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ABSTRACT. The fields of photonics and phononics encompass the fundamental
science of light and sound propagation and interactions in complex structures,
and its technological applications. The aim of this book is to review new
and fundamental mathematical tools, computational approaches, and inver-
sion and optimal design methods to address challenging problems in photon-
ics and phononics. An emphasis is placed on analyzing subwavelength res-
onators; super-focusing and super-resolution of electromagnetic and acoustic
waves; photonic and phononic crystals; electromagnetic cloaking; and electro-
magnetic and elastic metamaterials and metasurfaces. Throughout this book,
we demonstrate the power of layer potentials techniques in solving challenging
problems in photonics and phononics when they are combined with asymptotic
analysis. The book could be of interest to researchers and graduate students
working in the fields of applied and computational mathematics, partial dif-
ferential equations, electromagnetic theory, elasticity, integral equations, and
inverse and optimal design problems. Researchers in photonics, phononics,
and nanotechnologies might also find this book helpful.
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Introduction

The aim of this book is to give a self-contained presentation of recent math-
ematical and computational advances in photonics and phononics. The fields of
photonics and phononics encompass the fundamental science of light and elastic
wave propagation and interactions in complex structures, and its technological ap-
plications.

The recent advances in nanoscience present great challenges for the applied and
computational mathematics community. In nanophotonics, the aim is to control,
manipulate, reshape, guide, and focus electromagnetic waves at nanometer length
scales, beyond the resolution limit. In particular, one wants to push the resolution
limit by reducing the focal spot and confining light to length scales significantly
smaller than half the wavelength. Nanostructures also open exciting opportunities
for tuning the phonon energy spectrum and related acoustic material properties for
specific applications.

Interactions between the field of photonics and mathematics has led to the
emergence of a a multitude of new and unique solutions in which today’s conven-
tional technologies are approaching their limits in terms of speed, capacity and
accuracy.

Light can be used for detection and measurement in a fast, sensitive and ac-
curate manner, and thus photonics possesses a unique potential to revolutionize
healthcare.

Light-based technologies can be used effectively for very early detection of dis-
eases, with non-invasive imaging techniques or point-of-care applications. They are
also instrumental in the analysis of processes at the molecular level, giving a greater
understanding of the origin of diseases, and hence allowing prevention along with
new treatments.

Photonic technologies also play a major role in addressing the needs of our
ageing society: from pace-makers to synthetic bones and from endoscopes to the
micro-cameras used in in-vivo processes. Photonics are used also in advanced light-
ing technology and in improving energy efficiency and quality.

The emerging discipline of phononics encompasses many disciplines, including
quantum physics and mechanics, materials science engineering and applied mathe-
matics.

Specialized phononic crystals are currently being developed. These are artifi-
cial, elastic structures with unusual acoustic wave propagation capabilities, such as
the ability to increase the resolution of ultrasound imaging with super lenses, or to
process information with sound-based circuits.

By using photonic and phononic media to control waves across a wide band
of wavelengths, we have unprecedented ability to fabricate new optical and elastic
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materials with specific microstructures. Modern technologies are certainly going to
be based on the manipulation of electrons and photons.

Our main objective in this book is to report on the use of sophisticated math-
ematics in diffractive optics; plasmonics; super-resolution; photonic and phononic
crystals; and metamaterials for electromagnetic and elastic invisibility and cloaking.

We develop new mathematical and computational models for wave scattering
from sub-wavelength resonators and introduce a unified approach for designing,
at low frequencies, metamaterials for cloaking and high-contrast media for sub-
wavelength resolution. We establish sub-wavelength imaging approaches based on
the use of resonant plasmonic nanoparticles and Minnaert bubbles. Through an-
alyzing the mathematical properties of sub-wavelength resonators, we unify the
theories of metamaterials and super-focusing. This is certain to pave the way for
the reshaping, controlling, and manipulation of waves at sub-wavelength scales.

The book merges various branches of mathematics to advance the field of math-
ematical modelling of optical and acoustic subwavelength devices and structures
capable of light enhancement, and of the focusing and guiding of light at a subwave-
length scale. These include asymptotic analysis, spectral analysis, and harmonic
analysis.

In particular, the book shows how powerful the layer potential techniques are
for solving challenging problems in photonics and phononics, especially when they
are combined with asymptotic analysis and the elegant theory of Gohberg and Sigal
on meromorphic operator-valued functions.

The emphasis of this book is placed on mathematically analyzing plasmon reso-
nant nanoparticles and Minnaert bubbles, diffractive optics, photonic and phononic
crystals, super-resolution, and metamaterials. For each of these topics, a solid math-
ematical and computational framework and an optimal design approach in the sense
of robustness and accuracy is derived.

Plasmon resonant nanoparticles have unique capabilities of enhancing the bright-
ness of light and confining strong electromagnetic fields. A reason for the thriving
interest in optical studies of plasmon resonant nanoparticles is due to their re-
cently proposed use as labels for molecular biology. New types of cancer diagnostic
nanoparticles are constantly being developed.

A distinctive feature of bubbles in fluid is the high contrast between the air
density inside and outside of the bubble. This results in a quasi-static acoustic
resonance, called the Minnaert resonance. At or near this resonant frequency, the
size of the bubble can be three orders of magnitude smaller than the wavelength
of the incident wave and the bubble behaves as a very strong monopole scatterer
of sound. The resonance makes the bubble a good candidate for acoustic sub-
wavelength resonator. Bubbles have the potential to be the basic building blocks
not only for sub-wavelength acoustic imaging but also for acoustic meta-materials.

Super-resolution involves pushing the diffraction limits by reducing the focal
spot size. Super-focusing is the counterpart of super-resolution. It describes elec-
tromagnetic, acoustic or elastic waves to be confined to a length scale significantly
smaller than the diffraction limit of the focused waves. The super-focusing phenom-
enon is being intensively investigated in the field of nanophotonics as a technique
with the potential to focus electromagnetic radiation in a region of order of a few
nanometers beyond the diffraction limit of light and thereby causing an extraordi-
nary enhancement of the electromagnetic field.
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Plasmon resonant nanoparticles and Minnaert bubbles provide a possible means
of achieving super-resolved imaging in biophonics. In this book, we study the
resonant property of high-contrast particles for different particle geometries and
environments, and use them to achieve super-focusing and to investigate super-
focusing and its counterpart super-resolution.

Diffractive optics is a fundamental and vigorously growing technology which
continues to be a source of novel optical devices. Significant recent technology
developments of high precision micromachining techniques have permitted the cre-
ation of gratings (periodic structures) and other diffractive structures with tiny fea-
tures. Current and potential application areas include corrective lenses, microsen-
sors, optical storage systems, optical computing and communications components,
and integrated opto-electronic semiconductor devices.

Because of the small structural features, light propagation in micro-optical
structures is generally governed by diffraction. In order to accurately predict the
energy distributions of an incident field in a given structure, the numerical solution
of the governing equation is required. If the field configurations are built up of
harmonic electromagnetic waves that are transverse, then the Maxwell equations
can be reduced to two scalar Helmholtz equations.

Throughout this book, we will focus on this scalar model and address signif-
icant developments in mathematical analysis and modeling of diffractive optics.
Particular emphasis is placed on the formulation of the mathematical model; well-
posedness and regularity analysis of the solutions of governing equations in gratings;
and optimal design and inverse diffraction problems in diffractive optics.

Photonic and phononic crystals are structures constructed of electromagnetic
and elastic materials arranged in a periodic array. They have attracted enormous
interest in the last decade because of their unique electromagnetic or elastic prop-
erties. Such structures have been found to exhibit interesting spectral properties
with respect to classical wave propagation, including the appearance of band gaps
[456), 278, [414]. In this book we construct subwavelength photonic and phononic
crystals using plasmonic particles and Minnaert bubbles.

Electromagnetic and elasticity invisibility is to render a target invisible to elec-
tromagnetic and elastic probing. In this book, we investigate many schemes. Based
on a new effective medium theory for subwavelength resonators, we also provide a
mathematical framework for electromagnetic and elastic metamaterials.

The bibliography provides a list of relevant references. It is by no means com-
prehensive. However, it should provide the reader with some useful guidance in
searching for further details on the main ideas and approaches discussed in this
book.

The material in this book is taught as a graduate course in applied mathemat-
ics at ETH. Tutorial notes and Matlab codes can be downloaded at /Codes. Some of
the material in this book is from our wonderful collaborations with Toufic Abboud,
Gang Bao, Giulio Ciraolo, Josselin Garnier, David Gontier, Vincent Jugnon, Hyun-
dae Lee, Mikyoung Lim, Pierre Millien, Graeme Milton, Jean-Claude Nédélec, Fadil
Santosa, Michael Vogelius, and Darko Volkov. We feel indebted to all of them.


http://www.sam.math.ethz.ch/~grsam/HS16/MCMP
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Mathematical and Computational
Tools






CHAPTER 1

Generalized Argument Principle
and Rouché’s Theorem

1.1. Introduction

In this chapter we review the results of Gohberg and Sigal in [237] concerning
the generalization to operator-valued functions of two classical results in complex
analysis, the argument principle and Rouché’s theorem. An efficient and reliable
method, referred to as Muller’s method, for finding a zero of a function defined
on the complex plane is presented. This numerical method can be used for com-
puting poles of integral operators, in particular for the computation of resonant
cavities, band gap structures, and plasmonic resonances in nanoparticles. The re-
sults described in this chapter will be applied to the mathematical theory of cavities,
plasmonic nanoparticles, and photonic and phononic crystals.

1.2. Argument Principle and Rouché Theorem

To state the argument principle, we first observe that if f is holomorphic and
has a zero of order n at zg, we can write f(z) = (z—29)"¢g(z), where g is holomorphic
and nowhere vanishing in a neighborhood of zy, and therefore

16 _ L gk
f(z)  z—2  g(2)
Then the function f’/f has a simple pole with residue n at zg. A similar fact also

holds if f has a pole of order n at zg, that is, if f(z) = (z — z9) ""h(2), where h is
holomorphic and nowhere vanishing in a neighborhood of z5. Then

f'iz) _  n W (2)
f(z)  z—2 + h(z) "

Therefore, if f is meromorphic, the function f’/f will have simple poles at the zeros
and poles of f, and the residue is simply the order of the zero of f or the negative
of the order of the pole of f.

The argument principle results from an application of the residue formula. It
asserts the following.

THEOREM 1.1 (Argument principle). Let V. C C be a bounded domain with
smooth boundary OV positively oriented and let f(z) be a meromorphic function in
a neighborhood of V.. Let P and N be the number of poles and zeros of f in V,
counted with their orders. If f has no poles and never vanishes on V', then

| ()
1) 2T Jov F2) °

7

z=N—P.
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Rouché’s theorem is a consequence of the argument principle [437]. It is in
some sense a continuity statement. It says that a holomorphic function can be
perturbed slightly without changing the number of its zeros. It reads as follows.

THEOREM 1.2 (Rouché’s theorem). With V' as above, suppose that f(z) and
g(z) are holomorphic in a neighborhood of V.. If | f(2)| > |g(2)| for all z € OV, then
f+ g and f have the same number of zeros in V.

In order to explain the main results of Gohberg and Sigal in [237], we begin
with the finite-dimensional case which was first considered by Keldy$s in [293];
see also [349]. We proceed to generalize formula (1.1)) in this case as follows. If a
matrix-valued function A(z) is holomorphic in a neighborhood of V' and is invertible
in V except possibly at a point zg € V, then by Gaussian eliminations we can write
(1.2) A(z) = E(2)D(2)F(z) inV,
where F(z), F(z) are holomorphic and invertible in V' and D(z) is given by

(z — z0)M 0
D(z) = :
0 (2 — zg)kn
Moreover, the powers k1, ko, ..., k, are uniquely determined up to a permutation.

Let tr denote the trace. By virtue of the factorization (1.2)), it is easy to produce
the following identity:

1 . d
2Ty A AR
1 -1 d —1 d 1 d
BETVA T <E<Z> B + D)7 =D(2) + F(2) dZF(z)) dz

1 d
| pr'L
2mv/—1 " Jov U

= ij,
j=1

which generalizes (1.1)).
In the next sections, we will extend the above identity as well as the factoriza-

tion (|1.2) to infinite-dimensional spaces under some natural conditions.

D(z) dz

1.3. Definitions and Preliminaries

In this section we introduce the notation we will use in the text, gather a few
definitions, and present some basic results, which are useful for the statement of
the generalized Rouché theorem.

1.3.1. Compact Operators. If B and B’ are two Banach spaces, we denote
by L(B,B’) the space of bounded linear operators from B into B’. An operator
K € L(B,B’) is said to be compact provided K takes any bounded subset of B to
a relatively compact subset of B’, that is, a set with compact closure.

The operator K is said to be of finite rank if Im(K), the range of K, is finite-
dimensional. Clearly every operator of finite rank is compact.

The next result is called the Fredholm alternative. See, for example, [312].
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PROPOSITION 1.3 (Fredholm alternative). Let K be a compact operator on the
Banach space B. For A € C,A # 0, (A — K) is surjective if and only if it is
injective.

1.3.2. Fredholm Operators. An operator A € L(B,B’) is said to be Fred-
holm provided the subspace Ker A is finite-dimensional and the subspace Im A is
closed in B’ and of finite codimension. Let Fred(B,B’) denote the collection of
all Fredholm operators from B into B’. We can show that Fred(B,B’) is open in
L(B,B).

Next, we define the index of A € Fred(B, B’) to be

ind A = dim Ker A — codim Im A.

In finite dimensions, the index depends only on the spaces and not on the operator.
The following proposition shows that the index is stable under compact per-
turbations [312].

PROPOSITION 1.4. If A: B — B’ is Fredholm and K : B — B’ is compact, then
their sum A + K is Fredholm, and

ind (A + K) = ind A.

Proposition is a consequence of the following fundamental result about the
index of Fredholm operators.

PROPOSITION 1.5. The mapping A — ind A is continuous in Fred(B,B'); i.e.,
ind is constant on each connected component of Fred(B,B’).

1.3.3. Characteristic Value and Multiplicity. We now introduce the no-
tions of characteristic values and root functions of analytic operator-valued func-
tions, with which the readers might not be familiar. We refer, for instance, to the
book by Markus [338] for the details.

Let $(zo) be the set of all operator-valued functions with values in £(B,85’)
which are holomorphic in some neighborhood of zy, except possibly at zj.

The point zq is called a characteristic value of A(z) € $4(zo) if there exists a
vector-valued function ¢(z) with values in B such that

(i) ¢(z) is holomorphic at zy and ¢(zg) # 0,

(ii) A(z)¢(z) is holomorphic at zy and vanishes at this point.
Here, ¢(z) is called a root function of A(z) associated with the characteristic value
zo. The vector ¢g = ¢(zp) is called an eigenvector. The closure of the linear set of
eigenvectors corresponding to zp is denoted by KerA(zp).

Suppose that zq is a characteristic value of the function A(z) and ¢(z) is an
associated root function. Then there exists a number m(¢) > 1 and a vector-valued
function ¥(z) with values in B’, holomorphic at zg, such that

A(2)d(2) = (2 = 20)"De(2),  ¥(z0) #0.
The number m(¢) is called the multiplicity of the root function ¢(z).

For ¢g € KerA(zp), we define the rank of ¢q, denoted by rank(¢g), to be the
maximum of the multiplicities of all root functions ¢(z) with ¢(z9) = ¢o.

Suppose that n = dimKerA(zy) < +oo and that the ranks of all vectors in
KerA(zg) are finite. A system of eigenvectors (bé, j=1,...,n,is called a canonical
system of eigenvectors of A(z) associated to zg if their ranks possess the following
property: for j =1,...,n, rank(gﬁg) is the maximum of the ranks of all eigenvectors
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in the direct complement in KerA(zg) of the linear span of the vectors ¢, . . ., (;5%_1.
We call

N(A(z)) ==Y _ rank(¢})
j=1

the null multiplicity of the characteristic value zg of A(z). If 2o is not a characteristic
value of A(z), we put N(A(zg)) = 0.

Suppose that A~!(z) exists and is holomorphic in some neighborhood of 2,
except possibly at zg. Then the number

M(A(20)) = N(A(z0)) = N(A™ ()

is called the multiplicity of zy. If zo is a characteristic value and not a pole of A(z),
then M (A(zy)) = N(A(z9)) while M(A(z)) = —N(A"*(2p)) if 20 is a pole and not
a characteristic value of A(z).

1.3.4. Normal Points. Suppose that zq is a pole of the operator-valued func-
tion A(z) and the Laurent series expansion of A(z) at zo is given by

(1.3) Az) = Z (z—20)’ Aj.
Jjz=s

If in the operators A_;, j =1, ..., s, have finite-dimensional ranges, then A(z)
is called finitely meromorphic at zg.

The operator-valued function A(z) is said to be of Fredholm type (of index zero)
at the point zg if the operator Ag in is Fredholm (of index zero).

If A(2) is holomorphic and invertible at zg, then zg is called a regular point of
A(z). The point zy is called a normal point of A(z) if A(z) is finitely meromorphic,
of Fredholm type at zp, and regular in a neighborhood of zy except at zq itself.

1.3.5. Trace. Let A be a finite-dimensional operator acting from B into itself.
There exists a finite-dimensional invariant subspace C of A such that A annihilates
some direct complement of C in B. We define the trace of A to be that of Alc,
which is given in the usual way. It is desirable to recall some results about the
trace operator.

PRrROPOSITION 1.6. The following results hold:

(i) tr A is independent of the choice of C, so that it is well-defined.
(ii) tr is linear.
(iii) If B is a finite-dimensional operator from B to itself, then

tr AB = tr BA.
(iv) If M is a finite-dimensional operator from B x B’ to itself, given by

A B
u=(& n):
then tt M = tr A+ tr D.

Recall that if an operator-valued function C(z) is finitely meromorphic in the
neighborhood V' of 2z, which contains no poles of C(z) except possibly zy, then
S5y C(2)dz is a finite-dimensional operator. The following identity will also be
used frequently.
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PROPOSITION 1.7. Let A(z) and B(z) be two operator-valued functions which

are finitely meromorphic in the neighborhood V' of zy, which contains no poles of
A(z) and B(z) other than zy. Then we have

(1.4) tr A(2)B(z)dz = tr/ B(2)A(z) dz.
v v

1.4. Factorization of Operators

We say that A(z) € U(zp) admits a factorization at zg if A(z) can be written
as

(1.5) A(z) = E(2)D(z)F(z),

where E(z), F(z) are regular at zp and
(1.6) D(z) =P+ (2= 2)P;.
j=1

Here, P;’s are mutually disjoint projections, P, ..., P, are one-dimensional opera-

n
tors, and [ — Z P; is a finite-dimensional operator.
3=0
THEOREM 1.8. A(z) € U(zp) admits a factorization at zo if and only if A(z) is

finitely meromorphic and of Fredholm type of index zero at zy.

PROOF. Suppose that A(z) is finitely meromorphic and of Fredholm type of
index zero at zg. We shall construct E, F, and D such that (1.5) holds. Write the
Laurent series expansion of A(z) as follows:

—+oo

Al)= ) (z—z0) 4,

j=—v

in some neighborhood U of zy. Since indAy = 0, then by the Fredholm alternative
By := Ay + K is invertible for some finite-dimensional operator Ky. Consequently,

+oo
B(z) =Ko+ » (2 —20) 4;
j=0

is invertible in some neighborhood U; of zp and
(1.7) A(z) = C(2) + B(z) = B(2)[I + B~ '(2)C(2)],

where
—1
C(Z) = Z (Z — Zo)jAj — KQ.
j=—v
Since K(z) := B71(2)C(z) is finitely meromorphic, we can write K (z) in the
form

v

K(2) =) (2 —20) 7 K; + Tu(2),

Jj=1

where K, j =1,...,v, are finite-dimensional and 7} is holomorphic.
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Since the operators A; and K are finite-dimensional, there exists a subspace
M of B of finite codimension such that

NCKerdy, j=—-v,...,—1,
MNCKerK;, j=0,...,v,
NNIm K; ={0}, j=1,...,v

Let € be a direct finite-dimensional complement of 91 in B and let P be the pro-
jection onto € satisfying P(I — P) = 0. Set Py := I — P. We have

I+ K(z)=I+PK(2)P+ PyK(z)P
= I+ PK(2)P + PyTy(2)P,
and therefore,
(1.8) I+ K(z) = (I +PK(2)P)(I+ PT1(%)P).

Since P(I + K(z))P can be viewed as an operator from € into itself and € is
finite-dimensional, it follows from Gaussian elimination that

P(I + K(2))P = E1(2)D1(2)F1(2),

where Di(z) is diagonal and F;(z) and Fj(z) are holomorphic and invertible. In
view of (1.8)), this implies that

A(z) = B(2)(Po+ P(I1+ K(2))P)(I + PyTy(2)P)
B(z)(Po + E1(2)D1(2)F1(2))(I + PyTi(2)P)
B(Z)(Po + El(z))(Po + Dy (Z))(PO + B (Z))(I + By (Z)P)

Here I + PyT1(z)P is holomorphic and invertible with inverse I — PyT1(2z)P. Thus,
taking

E(2) = B(2)(Py + Er(2)),  F(2) = (Po+ Fi(2))(I + PyTy(2)P)

yields the desired factorization for A since F(z) and F(z), given by the above
formulas, are holomorphic and invertible at z.

The converse result, that A(z) = E(z)D(2)F(z) with E(2), F(z) regular at zg
and D(z) satisfying is finitely meromorphic and of Fredholm type of index
zero at zg, is easy. O

COROLLARY 1.9. A(2) is normal at zq if and only if A(2) admits a factorization

n
such that I = ZPj in . Moreover, we have

§=0
M(A(z0)) =k1+ -+ ky
for ki,... ky, given by @

COROLLARY 1.10. Every normal point of A(z) is a normal point of A~1(z).

1.5. Main Results of the Gohberg and Sigal Theory

We now tackle our main goal of this chapter, which is to generalize the argument
principle and Rouché’s theorem to operator-valued functions.
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1.5.1. Argument Principle. Let V be a simply connected bounded domain
with rectifiable boundary dV. An operator-valued function A(z) which is finitely
meromorphic and of Fredholm type in V' and continuous on 9V is called normal
with respect to OV if the operator A(z) is invertible in V, except for a finite number
of points of V' which are normal points of A(z).

LEMMA 1.11. An operator-valued function A(z) is normal with respect to OV
if it is finitely meromorphic and of Fredholm type in V', continuous on OV, and
invertible for all z € V.

PRrROOF. To prove that A is normal with respect to 9V, it suffices to prove that
A(z) is invertible except at a finite number of points in V. To this end choose a
connected open set U with U C V so that A(z) is invertible in V \ U. Then, for
each £ € U, there exists a neighborhood Ug of £ in which the factorization
holds. In Ug, the kernel of A(z) has a constant dimension except at . Since U is
compact, we can find a finite covering of U, i.e.,

UCUg U---UUg,,

for some points &1, ..., &, € U. Therefore, dim Ker A(z) is constant in V\{&1, ..., &},
and so A(z) is invertible in V' \ {&1,..., &} O

Now, if A(z) is normal with respect to the contour 9V and z;, i =1,...,0, are
all its characteristic values and poles lying in V| we put

(1.9) M(A(2);0V) = ZM(A(ZZ-)).

The full multiplicity M(A(z); V) of A(z) in V is the number of characteristic
values of A(z) in V| counted with their multiplicities, minus the number of poles
of A(z) in V, counted with their multiplicities.

THEOREM 1.12 (Generalized argument principle). Suppose that the operator-
valued function A(z) is normal with respect to V. Then we have
L o[ A L a)ds = M(AR); V)
2mv/—=1  Jov dz N e

Proor. Let z;, j = 1,...,0, denote all the characteristic values and all the
poles of A lying in V. The key of the proof lies in using the factorization (|1.5)) in
each of the neighborhoods of the points z;. We have

(1.10)

1 d 1 d
1.11) ——— AN z2)—A = — A7 (2)—A
(1.11) Qwﬁtr - (Z)dz (2)dz ZQW\/jltr oy, (z)dz (2)dz,

j=1

where, for each j, Vj is a neighborhood of z;. Moreover, in each Vj, the following
factorization of A holds:

A(z) = ED()DD()FD(z), DD (2) =P +3 (2 — z)" P9

i=1



14 1. GENERALIZED ARGUMENT PRINCIPLE AND ROUCHE’S THEOREM

As for the matrix-valued case at the beginning of this chapter, it is readily verified
that

1 d 1
—A(2)dz = ——t
z) (2)dz /I r o

" 1
o/ 1 oy, P
= D ki = M(A(%)).
i=1

Now, (|1.10) follows by using (1.11]). O

The following is an immediate consequence of Lemma|l1.11} identity (1.10]), and
).

COROLLARY 1.13. If the operator-valued functions A(z) and B(z) are normal
with respect to OV, then C(z) := A(2)B(2) is also normal with respect to OV, and

M(C(2);0V) = M(A(2);0V) + M(B(2); V).

(D(j)(z))_ld%D(j)(z)dz

The following general form of the argument principle will be useful. It can be
proven by the same argument as the one in Theorem [1.12

THEOREM 1.14. Suppose that A(z) is an operator-valued function which is nor-
mal with respect to OV. Let f(2) be a scalar function which is analytic in V and
continuous in V. Then

1 d o
BT 0y AT O AN = D MAGDSG)
where zj, 7 = 1,...,0, are all the points in V which are either poles or characteristic

values of A(z).

1.5.2. Generalization of Rouché’s Theorem. A generalization of Rouché’s
theorem to operator-valued functions is stated below.

THEOREM 1.15 (Generalized Rouché’s theorem). Let A(z) be an operator-
valued function which is normal with respect to OV . If an operator-valued func-
tion S(z) which is finitely meromorphic in V' and continuous on OV satisfies the
condition

1AM (2)S (D)l es sy <1, 2z €8V,
then A(z) + S(z) is also normal with respect to OV and
M(A(2);0V) = M(A(z) + S(2); 0V).

PROOF. Let C(z) := A71(2)5(2). By Corollary C(7) is finitely meromor-
phic in V. Suppose that 21, 22, ..., 2z, are all of the poles of C(z) in V' and that
C(z) has the following Laurent series expansion in some neighborhood of each z;:

“+o0
Clx)= Y (z—z)cy.
k‘:*l/j

Let 91 be the intersection of the kernels Ker C,(cj) for j =1,...,n and k =
1,...,v;. Then, dim B/ < 400 and the restriction C(z)|n of C(z) to M is holo-
morphic in V.
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Let ¢ := max,cgy ||C(2)]|, which by assumption is less than 1. Since
A|C()n|* = ﬁlllg(J(Z)\mH2
0z ’

then ||C(2)|m|| is subharmonic in V', and hence we have from the maximum principle

<q.
max |[C(z)|nll < ¢
It then follows that
I+ CEall > (- glal, wem zeV.

This implies that (I + C(2))|, has a closed range and Ker(I + C(z))|n = 0.
Therefore, I + C(z) has a closed range and a kernel of finite dimension for z €
V\{z1,...,2,}. By aslight extension of Proposition 1.5 [441], Z(z) defined by

Z(z) = dimKer(I + C(z)) — codim Im(I + C(z))
is continuous for z € V'\ {21,...,2,}. Thus,
ind(I +C(2)) =0 forzeV\{z1,...,2n}

Moreover, since the Laurent series expansion of (I + C(z))|n in a neighborhood of
zj is given by

+o00
(1.12) (I + 0l = Iim + (= = 2)*CP|m,
k=0

it follows that (I —|—Céj ))\m has a closed range and a trivial kernel. Using Propositions

and we have

—+oo
ind(I + C§") = ind(I + 3 (2 — z)*CY)) = ind(I + C(2)) = 0.
k=0

Thus, (I + C(()J )) is Fredholm. By Lemma we deduce that I + C(z) is normal
with respect to V.

Now we claim that M(I + C(z);0V) = 0. To see this, we note that I +tC(z)
is normal with respect to 9V for 0 <t < 1. Let

f(t) == M(I +tC(z); 0V).
Then f(t) attains integers as its values. On the other hand, since

1 d
=—t tI +tC(2)) ' —C(z)d
s [ ) e
and (I +tC(z))~! is continuous in [0, 1] in operator norm uniformly in z € 9V, f(t)
is continuous in [0, 1]. Thus, f(1) = f(0) = 0.
Finally, with the help of Corollary [[.I3] we can conclude that the theorem
holds. ]

(1.13) ft)
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1.5.3. Generalization of Steinberg’s Theorem. Steinberg’s theorem as-
serts that if K(z) is a compact operator on a Banach space, which is analytic in z
for z in a region V in the complex plane, then I + K(z) is meromorphic in V. See
[438]. A generalization of this theorem to finitely meromorphic operators was first
given by Gohberg and Sigal in [237]. The following important result holds.

THEOREM 1.16 (Generalized Steinberg’s theorem). Suppose that A(z) is an
operator-valued function which is finitely meromorphic and of Fredholm type in the
domain V. If the operator A(z) is invertible at one point of V', then A(z) has a
bounded inverse for all z € V, except possibly for certain isolated points.

1.6. Muller’s Method

Muller’s method is an efficient and fairly reliable interpolation method for find-
ing a zero of a function defined on the complex plane and, in particular, for deter-
mining a simple or multiple root of a polynomial. It finds real as well as complex
roots. Compared to Newton’s method, it has the advantage that the derivatives
of the function need not to be computed. Moreover, it converges even faster than
Newton’s method [439].

For a function f define its divided differences by

f[l'O} = f(xo)7
flwo,z] = %
flwo, z1, 2] = flz1, z2] — flzo, x1]
o . T2 — X0 ’
f[l'o Ti,..., Tk = f[mh"-awk]_f[xo,...,ajkil]

T — Zo

The quadratic polynomial which interpolates a function f at x;_o,2;_1,x; can
be written as

Qi(x) = flzi] + fleic, xil(x — x;) + flrime, xic1, il (@ — xi—1) (@ — 25),

or
Qi(x) = as(x — )% 4 2bs(x — ) + ¢,
where
a;i = flri-2,zi-1, 7],
b; = %(f[xz;l,xi] + flzie2, wi—1, 2] (2 — 1)),
¢ = flz)

If h; is the root of smallest absolute value of the quadratic equation
aih?® 4 2b;h + ¢; = 0,

then x;11 := x; + h; is the root of Q;(x) closest to z;.
In order to express the smaller root of a quadratic equation in a numerically sta-
ble fashion, the reciprocal of the standard solution formula for quadratic equations
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should be used. Then Muller’s iteration takes the form

(&5
1.14 R P S—
( ) i bi + \/bl2 — a;C;

where the sign of the square root is chosen so as to maximize the absolute value of
the denominator.

Once a new approximate value x;41 has been found, the function f is evaluated
at x;41 to find

fleiva] = flzin),
flzi,ziqa] = W,
. o ._ flri, wiva] = flrio1, x
f[95171>33z7331+1] = Tirl — Tt .

These quantities determine the next quadratic interpolating polynomial @Q;11(x).
It can be shown that the errors §; = (x; — &) of Muller’s method in the proximity
of a single zero £ of f(z) = 0 satisfy

9
676 O“”)’

where & = max(|d;],|0;i—1],]0i—2]). It can also be shown that Muller’s method is
at least of order the largest root g of the equation ¢ — (? — ¢ — 1 = 0, which is
approximately 1.84.

The Matlab code is at Muller’s Method. As an illustration, we consider the
complex valued function

dip1 = 51'51—151'—2(

f(z) =sin(z) + 5+ V1,
whose exact roots are given by z, = 2mn —sin"!(5 4+ v/=1) or z5 = 27n + 7 +
sin™!(5 + /=1) for n € Z. We can obtain the roots of this function numerically
using the code referenced above. For instance, if we take n = 0 then the exact
root (to eight decimal places) is z, = —1.36960125 — 2.31322094y/—1. Choosing
appropriate initial guesses, say, zo = 0.5, z1 = 1 +3v/—1, and 2o = —1 — 2¢/—1,
our numerical result for this root is also —1.36960125 — 2.31322094+/—1.

1.7. Concluding Remarks

In this chapter, we have reviewed the main results in the theory of Gohberg
and Sigal on meromorphic operator-valued functions. These results concern the
generalization of the argument principle and the Rouché theorem to meromorphic
operator-valued functions. Some of these results have been extended to very general
operator-valued functions in [125], [333] and with other types of spectrum than
isolated eigenvalues in [337]. The theory of Gohberg and Sigal will be applied to
perturbation theory of eigenvalues in Chapter Other interesting applications
include the investigation of scattering resonances and scattering poles [247], 139].
Finally, we have described Muller’s method for finding complex roots of scalar
equations.


http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial1/1.1 Mullers Method.zip




CHAPTER 2

Layer Potentials

2.1. Introduction

The mathematical and numerical framework for analyzing photonic and phononic
problems described in this book relies on layer potential techniques.

In this chapter we prepare the way by reviewing a number of basic facts and
preliminary results regarding the layer potentials associated with the Laplacian,
the Helmholtz equation, the Maxwell equations, and the operator of elasticity. The
most important results in this chapter are on the one hand what we call character-
ization of eigenvalues as characteristic values of layer potentials and on the other
hand, the spectral properties of Neumann-Poincaré operators. Due to the vectorial
aspect of the Maxwell equations and the equations of elasticity, the analysis for the
electromagnetism and the elasticity is more delicate than in the scalar case. We also
note that when dealing with exterior problems for the Helmholtz equation, Maxwell
equations or harmonic elasticity, one should introduce a radiation condition to select
the physical solution to the problem. Together with reciprocity properties satisfied
by fundamental solutions to the acoustic, electromagnetic, or elastic wave propaga-
tion problems, radiation conditions yield Helmholtz-Kirchhoff identities, which play
a key role in the analysis of resolution in wave imaging. We state the optical the-
orem, which establishes a fundamental relation between the imaginary part of the
scattering amplitude and the total (or extinction) cross-section. We also investigate
quasi-periodic Green’s functions and associated layer potentials for the Helmholtz
equation and the Lamé system. We provide spectral and spatial representations
of the Green’s functions in periodic domains and describe analytical techniques for
transforming them from slowly convergent representations into forms more suitable
for computation. In particular, we discuss in some detail Ewald’s method, which
consists in splitting the quasi-periodic Green’s function into a spectral part and a
spatial part to achieve exponential convergence.

2.2. Sobolev Spaces

For ease of notation we will sometimes use 82 to denote the Hessian.
Let © be a smooth domain. We define the Hilbert space H'(Q2) by

HY(Q) = {u € L*(Q):Vue LQ(Q)},
where Vu is interpreted as a distribution and L?(Q) is defined in the usual way,

with
1/2
ullo@y = < / uF) .
Q

19
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The space H'(Q2) is equipped with the norm

1/2
lullio = ([ 1+ [ 92)
Q Q

If Q is bounded, another Banach space H{(f2) arises by taking the closure of
Ceo(92), the set of infinitely differentiable functions with compact support in €, in
H'(2). We will also need the space HL _(R?\ Q) of functions u € L _(R?\ Q), the
set of locally square summable functions in R? \ €2, such that

hu € H'(RY\ Q),V h € C°(RT\ Q).
Furthermore, we define H?({) as the space of functions u € H(Q) such that
9%u € L*(Q) and the space H*/?(Q) as the interpolation space [H(Q), H*(Q)]1 2
(see, for example, the book by Bergh and Lofstrom [132]). We also define the
Banach space W (Q) by

(2.1) Whe>e(Q) = {u €L>®(Q):Vue L“(Q)},

where Vu is interpreted as a distribution and L>°(Q) is defined in the usual way,
with

[[ul| Lo () —inf{C’ >0:|u(z)| <C ae z€ Q}

The trace theorem states that the trace operator u — u|gq is a bounded linear
surjective operator from H'(Q) into H'/2(9Q). Here, f € H'/?(09) if and only if
[ € L*(99) and

/dﬂ/m \x—y|d o do(z) do(y) < +oc.

We set H=Y/2(0Q) = (HY?(09Q))* and let ( , )1/2,—1/2 denote the duality pair
between these dual spaces.

Let Ty, ...,T4—1 be an orthonormal basis for the tangent plane to 02 at x and
let

d—1
0/0T = (9/0T,) T,

denote the tangential derivative on 9. We say that f € HY(99Q) if f € L?*(9%)
and 0f /0T € L?(99). Furthermore, we define H~1(9() as the dual of H*(9f2) and
the space H*(09), for 0 < s < 1, as the interpolation space [L?(0€2), H*(92)]s; see
again [132].

Finally, we introduce Sobolev spaces of quasi-periodic functions. Let A =
(A1,...,An,0,...,0) € RY with A; > 0 for j = 1,...,n and n < d. Let a =
(a1, ,0n,0,...,0) € RY Let C°(RY) be the set of functions u € C(R?) satis-
fying:

(i) w has a compact support in 2,11, ..., Z4;

(ii) u(z +A) = eV~ T My(z) for all 2 € RY.
Recall that every function v € C3°(R?) can be expanded in an absolutely convergent
and termwise infinitely differentiable Fourier series:

U(l‘) = Z ul(xn-‘rla s 7xd)e\/jlallma
lezn
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where

Qq :=a+27r(/lx—1,...,/l&—",0,...,0).
1 n

For an open set (2 C R, C2°(€) is the space of restrictions to € of functions of
C2°(R%). This enables us to consider the quasi-periodic Sobolev space given by the
closure of C°(2) in H(Q), i.e.,

HLQ) = Cr@) Y,

which, equipped with the H*(2)-norm becomes a Hilbert space.

2.3. Layer Potentials for the Laplace Equation

A fundamental solution to the Laplacian is given by

1

2—1n|x| , d=2,
(2:2) Po(@) =4 1 2-d d>3

mm ) 29

where wy denotes the area of the unit sphere in R?.

Given a bounded Lipschitz domain Q in R?, d > 2, we denote, respectively, the
single- and double-layer potentials of a function ¢ € L*(99) as S3[p] and DY [¢],
where

(23)  SYpl(x) = /8 To(e = y)ely)dofy). e R
24 Dbl = [ SISt et doly) . o eR\o0,

where v(y) is the outward unit normal to 02 at y.
Define the operator K : L2(9Q) — L?(9Q) by

1 (y—z,v(y)
2.5 K x) = — .V./ R Al do(y),
(25) blela) = . | Bl o) ity
where p.v. stands for the Cauchy principal value, and let (K2)* be the L?-adjoint
of K. Hence, the operator (K3)* is given by

26 0l = v [ D )0y, pe 1200)
Wd oo |z —yl

The singular integral operators K9 and (K%)* are known to be bounded on
L2(0Q) [177]. If 09 is of class C1'7 for some n > 0, then the operators K and
(KY)* are compact in L2(99). Indeed, K : L2(0Q) — H*(9Q) is bounded for any
0 < s < n. See, for example, [442].

