles satisfying
ρ 6= 1 are transformed into eccentric ones.

contained in the left half ζ-plane. We let Ω̃i (or Ω̃e) denote the transformed disk
of Ωi (or Ωe), respectively.

Now we consider the critical region Ω∗ = {|z| < ρ∗} and the calm region

Ωb. Let us denote the transformed critical region (or calm region) by Ω̃∗ (or Ω̃b),

respectively. The shape of Ω̃∗ can be very different depending on the value of ρ∗.
Suppose 0 < ρ∗ < 1 for a moment. Then the region Ω̃∗ is a circular disk contained

in the left half ζ-plane. Next, assume that ρ∗ > 1. In this case, Ω̃∗ becomes the
region outside a disk which is disjoint from the eccentric annulus. Contrary to the

case when ρ∗ < 1, the region Ω̃∗ is now unbounded. Similarly, the shape of Ω̃b
depends on the parameter ρb := ρ2e/ρi. If 0 < ρb < 1, Ω̃b is a region outside a circle.

But, if ρb > 1, Ω̃b becomes a bounded circular region which does not intersect with

the eccentric superlens. This unbounded (or bounded) feature of the shape of Ω̃∗
(or Ω̃b) will be essentially used to design a new shielding device.
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11.4.2. Potential in the Transformed Space. Here, we will transform the
potential Vδ via the Möbius map Φ and then show that the resulting potential
describes the physics of the eccentric superlens. Let us define the transformed

potential Ṽδ by Ṽδ(ζ) := Vδ ◦ Φ−1(ζ). Since the Möbius transformation Φ is
a conformal mapping, it preserves the harmonicity of the potential and interface
conditions. It can be easily shown that the transformed potential Vδ satisfies

(11.51) ∇ · ǫ̃δ∇Ṽδ = f̃ in C,

where f̃(ζ) = 1
|Φ′|2 (f ◦ Φ−1)(ζ) and the permittivity ǫ̃δ is given by

(11.52) ǫ̃δ(ζ) =





1 in Ω̃i,

−1 +
√
−1δ in Ω̃e \ Ω̃i,

1 in the background.

Therefore, the transformed potential Ṽδ represents the quasi-static electrical po-
tential of the eccentric superlens (11.52) induced by the source f̃(ζ).

Now we consider some physical properties in the transformed space. The dissi-

pation energy W̃δ in the transformed space turns out to be the same as the original
one Wδ as follows:

W̃δ = δ

∫

∂(Ω̃e\Ω̃i)

Ṽδ
∂Ṽδ
∂ñ

dl̃ = δ

∫

∂(Ωe\Ωi)

Vδ
1

|Φ′|
∂Vδ
∂n

|Φ′| dl =Wδ.(11.53)

In the derivation we have used the Green’s identity and the harmonicity of the

potentials Vδ and Ṽδ.
The point source f is transformed into another point source at a different

location. To see this, we recall that the source f is located at z = z0 in the original
space. It generates the potential F (z) =

∑n
k=1 ℜ{ck(z − z0)

−k}. By the map Φ,

the potential F becomes F̃ := F ◦ Φ−1 which is of the following form:

(11.54) F̃ (ζ) =

n∑

k=1

ℜ
{
dn(ζ − ζ0)

−k} ,

where dk’s are complex constants and ζ0 := Φ(z0). So the transformed source f̃ is
a point multipole source of order n located at ζ = ζ0. It is also worth remarking

that, if the point source f is located at z0 = 1 in the original space, then f̃ becomes
a multipole source at infinity in the transformed space. In fact, its corresponding

potential F̃ is of the following form:

F̃ (ζ) =

n∑

k=1

ℜ
{
ekζ

k
}

for some complex constants ek. For example, if n = 1, then the source f̃ (or

potential F̃ ) represents a uniform incident field.

11.4.3. Shielding at a Distance Due to Anomalous Resonance. In this
subsection, we analyze the anomalous resonance in the eccentric annulus and ex-
plain how a new kind of shielding effect can arise. In view of the previous subsection,
the mathematical description of anomalous resonance in the eccentric case can be
directly obtained from that in the concentric case as follows:
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Figure 11.3. Shielding at a distance due to the anomalous local-
ized resonance: (left) shows the structure of the superlens with the
eccentric core; (right) illustrates shielding at a distance.

(i) the dissipation energy W̃δ diverges as the loss parameter δ goes to zero if

and only if a point source f̃ is located inside the region Ω̃∗.
(ii) the electric field −∇Ṽδ stays bounded in the calm region Ω̃b regardless of

δ, i.e.,

(11.55) |∇Ṽδ(ζ)| ≤ C, ζ ∈ Ω̃b,

for some constant C independent of δ.

Now we discuss a new shielding effect. Suppose the parameters ρi and ρe
satisfy ρ∗ =

√
ρ3e/ρi > 1. Then, as explained in Subsection 11.4.1, the calm

region Ω̃b becomes a bounded circular region which does not intersect with the

eccentric structure. If a point source is located within the critical region Ω̃∗, then the
anomalous resonance occurs and the normalized electric field −∇Vδ/

√
Eδ is nearly

zero inside the calm region Ω̃b. So the bounded circular region Ω̃b is not affected

by any surrounding point source located in Ω̃∗. In other words, the shielding

effect does occur in Ω̃b, but there is a significant difference in this shielding effect
compared to the standard one. There is no additional material enclosing the region

Ω̃b; the eccentric structure is located disjointly. So we call this effect ‘shielding at

a distance’ and Ω̃b ‘the shielding region’. The condition for its occurrence can be

summarized as follows: shielding at a distance happens in Ω̃b if and only if the
critical parameter ρ∗ and the source location ζ0 satisfy

(11.56) ρ∗ > 1 and ζ0 ∈ Ω̃∗.

The shielding effect occurs for not only a point source but also an external

field like a uniform incident field F̃ (ζ) = −ℜ{E0ζ} for a complex constant E0. As
mentioned previously, an external field of the form ℜ{∑n

k=1 ekζ
k} can be considered

as a point source at ζ = ∞. Since the critical region Ω̃∗ contains the point at infinity
when ρ∗ > 1, the anomalous resonance will happen and then the circular bounded

region Ω̃b will be shielded. It is worth remarking that, unlike in the eccentric
case, the anomalous resonance cannot result from any external field with source at
infinity for the concentric case.

11.4.4. Numerical Illustration. In this subsection we illustrate shielding at
a distance by showing several examples of the field distribution generated by an
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eccentric annulus and a point source. To compute the field distribution, we use an
analytic solution derived by applying a separation of variables method in the polar
coordinates to the concentric case and then using the Möbius transformation Φ.
We use Code Anomalous Resonance - Cloaking and Shielding.

For all the examples below, we fix ρe = 0.7 for the concentric shell and a = 1
for the Möbius transformation. We also fix the loss parameter as δ = 10−12.

Example 1 (Cloaking of a dipole source) We first present an eccentric
annulus which acts as a cloaking device (Figure 11.4). Since we want to make a
‘cloaking’ device, we need ρb to satisfy the condition ρb < 1. Setting ρi = 0.55 for
this example, we have ρb = ρ2e/ρi = 0.89 < 1 (ρ∗ = (ρ3e/ρi)

1/2 = 0.79).Then by
applying the Möbius transformation Φ, the concentric annulus is transformed to

the following eccentric structure from (11.50): the outer region Ω̃e = Φ(Ωe) is the

circular disk of radius 2.75 centered at (−2.92, 0) and the core Ω̃i = Φ(Ωi) is of

radius 1.58 centered at (−1.87, 0). The boundaries of the physical regions ∂Ω̃i and

∂Ω̃e are plotted as solid white curves in Figure 11.4. On the other hand, the critical

region’s boundary ∂Ω̃∗, which is not a material interface, and is the circle of radius
4.08 centered at (−4.55, 0), is plotted as a dashed white circle. We refrain from

plotting the calm region’s boundary ∂Ω̃b in the figure for the sake of the simplicity;

it is relatively close to ∂Ω̃∗. Note that the calm region Ω̃b is an unbounded region

whose boundary is slightly outside of ∂Ω̃∗.
In Figure 11.4(a), we assume that a dipole source F̃ (ζ) = ℜ{b(ζ − ζ0)

−1}
is located at ζ0 = (−3.4, 8.5) with the dipole moment b = (3,−3). The point
source is plotted as a small solid disk (in white). It is clearly seen that the field
distribution is smooth over the entire region except at the dipole source. That
is, the anomalous resonance does not occur. We can detect the dipole source by
measuring the perturbation of the electric field.

In Figure 11.4(b), we change the location of the source to ζ0 = (−3.4, 3.5) so

that the source’s location belongs to the critical region Ω̃∗. Then the anomalous
resonance does occur, as shown in the figure. As a result, the potential outside the
white dashed circle becomes nearly constant. In other words, the dipole source is
almost cloaked.

Example 2 (Shielding at a distance for a dipole source) Next we show
that changing the size of the core allows for shielding at a distance to happen for a
dipole source (Figure 11.5).

In Figure 11.5(a), we let ρi = 0.55 as in Example 1. We also assume that a

dipole source F̃ (ζ) = ℜ{b(ζ−ζ0)−1} is located at ζ0 = (5, 5) with the dipole moment
b = (3, 3). Since the source is located outside the critical region, the anomalous
resonance does not happen.

Now let us change the size of the core. To make the shielding at distance
occur, the critical radius ρ∗ satisfies the condition ρ∗ > 1. We set ρi = 0.2 so that

ρ∗ =
√
ρ3e/ρi = 1.31 > 1. Then, the core Ω̃i = Φ(Ωi) becomes the circular disk of

radius 0.42 centered at (−1.08, 0). The critical region Ω̃∗ becomes the region outside
the circle of radius 3.53 centered at (4.06, 0). The resulting eccentric annulus and
the critical region are illustrated in Figure 11.5(b). Note that the source is contained

in the new critical region Ω̃∗ and ρ∗ > 1. In other words, the condition (11.56)
for shielding at a distance is satisfied. Indeed, inside the white dashed circle, the

http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial12/12.1 Anomalous Resonance - Cloaking and Shielding.zip
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Figure 11.4. Cloaking for a dipole source. We set ρi = 0.55,
ρe = 0.7 and a = 1. The dipole source is located at ζ0 = (−3.4, 8.5)
in the left figure and at ζ0 = (−3.4, 3.5) in the right figure. (left)
A dipole source (small solid disk in white) is located outside the

critical region Ω̃∗ (white dashed circle). The field outside Ω̃∗ is
significantly perturbed by the source. (right) A dipole source is

located inside the critical region Ω̃∗. The anomalous resonance

happens near the superlens but the field outside Ω̃∗ becomes nearly
zero. The source becomes almost cloaked. The plot range is from
−10 (blue) to 10 (red).

potential becomes nearly constant while there is an anomalous resonance outside.
Thus, the shielding at a distance occurs.

Example 3 (Shielding at a distance for a uniform field) Finally, we
consider shielding at a distance for a uniform field (Figure 11.6). We keep the
parameters a, ρi and ρe as in the previous example but change the dipole source

to a uniform field F̃ (ζ) = −ℜ{E0ζ} with E0 = 1. As mentioned previously, an
external field can be considered as a point source located at infinity.

In the left figure, the critical region does not contain infinity. So the anomalous
resonance does not happen. The uniform field can be easily detected. In the right
figure, we change the core as in the previous example. Now the critical region (the
region outside the white dashed circle) does contain infinity. So the anomalous
resonance does happen. Again, the potential becomes nearly constant in the region
inside the dashed circle. This means there is shielding at a distance for a uniform
field.

11.5. Concluding Remarks

The convergence to a smooth field outside the region was shown in [369], where
the first numerical evidence for ALR was also presented. A proof of ALR for a
dipolar source outside a plasmonic annulus was given in [354]. The condition for
CALR in the annulus case was also derived in [31]. A necessary and sufficient
condition on the source term to be cloaked in the general case was derived in
[31]. It is based on a symmetrization principle for the associated boundary integral
formulation. It is worth mentioning that if the real part of the permittivity of the
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Figure 11.5. Shielding at a distance for a dipole source. We set
ρe = 0.7, a = 1 and ζ0 = (5, 5). We also set ρi = 0.55 in the left

figure and ρi = 0.2 in the right figure. (left) The critical region Ω̃∗
(white dashed line) contains the eccentric superlens (white solid
lines). The field outside the white dashed circle is significantly
perturbed by the source. (right) The critical region is now the
region outside the white dashed circle which does not contain the
superlens any longer. The field inside the white dashed circle is
nearly zero and so the shielding occurs. The plot range is from
−10 (blue) to 10 (red).

Figure 11.6. Shielding at a distance for a uniform field. We set
ρe = 0.7 and a = 1. We also set ρi = 0.55 in the left figure and

ρi = 0.2 in the right figure. (left) The critical region Ω̃∗ (white
dashed line) contains the eccentric superlens (white solid lines).
The uniform incident field is nearly unperturbed outside the white

dashed circle. (right) The critical region Ω̃∗ is the region outside
the white dashed circle which does not contain the superlens any
longer. The field inside the white dashed circle is nearly zero and
so the shielding occurs. The plot range is from −15 (blue) to 15
(red).
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shell is different from −1, then CALR does not occur [32]. On the other hand, if
the cylindrical structure has an eccentric core, then a new kind of shielding effect
can happen [460]. Using the Möbius transformation, the shielding at distance has
been investigated both analytically and numerically. In contrast with conventional
shielding, the anomalous resonance shielding effect does not require any material
which encloses the region to be shielded.

The results of this chapter on anomalous resonance cloaking were extended in
[297] to the case when the core D is not radial by a different method based on a
variational approach. In [347], the cloaking due to anomalous localized resonance
in the quasistatic regime in the case when a general charge density distribution is
brought near a slab superlens is analyzed.

On the other hand, it was shown in [32] that in three dimensions CALR does
not occur. The occurrence of CALR is in fact determined by the eigenvalue distri-
bution of the Neumann-Poincaré-type operator associated with the structure [32].
However, using a shell with a specially designed anisotropic dielectric constant, it
is possible to make CALR occur in three dimensions [33].

In [148], various examples including an elliptical core in an elliptical shell are
considered via numerical simulation. The results are similar to those of the radial
case considered here; in particular, the structure seemed to cloak a polarizable
dipole placed sufficiently near the shell. When the core and the shell are confocal
ellipses, the critical elliptic radius such that, for any source inside it, CALR takes
place and, for any source outside it, CALR does not take place was computed in
[175] by again using the spectral properties of the Neumann-Poincaré-type operator
associated with the two elliptic interfaces.

Using the spectral properties of the Neumann-Poincaré operator for the Lamé
system of elasto-statics (see Subsection 2.15.8), it was shown in [85] that CALR
takes place at accumulation points of eigenvalues of the Neumann-Poincaré operator
for the elasto-static system. In [87], the anomalous localized resonance on the
circular coated structure and cloaking related to it in the context of elasto-static
systems are investigated. The structure consists of the circular core with constant
Lamé parameters and the circular shell of negative Lamé parameters proportional
to those of the core. As in this chapter, it is shown that cloaking by anomalous
localized resonance takes place if and only if the dipole type source lies inside
critical radii determined by the radii of the core and the shell. This result has been
obtained in [326] using a variational approach similar to that in [297].

In [294], it is shown that anomalous localized resonance may appear only for
bodies so small such that the quasi-static approximation is realistic. This gives
limits for size of the objects for which CALR may be used. Such limits may also
apply for shielding at a distance for the full Maxwell equations.



CHAPTER 12

Plasmonic Metasurfaces

12.1. Introduction

A metasurface is a composite material layer, designed and optimized in order
to control and transform electromagnetic fields. The layer thickness is negligible
with respect to the wavelength in the surrounding space. The composite structure
forming the metasurface is assumed to behave as a material in the electromagnetic
sense, meaning that it can be homogenized on the wavelength scale, and the meta-
surface can be adequately characterized by its effective, surface-averaged properties
[444].

In this chapter, we consider the scattering by a thin layer of periodic plasmonic
nanoparticles mounted on a perfectly conducting sheet. We design the thin layer
to have anomalous reflection properties and therefore to be viewed as a metasur-
face. As the thickness of the layer, which is of the same order as the diameter of the
individual nanoparticles, is negligible compared to the wavelength, it can be approx-
imated by an impedance boundary condition. Our main result is to show that at
some resonant frequencies the impedance blows up, allowing for a significant reduc-
tion of the scattering from the plate. Using the spectral properties of the periodic
Neumann-Poincaré operator defined in (12.6), we investigate the dependency of the
impedance with respect to changes in the nanoparticle geometry and configuration.
We fully characterize the resonant frequencies in terms of the periodicity, the shape
and the material parameters of the nanoparticles. As the period of the array is much
smaller than the wavelength, the resonant frequencies of the array of nanoparticles
differ significantly from those of single nanoparticles. As shown in this chapter,
they are associated with eigenvalues of a periodic Neumann-Poincaré type opera-
tor. In contrast with quasi-static plasmonic resonances of single nanoparticles, they
depend on the particle size. For simplicity, only one-dimensional arrays embedded
in R2 are considered in this chapter. The extension to the two-dimensional case is
straightforward and the dependence of the plasmonic resonances on the parameters
of the lattice is easy to derive.

We present numerical results to illustrate our main results in this chapter, which
open a door for a mathematical and numerical framework for realizing full control of
waves using metasurfaces [15, 359, 444]. Our approach applies to any example of
periodic distributions of resonators having (subwavelength) resonances in the quasi-
static regime. It provides a framework for explaining the observed extraordinary
or meta-properties of such structures and for optimizing these properties.

The chapter is organized as follows. We first formulate the problem of approx-
imating the effect of a thin layer with impedance boundary conditions. Then using
the results of Subsection 2.6.1 on the one-dimensional periodic Green’s function

395
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and layer potentials, we derive an explicit formula for the equivalent boundary con-
dition in terms of the eigenvalues and eigenvectors of the one-dimensional periodic
Neumann-Poincaré operator defined by (12.6), and give the shape derivative of
the impedance parameter. Finally, we illustrate with a few numerical experiments
the anomalous change in the equivalent impedance boundary condition due to the
plasmonic resonances of the periodic array of nanoparticles. For simplicity, we only
consider the scalar wave equation and use a two-dimensional setup. The results of
this chapter can be readily generalized to higher dimensions as well as to the full
Maxwell equations. Our results in this chapter are from [73].

12.2. Setting of the Problem

We use the Helmholtz equation to model the propagation of light. As said
before, this approximation can be viewed as a special case of Maxwell’s equations,
when the incident wave ui is transverse magnetic or transverse electric polarized.

Consider a particle occupying a bounded domain D ⋐ R2 of class C1,η for
some η > 0 and with size of order δ ≪ 1. The particle is characterized by electric
permittivity εc and magnetic permeability µc, both of which may depend on the
frequency of the incident wave. Assume that ℑmεc > 0,ℜe µc < 0,ℑmµc > 0 and
define

km = ω
√
εmµm, kc = ω

√
εcµc,

where εm and µm are the permittivity and permeability of free space, respectively,
and ω is the frequency. Throughout this chapter, we assume that εm and µm are
real and positive and km is of order 1.

We consider the configuration shown in Figure 12.1, where a particle D is
repeated periodically in the x1-axis with period δ, and is of a distance of order δ
from the boundary x2 = 0 of the half-space R2

+ := {(x1, x2) ∈ R2, x2 > 0}. We

denote by D this collection of periodically arranged particles and Ω := R2
+ \ D.

Figure 12.1. Thin layer of nanoparticles in the half-space.
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Let ui(x) = e
√−1kmd·x be the incident wave. Here, d is the unit incidence

direction. The scattering problem is modeled as follows:

(12.1)





∇ · 1

µD
∇u+ ω2εDu = 0 in R2

+ \ ∂D,
u+ − u− = 0 on ∂D,
1

µm

∂u

∂ν

∣∣∣∣
+

− 1

µc

∂u

∂ν

∣∣∣∣
−
= 0 on ∂D,

u− ui satisfies an outgoing radiation condition at infinity,

u = 0 on ∂R2
+ = {(x1, 0), x1 ∈ R},

where

εD = εmχ(Ω) + εcχ(D), µD = εmχ(Ω) + εcχ(D),

and ∂/∂ν denotes the outward normal derivative on ∂D.
Following [2], under the assumption that the wavelength of the incident wave

is much larger than the size of the nanoparticle, a certain homogenization occurs,
and we can construct z ∈ C such that the solution to

(12.2)





∆uapp + k2muapp = 0 in R2
+,

uapp + δz
∂uapp

∂x2
= 0 on ∂R2

+,

uapp − ui satisfies outgoing radiation condition at infinity,

gives the leading order approximation for u. We refer to uapp + δz∂uapp/∂x2 = 0
as the equivalent impedance boundary condition for problem (12.1).

12.3. Boundary-Layer Corrector and Effective Impedance

In order to compute z, we introduce the following asymptotic expansion [2, 4]:

(12.3) u = u(0) + u
(0)
BL + δ(u(1) + u

(1)
BL) + . . . ,

where the leading-order term u(0) is solution to





∆u(0) + k2mu
(0) = 0 in R2

+,

u(0) = 0 on ∂R2
+,

u(0) − ui satisfies an outgoing radiation condition at infinity.

The boundary-layer correctors u
(0)
BL and u

(1)
BL have to be exponentially decaying in

the x2-direction. Note that, according to [2, 4], u
(0)
BL is introduced in order to

correct (up to the first order in δ) the transmission condition on the boundary
of the nanoparticles, which is not satisfied by the leading-order term u(0) in the

asymptotic expansion of u, while u
(1)
BL is a higher-order correction term and does

not contribute to the first-order equivalent boundary condition in (12.2).
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We next construct the corrector u
(0)
BL. We first introduce a function α and a

complex constant α∞ such that they satisfy the rescaled problem

(12.4)





∆α = 0 in
(
R2

+\B
)
∪ B,

α|+ − α|− = 0 on ∂B,
1

µm

∂α

∂ν

∣∣∣∣
+

− 1

µc

∂α

∂ν

∣∣∣∣
−
=
( 1

µc
− 1

µm

)
ν2 on ∂B,

α = 0 on ∂R2
+,

α− α∞ is exponentially decaying as x2 → +∞.

Here, ν = (ν1, ν2) and B = D/δ is repeated periodically in the x1-axis with period
1 and B is the collection of these periodically arranged particles.

Then u
(0)
BL is defined by

u
(0)
BL(x) := δ

∂u(0)

∂x2
(x1, 0)

(
α(
x

δ
)− α∞

)
.

The corrector u(1) can be found to be the solution to




∆u(1) + k2mu
(1) = 0 in R2

+,

u(1) = α∞
∂u(0)

∂x2
on ∂R2

+,

u(1) satisfies an outgoing radiation condition at infinity.

By writing

(12.5) uapp = u(0) + u
(0)
BL + δu(1),

we arrive at (12.2) with z = −α∞, up to a second-order term in δ. We summarize
the above results in the following theorem.

Theorem 12.1. The solution uapp to (12.2) with z = −α∞ approximates point-
wisely (for x2 > 0) the exact solution u to (12.1) as δ → 0, up to a second-order
term in δ.

In order to compute α∞, we derive an integral representation for the solution
α to (12.4). We make use of the periodic Green function G♯ defined by (2.106). Let

G+
♯ (x, y) = G♯

(
(x1 − y1, x2 − y2)

)
−G♯

(
(x1 − y1,−x2 − y2)

)
,

which is the periodic Green’s function in the upper half-space with Dirichlet bound-
ary conditions, and define

S+
B♯ : H

− 1
2 (∂B) −→ H1

loc(R
2), H

1
2 (∂B)

ϕ 7−→ S+
B,♯[ϕ](x) =

∫

∂B

G+
♯ (x, y)ϕ(y)dσ(y)

for x ∈ R2
+, x ∈ ∂B and

(12.6)

(K∗
B♯)

+ : H− 1
2 (∂B) −→ H− 1

2 (∂B)

ϕ 7−→ (K∗
B,♯)

+[ϕ](x) =

∫

∂B

∂G+
♯ (x, y)

∂ν(x)
ϕ(y)dσ(y)

for x ∈ ∂B.
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It is clear that the results of Lemma 2.37 hold true for S+
B♯ and (K∗

B♯)
+. More-

over, for any ϕ ∈ H− 1
2 (∂B), we have

S+
B,♯[ϕ](x) = 0 for x ∈ ∂R2

+.

Now, we can readily see that α can be represented as α = S+
B,♯[ϕ], where

ϕ ∈ H− 1
2 (∂B) satisfies

1

µm

∂S+
B,♯[ϕ]

∂ν

∣∣∣∣
+

− 1

µc

∂S+
B,♯[ϕ]

∂ν

∣∣∣∣
−
=
( 1

µc
− 1

µm

)
ν2 on ∂B.

Using the jump formula from Lemma 2.37, we arrive at
(
λµI − (K∗

B♯)
+
)
[ϕ] = ν2,

where

λµ =
µc + µm

2(µc − µm)
.

Therefore, using item (v) in Lemma 2.37 on the characterization of the spectrum
of K∗

B♯ and the fact that the spectra of (K∗
B♯)

+ and K∗
B♯ are the same, we obtain

that

α = S+
B,♯

(
λµI − (K∗

B♯)
+
)−1

[ν2].

Lemma 12.2. Let x = (x1, x2). Then, for x2 → +∞, the following asymptotic
expansion holds:

α = α∞ +O(e−x2),

with

α∞ = −
∫

∂B

y2
(
λµI − (K∗

B♯)
+
)−1

[ν2](y)dσ(y).

Proof. The result follows from an asymptotic analysis of G+
♯ (x, y). Indeed,

suppose that x2 → +∞, we have

G+
♯ (x, y) =

1
4π ln

(
sinh2(π(x2 − y2)) + sin2(π(x1 − y1))

)

− 1

4π
ln
(
sinh2(π(x2 + y2)) + sin2(π(x1 − y1))

)

=
1

4π
ln
(
sinh2(π(x2 − y2))

)

− 1

4π
ln
(
sinh2(π(x2 + y2))

)

+O
(
ln

(
1 +

1

sinh2(x2)

))

=
1

2π

(
ln
(eπ(x2−y2) − e−π(x2+y2)

2

)

− ln
(eπ(x2+y2) − e−π(x2−y2)

2

))
+O

(
ln
(
1 + e−x

2
2

) )

= −y2 +O(e−x2),

which yields the desired result. �



400 12. PLASMONIC METASURFACES

Finally, it is important to note that α∞ depends on the geometry and size of
the particle B.

As (K∗
B♯)

+ : H∗
0 → H∗

0 is a compact self-adjoint operator, where H∗
0 is defined

as in Lemma 2.37, we can write

α∞ = −
∫

∂B

y2
(
λµI − (K∗

B♯)
+
)−1

[ν2](y)dσ(y),

= −
∫

∂B

y2

∞∑

j=1

〈ϕj , ν2〉H∗
0
ϕj(y)

λµ − λj
dσ(y),

=
∞∑

j=1

〈ϕj , ν2〉H∗
0
〈ϕj , y2〉− 1

2 ,
1
2

λµ − λj
,

where λ1, λ2, . . . are the eigenvalues of (K∗
B♯)

+ and ϕ1, ϕ2, . . . is a corresponding
orthornormal basis of eigenvectors.

On the other hand, by integrating by parts we get

〈ϕj , y2〉− 1
2 ,

1
2
=

1
1
2 − λj

〈ϕj , ν2〉H∗
0
.

This, together with the fact that ℑmλµ < 0 (by the Drude model (7.4)), yields the
following lemma.

Lemma 12.3. We have ℑmα∞ > 0.

Finally, we give a formula for the shape derivative of α∞. This formula can
be used to optimize |α∞| , for a given frequency ω, in terms of the shape B of the
nanoparticle. Let Bη be an η-perturbation of B; i.e., let h ∈ C1(∂B) and ∂Bη be
given by

∂Bη =

{
x+ ηh(x)ν(x), x ∈ ∂B

}
.

Following Subsection 7.2.1.1, we can prove that

α∞(Bη) = α∞(B) + η(
µm
µc

− 1)

×
∫

∂B

h

[
∂v

∂ν

∣∣
−
∂w

∂ν

∣∣
− +

µc
µm

∂v

∂T

∣∣
−
∂w

∂T

∣∣
−

]
dσ,

where ∂/∂T is the tangential derivative on ∂B, v and w periodic with respect to
x1 of period 1 and satisfy





∆v = 0 in
(
R2

+\B
)
∪ B,

v|+ − v|− = 0 on ∂B,
∂v

∂ν

∣∣∣∣
+

− µm
µc

∂v

∂ν

∣∣∣∣
−
= 0 on ∂B,

v − x2 → 0 as x2 → +∞,



12.4. NUMERICAL ILLUSTRATIONS 401

and 



∆w = 0 in
(
R2

+\B
)
∪ B,

µm
µc

w|+ − w|− = 0 on ∂B,
∂w

∂ν

∣∣∣∣
+

− ∂w

∂ν

∣∣∣∣
−
= 0 on ∂B,

w − x2 → 0 as x2 → +∞,

respectively. Therefore, the following proposition holds.

Proposition 12.4. The shape derivative dSα∞(B) of α∞ is given by

dSα∞(B) = (
µm
µc

− 1)

[
∂v

∂ν

∣∣
−
∂w

∂ν

∣∣
− +

µc
µm

∂v

∂T

∣∣
−
∂w

∂T

∣∣
−

]
.

If we aim to maximize the functional J := 1
2 |α∞|2 over B, then it can be easily

seen that J is Fréchet differentiable and its Fréchet derivative is given by

ℜe dSα∞(B)α∞(B).

In order to include cases where topology changes and multiple components are
allowed, a level-set version of the optimization procedure described below can be
developed (see Appendix B).

12.4. Numerical Illustrations

We now demonstrate the dependence of the equivalent boundary condition
parameter α∞ on the incident wavelength for various nanoparticle configurations.
We use the Drude model for the permeability of background material, which is
water, and the nanoparticles which are gold. The Drude model for the permeability
µ is given by

µ(ω) = 1− ω2
p

ω2 +
√
−1τω

.

In particular, to model gold nanoparticles we choose the plasma frequency ωp to be

ωp = 9.03× 2π × 1.6× 10−19

6.6× 10−34
,

and the damping coefficient τ to be

τ = 0.053× 2π × 1.6× 10−19

6.6× 10−34
.

The discretization of the boundary of the nanoparticle, along with the computation
of the Neumann-Poincaré operator (K∗

B♯)
+, where B is a disk, is performed in the

same fashion as in Section 2.4.5 We then calculate

α∞ = −
∫

∂B

y2
(
λµI − (K∗

B♯)
+
)−1

[ν2](y)dσ(y),

and plot its modulus |α∞| for a range of wavelengths in the interval [150×10−9, 350×
10−9].

We use Code Plasmonic Metasurfaces. In Figure 12.2 we place the row of
nanoparticles a distance of 0.5 from the surface ∂R2

+ and vary the radii from 0.1 to
0.4. In Figure 12.3 we set the nanoparticle radius to be 0.2 and observe the change
in |α∞| when we first position the nanoparticles a distance of 0.25 from the surface,
and then a distance of 0.75.

http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial10/10.1 Plasmonic Metasurfaces.zip
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In Figures 12.4 and 12.5 we demonstrate that in the case of a single row of
nanoparticles we have a distinct resonance peak, whereas in in the case of three
well-separated nanoparticles (all in the unit cell) we have delocalized resonances.
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Figure 12.2. |α∞| as a function of wavelength for a set of radii
varying from 0.1 to 0.4.
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Figure 12.3. |α∞| as a function of wavelength for a set of radii
for a disk of radius 0.2 as for distances of 0.25 and 0.45 from the
boundary at x2 = 0.

12.5. Concluding Remarks

In this chapter, we have considered the scattering by an array of plasmonic
nanoparticles mounted on a perfectly conducting plate and showed both analyti-
cally and numerically the significant change in the boundary condition induced by
the nanoparticles at their periodic plasmonic frequencies. We have also proposed
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Figure 12.4. We observe a strong localized resonant peak in the
case of a single row of nanoparticles.
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Figure 12.5. When we have three nanoparticles in each cell of
the array we observe delocalized resonance.

an optimization approach to maximize this change in terms of the shape of the
nanoparticles. Our results in this chapter can be generalized in many directions.
Different boundary conditions on the plate as well as curved plates can be consid-
ered. Our approach can be easily extended to two-dimensional arrays embedded in
R3 and the lattice effect can be included by using the Green’s function for a general
lattice (as in (2.128)). Full Maxwell’s equations to model the light propagation can
be used. The observed extraordinary or meta-properties of periodic distributions
of subwavelength resonators can be explained by the approach proposed in this
chapter.





Part 5

Subwavelength Phononics





CHAPTER 13

Helmholtz Resonator

13.1. Introduction

The Helmholtz resonator is an acoustic device which has many important ap-
plications in phononics. It consists of a closed cavity connected to the exterior
domain by an opening hole.

In this section we study perturbations of scattering frequencies of Helmholtz
resonators with small openings. We provide on the one hand results on the existence
and localization of the scattering frequencies and on the other hand the leading-
order terms in their asymptotic expansions in terms of the characteristic width of
the openings.

We show that the spectrum of the Helmholtz resonator essentially coincides
with the spectrum of the Laplacian with Neumann boundary condition in the closed
cavity, but there is an additional resonant frequency which is a sub-wavelength
resonance. Its associated eigenfunction is essentially constant in the cavity and it
essentially vanishes in the exterior domain. It is the key to super-resolution and
super-focusing for acoustic waves in systems of Helmholtz resonators.

As in the previous chapters, we transform the problem of finding the scattering
frequencies into that of the determination of the characteristic values of certain
integral operator-valued functions in the complex plane. The generalization of
the Steinberg theorem given in Theorem 1.16 yields the discreteness of the set
of resonant frequencies. The generalized Rouché theorem shows the existence of
resonant frequencies close to the eigenfrequencies of the unperturbed resonator.
In principle, the general form of the argument principle in Theorem 1.14 can be
applied to derive full asymptotic expansions for the scattering frequencies. As will
be shown in this chapter, the leading-order terms can be obtained by a simpler
method based on pole-pencil decomposition of integral operator-valued functions
and the use of the Hilbert transform.

13.2. Hilbert Transform

In order to study resonance frequencies of Helmholtz resonators, the Hilbert
transform will be needed.

Let the set X ǫ, for small ǫ > 0, be defined by

(13.1) X ǫ =

{
ϕ :

∫ ǫ

−ǫ

√
ǫ2 − x2 |ϕ(x)|2 dx < +∞

}
,

Equipped with the norm

‖ϕ‖X ǫ =

(∫ ǫ

−ǫ

√
ǫ2 − x2 |ϕ(x)|2 dx

)1/2

,

407
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X ǫ is a Hilbert space. Introduce

(13.2) Yǫ =

{
ψ ∈ C0 ( [−ǫ, ǫ ] ) : ψ′ ∈ X ǫ

}
,

where ψ′ is the distribution derivative of ψ. The set Yǫ is a Hilbert space with the
norm

‖ψ‖Yǫ =

(
||ψ||2X ǫ + ||ψ′||2X ǫ

)1/2

.