For convenience we introduce the following notation. For a function u defined
on R4\ 99, we denote

uly(x) = tl_i>I(I)l+ u(z £tv(z)), x €,

and

5|, @) = Jm (Ve £ (@) vi@), @ eon
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if the limits exist. Here v(x) is the outward unit normal to 02 at z, and { , )
denotes the scalar product in R?. For ease of notation we will sometimes use the
dot for the scalar product in R¢.

We relate in the next lemma the traces of the double-layer potential and the
normal derivative of the single-layer potential to the operators K% and (K%)* de-

fined by and ([2.6)).

LEMMA 2.1 (Jump relations). If Q is a bounded Lipschitz domain, then, for
© € L?(09),

1
(2.7 (DB 0) = (757 48 ) 6l(a) ac. 2 <00
9 0 1 0 \*
(2.8) gSQ[go} (z) = :I:§I—|— (Ka)" )el(z) a.e. xedQ,
+
and
9 o 9 o
(2.9) a—TSQ[go] (z) = 8—TSQ[<,0] () a.e. x €00
+ —
Moreover, for ¢ € HY/?(0%),
3] 0 o
(2.10) S Pl = pDhlel| in HR00)
+ —
Note that yields the following jump relation:
0 e,
(2.11) aSg[ga] — msg[w]‘ = on 0.
+ —_

Note also that if Q is of class C17 for some On > 0, then for any ¢ € L2(9Q),
ODY[p]/Ov exists (in H~1(09)) and has no jump across 99Q. Indeed, if

N L?(092) — H™1(09)
is the Dirichlet-to-Neumann operator defined by

ou
N[QD] = a )
AP
where u is the solution to
Au=0 inQ,
u=1 on 0,

then the following formula holds:

0
Do
o ale]
See [442] for the details.
We shall also recall the concept of capacity. Suppose d = 2 and let (¢e,a) €
L?(09) x R denote the unique solution of the system
1

—/ In|z — y|lpe(y)do(y) +a =0 on 09,
2w o0

/ Pe(y)do(y) = 1.
o

= (5 + (KRN

+

(2.12)
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The logarithmic capacity of 0f is defined by
(2.13) cap(9Q) := 2™,
where a is given by (2.12]).

If d = 3, there exists a unique o, € L*(9€2) such that

/ pe(y) do(y) = constant on 052,
o0 [z =yl

¢e(y)do(y) = 1.
Q

(2.14)

The capacity of 0f) in three dimensions is defined to be

1 1 1
(2.15) m = /89 Hape(y)da(y).

If we form the solution u of the Dirichlet problem for the domain outside €2, with
boundary values 1, then the capacity is given by

cap(aﬂ)z—/ Ou (@)t (:/Rg\9|Vu|2dw).

o0 Ov
Hence, the solution u behaves like the point source —cap(9)I'o(x) at infinity.
It is clear that the capacity of the unit disk is 1 and the capacity of the unit
sphere is 47. Further interesting properties of the capacity are given in the books
by Hille [261], Landkof [310], and Armitage and Gardiner [92].

2.4. Neumann-Poincaré Operator

As will be seen later, the plasmonic resonances of nanoparticles are related
to the spectra of the non-self-adjoint Neumann-Poincaré type operators associated
with the particle shapes. We will show that plasmon resonances in nanoparticles
can be treated as an eigenvalue problem for the Neumann-Poincaré operator, which
leads to direct calculation of resonance values of permittivity and optimal design
of nanoparticles that resonate at specified frequencies. The analysis of Neumann-
Poincaré-type operators will also be the key to fathoming the blow-up of the gra-
dient of solutions to conductivity problems as well as to cloaking by anomalous
resonances. In the next subsection, by choosing a proper inner product, we prove
that the non-self-adjoint operator Neumann-Poincaré (K2)* can be symmetrized,
and its spectrum is discrete and accumulates at zero, provided that €2 is smooth.

2.4.1. Symmetrization of (K2)*. Let

L(09) == {cp € L*(09) : / pdo = o}.
o0
The following lemma holds.

LEMMA 2.2. Assume that Q is a bounded Lipschitz domain in R%, d > 2. The
spectrum of (K)* : L*(0Q) — L*(09Q) lies in the interval (—1/2,1/2] and therefore,
the operator (1/2) I+KY, is invertible on L*(9S)). Moreover, the operator —(1/2) I+
K, is invertible on L3(0S2).
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PROOF. The argument is by contradiction. Let A € (—oo, —1/2] U (1/2, +00),
and assume that ¢ € L2(99Q) satisfies (A\I — (K)*)[¢] = 0 and ¢ is not identically
zero. Since KQ[1] = 1/2 by Green’s formula, we have

0=/8Q(/\I—(/C?z)*)[<ﬁ]d0=/ p(A = (Kg)*[1]) do

o0

and thus [, ¢do = 0. Hence S§[¢](x) = O(|z[*~%) and VSG[p](z) = O(|z|~?) at
infinity for d > 2. Since ¢ is not identically zero, both of the following numbers
cannot be zero:

A:/ VSOl da andB:/ VSl da.
o R

In fact, if both of them are zero, then S3[p] = constant in  and in R?\ Q. Hence
© =0 by (2.11)) which is a contradiction.
On the other hand, using the divergence theorem and (£2.8)), we have

1 . 1 «
A= [ (=51+(Kq)")¥] Sal¢ldo and B = —/ (51 + (K&) )¢l Sale] do.
oo 2 9a 2
Since (AT — (K2)*)[p] = 0, it follows that
_1B-4
2B+ A’

Thus, |A| < 1/2, which is a contradiction and so, for A € (—o0, —3] U (3, +00),
A — (K$)* is one to one on L?(99).

If A = 1/2, then A = 0 and hence 8$[¢] = constant in Q. Thus S[p] is
harmonic in R?\ 992, behaves like O(|z|'~%) as |z| — +oo (since p € LE(99)), and
is constant on 02. By 7 we have (K3)*[¢] = (1/2) ¢, and hence

B:f/ @Sg[go]dazC’/ pdo =0,
o0 [219)

which forces us to conclude that ¢ = 0. This proves that (1/2) I — (K2)* is one to
one on L3(09). O

Assume that € is simply connected and 95 is of class C!*" for some 1 > 0. In
this subsection, we symmetrize the non-self-adjoint operator (K%)* and prove that
it can be realized as a self-adjoint operator on H~/2(9) by introducing a new
inner product.

We first state the following lemma.

LEMMA 2.3. Let d > 2. The following results hold:
(i) The operator 8§ in H=/2(9Q) is self-adjoint and —S3 > 0 on L?(9Q).
(ii) The operator (K%)* : H=1/2(0Q) — H~/2(9Q) is compact.

By Lemma there exists a unique square root of —S which we denote by
V/—89; furthermore, /-8 is self-adjoint and /—Sg > 0.

Next we look into the kernel of S3. If d > 3, then it is known that SO :
H-12(0Q) — HY?(0Q) has a bounded inverse. Suppose now that d = 2. If
$o € Ker(S82), then the function u defined by

u(z) = SY[pol(z), = €R?
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satisfies u = 0 on 9. Therefore, u(x) = 0 for all z € Q. It then follows from (2.8))
that

(216) (K3)*[60] = 560 on 00

If (x(992), ¢0)1/2,—172 = 0, then u(x) — 0 as |z| — oo , and hence u(x) = 0
for x € R?\ Q as well. Thus ¢9 = 0. The eigenfunctions of make a one
dimensional subspace of H~'/2(9Q), which means that Ker(S3) is of at most one
dimension.

Let (¢e,a) € H-1/2(9Q) x R denote the solution of the system , then it
can be shown that S§ : H~/2(9Q) — H'/2(0Q) has a bounded inverse if and only
if a # 0.

The following result is well-known. It shows that K$S§ is self-adjoint on
H=12(0Q).

LEMMA 2.4. The following Calderdn identity (also known as Plemelj’s sym-
metrization principle) holds:

(2.17) SO(KQ)* = K98S  on HY2(9Q) .

Consider the three-dimensional case. Since the single-layer potential becomes
a unitary operator from H~'/2(9Q) onto H'/2(99), the operator (K3)* can be
symmetrized using Calderén identity and hence becomes self-adjoint [295].
It is then possible to write its spectral decomposition. Let H*(9) be the space
H~1/2(09) with the inner product

(2.18) (v = —(SY0],u) s

1
3,72

which is equivalent to the original one (on H~1/2(99)).

THEOREM 2.5. For d = 3, the following results hold:

(i) The operator (K)* is self-adjoint in the Hilbert space H*(0S2);

(i) Let (A\j,¢;), 7 =0,1,2,... be the eigenvalue and normalized eigenfunction
pair of (K§)* in H*(0Q) with A\g = 1/2. Then, \; € (—3,3) for j > 1
with (M| > [A2] > ... = 0 as j — oo;

(iii) The following spectral representation formula holds: for any+ € H~'/%(9Q),

(2.19) (K& [] =Y \iless ¥ 05 -
§=0

Moreover, it is clear that the following result holds.

LEMMA 2.6. Let d = 3. Let H(9Q) be the space H'/?(0Q) equipped with the
following equivalent inner product

(2‘20) <’LL7 U>7'l = <7), (_SSOZ)_l[uD%,
Then, 8§ is an isometry between H*(92) and H(0RQ).

1
2

Furthermore, we list other useful observations and basic results in three dimen-
sions.

LEMMA 2.7. Let d = 3. The following results hold:

(i) We have (—31 + (K$)*)(S3) " [x(09)] = 0 with x(82) being the charac-
teristic function of 0S2.
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(ii) The corresponding eigenspace to g = % has dimension one and is spanned
by the function oo = c(S3) " x(0Q)] for some constant c such that ||po ||+ =
1.

(iii) Moreover, H*(0Q) = HE(ON) & {upo, p € C}, where HE(ON) is the zero
mean subspace of H*(0K2) and p; € H5(0) forj > 1, i.e., (x(0R), )1 1 =

0 for j > 1. Here, {p;}; is the set of normalized eigenfunctions of (K$)*.

In two dimensions, again based on , we show that (K)* can be realized
as a self-adjoint operator by introducing a new inner product, slightly different from
the one introduced in the three-dimensional case.

Recall that the single-layer potential S§ : H~'/2(9Q) — H'Y/?(9Q) is not, in
general, injective. Hence, —(S4[v], u) 11 does not define an inner product and the
symmetrization technique described in Theorem [2.5]is no longer valid. To overcome
this difficulty, a substitute of S can be introduced as in [86] by

~ 0 i L =
e ww={ S TUERTT

where ¢ is the unique eigenfunction of (K3)* associated with eigenvalue 1/2 such
that (x(052), <p0>%’7% = 1. Note that, from the jump relations of the layer poten-
tials, S§[po] is constant.

The operator Sq : H~Y/2(9Q) — HY/2(dQ) is invertible. Moreover, the follow-
ing Calderén identity holds K9Sq = So(K%)*. With this, define

(u, v)p« = —(59[1/],u>%7_% )

Thanks to the invertibility and positivity of —gg, this defines an inner product for
which (K9)* is self-adjoint and H* is equivalent to H~/2(98). Then, if Q is C1",
n > 0, we have the following results.

THEOREM 2.8. Let d = 2. Let Q be a CY", 1 > 0, bounded simply connected
domain of R? and let Sq be the operator defined in . Then,
(i) The operator (KQ)* is compact self-adjoint in the Hilbert space H*(9)
equipped with the inner product defined by

(2.22) (u, V) = —(SD[U],u>%7,% ;

(i) Let (\j, ), 7 =0,1,2,..., be the eigenvalue and normalized eigenfunc-
tion pair of (K&)* with Ao = 5. Then, \j € (—3,3) with [\1] > |Xo| >
...~ 0asj— oo

(ili) H*(0Q) = HG(OQ) @ {ppo, p € C}, where H(0N) is the zero mean
subspace of H*(0Q);

(iv) The following representation formula holds: for any 1 € H—'/?(9Q),
() 1] =D X (@5, ¥a- @5 -
j=0

LEMMA 2.9. Let H(99Q) be the space HY?(9Q) equipped with the following
equivalent inner product:

(2.23) (u, )3 = (v, =85 u))

Nl

1
3

Then, Sq is an isometry between H* () and H(OKQ).
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Note that Sq1[x(09)] = @o and —(1/2)I + (K&)* = (—(1/2)I + (K&)*) P,
where Py is the orthogonal projection onto Hg(952). In particular, we have (—31+
(K$)")Sg ' [x(02)] = 0.

In dimension two, the twin spectrum relation for the Neumann-Poincaré oper-
ator (K2)* holds [340].

LEMMA 2.10. For any j > 1, £); are eigenvalues of (K3)*.

PRroor. In order to prove the twin property, suppose that A; is an eigenvalue
of (K&)* with an associated eigenfunction ¢;. Then u := S3[p;] is a nontrivial

solution to the transmission problem

V- (1+(k=1x(Q)Vu) =0 in R?,

020 (1 + (k= Dx(©) V) =0 in
u(x) = O(Jz|~1) as|z| = +oo

with k= (2)\; +1)/(2)\; — 1).
Let v be the harmonic conjugate of u, which is defined such that Vo = V+u
where
_ Ou
(2.25) Viu = l gf?] :
ox1
Then v is a nontrivial solution to
V-((1+(=1)x(2)Vy) =0 in R?,
026) (14 ( = Dx(@)V0)
v(z) = O(|z|7Y) as |z| — +oo.

Therefore, by using the integral representation v = S3[t;] it can be seen that

1+
_ )\j — 171@
2z -1
is an eigenvalue of (K)* as well associated to the eigenfunction 1);. O

On the other hand, the following relation between the eigenfunctions of (K%)*
associated with +); holds.

LEMMA 2.11. Let 0/0T denote the tangential derivative on 9Q and let ¢, be
an eigenfunction of (KQ)* associated with \;. Then

2 SElo;]
2% 8% (05111

is a (normalized) eigenfunction of (KQ)* associated with —\;.

141 —UV2
PROOF. Let v = { ] and let T = [ } From [450], we have
120 11
0 0
0y ~ - _ 0
(2.27) (Kg) 5T 8T/CQ.

From it follows that if ¢; € H'/2(09) is an eigenfunction of K¢ associated
with the eigenvalue \; # 1/2, then d¢; /0T is an eigenfunction of (K%)* associated
with the eigenvalue —\;. Therefore, by using Calderén’s identity , we obtain
the stated result.
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Identity (2.27) can be proved by noticing that for ¢ € H'/2(9), the functions
DY [¢] and SE[0¢/OT] in Q are the harmonic conjugate functions of each other and
therefore, by the jump formulas,

0¢ 1 oo} 99
0N« 27 — (= 0 \*
(K8 [50] = (5 + (K gH] + 5 on
- 9000y 100
- Ov OaT 20T
DY, 19¢
= —gTWH— 39T 0
_ 1 0 109
—or QI )+ 557
Therefore, the proof of the lemma is complete. ([l

In two dimensions, we will also need the following identities from [344], [406].

LEMMA 2.12. We have

aDY[6]  OSY, D¢
(2.28) 5 = a7 o7
and
0 1
(229) SR AL = (kf)%l) ~ 10

for ¢ € HY?(99).
REMARK 2.13. With the same notation as in Lemma notice that from
it follows that

) ) )
| S8 Lol ~(SE57SEleil 57 SBleil) s -

[N

Ry
<(838T) SB[SDJ] ©;)
1
= - )\2
4

REMARK 2.14. When Q is Lipschitz, (K3)* is no longer compact. Neverthe-
less, since it is self-adjoint, its spectrum o((K3)*) is real, consists of point and
continuous spectrum, and is a closed set; see Appendiz[4]l Moreover, by the spectral
resolution theorem (see [A58)]), there is a family of projection operators E(t) on H*
(called a resolution of identity) such that

2.30 KoY = tde(t).
(2.30) (k%) /ec,((m) (t)

11
272

Let bg be the spectral bound of (K)*, namely
ba = sup{|A| : X € o((K$)")}.
From the proof of Lemma it follows that

\ [ _IvStlapan - [ [9shielfar
1 RA\Q Q
5 Sup*
ot / VS ] 2d
Rd

bo =

<

l\D\>—~
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2.4.2. Spectral Decomposition of the Fundamental Solution. Fix z €
R4\ Q. Then T'y(- — 2) belongs to H'/2(9Q), and so admits the following decom-
position:

(2.31) (x —2) ch )Salpil(x) + co(z), =€ 09,

for some constants c;(z) satlsfymg
o0
Sl () < .
j=1

Since —(S3 (@51, @i)1/2,—1/2 = 0ij, we see that

¢j(z) = =8oleil(z), i=1,2,....

We also see from (x(9€2), ¢0)1/2,—1/2 = 0 that co(2) = S3[¢o](2). So, we obtain the
following formula:

(x—2) Z%% (2)S31e,](x) + SSlol (), @ € 0.

Observe that
185 131(2)SH 031113 = 1Sales1(2)? < oo.

j=1
Since || ||3; is equivalent to the H'/2-norm, we find from the trace theorem that the
(o]

series Z Solp;1(2)Salp;] converges in H!(Q) and is harmonic in 2. Therefore, the
j=1

following expansion of the fundamental solution I'g in terms of the eigenvectors of

the Neumann-Poincaré operator (K%)* holds.

THEOREM 2.15. We have
(2.32) To(z —2) ZSQ @;( 2)85 [p;](x )+88[<p0](z), mEQ’ZGRd\§~

Formula is a general addition formula for the fundamental solution I'y to
the Laplace operator. It was derived in [86]. Addition formulas for the fundamental
solution to the Laplace operator on disks, balls, ellipses, and ellipsoids are classical
and well-known. That on ellipsoids is attributed to Heine (see [189]). The formulas
describe expansions of the fundamental solution to the Laplace operator in terms
of spherical harmonics (balls) and ellipsoidal harmonics (ellipses). Formula
shows that, in the general case, the addition formula is a spectral expansion by
eigenfunctions of the Neumann-Poincaré operator.

2.4.3. Spectrum of the Neumann-Poincaré Operator on Disks and
Ellipses. Recall that if Q is a disk or a ball, then we may simplify the expressions
defining the operators Kq and (K2)*. The following results hold:

(i) Suppose that Q is a two dimensional disk with radius rg. Then,

<z-—y, > 1
<z—yv@)>_ 1 Va,yed oy,
|z —y|? 279
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and therefore, for any ¢ € L?(09),

(23 (C8)"[61(0) = K§lol() = 12— [ ofw) o).
for all z € 09).

(ii) For d > 3, if Q is a ball with radius rg, then, we have

<zr—yv@)> 1 1
T Sy Yve Mty
and for any ¢ € L?(92) and = € 99,
2—d
(2.31) (8161 = Kfole) = ZDshiolo).

Another useful formula in two dimensions is the expression of K [#](z), where
Q is an ellipse whose semi-axes are on the 17— and xy—axes and of length a; and
a9, respectively. Using the parametric representation X (¢) = (a; cost, agsint),0 <
t < 2, for the boundary 02, we find that

P(X (1))
1—Qcos(t+6)

aiaz

27
0 _
(2.35) K9 6)() >A

- 2n(a? + a3

dt,

where z = X () and Q = (a? — a2)/(a? + a3).
Using (2.33), it also follows that if  is a disk, then the spectrum of (K%)* is
{0,1/2}. If D is an ellipse of semi-axes a; and ag, then

1

5 j: Oa
(2.36) )\j = _ J
:l:l <a1 az) >,
2 a + as

are the eigenvalues of (K%)*, which can be expressed by .

In three dimensions, by using it can be shown that the spectrum of
(K%)* in the case where Q is a ball is 1/(2(2j + 1)),5 = 0,1,.... Furthermore,
the eigenvalues of (K2)* for Q being an ellipsoid can be expressed explicitly in
terms of Lamé functions [210]. In [210], it is also shown that for any number
A € (—1/2,1/2) there is an ellipsoid on which A is an eigenvalue of the associated
Neumann-Poincaré operator.

In two dimensions, we also recall that if the disk  of radius 7 is centered at
the origin, then one can easily see that for each integer n # 0

To r Inl /—T.
<> eV—1nd if |z| =r <o,

(2.37) SoleY (@) = { Al Ar/
_wa (70) VIO if | = > g,
and hence
9 ! (r) i eV—1nb if |z| =7 < o,
(2.38) oS0V (@) = 12r o
2 (70) eV e if [x] = 7 > 7o.
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We also get, for any integer n,

:

DYleY™](x) = § 2 \T0
1 (@)ln‘ eV—1Ind ; _
2

r

It follows from (2.33]) that
(2.39) (K9 eV~ =0 Vn#£0.

As K$[1] = 1/2, it follows that, when € is a disk, KY, is a rank one operator whose
only non-zero eigenvalue is 1/2. On the other hand, from K3 [1] = 1/2 it also follows
that

Inr if || =7 <,
(2.40) syn)) = mre =T
In |x| if |x| =r > 7o,
and hence
9 0 if |z| =7 < 7o,
(2.41) —=Soll](=) = {1
or - if |z| =7 > ro.
r
Let Q; and Q. be two concentric disks in R? with radii r; < .. Define (IC% \ﬁ_)*
by
_ KO )* _ 3,30
2.42 0y — ( Q; O Qe

where v and v¢ are the outward normal vectors to 9€; and 2., respectively. Let
the operator SQE\@: be given by

S o Sgle 881 eI
20 = | 59 sy )

o0

Then, following the arguments given in Subsection , we can prove that (K, \a )*

is compact and self-adjoint for the inner product
(2.43)

(o, V)3 == —(Sq g, [V], @)1/2,-1/2 for ¢, ¥ € H™Y2(000) x H™V2(0%).

The following lemma from [32] gives the eigenvalues and eigenvectors of the

Neumann-Poincaré operator (ICKOI \ﬁ)* associated with the circular shell 2.\ Q; on
H*.

LEMMA 2.16. The eigenvalues of ( )* on H* are

0
’Cszﬁ\ﬁi
_1,1,_1(2)71,1(2
2°2° 2'r, 27,

and corresponding eigenvectors are

1 0 eTV—1no otV "Ino
|:_1:|7|:1:|7 ﬁe:t\/jan ; 7ﬁe:‘:\/jln0 , n:1’2’””
Te Te

re

', o n=1,2,...,
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PRrROOF. We first prove that 4-1/2 are eigenvalues of (K?

Qe\ﬁz
(2.41)) we have
1
0 x | A _ 2 0 a
rli- (3
where a and b are constants. So £1/2 are eigenvalues of (IC?2 \5_)* on H*.
Now we consider (K7 \5_)* on H} defined by

Ho :={pecH : (1,0)1/2,—1/2 = 0}.
Because of (2.39) it follows that

)* on H*. From

0
0 =80
K:O oV — oVt €
( QE\Qi) 0 0 0
ope "
on H{ and hence we have from (2.38]) that
V=1Iné 1,7 0
0 * | € _ i\ |n|+1
(2.44) (’CQC\@_) { 0 } = 5(76)‘ ! [6ﬁno]
and
0 1 r: V—1no
0 * _ —(liy\|n|-1 |€
(2.45) (Ko \a,) Lmne} = 2(7,6) " [ 0 }
for all n # 0, which completes the proof of the lemma. O

REMARK 2.17. From Lemma it follows that the eigenvalues of (K

onHy are £(1/2)(r;/r.)’ and (K%e\ﬁi

(U )*
Qe\Qi
)* as an operator on H* has the trivial kernel,
i.e.,

(2.46) Ker (/cge\@)* = {0}.

REMARK 2.18. In [175], by using elliptic coordinates, the Neumann-Poincaré
operator associated with two confocal ellipses is investigated and the asymptotic
behavior of its eigenvalues \j as j — +00 is derived.

In three dimensions, we can compute the spectrum of the Neumann-Poincaré
operator associated with concentric balls. The following lemma is needed.
LEMMA 2.19. Let Q = {|z| < ro} in R3. We have for j =0,1,...
1
2.47 KO Y = ———YH(4), =ro,l=—74,...,7,
where & = x/|z| and (le)l:_j7___7j are the orthonormal spherical harmonics of degree
j-

Proor. From (2.34) and (2.8), it follows that

9 oy L oyt Loigs
2 SV + 5801 = —3¥H@), Jel = o
Then since SY[Y}] and |x[7Y} (&) are harmonic functions in Q, we have
0yl Lo
(2.48) SV)(x) = Yi@) for fo|=r <o,

T o i—1°J
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and (2.47) follows from (2.34)). O

Lemma says that the eigenvalues of (K2)* when  is a ball are
1
2(2j+1)’
and their associated multiplicities are 25 + 1.

Let Q; and Q. be two concentric balls in R® with radii r; < 7. and let the the

Neumann-Poincaré operator (IC?l \ﬁ)* associated with the spherical shell . \ €;

be defined, analogously to the two dimensional case, by ([2.42)).
By (2.48), we have

j=0,1,...,

e ShVe) =~ (@), el =
Similarly, we have
0 vl 1 rf” 1
SQ,i[YVj](x):_2j+171j+1Yj(x)7 |z| =7 >,
and hence
0 g0 _JFlm

1 (z) = +2yl (4 _
5y Sh @) = 5 OV @), el =re

We now have for constants a and b
1 j i \j—1
(KO ) [ aYJ; } _ j;g(gﬂﬂ)ﬂ QJ'jJrl(er)J [ anll ] |
A B 51 () D bY;
Thus we have the following lemma from [32].
- 0 * *
LEMMA 2.20. The eigenvalues of (ICQS\@) on H* are
L AL rET, =01,
2(2]- + 1) K3 e ) 9 3 9
and corresponding eigenfunctions are
(V1+4j(G + 1)(ri/re)>+1 = 1)Y] (—V1+4j(G + (ri/re)>+1 = 1Y}
2(j+ 1)(ri/re 2] L 2GF ey |
forl=—j ..., 7, respectively.

2.4.4. Neumann Poincaré Operator for Two Separated Disks and Its
Spectral Decomposition. In this subsection, we consider the spectrum of the
Neumann-Poincaré operator associated with two separated disks in R2. Let B,
and By be two separated disks. We set the Cartesian coordinates (z1,z2) to be
such that the x1-axis is parallel to the line joining the centers of the two disks and
let » be the outward normal on 9B;, i =1, 2.

Define the Neumann-Poincaré operator K} ,p, associated with By and By by

0
(K:Ol)* 802
(2.49) hom=| o WO
SO (ICO )*
ov(2) "B B2

and define the operator Sg,up, by

0 0
S _ SBI 832 ’(’)Bl
B1UBy — SO | SO :
B119B, By
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Then, again following the arguments given in Subsection [2:4.1] we can prove
that K% g, is compact and self-adjoint for the inner product
(2.50)

(0 W)z = —(SBuB. U], ©)1/2, 12 for .9 € Hy > (8B1) x Hy /*(9By).

2.4.4.1. Bipolar Coordinates. To compute the spectrum of K% 5, we make
use of bipolar coordinates. The following definitions are needed.

DEFINITION 2.21. Each point x = (x1,x2) in the Cartesian coordinate system
corresponds to (£,0) € R x (—m, 7| in the bipolar coordinate system through the
equations

sinh & sin 6
( ) o acoshg “coso " 2 O[coshf — cosf

with a positive number .

Notice that the bipolar coordinates can be defined using a conformal mapping.
Define a conformal map ¥ by

z:x1+¢?1x2:ql(C):

If we write ¢ = e~V 19 then we can recover |D
From Definition[2.21] we can see that the coordinate curves {¢ = ¢} and {0 = ¢}
are, respectively, the zero-level set of the following two functions:

2
(2.52) fe(z1,22) = (xl aCOShC) Jr:r% - ( a )2

sinh ¢ sinh ¢

a !
¢-1

and

fo(x1,22) = a:f + (xg — acosc>2 — (i)z.

sinc sinc
DEFINITION 2.22. We define orthonormal basis vectors {eg,eq} as follows:
0x/0¢ 0x /00
= — d ==
T lazjoe M T Jon/jo0)
Notice that, in the bipolar coordinates, the scaling factor h is

cosh & — cos @

h(g,0) :=
The gradient of any scalar function g is given by

_ 99 g
(2.53) Vg =nh(&,0) ((%eg + 6069) .

Moreover, the normal and tangential derivatives of a function u in bipolar coordi-
nates are

@) = Vu - ve—e = —sgn(c)h(c, 9)%‘ )
ov E=c 35 {=c
(2.54)
. = —se(hie,O) g
orT {=c - Teenie C, 00 5:0’
and the line element do on the boundary { = &y} is
1
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Furthermore, the bipolar coordinate system admits separation of variables for
any harmonic function f as follows:

(2.55)

f(&,0) = ap + bo& + cob + Z [(ane”E + bpe ") cos nf+ (c”e”5 + dpe~ ") sin n@],

n=1

where a,, b,, ¢, and d,, are constants.
We have

(2.56)
. T ¢ —¢
z4+V—1y = sinh § Lsinf = sgn({)(i =1+2 Z e " (cosnf — v/—1 sinnb)),

cosh & — cos@

with ¢ = (£ +v/—16)/2.
2.4.4.2. Spectrum of Kp, 5, Suppose that the two disks By and Bz have the
same radius r and let € be their separation distance. Set

(2.57) o =|e(r+ i) and & = sinh™* (%) .

Note that
(2.58) OB; = {¢ = (-1)Y&} forj=1,2.

To establish the spectral decomposition of K% 5, , we use the following lemma
from [31].

LEMMA 2.23. Assume that there exists u a nontrivial solution to the following
equation:

Au=0 i’l'LBlUBQUR2\(BlLJBQ),

ul|y = ul|- on 0B;j,j = 1,2,
(2.59) ou ou :

= =k=— Bj,j=1,2

81/)4— kau‘_ on 9B;,j =1,2,

u(z) =0 as |x| — oo,

142X
wherekrf—l_z)\<0. If we set
ou ou .
(r .75‘+75’7 on 0B; for j =1,2,

(G

then ¢ = [ y ] is an eigenvector of K g, corresponding to the eigenvalue .
2

One can see that the following function w,, is a solution to ([2.59)):

(2.60)
1 —|n n —1n
:Fm(el"\Eo Fel |50)6| [+ =1no for £ < —&,
1
uF(€,6) = constant + me_‘”lgo(elnlE F e_ln‘g)e‘/jlna for —¢&p < € < &,

1

2| |(e|"|€o F e—\"|§0)e—\n|§+\/jln9 for £ > &.
n
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From (2.60) and Lemma it follows that the eigenvalues and the associated
eigenvectors of K}, 5, on Hj are given by

(2.61) A= i%e—mﬂfo’
and

£y _ v/—Inb h(—§079)}
20 Tal0)=e [%(50, 0).

Note that the above eigenvectors are not normalized and both the eigenvalues
and eigenvectors depend on the separation distance between By and Bs.
We now compute —(Sp,up, [®E], ®E)1 /2 _1/2. From (2.60), we obtain that

g (L e 2o )ev=Tno ]

oy (L e 2o )ev=Tno

SB,uB,[®E] = constant +

Thus

s —oln
_<831UBQ[®$]7@$>1/2,—1/2 = m(l:Fe 2l |£0).

Therefore, we arrive at the following result, which was first proved in [72].

THEOREM 2.24. We have the following spectral decomposition of K g, on
He:

1 1
(2.63) Ki,um, = 9 56—2‘“50\1/: DU+ (—Qe—2|"50> SR,
n#0 n#0

where ® denotes the tensor product and U are the normalized eigenvectors defined
by

(2.64) w(9) i Y IMI [ h(=Co,6) } .
" 21 (1 F e 2Inléo) | Fh(&o,0)
Note that
SO [UF ]+ 8% (U, ])(,0) = constant + vin|
( Bl[ n,l] Bg[ n,2])(£ ) constan 2’/T(]_:F€72|n‘£0)
1
Fag (1 F eV for ¢ < g,
1 —|n n —|n —1In
(2.65) <3 S Inléo (elnlé o= Inl) VTN for el g < &)
1 —|n —|n —1n
M(eln\ﬁo Fe | |€o)e [n|é4++/—1no for € > &.

2.4.5. Numerical Implementation.

2.4.5.1. Numerical Representation. In order to utilize the Neumann-Poincaré
operator in applications we must define an appropriate numerical representation
for it. We begin by parameterizing the boundary by x(t) for ¢ € [0,27). After
partitioning the interval [0, 27) into N pieces

[t17t2>7 [t2at3)7 ceey [tN7tN+1)7

with t; = 0 and ty41 = 27, we approximate the boundary 9Q = {z(t) e R? : t €
[0,27)} by () = x(t;) for 1 <i < N. We then represent the infinite dimensional
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operator (K2)* acting on the density ¢ by a finite dimensional matrix K acting on
the coefficient vector B, := ¢(x()) for 1 <i < N. We have

(KQWMQO:1pv[;<x_%yw»w@ﬁw@%

2 |z —yl?

for ¢ € L?(99) and we represent it numerically by

K11 K12 KlN @1

- Ky Kz ... Koy (2
K = : ) : : )

Kyt ... ... Kyn PN

where
1 <x(i) — x(j)v,,(x(i)»
2 [z — ()2

Kij = 7@ )|(t541 = t5) i # 4,
with T'(z()) being the tangent vector at (%),

2.4.5.2. Handling Singularities on the Diagonal. Complications arise in the di-
agonal terms of K as the expression

(@@ — 20), p(2®))
2@ — 2Oz

is singular when ¢ = j. We can handle this by explicitly calculating the integrals for
the diagonal terms. Let the portion of the boundary starting at 2(*) and ending at
2+ be parameterized by s € [0,e = 27), which means that € — 0 as the number
of discretization points N — oco. Applying this parameterization to the diagonal
terms of K we have

L (x® — z(s), v(z®)) S)lds
Ki=g | IT(s)\ds.

27 |z() — z(s)|?
Denote by
T4 — (s) = 1'(s),
v = p(s),
0 = a(s) = 1"(s),

the tangent vector, the unit normal vector, and the acceleration vector respectively.
Note that () = 2(0), T = 2/(0), and a¥ = 2(0). Taylor expanding the
numerator for small s we have

(@ — 2(s),v(zD)) = (2 — ((0) + sTW + ?a(i) +0(s%), vD)

~
~

2
s i) G
_?<a()’y()>7

as € — 0. Similarly, we have |2 — 2(s)|? = s2|T®|? and |T'(s)| ~ |T?| as ¢ — 0.
Therefore we can approximate the diagonal terms of K by
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1 (¢ (a®) @ .
Kii ~ / 7<a )’V >|T(Z)‘d8
0

Cor 2T
€ <a(i)),y(i)>
A7 |T®@)]
B 1<a(i)),y(i)>
2N T

‘We now present some examples that demonstrate the spectrum of the Neumann-
Poincaré operator in various situations.

2.4.5.3. Spectrum of the Neumann-Poincaré Operator for an Ellipse. We first
compute the spectrum of (K2)* for an ellipse with semi-axes a; = 10 and az = 1
using Code Neumann Poincaré Operator. Table compares the first few eigen-
values obtained numerically with the eigenvalues obtained via the formula given

in 238,

Theoretical | Numerical
0.5000 0.5000
0.4091 0.4091

—0.4091 —0.4091
0.3347 0.3347
—0.3347 —0.3347
0.2739 0.2739
—0.2739 —0.2739
0.2241 0.2241

TABLE 2.1. Spectrum of the Neumann-Poincaré operator for an ellipse.

2.4.5.4. Spectrum of the Neumann-Poincaré Operator for Two Disks. Using
Code Neumann Poincaré Operator for Two Particles, we now compute the spectrum
of K3 up, for two disks with 7 = 2 and € = 0.3. Table compares the first few
eigenvalues obtained numerically with the eigenvalues obtained via the formula

given in (2.61]).

TABLE 2.2. Spectrum of the Neumann-Poincaré operator for two disks.

Theoretical | Numerical
0.5000 0.5000
0.5000 0.5000

—0.2315 —0.2315
—0.2315 —0.2315
0.2315 0.2315
0.2315 0.2315
-0.1072 —-0.1072
—0.1072 —0.1072



http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial1/1.2 Neumann Poincare Operator.zip
http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial1/1.2 Neumann Poincare Operator.zip
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2.5. Conductivity Problem in Free Space

2.5.1. Far-Field Expansion. Let B be a Lipschitz bounded domain in R¢
and suppose that the origin O € B. Let 0 < k # 1 < 400 and denote A(k) :=
(k+1)/(2(k —1)). Let h be a harmonic function in R?, and let u be the solution
to the following transmission problem in free space:

(2.66) V- ((1+(k—1)x(B))Vu) =0 in R?,
' up(z) — h(z) = O(|z|'~%) as |z| — +oo.

For a multi-index o = (aq,...,aq) € N, let 0°f = 9f*...07f and z* :=
x{" ... x5*. We can easily prove that

0 0 \*x\—1 Oh d
(2.67) up(z) = h(z) + Sp(Nk)I — (KB)") [%bg}(m) for z € RY,
which together with the Taylor expansion

+o00 (_1)|o¢\
Do(x —y) = Z ol 05To(x)y™, v in a compact set, |z| — 400,
a,|a]=0

yields the far-field expansion
(2.68)

o (Llal

laf,18]=1

OT(@)0"h0) | (ART=(5)") [o(@) Ve ()" do ()

as |z| = +oo.

DEFINITION 2.25. For «, 3 € N%, we define the generalized polarization tensor
Ma,@ by

(2.69) MopN0).B) 1= [ 47%60(0) dot),

where b, is given by

270)  Guly) = AR - (KB)) " [v(@) - Va*](y), e IB.

If |a| = |8] =1, we denote M,z by (mpq)g,qzl and call M = (mpq)iq:l,
(2.71) myn = [ T = (5)) [l dor),

with v = (v1,...,vq), the polarization tensor.

Formula (2.68]) shows that through the generalized polarization tensors we have
complete information about the far-field expansion of wu:

too _1)lel
i =0w) = > L0 Maa ()., B)O ()
laf,|Bl=1 "

as |z| — +oo.
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2.5.2. Polarization Tensor. In this subsection, we derive some important
properties satisfied by the polarization tensor. It is worth mentioning that the
concept of polarization tensor has been widely used in various areas such as the
imaging of small particles and effective medium theory (see [44), 45}, [47), [67, 351,
363| for these applications).

For a C%", n > 0, domain B in R?, using we can write

(W~ () fu) = Y Ll
3=0 J

with (\;, ;) being the eigenvalues and eigenvectors of (K%)* in H*. Hence, the
entries of the polarization tensor M can be decomposed as

2. (Vs p)m= (), Tq)
2.72 Ak),B) =

Note that (v, x(0B))_1 1 = 0. So, considering the fact that Ao = 1/2, we have
(Vp, w0)1+ = 0. Moreover, since

11
2°2

1 ~1,1 N

iv)-yy = (G-2)7"GI- KD )ela) |,

_ _~L  /083lp]

12— < ov ‘ ,xq>7%’%

— —1 974 o 0 0

= m {/83 ESB[%]dU - /B (quSB[%] - quSB[%])dx

_ (v @i)n

1/2—=X; 7
it follows that
- <va%>7-£* qu% H* - azgjq)
2.73 Mypq(A(k), B) =
Here, we have used the fact that S%[p;] is harmonic in B and introduced
, 1

(2.74) o) = m@pv@ﬁw@q’%m

Notice that a,()]; >0,forallp=1,...,d,and j > 1.