Let Lǫ : X ǫ → Yǫ be defined by

(13.3) Lǫ[ϕ](x) =
∫ ǫ

−ǫ
ln |x− y|ϕ(y) dy.

We establish two results concerning the integral operator Lǫ. These results are
proved in [417].

Lemma 13.1. For all 0 < ǫ < 2, the integral operator Lǫ : X ǫ 7→ Yǫ is invertible.
Let ϕ be a function of X ǫ. The function

ψ(x) =

∫ ǫ

−ǫ
ln |x− y| ϕ(y) dy

is differentiable and its derivative on (−ǫ, ǫ) is given by (see for instance [364, p.
30])

(13.4) ψ′(x) = Hǫ[ϕ](x),

where Hǫ denotes the finite Hilbert transform (or Tricomi’s operator)

(13.5) Hǫ[ϕ](x) =

∫ ǫ

−ǫ

ϕ(y)

x− y
dy for x ∈ (−ǫ, ǫ) .

The following explicit expressions hold. For any x ∈ (−ǫ, ǫ) , we have

(13.6) Hǫ[
1√

ǫ2 − y2
](x) = 0,

(13.7) Hǫ[
√
ǫ2 − y2](x) = πx,

and

(13.8) Hǫ[
y√

ǫ2 − y2
](x) = −π.

The main difficulty in studying the finite Hilbert transform Hǫ on Hölder con-
tinuous functions (with requirements at the endpoints) is that it has no smoothness
preserving property, as shown by the following formulas:

Hǫ[1](x) = ln
ǫ+ x

ǫ− x

and

H′
ǫ[ϕ](x)−

ϕ(−ǫ)
ǫ+ x

+
ϕ(ǫ)

ǫ− x
+Hǫ[ϕ

′](x).

The development of such a theory is a rather long and complicated process. See
for instance [376].

Here the weighted space X ǫ is introduced to make the theory relatively simple
and yet general enough for applications. The following mapping properties of the
finite Hilbert transform hold. See [417] for a proof.
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Lemma 13.2 (Finite Hilbert transform). The operator Hǫ : X ǫ → X ǫ satisfies
dimKer(Hǫ) = 1 and Im Hǫ = X ǫ.

As shown by formula (13.6), Ker(Hǫ) is spanned by 1/
√
ǫ2 − y2. We refer the

reader to [93, 203] for the mapping properties of the finite Hilbert transform in
more general weighted spaces. We will need the following Hölder estimate [364]

(13.9)

∥∥∥∥
∫ 1

−1

ϕ(y)

x− y
dy

∥∥∥∥
L∞([−1,1])

≤ C ‖ϕ‖C0,η([−1,1])

for ϕ ∈ C0,η([−1, 1]) with η > 0.
We now solve explicitly the integral equation

(13.10) Lǫ[ϕ](x) = ψ(x), ∀ x ∈ (−ǫ, ǫ) ,
where ψ is a given function in Yǫ and ϕ is the unknown function. Differentiating
(13.10) with respect to the x-variable, we obtain the singular integral equation
(13.4). The general solution of equation (13.4) is given by the Hilbert inversion
formula (see for instance [364]):

(13.11) ϕλ(x) = − 1

π2
√
ǫ2 − x2

∫ ǫ

−ǫ

√
ǫ2 − y2ψ′(y)

x− y
dy +

λ√
ǫ2 − x2

,

where λ is a complex constant. Therefore, the solution ϕ in X ǫ of (13.10) is neces-
sarily one of the ϕλ given by (13.11), where λ is chosen appropriately. Denote by
λ(ψ) the appropriate choice of λ and consider

(13.12) a(ψ) = ψ(x)− Lǫ[ϕλ=0](x).

We first observe that the quantity a(ψ) is a constant, since its derivative with
respect to x is identically equal to zero on (−ǫ, ǫ). Now, substitute ϕλ(ψ) into
(13.10) to get

λ(ψ)Lǫ
[
y 7→ 1√

ǫ2 − y2

]
= a(ψ).

But, a straightforward calculation shows that

Lǫ
[
y 7→ 1√

ǫ2 − y2

]
(x) = π ln

ǫ

2
for all x ∈ (−ǫ, ǫ) ,

and therefore,

λ(ψ) =
a(ψ)

π ln(ǫ/2)
.

Thus,
(13.13)

L−1
ǫ [ψ](x) = − 1

π2
√
ǫ2 − x2

∫ ǫ

−ǫ

√
ǫ2 − y2ψ′(y)

x− y
dy +

a(ψ)

(π ln(ǫ/2))
√
ǫ2 − x2

,

where a(ψ) is given by (13.12). This calculation has been done by Carleman in
[166].

Note that for ǫ = 2, L2 has a nontrivial kernel. However, for 0 < ǫ < 2, the
solution to (13.10) is clearly unique. In fact, by (13.11) and (13.12), it follows that
if ψ ≡ 0, then L−1

ǫ [ψ] ≡ 0.

We will also need the following lemma.
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Lemma 13.3. Let Rǫ be the integral operator defined from X ǫ into Yǫ by

Rǫ[ϕ](x) =

∫ ǫ

−ǫ
R(x, y)ϕ(y) dy,

with R(x, y) of class C1,η in x and y, for η > 0. There exists a positive constant C,
independent of ǫ, such that

(13.14) ‖L−1
ǫ Rǫ‖L(X ǫ,X ǫ) ≤

C

| ln ǫ| ,

where

‖L−1
ǫ Rǫ‖L(X ǫ,X ǫ) = sup

ϕ∈X ǫ,‖ϕ‖Xǫ=1

‖L−1
ǫ Rǫ[ϕ]‖X ǫ .

Proof. Let ϕ ∈ X ǫ. By the Hilbert inversion formula (13.11), we have

L−1
ǫ Rǫ[ϕ](x) = − 1

π2
√
ǫ2 − x2

∫ ǫ

−ǫ

√
ǫ2 − y2(Rǫ[ϕ])

′(y)

x− y
dy +

λ(Rǫ[ϕ])√
ǫ2 − x2

(13.15)

: = Iǫ1[ϕ](x) + Iǫ2[ϕ](x),

where

λ(Rǫ[ϕ]) =
a(Rǫ[ϕ])

π ln(ǫ/2)
.

We estimate ‖Iǫ1[ϕ]‖X ǫ and ‖Iǫ2[ϕ]‖X ǫ separately.
For ‖Iǫ1[ϕ]‖X ǫ , we have

‖Iǫ1[ϕ]‖X ǫ



∫ ǫ

−ǫ

1√
ǫ2 − x2

(∫ ǫ

−ǫ

√
ǫ2 − y2 (Rǫ[ϕ])

′(y)

x− y
dy

)2

dx




1
2

≤ C

∥∥∥∥∥

∫ ǫ

−ǫ

√
ǫ2 − y2 (Rǫ[ϕ])

′(y)

x− y
dy

∥∥∥∥∥
L∞([−ǫ,ǫ])

= Cǫ

∥∥∥∥∥

∫ 1

−1

√
1− y2 (Rǫ[ϕ])

′(ǫy)

x− y
dy

∥∥∥∥∥
L∞([−1,1])

.

We then have from the Hölder estimate (13.9) for the Hilbert transform
∥∥∥∥∥

∫ 1

−1

√
1− y2 (Rǫ[ϕ])

′(ǫy)

x− y
dy

∥∥∥∥∥
L∞([−1,1])

≤ C
∥∥∥
√
1− y2 (Rǫ[ϕ])

′(ǫy)
∥∥∥
C0,η([−1,1])

≤ C ‖(Rǫ[ϕ])
′(ǫy)‖C0,η([−1,1])

≤ C ‖(Rǫ[ϕ])
′(y)‖C0,η([−ǫ,ǫ])

≤ C

∫ ǫ

−ǫ
|ϕ(y)| dy ≤ C‖ϕ‖X ǫ ,

since the kernel R is of class C1,η. Thus, we obtain

(13.16) ‖Iǫ1[ϕ]‖X ǫ ≤ Cǫ‖ϕ‖X ǫ .
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To estimate ‖Iǫ2[ϕ]‖X ǫ , we first observe that

‖Iǫ2[ϕ]‖X ǫ =

(∫ ǫ

−ǫ

√
ǫ2 − x2|Iǫ2[ϕ](x)|2dx

)1/2

=
√
π|λ(Rǫ[ϕ])| =

∣∣∣∣
a(Rǫ[ϕ])√
π ln(ǫ/2)

∣∣∣∣ .

At this point, let us recall that

a(Rǫ[ϕ]) = Rǫ[ϕ]− Lǫ
[
t 7→ 1√

ǫ2 − t2

∫ ǫ

−ǫ

√
ǫ2 − y2

t− y
(Rǫ[ϕ])

′(y) dy

]
.

Once again, from the smoothness of the kernel R in x and y, we have

(13.17) sup
−ǫ≤x≤ǫ

|Rǫ[ϕ](x)| ≤ C ‖ϕ‖X ǫ .

On the other hand, we get from (13.7) that
∫ ǫ

−ǫ

√
ǫ2 − y2

t− y
(Rǫ[ϕ])

′(y) dy

= (Rǫ[ϕ])
′(t)

∫ ǫ

−ǫ

√
ǫ2 − y2

t− y
dy +

∫ ǫ

−ǫ

√
ǫ2 − y2

t− y
[(Rǫ[ϕ])

′(y)− (Rǫ[ϕ])
′(t)] dy

= πt(Rǫ[ϕ])
′(t) +

∫ ǫ

−ǫ

√
ǫ2 − y2

t− y
[(Rǫ[ϕ])

′(y)− (Rǫ[ϕ])
′(t)] dy.

Put

Iǫ(t) :=

∫ ǫ

−ǫ

√
ǫ2 − y2

t− y
[(Rǫ[ϕ])

′(y)− (Rǫ[ϕ])
′(t)] dy.

Then, we have

|Iǫ(t)| ≤ Cǫ1+η sup
t,y

∣∣∣∣
(Rǫ[ϕ])

′(y)− (Rǫ[ϕ])
′(t)

|y − t|η
∣∣∣∣

≤ Cǫ1+η
∫ ǫ

−ǫ
|ϕ(y)|dy ≤ Cǫ1+η‖ϕ‖X ǫ .

Therefore, it follows that
∣∣∣∣∣Lǫ
[
t 7→ 1√

ǫ2 − t2

∫ ǫ

−ǫ

√
ǫ2 − y2

t− y
(Rǫ[ϕ])

′(y) dy

]∣∣∣∣∣

≤
∣∣∣∣Lǫ
[
πt(Rǫ[ϕ])

′(t)√
ǫ2 − t2

]∣∣∣∣+
∣∣∣∣Lǫ
[

Iǫ(t)√
ǫ2 − t2

]∣∣∣∣

≤
(
sup
t

|πt(Rǫ[ϕ])
′(t)|+ sup

t
|Iǫ(t)|

) ∣∣∣∣Lǫ
[

1√
ǫ2 − t2

]∣∣∣∣ ≤ Cǫ| ln ǫ|‖ϕ‖X ǫ ,

which, combined with (13.17), gives

(13.18) ‖Iǫ2[ϕ]‖X ǫ ≤ C

| ln ǫ| ‖ϕ‖X ǫ .

Combining (13.16) and (13.18) yields the desired estimate (13.14). �
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13.3. Perturbations of Scattering Frequencies of a Helmholtz Resonator

Let Ω ⊂ R2 be a bounded simply connected domain with boundary ∂Ω of class
C2. Let µ0 be a simple eigenvalues of −∆ in Ω with Neumann conditions, namely, a
simple eigenvalue of (3.1) and let V be a neighborhood of µ0 in the complex plane
such that µ0 is the only eigenvalue of (3.1) in V .

The acoustic Helmholtz resonator we consider is a surface ∂Ωǫ = ∂Ω \ Σǫ,
where ∂Ωǫ is obtained from ∂Ω by making a small opening Σǫ in the boundary
with diameter tending to zero as ǫ→ 0. This opening connects the interior and the
exterior parts of the resonator. If µ0 is an eigenvalue of (3.1), the corresponding
scattering problem is to find µǫ (with ℑmµǫ ≥ 0) close to µ0 such that there exists
a nontrivial solution to

(13.19)





(∆ + µǫ)uǫ = 0 in Ω ∪ (R2 \ Ω),
∂uǫ

∂ν
= 0 on ∂Ωǫ,∣∣∣∣

∂uǫ

∂r
−
√

−1µǫuǫ
∣∣∣∣ = O(r−1) as r = |x| → +∞.

As in the previous chapters, we reduce the scattering problem (13.19) to the
study of characteristic values of a certain operator-valued function, and by means
of the generalized Rouché theorem we prove the existence of a scattering frequency
µǫ with small imaginary part which converges to µ0 as ǫ → 0. We then construct
the leading-order term in its asymptotic expansion.

To simplify the exposition, we shall assume that 0 is the center to which the
opening can be contracted and the opening Σǫ is flat: Σǫ = (−ǫ, ǫ). It can be shown
that the curvature of the opening does not influence the leading-order term in the
asymptotic expansion of the scattering frequencies [224]. Following the arguments
presented in the previous section, we only outline the derivation of an asymptotic
expansion of µǫ, leaving the details to the reader.

13.3.1. Problem Formulation. We say that µ ∈ C (with ℑmµ ≥ 0) is a
scattering pole if there exists a nontrivial solution to the exterior problem

(13.20)





(∆ + µ)v = 0 in R2 \ Ω,
∂v

∂ν
= 0 on ∂Ω,

∫

R2\Ω
|v|2 < +∞.

Introduce the exterior Neumann function N
√
µ

R2\Ω, that is, the unique solution

to

(13.21)





(∆x + µ)N
√
µ

R2\Ω(x, z) = −δz in R2 \ Ω,
∂N

√
µ

R2\Ω
∂ν

∣∣∣
∂Ω

= 0 on ∂Ω,

∣∣∣∣
∂N

√
µ

R2\Ω
∂r

−
√
−1µN

√
µ

R2\Ω

∣∣∣∣ = O(r−1) as r = |x| → +∞.
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Set ϕǫ to be the normal derivative of uǫ on the opening Σǫ:

ϕǫ =
∂uǫ

∂ν
on Σǫ.

By Green’s formula, ϕǫ satisfies the integral equation

(13.22)

∫

Σǫ

(
N

√
µǫ

R2\Ω +N
√
µǫ

Ω

)
(x, y)ϕǫ(y) dy = 0 on Σǫ,

where the interior Neumann function N
√
µǫ

Ω is defined by (2.179) and the exterior

Neumann function N
√
µǫ

R2\Ω is defined by (13.21).

Define the operator-valued function µ 7→ Aǫ(µ) by

Aǫ(µ)[ϕ](x) :=

∫ ǫ

−ǫ

(
N

√
µǫ

R2\Ω +N
√
µǫ

Ω

)
(x, y)ϕ(y) dy.

By virtue of (13.22), the problem of finding the scattering frequencies can be
reduced to that of finding the characteristic values of Aǫ(µ).

13.3.2. Asymptotic Formula for Perturbations in Scattering Frequen-
cies. Let µ0 be a simple eigenvalue of (3.1) associated with the normalized eigen-
function uj0 and let V be a complex neighborhood of µ0 such that (i) µ0 is the only
eigenvalue of (3.1) in V and (ii) there is no scattering pole of (13.20) in V .

Writing

N
√
µ

R2\Ω(x, z) = − 1

2π
ln |x− z|+ r(x, z, µ),

where r(x, z, µ) is holomorphic with respect to µ in V and smooth in x and z, we
obtain the following pole-pencil decomposition of Aǫ in V .

Lemma 13.4. The following pole-pencil decomposition of Aǫ(µ) : X ǫ → Yǫ
holds for any µ ∈ V \ {µ0}:

(13.23) Aǫ(µ) = − 1

π
Lǫ +

Kǫ
µ0 − µ

+Rǫ(µ),

where

Lǫ[ϕ](x) =
∫ ǫ

−ǫ
ln |x− y|ϕ(y) dy,

Kǫ is the one-dimensional operator given by

Kǫ[ϕ](x) = 〈ϕ, uj0〉L2(Σǫ) uj0 ,

and

Rǫ(µ)[ϕ](x) =

∫ ǫ

−ǫ
R(µ, x, y)ϕ(y) dy,

with (µ, x, y) 7→ R(µ, x, y) holomorphic in µ and smooth in x and y.

We now prove that the set of characteristic values of Aǫ is discrete.

Lemma 13.5. The set of characteristic values of µ 7→ Aǫ(µ) is discrete.

Proof. We only give a proof for the discreteness of the set of characteristic
values of Aǫ in V . The same arguments apply in neighborhoods Vj of µj , j ≥ 1,
and in C \⋃j Vj . Recall that Lǫ : X ǫ → Yǫ is invertible and ‖L−1

ǫ Rǫ‖L(X ǫ,X ǫ) →
0 as ǫ → 0. Therefore, −(1/(π))Lǫ + Rǫ : X ǫ → Yǫ is invertible for ǫ small
enough. It then follows from the pole-pencil decomposition (13.23) that Aǫ is
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finitely meromorphic and of Fredholm type in V . Moreover, since Kǫ is of finite-
dimension, there exists µ∗ ∈ V such that Aǫ(µ

∗) is invertible. Therefore, the
generalization of the Steinberg theorem (Theorem 1.16) gives the discreteness of
the set of characteristic values of Aǫ in V . �

Next, we prove that there exists exactly one characteristic value of Aǫ located
in the neighborhood V of µ0 and compute its asymptotic expansion as ǫ goes to
zero. The method is based on the pole-pencil decomposition (13.23) of the operator-
valued function Aǫ, followed by an application of the generalized Rouché theorem.

Lemma 13.6. The operator-valued function Aǫ(µ) has exactly one characteristic
value in V .

Proof. We first study the principal part of Aǫ, that is, the integral operator-
valued function defined by

Nǫ : µ 7→ Nǫ(µ) = − 1

π
Lǫ +

Kǫ
µ0 − µ

,

and show that its multiplicity in V is equal to zero. Let us find the characteristic
values of Nǫ in V , that is, the complex numbers µ̂, such that there exists ϕ̂ 6≡ 0
satisfying Nǫ(µ̂)[ϕ̂] ≡ 0 on (−ǫ, ǫ). Equivalently, we have

1

π
Lǫ[ϕ̂] +

〈ϕ̂, uj0〉
µ̂− µ0

uj0 = 0.

Since the operator Lǫ is invertible, it follows that

(13.24)
1

π
ϕ̂+

〈ϕ̂, uj0〉
µ̂− µ0

L−1
ǫ [uj0 ] = 0,

and, by multiplying (13.24) by uj0 , we find

〈ϕ̂, uj0〉
(
1

π
+

〈L−1
ǫ [uj0 ], uj0〉
µ̂− µ0

)
= 0.

Hence,

(13.25) µ̂ = µ0 − π〈L−1
ǫ [uj0 ], uj0〉,

since by (13.24), 〈ϕ̂, uj0〉 = 0 would imply that ϕ̂ ≡ 0.
Moreover, from

|〈L−1
ǫ [uj0 ], uj0〉| −→ 0 as ǫ→ 0,

it follows that

|µ̂− µ0| −→ 0 as ǫ→ 0.

If the normalization condition 〈ϕ̂, uj0〉 = 1 is chosen, then (13.24) and (13.25) show
that the root function associated to this characteristic value µ̂ is given by

ϕ̂ =
L−1
ǫ [uj0 ]

〈L−1
ǫ [uj0 ], uj0〉

.

The last point to investigate is the multiplicity of µ̂ as a characteristic value of
Nǫ, that is, the order of µ̂ as a pole of N−1

ǫ . A straightforward calculation shows
that Nǫ(µ)[ϕ] = f is equivalent to

− 1

π
ϕ+

〈ϕ, uj0〉L−1
ǫ [uj0 ]

µ0 − µ
= L−1

ǫ [f ].
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But

〈ϕ, uj0〉
[
− 1

π
+

〈L−1
ǫ [uj0 ], uj0〉
µ0 − µ

]
= 〈L−1

ǫ [f ], uj0〉,

which yields

〈ϕ, uj0〉 =
π(µ0 − µ)

µ− µ̂
〈L−1

ǫ [f ], uj0〉,
and therefore,
(13.26)

Nǫ(µ)[ϕ] = f if and only if ϕ = −πL−1
ǫ [f ] +

π2〈L−1
ǫ [f ], uj0〉
µ− µ̂

L−1
ǫ [uj0 ],

which justifies that µ̂ is a characteristic value of order one of Nǫ. Therefore, Nǫ has
exactly one pole µ0 and one characteristic value µ̂ in V , each of order one, and its
full multiplicity is equal to zero.

Now we estimate the multiplicity of Aǫ in V . The function µ 7→ Nǫ(µ) is clearly
finitely meromorphic and of Fredholm type at µ = µ0. For all µ ∈ V \ {µ0, µ̂},
Nǫ is invertible. Thus, Nǫ is normal in V . Moreover, Aǫ(µ) − Nǫ(µ) = Rǫ(µ) is
analytic in V and, by (13.26), it satisfies

lim
ǫ→0

‖N−1
ǫ (µ)Rǫ(µ)‖L(X ǫ,X ǫ) = 0, ∀ µ ∈ ∂V.

Consequently, the integral operator-valued function µ 7→ Aǫ(µ) has, by the gen-
eralized Rouché theorem, the same full multiplicity as Nǫ in V . Since it already
admits µ0 as a pole, it admits in this neighborhood exactly one characteristic value
µǫ. �

Now in view of Lemmas 13.4 and 13.6, we obtain the following theorem.

Theorem 13.7. The operator-valued function Aǫ(µ) has exactly one charac-
teristic value µǫ in V . Moreover, the following asymptotic expansion of µǫ holds:

(13.27) µǫ ≈ µ0 − π〈L−1
ǫ [uj0 ], uj0〉+ π2〈L−1

ǫ Rǫ(µ0)L−1
ǫ [uj0 ], uj0〉,

which yields

µǫ ≈ µ0 −
π

ln ǫ
|uj0(0)|2.

Proof. Recall that if µǫ is the eigenvalue of (13.19) in V , then it is the char-
acteristic value of Aǫ in V . Let ϕǫ be an associated root function to µǫ. Since
I + L−1

ǫ Rǫ is invertible for ǫ small enough, one can see as in the proof of Lemma
13.6 that 〈ϕǫ, uj0〉 6= 0, and hence we can choose ϕǫ such that 〈ϕǫ, uj0〉 = 1. With
this choice, we have

(13.28)
1

2π
+

〈L−1
ǫ [uj0 ], uj0〉
µǫ − µ0

− 〈L−1
ǫ Rǫ(µ

ǫ)[ϕǫ], uj0〉 = 0,

from which it follows by using (13.14) that

µǫ = µ0 − 2π〈L−1
ǫ [uj0 ], uj0〉+O(| ln ǫ|−2).

But,

(− 1

2π
I + L−1

ǫ Rǫ(µ
ǫ))[ϕǫ] +

L−1
ǫ [uj0 ]

µ0 − µǫ
= 0,

and thus,

ϕǫ ≈ L−1
ǫ [uj0 ]

〈L−1
ǫ [uj0 ], uj0〉

.
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Inserting the above approximation of ϕǫ into (13.28) yields (13.27), as desired. �

Theorem 13.7 shows in particular the existence of a sub-wavelength resonance
for the Helmholtz resonator Ωǫ and lets us determine its asymptotic expansion in
terms of the size ǫ of the opening. Choose µ0 = 0 (with the associated eigenfunction

= 1/
√
|Ω| in Ω). It follows that there exists a unique characteristic value µǫ of Aǫ

in a small neighborhood of 0. Moreover,

(13.29) µǫ ≈ − π

|Ω| ln ǫ .

In the three-dimensional case, we can prove that [82]

(13.30) µǫ ≈ 1

|Ω|ǫcap(Σ),

where

(13.31) cap(Σ) := −〈L−1
1 [1], 1〉L2(Σ)

is the capacity of Σ := Σǫ in the rescaled opening (of arbitrary smooth shape) and
L1 is the three-dimensional analog to Lǫ defined by (13.3) with ǫ = 1:

L1 : ϕ 7→ 1

π

∫

Σ

ϕ(y)

|x− y|dy, x ∈ R3\Σ.

We refer to formulas (13.29) and (13.30) as the frequency formula for respec-
tively the two and three-dimensional Helmholtz resonator. Formulas (13.29) and
(13.30) indicate that it is possible to construct acoustic resonant structures that
are much smaller than the wavelength of the corresponding acoustic wave. Fur-
thermore, the frequency formulas can be generalized to a system of L disjoint
Helmholtz resonators separated by a distance of the order of their characteristic
size. It was shown in [82] that L (counting multiplicity) sub-wavelength resonances
do exist and their asymptotic expansions as the characteristic size of the openings
goes to zero were derived. Note that the term “sub-wavelength resonator” is as-
sociated with scattering in the quasi-stationary regime. In fact, in the case of the
Helmholtz resonator, it is in that regime that the free space wavelength is signifi-
cantly greater than the size of the resonator. We also remark that the resonance in
the quasi-stationary regime results from the perturbations of the zero-eigenvalue of
the Neumann problem in the closed resonator that are due to small openings. In
the next subsection, we briefly outline the frequency formula and its consequence
on super-resolution.

13.4. Resonances of a System of Helmholtz Resonators and
Super-Resolution

Let the single three-dimensional Helmholtz resonator Ω be such that Ω =
S(0, 1) × [−h, 0], where S(0, 1) = {(x1, x2) : x21 + x22 ≤ 1} and h is the height
of Ω, which is of order one. Let Σ ⊂ S(0, 1) ⊂ R2 be a simply connected smooth
domain which is of size one and let ǫ > 0 be a small number. We assume that 0 ∈ Σ
without loss of generality.

Consider a system of such resonators in three dimensions which consists of L

disjoint Ωj ’s (1 ≤ j ≤ L), where Ωj = Ω + z(j) and z(j) = (z
(j)
1 , z

(j)
2 , 0) is the

center of the opening for jth resonator. We denote by Ωin =
⋃L
j=1 Ωj , Ωex =

{(x1, x2, x3) ∈ R3 : x3 > 0} and Ωǫ = Ωin
⋃
Ωex

⋃
Σǫ with Σǫ =

⋃L
j=1 Σǫ,j .
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We first introduce two auxiliary Green’s functions. Let Nex be the Green
function for the following exterior scattering problem:




(∆ + ω2)Nex
ω (x, y) = δy(x), x ∈ Ωex,

∂Nex
ω

∂ν (x, y) = 0, x ∈ ∂Ωex,
Nex
ω satisfies the Sommerfeld radiation condition,

and N in
ω be the Green function for the following interior problem:

{
(∆ + ω2)N in

ω (x, y) = δy(x), x ∈ Ω,
∂Nin

ω

∂ν (x, y) = 0, x ∈ ∂Ω.

Throughout this section, we denote by

W = {ω ∈ C : |ω| ≤ 1

2

√
µ2},

where µ2 is the first nonzero eigenvalue of the Neumann problem in Ω (µ1 = 0).
We have the following result.

Lemma 13.8. Let y ∈ {x3 = 0} and ω ∈W . Then,

Nex
ω (x, y) =

1

2π|x− y| +Rex(x, y, ω), x ∈ Ωex,(13.32)

N in
ω (x, y) =

1

2π|x− y| −
ψ(x)ψ(y)

ω2
+Rin(x, y, ω), x ∈ Ω,(13.33)

where ψ = χ(Ω) and

Rex(x, y, ω) =

√
−1ω

2π

∫ 1

0

e
√−1ω|x−y|tdt,

Rin(x, y, ω) = ω

∫ 1

0

sin
√
−1ω|x− y|tdt+ r(x, y, ω)

for some function r which is analytic in W with respect to ω and is smooth in a
neighborhood of Σ in the plane {x3 = 0} with respect to both the variables x and y.

We denote by

R(x, y, ω) = Rex(x, y, ω) +Rin(x, y, ω),

and

(13.34) α0 = R(0, 0, 0), α1 =
∂R

∂ω
(0, 0, 0).

It is clear that

(13.35) α0 ∈ R, ℑα1 = ℑ∂R
ex

∂ω
(0, 0, 0) =

1

2π
.

We now introduce the matrices T = (Tij)L×L and S = (Sij)L×L with

(13.36)

{
Tij = 1

2π|z(i)−z(j)| for i 6= j, and Tii = 0,

Sij =
√−1
2π + δijℜα1.

Observe that T is symmetric, thus T has L real eigenvalues, which are denoted
by β1, β2, . . . , βL. For the ease of exposition, we assume that β1, . . . , βL are mutually distinct.
This is the generic case among all the possible arrangements of the resonators. The
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corresponding normalized eigenvectors are denoted by Y1, Y2, . . . , YL, respectively.
Then Y1, Y2, . . . , YL form a normal basis for RL. We also denote by Y the matrix

Y = (Y1, Y2, . . . , YL).

For convenience, we write

(13.37) N (x, ω) =
(
Nex
ω (x, z(1)), Nex

ω (x, z(2)), . . . , Nex
ω (x, z(L))

)t

with the subscript t denoting the transpose. For each 1 ≤ j ≤ L, we denote by

(13.38) ζj(x, x0, ω) = N (x, ω)tYjY
t
jN (x0, ω).

It is clear that ζj = ζj(x, x0, ω) is analytic in ω for fixed x and x0.
The following result on the resonances of the above scattering problem was

proved in [82].

Proposition 13.9. There exist exactly 2L resonances of order one in the do-
main W for the system of resonators, given by

ω0,ǫ,j,1 = τ1ǫ
1
2 + τ3,jǫ

3
2 + τ4,jǫ

2 +O(ǫ
5
2 ),(13.39)

ω0,ǫ,j,2 = −τ1ǫ
1
2 − τ3,jǫ

3
2 + τ4,jη

2 +O(ǫ
5
2 ),(13.40)

where

(13.41) τ1 =

√
cap(Σ)

|Ω| ,

(13.42) τ3,j = −1

2
(α0 + βj)

(
cap(Σ)

|Ω|

) 1
2

cap(Σ),

and

(13.43) τ4,j = −1

2

cap(Σ)2

|Ω| Y tj SYj

with cap(Σ) being the capacity of the set Σ defined by (13.31).

From Chapter 9, the super-resolution relies in analysis of the following Green
function in the frequency domain





(∆ + ω2)Nǫ(x, x0, ω) = δx0
(x), x ∈ Ωǫ,

∂Nǫ

∂ν (x, x0, ω) = 0, x ∈ ∂Ωǫ,

Nǫsatisfies the Sommerfeld radiation condition.

The following result on Nǫ in Ωǫ holds. We refer to [82] for its proof.

Theorem 13.10. Assume that ω ∈ R
⋂
W . Then for ǫ sufficiently small. Then

Nex
ǫ has the following asymptotic expansion

Nex
ǫ (x, x0, ω) = Nex

ω (x, x0)− ǫcap(Σ)
∑

1≤j≤L
Nex
ω (z(j), x0, k)N

ex
ω (x, z(j))

−
L∑

j=1

(
1

ω − ω0,ǫ,j,2
− 1

ω − ω0,ǫ,j,1

)
(cap(Σ)ǫ)

3
2

√
|D|

N (x, ω)tYjY
t
jN (x0, ω)

+
∑

1≤j≤L

(
O(ǫ2)

ω − ω0,ǫ,j,2
+

O(ǫ2)

ω − ω0,ǫ,j,1

)
+O(ǫ2).
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As a consequence of Theorem 13.10, we can establish the following result
on super-resolution (or super-focusing), which shows that super-resolution can be
achieved with a single specific frequency.

Theorem 13.11. Let τ1 be given by (13.41), where cap(Σ) is the capacity of
the set Σ defined by (13.31). For ω = τ1

√
ǫ, the resolution function ℑNex

ǫ has the
following estimate:

ℑNex
ǫ (x, x0, ω) =

sin τ1
√
ǫ|x− x0|

2π|x− x0|
+

cap(Σ)
3
2

|Ω| 12
ǫ

1
2

L∑

j=1

ℑτ4,j
τ23,j

ζj(x, x0, 0) +O(ǫ),

where ζj(x, x0, 0) is given by (13.38) and τ3,j and τ4,j are defined by (13.42) and
(13.43), respectively.

13.5. Concluding Remarks

In this chapter, we have derived asymptotic expansions of perturbations of
scattering frequencies of sub-wavelength acoustic resonators. As in the previous
chapters, we have transformed the problem of finding the scattering frequencies into
the determination of the characteristic values of certain integral operator-valued
functions in the complex plane. Our method in this chapter is based on pole-pencil
type decomposition, followed by an application of the generalized Rouché theorem.
The techniques developed in this chapter can be extended to electromagnetic and
elastic analogues of the Helmholtz resonator [226, 229, 373, 212].





CHAPTER 14

Minnaert Resonances for Bubbles

14.1. Introduction

In this chapter, we consider acoustic wave propagation in bubbly media. At
particular low frequencies known as Minnaert resonances [355], bubbles behave as
strong sound scatterers. Using layer potential techniques and Gohberg-Sigal theory,
we derive a formula for the Minnaert resonances of bubbles of arbitrary shapes. Our
formula is expressed in terms of the capacity and the volume of the bubble, which
is a sub-wavelength acoustic resonator.

The Minnaert resonance is a low frequency resonance in which the wavelength
is much larger than the size of the bubble. At the Minnaert resonance it is possible
to achieve superfocusing of acoustic waves or imaging of passive sources with a
resolution beyond the Rayleigh diffraction limit. The results of this section are
from [35].

14.2. Derivation of Minnaert Resonance Formula

We consider the scattering of acoustic waves in a homogeneous three-dimensional
acoustic medium by a bubble embedded inside. Assume that the bubble occupies
a bounded and simply connected domain D with ∂D ∈ C1,η for some η > 0. We
denote by ρb and κb the density and the bulk modulus of the air inside the bubble,
respectively. ρ and κ are the corresponding parameters for the background media
R3\D.

Let ui be an incident plane wave. The scattering problem can be modeled by
the following equations:

(14.1)





∇ · 1
ρ
∇u+

ω2

κ
u = 0 in R3\D,

∇ · 1

ρb
∇u+

ω2

κb
u = 0 in D,

u+ − u− = 0 on ∂D,

1

ρ

∂u

∂ν

∣∣∣∣
+

− 1

ρb

∂u

∂ν

∣∣∣∣
−
= 0 on ∂D,

us := u− ui satisfies the Sommerfeld radiation condition.

We introduce four auxiliary parameters to facilitate our analysis:

(14.2) v =

√
ρ

κ
, vb =

√
ρb
κb
, k = ωv, kb = ωvb.

We also introduce two dimensionless contrast parameters:

(14.3) δ =
ρb
ρ
, τ =

kb
k

=
vb
v

=

√
ρbκ

ρκb
.
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By choosing appropriate physical units, we may assume that the size of the
bubble is of order one and that the wave speeds outside and inside the bubble are
both of order one. Thus the contrast between the wave speeds is not significant. We
assume, however, that there is a large contrast in the bulk modulii. In summary,
we assume that δ ≪ 1 and τ = O(1).