REMARK 2.26. If B is a bounded Lipschitz domain, then for any k such that
k) ¢ a((K%)*), it follows from that

1

mpq(/\(k)aB) = /eg((ICO - W /(?B l/pdg(t)[ﬂfq]dg(l’)
1
)~

/ea((;cg )y Ak oB

(2.75)
/ vadE(t)[xp|do(x) .

From (2.73), one can see that the following properties of the polarization tensor
hold.

PROPOSITION 2.27. The polarization tensor M (A\(k), B) is symmetric and if
k> 1, then M(\(k), B) is positive definite, and it is negative definite if 0 < k < 1.

The following sum rules are from [70}, [350].
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PRrOPOSITION 2.28. For d > 2, we have
(2.76) Z 04;(;{1) = 0pq|B,

and

(2.77) Z Z () = )|B|
j=1 I=1

PrOOF. Let f be a holomorphic function defined in an open set U C C con-

taining the spectrum, o((K%)*), of (K%)*. Then, we can write f(z Zajz] for

every z € U. Let

= a;((Kp)"y
=0

where
((KB)) = (Kp) o (Kp)* o...0(Kp)"
j times
We have
FUER)) = FOND G0
j=1
Hence
(278) | ot (@ dot@) = 3 F0)afy)
j=1
Equation (2.78)) yields the summation rules (2.76|) and (2.77)) for the entries of the
polarization tensor by respectively taking f(A) =1 and f(A\) = X in (2.78). |

REMARK 2.29. In [26], by means of the holomorphic functional calculus used in
the proof of Pmposition the eigenvalues A; of the Neumann-Poincaré operator
(K%)* are recovered from the polarization tensor M, provided that the corresponding

a,(;{} # 0 for at least one pair (p,q).

In two dimensions, by using the twin spectrum property stated in Lemma [2.10
we can rewrite the entries of the polarization tensor in the form

S [ af o)

ORI ESY

Mpa(A(K), B) = [
352520

Furthermore, the following result holds.
LEMMA 2.30. For all j > 1 such that A\; > 0, we have
5 - aff
agJQ) _ (j).
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PrOOF. For simplicity, suppose that (K%)* has simple eigenvalues. Let ¢; be
the normalized eigenfunction associated with —\;. Recall from Lemma that
- rShle)]
TN ’
57 S5l

where ; is the (normalized) eigenfunction associated with A;. On the other hand,

from (2.74)), we have

» 1 _ ~
(2.79) ay) = m<Vp,<Pj>H*<Vq’<Pj>H*~

Since x5 is the harmonic conjugate of =1, the Cauchy-Riemann equations yield

_0m2 _ 0m
T T T ar
Hence, it follows that
(2, @)= = —(SBl&slve)y 1
. Oz
= <3%[<Pj]7871>%,_%
0

= _”ﬁs%[‘;j]”?-t*<$1a§0j>%,_%7
N

= —T_/\j<l/1»%0j>%*-

Similarly, we have

(v1, 65)p = 1/27_%@27%“*.

From the definitions 1’ and 1' of ozz(){l) and &%), we obtain the desired iden-

In view of the connection of the concept of polarization tensor to the theory
of composites (see Section , it is natural for the polarization tensor to have the
following bounds, which are called the Hashin-Shtrikman bounds after the names of
the scientists who found optimal bounds for the effective conductivity [255] [351].

PROPOSITION 2.31. If B is a smooth bounded domain in R2, then the polar-
ization tensor associated with B and the conductivity parameter 0 < k # 1 < 400
satisfies

1
(2.80) —— tr(M(A(k), B)) < (1+ 7)|B]
and
(2.81) (k= 1) tr(M(A(E), B)~1) < LEF)

B
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PROOF. From Lemma [2.30] we have

+o0 (4) (4)
2 20
tr (M(A(k),B)) = L+ !
; AE) =X k) + A
X 2\(k)at?
= 5
j=1 Alk)? = A

By using the sum rule (2.76)), we obtain

2
[ tr (M(Ak),B))| = W\BL
Since |\;| < 1/2, it follows that
2[A(K)|
[ tr (M(A(k), B))| < m|3|~

Concerning tr(M (A(k), B)~1), by rotating the coordinate system in such a way that
the orthogonal eigenbasis of M (A(k), B) is parallel to the two coordinate axes we
have that

1 1
—1\
tr(M(A(k),B)™") = T 0 + = 0 .

Z 11 Z 22

20K ) 2 Ok - A)
Thus, (2.76]) yields

2|\ (k
Jarxi, )] < 25,

which completes the proof of the proposition. O

The bounds (2.80) and (2.81) were obtained in [331, 165] and proved to be
optimal in [165],[25]. The proof of Propositionm given here is from [246]. In view

of (2.75)), the bounds (2.80) and (2.81) hold true for Lipschitz bounded domains.

If B is an ellipse of the form R(B’) where R is a rotation by 6 and B’ is an
ellipse of the form

2 2
xZ x
=+ <1,
ay a3

then it is known (see [45] pp. 81-122] for example) that its polarization tensor is
given by

a1 + ao 0
_ _ ay + kag t
MOW,B) = (k- DIBIR R
ka1 + as
(2.82) 1B .
N(1) _ lai—as
- R )\(k) -2 Zi‘l’zz ‘B| Rt
0 T TaTas
Ak) + 55

Thus for a given polarization tensor there corresponds a unique ellipse whose po-
larization tensor is the given one [1435].
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In the three-dimensional case, a domain for which analogous analytical expres-
sions for the elements of its polarization tensor M are available is the ellipsoid.
If the coordinate axes are chosen to coincide with the principal axes of B whose
equation then becomes

2 2 2
%"‘%"‘%Sl, O<as<azx<ay,
ai a3y a3

then M takes the form

(2.83)
L 0 0
(1—A;7)+ kA
1
MA(k), B) = (k—1)|B] 0 (RN 0 ,
1
0 0 (1 - As) + kA3
where the constants Aq, Ao, and As are defined by
+oo
asa3
A, = / .,
at )y £2,/8 1+ ( 31) JE -1+ ()
A asas3 /+DO 1 dt
2 = 5 )
N >% 21+ (2)

az CL3

As dt.

—+00
o e e :
1 —14( — 1+ (28)2)2
In the special case, a; = a2 = a3, B becomes a ball and A; = Ay = A3 = 1/3.
Hence the polarization tensor associated with the ball is given by

3

2+k 0 0

3

2.84 M(Ak),B) =(k—-1)|B —
(284) (AELB)=(k=1IBI| 0 o0
3
0 0 2+k

Derivation of the above formulas can be found in [351].

It is worth mentioning that the polarization tensors for ellipses (or ellipsoids)
satisfy the lower Hashin-Shtrikman bound . In [284], [285], the converse was
also proved to be true.

Formula (2.82)) shows that if B is an ellipse or a disk, then M (A ( B)
a meromorphic function of A(k) has at most two poles (given by +1 ) and

therefore, in view of the fact, in H*(dB),

(K )>\{1/2}—{ (c0) j:1,2,...},

a—b ter
s vanish.

The converse is also true. If M (A(k), B) as a meromorphic function of (k)
has at most two poles, then B is an ellipse or a disk if the poles are 0. The proof
first given in [246] follows from the strong Eshelby conjecture, which can be stated

all a,(gjé) other than those corresponding to the eigenvalues 1
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as follows: If for a nontrivial (c1,c2) the gradient in B of the solution w to the
transmission problem

Au=0 inR?\ 9B,

u|ly =u|- on IB,

9u|, = k%% on B,

u(z) — (c1x1 + cox2) = 0 as |z| — +o0,

is constant, then B is an ellipse. Here, 0 < k # 1 < +oo0. The strong Eshelby
conjecture was proved in [285], [332].

(2.85)

PROPOSITION 2.32. Let B be a bounded and simply connected smooth domain
in R2. If the meromorphic function A — M (X, B) has at most two poles, then B is
an ellipse.

PROOF. Let £y denote the two poles of M (A, B). Note that M (A, B) either
has two poles if ;1 # 0 or one pole when g = 0. In view of Lemma we can
write

’I“% + T% r17r2 _ T17T2
A— A+ A— A+
M()\,B) _ H H 2.“ 2,LL 7
r17r2 T17T2 7‘2 7“1

)\—u_/\+u )\—u+/\+u

c
where 1 and 7o > 0. Let ¢ = [ 1] with
C2

Tj .
We can easily see that, for all A € C\o((K%)*),
ri+ri B

—_— = = c-x —(KWY) e - v](z)do(x).
P a0 e (@) (o)

(2.86) ¢ = =1,2.

c-M(\ B)c=

Similarly, we have
W2 [ et - o) e @) a).
OB
Therefore, from Remark it follows that ¢ - v and c¢ - x are eigenfunctions of
(K%)* and (K%), respectively, associated with the eigenvalue p.
Since ¢ - x is harmonic, we have on 9B

Sle-v(@) = Dhle-yl(r) — -
= GI+KRle @) —cw
1
= (/14—5)01',

and hence, by the maximum principle
1
S¥lc-v](z) = (u— §)c~x, x € B.

Therefore, the solution u to (2.85)) is given by
u(z) = S\ —(Ky)") e -v(z)+c-a

_1
= (M 2 1>c~:17.
A—p
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Since Vu(z) is constant in B, it follows from the strong Eshelby conjecture that B
is an ellipse. ([l

2.5.3. Conductivity Equation with Complex Coefficients. Suppose that
k € C. Then formula (2.67) holds true provided that A\(k) ¢ o((K%)*) [281].

THEOREM 2.33. Let k € C. If AMk) ¢ o((K%)*), then, for any harmonic
function h in R?, the unique solution uy, to satisfies

C oh
v - h 2 d < -
IV (ke = )22y < dist (A(k), o ((K3)")) 155
for some constant C independent of k. Here, dist denotes the distance.

PROOF. The existence of a solution to (2.66) follows from (2.67). To prove
(2.87), we note that

2 2
VG =W, = [ |9Slo@ e+ [ VSl ds
B RI\B

= [ stlall Shleddo— [ bl Shlerl do

op Ov " -F op Ov 7 +°8

— / okSYlor) do =[xl
OB

where @y, is given by

(2.87) l-172(0)

(2.88) or = OB — (K (L o).

ov
So (2.87) follows from ([2.67)).

To show the uniqueness of the solution, assume that u,lC and u% satisfy (2.66)).
Let v = uj — u}. Then v is a solution to (2.66) with h = 0. So we have

0 = / (x®R*\ B + kx(B))|Vo]? da
Rd
/ |Vv|2da:+§)%k/ |Vv|2dx+\/—1£‘sk/ Vo[ da.
RIB B B
Hence, if £k > 0, or if Rk < 0 and Sk # 0, then

/ |Vv\2dm=/ |Voul?dz = 0.
R B

So, v is constant. Since v — 0 as |x| — oo, we conclude that v = 0.
Uniqueness for the case k¥ < 0 (and A\(k) ¢ o((K%)*)) can be proved as a
limiting case of k + v/ —1 as d — 0. O

The following result on Lipschitz dependency on k of the solution uy to (2.66)
holds [287].

THEOREM 2.34. Letk € C. If \(k) ¢ o((K%)*), then, for |k’ —k| small enough,
there exists a positive constant C' independent of k such that
< CW-H___ 0k,
= dist(A(k), o ((K%)7)) " o H2OB)

(2.89) IV (ur — urr )| 22 ey

for all harmonic functions h in RY.
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PROOF. Let o and ¢ps be defined by (2.88). We have

O AP oh 4
Pk — P = ;0 ) = ) ) — )\j)<$7@1>7{*9@3'

Therefore, for |k’ — k| small enough, there exists a positive constant C' independent
of k such that

— L S
Yk — i llg-1/2(0B) < dlst(A(k),a((ICOB)*) EY H-1/2(8B)"
Since uy, — up = SY[pr — prr] for x € R, we obtain ([2.89)). O

We now investigate the behavior of the solution u; when A(k) approaches one
of the eigenvalues \; # 0 of (K%)* as 3k — 0. We show that

1
(290) ||V(uk — h)||L2(B) ~—— as Sk — O,
Sk
as one may expect.
We first show that

(2.91) IVSEIel L2 (m) ~ llln-
for all p € Hg. In fact, we have
0
IVSBlAlllz s = Splel 5, Splel| _do
OB v

o (5T + (KB

—
- ¥

(2 = Al s)me 2

— "2
Jj=1
Since |A;| < 1/2 and they accumulate to 0, we have (2.91). We now see that
| 7@] H* | 7@] 'H* | 7@] 'H*‘Q
v V V V 3
|| ( HLZ(B) Z ‘)\ — A\ |2 Z |)\ )\l|2 + Z )\l|2

Nj£N

Hence, we obtain since |A\(k) — \| ~ |\sk| as |Sk| — 0.

Suppose that 0 is not an eigenvalue of (K%)*. Then, since (\;) converge to
zero, {0} is the essential spectrum of (K%)*. We investigate the behavior of the
solution u; when A(k) approaches 0 as Sk — 0. For simplicity we approximate
A(k) by v/—13k and show that

(2.92) |Sk’|||V(uk — h)||L2(B) —0 as Sk — 0.
We write
2 - |<8y7(p] 7-[* 31,79% 7-{* .
IV(uk = )32y~ > SHE+E T > BIE T = Sy + So.
[A;1<|Sk| 1A 1>|Sk]

Since 3277, [(OL, ;) n-|? < oo, it follows that

oh
SEPS < Y. 5@ > =0 as Sk — 0.
X |<ISK|
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To show that |Sk|?Ss — 0, we express So as

- (32, 05) -2
So = Do 7IITE L
2 Z Z ISE2 + [\ 2

1=0 2! |Sk|<|\;| <20+ |Sk|

Then we see that
oo

1 oh
Zm Z |<@v@j>7—t* ?

1=0 21| Sk|<| M| <201 |k

= 1 oh
Zm Z \(5#3‘)%*\2

1=0 |Aj <2141 |Sk|

|k |2 S

and so we infer that |Sk|2Sy — 0 as Sk — 0 since for each fixed I,

oh
> G el 0
A <271 | 3K
as Sk — 0. This completes the proof of (2.92)).
Estimates (2.90) and (2.92) are from [86].

2.5.4. Field Enhancement Between Closely Spaced Disks. Let B; and
B> be two disks with the same radius r and conductivity k£ embedded in the back-
ground with conductivity 1. Let € be the distance between the two disks B; and
Bs, that is,
€= d.iSt(Bl7 BQ)
Let (£, 0) be the bipolar coordinates defined by

eg_ﬁg_x1+ﬁmg+a

x1++vV—1zy — '

where « is defined by (2.57).

Let v be the solution to
(2.93) V- (14 (k=1)x(ByUB;))Vu=0 inR?
. w(@) —xz1 = O0(|z|71) as |z — +oc.

Then u can be represented as follows:

U= + SBluBz [80]7
where ¢ is the solution to

8561 ‘
. - loB,
(>\I - KBlUBQ)[SD] = gxyl
o 107
Using (2.56]), we have the following harmonic expansion for the linear function
ZI1:

o)

(2.94) z1 =sgn(§a |1+ 2 Z e "l cosnd | |
n=1

which yields

(2.95) x1 = sgn(&)a Z e~ Imllgl+v/=Tmo

m=—0o0
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From ([2.95)), we obtain

83} o]
1|£ iEo—ih(fo, )Oé Z (—|m|)e—|m\5o+mm0_

m=—0oo

(2.96)

On the other hand,
3I1

(2.97) gml

BN
a\/27r|m|(1 — e2Imlgo)e= Mot 4 0. W,

|aBz m=-—00

where U are defined by m Hence, by Theorem [2.24]

(2.98) Y= Z P )\+ ( \/27r\n| 1—e 2|m\€0) |m\50)qj
n#0
Then ([2.65) yields
—2|n|&o
(2.99) u=2x+ Z ac sinh |n|¢ eV for |¢] < |l

n#0
Now we compute Vu(§ = 0,0 = m) at the center of the gap between B; and Bs.
From 2.53] we have
4|n|e 2‘”'60 (_1)YL

V(OTF)—@l—i—Eeh E= Z A—)\+ 5

n=1

where (e1, e2) is the orthonormal basis in Cartesian coordinates.
Let k" = — coth |n|&. Note that

AF = M
"o2(kt - 1)
FE can be rewritten as

Z W_Fl)glwe*?ln\ﬁo(fl)n.

Let us assume that k is given by
k =k +V-16

for some N € N, where 6 > 0 is a small parameter. For small § > 0, E can be
approximated by

(1—Fk)(kG —1

) —2N N
2.100 E~ AN So(—1

Since ki, ~ _NL&E for small € > 0, we have

(2.101) B~ \/—1ﬁ4e—2N50(—1)N.
It then follows that

Vu(0, ) ~ \/—1ﬁ4e_QN§°(—l)Nel.
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REMARK 2.35. Estimates of the field enhancement between two disks in the
limiting case when k — 0 or k — +oo were first derived in [60]. The behav-
ior of the electric field between two nearly touching strictly convex perfect conduc-
tors or perfect insulators with smooth boundaries is investigated in [30]; see also
[117, 118, 282}, [461]. In [459], the singular behavior of nearly touching spheres is
fully characterized. By combining the method of image charges and transformation
optics, an approzimate analytical formula for the electric field for two spheres is
derived. The formula is highly accurate for wide ranges of complex permittivities
and gap distances.

2.5.5. Polarization Tensor of Multiple Particles. The polarization tensor
can be defined for multiple particles. In the case of two particles B; U By with the
same conductivity k, it is defined as follows. Let K% g, be the Neumann-Poincaré
operator associated with By U Bs given by and let (¥ be the outward normal
on 8B, i = 1,2. The polarization tensor M = (myq)$ ,_; associated with By U By
and k is given by

mpq()‘(k)a Bl U BQ) = / yp¢(gl) dO'(y) + / yp¢1(12) da(y) fOI‘ p’ q = 17 e 7d7
631 832
where

(1) (1)
[(’5?2)] = Ak —Kp,0p,)"" [V{’z)bBl} .
iz vp ' |oB,

If By and B, are two separated disks of radius 7 centered at (—1)7(r + £,0)
for j = 1,2 and € > 0 is their separation distance, then from formula for
the eigenvalues of K3 5, , the polarization tensor associated with By U By and the
conductivity k is given by the following formula:

—2J50

Z — 1 e—2jo 0

(2.102) M (A(k), Bi U Bp) = 8ma? = e =270 ’

0 Z Ak + 16—2350

Jj=1

where o and &y are defined by (2.57). Again, it is represented in a spectral form.

2.5.6. Representation by an Equivalent Ellipse. Consider the polariza-
tion tensor for some particle(s). It can be shown that there exists a corresponding
unique ellipse £ that has precisely the same polarization tensor. We will call £
the equivalent ellipse. The equivalent ellipse represents the essential nature of the
particle. From a given polarization tensor M, we can reconstruct the parameters
for the equivalent ellipse using the following formula:

E Ai(e + k) Az — kA
(2103) @ =ea a \[ c+DE-1" 7 N —kx

where Aj, A2 are the eigenvalues of M and [e11, €12]%, [e21, e22] are the associated
normalized eigenvectors. Let £ be the ellipse whose semi-axes are on the z1— and
ro—axes and of length a1 and as. Let

€21
0 = arctan —.
€11
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Then the equivalent ellipse is given by

(2.104) e (cos@ sin@) o

sinf  cos6

2.5.7. Numerical Results. With a particular choice of parameters we can
obtain an explicit solution to the conductivity problem (2.66]). Let B be a disk of
radius R = 5 located at the origin in R?. Let us take the conductivity in B to be
k = 3 which means A = 1. We also assume that h(z) = z;. It can be shown that
the explicit solution is given by

k—1
rcos() — —— R*r ' cos(6), Ir| > R,

(2.105) u(r,0) =4 o k41
[ 1rcos(9), Ir| <R,

where (r,0) are the polar coordinates.

Likewise, we can obtain a numerical solution by using Code Conductivity
Solver. This involves inverting the operator AI — (K%)* which is possible in this
case as A = 1. A comparison between the exact solution and the numerical solution
is shown in Figure Where we have evaluated the solutions on the circle |z| = 10.

u
exact

+

u .
numerical

-10 ! ! ! ! |
0 10 20 30 40 50

FIGURE 2.1. The exact solution and the numerical solution of the
conductivity problem (2.66]) evaluated on the circle |z| = 10.

Next, we compute the polarization tensor for an ellipse whose semi-axes are
on the x1— and xzo—axes of length a; = 5 and ay = 3. We assume k = 3 (or
equivalently, A(k) = 1). A comparison between the numerical values obtained by
Code [Polarization Tensors and the exact values is provided in Table 2.3}

Finally, we consider the case of two separated disks B; U By where B; is a
circular disk of radius r = 1 centered at (—1)(r + §,0) for j = 1,2. Let the
distance between the two disks be ¢ = 0.3 and assume & = 3. A comparison
between the numerical values and the exact values is provided in Table


http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial1/1.2 Neumann Poincare Operator.zip
http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial1/1.2 Neumann Poincare Operator.zip
https://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Tutorial4/Polarization Tensors
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Theoretical Numerical
53.8559  0.0000 53.8559  0.0000
—0.0000 41.8879 —0.0000 41.8879

TABLE 2.3. Polarization Tensor M (\(k), B) when B is an ellipse.

M(A(k), B)

Theoretical Numerical
(6.9789 0.0000> (6.9789 0.0000)

MAK)B) |\ 00000 57620) | \0.0000 57620

TABLE 2.4. Polarization Tensor M (A(k), By U Bz) when B; and
B are two disks of radius r = 1 separated by a distance ¢ = 0.3.

From ([2.103)), the reconstructed parameters for the equivalent ellipse £ defined
in (2.104)) turn out to be a; = 1.713224, as = 1.167994, and 6 = 0.523599. The two
disks By U By and the equivalent ellipse £ are shown in Figure

8

-2 -1 0 1 2

FIGURE 2.2. Two circular disks (gray) and their equivalent ellipse
(black). The parameters are given as r =1, e = 0.3, and k = 1.4.

2.6. Periodic and Quasi-Periodic Green’s Functions

In this section we investigate Green’s functions for gratings; periodic, and quasi-
periodic Green’s functions; and layer potentials for the Laplacian. The results
described in this section will be applied to the mathematical theory of photonic
crystals, metasurfaces, and metamaterials.

2.6.1. Green’s Functions for Gratings. Consider a function Gy : R* — C
satisfying

(2.106) AGy(x) = do(x + (n,0)).

neE”Z

We call Gy a periodic Green’s function for the one-dimensional grating in R?.

LEMMA 2.36. Let © = (x1,x2). Then

(2.107) Gy(z) = % In ( sinh®(7z2) + sin®(7z1)),
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satisfies (2.106)).

PROOF. We have

AGy(z) = Y dolz+(n,0))

neZ

= Z 50(1’2)50(I1 + ’/l)

nez

(2.108) = > Go(ag)eY 12,
nez

where we have used the Poisson summation formula
g do(xz1 +n) = g eV —12mney
nez nez

On the other hand, as Gy is periodic in x; of period 1, we have

(2.109) Gy(z) = Z Bn($2)em2ﬂnx17
nez
therefore
nez
Comparing (2.108) and (2.110) yields
(2.111) B (22) + (V=127n)2B, = o(x2).

A solution to the previous equation can be found by using standard techniques for
ordinary differential equations. We have

1

/60 = §|JT2| + C,

Bn = L e~ 27 Inlz2] n#0
47|n ’ ’

where c is a constant. Subsequently,

1 1
Gﬁ (CL’) = 5 |CU2‘ +c— Z 7672W‘n||w2‘eﬁ2ﬂnxl

nezvio} 47|n

1 1
= §|x2\ +c— Z e~ 2mnjaz| cos(2mnxy)
neN\{0}

1
= In (sinh®(7z2) + sin®(7z1)),
7r
where we have used the summation identity (see, for instance, [250, pp. 813-814])

In(2)
27

1 1
Z = p—2mnas] cos(2mnxy) = —|xo| —
5 2
neN\{0}
1
' 1n (sinh2 (7-‘-];2) + sin2(7T9€1)>v
47
In(2)

and defined ¢ = — .
2T
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Let us denote by Gy(z,y) := Gy(z — y). In the following we define the
one-dimensional periodic single-layer potential and the one-dimensional periodic
11
Neumann-Poincaré operator, respectively, for a bounded domain 2 € (f > 5) x R
which we assume to be of class C1'7 for some 7 > 0. Let

Say: H 3(0Q) — HL_(R?),H?(0Q)

o > Saplel(z) = [ Gylz,y)e(y)do(y)
o0

for z € R? (or z € ) and let
Koyt H2(0Q) — H™2(0Q)

¢ Kiglolw) = [ D)

o () p(y)do(y)

for x € 0. As in the previous subsections, the periodic Neumann-Poincaré opera-
tor K¢, 4 can be symmetrized. The following lemma holds.

LEMMA 2.37. (i) For any ¢ € H™2(09), Sqslp] is harmonic in Q and
. 11 —
Zn(—é,i)XR\Q; 1
(ii) The following trace formula holds: for any ¢ € H~2(91),
(*§I+’C9,u)[<ﬁ] ==, |

(iii) The following Calderdn identity holds: KqSay = SaiKq . where Koy
is the L?-adjoint of ’C;z,ui
r 1
(iv) The operator K¢, 4 + Hy 2 (0Q) — H, *(0€2) is compact self-adjoint equipped
with the following inner product:

(2.112) (u, V) = —(Saglvl,u)s s
_1
which makes H equivalent to H, 2(0S). Here, by Ey we denote the zero-
mean subspace of E for E = H* or H2(99).
(V) Let (Aj, ), 5 =1,2,... be the eigenvalue and normalized eigenfunction
pair of K¢ 4 in Hg(0R), then \; € (=%,3) and A\; — 0 as j — oo.

PROOF. First, note that a Taylor expansion of sinh?(mas) + sin?(7z;) yields

_ In|z]
oon

(2.113) Gy(x) + R(z),

where R is a smooth function such that

1
R(z) = —In(1 + O(23 — 27)).
4m
We can decompose the operators Sqy and K¢, on H(9€) accordingly. Since
Sas — S and K, — (K)* are smoothing operators, the proof of Lemma
follows the same arguments as those given in the previous subsections. L]
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2.6.2. Periodic Green’s Function. In order to derive effective medium prop-
erties of subwavelength resonators, we shall investigate the periodic transmission
problem for the Laplace operator. The results in this subsection are from [67].

Let Y = (—1/2,1/2)% denote the unit cell and D C Y. Consider the periodic
transmission problem:

V. <1+(k—1)x(D)>Vup:O inYv,

(2.114) u, — x, periodic (in each direction) with period 1,
/ updr =0,
Y
forp=1,...,d.

In order to derive a representation formula for the solution to the periodic
transmission problem ([2.114)), we need to introduce a periodic Green’s function.
Let

(2.115) Gi(z)=— >

n€ZN\{0}

e\/—127rn-z

47m2|n|?

Then we get, in the sense of distributions,
AGﬁ(fE) _ Z erlQWn-x _ Z 6\/—7127771% o 1’
neZ4\{0} nezd

and Gy has mean zero. It then follows from the Poisson summation formula:

(2.116) eV TRmE = N gz —n),

nezd neze

that
(2.117) AGy(x) = Y do(z —n)— 1.

nezd

The appearance of the constant 1 in (2.117) may be somewhat peculiar. It is the
volume of Y and an integration by parts shows that it should be there. In fact,

0G
AG J;dm:/ —uda,
/Y ¢(z) v

and the right-hand side is zero because of the periodicity.
The expression for Gy is called a lattice sum and its asymptotic behavior
has been studied extensively in many contexts in solid state physics, e.g., [465].
We state the next lemma for the general case, but give in some detail a proof
only for d = 2, leaving the proof in higher dimensions to the reader. Formulas
(2.118) and (2.119) will be applied later in our study of the effective properties of
systems of subwavelength resonators.

LEMMA 2.38. There exists a smooth function Rq(z) in the unit cell Y such that

1
2—ln\m|—|—R2($), d=2,
™

@ Qg ez kA2
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Moreover, the Taylor expansion of Rq(x) at 0 for d > 2 is given by

1

(2.119) R4(x) = Rq(0) — 2%

(@i +.. +2d) + O(lz]") .

PROOF. As mentioned above, we assume that d = 2. The proof we give here is
not the simplest one, but has the advantage that it can be extended to other more
complicated periodic Green’s functions. Note that the behavior Gy(z) ~ I'(x) as
|z] — 0 is to be expected since the effect of the periodic boundary conditions is
negligible when z is near the origin.

We begin by writing

Gy () eV —l2mnx 1 €08 2TN1 X1 COS 2N Lo
i\) == Z 202 A2 Z 2 2
- 472 |n) A - n? 4+ n3
nez \{o} nez2\{0}
cos 27m2:102
=—— E Ccos2mnix1 E
n?
ny= =0 nag= 1 1 + n
cos 27m1x1
P E COS 2Tnoxy g
S on n? + n3
n2=0 ni=1

::G1+G2.

After that, let us invoke three summation identities (see for instance [I78| pp.
813-814)):

1 7 coshm(2xe — 1)y .
Too — ST ity #£0,
CoS2mnory 2n?  2ny sinh 7n;
(21200 > —5 5o =1 ,
— Nitn; ™ 2 2 2 .
n2=1 F—TFZ‘Q—FTFZ‘Q ifny =0,

+oo
52 1
(2.121) Z CObﬂ-ﬂe_%"w2 =7ry —In2 — 3 In (sinh2 nxo + sin? 771‘1) .

n
n1:1 1

We then compute

—+oo
1 COS 2TNoxy

G =——

2 2

27 ot ns
+oo

1 1 m coshm(2xe — 1)ny
= 19 _ - .
272 nz_:l o8 7m1x1< 2n? * 2n sinh 4

=

—+oo
1 Z cos 27m2m2 Z cos 27m1:101
272 n2 7r2

no=1 2 ni=1
+
1 f cos 2mnyxy cosh (2o — 1)ny

47

n1:1

ny sinh 7y
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+oo
1 1 1, 1 1 1, 1 COS2TMNITY _9mpymy
ST Tt gttt g Tyt o > o

TL1:1

1 +§ oS 2Ny 1 (coshw(Q:cz —Dny Zﬂmm)
—e
ni

Arm sinh mnq
ni=1
to arrive at
1 In2 1 1 1
G, = —ﬂ+27+1(x2—x1) - Z(?x% —m%)+8—ﬂ_ In (sinh2 Txg +sin’ 77:51) +ri(z),

where the function r;(x) is given by

—+oo
i (z) = 1 Z cos2mny@y ((coshm(2z —1)ng e
47 n1 sinh mny
n1:1
“+oo _
1 coS 2mnyxq €2TMT2 | e 2T
A7 Z ny e2mmi — 1
ni=1

Because of the term e™™"1 we can easily see that ry is a C*°-function.
In the same way we can derive

1 In2 1 1 1
¢z = 24 " 27 - Z(Il —w2) - 1(2&% )+ 87 In <Sinh2 Ty +sin’ 773?2) +r2(x),
where

(z) 1 X cos 2Ny T 27T 4 e 2TMT
ro(x) = ——
2 47 | ny e2mna _ |
ny=

By a Taylor expansion, we readily see that
In (sinh2 Txo + sin? 71'331) + In (sinh2 nxy + sin? mvg)
=4Inm + 2In(2? + 232) + r3(x),

where r3(x) is a C*°-function with r3(z) = O(|z|*) as |z| — 0. In short, we obtain
1
Gy(z) = 5 Infz| + Ra(z),

where

1
Ry(z) = C = S (2% +23) +11(z) + ra(x) + 73(2)
for some constant C'. By a Taylor expansion again, one can see that
ri(z) +ro(x) = C +O(Jz*) as|z| =0,

for some constant C. That Ry is harmonic follows from (2.117). This concludes
the proof. 0

Note that in the two-dimensional case we can expand Ra(x) even further to get

1 TN (s
Ry(w) = Ry(0) = 7 (oF +23) + D RS (@) + O(la|™") as [a| =0,
s=3
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where the harmonic polynomial Rgs) is homogeneous of degree s, i.e., Rés)(tx) =
tsRés)(x) for all t € R and all x € R?. Since

Ro(—x1,22) = Ra(w1,72) and Ra(w1, —x2) = Ra(71,72),
Rés) =0 if s is odd, and hence

1 s
(2122)  Ra(z) = Ry(0) — x1+x2 ZRf )4 O(|z|™*?) as |z| —0.

We now establish a representation formula for the solution of the periodic

transmission problem ([2.114)).

Let the periodic single-layer potential of the density function ¢ € L3(99) be
defined by

8o 4l¢l(x) := " Gy(z —y)o(y)do(y), z€R>.

Lemma [2.38 shows that
(2.123) So.4[¢(z) = Solo)(x) + Rald](x) ,

where R is a smoothing operator defined by

Rald)(x) = o Ra(z — y)¢(y) do(y) .
Thanks to , we have
0 0 0
55l ()= 8B (2)+ g Ralel@), @ €00,

Thus we can understand, with the help of Lemma [2.38} 0Sg, 4[¢]/0v|+ as a compact
perturbation of d83[¢]/0v|s. Based on this natural idea, we obtain the following
results.

LEMMA 2.39. (i) Let ¢ € L3(09Q). The following behaviors at the bound-
ary hold:

(@)= 5T+ (KR IoI@) on 02,

where (K¢, ;)" L§(0Q) — L§(99) is given by

(2.124) %é}m[(ﬁ]

(2.125) (K& ) [¢l(z) = p.v. Gy(x —y)p(y) do(y), =e€dD.

_0
a0 Ov(z)
ii) If ¢ € L2(09), then SO ,[#] is harmonic in Q and Y \ €.
0 Q¢
iii) If |\| > L, then the operator NI — (K, ,)* is invertible on L3(09).
2 Q.4 0

PROOF. Since (IC?M)* = (K%)* + Cq where Cq is a smoothing operator, part
(i) immediately follows from (2.8). Part (ii) follows from and the fact that
¢ € LE(0%). As a consequence of parts (i) and (ii), it follows that A\I — (K?M)*
maps L2(99) into L3(09Q). To prove part (iii), we observe that Cq maps L?(99)
into H'(9€), and hence it is a compact operator on L?(952). Since, by Lemma
M —(K)* is invertible on Lg(992), it suffices, by applying the Fredholm alternative,
to show that AT — (K¢, 4)* is one-to-one on L§(992). We shall prove this fact, using
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the same argument as the one introduced in Lemmal[2.2] Let [A| > 1/2, and suppose
that ¢ € L3(09) satisfies (A — (K%}ﬁ)*)[qﬁ] =0and ¢ # 0. Let

A= [ VShylolde, B [ (9Shyodr.
Q Y\Q

Then A # 0. In fact, if A =0, then Sg,ﬁ[d)] is constant in 2. Therefore Sg,ﬁ[gb] in
Y\ @ is periodic and satisfies Sp 4[¢][ao = constant. Hence S 4[¢] = constant in
Y \ Q. Therefore, by part (i), we get
0
=82 -
0] By 0.4 [0] N

which contradicts our assumption. In a similar way, we can show that B # 0.
On the other hand, using Green’s formula and periodicity, we have

1 1
A= /m(*§f+ (K&4)")e] So4ldldo, B = 7/@ (51 + (K 2)")6] Shzl¢] dor.

Since (AT — (K9,4)*)[¢] = 0, it follows that
_1B-4A
T 2B+ AT
Thus, |A| < 1/2, which is a contradiction. This completes the proof. O

&/Sﬂ,u[qﬂ‘ =0,

Q

The following result holds.

THEOREM 2.40. Let u, be the unique solution to the transmission problem
2.114). Then u,, p=1,...,d, can be expressed as follows

kE+1
where C, is a constant and v, is the p-component of the outward unit normal v to
1993

I— (K& )) ' wl(z) inY,

Proor. Observe that u,,p =1,...,d, satisfies
Au, =0 inQU (Y \Q),
Upl4 —up|— =0 on 0N,
Oup| Ol o on 00,
ov |, ov |_
u, — 2, periodic with period 1,

updr =0.
Y
To prove (2.126)), define
k+1

Vp(z) = Sg,ﬁ((mf - (’C?z,ﬁ)*)fl[’/p}(x) nY.

Then routine calculations show that
AV,=0 in QU (Y \D),
Vpl4+ = Vpl- =0 on 09,
(2.127) oV, v,

Z Py P — _
5 |+ — k 5 |- =(k—1)v, on 09,

V}, periodic with period 1.
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Thus by choosing C), so that [, u,dz = 0, we get (2.126) which completes the
proof. ([

Consider a general periodic lattice in two dimensions. Suppose that the periodic
lattice is given by 7, = nia® + nga(g),n = (n1,n2) € 72. Here the vectors a(V)
and a® determine the unit cell Y := {sa™) +ta(® st € (~1/2,1/2)} of the array.
The reciprocal vector of r, is given by k, - ' = n;,i = 1,2. The periodic Green’s
function of the Laplacian is defined by

1
AGE = dolw—1n) — ik

nez?

Gi(z+rn) =Gi(x), Vne Z2.

Since it is possible to rotate and scale the given lattice in order to satisfy a(!) = (1,0)
and a® = (a,b) with b > 0, we can write

1
rn = n1(1,0) + na(a,b), k, =ni(1, —%) + no(0, 6)’ n = (ny,ny) € Z2.
Analogously to (2.115]), we have

" e\/jlgﬂ'(nlll"l‘(_%nl"l‘%n’z)w’z
(2.128) Gﬁ (ZE) = —

R

nez2\{0} 4m? (”% +(=gm + %”2)2)

Analogously to Lemma , the Neumann-Poincaré operator (IC?M)* can be
symmetrized. The following lemma holds.

_1 _1
LEMMA 2.41. (i) The operator (K%,ﬁ)* : Hy 2(092) — H, 2(09Q) is com-
pact self-adjoint equipped with the following inner product

(2.129) (u, V)3 = —(Sg’u[v],u>%f1

(ii) Let (N4, 54), 7 =1,2,... be the eigenvalue and normalized eigenfunction
pair of (K¢, 4)* in H5(9), then \jy € (—=%,3) and Xjy — 0 as j — oc.

2.6.3. Quasi-Periodic Green’s Functions. For a € (0,27)?, a function u
is said to be a-quasi-periodic if e™V 1%y is periodic.