Then the solution u can be written as

(14.4) u(x) =

{
uin + SkD[ψ], x ∈ R3\D̄,
SkbD [ψb], x ∈ D,

for some surface potentials ψ, ψb ∈ L2(∂D). Using the jump relations for the single
layer potentials, it is easy to derive that ψ and ψb satisfy the following system of
boundary integral equations:

(14.5) A(ω, δ)[Ψ] = F,

where

A(ω, δ) =

(
SkbD −SkD

− 1
2I + (KkbD )∗ −δ( 12I + (KkD)∗)

)
, Ψ =

(
ψb
ψ

)
, F =

(
uin

δ ∂u
in

∂ν

)
.

One can show that the scattering problem (14.1) is equivalent to the boundary
integral equations (14.5).

It is clear that A(ω, δ) is a bounded linear operator from H :== L2(∂D) ×
L2(∂D) to H1 := H1(∂D)× L2(∂D), i.e., A(ω, δ) ∈ L(H,H1).

The resonance of the bubble in the scattering problem (14.1) can be defined as
all the complex numbers ω with positive imaginary part such that there exists a
nontrivial solution to the following equation:

(14.6) A(ω, δ)[Ψ] = 0.

These can be viewed as the characteristic values of the operator-valued analytic
function (with respect to ω) A(ω, δ). We are interested in the quasi-static resonance
of the bubble, or the resonance frequency at which the size of the bubble is much
smaller than the wavelength of the incident wave outside the bubble. In some
physics literature, this resonance is called the Minnaert resonance. Due to our
assumptions on the bubble being of size order one, and the wave speed outside of
the bubble also being of order one, this resonance should lie in a small neighborhood
of the origin in the complex plane. In what follows, we apply the Gohberg-Sigal
theory to find this resonance.

We first look at the limiting case when δ = ω = 0. It is clear that

(14.7) A0 := A(0, 0) =

(
S0
D −S0

D

− 1
2I + (K0

D)
∗ 0

)
,

where S0
D and (K0

D)
∗ are respectively the single layer potential and the Neumann-

Poincaré operator on ∂D associated with the Laplacian.
Let A∗

0 be the adjoint of A.

Lemma 14.1. We have

(i) Ker(A0) = Im {Ψ0} where Im {Ψ0} denotes the space spanned by Ψ0 and

Ψ0 = α0

(
ψ0

ψ0

)

with ψ0 = (S0
D)

−1[1] and the constant α0 being chosen such that ‖Ψ0‖ = 1;
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(ii) Ker(A∗
0) = Im {Φ0} where

Φ0 = β0

(
0
φ0

)

with φ0 = 1 on ∂D and the constant β0 being chosen such that ‖Φ0‖ = 1.

The above lemma shows that ω = 0 is a characteristic value for the operator-
valued analytic function A(ω, δ). By the Gohberg-Sigal theory, we can conclude
the following result about the existence of the quasi-static resonance.

Lemma 14.2. For any δ, sufficiently small, there exists a characteristic value
ω0 = ω0(δ) to the operator-valued analytic function A(ω, δ) such that ω0(0) = 0
and ω0 depends on δ continuously. This characteristic value is also the quasi-static
resonance (or Minnaert resonance).

We next perform asymptotic analysis on the operator A(ω, δ). With the same
notation as in Subsection 2.8.3.1, the following result holds.

Lemma 14.3. In the space L(H,H1), we have

A(ω, δ) := A0+B(ω, δ) = A0+ωA1,0+ω
2A2,0+ω

3A3,0+δA0,1+δω
2A2,1+O(ω4)+O(δω3),

where

A1,0 =

(
τvSD,1 −vSD,1

0 0

)
, A2,0 =

(
τ2v2SD,2 −v2SD,2
τ2v2KD,2 0

)
, A3,0 =

(
τ3v3SD,3 −v3SD,3
τ3v3KD,3 0

)
,

A0,1 =

(
0 0
0 −( 12I + (K0

D)
∗)

)
, A2,1 =

(
0 0
0 −v2KD,2

)
.

We define a projection P0 : H → H1 by

P0[Ψ] := 〈Ψ,Ψ0〉HΦ0,

and denote by

Ã0 = A0 + P0.

The following results hold.

Lemma 14.4. We have

(i) The operator Ã0 is a bijective operator in L(H1,H). Moreover, Ã0[Ψ0] =
Φ0;

(ii) The adjoint of Ã0, Ã0

∗
, is a bijective operator in L(H,H1). Moreover,

Ã0

∗
[Φ0] = Ψ0.

Proof. By construction, and the fact that S0
D is bijective from L2(∂D) to

H1(∂D), we can show that Ã0 is a bijective. So too is Ã0

∗
. We only need to show

that Ã0

∗
[Φ0] = Ψ0. Indeed, we can check that P∗

0 [θ] = 〈θ,Φ0〉Ψ0. Thus, it follows
that

Ã0

∗
[Φ0] = P∗

0 [Φ0] = (Φ0,Φ0)Ψ0 = Ψ0,

which completes the proof. �

The following theorem characterizes the Minnaert frequencies in terms of the
shape of the bubbles.



424 14. MINNAERT RESONANCES FOR BUBBLES

Theorem 14.5. In the quasi-static regime, there exists two resonances for a
single bubble:

ω0,0(δ) =

√
cap(∂D)

τ2v2|D| δ
1
2 −

√
−1

cap(∂D)
2

8πτ2v|D| δ +O(δ
3
2 ),

ω0,1(δ) = −
√

cap(∂D)

τ2v2|D| δ
1
2 −

√
−1

cap(∂D)2

8πτ2v|D| δ +O(δ
3
2 ),

where |D| is the volume of D and

cap(∂D) := −〈ψ0, 1〉L2(∂D) = −〈(S0
D)

−1[1], 1〉L2(∂D)

is the capacity of D. The first resonance ω0,0 is called the Minnaert resonance.

Proof. Step 1. We find the resonance by solving the following equation

(14.8) A(ω, δ)[Ψδ] = 0.

Since A(0, 0)[Ψ0] = 0, we may view Ψδ as a perturbation of Ψ0 and write it as
Ψδ = Ψ0 +Ψ1. In order to uniquely determine Ψ1, we assume that

(14.9) 〈Ψ1,Ψ0〉 = 0.

Note that we let the coefficient of Ψ0 be one for the purpose of normalization. Since
Ψδ is defined up to multiplicative constant, (14.9) holds without loss of generality
by changing Ψ0 +Ψ1 to Ψ0 +

(
Ψ1 − 〈Ψ0,Ψ1〉Ψ0

)
/(1 + 〈Ψ0,Ψ1〉).

Step 2. Since Ã0 = A0 + P0, (14.8) is equivalent to the following

(Ã0 − P0 + B)[Ψ0 +Ψ1] = 0.

Observe that as the operator Ã0 + B is invertible for sufficiently small δ and ω, we

can apply (Ã0 + B)−1 to both sides of the above equation to deduce that

(14.10) Ψ1 = (Ã0 + B)−1P0[Ψ0]−Ψ0 = (Ã0 + B)−1[Φ0]−Ψ0.

Step 3. Using the orthogonality condition (14.9), we arrive at the following
equation:

(14.11) A(ω, δ) :=
〈
(Ã0 + B)−1[Φ0],Ψ0

〉
− 1 = 0

Step 4. We calculate A(ω, δ). Using the identity

(Ã0 + B)−1 =
(
I + Ã0

−1B
)−1

Ã0

−1
=
(
I − Ã0

−1B + Ã0

−1BÃ0

−1B + . . .
)
Ã0

−1
,

and the fact that

Ã0

−1
[Φ0] = Ψ0,

we obtain

A(ω, δ) = −ω 〈A1,0[Ψ0],Φ0〉 − ω2 〈A2,0[Ψ0],Φ0〉 − ω3 〈A3,0[Ψ0],Φ0〉 − δ 〈A0,1[Ψ0],Φ0〉
+ω2

〈
A1,0Ã0

−1A1,0[Ψ0],Φ0

〉
+ ω3

〈
A1,0Ã0

−1A2,0[Ψ0],Φ0

〉
+ ω3

〈
A2,0Ã0

−1A1,0[Ψ0],Φ0

〉

+ωδ
〈
A1,0Ã0

−1A0,1[Ψ0],Φ0

〉
+ ωδ

〈
A0,1Ã0

−1A1,0[Ψ0],Φ0

〉

+ω3
〈
A1,0Ã0

−1A1,0Ã0

−1A1,0[Ψ0],Φ0

〉
+O(ω4) +O(δ2).
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It is clear that A∗
1,0[Φ0] = 0. Consequently, we get

A(ω, δ) = −ω2 〈A2,0[Ψ0],Φ0〉 − ω3 〈A3,0[Ψ0],Φ0〉 − δ 〈A0,1[Ψ0],Φ0〉
+ω3

〈
A2,0Ã0

−1A1,0[Ψ0],Φ0

〉
+ ωδ

〈
A0,1Ã0

−1A1,0[Ψ0],Φ0

〉
+O(ω4) +O(δ2).

In the next four steps, we calculate the terms 〈A2,0[Ψ0],Φ0〉, 〈A3,0[Ψ0],Φ0〉,
〈A0,1[Ψ0],Φ0〉,

〈
A2,0Ã0

−1A1,0[Ψ0],Φ0

〉
and

〈
A0,1Ã0

−1A1,0[Ψ0],Φ0

〉
.

Step 5. We have

〈A2,0[Ψ0],Φ0〉 = α0β0τ
2v2 〈KD,2[ψ0], φ0〉 = α0β0τ

2v2
〈
ψ0,K∗

D,2[φ0]
〉

= −α0β0τ
2v2

∫

∂D

dσ(x)(S0
D)

−1[1](x)

∫

D

Γ0(x− y) dy

= −α0β0τ
2v2

∫

D

dy

∫

∂D

Γ0(x− y)(S0
D)

−1[1](x) dσ(x)

= −α0β0τ
2v2

∫

D

dy

= −α0β0τ
2v2|D|.

Here, Γ0 is the fundamental solution of the Laplacian in R3, defined by (2.2).
Step 6. On the other hand, we have

〈A3,0[Ψ0],Φ0〉 = α0β0τ
3v3

(
ψ0,K∗

D,3[φ0]
)
= α0β0τ

3v3
(
ψ0,

√
−1

4π
|D|
)

= α0β0τ
3v3|D|

√
−1

4π

〈
(S0
D)

−1[1], 1
〉
= −α0β0τ

3v3|D|
√
−1

4π
cap(∂D).

Step 7. It is easy to see that

〈A0,1[Ψ0],Φ0〉 = −〈ψ0, φ0〉 = −α0β0
〈
(S0
D)

−1[1], 1
〉
= α0β0cap(∂D).

Step 8. We now calculate the term
〈
A0,1Ã0

−1A1,0[Ψ0],Φ0

〉
. We have

A1,0[Ψ0] =

(
(τ − 1)vSD,1[ψ0]

0

)
=

(
(τ − 1)v

√−1
4π cap(∂D)
0

)
,

A∗
0,1[Φ0] =

(
0

−
(
1
2I +K0

D

)
[φ0]

)
=

(
0

−φ0

)
= −

(
0
1

)
.

We need to calculate

Ã−1
0

(
1
0

)
.

Assume that

(A0 + P0)

(
yb
y

)
=

(
S0
D[yb − y]

(− 1
2I + (K0

D)
∗)[yb]

)
+ ((yb, ψ0) + (y, ψ0))

(
0
φ0

)
=

(
1
0

)

By solving the above equations directly, we obtain that yb = 1
2ψ0, y = − 1

2ψ0.
Therefore,

Ã−1
0

(
1
0

)
=

(
1
2ψ0

− 1
2ψ0

)
.

It follows that
〈
A0,1Ã0

−1A1,0[Ψ0],Φ0

〉
= (τ−1)v

√
−1

8π
cap(∂D)〈ψ0, φ0〉 = (1−τ)v

√
−1

8π
cap(∂D)2α0β0.
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Step 9. We calculate the term
〈
A2,0Ã0

−1A1,0[Ψ0],Φ0

〉
. Using the results in

Step 8, we obtain
〈
A2,0Ã0

−1A1,0[Ψ0],Φ0

〉
=

〈
Ã0

−1A1,0[Ψ0],A∗
2,0[Φ0]

〉

=

√
−1(τ − 1)τ2v3

8π
cap(∂D)α0β0

(
ψ0,K∗

D,2[φ0]
)

=

√
−1(1− τ)τ2v3

8π
cap(∂D)|D|α0β0.

Step 10. Considering the above results, we can derive

A(ω, δ) = α0β0

(
τ2v2|D|ω2 +

√
−1τ2(τ + 1)v3|D|cap(∂D)

8π
ω3 − cap(∂D)δ

−
√
−1(τ − 1)vcap(∂D)2

8π
ωδ

)

+O(ω4) +O(δ2).

We now solve A(ω, δ) = 0. It is clear that δ = O(ω2), and thus ω0(δ) = O(
√
δ).

Write

ω0(δ) = a1δ
1
2 + a2δ +O(δ

3
2 ).

We get

τ2v2|D|
(
a1δ

1
2 + a2δ +O(δ

3
2 )
)2

+

√
−1τ2(τ + 1)v3|D|cap(∂D)

8π

(
a1δ

1
2 + a2δ +O(δ

3
2 )
)3

−cap(∂D)δ −
√
−1(τ − 1)vcap(∂D)2

8π

(
a1δ

1
2 + a2δ +O(δ

3
2 )
)
δ +O(δ2) = 0.

From the coefficients of the δ and δ
3
2 terms, we obtain

τ2v2|D|a21 − cap(∂D) = 0,

2τ2v2|D|a1a2 +
√
−1τ2(τ + 1)v3|D|cap(∂D)

8π
a31 −

√
−1(τ − 1)vcap(∂D)2

8π
a1 = 0,

which yields

a1 = ±
√

cap(∂D)

τ2v2|D| ,

a2 = −
√
−1(τ + 1)vcap(∂D)

16π
a21 +

√
−1(τ − 1)cap(∂D)2

16πτ2v|D|

= −
√
−1(τ + 1)cap(∂D)2

16πτ2v|D| +

√
−1(τ − 1)cap(∂D)2

16πτ2v|D|

=
−
√
−1cap(∂D)2

8πτ2v|D| .

This completes the proof of the theorem.
�

A few remarks are in order.
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Remark 14.6. In [35], the following properties for the operator A0 in the two-
dimensional case were derived. Let ψ0 be ( the real-valued function) defined by
(K0

D)
∗[ψ0] =

1
2ψ0 and ‖ψ0‖L2(∂D) = 1. Let the constant γ0 := S0

D[ψ0]
∣∣
∂D

. With the
same notation as in Subsection 2.8.3.2, we have

(i) Ker(A0) = Im {Ψ0} where

Ψ0 = α0

(
ψ0

aψ0

)

with

a =





ηkb
ηk

if γ0 = 0,

γ0 + 〈ψ0, φ0〉ηkb
γ0 + 〈ψ0, φ0〉ηk

if γ0 6= 0,

and the constant α0 being chosen such that ‖Ψ0‖ = 1;
(ii) Ker(A∗

0) = Im {Φ0} where

Φ0 = β0

(
0
φ0

)

with φ0 = 1 on ∂D and the constant β0 being chosen such that ‖Φ0‖ = 1.

Using the method developed above, we can derive the Minnaert resonance for a
single bubble in two dimensions. We can prove that there exist two Minnaert res-
onances for a single bubble and their leading order terms are given by the roots of
the following equation:

ω2 lnω +

[
(ln vb + 1 +

c1
b1
)− γ0

〈ψ0, 1〉

]
ω2 − 1

4|D|
aδ

b1
= 0,(14.12)

where the constants b1, c1 are defined in Subsection 2.8.3.2.

Remark 14.7. Using the method developed above, we can also obtain the full
asymptotic expansion for the resonance with respect to the small parameter δ.

Remark 14.8. In the case of a collection of L identical bubbles, with separation
distance much larger than their characteristic sizes, the Minnaert resonance for a
single bubble will be split into L resonances. The splitting will be related to the
eigenvalues of a L-by-L matrix which encodes information on the configuration of
the L bubbles. This can be proved by the same argument as the one for systems of
Helmholtz resonators in Section 13.4.

Remark 14.9. Taking into consideration the above theorem, we can deduce
that if the bubble is represented by D = tB for some small positive number t and a
normalized domain B with size of order one, then the Minnaert resonance for D is
given by the following formula

ω0,0(δ) =
1

t

[√
cap(∂B)

τ2v2|B| δ
1
2 −

√
−1

cap(∂B)2

8πτ2v|B| δ +O(δ
3
2 )

]
.
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Remark 14.10. In the special case when D is the unit sphere, we have cap(∂D) =
4π, |D| = 4π

3 . Consequently,
√

cap(∂D)

τ2v2|D| =
√
3
1

vb
,

cap(∂D)2

8πτ2v|D| =
3

2τ2v
.

Therefore, the Minnaert resonance is given by

ω0,0(δ) =
√
3
1

vb
δ

1
2 −

√
−1

3

2τ2v
δ +O(δ

3
2 ),

=

√
3κb
ρ

−
√
−1

3

2
κb

√
1

ρκ
+O((

ρb
ρ
)

3
2 ).

Remark 14.11. As in Chapter 12, using the sub-wavelength resonance of the
bubble, one can design bubble metascreens. An acoustic meta-screen is a thin sheet
with patterned subwavelength structures, which nevertheless has a macroscopic effect
on the acoustic wave propagation. In [36], periodic sub-wavelength bubbles mounted
on a reflective surface (with Dirichlet boundary condition) were considered. It was
shown that the structure behaves as an equivalent surface with Neumann boundary
condition at the Minnaert resonant frequency which corresponds to a wavelength
much greater than the size of the bubbles. An analytical formula for this resonance
was derived and numerically confirmed. The super-absorption behavior of the met-
screen observed in [322] was explained.

14.3. Effective Medium Theory for a System of Bubbles and
Super-Resolution

In this section, we derive an effective medium theory for acoustic wave prop-
agation in bubbly fluid near the Minnaert resonant frequency. We start with a
multiple scattering formulation of the scattering problem of an incident wave by a
large number of identical small bubbles in a homogeneous fluid. Under certain con-
ditions on the configuration of the bubbles, we establish an effective medium theory
for the bubbly fluid as the number of bubbles tends to infinity. As a consequence, we
show that near and below the Minnaert resonant frequency, the obtained effective
media can have a high refractive index, which is the reason for the super-focusing
experiment observed in [311].

14.3.1. Problem Formulation. Consider the scattering of acoustic waves
by N identical bubbles distributed in a homogeneous fluid in R3. The bubbles are
represented by

DN := ∪1≤j≤ND
N
j ,

where DN
j = yNj + sB for 1 ≤ j ≤ N with yNj being the location, s being the

characteristic size and B being the normalized bubble which is a smooth and simply
connected domain with size of order one. We denote by ρb and κb the density and
the bulk modulus of the air inside the bubble respectively, which are different from
the corresponding ρ and κ in the background medium R3\DN .

We assume that 0 < s≪ 1, N ≫ 1 and that {yNj } ⊂ Ω. Let ui be the incident
wave which we assume to be a plane wave for simplicity. The scattering can be
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modeled by the following system of equations:

(14.13)





∇ · 1
ρ∇uN + ω2

κ u
N = 0 in R3\DN ,

∇ · 1
ρb
∇uN + ω2

κb
uN = 0 in DN ,

uN+ − uN− = 0 on ∂DN ,

1
ρ
∂uN

∂ν

∣∣∣∣
+

− 1
ρb
∂uN

∂ν

∣∣∣∣
−
= 0 on ∂DN ,

uN − ui satisfies the Sommerfeld radiation condition,

where uN is the total field and ω is the frequency.
As in the previous section, we introduce the four auxiliary parameters v, vb, k,

and kb, and the two dimensionless contrast parameters δ and τ to facilitate our
analysis. By choosing proper physical units, we may again assume that both the
frequency ω and the wave speed outside the bubbles are of order one. As a result,
the wavenumber k outside the bubbles is also of order one. We assume that there
is a large contrast between both the densities and bulk modulii inside and outside
the bubbles. However, the contrast between the wave speeds are small. Thus, both
the wave speed and wavenumber kb inside the bubbles are of order one. To sum
up, we assume that δ ≪ 1, τ = O(1). We also assume that the domain of interest
Ω has size of order one.

Using layer potentials, the solution uN can be written as

(14.14) uN (x) =

{
uin + SkDN [ψN ], x ∈ R3\DN ,

SkbD [ψNb ], x ∈ DN ,

for some surface potentials ψ,ψb ∈ L2(∂DN ). Here, we have used the notations

L2(∂DN ) = L2(∂DN
1 )× L2(∂DN

2 )× · · · × L2(∂DN
N ),

SkDN [ψN ] =
∑

1≤j≤N
SkDN

j
[ψNj ],

SkbD [ψNb ] =
∑

1≤j≤N
SkDN

j
[ψNbj ].

Using the jump relations for the single layer potentials, it is easy to derive that
ψ and ψb satisfy the following system of boundary integral equations:

(14.15) AN (ω, δ)[ΨN ] = FN ,

where

AN (ω, δ) =

(
Skb
DN −SkDN

− 1
2I + (Kkb

DN )∗ −δ( 12I + (KkDN )∗)

)
, ΨN =

(
ψNb
ψN

)
, FN =

(
uin

δ ∂u
in

∂ν

)
|∂DN .

One can easily show that the scattering problem (14.13) is equivalent to the
boundary integral equations (14.15) and there exists a unique solution to the scat-
tering problem (14.13), or equivalently to the system (14.15).

Let H = L2(∂DN )×L2(∂DN ) and H1 = H1(∂DN )×L2(∂DN ). It is clear that
AN (ω, δ) is a bounded linear operator from H to H1, i.e., AN (ω, δ) ∈ L(H,H1).
We also use the following convention: let aN and bN be two real numbers which
may depend on N , then

aN . bN

means that aN ≤ C · bN for some constant C which is independent of aN , bN and
N .
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We are interested in the case when there is a large number of small identical
bubbles distributed in a bounded domain and the incident wave has a frequency
near the Minnaert resonant frequency for an individual bubble. We recall that for
the bubble given by DN

j = yNj +sB, its corresponding Minnaert resonant frequency
ωM is

ωM =
1

s

√
cap(∂B)δ

τ2v2|B| .

We assume that the following assumption holds:

Assumption 14.12. The frequency ω = O(1) and is independent of N . More-
over,

(14.16) 1− (
ωM
ω

)2 = β0s
ǫ1

for some fixed 0 < ǫ1 < 1 and constant β0.

There are two cases depending on whether ω > ωM or ω < ωM . In the former
case, we have β0 > 0, while in the latter case we have β0 < 0. We shall see later
on that acoustic wave propagation is quite different in these two cases. In fact,
the wave field may be dissipative in the former case while highly oscillatory and
propagating in the latter case. We also assume the following.

Assumption 14.13. The following identity holds

(14.17) s1−ǫ1 ·N = Λ,

where Λ is a constant independent of N . Moreover, we will assume that Λ is large.

Therefore, we have

(14.18) δ = ω2s2(1− sǫ1) · τ
2v2|B|

cap(∂B)
.

We note that we have rescaled the original physical problem by imposing the
condition that ωM is of order one. Consequently, the physical parameters s and δ
associated with the size and contrast of the bubbles both depend on N . Equation
(14.17) gives the volume fraction while Equation (14.16) controls the deviation of
frequency from the Minnaert resonant frequency. In the limiting process when
N → ∞, we have s→ 0, δ → 0.

We assume that the size of each bubble is much smaller than the typical distance
between neighboring bubbles so that we may simplify the system using the point
scatterer approximation. More precisely, we make the following assumption.

Assumption 14.14. The following conditions hold:
{

mini 6=j |yNi − yNj | ≥ rN ,
s≪ rN ,

where rN = ηN− 1
3 for some constant η independent of N . Here, rN can be viewed

as the minimum separation distance between neighboring bubbles.

Following [391], we assume that there exists Ṽ ∈ L∞(Ω) such that

(14.19) ΘN (A) →
∫

A

Ṽ (x)dx, as N → ∞,
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for any measurable subset A ⊂ R3, where ΘN (A) is defined by

ΘN (A) =
1

N
× {number of points yNj in A ⊂ R3}.

In addition, we assume that the following condition on the regularity of the
“sampling” points {yNj } holds.

Assumption 14.15. There exists 0 < ǫ0 < 1 such that for all h ≥ 2rN :

1

N

∑

|x−yNj |≥h

1

|x− yNj |2 . |h|−ǫ0 , uniformly for all x ∈ Ω,(14.20)

1

N

∑

2rN≤|x−yNj |≤3h

1

|x− yNj | . |h|, uniformly for all x ∈ Ω.(14.21)

Remark 14.16. Note that one can choose ǫ0 to be a small number in As-
sumption 14.15. One can show that equations (14.20) and (14.21) are respectively
equivalent to the following ones

max
l

{ 1

N

∑

|yNl −yNj |≥h

1

|yNl − yNj |2 } . h−ǫ0 ;(14.22)

max
l

{ 1

N

∑

2rN≤|yNl −yNj |≤3h

1

|yNl − yNj | } . h.(14.23)

Indeed, these estimates follow from the fact that for each x ∈ Ω there exists a finite
number of points yNj1 , y

N
j2
,. . . , yNjL in the neighborhood of x with L independent of

N such that

1

|x− yNj |2 ≤
∑

1≤i≤L

1

|yNji − yNj |2 ,
1

|x− yNj | ≤
∑

1≤i≤L

1

|yNji − yNj | ,

for all yNj such that |x− yNj | ≥ h.

Following [384], we also assume the following.

Assumption 14.17. For any f ∈ C0,α(Ω) with 0 < α ≤ 1,
(14.24)

max
1≤j≤N

| 1
N

∑

i 6=j
Γk(y

N
j − yNj )f(yNj )−

∫

Ω

Γk(y
N
j − y)Ṽ (y)f(y)dy| . 1

N
α
3
‖f‖C0,α(Ω).

Remark 14.18. By decomposing Γk(x − y) into the singular part, Γ0(x − y),
and a smooth part, one can show that Assumption 14.17 is equivalent to

(14.25) max
1≤j≤N

| 1
N

∑

i 6=j

1

|yNi − yNj |f(y
N
i )−

∫

Ω

1

|y − yNj | Ṽ (y)f(y)dy| . 1

N
α
3
|f‖C0,α .

For 1 ≤ j ≤ N , denote by

ui,Nj = ui +
∑

i 6=j
SkDN

i
[ψNi ],

us,Nj = SkDN
j
[ψNj ].



432 14. MINNAERT RESONANCES FOR BUBBLES

It is clear that ui,Nj is the total incident field which impinges on the bubble DN
j

and us,Nj is the corresponding scattered field. In the next section, we shall jus-
tify the point interaction approximation. For this purpose, we need an additional
assumption.

Assumption 14.19. ǫ0 <
3ǫ1
1−ǫ1 .

Remark 14.20. Assumptions 14.12 and 14.19 are important in our justifica-
tion of the point interaction approximation, see Proposition 14.23. The assumption
that ǫ1 > 0 is critical here. For the case ǫ1 = 0, the frequency is away from the
Minnaert resonant frequency. The scattering coefficient g has magnitude of order
s. The fluctuation in the scattered field from all the other bubbles may generate
multipole modes which are comparable with the monopole mode and hence invali-
date the monopole point interaction approximation. We leave this case as an open
question for future investigation.

Remark 14.21. Assumptions 14.12 and 14.13 are important in our effective
medium theory. The parameter ǫ1 in Assumption 14.12 controls the deviation of
the frequency from the Minnaert resonant frequency, which further controls the
amplitude of the scattering strength of each bubble. This parameter, together with
Λ, also controls the volume fraction of the bubbles through Assumption 14.13. In an
informal way, if the bubble volume fraction is below the level as set by Assumption
14.13, say s1−ǫ3 · N = O(1) for some ǫ3 < ǫ1, then the effect of the bubbles is
negligible and the effective medium would be the same as if there are no bubbles in
the limit as N → ∞. On the other hand, if s1−ǫ3 ·N = O(1) for some ǫ3 > ǫ1, then
the bubbles interact strongly with each other and eventually behave as a medium
with infinite effective refractive index. Only at the appropriate volume fraction as
in Assumption 14.13, do we have an effective medium theory with finite refractive
index. The larger Λ is, the higher the effective refractive index is. These statements
can be justified by the method developed in the paper.

Remark 14.22. One can easily check that Assumptions 14.14, 14.15 and 14.17
hold for periodically distributed yNj ’s.

14.3.2. Point Interaction Approximation. In this subsection, we justify
the point interaction approximation under the assumptions we made in the previous
subsection. Our main result is the following.

Proposition 14.23. Under Assumptions 14.12, 14.14, 14.15 and 14.19, the

following relation between us,Nj and ui,Nj holds for all x such that |x− yNj | ≫ s:

us,Nj (x) = Γk(x− y0) · g ·
(
ui,Nj (yNj ) +O[N

ǫ0
3 − ǫ1

1−ǫ1 +
s

|x− yNj | ] · max
1≤l≤N

|ui,Nj (yNj )|
)
.

Moreover, for x = yNj ,

ui,Nj (yNj ) = ui(yNj )+
∑

i 6=j
us,Ni (yNj ) = ui(yNj )+

∑

i 6=j
g ·
(
ui,Ni (yNi ) + pNi

)
Γk(y

N
j −yNi ),
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where

g = g(ω, δ,DN
j ) = − scap(∂B)

1− (ωM

ω )2 +
√
−1γ

(1 +O(s) +O(δ)),

γ =
(τ + 1)vcap(∂B)sω

8π
− (τ − 1)cap(∂B)2δ

8πτ2v|B|ωs ,

are the scattering and damping coefficients near the Minnaert resonant frequency
respectively, and pNi satisfies

|pNi | = max
1≤i≤N

|ui,Ni (yNi )| ·O(N
ǫ0
3 − ǫ1

1−ǫ1 ).

Proof. First, by Taylor series expansion of Γk(x−y) with respect to y around
yNj , we have
(14.26)

us,Nj (x) =

∫

∂DN
j

Γk(x− y)ψNj (y)dσ(y)

= Γk(x− yNj )

〈
(χ(∂DN

j ), ψNj 〉L2 +O(
s

|x− yNj | ) · s · ‖ψ
N
j ‖L2

)
.

On the other hand, one can obtain

ψNj = ui,Nj (yNj )S−1
DN

j

[χ(∂DN
j )] · g

cap(∂DN
j )

+
1

s
·O(‖Fj,2‖H1(∂DN

j )), in L2(∂DN
j ),

where

Fj,2(y) = ui,Nj (y)− ui,Nj (yNj ) =
∑

i 6=j

(
SkDN

i
[ψNi ](y)− SkDN

i
[ψNi ](yNj )

)
.

By Lemma 14.24, we get

‖SkDN
j
(ψNi )(y)− SkDN

j
(ψNi )(yNj )‖H1(∂DN

j ) .
1

|y − yNj |2 · s2 · ‖ψNi ‖L2(∂DN
j ).

Thus,

‖Fj,2‖H1(∂DN
j ) .

∑

i 6=j

1

|yNi − yNj |2 · s2 · max
1≤l≤N

‖ψNi ‖L2(∂DN
j ).

Therefore, it follows that

‖ψNj ‖L2(∂DN
j ) . |ui,Nj (yNj )|·‖S−1

DN
j

[χ(∂DN
j )]‖L2(∂DN

j )·|
g

cap(∂DN
j )

|+
∑

i 6=j

1

|y − yNj |2 ·s· max
1≤l≤N

‖ψNl ‖L2(∂DN
l ).

Note that ‖S−1
DN

j

[χ(∂DN
j )]‖L2(∂DN

j ) = O(1) and

∑

i 6=j

1

|yNi − yNj |2 · s . r−ǫ0N s ·N . N
ǫ0
3 − ǫ1

1−ǫ1 ,

where we have used Assumption 14.12 in the last inequality. We can therefore
conclude that

(14.27) max
1≤j≤N

‖ψNj ‖L2(∂DN
j ) . max

1≤j≤N
|ui,Nj (yNj )| · | g

cap(∂DN
j )

|.
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Consequently, by (14.26),

us,Nj (x) = Γk(x− y0)

(
〈χ(∂DN

j ), ψNj 〉L2 +O(
s

|x− yNj | ) · s · ‖ψ
N
j ‖L2

)

= Γk(x− y0)

(
〈χ(∂DN

j ), ψNj 〉L2 +O(
s

|x− yNj | ) max
1≤j≤N

|ui,Nj (yNj )| · |g|
)
.

Since

〈χ(∂DN
j ), ψNj 〉L2 =

〈
χ(∂DN

j ), ui,Nj (yNj )S−1
DN

j

[χ(∂DN
j )] · g

cap(∂DN
j )

〉

L2

+O(‖Fj,2‖H1(∂DN
j ))

= ui,Nj (yNj )g +O(s ·N
ǫ0
3 − ǫ1

1−ǫ1 ) · max
1≤l≤N

‖ψNi ‖L2(∂DN
j )

= ui,Nj (yNj )g +O(s ·N
ǫ0
3 − ǫ1

1−ǫ1 ) · max
1≤j≤N

|ui,Nj (yNj )| · | g

cap(∂DN
j )

|

= g

(
ui,Nj (yNj ) +O(N

ǫ0
3 − ǫ1

1−ǫ1 ) · max
1≤l≤N

|ui,Nj (yNj )|
)
,

we arrive at

us,Nj (x) = Γk(x− y0)g

(
ui,Nj (yNj ) +O[N

ǫ0
3 − ǫ1

1−ǫ1 +
s

|x− yNj | ] · max
1≤l≤N

|ui,Nj (yNj )|
)
.

Finally, note that

ui,Nj (x) = ui(x) +
∑

i 6=j
us,Ni (x).

By taking x = xNi and using the assumption that

|xNi − xNj | ≥ rN ,

we obtain
s

|x− yNj | ≤
s

rN
.

1

N
· sǫ1 ·N 1

3 . N
ǫ0
3 − ǫ1

1−ǫ1 .

The second part of the proposition follows immediately. �

Lemma 14.24. The following estimate holds:

(14.28) ‖SkDN
j
(ψNi )(y)−SkDN

j
(ψNi )(yNj )‖H1(∂DN

j ) .
1

|yNi − yNj |2 · s2 · ‖ψNi ‖L2(∂DN
j ).

Proof. By Taylor series expansion of Γk(y − z) with respect to y around yNj
and z around yNi , we have

SkDN
j
(ψNi )(y)− SkDN

j
(ψNi )(yNj ) =

∫

∂DN
j

(
Γk(y − z)− Γk(y

N
j − z)

)
ψNj (z)dσ(z)

=
∑

|α|≥1

(y − yNj )α
∑

|β|≥0

∫

∂DN
i

∂|α|+|β|G

∂yαzβ
(yNj , y

N
i , k)(z − yNi )βψNi (z)dσ(z).