Let
Vv—=1(2rn+a)-x
e
(2130) Ga) == 2 “prnyap > @€ 020"
nezd
We have
(2.131) AGo(z) = > dolw—n)eV~ 1" in R,
nezd

or equivalently,

(2.132) <A +v—1la -V - |a|2) (ef\/jlo"zGa(az)) = Z So(x —n) in R
n€eze
We denote by Sgl,a’D?Z,a’ and (IC?Z,Q)* the a-quasi-periodic single- and double-
layer potentials and the a-quasi-periodic Neumann-Poincaré operator associated
with G, respectively.
Analogously to Lemma the quasi-periodic Neumann-Poincaré operator
(K& o)* can be symmetrized. The following lemma holds.
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1
LEMMA 2.42. (i) Let a € (0,2m)*. The operator (K{, ,)* : Hy 2 (09Q) —
1
H, 2(09) is compact self-adjoint equipped with the following inner product
(2.133) (u,v)qz = —<887a[v},u>%,7

1

3

(i) Let (Nja,@ja), J=1,2,... be the eigenvalue and normalized eigenfunc-
tion pair of (K9, ,)* in H5(0RQ), then Xjo € (=3,3) and Xjo — 0 as
J — o0.

2.6.4. Numerical Implementation. The periodic single layer potential Sq 4
can be represented numerically in the same fashion as described previously for the
Neumann-Poincaré operator (K%)* in Subsection Recall that the boundary
0N is parametrized by z(t) for t € [0,27). After partitioning the interval [0, 27)
into N pieces

[t1,t2), [t2,t3), - -, [t s Ev 1),
with ¢; = 0 and ¢ty1; = 27, we approximate the boundary 9 = {z(t) € R? : t €
[0,2m)} by 2 = z(t;) for 1 < i < N. We then represent the infinite dimensional
operator Sq 4 acting on the density ¢ by a finite dimensional matrix S acting on
the coefficient vector @; := @(x() for 1 <i < N. We have

Sailel(x) = mGu(»’ﬂ,y)sﬁ(y)dU(y),

for ¢ € L?(09) and we represent it numerically by

Si1 Sz ... Sin (2

_ So1 Saa ... Son (2
S’(/} == . . . )

Sy1 ... ... SN ©On

where
Sij = 7= In (sinb® (m(ay” —5)) +sin® (e} —2i) D) (b1 — 1), i # 5

with T(z(?)) being the tangent vector at 2(*). When i = j we have a logarithmic
singularity and therefore we must handle the diagonal terms carefully. Let us
explicitly calculate the integrals for the diagonal terms. Let the portion of the
boundary starting at (¥ and ending at 2(*+1) be parameterized by s € [0,e = QW”)
and note that ¢ — 0 as the number of discretization points N — oco. Therefore,
using the Taylor expansion given in the proof of Lemma the expression

we need to calculate for the diagonal terms is:

Sy = % /0 In <7r|x<i> — x(s)|) |T(s)|ds.

Taylor expanding for small s this expression becomes

Sii = % /0 In <m<i> — (2(0) + 2/(0)s + 0(32))0 |T(0) + T"(0)s 4 O(s%)|ds.

Noting that 2" = 2(0) and T = 2/(0) we have

T@| e )
Sii = ] / In <7r|T(z)|5> ds,
2 0
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FIGURE 2.3. The periodic Green’s function Gy for the Laplace equation.

as e — 0. As foa In(as)ds = e(In(ae) — 1) this means that

(%) )
2
|T@)| 272 @)
= In{—TW|) -1
o\ T ’

and we have found an explicit representation for the diagonal terms of the matrix

S.

For the periodic Neumann-Poincaré operator IC;*M, the terms of the correspond-
ing discretization matrix K are given by

Kij —2

1 [ I/Y) sin(n&1) cos(wZ)
sinh?(7Zy) + sin? (7, )
1/51) sinh(7Z2) cosh(7wZs) TO|(tsr — 1), i 4
J i) )

sinh? (i) + sin?(71)

where & = (9 — z(*+1) With regard to the diagonal terms, observe that in light
of we have precisely the same singularity as for the non-periodic case and
therefore we can use the same expression for the diagonal terms of the periodic
version of the discretization matrix, that is:

1 (a®), )
2N T
The periodic Green’s function Gy, which can be seen in Figure and the

associated layer potentials So ¢ and K¢, ; are implemented in Code Periodic Green’s
[Function Laplace.



http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial3/3.1 Periodic Green's Function Laplace.zip
http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial3/3.1 Periodic Green's Function Laplace.zip
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2.7. Shape Derivatives of Layer Potentials

In this section, we compute shape derivatives of layer potentials (see Appendix
for the definition of the shape derivative). These calculations will be used
for the sensitivity analysis with respect to changes in the shape of a cavity or a
resonator of eigenmodes or resonant modes.

Let D be a bounded domain of class C? and D, be an e-perturbation of D; i.e.,
let h € C?(0D) and D, be given by

oD, = { #:% =1+ ch(z)v(z), © €D }

In this section we derive full asymptotic expansions of Sf, and (K )* in terms
of e.

Let a,b € R, with a < b, and let X (¢) : [a,b] — R? be the arclength parametriza-
tion of dD; namely, X is a C2-function satisfying | X'(¢)| = 1 for all ¢ € [a,b] and

oD = {x = X(t), te [a,b]}.

Then the outward unit normal to 9D, v(x), is given by v(z) = R_, 5 X'(t), where
R_/s is the rotation by —m/2, the tangential vector at x, T'(x) = X'(t), and
X'(t) L X"(t). Set the curvature 7(z) to be defined by

X"(t) = 1(x)v(z).

We sometimes use h(t) for h(X(t)) and h'(t) for the tangential derivative of h(x).
Then, X (t) = X(t) 4 eh(t)v(x) = X (t) + eh(t)R_ 2 X'(t) is a parametrization
of OD.. By 0(Z), we denote the outward unit normal to 9D, at £. Then, we have

~rN R*Tr/QX/(t)
0= X (1)l

_(1—eh )u ) — el ()X (t)

\/€2h/ + (1 —eh(t )2

<1feh )u ) — el ()T (x)

\/ (1) + (1 ch(t)r(a))

and hence »(Z) can be expanded uniformly as

(2.135) =

)

—+o0
(2.136) p(E) =Y ev(x), €D,

n=0
where the vector-valued functions (™ are bounded. In particular, the first two
terms are given by

vO ) =v(z), vW(z)=-n{1)T(z).
Likewise, we get a uniformly convergent expansion for the length element do.(3):

(2.137)
—+oo

do.(§) = X' (s)|ds = /(1 = er(s)h(s))? + W2 (s)ds = Y "o (y) do(y),

n=0
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where o(™ are bounded functions and

(2.138) oDy =1, oW(y) = —7(yh(y).
Set

Since

(2.139) F-f=a—y+ e(h(t)u(x) - h(s)u(y)),

we get

(2.140) [E—g[* = [z —y[*+2e(z—y, h(t)v(z) = h(s)v(y)) + € |h(t)v () = h(s)v(y) %,

and hence H(() )(w\i‘ —9]) is equal to

e (W i \/1 26w =y h((x) = hs)w(y)) + Eh(v(z) = b)) )),

Therefore, we can write
H( (w|z —g]) = Ze”H“’xy
where the series converges absolutely and uniformly and in particular,

HY (z,y) = HS" (w|z — y))

and
z —y, h(t)v(z) — h(s)v(y))

|z —yl

H () = w(HD) (wlz — o)

Introduce a sequence of integral operators (Sgtij)neN’ defined for any ¢ €
L?(0D) by

SEL o)) = —>— Z H)e" ) 6(9) doty) for n > 0.

)

Let W, be the diffeomorphism from 9D onto 0D, given by
U (x) = x + eh(t)v(z),

where z = X ().
The following lemma holds.

LEMMA 2.43. Let N € N. There ezists C' depending only on N, || X||c=, and
|hllc2 such that for any ¢ € L*(0D,),

N
(2.141) ‘ (53,10]) 0 W — S8l8] ~ 3 "S5 [o) < ON 19l 2 om):
n=1 L2(dD)

where ¢ 1= <;~50 v..
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Turning now to the operator (K )*, we first note that
W \*k __ 0 *
(K5.)" = (Kp,)" +Rp.,

where Rp_ has a smooth kernel so that we can write

+oo
(2.142) Ro8)ow. =3¢ /3 (e )0l) do(y).

where 7, are smooth kernels and the series converges absolutely and uniformly. It
suffices then to expand (K9, )* with respect to e.

From ([2.140]), it follows that
1 1 1

(2.143) E— g2 |z—yl?1+26F(z,y) + €G(z,y)’
where
Fla.y) = (x —y, h(t)V(_JU) ; h(s)v(y))
|z —y]
and

[h()v(x) — h(s)v(y)?
|z =yl '

G(z,y) =

One can easily see that
1
|F'(2,y)| + |Gz, 9)|? < ClIX]|cz|h|c2-

It follows from (2.13F), ([2.137), (2.139)), and that
Gl R et 7 B O R O D

1z —g? |z —y? |z —y?
{r—y, T(@h()r(r) + h’(t)T(fr)q
|z —y?
_ 2 @)v(x) = h(s)v(y), 7(x)h(t)v(z) + h’(t)T(w)>)
|z —y|?

y V(1= er(y)h(s))? + e2h/2(s)
1+2eF(z,y) + G(2,y) /(1 — er(2)h(t)2 + 2R (t)

= (Ko(x, y) + eKq(x,y) + Ky (x, y))

" 1 V(1 = er(y)h(s))? + e2h/2(s)
L+ 2eF(z,y) + €2G(z,y) /(1 — er(x)h(t))? + 2h2(t)

do(y)

do(y).

Let

1 VA —er()h(s))? + eh2(s) X

L 26F(,y) + EG(w,y) /T = er(0)h(0)? + ER2(0) ;)F(x "

where the series converges absolutely and uniformly. In particular, we can easily
see that

FO(xvy) = 1, Fl(x,y) = 72F(5L‘7y) + T(Z’)h(fﬁ) - T(y)h(y)
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Then we now have

w doc(y) = W do(y) + e(Ko(:c, y)Fi(z,y) + K1 (z, y)) do(y)

+oo
+€2 Z €" (Fn+2(‘r7 y)Ko(LU, y) + Fn+1(m> y)Kl ({L‘7 y) + Fn(x7 y)Kg(x, y)) da(y)
n=0
Therefore, we obtain that

F— g, (&
<|a~c—gj|(2dae Ze]k (x,y)do(y),

where
x—y,v(r
ko(z, ) = w k() = Kole, ) Fa(2,3) + Ka (2, 1),
and for any n > 2,

kn(x,y) = Fn(iﬂ,y)Ko(%y) + Fn—l(xvy)Kl(xay) + Fn—Q(CE,y)Kz(%y)-

Introduce a sequence of integral operators (IC(;))neN, defined for any ¢ €
L?(0D) by

(2.144) KE0I@) = | knlen)ot)dots) forn >0,

Note that IC%J) = (K%)*. Observe that the same operator with the kernel k,,(z, y)
replaced with K;(z,y), j = 0, 1,2, is bounded on L?(9D). In fact, it is an immediate
consequence of the theorem of Coifman, McIntosh, and Meyer [I77]. Therefore,
each K\ is bounded on L*(AD).

The following lemma from [61] holds.

LEMMA 2.44. Let N € N. There exists C' depending only on N, || X|[¢cz, and
|hllc2 such that for any ¢ € L*(0D.),
(2.145)

(KD)*[@]) 0 e — (KY)* Ze“id”) < CNTH @) L2 (o),

L2(8D)
where ¢ := ¢ o ..

Now combining (2.142)) and (2.145) immediately yields a full asymptotic ex-
pansion of (K% )* with respect to € and allows us to write

(2.146) (K9) [0 We = (K []+ ekKHL [+ S [ + ...

where each operator IC%LL is bounded on L?(dD).

2.8. Layer Potentials for the Helmholtz Equation

In this section we review a number of basic facts and results regarding the layer
potentials associated with the Helmholtz equation. The integral equations applying
to the eigenvalue problem will be obtained from a study of these layer potentials.



2.8. LAYER POTENTIALS FOR THE HELMHOLTZ EQUATION 67

2.8.1. Fundamental Solution. For w > 0, a fundamental solution I, (x) to
the Helmholtz operator A + w? in R?, d = 2,3, is given by

V=TI
Y H W), d=2,
T T d = 37
4 |x|

for x # 0, where Hél) is the Hankel function of the first kind of order 0. For the
Hankel function we refer, for instance, to [313]. The only relevant fact we shall
recall here is the following behavior of the Hankel function near 0:

V=1 =
(2.148) S —H(wle]) = 1n|x\ 1w+ (b In(wlz]) + ¢) (wlz])¥,
j=1

where

(=11 B =T &1

=1

and the constant 7,, = (1/27)(Inw+y—1n2) —/—1/4, 7 being the Euler constant.
It is known (see, for example, [313|, [179]) that for large values of ¢ we have

0= e s o).
L2 o )]

Using ([2.149) in two dimensions and the explicit form of I',, in three dimensions,
one can see that

(2.149) as t — +oo0.

o(|lz|=%?), d=2,

\xl

This is exactly the Sommerfeld radiation condition one should impose in order
to select the physical solution. The Sommerfeld radiation condition is also called
the outgoing radiation condition and I',, the outgoing fundamental solution to the
Helmholtz equation.

2.8.2. Single- and Double-Layer Potentials. For a bounded Lipschitz do-
main Q in R? and w > 0, let 8§ and DY be the single- and double-layer potentials
defined by I'y,; that is,

(2.151) S8lel(x) = /8 Tua e do(y). @ e’
(2.152) Dilel(o) = [ T Motdoty), e R\ o0,

for p € L?(9€). Then Sg[p] and Dg[yp] satisfy the Helmholtz equation

(A+w?)u=0 inQandin R\ Q.
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Moreover, in view of (2.150]), both of them satisfy the Sommerfeld radiation condi-
tion, namely,

ou
(2.153) o V—1lwu

— O(r_(d+1)/2> as r = x| = +00 uniformly in =z

||
Let us make note of a Green’s formula to be used later. If (A + w?)u =0 in Q
and du/dv € L?*(0R), then

ou

u(x), r € €,
@2.15) -t |51 | @)+ Plulto) - { e

0, r € R\ Q.

A formula similar to holds for the solution to the Helmholtz equation in
R4\ 2 subject to the Sommerfeld radiation condition (2.153).

Analogously to and , the following formulas give the jump relations
obeyed by the double-layer potential and by the normal derivative of the single-layer
potential on general Lipschitz domains:

OSEA | (1,
(2.155) 527” i(x) = <j: F1+ (Kg) )[gﬁ](z) a.e. T € O,
(2.156) O8] (@)= (7 57458 ) @) ae veom,
+

for p € L?(99), where K¢ is the singular integral operator defined by
arw (‘T — y)
K& [¢)(z) = p.v. / Holz —y)
alel(@) =p o Ou(y)
and (Kg)* is the L2-adjoint of K5, that is,

e(y) do(y)

8Fw(z — y)
Kg)* x:p.v./ —_— do(y).
(Ke) lel(2) o Ou(D) (y)do(y)
Moreover, analogously to (2.10)), for ¢ € Hz (%),
0 ., 0 Y
(2.157) 578l @)= 5aid| (@) w i)

The singular integral operators K¢ and (K%)* are bounded on L?(9). Since
Ty(xz) = To(x) = C + O(Jz|) as |x|] — 0 where C is constant, we deduce that
Kg — K is bounded from L?(92) into H'(92) and hence is compact on L?(99).
If Qis C17 7 > 0, then K2 itself is compact on L%(9€2) and so is K.

2.8.3. Low-Frequency Asymptotic Expansions of Layer Potentials.
We recall some basic asymptotic expansion for the layer potentials in three and two
dimensions.

2.8.3.1. Ezpansions in Three Dimensions. We first consider the single layer
potential. We have the following asymptotic expansion as w — 0:

(2.158) S =8+ iszg,j,
where ) -
Soll(e) =~ Y1 [ I g0y

47 a0 J]:
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In particular, we have

(2.159) Saa[¥](x)

(2.160) Sa2[Y](v)

LEMMA 2.45. The norm |[Sq ;| z(r290),H1(00)) 5 uniformly bounded with re-
spect to j. Moreover, the series in ‘2.153) is convergent in L(L?(09Q), H(95)).

We now consider the boundary integral operator (Kg)*. We have

(2.161) (K8)* = (K&)* + wKa1 +w?Kas + ...,
where
V-1 [ oW/ ~1z—yl)!
Ka,;[¢](z) i o NoV) Y(y)do(y)
= PO [ g ) r@oty)
In particular, we have
Koi = 0,
Koolil) = — [ S804,
87 Joo |z —yl
Koot = Y2 [ @) vimpiiot).
oD

LEMMA 2.46. The norm ||Kq ;| £(z2(00)) is uniformly bounded for j > 1. More-
over, the series in (2.161) is convergent in L(L*(92)).

LEMMA 2.47. The following identities hold:
(i)

. 1 (y—z)-v(y) _1 Y-

icg,zu](x)—g;/mwddw—gfﬂv ey /|y—z|
(i)

Kg5[1)(z) = _12? ag(y—x)- v(y)do(y) e /V y—x) f|9|

2.8.3.2. Ezpansions in Two Dimensions. From (2.148)), it follows that the single-
layer potential for the Helmholtz equation in two dimensions has the following
expansion as w — 0:

(2.162) S =88+ Z (W Inw) S& + Z 2J$£(]23’
j=1 J=1

where

(2.163) Sgl)(x) = SQWl(x) + o | wdo,

oQ
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SPW@) = /8 e = 9P u()das),

85(12; [W](z) = /69 |z — y|* (b In |z — y| + ¢;)¥(y)do(y).

We next consider the boundary integral operator (Kg)*. We have

(2.164) (Kg)* = (K9 + > (w¥ nw K§§§+Zw2m§)ﬂ,
j=1 j=1

where
Oz — y|*

e B e )

z—y|¥(b;In|z — ¢
K = [ QRO ) 0

LEMMA 2.48. The following estimates hold in L(L?(0Q), H'(0Q)) and L(L*(89), L?(99)),
respectively:

SY = 8¥4w? lan —|—w28 |+ O(w* Inw);
(Kg)* = (KQ)"+w’hw ]CQ71+W2’C§7)1+O(W Inw).

LEMMA 2.49. The following identities hold:

(i)
KS) 1(2) = 4b,1|9;
(KD) 1(@) = 4bi 10

(KD (@) = (261 + 421)|Q + 4By / In|z — y|dy,
Q

where by and & are the complex conjugates of b1 and c;.

Proor. First, we have

KLY M) = b / 2y — z,(y))do (y)
oN

oz Oy —af?
- hl; oty W

= l_)l/Ay|yfac|2dy
Ja
= 4|9
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‘We now prove the second identity. We have

— z|? _1 n|r— C1
L B e R N

/Q Ay lly — oP (B In [z — o] + 2))dy

e+ [ Aylly - oo~ yldy
Q

461|Q|+51/41n|$—y|]dy+131/Qdy—i—i)l/ ly — z|*?Aln |y — z|dy
Q Q Q

(261+4al>m|+461/91n\x—y\dy,
where we have used the fact that
/Q ly — z|*Aln |y — z|dy = 0 for x € 9 .
This completes the proof of the Lemma. (|

2.8.4. Uniqueness Results. In this subsection we consider important unique-
ness results for the Helmholtz equation.

We will need the following key result from the theory of the Helmholtz equation.
It will help us prove uniqueness for exterior Helmholtz problems. For its proof we
refer to [179, Lemma 2.11] or [344, Lemma 9.8].

LEMMA 2.50 (Rellich’s lemma). Let Ry > 0 and Br = {|z| < R}. Let u satisfy
the Helmholtz equation Au + w?u = 0 for |x| > Ry. Assume, furthermore, that

li 2d =0.
R . |u(z)|* do(x)

Then, uw =0 for |z| > Ry.

Note that the assertion of this lemma does not hold if w is imaginary or w = 0.
2.8.4.1. Ezterior Helmholtz Problems. Now, using Lemma we can estab-
lish the following uniqueness result for the exterior Helmholtz problem.

LEMMA 2.51. Suppose d =2 or 3. Let ) be a bounded Lipschitz domain in R%.
Let u € HL (RY\ Q) satisfy

Au+w?u=0 inRI\Q,
% —v—lwu
or

_ O<r(d+1)/2) asr = |z| = +oo uniformly in -

kN
u=0 or@:o on 0f).
ov
Then, u =0 in R%\ Q.

ProoF. Let Br = {|z| < R}. For R large enough, Q2 C Bg. Notice first that
by multiplying Au + w?u = 0 by @ and integrating by parts over Bg \ Q, we arrive

at
%/ E@dazo.
8Br 81/
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But

R} / u<8u - \/—lwu> do = —w/ |u|?.
oBr \OV dBr

Applying the Cauchy—Schwarz inequality,
0
‘%/ u(u—\/—lwu> do
8BRr 81/

(L) (L,

and using the radiation condition (2.153)), we get

1/2
‘%/ u(au — \/—1wu) do| < g (/ |u|2> ,
oBr \OV R\ JoB,

for some positive constant C' independent of R. Consequently, we obtain that

1/2
(o) <5
9Bn R

which indicates by Rellich’s lemma that u = 0 in R? \ Bg. Hence, by the unique
continuation property for A 4+ w?, we can conclude that u = 0 up to the boundary
0f). This finishes the proof. O

gu

vV —1lwu
ov

2 1/2
da) ,

2.8.4.2. Transmission Problem for the Helmholtz equation. Let D be a bounded
smooth domain in R?. Let p and ¢ be two piecewise constant functions such that
w(w) = pm and e(z) = &, for x € R\ D and u(z) = p. and e(x) = &, for
x € D. Suppose that fim,Em, e, and €. are positive and let k,, = w\/Em ity and

ke = Wy/Eclhe-

We consider the following transmission problem for the Helmholtz equation:

1
V- -Vu+w?eu=0 inRY,
(2.165) 2

u® = u — u’ satisfies the Sommerfeld radiation condition,

where u* is an incident wave. Here, the Sommerfeld radiation condition reads:

(2.166)
ou® s —(d+1)/2 : .
5 V—1lkpu®| =0(r as r = x| = 400 uniformly in &k
r x

Notice that (2.165)) can be rewritten as

(A+k2)u=0 inR?\D,
(A+kHu=0 in D,

(2.167) uly =u|— on dD,
1 9 10
E£|+ = Zailﬂ,on 8D,
u® = u — u’ satisfies the Sommerfeld radiation condition.

By using Rellich’s lemma, we can prove that the following uniqueness result holds.

LEMMA 2.52. If u satisfies with u* = 0, then v = 0 in R?,
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PRrROOF. Using the fact that
ado =L | (Va2 - k2Ju)?) da,

/ oul| _ um/ ou

—| udo = —

8D3V+ e 5D5‘I/7 He JD
udo =0,

we find that
of o
oD 31/ +

which gives, by applying Lemma that = 0 in R\ D. Now u satisfies
(A+k2)u=0in D and u = du/Ov = 0 on dD. By the unique continuation
property of A + k2, we readily get u = 0 in D, and hence in R (]

The following result from [46] is of importance to us for establishing a repre-
sentation formula for the solution u to (2.165]).

PROPOSITION 2.53. Suppose that k2, is not a Dirichlet eigenvalue for —A on
D. For each (F,G) € HY(OD) x L?(0D), there erists a unique solution (f,g) €
L2(OD) x L?(OD) to the system of integral equations

Sl -Splgl=F

(2.168) 18(3%[]“])’ _iw _ on 0D.
pe OV Hm ov +

Furthermore, there exists a constant C independent of F' and G such that

(2.169) 1 ll2om) + 9l 2o < c(||F|H1<aD> ; ||GL2<aD>),

where in the three-dimensional case the constant C' can be chosen independently of
km and ke if ky, and k. go to zero.

PRrROOF. We only give the proof for d = 3 and p,, # p. leaving the general case
to the reader. Let X := L?(0D) x L?(0D) and Y := HY(9D) x L*(0D), and define
the operator T': X — Y by

ke ko,
c _ m n
We also define T by
0 0
To(f.g) = (S,%[f] —s,g[g],ia(séﬂy[f])‘ _ :3(%;[9]) ) |
_ m N

We can easily see that SE° — S, : L?(9D) — H'(dD) is a compact operator, and
so is %Sgﬂi - %S%H : L2(0D) — L2(0D). Therefore, T — Tp is a compact
operator from X into Y. It can be proved that T : X — Y is invertible. In fact, a
solution (f, g) of the equation Ty(f,g) = (F,G) is given by

f=9+(Sp)H(F)
g = Hmbe (\14(9))! <G+ i(11 — (Kp))((Sy )_I[F]))
Hm — He b e 2 P P ’

where A = (e + ptm)/(2(fte — ). From the invertibility of % and M +(K%)* we
can see, by the Fredholm alternative, that it is enough to prove that T is injective.
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Suppose that T'(f,g) = 0. Then the function u defined by

u(z) = Slf;"’ [g](z) ifx€RI\D,
Skl iteeD,

satisfies the transmission problem with 4 = 0 and hence, by Lemma m
u =0 in R%. In particular, S [g] = 0 on dD. Since (A + k2,)SEm[g] = 0 in D and
k2, is not a Dirichlet eigenvalue for —A on D, we have S¥[g] = 0 in D, and hence
in R?. Tt then follows from the jump relation that

K Km
. 0(33,1/ l9)) - 5(Sgy l9)) ’_ —0 ondD.

On the other hand, SF f satisfies (A + k2)Sk[f] = 0 in R\ D and Sf[f] = 0 on
OD. Tt then follows from Lemma that S¥¢[f] = 0. Then, in the same way as
above, we can conclude that f = 0. This finishes the proof of solvability of .
The estimate is an easy consequence of solvability and the closed graph
theorem. Finally, it can be easily proved in the three-dimensional case that if k,,
and k. go to zero, then the constant C' in can be chosen independently of
k., and k.. We leave the details to the reader. O

By using Proposition the following representation formula holds.

THEOREM 2.54. Suppose that k% is not a Dirichlet eigenvalue for —A on D.
Let u be the solution of . Then u can be represented using the single-layer
potentials S and St as follows:

u'(z) + Sy Wl(x), = €R*\D,

(2.170) u(z) = {Sﬁf @), zeD

where the pair (,1) € L2(0D) x L*(dD) is the unique solution to

Sps o] = Sp ] = u'

(2.171) 1OSKl)| 1 aSE )| 1 ou' ondD.
e  Ov L ov . i OV

Moreover, there exists C > 0 independent of u' such that

(2.172) lellzopy + 19l 220Dy < 0(51||Ui|L2(6D) + ||Vui|L2(6D))~

REMARK 2.55. For a special case of the domain B, we can obtain an explicit so-
lution to the transmission problem. Let B be a disk of radius R located at the origin
in R2. We also assume that the incident wave is given by u?(z) = Jy, (kpr)eY =10
Then it can be shown that the explicit solution is given by

B Jn(k;mr)e‘/jl"g + aanll)(kmr)e\/?lne, |r] > R,

2.173 ) =
( ) U(T ) {ann(kcr)erln97 |7“| < R,
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where (r,0) are the polar coordinates and the constants a,, and b, are given by

o Jo (ke R) T}, (ki R) — 5= Jn (K R) Ty, (ke R)

(2.174) an = 75 . ;
Ee 15D (o R) T} (ko R) — £ 1, (ko R) HY (ki R)
(2.175) b, — JnlimR) + anHn (ke )
. n —

In (ke R)

2.9. Laplace Eigenvalues

In this section we transform eigenvalue problems of —A on an open bounded
connected domain €2 with either Neumann, Dirichlet, Robin or mixed boundary
conditions into the determination of the characteristic values of certain integral
operator-valued functions in the complex plane. This results in a considerable
advantage as it allows us to reduce the dimension of the eigenvalue problem. After
discretization of the kernels of the integral operators, the problem can be turned
into a complex root finding process for a scalar function; see for instance [172].
Many tools are available for finding complex roots of scalar functions. Muller’s
method described in Section [L.6]is both efficient and robust.

Moreover, with the help of the generalized argument principle, the integral for-
mulations can also be used to study perturbations of the eigenvalues with respect
to changes in €2, as we will see in Subsection [3.2.2] Furthermore, the splitting prob-
lem in the evolution of multiple eigenvalues can be easily handled. In Subsection
we present a method for deriving sensitivity analysis of multiple eigenvalues
with respect to changes in £ which relies on finding a polynomial of degree equal
to the geometric multiplicity of the eigenvalue such that its zeros are precisely the
perturbations.

2.9.1. Eigenvalue Characterization. We first restrict our attention to the
three-dimensional case. We note that because of the holomorphic dependence of T,
as given in , ¢ is an operator-valued holomorphic function in C. Indeed,
the following result holds. See, for example, [441].

PROPOSITION 2.56 (Neumann Eigenvalue characterization). Suppose that ) is
of class C1" for some n > 0. Let w > 0. Then w? is an eigenvalue of —A on Q
with Neumann boundary condition if and only if w is a positive real characteristic
value of the operator —(1/2) I + K¢,

PROOF. Suppose that w? is an eigenvalue of

Au+w?u=0 in Q,
2.176
( ) % =0 on 0f.
v
By Green’s formula (2.154)), we have
u(z) = DGlulaal(x), x €.

It then follows from (2.156) that (—I/24+K¢)[ulaq] = 0 and u|sq # 0 since otherwise
the unique continuation property for A + w? would imply that v = 0 in . Thus w

is a characteristic value of —(1/2) I + K§.
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Suppose now that w is a characteristic value of —(1/2) I 4+ Kg; i.e., there is a
nonzero 1 € L?(99Q) such that

(~31+K3) =0

Then u = DE[p] on R4\ Q is a solution to the Helmholtz equation with the boundary
condition u|; = 0 on 9 and satisfies the radiation condition . The unique-
ness result in Lemma implies that DE[y] = 0 in R?\ Q. Since IDE[]/ov
exists and has no jump across 052, we get

D3l _ 003l
o |+ ov

Hence, we deduce that Dg[y] is a solution of (2.176). Note that D[] # 0 in €,
since otherwise

‘7 on 0f).

v =Dg]|_ —Dg[¥]], =0.
Thus w? is an eigenvalue of —A on  with Neumann condition, and so the propo-
sition is proved. O

Proposition asserts that —(1/2) I + K% is invertible on L?(9Q) for all
positive w except for a discrete set. The following result, whose proof can be found
in [441, Proposition 7.3], shows that (—(1/2)I + K&)' has a continuation to an
operator-valued meromorphic function on C.

PROPOSITION 2.57. —(1/2) I + K¢ is invertible on L*(9S2) for all w € C ea-
cept for a discrete set, and (—(1/2) I + Kg)™! is an operator-valued meromorphic
function on C.

In the two-dimensional case, Proposition [2.56] holds true. Moreover, due to the
logarithmic behavior of the Hankel function as shown by , (—(1/2) I+Kg)~!
has a continuation to an operator-valued meromorphic function on only C\v/—1R~.

Similarly, the eigenvalues of —A on {2 with Dirichlet boundary condition can
be characterized as follows.

ProrosiTION 2.58 (Dirichlet Eigenvalue characterization). Suppose that Q is
of class C1" for some n > 0. Let w > 0. Then w? is an eigenvalue of —A on
with Dirichlet boundary condition if and only if w is a positive real characteristic
value of the operator (1/2) 1 + (K§)*.

The problem of finding the eigenvalues of —A on 2 with the Robin boundary
condition,

Ju
2.177 —+Au=0 00
( ) o + Au on ,
can be also transformed into the determination of a certain integral operator-valued

function in the complex plane.

PROPOSITION 2.59 (Robin Eigenvalue characterization). Suppose that Q is of
class C1'1 for some > 0. Let w > 0 and A\ < 0. Then w? is an eigenvalue of —A
on Q with the Robin boundary condition if and only if w is a positive real
characteristic value of the operator —(1/2) I + Kg — AS§.

Finally, we consider the mixed boundary value problem and state the following
result.
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PROPOSITION 2.60 (Zaremba eigenvalue characterization). Suppose that §2 is
of class C1" for some n > 0. Let T'p be a subset of O and let Ty = OQ\T'p. Let
w > 0. Then w? is an eigenvalue of —A on Q with the mized boundary conditions
(also called a Zaremba eigenvalue),

Au+ w?u =0 in Q,

(2.178) u=0 onTp,
ou
5 =0 on FN,

if and only if w is a positive real characteristic value of the operator
/DI+ (K, 5D,
=St |r,, -(1/2) I+ K¢,

Here, SF_, K¢, (KE )", and DY are defined in the same way as in Section
with 0 replaced with T or T'p.

2.9.2. Neumann Function. Let 0 = p1 < po < ps < ... be the eigenvalues
of —A on Q with Neumann conditions on d€2. Let u; denote the normalized eigen-
function associated with p;; that is, it satisfies |[u;l|2) = 1. Let w ¢ {\/H5}j>1-
Introduce N&(z,z) as the Neumann function for A + w? in Q corresponding to a
Dirac mass at z. That is, N§ is the unique solution to

(A, + W?)NE (2, 2) = 0, in Q,
2.179 Ng
( ) ONG =0 on 0f).
v loa
We derive two useful facts on the Neumann function. First, we establish the fol-

lowing proposition, providing a purely formal proof. We refer the reader to [413]
Theorem 9.8] for a more rigorous one where even the case w = 0 is treated.

PROPOSITION 2.61 (Spectral decomposition). The following spectral decompo-
sition holds pointwise:

. S~ (@) (2)
j=1

ProoF. Consider the function
+oo
f(z) = Zajuj(x), x €.
=1

If (A, +w?)f(z) = —0,(x), then we have
+oo

> aj(w? = py)uj(x) = —5. ().

j=1
Integrating both sides of the above identity against ug over € gives
ap(w? — ) = —uk(2),
and hence (2.180)) follows. Here note that we used the orthogonality relation

/ Uj Uk = (Sjk
Q

satisfied by the eigenfunctions, where ;5 denotes the Kronecker symbol. O
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Next, we provide an important relation between the fundamental solution I',,
and the Neumann function Ng. Note that the Neumann function N§ yields a
solution operator for the Neumann problem for the Helmholtz equation. In fact,
the function u defined by

u(z) = NG (x,z)g(x)do(x), =z €L,
90

is the unique solution to the Helmholtz equation:

Au+w?u=0 in Q,
(2.181) b

ah_ g on 01,

v
provided that w? is not an eigenvalue of —A on Q with Neumann boundary condi-
tion. On the other hand, under this assumption, —(1/2) I+Kg : L*(99) — L*(09)
is invertible, and so we can readily see that the solution to (2.181) can be repre-
sented as

(2.182) u(z) = 84 (—;I + (/C‘{z)*>_ l9](2), zeq.

Therefore, we obtain

[ ruta=a) (g1 w8y ) (sl @ioto) = [ Nyt gteioto),

29
and hence

/ag (;[ + }C5> ) Tu(-—2)](x)g(z)do(x) = | Ng(z,2)g(x)do(z).

o0
We then have the following proposition.

PRrROPOSITION 2.62. The following identity relating the fundamental solution
I, to the Neumann function N& holds:
1 —1
(2.183) - (21 - Kﬁ) {Fw(- - z)] (x) = Ng(z,2), x€dQ, z€Q.
Finally, we recall that the Neumann function N§ has a logarithmic singularity
in two dimensions [45].

LEMMA 2.63. The Neumann function N& has the form
1
(2.184) N§ (z,2) = —gln|x—z|+R‘§’Z($,z) forx # z € Q,

where RE(+,z) belongs to H3/2(Q) for any z € Q.
In dimension d > 3, the following lemma holds.

LEMMA 2.64. The Neumann function Ng has the form

1
m|x — 24 RSNz, 2) forz#zeQ,

where R;"z’d(-, 2) belongs to H3/2(Q) for any z € Q.

(2.185) Ng(z,z) =
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2.9.3. Dirichlet Function. Let 0 < 7y < 75 < 73 < ... be the eigenvalues of
—A on  with Dirichlet conditions on 0§2. Let v; denote the normalized eigenfunc-
tion associated with 7;; that is, it satisfies [|v;||2(q) = 1. Let w ¢ {,/7;};>1. The
Dirichlet function G¢(x, z) is defined by
{ (A + WG (x, 2) = =06, in Q,

2.186
( ) =0 on 0f).
The following useful facts on the Dirichlet function hold.

PROPOSITION 2.65. We have
(i) The following spectral decomposition holds pointwise:

+oo

(2.187) oz, 2) :Z%Uj(;)’ x#z€Q.
= T —Ww
(ii) The Dirichlet function G& has the form
1 ~
(2.188) Gi(e.2) = Grgymgle A+ Ry (x,2) fora#z€Q,

where E;"z’d(-, 2) belongs to H3/2(Q) for any z € Q.

2.9.4. Eigenvalues in Circular Domains. Let k., be the positive zeros
of J,(z) (Dirichlet), J!(z) (Neumann), and J),(z) + AJ,(z) (Robin). The index
n =20,1,2,... counts the order of Bessel functions of first kind J,, while m = 1,2, ...
counts their positive zeros. The rotational symmetry of a disk Q = {z : |z| <
R} of radius R leads to an explicit representation of the eigenfunctions in polar
coordinates:

6), 1=1
(2.189) Unmt (7, 0) = T (220 ¢ { cos(nf), ’

R sin(nd), =2 (n#0).

The eigenvalues of —A on  are given by k2, /R% They are independent of the
index [. They are simple for n = 0 and twice degenerate for n > 0. In the latter
case, the eigenfunction is any nontrivial linear combination of w1 and uyme.

Notice that when the index n is fixed while m increases, the Bessel func-
tions J, (") rapidly oscillate, the amplitude of oscillations decreasing toward
the boundary and the eigenfunctions w,m,; given by are mainly localized at
the origin, yielding focusing modes. In turn, when the index m is fixed while n in-
creases, the Bessel functions J, (*%2") become strongly attenuated near the origin
and essentially localized near the boundary. This yields the so-called whispering
gallery eigenmodes. Estimates of localization are derived in [241].

2.9.5. Shape Derivative of Laplace Eigenvalues. In this subsection, we
compute shape derivatives of Laplace eigenvalues by using the generalized argu-
ment principle. Let € be a bounded domain of class C2. We consider Neumann
eigenvalues in the two-dimensional case and let €. be given by

00 = { T:T=ux+eh(x)v(z), x € 0N },

where h € C2(0€2) and 0 < e < 1.
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To fix ideas, we set p; for j > 1 to be a Neumann eigenvalue of —A on  and
consider the integral operator-valued function

1
(2.190) w A(w) = 751 +Kg,,
when w is in a small complex neighborhood of ,/1t;.
By using the compactness of K¢ and the analyticity of Hél) in C\ v—1R™,
the following results hold.