Using the estimate

|∂
|α|+|β|G

∂yαzβ
(yNj , y

N
i , k)| . max{ 1

|yNi − yNj | ,
1

|yNi − yNj ||α|+|β|+1
},
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we obtain

|SkDN
j
(ψNi )(y)− SkDN

j
(ψNi )(yNj )| .

1

|yNi − yNj |2 · s2 · ‖ψNi ‖L2 ,

|∇SkDN
j
(ψNi )(y)| .

1

|yNi − yNj |2 · s · ‖ψNi ‖L2 ,

whence estimate (14.28) follows. This completes the proof.
�

Let us denote xNj = ui,Nj (yNj ), bNj = ui(yNj ), TN = (TNij )1≤i,j≤N with TNij =

gΓk(y
N
i − yNj ), and

qNj =
∑

i 6=j
gΓk(y

N
j − yNi )pNi .

We obtain the following system of equations for xN = (xNj )1≤j≤N :

(14.29) xN − TNxN = bN + qN .

14.3.3. Derivation of the Effective medium theory of Bubbly Media.
In this section we derive an effective medium theory for the acoustic wave propa-
gation in the bubbly fluid considered in Subsection 14.3.1. We first establish the
well-posedness, including existence, uniqueness and stability, and the limiting be-
havior of the solution to the system of equations (14.29), which is resulted from
the point interaction approximation, in Subsection 14.3.3.1. We then construct
wave field from the solution to (14.29) and show the convergence of the constructed
micro-field to a macro-effective field, in Subsection 14.3.3.2.

14.3.3.1. Well-posedness and limiting behaviour of the point interaction system.
We start from the summation

∑
i 6=j gΓk(y

N
j − yNi )f(yNi ). It is clear that

∑

i 6=j
gΓk(y

N
j −yNi )f(yNi ) =

1

N

∑

i 6=j

−cap(∂B)

β0sǫ1 +
√
−1 ·O(ω · s) (s ·N) ·Γk(yNj −yNi )f(yNi ).

Denote by

βN =
−cap(∂B)

β0 +
√
−1 ·O(ω · s1−ǫ1) (1 +O(s)), β =

−cap(∂B)

β0
.

Note that β and B are independent of N . By Assumption 14.13, we have the
following identity:

∑

i 6=j
gΓk(y

N
j − yNi )f(yNi ) =

1

N

∑

i 6=j
βN · Λ · Γk(yNj − yNi )f(yNi ).

Let

(14.30) V (x) = β · Λ · Ṽ (x).

We note that there are two cases depending on whether ω > ωM or ω < ωM .
In the former case, β0 > 0, thus β > 0 which leads to V (x) ≥ 0, while in the latter
case we have β0 < 0 and thus β < 0 which leads to V (x) ≤ 0.

We now present a result on the approximation of the summation
∑
i 6=j gΓk(y

N
j −

yNi )f(yNi ) by using volume integrals.
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Lemma 14.25. For any f ∈ C0,α(Ω) with 0 < α ≤ 1,

max
1≤j≤N

| 1
N

∑

i 6=j
βN · Λ · Γk(yNj − yNi )f(yNi )−

∫

Ω

Γk(y
N
j − y)V (y)f(y)dy| . 1

N
α
3
‖f‖C0,α(Ω).

Proof. By Assumption 14.17, we have

max
1≤j≤N

| 1
N

∑

i 6=j
β · Λ · Γk(yNj − yNi )f(yNi )−

∫

Ω

Γk(y
N
j − y)V (y)f(y)dy| . 1

N
α
3
‖f‖C0,α(Ω).

On the other hand, note that

|βN − β| . s1−ǫ1 .
1

N
.

Thus,

max
1≤j≤N

| 1
N

∑

i 6=j
(β − βN ) · Λ · Γk(yNj − yNi )f(yNi )| .

1

N
· 1

N

∑

i 6=j

1

|yNj − yNi | ‖f‖C0,α(Ω)

.
1

N
‖f‖C0,α(Ω) ≤

1

N
α
3
‖f‖C0,α(Ω).

The lemma then follows immediately.
�

Let X = C0,α(Ω) for some 0 < α < 1 (later on we will take α = 1−ǫ0
2 ). Define

T by

T f(x) =
∫

Ω

Γk(x− y)V (y)f(y)dy.

T can be viewed as the continuum limit of TN in some sense. One can show that
T : X → X is a compact linear operator. Moreover, the following properties hold.

Lemma 14.26. (i) The operator T is bounded from C0(Ω) to C0,α(Ω) for
any 0 < α < 1.

(ii) The operator T is bounded from C0,α(Ω) to C1,α(Ω) for any 0 < α < 1.
(iii) In the case when ω < ωM , the operator I − T has a bounded inverse on

the Banach space X. More precisely, for each b ∈ X, there exists a unique
f ∈ X such that f − T f = b and ‖f‖X ≤ C‖f‖X , where C is a positive
constant independent of b.

(iv) In the case when ω > ωM , the same conclusion as in Assertion (iii) holds,
provided that V (x) > k2 almost everywhere in Ω.

Proof. Assertions (i) and (ii) follow from the general theory on integral oper-
ators. We now show Assertion (iii). Let b ∈ X and consider the following integral
equation

x− T x = b.

Applying the operator △+ k2 to both sides of the above equation, we obtain

(△+ k2)x− V x = (△+ k2)b in Ω.

In the case when ω < ωM , we have V (x) ≤ 0. Thus the above equation yields
a Lippmann-Schwinger equation with potential k2 − V , for which the solution is
known to be unique. This proves that the operator I − T has a trivial kernel.
The rest of statements of Assertion (iii) follow from standard Fredholm theory
for compact operators. Similarly, for Assertion (iv), we note that the operator
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△ + k2 − V is elliptic, then the statement follows from the standard theory of
elliptic equations. �

Remark 14.27. In the case when ω > ωM , one has V (x) ≥ 0. The integral
equation x−T x = b leads to the following partial differential operator △+(k2−V )
where k2 − V may change sign in the domain Ω depending on the values of V (x).

In fact, in some physical situations, Ṽ may be zero or negligible near ∂Ω while
of order one inside Ω. When β · Λ ≫ 1, we see that k2 − V < 0 in the inner
region of Ω. As a consequence, the wave field is attenuating therein, which implies
that the effective medium is dissipative. On the other hand, the wave field is still
propagating near ∂Ω where k2 − V (x) is positive. One may also see a transition
layer from propagating region to dissipative region near the place when k2−V (x) is
close to 0. It is not clear whether the operator △+ (k2 − V ) with k2 − V changing
sign is uniquely solvable or not.

In view of Remark 14.27, we shall restrict our investigation to the case when
ω < ωM from now on. However, we remark that if we assume that kernel of the
operator I − T is trivial in the case when ω > ωM , then all the arguments and
results which hold for the case ω < ωM also hold for ω > ωM .

Note that ui ∈ X. Let ψ be the unique solution satisfying

(14.31) ψ − T ψ = ui.

It is clear that

(△+ k2)ψ − V ψ = 0 in R3.

We shall show that ψ is the limit of the solution xN to (14.29) in a sense which
will be made clear later on. We first present the following result concerning the
well-posedness of the discrete system (14.29).

Proposition 14.28. Let X = C0,α(Ω) for α = 1−ǫ0
2 and assume that ω < ωM .

Then under Assumptions 14.14, 14.15 and 14.17, there exists N0 > 0 such that for
all N ≥ N0 and b ∈ X, there is a unique solution to the equation

zN − TNzN = bN

with bNj = b(yNj ). Moreover,

max
1≤j≤N

|zNj | ≤ C1‖b‖X ,

for some constant positive C1 independent of N and b.

The proof of this proposition is technical and is given in [84]. As a corollary
of the proposition, we can prove our main result on the limiting behavior of the
solution to the system (14.29).

Theorem 14.29. Let X = C0,α(Ω) for α = 1−ǫ0
2 and assume that ω < ωM .

Then under Assumptions 14.12, 14.13, 14.14, 14.15, 14.17 and 14.19, there exists
N0 > 0 such that for all N ≥ N0,

max
1≤j≤N

|xNj − ψ(yNj )| . N− 1−ǫ0
6 ,

where xN and ψ are the solutions to (14.29) and (14.31), respectively.
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Proof. Step 1. We have

xNj − 1

N

∑

i 6=j
βN · Λ · Γk(yNj − yNi )xNi = bNj + qNj ,

ψ(yNj )−
∫

Ω

Γk(y
N
j − y)V (y)f(y)dy = bNj .

Let rNj = xNj − ψ(yNj ). Then

rN − TnrN = eN + qN ,

where

eNj =
1

N

∑

i 6=j
βN · Λ · Γk(yNj − yNi )ψ(yNj )−

∫

Ω

Γk(y
N
j − y)V (y)ψ(y)dy.

Step 2. Let GN (x, y) be given by

GN (x, y) =

{
− 1

4π|x−y| if |x− y| ≥ rN ,
g(rN )
rN

|x− y| if 0 ≤ |x− y| < rN ,

and define

GN (x, y, k) = GN (x, y) + (Γk(x− y)− Γ0(x− y)) := GN,1(x, y, k) +GN,2(x, y, k).

Denote by

q̃N (y) =
∑

i 6=j
gGN (y, yNi , k)p

N
i = q̃N1 (y) + q̃N2 (y),

where

q̃N1 (y) =
∑

i 6=j
gGN,1(y, y

N
i , k)p

N
i , q̃N2 (y) =

∑

i 6=j
gGN,2(y, y

N
i , k)p

N
i .

One can prove that q̃N1 ∈ X; see [84]. Moreover,

‖q̃N1 ‖X . max
1≤i≤N

|pNi | . O(N
ǫ0
3 − ǫ1

1−ǫ1 ) · max
1≤i≤N

|xNi |.

Since GN,2(x, y, k) is smooth in |x−y| and is bounded, a straightforward calculation
shows that q̃N2 ∈ X as well and

‖q̃N2 ‖X . O(N
ǫ0
3 − ǫ1

1−ǫ1 ) · max
1≤i≤N

|xNi |.

Thus, we have q̃N ∈ X and

‖q̃N‖X . max
1≤i≤N

|pNi | . O(N
ǫ0
3 − ǫ1

1−ǫ1 ) · max
1≤i≤N

|xNi |.

On the other hand, one can prove that there exists ẽN ∈ X such that ẽN (yNj ) =

eNj and ‖ẽN‖X . N− 1−ǫ0
6 ‖ui‖X ; see [84]. Therefore,

‖ẽN‖X + ‖q̃N‖X . N− 1−ǫ0
6 ‖ui‖X +O(N

ǫ0
3 − ǫ1

1−ǫ1 ) · max
1≤i≤N

|xNi |.

It then follows from Proposition 14.28 that,

(14.32) max
1≤j≤N

|rNj | . N− 1−ǫ0
6 ‖ui‖X +O(N

ǫ0
3 − ǫ1

1−ǫ1 ) · max
1≤i≤N

|xNi |.
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Step 3. Note that max1≤j≤N |ψ(yNj )| is bounded independently of N . We can

derive from (14.32) that max1≤j≤N |xNj | is also bounded independently of N , which
further implies that

max
1≤j≤N

|rNj | . N−min{ 1−ǫ0
6 ,

ǫ0
3 − ǫ1

1−ǫ1
}.

This completes the proof of the theorem.
�

As a consequence of the above result and (14.28), we have the following corol-
lary.

Corollary 14.30. The following estimate holds:

max
1≤j≤N

‖ψNj ‖L2(∂DN
j ) . s−ǫ1 · ‖ui‖X .

14.3.3.2. Convergence of Micro-Field to the Effective One. Let us consider the
total field uN = uin +

∑
1≤j≤N Sk

DN
j
[ψNj ] outside the bubbles. Define

(14.33)

ũN (x) = ui(x) +
∑

1≤j≤N
gΓk(x− yNj )xNj = ui(x) +

1

N

∑

1≤j≤N
βN ·Λ · Γk(x− yNj )xNj ,

and denote by

Y Nǫ2 = {x : |x− yNj | ≥ 1

N1−ǫ2 for all 1 ≤ j ≤ N}

for some fixed constant ǫ2 ∈ (0, 13 ). The reason for introducing the set Y Nǫ2 is
that the convergence of the micro-field to the effective field does not hold near the
bubbles because of the singularity of the Green function near the source point.
However, it holds in the region away from the bubbles, which is characterized by
Y Nǫ2 .

Lemma 14.31. The following estimate holds uniformly for all x ∈ Y Nǫ2 :

|ũN (x)− uN (x)| . N
ǫ0
3 − ǫ1

1−ǫ1 .

Proof. For each x ∈ Y Nǫ2 , it is clear that

uN (x) = ui(x) +
∑

1≤j≤N
us,Nj (x).

By Proposition 14.23, we have

uN (x) = ui(x) +
∑

1≤j≤N
gΓk(x− yNj )

(
ui,Nj (yNj ) +O[N

ǫ0
3 − ǫ1

1−ǫ1 +N− ǫ1
1−ǫ1

−ǫ2 ] · max
1≤l≤N

|ui,Nj (yNj )|
)

= ũN (x) +
∑

1≤j≤N
gΓk(x− yNj ) ·O[N

ǫ0
3 − ǫ1

1−ǫ1 ] · max
1≤l≤N

|ui,Nj (yNj )|

= ũN (x) +
∑

1≤j≤N
gΓk(x− yNj ) ·O[N

ǫ0
3 − ǫ1

1−ǫ1 ] · ‖ui‖X

= ũN (x) +
∑

1≤j≤N
gΓk(x− yNj ) ·O[N

ǫ0
3 − ǫ1

1−ǫ1 ].
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On the other hand,
∑

1≤j≤N
|gΓk(x− yNj )| =

1

N

∑

1≤j≤N
|βN | · Λ · |Γk(x− yNj )|

.
1

N
·
∑

1≤j≤N

1

|x− yNj |

.
1

N
max

1≤j≤N
1

|x− yNj | +
1

N
·

∑

2rN≤|x−yNj |

1

|x− yNj | . 1.

Therefore,

uN (x) = ũN (x) +N
ǫ0
3 − ǫ1

1−ǫ1 .

This completes the proof of the Lemma.
�

Define

w(x) = ui(x) +

∫

Ω

Γk(x− y)V (y)ψ(y)dy.

We have the following two results.

Lemma 14.32. For all x ∈ Y Nǫ2 , the following estimate holds uniformly:

|ũN (x)− w(x)| . N−min{ 1−ǫ0
6 ,

1−ǫ2
3 ,ǫ2,

ǫ0
3 − ǫ1

1−ǫ1
}.

Proof. For each x ∈ Y Nǫ2 , choose y
N
l ∈ {yNj }1≤j≤N such that

|x− yNl | = min
1≤j≤N

|x− yNj |.

We have

ũN (x)− w(x) =
1

N
βN · Λ · Γk(x− yNl )xNl +

1

N

∑

j 6=l
βN · Λ · Γk(x− yNj )xNj −

∫

Ω

Γk(x− y)V (y)ψ(y)dy

=


 1

N

∑

j 6=l
βN · Λ · Γk(yNl − yNj )ψ(yNj )−

∫

Ω

Γk(y
N
l − y)V (y)ψ(y)dy




+
1

N

∑

j 6=l
βN · Λ · [Γk(x− yNj )− Γk(y

N
l − yNj )]ψ(yNj )

+
1

N

∑

j 6=l

∫

Ω

[Γk(x− y)− Γk(y
N
l − y)]V (y)ψ(y)dy

+
1

N

∑

j 6=l
βN · Λ · Γk(x− yNj )(xNj − ψ(yNj )) +

1

N
βN · Λ · Γk(x− yNl )xNl

=: e1 + e2 + e3 + e4 + e5.

Let us now estimate ej , j = 1, . . . , 5 one by one.
First, by Assumption 14.17,

|e1| . N−α
3 · ‖ψ‖X . N− 1−ǫ0

6 .

Second, we can show that

|e2| . |x− yNl |1−ǫ2 · ‖ψ‖X . N− 1−ǫ2
3 ‖ψ‖X .
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Third, by Lemma 14.26,

|e3| . |x− yNl |1−ǫ2 · ‖ψ‖X . N− 1−ǫ2
3 ‖ψ‖X .

Fourth, note that

|e4| .
1

N

∑

j 6=l
|βN | · Λ · | max

1≤j≤N
|xNj − ψ(yNj )| · 1

|x− yNj | .

By Assumption 14.15 and Theorem 14.29, we have

|e4| . max
1≤j≤N

|xNj − ψ(yNj )| . N−min{ 1−ǫ0
6 ,

ǫ0
3 − ǫ1

1−ǫ1
}.

Finally, one can check that

|e5| .
1

N
·N1−ǫ2 · max

1≤j≤N
‖xNj ‖ . N−ǫ2 .

Therefore,

ũN (x)− w(x) = O(N−min{ 1−ǫ0
6 ,

1−ǫ2
3 ,ǫ2,

ǫ0
3 − ǫ1

1−ǫ1
}).

This complete the proof of the Lemma.
�

The following lemma holds.

Lemma 14.33. We have w = ψ.

Proof. It is clear that w satisfies the equation

(△+ k2)w = (△+ k2)ui + V ψ = V ψ.

Recall that
(△+ k2)ψ − V ψ = (△+ k2)ui = 0.

Therefore, we have
(△+ k2)(w − ψ) = 0.

On the other hand, it is easy to see the w−ψ satisfies the radiation condition. The
conclusion w = ψ follows immediately. �

As a consequence of the above two lemmas, we obtain the following theorem.

Theorem 14.34. Let ω < ωM and let V be defined by (14.30). Then under
Assumptions 14.12–14.19, the solution to the scattering problem (14.13) converges
to the solution to the wave equation

(△+ k2 − V )ψ = 0

together with the radiation condition imposed on ψ−ui at infinity, in the sense that
for x ∈ Y Nǫ2 , the following estimate holds uniformly:

|uN (x)− ψ(x)| . N−min{ 1−ǫ0
6 ,

1−ǫ2
3 ,ǫ2,

ǫ0
3 − ǫ1

1−ǫ1
}.