LEMMA 2.66. The operator-valued function A.(w) is Fredholm analytic with
index 0 in C\ v/—1R™ and (Ac)"Y(w) is a meromorphic function. If w is a real
characteristic value of the operator-valued function A. (or equivalently, a real pole
of (Ac)"1(w)), then there exists j such that w = N{E

LEMMA 2.67. Any \/p; is a simple pole of the operator-valued function (Ag)H(w).

ProOF. We define ¢(w) the root function corresponding to V/Ij as a charac-
teristic value of Ag(w). Recall that the multiplicity of ¢(w) is the order of |/f; as
a zero of Ag(w)é(w). Since the order of |/fi; as a pole of (Ag)~!(w) is precisely the
maximum of the ranks of eigenvectors in KerAg(,/fz;), it suffices to show that the
rank of an arbitrary eigenvector is equal to one. Then let us write

Ao(w)p(w) = (W2 — i) (w),

where 9)(w) is a holomorphic function in L?(9f2). For w in a small neighborhood
Vs, of \/i;, we denote by u(w) the unique solution to

{ (A +w?)u(w) =0 in Q,
% = (w? — p;)(w) on 09,

By integration by parts over €2, we find that
/Qu(w)mdx = /c’m Y(w)u(y/i;)do,
which implies that
| omitma =1

since w — [, u(w)u(\/ft;)dz is holomorphic in Vs . Therefore, [, [v(\/7;)[* # 0
and thus, the function ¢(,/f;) is not trivial. O

LEMMA 2.68. Let wo = /p; and suppose that yi; is simple. Then there exists a
positive constant dg such that for |§| < dg, the operator-valued function w — A.(w)
has ezactly one characteristic value in Vs,(wo), where Vs, (wo) is a disk of center
wo and radius g > 0. This characteristic value is analytic with respect to € in
| — €0, €0[- Moreover, the following assertions hold:

(i) M(Ac(w); Vs,) =1,
(i) (Ae)_l(w) = (w— We)_lﬁe + Re(w),

(iii) Le: Ker((Ae(we))™) — Ker(Ac(we)),

where Re(w) is a holomorphic function with respect to (e,w) €] — €, €0 X Vs, (wo)
and L¢ is a finite-dimensional operator.
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PROOF. Note that the kernel of K is jointly analytic with respect to € in
| — €0, €0] and w € Vs, for €y and §p small enough; see [I55]. Since p; is simple,
it is clear that M(A¢(w); 9Vs,) = 1. Furthermore, from Lemmas and it
follows that

(A)™Hw) = (@ —we) ' Le + Re(w),
where
Le: Ker((Ac(we))*) — Ker(Ae(we))
is a finite-dimensional operator and R.(w) is a holomorphic function with respect

to (e,w). O

Let wy = /p; and suppose that p; is simple. Then, from Theorem it
follows that we = /5 is given by

1 _
(2.191) We — Wy = ﬁ tr /8V50 (w—wp)Ae(w) %Ae(w)dw.

With the same notation as in Section let the operator ICS ) be defined by

(2.192) KQM=3JMWW@®@
with
ki(z,y) = Volw (LoMoN1 + (LoMy + L1 Mo)No)(z,y)

4
and the functions Lg, L1, My, M1, Ny and N7 being defined by

Lo(w,y) = H{ @z —yl), Mo(w,y) =z —yl, No(w,y) =Y,

M@w):4Hpﬂﬂx—w@_wmﬂiiimmww>

Mia.y) :<x—%huﬁqz(mwww>

Ni(z,y) = No(a,y)F(x,y) + Ki(z,y)
(h(y)v(y) — M@)v(z),vy)) (v —z,7(y)hy)v(y) + 7' (y)T(y))

b

)

K €, = - )
() o yP PR
F(z,y) = -2Mi(z,y) + 7(2)h(z) — 7(y)h(y).
Here, 7(z) represents the curvature at the point z.
Substituting
(2.193) K. [0] 0 We = K3lo] + K [6] + O()

into (2.191)), we obtain the following shape derivative of the Neumann eigenvalues.

THEOREM 2.69 (Shape derivative of Neumann eigenvalues). The following as-
ymptotic expansion holds:

(2.194) \/;] — Vi = 2\/6_7177 tr Ao(@) KD (w)dw + O(e2),

Vs,

where Vs, is a disk of center \/it; and radius dg small enough, Ag(w) = —(1/2)I+K¢
and ICS)(OJ) is given by .
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PROOF. If € is small enough, then the following expansion is uniform with
respect to w in OVj,:

Ac(w)™! = Ag(w) ! — edo(w) T K (W) Ao (w) Tt + O(e?),
and therefore,

_ 1 a4
ve—un = A [)V50<w—wo>[Ao<w> 2 o)

d d
—er(w)_llCS)(w)Ao(w)_l%Ao(w) + 6,40@—1@&9@ dw + O(€2).

Because of Lemma wo is a simple pole of Ag(w)~! and Ag(w) is analytic, and
hence we get

d
(2.195) / (w — wp)Ag(w) "t ——Ag(w)dw = 0.
av(SO dw
Moreover, by using the property (1.4]) of the trace together with the identity
d _ _,dA _
(2.196) Z5A(@) T = —Ag(w) T (W) Ao(w) T

we arrive at

€ d . 1
We —wo = N tr /8V50 (w— wo)% [.AO 1(w)ICS(2)(w) dw + O(€).
Now, a simple integration by parts yields the desired result. O

2.9.6. Splitting of Multiple Eigenvalues. The main difficulty in deriving
asymptotic expansions of perturbations in multiple eigenvalues of the unperturbed
configuration relates to their continuation. Multiple eigenvalues may evolve, under
perturbations, as separated, distinct eigenvalues, and the splitting may only become
apparent at high orders in their Taylor expansions with respect to the perturbation
parameter [290, 412}, 429, [155].

In this subsection, as an example, we address the splitting problem in the eval-
uation of the perturbations of the Neumann eigenvalues due to shape deformations.
Our approach applies to the other eigenvalue perturbation problems as well.

Let w? denote an eigenvalue of the Neumann problem for —A on  with geomet-
ric multiplicity m. We call the wg-group the totality of the perturbed eigenvalues
w? of —A on Q. for € > 0 that are generated by splitting from w3.

In exactly the same way as Lemma we can show that the eigenvalues are
exactly the characteristic values of A, defined by . We then proceed from
the generalized argument principle to investigate the splitting problem.

LEMMA 2.70. Let wo = /f;j and suppose that p; s a multiple Neumann eigen-
value of —A on Q with geometric multiplicity m. Then there exists a positive
constant &y such that for |6| < 0o, the operator-valued function w — Ac¢(w) defined
by has exactly m characteristic values (counted according to their multi-
plicity) in Vs, (wo), where Vs, (wo) is a disk of center wy and radius 5o > 0. These
characteristic values form the wy-group associated to the perturbed eigenvalue prob-
lem and are analytic with respect to € in | — €q,€o[. They satisfy wi|c—g = wo
fori=1,...,m. Moreover, if (w')™, denotes the set of distinct values of (W)™,
then the following assertions hold:
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(i) M(A(w);Vs,) §3A4 D);0Vs,) = m

(i) (A)7 ) = D= w) L+ Refw),
(iii) £ : Ker((A(wh)*) = Ker(A (W),

where R(w) is a holomorphic function with respect to w € Vg, (wo) and L: for
i=1,...,n is a finite-dimensional operator. Here M(A.(w?);dVs,) is defined by

Let, for [ € N, a;(e) denote

]. 1 —1 d
=——1t — ¢ — A (w)dw.
a(e€) /T T v, (w—wo) Ae(w) de (w)dw
By the generalized argument principle, we find
ai(e) = Z(wz —wp)! forleN.
i=1

The following theorems from [78] hold.

THEOREM 2.71. The following asymptotic expansion for a;(e) as € — 0 holds:

(2.197) I(w — wo) T Ag(w) K (w)dw + O(2),

€
afe) = —— tr /
2\/ —1x avéo

where Vs, is a disk of center \/it; and radius 69 small enough, Ag(w) = —(1/2)I+K¢
and ICS)(M) is given by

THEOREM 2.72 (Splitting of a multiple eigenvalue). There exists a polynomial-
valued function w — Q.(w) of degree m and of the form

Qew) =w™ +c1()w™  + . (W™ 4. Fem(e)

such that the perturbations w! — wq are precisely its zeros. The polynomial coeffi-
cients (¢;)™, are given by the recurrence relation

Qi4m + 101 4m-1+ ... +Cmar =0 forl=0,1,...,m—1.

Based on Theorems [2.71] and [2.72] our strategy for deriving asymptotic expan-
sions of the perturbatlons w! — wy relies on finding a polynomial of degree m such
that its zeros are precisely the perturbations w! — wp. We then obtain complete
asymptotic expansions of the perturbations in the eigenvalues by computing the
Taylor series of the polynomial coefficients.

Notice that in the cases where the multiplicity m € {2, 3,4}, there is no need to
use Theorem because we can explicitly have the expressions of the perturbed
eigenvalues as functions of (a;)]",. For example, if m = 2 which is the case when
Q is a disk, we can easily see when the splitting occurs. It suffices that one of the
terms in the expansion of 2as(€) — a?(¢) in terms of € does not vanish. Necessarily
the order of splitting is even (because of the analyticity of the eigenvalues). Let
a;j(e) =), a; " and write

n

2a5(€) — aj (e E one”, an:2a2,n—§ a1,p01,n—p-

n>2 p=1
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Suppose that the splitting order is 2s, then we obtain
wi=wo+ Y A, j=1,2
i>1
with
)\Z(_l) = 52) fori <2s—1,
)\é? _ a12,2s — /A, )\éz) _ a12,2,s + \/ag,.

Explicit formulas for )\Ej ) for j = 1,2, can be obtained; see [T8§].

2.9.7. Numerical Implementation.

2.9.7.1. Discretization of the Operator ICg. Similarly to the case of the Neumann-
Poincaré operator (K2)* in Subsection we must now define an appropriate
numerical representation for the operator Kg. Suppose that the boundary 0f2 is
parametrized by x(t) for t € [0,27). We first partition the interval [0, 27) into N
pieces

[tl,t2)7 [tQ, t3), e ey [tN7tN+1)7

with ¢; = 0 and ¢y = 27, and then approximate the boundary 09 = {z(t) € R? :
t€[0,2m)} by ) = z(t;) for 1 <i < N.

We represent the infinite dimensional operator K¢ by a finite dimensional ma-
trix K and the density function ¢ by 3, := ¢(z()) for 1 <i < N. Then

T,
Kolel(x) = | ——=(z,y)¢(y) do(y)
o0 vy ( >
v—1 Yy—x,V
=/ Y= HY (wlz — g0 (y)do (y),
oa 4 ly — |
for ¢ € L?(09) has the numeric representation
K11 K12 . KlN @1
- Ko Ko ... Koy P2
K = : : : |
Kyt ... ... Knyn PN
where
V=L p 10 g8 =2 m) Gy oy
Kij=——H Wz —a DWW‘T(UE N(tjsr —t5) @57,

with T(:I:(i)) being the tangent vector at z(¥).

As in the previous section, we have singularities in the diagonal terms of the
discretization matrix. Recall that I'o(z) = 5= 1In|z| and in Subsection we
showed how to compute the diagonal elements in the case of the Neumann-Poincaré
operator (K2)*. In view of (2.148)), the kernel OI',,/dv,(x, y) has the same singu-
larity as that of the Neumann-Poincaré operator. Therefore we can approximate
the diagonal elements of K by

1 (al9),0)

2.198 Kii%— -
(2.198) ON [T
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2.9.7.2. Finding the FEigenvalues by Muller’s Method. We now describe the
computation of Laplace eigenvalues (or the characteristic values of A(w)) using
Muller’s method. Let us define a function f : C — C such that f(w) is the smallest
eigenvalue of A(w). This means that f(w) = 0 whenever w is a characteristic value
of A and using Muller’s method we can find such an w.

Consider the following numerical example. Assume that € is a unit disk. We
discretize the boundary 992 with N = 500 points. As discussed previously, charac-
teristic values are zeros of J/,(z) = 0. The first zero is approximately 1.8412. Upon
computing a characteristic value near 1.8 using Muller’s method in Code Eigenval-
ues of the Laplacian| we find that there is a good agreement with the exact value,
as can be seen in Table 25

Theoretical Numerical
1.8412 + 0.00004/—1 | 1.8421 — 0.0026+/—1

TABLE 2.5. Characteristic value of A near 1.8.

Next, we present a numerical example for computing perturbed eigenvalues
using the shape derivative. We assume that 2 is a unit disk. We use polar coordi-
nates (r, 0) to parametrize the boundary 0. For the boundary perturbation, we set
€ = 0.01 and h(f) = cos(20). We discretize the boundary 92, with N = 100 points.
We compute the perturbed characteristic values near wy = 0.8412 using Muller’s
method. Then we compute their approximation by using the shape derivative. A
comparison between the perturbed eigenvalues obtained via Muller’s method and
the approximation given by the shape derivative in Code Shape Perturbations of
Figenvalues of the Laplacian/ is provided in Table

Muller’s method Shape derivative
1.8623 — 0.0126+/—1 | 1.8619 4 0.0008/—1
1.8288 — 0.0126+/—1 | 1.8204 — 0.0007y/—1

TABLE 2.6. Perturbed characteristic values of the operator A..

2.10. Helmholtz-Kirchhoff Identity, Scattering Amplitude and Optical
Theorem

In this section we derive the Helmholtz-Kirchhoff identity, which plays a key
role in understanding the resolution limit in imaging with waves, and outline the
optical theorem. The optical theorem establishes a fundamental relation between
the imaginary part of the scattering amplitude and the total cross-section. The
scattering amplitude (or the far-field pattern) is the amplitude of the outgoing
spherical or cylindrical wave scattered by a particle, relative to a plane wave. It is
function of the incidence and observation directions. The total cross-section (also
called the extinction cross-section) is the sum of the scattering and absorption
cross-sections, which are respectively defined as the ratio of the total radiant power
scattered and absorbed by a particle in all directions, to the radiant power incident
on the particle.


http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial2/2.1 Eigenvalues of the Laplacian.zip
http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial2/2.1 Eigenvalues of the Laplacian.zip
http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial2/2.1 Eigenvalues of the Laplacian.zip
http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial2/2.1 Eigenvalues of the Laplacian.zip
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2.10.1. Reciprocity. An important property satisfied by the outgoing fun-
damental solution of the Helmholtz equation is the reciprocity property.

Let p and € be two piecewise smooth functions such that u(x) = p,, and
e(x) = ep for |z| > Ry for some positive Ro. Let kp, = w\/Ennfim. For y € R4,
introduce the fundamental solution @, (x,y) to be the solution to

1 1
2.199 Vi ——V +w?e(2)®, (r,y) = —5,(x),
(2.199) (’fu(x)’” (@))%, (z,y) umy()
subject to the Sommerfeld radiation condition:
(2.200)
0%y, _ —(d+1)/2 _ : R
—V—=1kp®,, | =O0(r as r = x| = 400 uniformly in 2l
r x

The following holds.
LEMMA 2.73. We have, for x # vy,

Identity (2.201)) means that the wave recorded at x when there is a time-
harmonic source at y is equal to the wave recorded at y when there is a time-
harmonic source at .

PrOOF. We consider the equations satisfied by the fundamental solution with
the source at yo and with the source at y; (with y1 # y2):

1 1
Ve Vi +w?e)®, (2,y2) = —0,,
( B )@, (7, y2) o O
(V 1v +w?e) @y, (z,91) € )
z° — Vg TWE)PE, (T, Y1) = Y1 -
1 L Y1

We multiply the first equation by @, (z,y1) and subtract the second equation
multiplied by @, (z,y2):

Voo E [, (2,91 Vi (92) = D, (,2) Ve, (2 0)]

= =Py, (2,Y2)0y, + P, (z,y1)dy,
= —Dp (Y1,y2)0y, + Pr,, (Y2,y1)0y, -

We next integrate over the ball Br of center 0 and radius R which contains both
y1 and yo and use the divergence theorem:

/ v- [q)km (7, y1)Ve®r,, (z,92) — Pr,, (2, 42)VaPr,, (7, 1) |do ()
OBRr
= - (y1,y2) + P, (Y2, 41),

where v is the unit outward normal to the ball Bg, which is v = z/|z|.
If x € 0Br and R — oo, then we have by the Sommerfeld radiation condition:

1
v-Vo®y, (2,y) = V—1kn Py, (2,y) + 0(w> :
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Therefore, as R — oo,
=@y, (Y1, 92) + P, (Y2, 1)
= ik /BB {‘I’km (2, 1) Pk, (x,y2) — Pp, (2, y2) P, (z,y1) |do(z)
=0, A
which is the desired result. O

2.10.2. Lippmann-Schwinger Representation Formula. The following
Lippmann-Schwinger representation formula for @ holds.

LEMMA 2.74. For any x # y, we have

By, (1.y) = Th(oy)+ / (s~ 1)y, (2.2) - VT, (210) d
(2.202)
2 / (1- ?)%m (2,2)Tk. (2,y) d= .

Proor. We multiply (2.199) by I'y, and subtract the equation satisfied by

Ty, multiplied by #%nfbkm:

V.- [ﬁfkm (z,y)V. P, (2,2) — /%mq)km (z,2)V.Tg,. (2,9)
= ( )vz(bkm (Z7 .’L‘) : vzrkm (27 y)
£(2)

1 1
w(z)
+w25m(1 — 76 )(ka(z,x)l“km (Z,y)

(T ()5 (2) — B, (2,9)6,(2)).
Hm

We integrate over Br (with R large enough so that it encloses the support of p— i,
and € — &,,) and send R to infinity to obtain thanks to the Sommerfeld radiation
condition the desired result. O

Lippmann-Schwinger representation formula is used as a basis for ex-
panding the fundamental solution ®;, when p ~ p,, and € = &,,. If @y, in the
right-hand side is replaced by I'y, , then we obtain:

By (.y) ~ Ti,(0y)+ / (5 = VT, (210) - VT (2.

4, 0=, G, ) ds.

m

(2.203)

which is the (first-order) Born approximation for @y .

2.10.3. The Helmholtz-Kirchhoff Theorem. The Helmholtz-Kirchhoff the-
orem plays a key role in understanding the resolution limit in imaging with waves.
The following holds.

LEMMA 2.75. Let OBR be the sphere of radius R and center 0. We have
(2.204)

or or
/ (ak (2 9)T,, (2 9) = T, (0,9) =52 <z7y>) do(y) = 2V=1S Ty, (@, 2),
8Br v ov
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which yields

(2.205) lim Tk, (2, 9)Tk, (z,9)do(y) = ——STy,, (x, 2),
R—+o00 OBRr km

by using the Sommerfeld radiation condition.

Identity (2.204) follows from multiplying by I'y, the equation satisfied by I'y
and integrating by parts. Identity can be deduced from by using
the Sommerfeld radiation condition.

Notice that identity is valid even in inhomogeneous media. The follow-
ing identity holds, which as we will see shows that the sharper the behavior of the
imaginary part of the fundamental solution ®j, around the source is, the higher is
the resolution.

THEOREM 2.76. Let @i be the fundamental solution defined in . We
have

1
(2.206) lim O (2,y)Pr,, (2,y)do(y) = ——S Py, (z,2).
R—+o00 ly|=R km
PROOF. As for Lemmal[2.73] the proof is based essentially on the second Green’s
identity and the Sommerfeld radiation condition. Let us consider

(vy ’ ivy + w2€)®km, (ya 172) = 763?2 )
1
(Vy ’ ivy + wg‘e)q)km (ya 33‘1) = 76%1 :

We multiply the first equation by @ (y,z1) and we subtract the second equation
multiplied by ®_ (v, z2):

vy’ujm ' [‘I)km (ya zl)qu)km (yv ':EQ) - (I)km (yv m?)qu)km (.% xl):l
= *(I)km (ya x2)511 + (pkm (ya xl)éitg
= =&y, (21, 22)02, + Pi,, (21, 22)0z, ,
using the reciprocity property @y (x1,22) = Py, (x2,21).

We integrate over the ball Br and we use the divergence theorem:

/ V- [‘Pkm (Y, 21)Vy @, (y, 22) — i, (¥, 22)Vy Py, (y, 21) | do (y)
9Br

= —®p (x1,22) + D, (1, 22) .

This equality can be viewed as an application of the second Green’s identity. The
Green’s function also satisfies the Sommerfeld radiation condition
tim [y](-L; -V, = =Tk )@y, (y,21) = 0,
lyl—o0 7\ Jy]
uniformly in all directions y/|y|. Using this property, we substitute v/ —1k,, @, (y, z2)
for v - Vy®p, (y,z2) in the surface integral over 0Bg, and —v/—1kn @y, (y, z1) for
v-Vy®g, (y,21), and we obtain the desired result. (]

2.10.4. Scattering Amplitude and the Optical Theorem.
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2.10.4.1. Scattering Coefficients. We first define the scattering coefficients of a
particle D in two dimensions. Assume that k2, is not a Dirichlet eigenvalue for —A

on D. Then, the solution u to (2.165)) (for d = 2) can be represented using the single-
layer potentials Sp" and Ske where the pair (p,) € L*(0D) x L?(0D)
is the unique solution to . Moreover, by using Proposition it follows
that there exists a constant C' = C(ke, k,, D) such that

(2.207) Iellz2@p) + 19l 20y < C(1e' ]l L2ap) + IV || 2(0)) -
Furthermore, the constant C' can be chosen to be scale independent. There exists
0o such that if one denotes by (ps,1s) the solution of (2.171) with k. and k,,
respectively replaced by dk. and 0k,,, then
(2.208) l@sllz2@py + 1¥sllz2op) < C(l[’l|2ap) + V' || L2(a)) -

Recall the Graf’s addition formula:
(2.209)  HM (klz —yl) = > HY (klz))e¥ =0 gy (kly))e Y"1 for [a] > [y],

lez

where z = (|z],0;) and y = (|y|,6,) in polar coordinates and Hl(l) is the Hankel
function of the first kind of order [ and J; is the Bessel function of order .

From (2.170) and (2.209)), the following asymptotic formula holds as |z| — oc:
(2.210)

u(w) —ui(e) = - > kel T | lhalae T i) doty).

Let (¢, 1) be the solution to (2.171) with Jy (kn |2z])eY 1% in the place of u(z).
We define the scattering coefficient as follows.

DEFINITION 2.77. The scattering coefficients Wy, 1,1’ € Z, associated with the
permittivity and permeability distributions €, u and the frequency w (or ke, kp, D)
are defined by

(2.211) Wi = Wi le, p, w] 12/ Ji(km|yl)e ™ "Wy (y)do (y) .
oD

We derive the exponential decay of the scattering coefficients. We have the
following lemma for the size of |Wy|.

LEMMA 2.78. There is a constant C' depending on (g, pu,w) such that

ClU+I]

(2.212) Wi le, p,w]| < G

for all 1,I" € Z\ {0} .

Moreover, there exists 0y such that, for all § < &g,
O+

(2.213) W le, p, dw]| < W(Slll-&-ll'l for all 1,I" € Z.\ {0},

where the constant C' depends on (&, u,w) but is independent of 6.

PROOF. Let u'(x) = Jl/(km|ﬂc|)e\/_7”/9m and (¢, ¢p) be the solution to (2.171)).
Since

(—1)" /et \II
(2.214) Ty () ~ W (m)
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as I’ — oo, we have

4 ) ol
H“Z”Lz(aD) + HVUZ”Lz(aD) < |l/||l’|

for some constant C'. Thus it follows from (2.207)) that
ol

for another constant C. So we get (2.212)) from (2.211]).
On the other hand, one can see from (2.208)) that (2.215)) still holds for some
C independent of § as long as § < §y for some §y. Note that

(2.216) Wi e, p, 60] = / (ke 002y 5 (y)do(y)
oD

where (¢ 5, %1 5) is the solution to with k. and k,,, respectively replaced by
Ok and Ok, and Jys (6ky|z|)e¥ =% in the place of u’(z). So one can use
to obtain . This completes the proof. ([l

Recall that the family of cylindrical waves {J,, (km|y|)e=v "% },, form a com-
plete set. We have the completeness relation

do(r —10)60(0 — 0 1 [t ,
CRILILUSOL AL 5o [ Hulin)Ju(irg) di /7O,
" I'eZ T Jo
If u? is given as
(2.218) ul(z) = Z ay (W) Ty (kpp|z|)e¥ "0

l'eZ

where a; (u?) are constants, it follows from the principle of superposition that the

solution (¢, ) to (2.171)) is given by

Then one can see from (2.210]) that the solution u to (2.165)) can be represented as
(2.219)

i V-1 = i
u(z) —u'(x) = — ZHl(l)(kmM)eﬁww Z Wiap(u') as |z| — co.
€z rez

In particular, if u* is given by a plane wave eVIkm& with £ being on the unit
circle, then
(2.220)
u(z)—eV " Thmér — v ZH(I)(k‘m\mDeﬁl‘% Z WyeV=W(E=0) a5 2| — oo

4 l€Z l vez 7

where £ = (cos 8¢, sinf¢) and « = (|z|, 0;). In fact, from the Jacobi-Anger expansion
of plane waves

(2.221) V1w — Zeml(%_ef)ﬁﬂf\|x|)eﬁ”’w7

lez
where x = (|z|,0;) and £ = (€], 6¢) in the polar coordinates, it follows that
(2.222) e/ e = 37 VT EID Ty (i eV T,

UVeZ
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and
(2.223) =3 eV HE )y,
l'eZ
Thus (2.220) holds. It is worth emphasizing that the expansion formula (2.219)) or
(2.220]) determines uniquely the scattering coefficients Wy, for [,1' € Z.

REMARK 2.79. Let D be a disk of radius R located at the origin in R?. Remark
yields an explicit expression for the scattering coefficients. In fact, we have

Wy =0, l 7£ l/a
Wy = 4v —1lay, le Z,
where a; is given by (2.174]) with n replaced with [.

REMARK 2.80. In [27], the concept of scattering coefficients is extended to het-
erogeneous media. The exponential decay of the heterogeneous scattering coefficients
is shown and the relationship between the scattering coefficients and the scattering
amplitude is established.

2.10.4.2. Scattering Amplitude. Let D be a bounded domain in R? with smooth
boundary 9D, and let (g, 4 ) be the pair of electromagnetic parameters (permit-
tivity and permeability) of R?\ D and (e, ptc) be that of D. Then the permittivity
and permeability distributions are given by

(2.224) e=¢eux(R2\ D) +e.x(D) and g = pimx(R?\ D) + pex(D).

Given a frequency w, set k. = w,\/ecfic and ky, = w\/Emfly,. For a function U’
satisfying (A + k2,)u’ = 0 in R?, we consider the total wave u, i.e., the solution to
(E163).

Suppose that v’ is given by a plane wave eV—Tkmée with & being on the unit

circle, then (2.220) yields
(2.225)
RV N ) N VI (5 -0)
u(x)—e T = 1 ZHZ (km|z|)e ZVVure 27%) ag |z| = o0,
leZ ez
where Wy, given by (2.211)), are the scattering coefficients, £ = (cos f¢,sin¢), and
x = (|z,0,).
The far-field pattern Ao e, 11, w], when the incident field is given by eV~ 1kméz,
is defined to be
(2.226)

o= \/jlkvnlml
u(x)—e‘/jk"‘g‘m = —\/—16_# S

Vel

Aoo[57u,w](95,91)+0(|x|_%) as |z| — co.
Recall that

2 .
(2.227) 7P (1) ~ Ve ast oo,
™

where ~ indicates that the difference between the right-hand and left-hand side is
O(t™1). If |z| is large while |y| is bounded, then we have

L,

o~ v] = fal = Iyl cos(6: — 8,) + O( 1
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and hence

Hél)(km\fﬂ —y) ~e LS k2| |e\mkm(|x\_\y|cos(em—6y)) as |z| = oo.
Tk |x

Thus, from (2.170)), we get
(2.228)

e V—T1km|z|
u(z) — eV Thméw P

\/87km|z| Jop
as |z| — oo and infer that the far-field pattern is given by

1
Vv 87rkm oD

e—ﬁkmlylcos(em—e;;)w(y) do(y)

(2.229) Axle, pu, w] (e, 0y) = e_\/jlkmly‘cos(ez—gy)qp(y) do(y),

where 9 is given by .

We now show that the scattering coefficients are basically the Fourier coeffi-
cients of the far-field pattern (the scattering amplitude) which is 27-periodic func-
tion in two dimensions.

Let
AOO [67 M, OJ] (05, 093) = Z bl(gg)e\/jllew
LEZ
be the Fourier series of A e, 1, w](fe, ). From (2.229)) it follows that
1 27
bi(0e) = o =V TThulsl €05(0.=0,) (1) dor(y) e=V 10> ),
m™Jo Jop
27
- i/ / ¢Vl cosO= =0, =V=T0: g4 (y) dor(9,) .
21 Jap Jo
Since

1 2 —/— cos(0, — —/— —V/— z
o e~V —Thmly| cos(0x—0y) ,— V=110 A0y = Jy(km|y|)e \/711(9y+2)’
0

we deduce that
b0 = [ Al T D) dot0,).

Using ([2.223]) we now arrive at the following theorem.

THEOREM 2.81. Let 0 and ' be respectively the incident and scattered direction.
Then we have

(2.230) Asole, p,w](0,0") = Z (‘/—1)(ll_l)€\/jlw/vvll/[a,,u,w]e_\/jllle7
LUEL

where the scattering coefficients Wy are defined by (2.211).

We emphasize that the series in is well-defined provided that k2, is not
a Dirichlet eigenvalue for —A on D. Moreover, it converges uniformly in # and ¢’
thanks to (2.212)). Furthermore, there exists §o > 0 such that for any § < §y the
series expansion of A e, i, dw](8,0") is well-defined and its convergence is uniform
in §. This is the key point of our construction of near-cloaking structures. We also
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note that if u’ is given by (2.218)) then the scattering amplitude, which we denote
by Acle, pt,w(u’, 0), is given by

(2.231) Asole, pw](ul,0') = > (V=1) eV N Wipay (u') .
€7 ez
The conversion of the far-field to the near field is achieved via formula (2.225)).
2.10.4.3. Optical Theorem. Let d = 3. For R {u(x)e‘mkmt}, the averaged

value of the energy flux vector, taken over an interval which is long compared to
the period of the oscillations, is given by

F(x) = —V/—1ky, [u(x)Vu(z) — u(z)Va(x)] .

Consider the outward flow of energy through the sphere dBg of radius R and center
the origin:

W = F(x)-v(x)do(x),
OBRr

where v(z) is the outward normal at « € 0Bpg.
As the total field can be written as © = v 4+ u®, the flow can be decomposed
into three parts:

W=W +W*4+ W,

where
Wi=— =18 [ﬁ(x)vui(x) - ui(x)vmx)} () do(z),
OBRr
WS =—/—1p - [uf(z)Vu’(z) — u’(x)Vus(z)] - v(z) do(x),
W = — V=18 . [E(x)vw(x) — w* (@) Vi (z) — ui(2) Vs (z) + F(m)Vui(x)} () do(z),

where § is a positive constant.
In the case where u!(x) = eV~ 1km&@ i5 a plane wave, we can see that W' = 0:

Wi o= —V=18 [E(x)vui(x) - ui(a:)vmx)} do(z)
OBRr
= —v-1p [e_‘/jlkmg"”\/ Tk eV Hhmer | oVThm&a g qo=V=Tkn&w | (2 do ()
OBRr
= 2Bkn&- v(z)do(z),
dBR
= 0.

In a non absorbing medium with non absorbing scatterers, W is equal to zero
because the electromagnetic energy would be conserved by the scattering process.
However, if there is an absorbing scatterer inside the medium, the conservation of
energy gives the rate of absorption as

Therefore, we have
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Here, W is called the extinction rate. It is the rate at which the energy is removed
by the scatterer from the illuminating plane wave, and it is the sum of the rate of
absorption and the rate at which energy is scattered.

Denote by V' the quantity V(z) = S ’E(m)vw(x) - uz(x)VE(x)‘ In the case

of a plane wave illumination, V() is independent of = and is given by V = 20k,,.

DEFINITION 2.82. The scattering cross-section Q°, the absorption cross-section
Q* and the extinction cross-section are defined by
Wws we _W/
s _ " a _ ext _ .
Q=T Q= Qe
Note that these quantities are independent of x in the case of a plane wave illumi-
nation.

THEOREM 2.83 (Optical theorem). Let d = 3. If u’(z) = eV~ Fm&e where &
is a unit direction of incidence, then

(2.232)
Q" e, 1, w](€) =Q°[e, p,w](§) + Q[e, p,w](€) = :lg [Asole; 1, w] (&, €)1
2233) Qlnel©) = [ Al l(€.8)Pdo(o)
with As being the scattering amplitude defined by
. eV —Tkm|x] z 1
(2.234) (u—u)(z) = TAOO[{:‘,/L,W] <§, |1:> +0 <|x|2> .

PRrROOF. The Sommerfeld radiation condition gives, for any = € 0Bg,
(2.235) Vui(z) - v(x) ~ vV—1knu®(z).
Hence, from ([2.234) we get

u (2) Vs () - v(z) — us (z)Vu' () - v(z) ~ ﬂ ’Aoo[g,,u,w] (57 |i>

|2|?
which yields (2.233)). We now compute the extinction rate. We have
(2.236) Vul(z) - v(z) = V—lkn - v(x)e¥ Hmée,
Therefore, using ([2.235)) and (2.236)), it follows that

2

)

ui(x)Vus (z) - v(z) — u® () Vui(z) - v(z)

oV Tk (2] —6-2) v/ Thy(lal —€-2) x
~ V—lkaﬁ vtV _lkm|w:| Ascle, psw] <§a |x>
\/flkmeﬁkmlwl—f'y(w)

(€ vte) + D Aulerpe] (65)

||
For x € OBpR, we can write

wi(z)Vus(z) - v(z) — u(z)Vui(z) - v(z)

=Tk, e~V Tk Ri(@)- (€1 (@) .
~ R (5 : V(l’) + 1) AOO[€7 s W} 67 m .
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‘We now use Jones’ lemma,

l g(y(x))e—\/jlkm&v(x)da(x) N ZW\/jl (g(g)e‘ﬁka - g(—f)e\/jka)

R Jos, Kom

as R — oo, to obtain
/ {E(m)VUf(m) - ug(x)va(x)} cv(x) ~ —AmAsole, 1y w](€,€) as R — 0.
OBRr

Therefore,

:\/_7147Tﬂ [Aoo[ga;uv ](§ g) [5 M, w }(575)] = 8133 [Aoo[svﬂvw](fvg)} :

Since

8wt () Vi (z) — ui(x)vﬁ(:ﬂ)] = 28k,
we get the result. O (Il
In two dimensions, the scattering cross-section Q®[e, u, w] satisfies
27 2
(2.237) Q°le, p,w)(0') = / Aole, pyw](0,60')| db.
0
As an immediate consequence of Theorem we obtain
2
(2238) Qs[ehu7 =27 Z Z lWll' [E o, w ] Vo
meZ' leZ
Analogously to Theorem we can prove that
[ Em
(2.239) S Aoole, pyw](0',0") = — 8—71_@6” e, u,w](6"), VO €]0,2n].

Therefore, for non absorbing scatterers, i.e., @* = 0, the above optical theorem
leads to a natural constraint on Wy, From (2.238) and (2.239)), we obtain
(2.240)

’r_ — Y'Y ﬂ'km — ’ 2
3 3 (VD YT W fe ] = —) T S Sl
LI'eZ ez ez
Vo' €0,2n].

Since w + Auo[e, i, w] is analytic in CT, A, vanishes sufficiently rapidly as w —
+00, and Axle, p, —w] = Asole, p,w] for real values of w, the real and imaginary
parts of the scattering amplitude are connected by the Kramers-Kronig relations

+oo N (d+1)/2 nHext /
(2.241) R A le, pyw](€,€) = ca p.V./0 () (w’g _Ei;u’w I€) dw',

and

(2.242) Q™ e, p, w](€) = [, 1, WN(E )

/+oo %A

w )
77\/ Em,um w/)2 —w?
for ¢ € R, €] = 1,d = 2,3, where c3 = \/Emiim/(272) and ¢z = —+/\/Em i/ (273).
Moreover, we obtain by respectively taking the limits of (2.241]) and (2.242)) as
w — 0 the following sum rules:

+oo
(2.243) R Acole, 1, 0)(€, €) = cap.v. / (W =I2Q e 1, '](€) du’

0
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and

(2.244)
+o0 c W' _ c
QeXt[E,,U/,O](f) _ %AOO[ 7:u7 ](576) %AOO[ 7:“’70](576)

2
—p.V.
T/ Embm 0 (w')?

2.10.5. Numerical Implementation. We now discuss a numerical approach
to the transmission problem for the Helmholtz equation. This involves
solving the boundary integral equation .

We begin by performing the usual boundary discretization procedure as in
Subsection Suppose that the boundary 9 is parametrized by z(t) for ¢t €
[0,27). We partition the interval [0, 27) into N pieces

[t17t2>7 [t2at3)7 ceey [tN7tN+1)7

with #; = 0 and ¢y 41 = 27. We then approximate the boundary 9Q = {z(t) € R? :
t € [0,27)} by 2 = x(t;) for 1 <4 < N. We approximate the density functions
¢ and ¢ with B, := o(z®) and 9, := ¢(z?) for 1 < i < N. We also discretize
the Dirichlet data u'|sp and Neumann data du’/0v|sp of the incident wave u; by
setting ug = u*(z)) and wu,, = Ou’/Ov(zV)) for 1 < i < N. Then the integral
equation is represented numerically as

S_ _S+ @ _ Uqg
isl— - Ijn 54 v ) \un )’

where Sy and S’, are the N x N matrices given by

dw' .

(2.245) (S-)ij = T (2 — 2O T(29)|(tj51 — 1),

(2.246) (S4)s = (e — 2T (@D)|(tj41 — t5)
’ 1 orte Gy _ ) )

(2.247) (S1)ij = —§5ij + o, (@) = 2N (@) (41 — t5),
: Lo 005 Gy ()

(2.248) (S3)is = 5005 + = — (@ =@ )T ) (tj1 — 1),

fori # jandi,j =1,2,..., N. The singularity for i = j can be treated as explained
in Subsection [2.4.5] By solving the above linear system, we obtain approximations
for the density functions ¢ and . Then we calculate the numerical solution for u
using . We can also obtain the scattering coefficients W,y numerically by
using the definition .

Let B be a disk of radius R = 1 located at the origin in R2. Set w = 2,¢,, =
lee = 1, gty = 1 and p. = 5. Let us assume that uf(z) = Js(kmr)eV 3. In
Figure we compare the numerical solution to with the exact solution by
evaluating the solutions on the circle |z| = 2.

Next we compare the scattering coefficients Wj; obtained numerically for [ =
1,2,...,7, with theoretical results. The comparison is shown in in Table and
the decay property of the scattering coefficients is clearly present.

2.11. Scalar Wave Scattering by Small Particles

With the same notation as in Subsection [2:.8:4.2] we suppose that the particle
D is of the form D = 6B + z, and let u be the solution of (2.165]).
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FIGURE 2.4. The exact solution u,. and the numerical solution u,,
of the transmission problem for Helmholtz equation. The
inclusion D is a circular disk with radius 1. The parameters are
w =2, = l,ec = Lty = 1, and u. = 5. We assume that
u'(x) = J3(kmr)eY =139, The solutions are evaluated on the circle

|z = 2.

n Theoretical Numerical

1| 1.7866 — 1.1036y/—1 1.7866 — 1.1011y/—1
2 | —0.9673 — 3.7540/—1 | —0.9601 — 3.7545/—1
3 | —0.6487 — 0.1081y/—1 | —0.6487 — 0.1081y/—1
4| —0.0462 — 0.00051/—1 | —0.0462 — 0.0005+/—1
5 | —0.0023 — 0.0000/—1 | —0.0023 — 0.0000/—1
6 | —0.0001 — 0.0000v/—1 | —0.0001 — 0.0000/—1
7 | —0.0000 — 0.0000/—1 | —0.0000 — 0.0000/—1

TABLE 2.7. Scattering coefficients Wy for [ = 1,2,...,7 when D
is a unit circular disk. The parameters are w = 2,¢&,, = 1,6, =
1, p, =1 and p. = 5.

In this section we derive an asymptotic expansion of v as § — 0. For simplicity,

although the asymptotic expansions are valid in the two-dimensional case we only
consider d = 3 in what follows.
We first derive an estimate of the form (2.172)) with a constant C independent

of 6.

PROPOSITION 2.84. Let D = 6B + 2 and (p,%) € L?(0D) x L*(0D) be the
unique solution of (2.171)). There exists 59 > 0 such that for all § < dg, there exists
a constant C independent of § such that

(2,249) ||SD||L2(8D) + ||¢HL2(8D) < C((S_lnuiHLz(aD) + ||VU'L||L2(BD)) .
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PrOOF. After the scaling z = z + dy, (2.171]) takes the form

1.
Skls] — Sgm° [ve] = gufs

19SE Tps)| 1 oSk el _ 1 dup 9B
He aV _ Hm aV + B 5,um 81/

where ¢s(y) = p(z + dy), y € 9B, ete, and the single layer potentials Sgc‘; and

Sg’"‘; are defined by the fundamental solutions I'y_s and I'y, s, respectively. It then
follows from Theorem that for § small enough the following estimate holds:

lesliz2om) + ¥sllL20m) < C6~ usllm o),
for some constant C' independent of §. By scaling back, we obtain (2.249)). (|

Fix n € N, define

and let (@, %,) be the unique solution of

Sjgc [on] — ng [Vn] = Uim—l

e20) 3 Toshlal)| 1 oSkl _ 1o, oD
e ov Mo, v _;,_7/J/m ov

Then (¢ — @n, ¥ — 1y,) is the unique solution of (2.250) with the right-hand sides
defined by u® — u;H. Therefore, by (2.249)), we get

o — @nllL2ap)y + 1V — Vullz2(0D)

(2.251) I o
<O 6 Yt —uly |l r2op) + V(6! — by )] 220Dy ) -

By the definition of uf, ;, we have
lu” = wsy i1l 22(omy < ClODIY2||u' = ujy 4|l 1= (o)
< ClOD|"*(8km)"*2

and
IV (u' =l )l r2op) < C|OD|Y2 (8ky)" .
It then follows from (2.251)) that

(2.252) e = ullz2(op) + 1Y = YullL2 (o) < Clkm)[0D[/25" .
By (2.171)), we obtain
(2.253) w(z) = ut(x) + SEr[ihn] (@) + Sk — (), =€ K,

where K € R4\ D. Since dist(D, K) > cg, we get

sup
zeK, yedD

mmm—yﬂsc
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for some constant C'. Hence, for each x € K, we have from ([2.252))

1/2

S = @] | [ Pute-nPasw)] 16— bl

< C|oD|Y*oD| /25" H < ¢'onte
where C and C’ are independent of x € K and §. Thus we conclude that
(2.254) u(x) = u'(x) + Sy [ihn](x) + O(6"+?),  uniformly in z € K .
For each multi-index [, define (i, ;) to be the unique solution to

Skl - Skl = o

(2.255) 108K ed)| 1 aSy )| 1 dx!  ondB.
He v o ov . i OV

Then, we claim that

fass bt (z
oul) = 3 a1 20571 )
|1=0

s, (2
U (z) = Z 6'1‘_1%!()1&[(5_1(96 —2)).

|1|=0

In fact, the expansions follow from the uniqueness of the solution to the integral

equation ([2.168) and the relation

w byt (z
s [ a1 2B 57— | @)

1|=0
Az bt (z

= 3 8 (st (57w - =),
|1|=0 ’

for x € 0D. It then follows from ([2.254) that

; & 0 (z) B
(2.256) u(e) = ul(e) + ) ST TS (5 (-~ 2)) (@)
' 1]=0

+0(6"+9),

uniformly in x € K. Note that

Sp (6 (- = 2)l(@) = / T, (z = y)tu(6™ (y = 2)) do (y)

oD
= ¢4t / Tk, (x — (0w + 2))(w) do(w) .
OB
Moreover, for x € K, z € D, w € 0B, and sufficiently small §, we have
() 5”/' p ;

Lk, (v — (0w +2)) = Z I 9T, (x—2)w' .

=0
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Therefore, we get
> §lI+d-1

S =@ = Y ST =2) [l i) doto).

=

Define, for multi-indices [ and I’ in N¢, the scattering tensors
(2.257) Wy = / w' gy (w) do(w).
OB

Then we obtain the following theorem from (2.256)).

THEOREM 2.85. The following pointwise multipolar asymptotic expansion in
K € R?\ D holds:
ntd =L g
a0 d—2 L, 4 I 774
(2.258) u(z) =u'(z)+46 Z Z W(’? u'(2)0, Ty, (x — 2)Wyy
['|=0  |1|=0
+O(5n+d) ,

where the remainder O(6%t™) is dominated by C3T™ for some C independent of
reK.

REMARK 2.86. In view of (2.170}), we obtain the following expansion:

k d—2 ERNGR S+ I i I =~
Spl@) =o' 30 Y 0 ()0 Ty, (x — 2) W
[1/]=0 |i|=0 o
+O(6"+d).

(2.259)

Observe that ;, and hence, Wll/ depends on 6, and so does u'. Thus the formula
is not a genuine asymptotic formula. However, since it is useful for solving
the inverse problem for the Helmholtz equation, we made a record of it as a theorem.

REMARK 2.87. Note that the scattering tensors defined in are the basic
building blocks for the full asymptotic expansion of the scattering coefficients given

by (2.211) as 6 — 0. In fact, in the three-dimensional case, after scaling (2.171

Taylor expansions yield

(2.260)
1 — (S M — / =
Wpy = K Z VVll’Tal [Jp(y)eﬁpey] |y:08l [Jq(y)eﬁqey} ’yZO
1,lI’eN3
forp,q € N.

Now, observe that by the definition (2.255) of ¢y, ||[¢1]/z2(ap) is bounded, and
hence s
Wl <Cu, VYL,
where the constant Cj is independent of . Since ¢ is small, we can derive an
asymptotic expansion of (;, ;) using their definition (2.255)). Let us briefly explain
this. Let
06 ’nlé
f Sl = S5°[g]
| = | ot 1ok | onos,

He ov - Hm I +



2.11. SCALAR WAVE SCATTERING BY SMALL PARTICLES 101

and let Ty be the operator when § = 0. Then the solution (¢;,%;) of the integral
equation ([2.255)) is given by

-1 !
(2.261) [ ZZ ] = [I +I (T —To)| Tp' | 1 0al
M OV
By expanding Ts — T in a power series of §, we can derive the expansions of iy
and Wy Let, for I,I' € N%, (%;,4;) be the leading-order term in the expansion of
(@1, ). Then (@, ;) is the solution of the system of the integral equations

S¥1@) — SY[n] = !

(2.262) 16(8%[@])\ L O(Spln)| _ 1 oa!  ondB.

+7%6V

As a simplest case, let us now take n =1 in to find the leading-order term
in the asymptotic expansion of u — u® as § — 0. We first investigate the dependence
of Wy» on ¢ for |I] <1 and |I'| < 1. If |I| < 1, then both sides of the first equation
in are harmonic in B, and hence

S%@] — S%[] =2' in B.

He ov Hm v

Therefore we get

n 0B.

0(8%[@])’ _aw%wl])’ ol
ov ov %

This identity together with the second equation in (2.262)) yields
ne OSHIHD|_ ASLAD| _ (, _ pe )02t
L Ov n ov lm ) OV~
In view of the relation (2.155)), we have

b (L) (- 2)8

where (K%)* is the Neumann-Poincaré operator defined in (2.6). Therefore, we
have

R l
(2.263) = <M—<K%>*>*(8x )
o |55
where
£e 41 B 41
2.264 = —km = _te :
(2200 NTRSE) T wE D
Hm He

Observe that if || = 0, then ¢ = 0 and S%[@1] = 1. Hence we obtain v, = O(J)
and Sk°[p;] = 14 O(J). Moreover, since Sk?[¢;] depends on § analytically and
(A + k20%)Sk%[0)] = 0 in B, we conclude that

(2.265) P =0() and SE[p] =1+0(6%), |I|=0.
It also follows from (2.263) that if |I| = |I| = 1, then
— , l
(2.266) Wiy = / 2V (N — (K%)*)~! <ay )(;z:) do(z) + O(9).
B o yp
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The first quantity in the right-hand side of (2.266) is the polarization tensor M as
defined in (2.71). In summary, we obtained that

(2.267) W =M+0@), |I|=|I|=1.
Suppose that either [ = 0 or I’ = 0. By (2.155)) and (2.255)), we have
o= oS’ | (S [])
! v n ov _
(2.268) i OSE o)) |0t oSk )
' Ihe ov ov ov _'

It then follows from the divergence theorem that

(2.269) /6 N 2oy do = — k252 Em /B 2V 85 (o)) dar + k2,62 /B 2t SEm0 )] da

e
Hm oa" ke ox" md
— Sy do — —Sg" do .
te Jog o B [4/7[] o 0B Ov B Wl] g
From (2.269)), we can observe the following.
(2.270) Wy = —kfézerm|B| +0(8%) = —6%w?e.um|B| +0(8%), |I|=|I'|=0,

(2.271) W =0(8%), |l|=1, || =0,
(2.272) W =0(82), |i|=0, [I'|=1.

In fact, (2.270) and (2.272) follow from (2.265) and (2.269), and ({2.271)) immediately

follows from (2.269). As a consequence of (2.270)), (2.271)), (2.272), and (2.259)), we
obtain

SEr[](x) = 0(6%), uniformly on z € K .
We now counsider the case |I| =2 and |I'| = 0. In this case, one can show using

[2.268) that

Yy do = —/ Azldz + 0(6%).
oB B

Therefore, if |I'| = 0, then

1 = ) ,
(2.273) Z maluz(z)VVll/ = —Au'(2)|B| + O(6*) = k2 u'(2)|B| + O(5?) .
!

So (2.258)) together with (2.267))-(2.273|) yields the following dipolar expansion

formula.
THEOREM 2.88. For any x € K,
Ec

(2.274) + 64 (Vui(z)MVszm (x —2) + k2, (=% — 1)|BJu’(2)Ty,, (z — z))

Em

=+ O(5d+1) ,
where M is the polarization tensor defined in with X given by (2.264)).
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Let us now consider the case when there are several well separated particles.
Let D := U™ ,(0Bs + z5). The magnetic permeability and electric permittivity of
the particle § B; + z, are ués) and a&s), s =1,...,m. By iterating formula (2.258]
we can derive the following theorem.

THEOREM 2.89. Suppose that there exists a positive constant C' such that |zs —
zg'| > C for s # s'. Then the following pointwise asymptotic expansion in K holds
uniformly:

(2.275)
u(z) = u'(z)
m n+l1 nt+l=|| 5|l\+|l'\ _ ,
46972 Z Z Z T Ou'(25)0L Ty, (x — zs)Wl(lf) + 0" .

s=1['|=0 |[|=0

Here the scattering tensor Wl(lf) is defined by with B, pic,e. replaced by

Ba, ut e,

A first-order asymptotic expansion similar to (2.274]) can be obtained for closely
spaced particles. Let D := U7, (dBs + z) and let v'*) be the outward normal to
0Bs. As before, the magnetic permeability and electric permittivity of the particle

6B, + z are u& and e, s =1,...,m.
Let the overall polarization tensor M = (myq)% ,_; be defined by

(2.276) Mpq = ;/335 xp@(f)(g;) do(x),

where the densities (b,(f) satisfy

a8y [65"]

(T = ()16 — 3 20— 9 on o,
s'#s

with Ag being given by (2.264) with p. replaced by ués).
THEOREM 2.90. Let D := U7, (0Bs + z). For any x € K, as § — 0,

(2.277)
| m () |
+ ¢4 (Vuz(z)MVZI‘km (x—2)+ k?n(Z( e 1)|By])u' (2)Tk,, (z — z))

4 O( 5d+1) ,
where M is the overall polarization tensor associated with the particles By defined
mn .
REMARK 2.91. Note that the polarization tensor of multiple particles has the

same properties as the one associated with a single particle.

2.12. Quasi-Periodic Layer Potentials for the Helmholtz Equation

In this section we collect some notation and well-known results regarding quasi-
periodic layer potentials for the Helmholtz equation. We refer to [190), 330, [345]
367, [449] for the details. This results will be used for the analysis of photonic and
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phononic bandgap structures. In Section [2.13] numerical schemes for the calcula-
tion of periodic Green’s functions will be described. These techniques rely either
on a Fourier series to compute the governing Green’s function or a lattice sum
representation of the Green’s function via the method of images.

We denote by « the quasi-momentum variable in the Brillouin zone B =
[0,27)%2. We introduce the two-dimensional quasi-periodic Green’s function (or
fundamental solution) G**, which satisfies

(2.278) (A 4+ WG (z,y) = Z So(z —y — n)eY e,
nez?
If w # |27n + a|,V n € Z2, then by using Poisson’s summation formula
(2.279) Z eV~ 1mnta) e Z So(x — eV 1o,
nez? nez?

the quasi-periodic fundamental solution G** can be represented as a sum of aug-
mented plane waves over the reciprocal lattice:

oV =1(2mn+a)-(2—y)

—2mn +al?

(2.280) G (zy) = Y

nez?

Moreover, it can also be shown that G*“ can be alternatively represented as a sum
of images:

(2.281) G (z,y) = W >

neZ?

HSY (w]z —n — y|)eV v,

where H(()l) is the Hankel function of the first kind of order 0. The series in the
spatial representation of the Green’s function converges uniformly for z,y
in compact sets of R? and w # [27n + «| for all n € Z2. From ({2.281) and the
well-known fact that Hél (2) = (2v/=1/m)Inz + O(1) as z — 0 (see ), it
follows that G**“(x,y) — (1/27) In |z — y| is smooth for all z,y € Y. A disadvantage
of the form , which is often referred to as the spectral representation of the
Green’s function, is that the singularity as |z — y| — 0 is not explicit.

In all the sequel, we assume that w # [27n + «| for all n € Z2. Let D be a
bounded domain in R?, with a connected Lipschitz boundary dD. Let v denote
the unit outward normal to dD. For w > 0 let S** and D** be the quasi-periodic
single- and double-layer potential&ﬂ associated with G on D; that is, for a given
density ¢ € L?(0D),

Sy / G (z,y)o(y) do(y), xcR?

Delplle) = [ SR o) dots), € R\ oD,

Then, S*¥“[p] and D*¥[p] satisfy (A + w?)S¥[¢] = (A + w?)D*¥[p] = 0 in D
and Y\ D where Y is the periodic cell [0, 1)2, and they are a-quasi-periodic. Here
we assume D C Y.

1From now on we use S%* and D** instead of S5 and D for layer potentials on D.
This is to keep the notation simple.
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The next formulas give the jump relations obeyed by the double-layer poten-
tial and by the normal derivative of the single-layer potential on general Lipschitz
domains:

(2.282) 8(8(;7:[80]) jE(ac) = (:I: %I + (IC_Q"”)*) [¢](z) a.e. z€dD,
(2.283) (D)) () = ($ %1 + zcw) pl(x) ae. € oD,
+

for ¢ € L?(0D), where K% is the operator on L?(0D) defined by

(2.284) Krlple) = . [ 2T

and (K~%%)* is the L?-adjoint operator of K~*%, which is given by

- 9G(x, y)

2.285 K=Y [o](x) = p.v./ — do(y).
(2.285) ( )"l () oy Do) PW W)
The singular integral operators K£** and (K~%“)* are bounded on L%(dD) as an
immediate consequence of the fact that G**(x,y) — (1/27) In |z — y| is smooth for
all z,y.

The following lemma is of use to us.

¢(y) do(y)

LEMMA 2.92. Suppose that o # 0 and w? is neither an eigenvalue of —A in
D with the Dirichlet boundary condition on 0D nor in Y \ D with the Dirichlet
boundary condition on 0D and the a-quasi-periodic condition on dY . Then S4% :
L?(0D) — HY(OD) is invertible.

PROOF. Suppose that ¢ € L?(9D) satisfies S**“[¢] = 0 on D. Then u =
S*v[¢] satisfies (A + w?)u = 0 in D and in Y \ D. Therefore, since w? is neither
an eigenvalue of —A in D with the Dirichlet boundary condition nor in Y \ D with
the Dirichlet boundary condition on dD and the quasi-periodic condition on dY,
it follows that v = 0 in Y and thus, ¢ = u/Ov|y — Ju/Ov|_ =0, as desired. O

Define

GOx,y) == Galz —y) == Y

nez?

where G, is given by (2.130) for d = 2 and

GOz, y) = Gylz—y) =— Y

nezZ?\{0}

where Gy is given by (2.115) for d = 2. Note that G*%(z,y) for o # 0 is a
fundamental solution of the quasi-periodic Laplacian (2.131)) in Y, while, in view
of (2.117), G%°(x,y) satisfies

(2.286) AG(z,y)=6,—1 inY

with periodic Dirichlet boundary conditions on 9Y. See [67), [45]. The following
lemma is easy to prove. It gives a complete low-frequency asymptotic expansion of

Gow

e\/jl(ern+a)<(r—y)

|27mn + a?

for ae # 0,

eﬁan-(z—y)

Am2|n)2
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LEMMA 2.93. Asw — 0, G*¥ can be decomposed as
eV—1@2mnta) (z—y)

|2 + 2041

)

(2.287) G (z,y) = G*°(z,y) Zwﬂ Z

nez?

:szf’“’(:L’,y)
for a # 0, while for a = 0, the following decompositz’on holds:

e\/jl27rn~(:rfy)

1
0,w 0 0 21
(2.288) G (x,y) = +G (z,y) E w E: W
n€Z2\{0}

=G (zy)
Denote by 8 and (K, “*)*, for I > 0 and « € [0,27)?, the layer potentials
associated with the kernel G}"“(z,y) so that
+o0 too

(2289)  §™¢ =820+ 3 8™ and  (K0)T = (K20 + (K 0)

1=1 1=1
LEMMA 2.94. The operator (1/2) I+(K=*9)* : L2(dD) — L?(0D) is invertible.

Before proving Lemma [2.94] let us make a note of the following simple fact. If
u and v are a-quasi-periodic smooth functions, then

(2.290) / %v do = 0.
oY 8U
To prove this, it is enough to see that

—/—laz
/ Ou_ :/ {8(ue )+Fa Jue raz} —Vlawy,,
oY aV ) au

PROOF OF LEMMA 2204l Let ¢ € L?(9D) satisfy ((1/2)I + (K=*9)*)[¢] =0

on dD. Observe that if & = 0, then faD ¢ = 0. In fact, by (2.286) and (2.290), we
have for x € D ‘

DYO1)(z) = — A,G"(z,y)dy = |Y \ D,
Y\D
where | | denotes the volume, and hence

(2.291) (%I+KO’O)[1] =Y\ D| ondD.

Therefore, we get
Y D e 71 0,0 1 _ 7[ 0,0\ —0
Y\ |/8D¢da /6D(2 + K")1] ¢pdo /313(2 + (K29 [¢] do = 0

Consequently, for any a € [0,27)2, u = S*0[¢] is a-quasi-periodic and satisfies
Au=0in Y \ D with
Ju 1
—| =GI+ (K “%")[¢] =0 ondD.
5|, = (10 =0 on
Therefore, it follows from (2.290)) that

/ |Vu|? = @ﬂ—/ Ou
Y\D oy Ov ap OV,

u=0.
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Thus, u is constant in Y \ D and hence in D. This implies that
ou ou

=2, ~ 3,
v + vi_

as desired. O

:07

2.13. Computations of Periodic Green’s Functions

In this section, we briefly describe analytical techniques for transforming the
Green’s functions for the Helmholtz equation in periodic domains from the slowly
convergent representations as a series of images or plane waves into forms more
suitable for computation. In particular, methods derived from Kummer’s transfor-
mation, lattice sums, and the use of Ewald’s method are discussed. The main ideas
of these techniques apply to Maxwell’s equations and the Lamé system as well.

2.13.1. Kummer’s Transformation. The convergence of the series
and can be improved if we use Kummer’s transformation, namely if we
convert the slowly convergent series into two series which converge faster by sub-
tracting and adding back a series which has the same asymptotic behavior as the
troublesome series and which can be summed analytically [279]. We can accelerate

the series in ([2.280|) by writing

—la-(z— —12mn-(z—
Gz, y) A UV 3 eV ey
Y ~ap? 1x?n?
n€Z?,n#0
1 1
V=1(2mn+a) (z—y)
* Z ¢ (w2 — 271 + a2 * 471'2|n2>'

n€Z?,n#£0

The terms in the first summation are O(|n\*3) as |n| — 400 and

V—127wn-x
¢ coS 27m2x2
> G T s 3 o2y 3 52T s 2
n€Z? ,n=(ny,n2)#0 n1=0 a1 1
cos 27m1x1
5 Z €OoS 2Ty Z
2 no=0 - nl + n
= Al + AQ.

From [45] pp. 54-55],

1 In2 1 1 1

A= 24;114(x2x1)+4(2$§x%)SIH(SiHh27T£C2+Sin27rx1>
T us
+ 1 f CcoS 2mn1 o1 e2mmize + e—2mn1x2
47T ny 627”7’1 -1 ’
ni=1

and

1 In2 1 1 1

42 = 24 41117 - Z(‘Tl —x2) + 1(295% —a3) — P In (sinh2 71 + sin? ﬂx2>
T us
+i -i:.o COS 27Tn1x2 62"”111 + G*Qﬂmml
4 1 ni 627"”1 -1 ’
=

where the series in A; and As are exponentially convergent.
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This acceleration process can be continued further to speed up the convergence

of the series
1 1
Z eﬁ?ﬂw(m—y) +
w? —2mn+«f?>  4n2|n|?
n€Z? ,n#£0

if we retain more terms in the expansion

1 1 n a-n n in| — +
=— ... as|n 0.
w? — 2mn + af? 4m2|n|?  4m3|n|t

2.13.2. Lattice Sums. The lattice sum representation of the Green’s function
is an immediate consequence of a separation of variables result for Hél). Forl € Z,
let H, l(l) denote the Hankel function of the first kind of order [ and let J; be the
Bessel function of the first kind of order . Recall that J;(z) = ERHl(l)(x) and
H(_ll)(ac) = (—l)lHl(l)(x) for all z € R. By Graf’s formula, we have for n # 0:
(2202)  HP(wle —n—yl) = Y Siwlr — yheV v B (wln])e V"1,
ez

where 6,, and 6,_, are given by

ny++v—1ng = \n|eﬁ0", n = (ny,n2),
(1 —y1) +V—1(r2 —y2) = |7 — y|6ﬁ0“y’ r = (z1,72),y = (Y1,Y2)-
Define the lattice sums S}* by
(2.293) Sp = Z e‘/jl"'o‘Hl(l)(w|n|)e‘/j”0".
n€zZ?,n#0

Note that for o« = 0, the four-fold symmetry of the square lattice implies that
SP = 0 for I not divisible by four. Moreover,

Sgl - (—1)lSl_a.
The Green’s function G** can then be expressed as
a,w —1 v -1 oY —
G (a,y) = _TH(SI)(W‘UU —yl) — i Zsz Ji(wlz — y|)eV v
lez

Rearranging terms, we write

v —1 o
G¥(ayy) = = [ HG (wlr = ) + S§To(wle — yl)

(2.294) +00
2. <Szf + Slr) el - M '
1=1

In practice, the summation is truncated for [ < L, leading to an eval-
uation procedure whose cost is proportional to L times the number of evaluation
points. This cost is significantly smaller than that necessary to obtain converged
values of [330].

It is worth emphasizing that the lattice sums only have to be evaluated
once as they do not depend on the position at which G** is computed. However,
the computation of Sf* must be performed with care since S;* becomes very large
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and J; very small as [ increases. The convergence of the series in S7* can be improved
if we use Kummer’s transformation together with the asymptotic expansion

2
Hl(l)(z) ~ \/7eﬁ(z—lﬂ/2—ﬂ/4) as z — 400,
Tz
for I > 0.

2.13.3. Ewald’s Method. Ewald’s method was originally developed to treat
long range electrostatic interactions in periodic structures. The key idea behind
Ewald’s method is to split the periodic Green’s function into a spectral part and a
spatial part that, after some careful manipulation, converge rapidly. So our goal in

this section is to determine G;’f’slf)ec and G?’S’;at such that

Gy M@, y) = Gob oo (2,y) + GEl L (2.),

f,spec f,spat
is exponentially convergent. We begin by determining an integral representation
for the Hankel function of the first kind of order zero that is often used in the
literature as the starting point for a derivation of the Ewald method applied to a
specific spatial and array configuration.

LEMMA 2.95. The Hankel function of the first kind of order zero can be repre-

sented as
2
(1) 2 -1 2,2, k
Hy/ (kr) = —lw[yt exp (r t —|—4t2)dt,

where v is an integration path in the complex plane that begins at the origin with
direction e V=17/4 sweeps across the positive real azis until it makes an angle of
eV—larg(M)/2 with that axis, and finally goes to infinity in some direction eV=19,
with ¢ € (—n/4,7/4).

PROOF. We have the following representation for the Hankel function of the
first kind of order zero:

(1) 1 ot/ zsinhw ™
(2.295) Hy'(2) = Wasps /_Oo e dw, |arg(z)| < 5"
Let us fix a particular representation of this path. Denote by
P={t:—co<t<O} J{V-Tt:0<t<a} J{t+V=Ir:0<t< oo}
We now define a separate contour for the same integrand. Let § > 0 and denote by
gt ={-t:0<t <R} J{V-Tt:0<t< B} J{-t+V=1B:0<t <R},
@ ={-R+V—-1t: 0 <t < B},

These paths share the same starting point and end point, and as the integrand is
holomorphic in w, by Cauchy’s integral theorem the integral over the contour is
path independent. Therefore

/ e* sinh Wdw = / e? smhwdw
aft qff

— /B &7 sinh(fR+it)dt
0
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Suppose that 0 < arg(z) < 7/2,0< 8 < 7/2, t € (0,3). Then the integral goes to
0 as R gets large because

R(zsinh(—R + v/ —1t)) = —R(2) cos(t)sinh(R) — () sin(t) cosh(R) < 0.
We have

lim e*smhw gy = lim e*sinhw gy, — (.
R—o0 q{? R—o0 qg{

So letting R — 0o we can combine the integrals on the paths ¢f* and ¢ with the
integral in (2.295)) without changing its value:

oo+7r\/jl
H(l)(z) — 1 e? sinhwdw 4 e? sinhwdw + e* sinhwdw.
’ VoIm ) aft at

Choosing 8 = w/2—arg(z) for 0 < arg(z) < /2, and noting that cancellation occurs
due to the how the contours have been defined, we obtain the representation:

1 co+my/—1
/ ¢

3 (2) =
0 \/jlﬂ' _OO+\/—71(7r/2—3‘rg(Z))

zsinhwdw7 arg(z) <

vl

Rewriting this as

1 oo+my/—1 z
H(l)(z) — / exp ((ew —e v )dw,
0 AN —oo++/—1(m/2—arg(z)) 2 )

and making the substitution s = e“ gives

O “toxp (Zs— L
H, (z)\/jlﬂ_[ﬂs exp<2<s S))ds,

where v is a contour that begins at the origin with direction eV —1(7/2-ar&(2)) anqd
sweeps around the origin to the the point s = —1 before tending to minus infinity
on the negative real axis. Setting z = kr with r > 0, we obtain

D () — 1 -1 kri. 1
H, (kr)—\/jlﬂ_[ﬂs exp<2(5 S))ds,

Making another substitution, this time with s = —2rt?/k, we arrive at
2 k>

2.296 HV (kr) = / ¢t — 22 4 ) dt

( ) 0 ( 7") \/jlﬁ o exp r + 4t2 B}

where 75 is an integration path in the complex plane that begins at the origin with
direction e~V 174 sweeps across the positive real axis until it makes an angle of
eV—1arg(k)/2 with that axis, and finally goes to infinity in that same direction. O

The path of integration can be altered as long as (i) it begins at begins at the
origin with direction e~V~17/4  which ensures convergence as |t| — 0, and (ii) it
must go to infinity in the direction eV~ with ¢ € (—=m/4,7/4), which ensures
convergence as |t| — oo.

So we have
Ve 1 [ e
— 4t
gy L[,
4 21 - t
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and then recalling the definition of the quasi-periodic Green’s function

a,w -1 1 “1ma
Gy (ayy) = == D7 Hy (wle =y — (m,0) )",
meZ
we obtain
7R2 t +w

2
(2.297) G (2, y) Zer’”a/ € ",

72 t

where R, = \/(x2 —y9) + (x1 — y1 — m)2. The next step is to split the path of
integration - into two parts such f72 =[S = fog + [¢* where € is some point on the
positive real axis and the paths in the terms fog and |, ;o satisfy the aforementioned

convergence conditions.

LEMMA 2.96. Consider a lossy medium such that (k) > 0. Then the quasi-
periodic Green’s function G;“’k can be split into two parts such that

GiP(@,y) = Gob (@) + Gol(,),
with
_kap(ajl yl)

Z Fk;
—1k
% [eﬁkyplizy2|erfc<\/;mo + |z2 — y2|5)

Gak (

f,spec

+ e~V 1kyploz—y2 erfc(v 2E?JP |z2y2|5)],

e = 3o S () i

where kyp = —a + 22, ky, = —, /K2 — k2, erfe(z) is the complementary error

function
erfe(z \/» /

and E; is the qth order exponential integral which is defined as

oo —zt
E,(2) :/1 < __at.

ta
Proor. We first split Equation (2.297)) into two parts giving us
X 1 /I £ e ansz—i-“’
-1
(2.298) G tpec(T:) = =5 > e W"/ fds,
meZ 0
and
k 1 V=1 o Rttty
=)
(2.299) G bt () = =~ > e m‘*/ ——ds,
meZ €

with complex paths of integration as described previously. Note that the conver-

gence of GF s already exponential as for large m it can be shown that the terms

fi,spat
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in the series behave like e~ " /(n2€2). The terms in Ggf’sl;ec on the other hand

decay like 1/4/m due to the asymptotic behavior of H(gl)(z) for large z. This term
is the one we would like to accelerate.
Using the Poisson summation formula

(2.300) S rm) = =3 Fomp),

mEZ PEZ

where
7(8) = / F(€)e VT,

and setting f(m) to be

2T

eV Tam € =l —y2) @i -y —m)’]s?+ i
f(m)=— / ds
0 S

we obtain

.2
7 I £ g lma—y2)? (@111 —€)%s"+ {5
f(%p):_j/ df/ dsS eV Tkt
T J_co 0

S

where k5, = —a+ 2mp. Noting that the s integral is convergent on the path (0, &)
for £ €] — 0o,00[ as R(s?) > 0, we can switch the order of integration. Then

applying the formula [ e~ e qe = |\ /r]ae’’ /4% results in

e~V —1kap(z1—y1) 2 e—(ﬂlz—yz)QSQek;jp/‘lSQ
Qﬁ 0 82

where k,, = —,/k* — k2, and we have taken the negative of the square root in

order to ensure convergence. The Making the change of variables § = 1/s we have

fQ@2mp) = -

ds,

e*\/jlkwp((’:l*yl) oo
f@2rp) = ——pF———

2y/m 1/€
and the path of integration maps from (0, ) onto (1/€, 0o) with constraints on the

the path near s = 0 now applying to s — co. That is, %(k§p§2) < 0 for every p € Z,
ensuring convergence. Finally, using the identity

e—(z2—a)? /3 (K3, 3) /4 5.

2 b b
/ea2x2_%d$ _ _g |:€2ab€rfc(a/x + ;) + e_2aberfc(aa'j — x):| —|— COnSt,

we obtain
- efﬁkmp(mlfyl)
2.301 2 =
(2:301) fom) =~
v—1k
(2302) X |:6ﬁkypz2y2erfc<2(€'%l’ + |I2 _ y2|£)
v -1k
(2.303) + eﬁkwmwerfc(%yp s — y2|5)] .

Inserting this into Equation (2.300) gives us GF

#,spec’
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Now we turn to G fop at Although this function is already exponentially con-
vergent we will transforrn it into a form more suitable for computation. Consider

the integral I in Equation (2.299):

It can be shown that after changing variables with v = s2, applying the Taylor

expansion i = Py 0(£)%7/(glu?) and then changing variables again with ¢ =

u/E? we obtain

1/ k%M1
=33 (5) e

q=0

Using this representation of I in Equation (2.299) gives us the desired form of
GUE L O

#,spat

The complementary error function converges very quickly and this is the key to
the acceleration of the convergence speed of Gﬁ Zpect This representation of Gﬁ “pec
is also efficient in terms of numerical computation as only the Fj;(z) exponential
integral needs to be evaluated explicitly. The higher order exponential integral
terms can be computed with the recurrence relation E,yq1(2) = %(e‘z — zE4(2))
for ¢ = 1,2,.... Note that the optimal value of the splitting parameter £ for
wavelengths somewhat larger or smaller than the periodicity is given by £ = /7 /d.
It is also worth mentioning that very few terms are required in the summations
in Gﬁ ipec ALl nd Gti spat 1O obtain a relative error of less than le — 03. Furthermore,
although we assumed that Sk > 0 in order to obtain these expressions, due to
analytic continuation the expressions actually hold for all k € C.

For the quasi-periodic Neumann-Poincairé operator we require the gradient of
the quasi-periodic Green’s function. We note that

VG?’k(x,y) =VaGy Spec(ac y) +VGY Spat(x ),
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with
1 e_\/jlkmp(xl_yl)

ak _ -
VGﬁ,Spec ($7 y) - 4 Z \/jlkyp

pEZ
{[_\/—Tikw — V=Tikypsgn(xs — y»)]
% ef\/jlkyp\zzfyz‘erfc @ — ‘.%2 — y2|5
2F
X [V =1&kap + V—10kypsgn(z2 — y2)]
—1
% emky,,xz—yzerfc<\/;;yp + |zg — y2|5)

_ gsgn(x2 _ y2)5e*\/jlkyp|302*y2\

v—1
X erfc’(wkyp — oo — y2|5>

+ 2sgn(zy — yo)EeV " Thurlz2—ve]

Vv-1k
X erfc/(QEyp + |2 — y2|5> };

VG?v’SIIC)at(x7y) = 27 |:f2'($1 — Y1 — m) + 7:«(x2 _ y2>:| eﬁam
meZ

)

52
o] 2q
k 1 9 09
X Z (25) aEq(ng )7
q=0
where & and § are unit vectors along the x and y axes, respectively, and erfc(z) =
2 —z2
———e 7.
™
Figure [2.5]shows the quasi-periodic Green’s function obtained by using Ewald’s
method in Code Quasi-Periodic Green’s Function Helmholtz.

2.13.4. Numerical Implementation of the Operators Sgr’f and (ICS_)C;]“)*
In this section we discuss the numerical implementation of Sg{f and (lC;?k)* as-
suming we are in a low frequency regime. After performing the usual boundary
discretization procedure, as described in Subsection [2.4.5] we represent the infinite
dimensional operator ngf acting on the density ¢ by a finite dimensional matrix
S acting on the coefficient vector @, := p(z(®) for 1 <4 < N. That is

Sailel@) = | GiMy)ely) doly),
o
for 1 € L%(0R), is represented numerically as
Si11 S ... Sin P
~ Sgl 522 . SQN @2
Sy = ; . , . ,
SNl . e SNN @N

where 4 _ _
Sy = G — 2T @D) (b — 1), i # )
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[

(a) R(GF) (b) R(52 G5

FI1GURE 2.5. The quasi-periodic Green’s function, and the zo com-
ponent of its gradient, for the Helmholtz equation for a one-
dimensional lattice of Dirac mass source points with periodicity
1. The quasi-momentum parameter « is set to 7 /8.

and G;"’k (2 —20)) refers to the Ewald representation of the Green’s function. This
discrerization matrix S features singularities in the diagonal terms and therefore
we must approximate these terms by explicit calculation. Let the portion of the
boundary starting at (¥ and ending at z(*+1) be parameterized by s € [0,e = %’r)
and note that € — 0 as the number of discretization points N — oco. Observe that
for Gg"k = G?”s];ec + GZ[J;ZW the singularity appears in the G?é’;t,ﬁ term precisely
when z = y and m = 0. Therefore

S5 = / Go* (2 — ()| T(s)|ds ~ / Gk (@ = 2())|T(s)]ds,

as € = 0. Now retaining only the m = 0 term in G?;’;at we have

o0

. 1 kN1
G;’spat ~ _E Z <%> aEq-i-l(Rgg?)a

q=0 ’

where Ry = \/(a:gi) —x1(8))% + (xgi) — x2(s))?. Noting that the behavior of the

exponential integrals F,; for small argument is Ey41(z) = —(—2)?(Inz)/q! gives
1 kN1 [ (—R?)
ak L ~\ LA (=hee)T 2 02
Gﬁ,spat ~ 4n qz::o <2€> q‘ < q| ln(Rog ))
1
~ — In(Ry€),

2
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where only the ¢ = 0 term has been retained as Ry < 1. Therefore,

1 [ ;
S @ _
Sii . /0 In(&|x xz(s))|T(s)|ds

1)k
2w

(1n(8|T(O)|a) - 1)

_ |TJ<\?)<1H (”TN5|T(0)|> - 1).

The discretization matrix K for the quasi-periodic Neumann-Poincairé operator
(ICS;Oﬁ‘k)* requires no special treatment since, similarly to Subsection it is
clear that it features the same singularity as the non-periodic Neumann-Poincairé
operator and thus the usual expression holds for the diagonal terms of its
corresponding discretized matrix. We remark that the approximations used for the
diagonal terms of S and K are appropriate for low frequencies but are not stable
when the frequency is high. For instance, the ¢ # 0 terms provide a non-negligble

contribution to G?;’;at when k is high and cannot be ignored. Ewald’s method for

computing ng and (K&fgk)* in low frequency regimes is implemented in Code
Quasi-Periodic Green’s Function Helmholtz.