The above theorem shows that under certain conditions, we can treat the bub-
bly fluid as an effective medium for acoustic wave propagation. Note that

△+ k2 − V = △+ k2(1− 1

k2
β · Λ · Ṽ ).

Thus, the effective medium can be characterized by the refractive index 1− 1
k2 β·Λ·Ṽ .

By our assumption, k = O(1) and Ṽ = O(1). When β · Λ ≫ 1, we see that we
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have an effective high refractive index medium. As a consequence, this together
with the main result in Chapter 9 gives a rigorous mathematical theory for the
super-focusing experiment in [311].

Similarly, we have the following result for the case ω > ωM .

Theorem 14.35. Let ω > ωM and assume that V (x) > k2 almost everywhere
in Ω. Then under Assumptions 14.12-14.19, the solution to the scattering problem
(14.13) converges to the solution to the following dissipative equation

(△+ k2 − V )ψ = 0

together with the radiation condition imposed on ψ−ui at infinity, in the sense that
for x ∈ Y Nǫ2 , the following estimate holds uniformly:

|uN (x)− ψ(x)| . N−min{ 1−ǫ0
6 ,

1−ǫ2
3 ,ǫ2,

ǫ0
3 − ǫ1

1−ǫ1
}.

Finally, we conclude this section with the following three important remarks.

Remark 14.36. At the resonant frequency ω = ωM , the scattering coefficient
g is of order one. Thus each bubble scatter is a point source with magnitude one.
As a consequence, the addition or removal of one bubble from the fluid affects the
total field by a magnitude of the same order as the incident field. Therefore, we
cannot expect any effective medium theory for the bubbly medium at this resonant
frequency.

Remark 14.37. The super-focusing (or equivalently super-resolution) theory,
developed in this paper for bubbly fluid seems to be different from the one developed
for Helmholtz resonators and plasmonic nanoparticles. However, they are closely
related. In Chapters 9 and 13, it is shown that super-focusing (or super-resolution)
is due to sub-wavelength propagating resonant modes which are generated by the
sub-wavelength resonators embedded in the background homogeneous medium. In
those two cases, the region with subwavelength resonators has size smaller or much
smaller than the incident wavelength, and the number of sub-wavelength resonators
is not very large, and hence neither is the number of sub-wavelength resonant modes.
As a result, an effective medium theory is not necessary or even true. However,
in the case of bubbles in a fluid as considered in this paper, the region with bubbles
has size comparable to or greater than the incident wavelength. This together with
the fact that the ratio between the size of the individual bubble and the incident
wavelength near the Minnaert resonant frequency is extremely small, indicates that
the number of bubbles can be very large as is in the experiment in [311], even though
they are dilute. This large number of bubbles generates a large number of resonant
modes which eventually yield a continuum limit in the form of an effective medium
with high refractive index. In fact, these resonant modes can be obtained from the
point interaction system (14.29). On the other hand, it is shown in Chapter 9 that
super-focusing (or super-resolution) is possible in high refractive index media. In
this regard, the effective medium theory developed in this chapter can be viewed as a
bridge between the super-focusing (or super-resolution) theories in Chapters 9 and
13.

Remark 14.38. In this section, we derived an effective medium theory for the
case ω < ωM and a special case of ω > ωM with some additional assumptions. How-
ever, our results still hold for the case ω > ωM without any additional assumption,
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if we assume that the limiting system I − T has a trivial kernel. This assumption
implies that the limiting system is well-posed.

14.4. Numerical Illustrations

In this section we present some numerical examples to illustrate our main find-
ings in this chapter. Using Code 12.1 Bubble Resonance we obtain the numerical
results in Table 14.1 and Figure 14.1.

δ ωc ωf Relative error
10−2 0.075146− 0.023976

√
−1 0.074681− 0.023687

√
−1 0.6727 %

10−3 0.021001− 0.004513
√
−1 0.020987− 0.004508

√
−1 0.0652%

10−4 0.005950− 0.000959
√
−1 0.005949− 0.000959

√
−1 0.0062%

10−5 0.001714− 0.000221
√
−1 0.001714− 0.000221

√
−1 0.0030%

Table 14.1. A comparison between the characteristic value ωc
of A(ω, δ) and the root of the two dimensional resonance formula
with positive real part ωf , over several values of δ.
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Figure 14.1. The relative error of the Minnaert resonance ωc
obtained by the two dimensional formula becomes negligible when
we are in the appropriate high contrast regime.

14.5. Concluding Remarks

In this chapter, we have investigated the acoustic wave propagation problem
in bubbly media and rigorously derived the low-frequency Minnaert resonances.
We have also derived an effective medium theory for acoustic wave propagation
in bubbly fluid near Minnaert resonant frequency. We have shown that on the
one hand, near and below the Minnaert resonant frequency, the obtained effective
media can have a high refractive index, and on the other hand, the obtained effective

http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial12/12.1 Bubble Resonance.zip
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Figure 14.2. The Minnaert resonance for a single bubble of ra-
dius 1 in an infinite extent of liquid for contrast δ ∈
{10−2, 10−3, 10−4, 10−5}.

medium can be dissipative above the Minnaert resonant frequency. Our results in
this chapter shed light on the mechanism of the extraordinary wave properties of
bubbly fluids near sub-wavelength resonant frequencies.



APPENDICES A

Spectrum of Self-Adjoint Operators

Given a linear self-adjoint operator L in the Hilbert space H with domain
D(L), D(L) = H, we define the resolvent set as

ρ(L) :=
{
z ∈ C : (zI − L)−1exists as a bounded operator from H to D(L)

}
.

Its complement σ(L) = C \ ρ(L) is the spectrum of L.
Since L is self-adjoint, z ∈ ρ(L) if and only if there exists a constant C(z) such

‖(zI − L)u‖H ≥ C(z)‖u‖H
for all u ∈ D(L). Moreover, σ(L) 6= ∅ and σ(L) ⊂ R and the following Weyl’s
criterion holds for characterizing σ(l): z ∈ σ(L) if and only if there exists un ∈ D(L)
such that

lim
n→+∞

‖(zI − L)un‖H = 0.

We define the point spectrum σp(L) of L as the set of eigenvalues of L:

σp(L) :=
{
z ∈ σ(L) : (zI − L)−1does not exist or equivalently Ker(zI − L) 6= ∅

}
.

The complement σ(L) \σp(L) is the continuous spectrum σc(L). If z ∈ σc(L), then
(zI − L)−1 does exist but is not bounded. The discrete spectrum σd(L) is defined
by

σd(L) :=
{
z ∈ σp(L) : dimKer(zI − L) <∞ and z is isolated in σ(L)

}
.

The set σess(L) := σ(L) \ σd(L) is called the essential spectrum of L. Since L is
self-adjoint, we have

σess(L) = σc(L) ∪
{
eigenvalues of infinite multiplicity and their accumulation points

}

∪
{
accumulation points of σd(L)

}
.

A family of operators {E(t)}+∞
t=−∞ is called a spectral family (or a resolution of

identity) if the following conditions are satisfied:

(i) E(t) is a projector for all t ∈ R;
(ii) E(t) ≤ E(s) for all t < s;
(iii) {E(t)} is right continuous with respect to the strong topology, i.e.,

lim
s→t+0

‖E(s)u− E(t)u‖H = 0

for all u ∈ H.
(iv) {E(t)} is normalized as follows:

lim
t→+∞

‖E(t)u− u‖H = 0

for all u ∈ H.

445
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We recall that for fixed u, v ∈ H, 〈E(t)u, v〉H is a function of bounded variation
with respect to t. Moreover, the self-adjoint operator L has a unique spectral
representation, i.e., there is a unique spectral family E(t) such that

Lu =

∫ +∞

−∞
t dE(t)u

for all u ∈ D(L). By the spectral theorem, we have

(A.1) (zI − L)−1 =

∫ +∞

−∞

1

z − t
dE(t)

for all z ∈ ρ(L). Furthermore,

(i) z ∈ σp(L) if and only if E(z)− E(z − 0) 6= 0;
(ii) z ∈ σc(L) if and only if E(z)− E(z − 0) = 0.

Here E(z − 0) := limǫ→0+ E(z − ǫ) in the sense of strong operator topology.
Let C(σ(L)) be the set of continuous functions on σ(L). We define

f(L) := lim
n→+∞

Pn(L)

with {Pn} being a sequence of polynomials converging uniformly to f as n→ +∞.
Since for any u ∈ H the function

f 7→ 〈u, f(L)u〉H
is a positive linear function on C(σ(L)), there exists a unique Radon measure µ(u)
on σ(L) (called the spectral measure associated to u and L) such that

∫

σ(L)

f dµ(u) = 〈u, f(L)u〉H

for all f ∈ C(σ(L)). In particular, we have µ(u)(σ(L)) = ‖u‖2H , so µ(u) is a finite
measure. Moreover, the measure µ(u) is invariant under linear transformations and
can be decomposed into three parts:

µ(u) = µac + µsc + µpp,

where µpp is pure point measure, µac is absolutely continuous, and µsc is singular
both with respect to the Lebesgue measure. Let

Hpp :=
{
u ∈ H : µ(u) is pure point

}
,

Hac :=
{
u ∈ H : µ(u) is absolutely continuous

}
,

Hsc :=
{
u ∈ H : µ(u) is singulary continuous

}
.

We have H = Hpp ⊕ Hac ⊕ Hsc, where each subspace is invariant under L. Fur-
thermore,

σ(L) = σpp(L) ∪ σac(L) ∪ σsc(L),
where

σpp(L) = σ(L|Hpp
), σac(L) = σ(L|Hac

), and σsc(L) = σ(L|Hsc
),

and the union may not be disjoint.
In terms of the spectral measure, (A.1) can be rewritten as

〈u, (z − L)−1u〉H =

∫

R

dµ(u)(t)

z − t
,

which shows that dµ(u)(t) = 〈dE(t)u, u〉H for all t ∈ R.
Now, suppose that the self-adjoint operator L is compact. Then
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(i) L has a sequence of eigenvalues λj 6= 0, j ∈ N, which can be enumerated
in such a way that

|λ0| ≥ |λ1| ≥ . . . ≥ |λj | ≥ . . . ;

(ii) If there are infinitely many eigenvalues then limj→+∞ λj = 0 and 0 is the
only accumulation point of {λj}j∈N;

(iii) The multiplicity of λj is finite;
(iv) If ϕj is the normalized eigenvector for λj , then {ϕj}+∞

j=0 is an orthonormal

basis on R(L) and the spectral theorem reduces to

Lu =

+∞∑

j=0

λj〈u, ϕj〉Hϕj , u ∈ H.

(v) σ(L) = {0, λ0, λ1, . . . , λj , . . .} while 0 is not necessarily an eigenvalue of
L.





APPENDICES B

Optimal Control and Level Set Representation

In this appendix we describe the optimal control approach and the level set
representation used for solving optimal design problems in photonics and phononics.

B.1. Optimal Control Scheme

Let H be a Banach space. In photonics and phononics, H stands for either
for a set of admissible electromagnetic or elastic material properties or for a set of
geometric shapes. Consider a discrepancy functional J(u(h)) depending on h ∈ H
via the solution u(h) to a system where h acts as a parameter, say: A(h)u(h) = g.
Here, g represents the data. In order to minimize J we need to compute its Fréchet
derivative

∂J

∂u
(u(h))

∂u

∂h
,

which is not explicit in h. The introduction of the adjoint system

(B.1) A(h)∗p(h) =
∂J

∂u
(u(h)) ,

where A(h)∗ denotes the adjoint of A(h) makes this explicit. Multiplying (B.1) by
∂u
∂hδh we obtain

∂J

∂u
(u(h))

∂u

∂h
δh = −p(h)∂A

∂h
δhu(h) ,

and therefore, the Fréchet derivative of J is given by

−p(h)∂A
∗

∂h
u(h) .

B.2. Level Set Method

Let H be a set of geometric shapes and consider the minimization over H of a
discrepancy functional J . The main idea of the level set approach is to represent
the domain D as the zero level set of a continuous function φ, i.e.,

D =

{
x : φ(x) < 0

}
,

to work with function φ instead of D, and to derive an evolution equation for φ to
solve the minimization problem. In fact, by allowing additional time-dependence
of φ, we can compute the geometric motion of D in time by evolving the level set
function φ. A geometric motion with normal velocity V = V (x, t) can be realized
by solving the Hamilton-Jacobi equation

(B.2)
∂φ

∂t
+ V |∇φ| = 0.

449
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Minimization within the level set framework consists of choosing a velocity V driv-
ing the evolution towards a minimum (or at least increasing the discrepancy func-
tional we want to minimize).

Consider the geometry of the zero level set

∂D =

{
x : φ(x) = 0

}
,

under a variation of φ. Suppose that φ(x) is perturbed by a small variation δφ(x).
Let δx be the resulting variation of the point x. By taking the variation of the
equation φ(x) = 0, we find

(B.3) δφ = −∇φ · δx .
Observe that the unit outward normal at x is given by

ν(x) =
∇φ(x)
|∇φ(x)| .

Now, if t represents time, then the function φ depends on both x and t. We use
the notation

∂D(t) =

{
x : φ(x, t) = 0

}
.

Assume that each point x ∈ ∂D(t) moves perpendicular to the curve. That is, the
variation δx satisfies

δx = V (x, t)
∇φ(x, t)
|∇φ(x, t)| .

Suppose that J := ||A(f)− g||2 and the minimization is performed over piece-
wise functions f = f+χ(R

d \ D) + f−χ(D) with f± being given constants. The
minimal requirement for the variations of φ(x, t) is that J be a decreasing function
of t. The directional derivative of the function J in the direction δf is given by

δJ(f) = J ′(f)δf = 2R∗
f

(
g −A(f)

)
δf ,

where J ′ is the Fréchet derivative of J and R∗
f is the Fréchet derivative of A(f).

Since δf is a measure on ∂D given by

δf = (f+ − f−)δx · ν(x) ,
we have

(B.4) δf = (f+ − f−)
∇φ(x)
|∇φ(x)| · δx

∣∣∣∣
x∈∂D

.

Hence,

δJ(f) = (f+ − f−)J
′(f)V ,

and therefore, in order to make δJ(f) negative, we can choose

(B.5) V (x, t) = (f+ − f−)R
∗
f

(
g −A(f)

)
.

As (B.5) is only valid for x ∈ ∂D, a velocity extension to the entire domain should
be performed. This leads to the Hamilton-Jacobi equation (B.2) for φ(x, t) with
the initial condition φ(x, 0) = φ0(x), and thus the problem of maximizing J(f) is
converted into a level set form.
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B.3. Shape Derivatives

The shape derivative measures the sensitivity of boundary perturbations. It is
defined as follows. Let θ ∈ W 1,∞(R2)2 be such that ||θ||W 1,∞ < 1, where W 1,∞ is
defined by (2.1). Consider the perturbation under the map θ:

Dθ = (I + θ)D,

where I is the identity map. In other words, the set Dθ is defined as

(B.6) Dθ =

{
x+ θ(x) : x ∈ D

}
.

The shape derivative of an objective shape functional J : R2 → R at D is
defined as the Fréchet differential of θ 7→ J (Dθ) at 0. The vector θ can be viewed
as a vector field advecting the reference domain D. The shape derivative dSJ
depends only on θ · ν on the boundary ∂D because the shape of D does not change
at all if θ is lying on the tangential direction of the domain D.
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properties of the Neumann-Poincaré operator, J. Math. Anal. Appl., 435 (2016), 162–178.
[87] K. Ando, H. Kang, K. Kim, and S. Yu, Cloaking by anomalous localized resonance for linear

elasticity on a coated structure, arXiv:1612.08384
[88] K. Ando, H. Kang, and H. Liu, Plasmon resonance with finite frequencies: a validation of

the quasi-static approximation for diametrically small inclusions, SIAM J. Appl. Math., 76
(2016), 731–749.

[89] T. Arens, The scattering of plane elastic waves by a one-dimensional periodic surface, Math.
Methods Appl. Sci., 22 (1999), 55–72.

[90] T. Arens, K. Sandfort, S. Schmitt, and A. Lechleiter, Analysing Ewald’s method for the
evaluation of Green’s functions for periodic media, IMA J. Appl. Math., 78 (2013), 405–431.

[91] S. Arhab, G. Soriano, Y. Ruan, G. Maire, A. Talneau, D. Sentenac, P.C. Chaumet, K.

Belkebir, and H. Giovannini, Nanometric resolution with far-field optical profilometry, Phys.
Rev. Lett., 111 (2013), 053902.

[92] D.H. Armitage and S.J. Gardiner, Classical Potential Theory, Springer Monographs in Math-
ematics, Springer-Verlag, Berlin, 2001.
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Neumann-Poincaré operator, 19, 23, 29, 33,
36, 38, 50, 54, 60, 61, 84, 144, 145,
147–149, 151, 152, 285, 288, 289, 379,
399

Newton’s method, 16

Newtonian potential, 378, 379

nonlinear eigenvalue problem, 184

normal point, 10

null multiplicity, 10

operator-valued function, 9, 10, 13

optical theorem, 94, 95, 136, 287, 354

optimal control algorithm, 185, 345

optimal design, 254

outgoing fundamental solution, 67

perfectly conducting grating, 199

periodic Green’s function, 55

phononic band gap, 259

phononic crystal, 259

photonic band gap, 3, 229, 231

photonic crystal, 229, 231, 254

Plancherel theorem, 230

plasmonic resonance, 285, 286

plasmonic structure, 377
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