2.13.5. Ewald’s Representation of the Quasi-Biperiodic Green’s Func-
tion for the Helmholtz Equation. The quasi-biperiodic Green’s function, which
was defined in Section [2.12] satisfies

(2.304) (A+ kz)G?’k@Ca y) = Z So(z —y —m)eV T,

meZ?

This Green’s function has the representation

(2305) G?’k(fp7y) = _T_l Z Hél)(kRm)eMjlm-a’

meZ?

where R, = \/(3:1 —1y1 —m1)? + (v — y2 — mo)2. Through an analogous proce-
dure to the one used in Section for the quasi-periodic Green’s function, it
can be shown that there exists a rapidly converging Ewald representation of the
quasi-biperiodic Green’s function such that

Gy M@, y) = Gob o (2,y) + GEl L (2,),

#,spec #,spat
with
bl =~ B et )
p,qeZ 'P4
and
G?ﬁ)at(%?/) = —% Z e‘/jla'mi (k>2q1EqH(an5)7
’ T mez? q=0 2\/3 q!

where

Tpg = ,/|k12)q — k2|, kpg = kap@ + kyq¥, kap = —01 + 27D, kyq = —ap + 27mq.
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s 0 5

(a) R(GF) (b) R(52-G5)

FIGURE 2.6. The quasi-biperiodic Green’s function, and the z
component of its gradient, for the Helmholtz equation for a two-
dimensional lattice of Dirac mass source points with periodicity 1
in the x; direction and 2 in the x5 direction. The quasi-momentum
parameter « is set to (7/8,0).

Taking the gradient of Gg"k(x, y) gives us the representation required for the
quasi-biperiodic Neumann-Poincairé operator. We have

VG (@,y) = VGl (@) + VG (2,9),

#,spec f,spat
with
VGa’k (xay) =V -1 Z k—gqe_'yiq/‘lge_\/jlkpq'(m_y)

#,spec
p,qEZ Tpg

o g = A~ —la-m
VGm’s];at(xa y) = “om Z (x—y — eV
meZ?

o) k 2q 1 )
X —— | =E.(RLE).
2 (ave) e
The numerical results shown in Figure [2.6] are obtained by using Code
Biperiodic Green’s Function Helmholtz.

REMARK 2.97. The quasi-biperiodic Green’s function G;”O for the Laplace
equation features infinite series that are very slow to converge. In order to utilize
Fuwald’s method and accelerate the convergence we make use of Lemma[2.95 We
already have a FEwald representation corresponding to G0 for any « in the Bril-
louin zone [0,27)? and the infinite series in (2.287) and (2.288) are relatively quick
to converge. Therefore this representation of these Green’s functions is appropriate
for efficient numerical itmplementation.

2.14. Integral Representation of Solutions to the Full Maxwell
Equations

In this section, a few fundamental results related to electromagnetic scattering,
which will be essential in what follows, are recalled.


http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial3/3.3 Quasi-Biperiodic Green's Function Helmholtz.zip
http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial3/3.3 Quasi-Biperiodic Green's Function Helmholtz.zip
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2.14.1. Layer Potentials. Assume that D is bounded, simply connected,
and of class C1" for n > 0 and let

H;(9D) = {p € (*(0D))",v - p = 0}

for s = £1/2.

We introduce the surface gradient, surface divergence and Laplace-Beltrami
operator and denote them by Vjp, VaD and Agp, respectively. We deﬁne the
vectorial and scalar surface curl by curlaDgo = —v X Vgpp for ¢ € H3 z(0D) and

curlogpp = —Vap - (v x ) for ¢ € HT2 (0D), respectively. We recall that

Vop-Vaop = Asp,
curlaDct;rlaD = —App,
CI;ﬂaDCuﬂ@D = —AaD + VaDV@D' )
Vobp - CJI‘]@D = 0,

curlsppVogp = 0.

We introduce the following functional space:
—1 _1
H7? (div,0D) = {g@ € H7?(OD),Vop ¢ € H—%(aD)}.

Define the following boundary integral operators and refer to [45), [365] for their
mapping properties:

Shlel: Hy? (D) — HE(OD) or Hpo(R?)®
o s Shlgl) = /8 Tula =)o)

ME o]« Hy ? (div,dD) —  Hy? (div, dD)
© — MD /é)DV ) X Vg X(Fk(x— Y)p (y))da(y);

£hl) - Hy® (div,0D) —s H; > (div,dD)
¢ Lhlolla) =vle) x (Shlel(w) + VSh[Tan - 1(0) ).
The following results hold.

LEMMA 2.98. The operator 5’5 satisfies the following jump formulas on 0D:
1
(v x v x Sblgl)|, = (F51 + Mb)le,

and

(u X V x V x 5’5[90})‘813 = Lplyl,

for € H;% (div,0D).
We will need the following lemma.

LEMMA 2.99. The following Helmholtz decomposition holds [156]:
Hy*(div,0D) = VopH? (9D) & curlop H* (D).
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3 1
REMARK 2.100. The Laplace-Beltrami operator App : HE (0D) — H, 2(0D)

3 1
is invertible. Here HZ (OD) and Hy 2 (0D) are the zero mean subspaces of H? (OD)
and H~2(0D), respectively.

The following results on the operator M% are of great importance in the anal-
ysis of plasmonic resonances for nanoparticles. We refer to [365] for a proof of the
following compactness property of MY,.

1 St

LEMMA 2.101. The operator MY, : Hy,* (div,0D) — H *(div,dD) is a com-

pact operator.

LEMMA 2.102. The following identities hold [34), [245] :

MYJeurlopy] = curlapKh[p], Ve € H?(OD),
MVong] = —VopAzh(Kp) [Aopy] +curlapRply], Vi € H2(AD),
where
(2.306) Rp = —Aheurlypp My Vap.

We now consider solving the problem

(2.307) (M = Mp) ] = ¢

1
for (¢, ) € (Hyp ?(div, 8D))2 and A € o(MY), where o(MY) is the spectrum of
MY, Our motivation is to investigate plasmonic resonances for nanoparticles.
1

Using the Helmholtz decomposition of Hr .2 (div,dD) in Lemma we can
reduce (2.307) to an equivalent system of equations involving some well known
operators.

1
DEFINITION 2.103. For u € Hy. 2 (div,0D), we denote by u and u® any two

3 1
functions in H} (0D) and H=(0D), respectively, such that
U= VaDu(l) + chlaDu(z).
Note that u®) is uniquely defined and u(? is defined up to a constant function.

LEMMA 2.104. Assume A # %, then problem (2.307) is equivalent to

— €] 1
(2.308) (M —Mp) ( z(z) ) = ( z(g) ) ;
where (M) ) € HO% (OD) x H2(8D) and
= —AGL(KY) Asp 0
(2.309) Mp = < R K0

with Rp being defined by .

PROOF. Let (M) ) € HE (0D) x Hz(dD) be a solution (if there is any)
3
to (2.308) where (o1, @) € H2 (D) x Hz(8D) satisfies
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‘We have
(2.310) (AL + A5 (KS)*Aop)[0M] = o),
(2.311) M@ — RplpW] - KQ[pP] = @,

Taking Vyp in (2.310)), cﬁrlaD in (2.311)), adding up and using the identities of
Lemma [2.102] yields

(A —MY) [Vopt™ + curlopy®] = Vape™ + curlype®.
Therefore
¢ = Vap™ + curlypyp®
is a solution of . Conversely, let ¢ be the solution to . There exist
(M) @) € HO% (D) x H2(dD) and (oM, o?) € H(,%(aD) x H2(8D) such that
v = VopyV + curlopy®,
¢ = Vope +curlypp®,
and we have
(2.312) (A = M%) [Vopyp™® + cutlopy@] = Vapp + curlgpp®.
Taking Vp- in the above equation and using the identities of Lemma yields
Aop (AT + Az (KD)" Bop) [0 1V] = Aopp™.
Since (™M), M) € (HO% (0D))? we get
(AT + A5 (KD) " Aop) [ ™M) = oM.
Taking curlpp in and using the identities of Lemma yields
Aop(® = Rp[pM] = Kp[p?]) = Aopp'®.
Therefore, there exists a constant ¢ such that

M@ — Rp[pM] — KL [] = ¢@ + ex(9D).

1
Since K% [x(0D)] = 5)((8D)7 we have

(89— 55) ~ Rl k[0 - 5] = )

C
A—1/2

Hence, <¢(1)7w(2) - ) € HO% (8D) x H=(dD) is a solution to (2.308). [

Let us now analyze the spectral properties of M p defined by in
(2.313) H(OD) := H¢ (D) x H*(dD),
equipped with the inner product
(u, V) oy = (Aapu™, Agpv Mg + (u® @)y,

which is equivalent to the HO% (8D) x Hz (dD)-norm. Note that by abuse of notation
we call u") and u(® the first and second components of any u € H(OD).
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Define
o (~(KH) N (oK) U {—3)),
(2.314) o2 = o(KD\o(—(KD)),
o(=(Kp)") No(KD).
Let Aj1 € 01,5 =1,2... and let ;1 be an associated normalized eigenfunction
of (K%)* as defined in Theorem Note that ¢;1 € Ho_%(aD) for j > 1. Then,

Wig = ( Agﬁ;ﬁm » >
» (Ml = K%)"Rp[A;pej.]

01

03

satisfies
leVDWjJ] = X\j1¥j1,

where M p is defined by (2.309).

Let A\j2 € o2 and let ;2 be an associated normalized eigenfunction of IC%.

Then,
0
7/}],2 - ( ©j2 )

Mol 2] = Njate.

Now, we assume for simplicity that the following condition holds.

satisfies

CONDITION 2.105. The eigenvalues of (K%)* are simple.

Let Aj 3 € o3, let ¢, ?3 be the associated normalized eigenfunction of (K%)* and

let ap§3) be the associated normalized eigenfunction of K%. Then,

ws=( o )
72T\ e

Mbp[hja] = Aj 393,
and A; 3 has a first-order generalized eigenfunction given by

cAaDgﬁ(lgz
2.315 53,9 — .
( ) V53,9 ( (sl —KQ)~ip (2)}LRD[CA3DSOJ 3] )

span{¢p

satisfies

for a constant ¢ such that P_, { (2)}RD [eA Dcpglg] = g Here, span{goj 3} is

the vector space spanned by np i 3, span{ap }L is the orthogonal space to span{gp }
in H(0D) (see Theorem [2 , and P @) (resp. P @) is the orthogonal

span{y span{y
(in H(OD)) projection on span{wj’g} (resp. span{(pj)?)}J‘).

We remark that the function ;3 4 is determined by the following equation

Ml 3.4] = Njsizg +js
Consequently, the following result holds.



122 2. LAYER POTENTIALS

PROPOSITION 2.106. The spectrum a(./T/l/D) =0y UoyUos = o(—(K%H)*) U

1 —
J((K%)*)\{—i} in H(OD). Moreover, under Condition|2.105, Mp has eigenfunc-
tions 1;; associated to the eigenvalues \;; € oy for j=1,2,... andi=1,2,3, and
generalized eigenfunctions of order one ;3.4 associated to \;3 € o3, all of which
form a non-orthogonal basis of H(0D).

PROOF. It is clear that \] — M is bijective if and only if A ¢ o(—(K%)")u
0((ICOD)*)\{—%}. Then, it is only left to show that v 1,v;.2,%;3, V3.4, 7 =1,2,...
form a non-orthogonal basis of H(0D). Indeed, let

P

P = e € H(OD).

Since wj(ll) U w;lg),g, j = 1,2,... form an orthogonal basis of H§(9D), which is
1

equivalent to H, 2(9D), there exist a,,x € I := {(4,1) U (4,3,9) : j = 1,2,...}
such that
1/)(1) — Z OZRA(;B@[,S)’
kel

and

Z o | < 0.

r€el
It is clear that ||¢,22) ”H%(aD) is uniformly bounded with respect to x € I;. Then
h=Y" a® e Hi(0D).
kel

Since 10](22) Uwfg, j =1,2,... form an orthogonal basis of H(9D), which is equivalent
to H%(aD), there exist o,k € Is :={(j,2) U (4,3) : j = 1,2,...} such that
v® —h=3" aw?,
KEl>

and

Z o | < 0.

r€ly
Hence, there exist o,k € I; U Iy such that

Y= Z 0Py,
KEI1UI

and

Z o |? < 0.

KREI1UI>

To have the compactness of M D, we need the following condition.

CONDITION 2.107. o3 is finite.
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Indeed, if o3 is not finite we have .//\ZD({wj,g,g; 121 ={ N3¢ g3+Wj3; §>
1} whose adherence is not compact. However, if o3 is finite, using Proposition [2.106
we can approximate M p by a sequence of finite-rank operators.

DEFINITION 2.108. Let B be the basis of H(OD) formed by the eigenfunctions

and generalized eigenfunctions of Mp as stated in Lemma . For+ € H(OD),
we denote by (v, 1)) the projection of ¥ into 1, € B such that

= (), )

The following lemma follows from the Fredholm alternative.

LEMMA 2.109. Let

)= ( v ) € H(dD).

e
Then,
7@’%“(”) , K= (i), i=1,2,
(Y, Vi) H(2D)
a1, 1) = W ¥winen) k= (j,3,9), 5 = (4,3),

B ($uUw)mOD)
(V%) H(OD) — Oé(il%%g)(?/fﬁg,%g)ff(az))
(Vs Yy ) H(OD) 7

where 1:1;,4, € Ker(\o I — (MY)*) for k = (j,1),i =1,2,3; {ER € Ker(\, — (M%)*)?
for k= (j,3,9) and (M%)* is the H(OD)-adjoint of M%.

KR = (j,3)7l‘€g = (ja?’»g)a

The following remarks are in order.

REMARK 2.110. Note that, since @;1 and 4,051?2 form an orthogonal basis of
_1
HE(OD), equivalent to Hy *(9D), we also have
W) s 1V = (4
s ={ S, e,
where ¢ is defined in .
REMARK 2.111. Fori=1,2,3, and j =1,2,...,

— _ ¢71
I — 1 .. — J»
()\ MD) [1/)]77/] )\ _ )\j,i’
Vi3, n vis
A=Xjs (A= Xjs)?

(M — Mp) ;3]

2.14.2. Layer Potential Formulation for Electromagnetic Scattering.
We consider the scattering problem of a time-harmonic electromagnetic wave inci-
dent on D. The homogeneous medium is characterized by electric permittivity &,
and magnetic permeability u,,, while D is characterized by electric permittivity e,
and magnetic permeability u., both of which depend on the frequency. Define

km = Wy\EmMm, kc = Wy/Eclc,
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and
€D :5mX(R3\ﬁ)+5cX(D)7 “D :5mX(R3\5) +5CX(D)'
For a given incident plane wave (E?, H?), solution to the Maxwell equations in
free space

(2.316) { VX B = VLo i R
VxH = —/-lwe,E" inR3,
the scattering problem can be modeled by the following system of equations:
VxE = —lwupH inR3\ D,
(2.317) V x H = —V/—lwepE inR3\ D,
1/><E|+—1/><E|7 = 1/><H|+—1/><H|7:0 on 0D,

subject to the Silver-Miiller radiation condition:
(2.318) lim |z] (\/um(H — HY(x) x - Vem(E — El)(x)) =
uniformly in z/|z|.
Using the boundary integral operators (2.306) and (2.306) and Lemma
the solution to (2.317)) can be represented as

(2.319)
() EN(x) 4 pmV X SEr[9](x) + V X V x SEn[p)(x), 2 e R3\D,
xTr) = —
1V X S¥e[y](z) + V x V x Ske[¢](x), zeD,
and
(2.320) H(zx)= fiv_l(v x E)(z) zeR*\dD,
WHD

where the pair (¢,v¢) € (H (dlv GD)) satisfies
(2.321)

/’Lc';uml_’_uchDc_MmMIBm E%—ﬁkm w

ke _ pkm ke + ﬁ kc Mk 72anm { 1)
bomp e 2fim ¢ fm” P

o v x KB
T V—lwr x H?
oD
_1
From [443], it follows that the system of equations (2.321) on H. 2 (div, D) x

_1

H;?(div,0D) has a unique solution and there exists there a positive constant
C = C(eey pie,w) such that

(2.322)

1l +ligll - CIE xv] 4 HIH xv] 4 ).

2(d ,0D) (div aD) H, 2 (div,dD) H 2 (div,8D)

2.14.3. Low-Frequency Asymptotic Expansions of Layer Potentials.
Low-frequency behaviors of M¥ and £% are investigated in the following lemmas.

1
LEMMA 2.112. For ¢ € Hp?*(div,0D), the following asymptotic expansion as
k — 0 holds

o0

(2.323) Mplel(z) = ) = (VIR Mp el (),

Jj=2
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where
Mplel(@) = [ (e) % Vi x o =yl (o)),

Moreover, ||./\/17DH£ ) is uniformly bounded with respect to j. In partic-

_1
(7,2 (aiv,0D)
1
-2

ular, the convergence holds in E(HT (div, 8D)) and M%, is analytic in k.

PROOF. A Taylor expansion of I'y(z — y) yields

Pl —g) = - i": (V=Tklz—y))y 1 i (V=1k)I I
= jlamlz — y) 4|z — y| = 47y '
Hence, ([2.323) holds. Note that from the regularity of |[z—y|’~1, j > 2, ||M%[¢]||H’%(d' oD)
) T iv,
is uniformly bounded with respect to j, and therefore, ||M£H£<H;% (@v,0D)) is uni-
formly bounded with respect to j as well. O

_1
LEMMA 2.113. For ¢ € Hy?(div,0D), the following asymptotic expansion as
w — 0 holds

o0

(£ - £5)lel(w) = Y Ll (o),
j=1
where
£hlele) = Cowta) x ([ o —abetdoty) - [ I o).
and

(V=D (Veehe) ! = (VEmbm)'™*)
Ar(j — 1) ‘

Cj=

Moreover, HE%HE( is uniformly bounded with respect to j. In particu-

_1
Hy 2 (div,0D))
1
2

lar, the convergence holds in E(HT (div, 8D)) and L% is analytic in k.
PROOF. The proof is similar to that of Lemma O

2.14.4. Coordinate Transformation and Invariance in Electromag-
netism. It is a remarkable fact that Maxwell’s equations under any coordinate
transformation can be written in an identical Cartesian form, if simple transforma-
tions are applied to the electromagnetic parameters and the electromagnetic fields.
As will be shown later, this result is useful for the design of invisibility cloaks.

Suppose that we make a coordinate transformation z — F(z), possibly singu-
lar. Let DF denote the Jacobian matrix. Consider the following Maxwell equations:

VxE = V—lwu(zx)H inR3
VxH = —/—lwe(z)E inR?

subject to the Silver-Miiller radiation condition ([2.318)), where e(x) = &, and
w(x) = p, for |z| large enough and (E?, H') is an incident plane wave.
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LeMMA 2.114. Let F be a diffeomorphism of Ij&ig onto R3 such that F(z) is
the identity for |x| large enough. Define E and H by E(y) = E(F~Y(y)) and
H(y) = H(F~(y)). Then, (E, H) satisfies

V,x E(y) = vV—lwF[p(y)H(y), inR3,
Vyx Hy) = —vV-IwFl[el(y)E(y) inR?,

together with the Silver-Miller radiation condition , where for a function

q(z),
DF(x)q(z)DF"(x)

F, =
[q](y) JetDF(7)
with x = F~1(y) and T being the transpose.

A similar result holds for the Helmholtz equation.

LEMMA 2.115. Let F be a diffeomorphism of R? onto R? such that F(x) is
identity for |x| large enough. Suppose that v is a solution to

1
V- =-Vu+w?v=0 inR?,
1

and v — v satisfies the Sommerfeld radiation condition, where v' is an incident
plane wave. Then v defined by v(y) = v(F~1(y)) satisfies

R31) Y, ELIE0) ) ) =0 iR
and v(y) — v (F~1(y)) satisfies the Sommerfeld radiation condition.
2.14.5. Multipole Solutions to the Maxwell Equations. For a wave
number k£ > 0,1’ = —I,...,land [ =1,2,..., the function
(2.325) ow (ks ) = by (k)Y (&)

satisfies the Helmholtz equation Av + k%*v = 0 in R3 \ {0} and the Sommerfeld
radiation condition:

(k;x) — v/ —1kvy (k;2)) = 0.

li -
Here, Y} is the spherical harmonics defined on the unit sphere S, & = z/|z|, and

hl(l) is the spherical Hankel function of the first kind and order [ which satisfies the
Sommerfeld radiation condition in three dimensions. Similarly, we define ¥y (x) by

(2.326) o (ks @) = ji(klz) Y (@),

where j; is the spherical Bessel function of the first kind. The function vy satisfies
the Helmholtz equation in all R3.

In the same manner, one can construct solutions to the Maxwell system with
the vector version of spherical harmonics. Define the vector spherical harmonics as

1 ‘o R
(2327) Ull’ = WVS}// (:E) and Vll/ =T X U”/,
forl!/=—1I,...,land [ =1,2,.... Here, £ € S and Vg denotes the surface gradient

on the unit sphere S. The vector spherical harmonics defined in (2.327)) form a
complete orthogonal basis for LZ(S), where L4 (S) = {u € (L*(S))? | v-u = 0}
and v is the outward unit normal to S.
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Through multiplication of the vector spherical harmonics with the Hankel func-
tion, one can construct the so-called multipole solutions to the Maxwell system.
To keep the analysis simple, one separates the solutions into transverse electric,
(E - x) = 0, and transverse magnetic, (H - ) = 0. Define the exterior transverse
electric multipoles to the Maxwell equations in free space as

EfF (ks x) = =10+ D" (k) Vi (2),
2.328 -
(2.528) HEE (ks x) = _V-lg, ( —VilF 1)h§1)(k\a:|)Vzl/(:%))7

wh

and the exterior transverse magnetic multipoles as

V-1 M X
(2.320) ETM (k, )fTvX(ﬂ/zth k\x|)v”,(m)),
HIM (ks ) = =10+ DAY (k|z]) Vie ().

The exterior electric and magnetic multipole satisfy the radiation condition. In the
same manner, one defines the interior multipoles (E?E 7H”, ) and (Eﬁ/M HlTl,M )

with hl( ) replaced by j;, i.e.,

EFE (kyx) = =10+ 1)1 (k|2 Vi (2),

2.330
( : Hll’ (k) = _WQV X Ell’ (k; ),

and

IA{J”T/ \/ l—|—1 -]l l{|iE| ”/ )

(2.331)
EfM (k; ) = %VX HyM (k; ).

Note that one has

2332)  x BE(s) = Y el @) + O el @3,

(2:333) 'V x BRE(k2) = YLD <k|x>Uw<ae>+l“;”ﬁ”(k|x|m’<m,

/
where H:(t) = b (t) + t (h{") (£) and Fi(t) = ju(t) + tj{(2).

The solutions to the Maxwell system can be represented as separated variable
sums of the multipole solutions; see [365] Section 5.3]. With multipole solutions
and the Helmholtz solutions in and , it is also possible to expand the
fundamental solution I'y to the Helmholtz operator.
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Let p be a fixed vector in R3. For |z| > |y|, the following addition formula
holds (see [358, Section 9.3.3]):

0o l
€
iz —y)p=— Z ; Z EpM (ks x EszfM(k‘ y)-p
=1 r=—]
Z Ezz/ ll/ (k y)p
=1 l’—f
/71 00 l
(2334) — TZ 1}”/ ]{1 J,‘)V’U”/(k' y)
—1

I=11=

with vy and 0y being defined by (2.325) and (2.326).
Plane wave solutions to the Maxwell equations have an expansion using the
multipole solutions as well (see [296]). The incoming wave

Ei(z) = V=Tk(q x p) x geV~ ke,

where ¢ € S is the direction of propagation and the vector p € R? is the direction
of polarization, is expressed as
(2.335)

where ¢ = (¢ X p) X q.

2.14.6. Scattering Coefficients and their Properties. This subsection
introduces the notion of scattering coefficients associated to the Maxwell equations
and provides some of their properties. It extends the notions and results established
in the previous section for the Helmholtz equation.

2.14.6.1. Notion of Scattering Coefficients. From (with k,, in the place
of k) and it follows that, for sufficiently large |z|,

l

Y (all’ngE(km§x) + Bll’ElTl/M(km§x))a
V=i

(2.336) (E — E')( Z l+1

where

= —v—lwfmﬂm/ EﬁfM(kma : / ll’ (Fm3y) - ¥ (y),
oD
Bur = v _1W€mﬂm/ ElTl’E(km; y) : — w?el / km;y ) : w(y)
oD
Let (cpgpl?, Z;,I?;) be the solution to 1] when

i _ TE( . i _ TE(y. .
E'=E, (kn;y) and H' = H,» (km; y),
and (@137, 1) when
i _ M. . i _ I TMy. .
E'=E,) (km;y) and H' = H,," (kmn;y)-
DEFINITION 2.116 (Scattering Coefficients). The scattering coefficients

TE,TE TE, TM TM,TE TM, TM
(Wll/ pp’ Wll’ ,pp’ I/Vll’ ,pp’ Wll/ ,pp’ )
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associated with the permittivity and the permeability distributions €, u and the fre-
quency w (or ke, km, D) are defined to be

WEETE _ VT wempim /8 ELM (ki) - o2 (y) do(y)
D

2, /8 B (ki) 030 do()
WwlrETM _ —V—1wemfim /a . EFM (ki y) - 22 (y) do(y)

i ,pp’

2, /8 B bnsn) - 05 ) do()

WEMTE VTt [ B (ki) o ) doty)
—wte?, / B (k) - 075 (y) do(y),

oD
Wyl M = vV —lwem tim /a . ELE (kmiy) - omd (y) do(y)

2.2 = ™
—we, Eﬁ,M(km;y) Py (y) do(y).
oD
As will be seen, the scattering coefficients appear naturally in the expansion of
the scattering amplitude. One first obtains the following estimates for the decay of
the scattering coefficients.

LEMMA 2.117. There exists a constant C' depending on (g, u,w) such that

Cl+r

TE,TE

(2337) VVll/,pp’ [57/,6,(0] S llpp

for all U, p,p’ € N\ {0}. The same estimates hold for VVg,iﬁ:M, lqu],\ng’ and
TM,TM

Wll’,pp’

PROOF. Let (p,1) be the solution to (2.321) with E‘(y) = E;;f(km;y) and
Hi = _Wﬁv x E'. Recall that the spherical Bessel function j, behaves as

ip(t) = " (1+O 1) as p — 00
) =T x < 2p+ 1) » proos

uniformly on compact subsets of R. Using Stirling’s formula

pl=V2mp(p/e)’ (1 + o(1)),

one has

PP
(2.338) Jp(t) =0 (Cppt > as p — 0o,

uniformly on compact subsets of R with a constant C independent of p. Thus one
has
C/P
X3 (3
| HH’%(div oD) | HH’%(div o0y =
T ’ T B
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for some constant C’. It then follows from ([2.322]) that

cr
H‘PHLZ(aD) + ||¢HL2(6D) S

for another constant C. So one gets (2.337) from the definition of the scattering
coefficients. d

Suppose now that the incoming wave is of the form

(2.339) Z Z (app/E 2) + by E1) (km,x))

p=lp'=
for some constants a,,s and by, . Then the solution (¢, ) to (2.321)) is given by

Y= Z Z (aPP @pp + bppr ‘Ppp >’

p=1p’'=

¥ = Z Z (am’ wpp + bppr ¢pp )

p=1lp'=

By (2.336) and Definition [2.116} the solution E to (2.317|) can be represented as
(2.340)

(B - B Z<+>

> (awEEE (ki) + BuERM (ki) o] = oo,
I'=—1

where
TE TE TE,TM
au Z 3 (WIS + by WEEIM
(2.341) troop
TM, TE TM, TM
B = Z Z (app/W”, + bpp/W”/ ) .
p=1lp'=—p

Using (2.340)), (2.341] , and the behavior of the spherical Bessel functions, the
far-field pattern of the scattered wave (E — E) can be estimated. We define the
scattering amplitude As[e, p, w] by

e\/—lkm\ﬂ

(2.342) E(z) — E'(x) = Asole, p,w](2) +o(|z| ™) as |z — oco.

ml]
Since the spherical Bessel function h(l) behaves like
hl(l)( t) ~ 1 VoTte— V=1 as t — oo,
(hl(l))'(t) ~ ge‘/jlte_ —I5m as t — 00,

one can easily see by using that
eV —Tkm|z|

41

Bl (ki 2) ~ —me VHET (= U+ D)V (2) as [z] = oo,
V—=1km |z| )

ElTl’M(km§ T) ~ eT ?6_ v _1%77( — VIl + 1))Ull/(i') as |a:| — 0.

Therefore, the following result holds.
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PROPOSITION 2.118. If E* is given by , then the corresponding scattering
amplitude can be expanded as

(2.343)  Aco[e, p, w](2) ZZ —(v-1 10 +_1 = Z (all’Vll’ +511'\/§Ull’(55)>7

1=1 V=—
where ay and By are defined by (2.541]).

Consider the case where the incident wave E is given by a plane wave eV=Thmdz,
with d € S and d - ¢ = 0. It follows from (2.335|) that

p — A(d) - ) ETE (ks ) — | 22 (d) - ) EEM (ks 2
Zm ; [ V1V (d) - €) EZE (K ) o (Uppr (d) - ) EZM (s ) |

and therefore,

4m(y/—1)PH1 dn(v/—1)P [e

App’ = _¥(Vmﬂ(d) ) and by = _g ﬂ(Upp/(d) “c).
Vplp+1) p(p+1) V Hm

Hence, the scattering amplitude, denoted by A [e, u,w](c, d; Z), is given by (2.343)

with

(2.344)

=33 o
=2 8 A VW () VTS = [ Wt WA

p=1p'=
which shows that the scattering coefficients appear in the expansion of the scattering
amplitude.
The low-frequency behavior of the scattering coeflicients is now investigated.
The following result holds.

LEMMA 2.119. There exists §g > 0 such that, for all § < &g,
CH—P
TE,TE
(2.345) Wi [E5 1, 0w]| < ng+p+17

foralll,p e N\{0}l'!=—1,...,1,p' = —p,...,p, where the constant C depends on

(e, p,w) but is independent of 6. The same estimate holds for VV”T,b;pTM V[/llT,f\;Ié,TE,
and VV;:M TM

PROOF. Let (p,1) be the solution to 1) with E'(y) = E;;,’?J((Skm;y) and

Hi = %: V x Ei. Then, from (2.338), it follows that

cr

)y, < g

1] - <
Hy 2 (div,0D) — pP

bl

H, 3 (div,8D)
where C' is independent of §, and hence

Ccr
19°[1 20y + 011 | 2oy < 250"

for § < §p for some §y. So one gets (2.345)) from Definition [2.116] of the scattering
coeflicients. O
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2.14.6.2. Multi-Layer Structure and its Scattering Coefficients. Here we con-

sider a multi-layered structure and explain how to compute its scattering coeffi-
cients. A numerical example is also presented. The multi-layered structure is de-
fined as follows: For positive numbers ry,...,rp4 1 with2=7r; >ro > ---rpp 1 =1,
let

Aj={z:rjpq <l|z|<r;}, j=1,...,L,

Ag:=R3\ By, Apy1(=D):={x:|z| <1},
where By denotes the ball of center 0 and radius 2 and

I‘j:{\x|:rj}, j:].,,L+].

Let (p5,€;) be the pair of permeability and permittivity parameters of A; for j =
1,...,L+1. Set yp =1 and g = 1. Then define the permeability and permittivity
distributions of the layered structure to be

L+1 L+1
(2.346) = Z uix(4;) and e= Z gix(4;).
5=0 j=0

FIGURE 2.7. A multi-layered structure.

. . TE,TE TE,TM TM,TE TM,TM
The scattering coefficients (W(n,m)(p,q)’ V[/(n’m)mq)7 W(n,m)(p,q)’ (n,m)(p,q)) are

defined as before, namely, if E? is given as in (2.339)), the scattered field E — E* can
be expanded as (2.340) and (2.341). The transmission condition on each interface
T'; is given by

(2.347) [& x E] = [& x H] = 0.
Assume that the core Ap 4 is perfectly conducting (PEC), that is,
(2.348) Exv=0 onTp4 =0Ap 1.

Thanks to the symmetry of the layered (radial) structure, the scattering coeffi-
cients are much simpler than the general case. In fact, if the incident field is given
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by E' = E{ﬁ“ then the solution E to (2.317) subject to (2.318) takes the form
(2.349) B(z) = a;ETE (2) + a;ELE (), z€4;, j=0,...,L,

with ag = 1. From ([2.332)) and (2.333]), the interface condition (2.347)) amounts to
Jnlkiry) B (kyr)) [a]
J

—Tn(kjr;) —Hulkir;)| |a;

S Tlkry) k) | o

5 350 1jn(kj*1rj) {L%l)(kjfﬂ"j) i - .

(' ) N 7»7n(kj71'rj) 77{“(1@717‘]‘) [aj_1:|’ J= bk
Hj—1 Hj—1

/
where H,(t) = h,(zl)(t) +1 (h%l)) (t) and T, (t) = jn(t) + tj,,(t), and the boundary
condition on the perfectly conducting surface I'p 41 is

(2.351) [j"((f 2 hg)(()kL)] [Zﬂ - m '

Since the matrices appearing in (2.350)) are invertible, one can see that there exist
aj and aj, 7 =0,1,... L satisfying (2.350)) and (2.351)). Similarly, one can see that

if the incident field is given by E* = ET (x), then the solution E takes the form

(2.352) E(x) =b0,EIM(2) + b;ETM (), z€4;, j=0.1,....L

for some constants b; and Bj (50 = 1). One can see now from (|2.349) and ([2.352])

that the scattering coefficients satisfy

TE,TM TM,TE _
W(n,m)(p,q) = W(mm)(p,q) =0 for all (m,n) and (p,q),
TETE _ yyTMTM :
Weamwao = Wameo =0 1 (mn) # (p,9),
and, since ([2.349)) and (2.352) hold independently of m, one has
TETE __ 1y,TETE
W(n,O)(n,O) - W(n,m)(n,m)’
TM,TM 1, TM,TM
W(n,o)(n,o) = W(n,m)(n,m) for —n<m<n.

Moreover, if one writes
TE ._ ywTE ™™ ._ yyTM
Wo ™ = Wioymo) and W™ =W, 0)(n,0):

then one has

—1 1 —1 1

Suppose now that ETF is the incident field and the solution E is given by
E(r) = &,E () + ;B § (), w€d;, j=0,...L,

with @g = 1, where the coeflicients a;’s and a;’s are determined by ([2.350) and
(2.351)). From (2.350)) it follows that

. 1
[aj] ljn(kﬂj) hD (k) Jn(kj-1r;) hi) (kj-1r)) |:&j1:|

—Tn(kjry)  —Hn(kjr;) — Tn(kj1r;)  ——Hn(kj—1r;)
Hj K j—1 j—1

a; aj—1
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for 7 =1,..., L. Substituting these relations into (2.351]) yields

0 TE ag
(2.354) o] = el ]
where
. TE ,TE L5, (ke A (g
PPl i= [ P | = vt TLidedry | [Pl e (b)
(2.355)
rl
ﬁ ;jf"‘ln(kjrj) —h{) (k;r;) 1jn(kj—1Tj) {lgll)(k’j—lrj)
x 1 ) T (kiar:) ——H (ki g7
i=1 _—u—jJn(km) n(kyrs) ujqj"( i=173) i1 ki)
Then (2.354)) yields
TE
(2.356) WEE:—\/ 1n(n—|—1)a _ V-In(n+1)pay

ko 0 ko 2y
Similarly, for W,.I™  one looks for another solution E of the form
B(x) =bEyy (o) + 0 Biy (2), we 4y, j=0,... L
with l~>0 = 1. The transmission conditions become
1 1 -
;Jn(ijj> ;Hn(kjrj) |:b]}
J J .
Julkyrs) A (kry) |

1 1 -
(kg ki 1ps .
@351 = |5 ki) o Halkior) [Z?‘l}v G=1,...,N+1,
Jn(kj-175) h(l)(k —175) =t
and the boundary condition on the inner most layer, which is perfectly conducting,
is
Tn(kr) Ha(kr)] [b2] _ [0
(2.358) [ 0 0 b | = [o]
From (2.357) and ([2.358)), one obtains
(2.359) Ol = P, ) | 2]
0 bo
where
™ [ TM
TM o |Pn,1 Pnp2 2 2 (kL) Hﬂ(klz)
P’n. [‘shu’?w] |: 0 :| H'LL E |: 0 0
(2.360)
L | RV (kjr; Hy(kjr 1
y H n (kjT;) ; (kjr;) - _1..7n(kj 175) _1?-[ (kj_17;)
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From the definition of W™ and (2.359),
VeIn(n+1)b - V=In(n+1) pid

ko b ko '

(2.361) WrhE =

It is worth emphasizing that pgg # 0 and p?g # 0. In fact, if ng = 0, then
(2.354)) can be fulfilled with g = 0 and ag = 1. This means that there exists (u, )
on R?\ D such that the following problem has a solution:

V x E =v—lwuH in R?\ D,
VxH=—V/—lweE  inR3\D,
(xx E)|, =0 on 9D,

E(z) = Egg(x) for |x| > 2.

Applying the following Green’s theorem on Q = {z : 1 < |z| < R},

/(E-AF+curlE-curlF+V~EV-F)dx

Q

:/ (vx E-curlF +v-E (V- F))do(x)
o0

with F' = ETH(z) and the boundary condition on the perfectly conducting surface
{lz| = 1}, it follows that

/ (v x B) - Hdo(z) = V—1ko / (|H?> - |BE|*)dz.
|z|=R Q
In particular, the left-hand side is real-valued. Hence,

/ \H x v — E2do(z) :/ (1H x v + |EP — 2R((v x E) - H)do(a)
lz|=R |z|=R

:/ (H x v[? + |E|?)do (x).
|lz|=R

From the radiation condition, the left-hand side goes to zero as R — oo, which
contradicts the behavior of the Hankel functions. One can show that pl % # 0 in a
similar way.

2.14.6.3. Numerical Ezample. We now demonstrate how to compute the scat-
tering coefficients W' and W™ numerically using Code Scattering Coefficients
for Maxwell’s Equations. For simplicity, we consider only W, . Recall that

V-1 1
(2.362) wre - _yZint D o
ko

with the constant ag being determined by (2.350) and (2.351). From (2.350]), we
obtain

ap/a _ _ _ ar/a
(2.363) [a%ﬂ = (M{IND) (My ' Na) . (M N [ 1/ L} 7
where
Jn(kjri) hY (k) Jn(kj-175) i (kj_ar))
Mj = Nj —

—Tn(kjrs)  —Hu(kjrj) |’ TIn(kj-17;) Hn(kj—175)
M H

j Hi—1 Hj—1


http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial6/6.1 Scattering Coefficients for Maxwell's Equations.zip
http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial6/6.1 Scattering Coefficients for Maxwell's Equations.zip
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From ([2.351f), we immediately see that

- 1
ar _ _hg )(kLTL+1)
ar Jn(kLroyr)
Therefore, we can compute ag/ay, and ag/ar. But, since ap = 1, we can also

compute ag and then W%,

Now we present a numerical example. We set the parameters for the structure
as follows: the number of layers L is L = 3, the radii of the layers are 1 = 2,15 =
5/3,73 = 4/3,74 = 1, and the material parameters are (g9, uo) = (1,1), (€0, o) =
(0.5,0.5), (g0, o) = (2,2), (0, pto) = (0.5,0.5). The numerical result for W,I'¥ and
WIM forn =1,2,...,7 is shown in Table The decaying behavior of WI'# and
WIM is clearly shown.

wIFE wIM
—0.9991 + 0.9572y/—1 | —0.7473 + 1.6644/—1
—0.7527 4+ 0.0960y/—1 | —0.7650 + 0.0992/—1
—0.1642 + 0.0022v/—1 | —0.1643 + 0.0023+/—1
—0.0191 4 0.0000/—1 | —0.0191 4 0.00004/—1
—0.0013 + 0.0000y/—1 | —0.0013 + 0.0000y/—1
—0.0001 4 0.0000y/—1 | —0.0001 4 0.00004/—1
—0.0000 4 0.0000y/—1 | —0.0000 + 0.00004/—1

N O ULk W N B

TABLE 2.8. Scattering coefficients for a multi-layer spherical shell.

2.14.7. The Helmholtz-Kirchhoff Theorem. Let

(2.364) ka (I) =Em (ka (I)I + %Dirkm (l’))

be the Dyadic Green (matrix valued) function for the full Maxwell equations. The
following Helmholtz-Kirchhoff identity holds.

PROPOSITION 2.120. Let OBR be the sphere of radius R and center 0. We have
(2.365)

/SBR (8ngm (2—y)Gp,, (2—y)— Gy, (2—y) agjm (z—y)) do(y) = 2vV-1S3 Gy, (z—2),

which yields

— 1
(2.366) lim G, (x —y)Gyg,, (z —y)do(y) = ——S Gy, (z — 2),
R—+o0 9Br km
by using the Silver-Muller radiation condition.
2.14.8. The Optical Theorem. The optical cross-section theorem for the
scattering of electromagnetic waves can be stated as follows [265].
PROPOSITION 2.121. Assume that the incident fields are plane waves given by

EZ(J?) _ Ce\/jlkmdm’

Hi(zr) = g—md X ce‘/jlkmd'm,
V tim
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where ¢ € R3 and d € S are such that ¢-d = 0. Then, the extinction cross-section
Q°"t, defined by

Q¥ = —12,/’””3%[/ (Bi x (H— H") + (E — E*) x H) - vdo,
|c] Em oD

satisfies

dr _[c- Asol(c,d,d)
ext _ 20 | I LT\ H)
e et

where the scattering amplitude Ay is defined by with oy and By are given
by (2.344).

Analogously to the scalar case, the extinction cross-section Q¢! is defined as
the ratio of the sum of the mean powers absorbed and scattered by D to the mean
intensity power flow in the incident field. The latter quantity is given by

—%&a[(Ei x H7) - d]

which reduces to
1 /e
=4 ==l

2V pm

2.14.9. Electromagnetic Scattering by Small Particles. We consider the
scattering problem of a time-harmonic electromagnetic wave incident on a particle
D. The homogeneous medium is characterized by electric permittivity &, and
magnetic permeability p,,, while D is characterized by electric permittivity . and
magnetic permeability p.. We assume that €,,, €., i, and p. are positive constants
and define

km = Wy\EmMm, kc = Wy/Eclc,
and
ep = emX(R*\ D) +ecx(D), pp = emx(R*\ D) + e.x(D).

For a given incident plane wave (E, H'), solution to the Maxwell equations

in free space (2.316)), the scattering problem can be modeled by the system of
equations ject to the Silver-Miiller radiation condition .

Let D = z 4+ 6B where B contains the origin and |B| = O(1). The following
result follows from [69), [79], [81]. It gives the leading-order term in the asymptotic
expansion of the scattered electric field £ far-away from the particle.

THEOREM 2.122. For D = z+JB € R? of class C1'® fora > 0 and K € R3\ D,
the following far-field expansion holds uniformly in K

(2.367)
Es(z) = —@v x Gy, (x — 2)M (N, DYH(2) — w1 Gy, (x — 2)M (\e, D)E'(2)
+O(547)7:

where Gy, (x—z) is the Dyadic Green (matriz valued) function for the full Mazwell
equations defined by and M (A, D) and M ()., D) are the polarization ten-
sors associated with D and the contrasts A, and A\ given by with k = L/ e
and k = e./em, respectively.
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2.15. Integral Representation of Solutions to the Lamé System

Let © be a bounded domain in R? with a connected Lipschitz boundary. Let
A and p be the Lamé constants for §2 satisfying the strong convexity condition

(2.368) w>0and d\+2p > 0.
The corresponding Lamé system is given by
LY = pAu+ (A + p)VV - u,
and the conormal derivative Ou/0v is defined by
ou

(2.369) = AV - u)N + pu(Vu + Vu')N,

where the superscript ¢t denotes the transpose and N is the unit normal to the
boundary 92. We introduce the symmetric gradient as

1
(2.370) Viu:= §(Vu + Vu')
and define the elasticity tensor C = (Cyj)¢; =1 by
(2.371) Cijkt = NijOrr + p(0indj1 + 0:10jk).
With this notation, we have
LMu =V - CVeu,

and

du <
5 (CVeu)N.

2.15.1. Fundamental Solutions. In the three-dimensional case, the Kupradze
matrix T% = (T'};)?,, of the fundamental solution to the operator LM+ w? s
given by

V=Tw|z| V=lw|z|
dij V/Twla| 1 e °» —e e

2:0;

I (z) =

_ e e
A7 | x| 4drw? ||

where 0; denotes 0/0z; and

s =+/lt, Cp=/A+2u.

See [306, Chapter 2]. One can easily show that I'y; has the series representation:

—+o00 n
w 1 Vv -1 n+1 1 n n—1
(2.372) Iij(@) = S 4r = (n+2)n! ( et gt )w il
+00 n
1 -1 —1 1 1
_"_72\/7 (’I’L )( 5 — 2)wn|x|n—3xixj.
47 (n+2)n! \cit2  opt ‘

If w = 0, then T is the Kelvin matrix of the fundamental solution to the Lamé
system; i.e.,

M 0y Y2 TiTy
2.373 [0 (p) = L2 122
( ) (%) A |x| 4w |z)?

where

1/1 1 1/1 1
2.374 =—(= d ——(=_ )
( ) n 2<u+2,u—|—)\> and 72 2(,u 2u+)\)
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In the two-dimensional case, the fundamental solution T* = (T'g})7;_; to the
operator LM 4 w?, w # 0, is given by
(2.375)
-1 -1
I¥ (z) = _7\2“51,],]{51) (w|$|) V0, (Hou) (‘”4) g <“’|$|)> .

Cs 42 p Cs

See [6] and [306], Chapter 2]. For w = 0, we set I'” to be the Kelvin matrix of

fundamental solutions to the Lamé system; i.e.,
0 ;)= Mg P2 T
(2.376) ri(z) = 55” In|z| — om o

2.15.2. Single- and Double-Layer Potentials. Analogously to the Laplace
operator, the single- and double-layer potentials for the operator £LM* + w? are
defined by

@3 Sl = [ TG -ne o). ceR”
0
(2.378) Diel(e) = [ T - e da(y), @ € R\ 00,
a0 Ov(y)
for p € L2(09)?. Here, the conormal derivative of T' is defined by
0 w _ w
(2.379) 81/(y)r (x—y)b= () (T (x — y)b)

for any constant vector b.
The following formulas give the jump relations obeyed by the double-layer
potential and by the conormal derivative of the single-layer potential:

(2.380) 8(8(;61/[@]) ’i(x) = (:I: %I + (IC;%)*) [¢](z) a.e. x € 09,
(2.381) (81|, () = (= %I +K8) () ez € 00,
where K is the operator defined by
(2.382) Kg§lel(z) = p.v. /8 . argl(/x(y;y)w(y) do(y)
and (K%)* is the L%-adjoint of Kq"; that is,
W\ * _ arw(x B y)
() lelw) = . | FE () doty).

See [306, 187].
Let ¥ be the vector space of all linear solutions to the equation £**u = 0 and
Ou/dv = 0 on 99, or alternatively,

(2.383) U= {’(/) :(‘)iz/)j—i—éjz/)i =0,1<1y3 Sd}
Define a subspace of L?(9Q)? by

L3, (00) = {f € L*(00)¢ / -1 do =0 for all o € \1/}
o0
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In particular, since ¥ contains constant functions, we get

/ fdo=0
a0

for any f € L2(09). We also know that if u is smooth and satisfies £}#u = 0 in
Q, then 8u/8u|aQ € L2 (09).

We recall Green’s formulas for the Lamé system, which can be obtained by
integration by parts. The first formula is

(2.384) / u- ov do = / u- LYv + E(u,v),
o0
where u € H'(Q)?, v € H>?(Q)¢, and
(2.385) E(u,v) = / AV -w)(V-v) + g(Vu +vul) - (Vv + ).
Q

Formula (2.384)) yields Green’s second formula

al_ 8711 — Ny, A
(2.386) /as)<u 5 Y aV)/Q(uﬁ v—v-LY),

where u, v € H3/2(Q).
Formula (2.386) shows that if u € H3/2(Q)? satisfies £>*u = 0 in €, then
u/ov|,, € Ly (09).

2.15.3. Helmholtz Decompositions and Radiation Conditions. Let us
formulate the radiation conditions for the elastic waves when Sw > 0 and w # 0.

Any smooth solution u to the constant-coefficient equation (LM + w?)u = 0
can be decomposed as follows [306, Theorem 2.5]:

(2.387) u=u, + u;,

where u, and u, are given by

u, = (87 — k) THA + KD,

u, = (/-@f, - ﬁi)_l(A + ﬁi)u,
with
(2.388) Fo= = = 2 and Ky = o = e

a VI Cp VA A+ 2,u'
Then u, and u, satisfy the equations
(A + K2)u, =0, V xus =0,
(A + K2)u, =0, V-u,=0.

We impose on u, and u, the radiation condition (2.153) for solutions of the
Helmholtz equation by requiring that

(2390) {arus(x) - \/jmsus(x) — 0(7.—1)7

(2.389)

Oruy(z) — V=1kpu,(x) = o(r™1), as T = o] = oo
We say that u satisfies the Sommerfeld-Kupradze radiation condition if it can be
decomposed in the form with us and u, satisfying (2.389) and (2.390). By a
straightforward calculation, one can see that the single- and double-layer potentials
satisfy the radiation condition. We refer to [5), [306] for details.

We recall the following uniqueness results for the exterior problem [306].
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LEMMA 2.123. Let u be a solution to (LM +w?)u = 0 in R4\ Q satisfying the
radiation condition. If either u =0 or Ou/dv = 0 on 99, then u is identically zero
in R\ Q.

In dimension d, the Kupradze matrix I' can be decomposed into shear and
pressure components [7]:

(2.391) I“(z) =T%¥(z) +T¥(x), z€R? x#0,
where
1 1
(2.392) Iy (z) = o DI, (z) and T¥(z)= M—Kg(ﬁiI +D)I . (z).
Here, the tensor D is defined by
2\d
(2.393) D = (95)i =1,

and the functions I';, and I’ are defined by (2.147).

2.15.4. Transmission Problem. Let ), it be another pair of Lamé parame-
ters such that

(2.394) A=N( =) 20, (A=X)?+ (- ) #0.
Later in this book, we will consider the following transmission problem:

LM+ w?u =0 in Q\ D,

L3+ wPu =0 in D,
Jdu

(2.395) 5, — 8 on 081,
u|+—u’_:0 on 0D,

Ou Ou
5‘4»—%‘7:0 OnaD.

Let S’}j—’, denote the single-layer potential defined by with A, u replaced
by A, ji. We also denote by Ou/0v the conormal derivative associated with \, fi.
We now have the following solvability result which can be viewed as a compact
perturbation result of the case w = 0.

THEOREM 2.124. Suppose that (A — XN)(u — i) > 0 and 0 < M\ j < +oc.
Suppose that Sw > 0 and w? is not a Dirichlet eigenvalue for —LM* on D. For any
given (F,G) € HY(0D)4 x L2(0D)¢, there exists a unique pair (f,g) € L*(0D)¢ x
L*(0D)? such that

Splfll- — Splell+ = F.

0 ow 0 w _

%SD[f] = asp[g] L G.

Ifw =0 and G € L%(0D), then g € L%(0D). Moreover, if F € ¥ and G = 0,
then g = 0.

PROOF. For w = 0, the theorem is proved in [208]. Here, we only consider the
case w # 0, which can be treated as a compact perturbation of the case w = 0. In
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fact, let us define the operators T, Ty : L2(0D)% x L?(0D)% — H'(0D)? x L?*(0D)?
by
T(5.8) = (Splfll- - Splalle. 2S5l — 2 spla]
8) = | opll]l- Dg-i-aaﬂD B aI/Dg+
and

nagr:C%M|—Saau7gﬁam—jﬁaah)

It is easily checked that T'— T} is a compact operator. Since we know that Ty
is invertible, by the Fredholm alternative, it is enough to show that T is injective.
Suppose that T'(f,g) = 0. Then the function u given by

Splel(x), xeRI\D,
u(z) =< .
Splf](z),  zeD,
is a solution to the transmission problem

LM+ w?u =0 in R\ D,

L3+ wPu =0 in D,
u|+—u’7:0 on 0D,
Ou

OJu
$+*$|_:O OHaD,

satisfying the radiation condition. By the uniqueness of a solution to this trans-

mission problem, see for instance [306, Chapter 3], we have u = 0. From the
assumption on w, we conclude that f = g = 0. This completes the proof. (I

For transmission problems such as (2.395|), the following representation formula
holds.

THEOREM 2.125. Let Sw > 0. Suppose that w? is not a Dirichlet eigenvalue
for —LM on D. Let u be a solution of and f :=ul|pq. Define

(2.396) H(z) := Dg[f](z) — Sglgl(z), =z € R\ 0.
Then u can be represented as

:{H@0+Sﬂwwh reQ\D,

2.397 u(x -
(2390 ) SE9](w), z €D,

where the pair (¢,v) € L>(0D)% x L?(0D)? is the unique solution of

Spl¢] — Sglv] = Hsp,
(2.398) ) ) _OH

—Sp[¢] — =SB

o v " Ovlep’

Moreover, we have

(2.399) H(z) +Sy[Y)(x) =0, zcR\Q.
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PRrROOF. We consider the following two-phase transmission problem:
LMY 4 w?v =0 in (Q\ D)URI\ Q),
LMy 4wy = 0 in D,
(2.400) ov ov
VL—V’Jr:f, gV’_gV’+:g on {2,
A% A%
vL—v’Jr:O, EL—%MZO on 0D,

with the radiation condition. This problem has a unique solution. See [306], Chap-
ter 3]. It is easily checked that both v and v defined by

_Ju(z), zeq,
vie) = {0, v eRI\Q,

and

H(z) + S§[¢¥](x), r € R%\ <D U 89),

Splol(x), z €D,

are solutions to (2.400). Hence v = v, which concludes the proof of the theorem. [

v(z) =

2.15.5. Eigenvalue Characterization. Let s be an eigenvalue of —£M* in
Q with the Neumann condition on 92 and let u denote an eigenfunction associated
with k; i.e.,

L Mu+ ku=0 in Q,

2.401
( ) a—u =0 on 0N.
ov

We note that since —L£M* is elliptic, it has discrete eigenvalues of finite multiplicities.
The following proposition from [306] Chapter 7] is of importance to us.

PropOSITION 2.126 (Eigenvalue characterization). The necessary and suffi-
cient condition for (2.401) to have a nontrivial solution is that k is nonnegative
and \/k coincides with one of the characteristic values of (1/2)1 — K&. If k = w3
is an eigenvalue of (2.401) with multiplicity m, then ((1/2)I — K&°)[¢] = 0 has
m linearly independent solutions. Moreover, for every eigenvalue k > 0, \/k is a
simple pole of the operator-valued function w — ((1/2) I — Kg)~L.

2.15.6. Neumann Function. Let 0 < k1 < ko < ... be the eigenvalues of
—LM* in Q with the Neumann condition on 9Q. For w ¢ {,/F;};>1, let N¥(z, 2)
be the Neumann function for £M* + w? in Q corresponding to a Dirac mass at z.
That is, Ng is the solution to

(LM 4+ w?)NY (2, 2) = =5, ()1, z €,
(2.402) ONY,
ov

Then the following relation, which can be proved similarly to (2.183]), holds (see
[44]):

(x,2) =0, x € 0.

(2.403) (— %I + /CS)[N%(,Z)](x) =I%(z,2), xz€dQ, z€.
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Let (u;);>1 denote the set of orthogonal eigenfunctions associated with (k;);>1,
with [[u;||z2(q) = 1. Then we have the following spectral decomposition:

0404 N (o) = S~ () (=)
(2.404) Q(%@*ZW-
Jj=1
Here we regard u; as a column vector, and hence u;(z)u;(2)" is a d x d matrix-
valued function. We refer the reader to [413] for a proof of (2.404).

2.15.7. Dirichlet Function. Now we turn to the properties of the Dirichlet
function. Let 0 < 71 < 75 < ... be the eigenvalues of — LM in Q with the Dirichlet
condition on 9. For w ¢ {,/7};>1, let G§(x,2) be the Dirichlet function for
LM 4+ w? in Q corresponding to a Dirac mass at z. That is, for z € Q, G&(-, 2) is
the matrix-valued solution to

LY+ W) GY(x, 2) = —6,(2)], x €,

o105 (2 +02) G0, 2) = —6.()
Gg(z,z) =0, x € oS

Then for any x € 92, and z € Q2 we can prove in the same way as (2.403)) that
1 i) 0GY oo

(2.406) (G1+ (K8 ) IF2 (2)]@) = = F—(a.2).

Moreover, we mention the following important properties of G§:

(i) Let (v;)j>1 denote the set of orthogonal eigenvectors associated with

(75)j>1, with [[v;|lz2(o) = 1. Then we have the following spectral de-
composition:
o0 t
w _ N vi@)viz)

(ii) For x € 9, 2 € Q, y € 9B, and € — 0,
400 1
(2.408) Gg(z,ey+ 2) = Z je‘mafG‘{z(x,z)yﬁ.
1B]=0 "
2.15.8. Neumann-Poincaré Operator. The Neumann-Poincaré operator

for the Lamé system KY, is defined by (2.382)) for w = 0. It is connected to LM in
the following way. The Dirichlet boundary value problem for the Lamé system

{z:wu =0 inQ,

(2.409)
u=g on 01},

can be solved by using the double layer potential u = DY [f] and finding the solution
of the integral equation

(2.410) (;I—i— /C?Z) [f]=g on oQ.

In this subsection, we show that K2 can be realized as a self-adjoint operator
on H'/2(09)? by introducing a new inner product in a way parallel to the case
of the Laplace operator. But, there is a significant difference between Neumann-
Poincaré operators for the Laplace operator and the Lamé operator. The Neumann-
Poincaré operator for the Lamé operator is not compact even if the domain has a
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smooth boundary, which means that we cannot infer directly that the Neumann-
Poincaré operator has point spectrum (eigenvalues). However, it can be shown that
the elasto-static Neumann-Poincaré operator on planar domains with C*7, n > 0,
boundaries has only point spectrum. In fact, for d = 2, one can show that on such
domains [85]

[ —
22p 4+ A)
As an immediate consequence of , it follows that the spectrum of K,
consists of eigenvalues which accumulate at +4/(2(2u 4+ A)). We then explicitly
compute eigenvalues of K2, on disks and ellipses. It turns out that +4/(2(2u + \))
are eigenvalues of infinite multiplicities (there are two other eigenvalues of finite
multiplicities) on disks, while on ellipses £4/(2(2p + X)) are accumulation points
of eigenvalues, but not eigenvalues, and the rates of convergence to +4/(2(2u + \))

are exponential.
Let

(2.412)  H(09) = {f € H V200 : (), £)1/9 170 =0 for all ¢ € U},
where ¥ is defined by (2.383]).

The following lemma collects some facts to be used in the sequel, proofs of
which can be found in [169], 187, [356].

LEMMA 2.127. (i) K, is bounded on H'/2(0Q)?, and (KC)* is on H~1/2(002).
(ii) The spectrum of (K%)* on H=Y2(0Q)? lies in (—1/2,1/2].

(iii) (1/2)I — (KQ)* is invertible on H3, (09).

(iv) SY as an operator defined on OSY is bounded from H~'/2(00)® into H'/?(9Q)%.
(v) 88 : H=1/2(00)% — HY/2(00)? is invertible in three dimensions.

(2.411) (Kd)? — )2I is compact.

In two dimensions Sg may not be invertible. In fact, there is a bounded domain
99 on which S83[p] = 0 on 9N for some ¢ # 0.

LEMMA 2.128. W is the eigenspace of KO on HY/2(0Q)? corresponding to 1/2.

PROOF. Let f € W. Then f = v|pq where v satisfies L2*v = 0 in Q and
Ov/dv =0 on 99Q. So, we have for z € R4\ Q

0
Dhlf)e) = [ (= nfw)doty)
B ore v — () — Tz — ov () —
— [ ooy~ v - T =)o dot) = .
So we infer from that
(2.413) Ko [f] = %f.

Conversely, if (2.413) holds, then we have from (2.381)) that DY[f]|- = f and
DY [f](x) = 0 for x € R4\ Q. So dDY[f]/0v|_ = ODY[f]/Ov|;+ = 0. Tt implies that
f € U. This completes the proof. (I

Let Ny := %, which is the dimension of W. Let {f(j)};-vzdl be a basis of ¥
such that

(2.414) (D £DY o 10 = 635,
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where §;; is the Kronecker’s delta. Since dS3[f()]/dv|_ € H3 and 1/2I — (KQ)*
is invertible on 3, there is a unique $\) € H3, such that

(37~ (8" ) B9 = 2 SN = (=57 + ()" ) )

Define @) := 30 4 £, Then, we have

(2.415) (K8)[e9] = 36U,

Moreover, we have

(2.416) (D, <P(j)>1/2,—1/2 = (£, @(j)>1/2,—1/2 + <f(i)7f(j)>1/2,—1/2 = 045,

which, in particular, implies that the ©()’s are linearly independent.
Let

(2.417) W := span {90(1), - ,,QD(Nd)}’
and let
(2.418) Hw = {f € H'2(0Q)* : (£,0)1/9 12 =0 for all p € W}.

LEMMA 2.129. The following results hold.
(1) Each o € H=/2(0Q)¢ is uniquely decomposed as
Ng

(2.419) e=¢ +¢" =0+ (£, 0)1/5 120V,
j=1
and @' € Hy,.
(ii) Each £ € HY2(0Q)? is uniquely decomposed as
Ng
(2420) f= f/+f// = fl+Z<f7@(j)>l/2»_1/2f(j)’
j=1
and £’ € Hy.

(iii) S maps W into U, and H}, into Hy .
(iv) W is the eigenspace of (KQ)* corresponding to the eigenvalue 1/2.

PrROOF. For ¢ € H'/2(0Q)¢, and let ¢” be as in . Then, one can
immediately see from that (F0), ©')1/2,—1/2 = 0 for all j, and hence ¢’ € H3,.
Uniqueness of the decomposition can be proved easily. (ii) can be proved similarly.

Thanks to we have 983[p)]/dv|_ = 0, and so SH[¢pW]|oq € U. If
© € Hy, then

<8?2[<)0]590(j)>1/2,71/2 = <3§Qz[¢(j)}7¢>1/2,71/2 =0
for all j. So, 83 maps H3, into Hy . This proves (iii).
Suppose that (K2)*[¢] = 1/2¢ and that ¢ admits the decomposition (2.419).
Then (K3)*[¢'] = 1/2¢’. So we have from (iii) that S3[¢'] € ¥, and hence
(83[¢'1,¢")1/2,-1/2 = 0. Since [, ¢'do =0, we have from ([2.380)

0 1o}
—<Ssoz[80’]a 90/>1/2,—1/2 = <88[s0’], 558[<P/]|7>1/2,—1/2 - <Ssoz[50/]a 558[90/]|+>1/2,—1/2

(2.421) = / CVESY[¢] : V83 ['] dx —I—/ CVESY[¢'] : ViS¢ du,
) RA\D
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where C defined by ([2.371) is the elasticity tensor associated with (A, u) and A :
B= Zijzl a;;bij for matrices A = (a;;) and B = (b;;). So S3[¢'] € . Thus we
have ¢ = 283[¢']|+ — Z83[¢']|- = 0, and hence ¢ € W. Thus (iv) is proved.
This completes the proof. (]

2.15.9. Symmetrization of the Neumann-Poincaré Operator. In this
subsection we introduce a new inner product on H~1/2(9Q)? (and H'Y/?(9Q)%)
which makes the Neumann-Poincaré operator operator (K%)* self-adjoint.

In three dimensions, S3[p](z) = O(|z|™!) as |z| — co. Using this fact, one can
show that —Sg is positive-definite. In fact, similarly to (2.421) we obtain
(2.422)

—(Salel, hrja,—1/2 = /Q CVSple] : VSglp] da+ /R - CV*Sple] : V2Shle] da > 0.
If (S§[], ©)1/2,—1/2 = 0, then S [p] belongs to ¥. Thus we have ¢ = dSg[¢]/Ov|—
383 ] /0v|— = 0. So, if we define

(2.423) (PP = —<382 [l 4P>1/2,—1/27

it is an inner product on H~1/2(9Q)3.

In two dimensions, the same argument shows that —S is positive-definite on
Hy,. In fact, if ¢ € HY,, then S§[p](z) = O(|z|~!) as |z| — oo, and hence we can
apply the same argument as in three dimensions. However, —S9 may fail to be
positive on W: if Q is the disk of radius r (centered at 0), then we have

(2.424) Sole](z {alrlnr - %] c forx e Q.

) =
for any constant vector ¢ = (c1, c2)?. It shows that —S can be positive or negative
depending on r. To see (2.424)), we note that

0rcli(z) = 289 n|r — yldo —i Y
Shielia) = = [ e sl }j [ )

= a1c:S[(z) — as (xic VS[1)(z) - c- VS[yA(:L’)),
where S is the electro-static single layer potential, namely,
1
(2.425) Slfl(e) = 5= [ Inle—ylf(y) doy)
T Joq

It is known (see [31]) that S[1](z) = rInr and S[y;](z) = —"5* for x € Q. So we
have (2.424).

We introduce a variance of S in two dimensions. For ¢ € H~1/2(9Q)?2, define

using the decomposition ([2.419))

3
(2.426) SSlp] = Sl + D (ED, @)1 2,1 of D).
j=1

We emphasize that S[p] = SY[¢] for all ¢ € M, and 8[| = £0), j =1,2,3.
In view of (2.416]) and Lemma [2.129| (iii), we have

3
(2.427) - <Sg[<P]»<P>1/2,—1/2 = —<S?2[‘PI]»<P/>1/2,—1/2 + Z |<f(j)7¢>1/2,—1/2|2-

Jj=1
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So, —89 is positive-definite on H~/2(9Q)2. In fact, since —(S3[¢’], ©)1j2,-1/2 >
0, we have _<8502 [l <P>1/2,71/2 >0. If —<3?z (], <P>1/2.,71/2 =0, then —<Sgoz[90/}7 90/>1/2,71/2 =
0 and 23:1 [(E9), @) 1/2,—1/21* = 0. So, @' = 0 and (fU), )1/ 15 = 0 for all j,
and hence ¢ = 0. N
Let us also denote SY in three dimensions by S for convenience. Define

(2.428) (P Y- = *<§8[¢],90>1/2,—1/27 VNS Hil/z(amd-

PROPOSITION 2.130. (-,-)%~ is an inner product on H='/2(0Q)*. The norm

induced by (-, )3+, denoted by || - ||+, is equivalent to the H='/?-norm.

PROOF. Positive-definiteness of —S9 implies that 8§ : H~1/2(0Q)* — H'/2(9Q)?
is bijective. So, we have
lell-1/2 = [Salelll -

Here and throughout this chapter A < B means that there is a constant C' such
that A < OB, and A ~ B means A < B and B < A. It then follows from the

definition (2.428]) that

(. o)re| < llll-12l1Salellli /e S Il F-1/e-
We have from the Cauchy Schwarz inequality

(SQ], @)1/2,-1/2] = {0, )] < lpllaes 1l S Nepllaes 1SS [] 1 1.2

So we have

‘<§0 (Y], P)1/2,-1/2]
lipll—1/2 = sup L EUETUE < g
P #0 ||SQ['¢]H1/2
This completes the proof. [

o

We may define a new inner product on H'/?(9Q)¢ by
(2.429)

(£.8)3 = ((53) '], (SQ) ' [gln- = — (8 (88) '[fD1y2,-1/2, f.g € HY* (0.

PROPOSITION 2.131. (-,-)y is an inner product on HY2(0Q)*. The norm

induced by (-,-), denoted by | - |3, is equivalent to || - ||g1/2. Moreover, 89 is
an isometry between H—/2(9Q)¢ and H'/?(092).

As for the Laplace operator, the Neumann-Poincaré operator (K2)* associated
to the Lamé system can be realized as a self-adjoint operator on H~1/2(9Q)? using
Plemelj’s symmetrization principle which states that

(2.430) S2(KY)* = K%88.
This relation is a consequence of the Green’s formula. In fact, if L MMu = 0 in Q,
then we have for z € R?\
ou
b |91-| (@) -~ PRIl 1) =

Substituting u(z) = S3[p](x) for some ¢ € H~Y/2(9Q)? into the above relation
yields

b (~37+ (8)") [elte) = DhSHfel(o). = <R\
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Letting = approach to 92, we have from (2.381))

55 (=37 + (K8)" ) [ele) = (57 + K5 ) Shlil(a), € 00

So we have (2.430)).

The relation @ holds with S replaced by SO, namely,
(2.431) SS(KY)* = K288,
In fact, if ¢ € W, then (K9)*[¢] = 1/2¢ and 8%[¢] € ¥. So, we have
83,K2)"[] = K33l

This proves (2.431)).

PROPOSITION 2.132. The Neumann-Poincaré operators (K3)* and K2, are self-
adjoint with respect to (-, )3« and (-, )3, respectively.

PROOF. According to (2.431]), we have
(@, (KQ) [$])2- = —(SHIKQ) W], ©)1/2.-1/2 = —(KQASG W], #)1/2,-1/2
= —(S[], (KQ) [ 1/2,-1/2 = ((K&)* @], ¥) 2=
So (K%)* is self-adjoint. That K is self-adjoint can be proved similarly. O

2.15.10. Spectrum of the Neumann-Poincaré Operators on Smooth
Planar Domains. In this subsection we prove when 0 is C1'7 for some
n > 0. For that purpose we look into K in more explicit form. The definition
and straightforward computations show that

u
2.432 — Tz —y) = K —-K
( ) (x—y) T 1(z,y) — Ka(z,9),
where

n,(z —y)" — (z —y)n},

(2.433) Ki(z,y) =

wg|z — y|? ’
where wy is 27 if d =2 and 47 if d = 3, and I is the d x d identity matrix. Let
(2.435) T;[p](z) :==p.v. /m Kj(z,y)e(y)do(y), =€, j=1,2,
so that
(2.436) K9, = 2;»1 T1 - To.

Note that each term of Ko has the term (z — y) - N,. Since 9 is C'", we have
(@ =) - Ny| < Cla—y["*"

for some constant C' because of orthogonality of  —y and IV,. So we have
Ko (z,y)| < Cla —y[~ e

So T is compact on H'/2(99)? (see, for example, [217]), and T} is responsible for
non-compactness of K.
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2.15.11. Compactness of (K2)% — (1/(2(2u + ))))?I and Spectrum.

PROPOSITION 2.133. Let Q2 be a bounded C*" domain in R? for some n > 0.
Then (K)? — (11/(2(21 4 N\)))%I is compact on HY/?(9Q)2.

PROOF. In view of (2.436)), it suffices to show that T? — %I is compact.
In two dimensions we have

Kie) = 50 | ey 0|
where K(z,y) == —na2(y)(z1 —y1) + n1(y)(z2 — y2).
Let
(2.437) Riglta) = gopav. [ T o) doty)
Then we have
(2.438) T[] = {_7%‘{’;]1]} .

For x € 09, set Q := Q\ Be(x) where B(z) is the disk of radius e centered
at . For ¢ € H'/2(99Q), let u be the solution to Au = 0 in Q with u = ¢ on 9.
Since

r—y
VX(W):O, Q??éy,

we obtain from Stokes’ formula

Rigla) = lim 5 [ el e sl o) 4oy
— lim 1 —(z1 — y1)02u(y) + (22 — y2)01u(y)
= lim 27r/Q |z —y|? .

Let v be a harmonic conjugate of u in  and ¥ := v|sq so that
(2.439) ¥ ="Tlel,

where T is the Hilbert transformation on 9€2. Then we have from the divergence
theorem

Rg](z) = lim L/Q (z1 - 91)81U(|i)+;|$22 — y2)Oov(y) dy

~ o [ @9 Ny ) do(y).

Q. |z — y[?

1 (x_y)Ny
Gy /896 Ww(y) do(y)

is the electro-static double layer potential of y, and = ¢ Q.. So by the jump formula
of the the double layer potential (see [217]), we have

o1 (z—y) Ny __1
i o= | e W doty) = —30(@) + K@),

e—0 2 |z — y|?

Observe that

where

(2.440) Kle](z) = — /a ) @9 Ny aoly), @€ o0,

L [z = yP?
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It is worth mentioning that C is the electro-static Neumann-Poincaré operator.
So far we have shown that

1
(2.441) Rlp] = —§T[<p] + KTle]-
Since T is bounded and K is compact on H/2(9Q), we have
1
(2.442) R = —57‘ + compact operator.

Since 72 = —I, we infer that R%+ i[ is compact, and so is T? — i[. This completes
the proof. ([

Since (K2)? — (1/(2(2p + X)))?I is compact and self-adjoint, it has eigenval-
ues converging to 0. The proof of Proposition [2.133| shows that neither K2 —
(/22 + X)) nor K2, + (1/(2(2p + X)))I is compact, so we obtain the following
theorem.

THEOREM 2.134. Let Q be a bounded domain in R? with C" boundary for
some 1 > 0.

(i) The spectrum of K& on H'/?(0Q)? consists of eigenvalues accumulating
at +u/(2(2u + X)), and their multiplicities are finite if they are not equal
to 1/ (22 + N)) or s/ (220 + V).

(ii) The spectrum of (K%)* on H~'/2(9Q)? is the same as that of K9, on
HY2(00Q)2.

(iii) The set of linearly independent eigenfunctions of K& makes a complete
orthogonal system of HY/?(952)2.

(iv)  is an eigenfunction of (K%)* on H~1/2(0Q)? if and only zfgg[go] is an
eigenfunction of K9 on H/2(0Q)2.

2.15.12. Spectral Expansion of the Fundamental Solution. Let {1;}
be a complete orthonormal (with respect to the inner product (-,-)3+) system of
H;, consisting of eigenfunctions of (K%)* on 9 in two dimensions. Then they,
together with (), j = 1,2,3, defined in Subsection make an orthonormal
system of H~'/2(9Q)%. Then by Theorem (iv) {S§[¥]} together with f()
is a complete orthonormal system of H'/ 2(09Q)? with respect to the inner product
<’v >H
Let T'%(z —y) be the Kelvin matrix defined in . If z € R2\Q and y € 99,
then there are (column) vector-valued functions a; and b; such that

3

(2.443) Zaj 2)SS[51 (W) + > b)) (y)".

i=1
It then follows that

/d Tz — y)i Zaj N Sals), ¢l>1/271/2+zb YED )12, 1)0
590

i=1

= Za] %ﬂbz H* + Zb (,O(i),1/11>7.ﬁ = —al(m).

i=1



152 2. LAYER POTENTIALS

In other words, we obtain a;(z) = —S§[¢](z). Likewise one can show b;(z) =
S3[p](x). So, we obtain

ZSQ 0;)(2) S5 (y +ZSO D)) D (y)t, 2 e RAQ, y € 99.

Since both sides of the above are solutions of the Lamé equation in y for a fixed =z,
we obtain the following theorem from the uniqueness of the solution to the Dirichlet
boundary value problem.

THEOREM 2.135 (expansion in 2D). Let Q be a bounded domain in R? with
CY" boundary for some n > 0 and let {1,} be a complete orthonormal system of
H3, consisting of eigenfunctions of (K&)*. Let T°(z — y) be the Kelvin matriz of
the fundamental solution to the Lamé system. It holds that
(2. 444)

ZSQ [v;)(2)S3 w5y +ZSO D@D (y)f, zeRN\Q, yeq.

In three dimensions one can prove the following theorem similarly. We empha-
size that it has not been proven that the Neumann-Poincaré operator on smooth
domains has a discrete spectrum.

THEOREM 2.136 (expansion in 3D). Let Q be a bounded domain in R3. Suppose
that the Neumann-Poincaré operator (K)* admits eigenfunctions {1;} which form
a complete orthonormal system of H='/2(0Q)®. It holds that

(2.445) Iz Zs 2)SS[w;](y)t, zeR*\Q, yeq.

Theorems and extend formula to the Kelvin matrix of the
fundamental solution to the Lamé system. Using explicit forms of eigenfunctions to
be derived in the next subsection, one can compute in two dimensions the expansion
formula on disks and ellipses explicitly.

2.15.13. Spectrum of the Neumann-Poincaré Operator on Disks and
Ellipses. In this subsection we write down spectrum of the Neumann-Poincaré

operator on disks and ellipses. Detailed derivation of the spectrum is presented in
[85].

Suppose that € is a disk. The spectrum of (K%)* is as follows:
Eigenvalues:
1 A
2’ 22pu+A)’

It is worth mentioning that the second eigenvalue above is less than 1/2 in absolute
value because of the strong convexity condition (2.368)).

(2.446) +0/(2(20 4+ N)).

Eigenfunctions:
(i) 1/2:
(2.447) (1,0)", (0,1)", (y,—=)",
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. A .
(ii) BPIcrESVE
(2.448) (z,9)",
(i) 1/ (220 + N):
{cos mﬂ {— sin m#
)

(2.449) sin mé cos mb

}, m=2,3,...,

(iv) —1/(2(2+ N): |
{ cosmé } 7 [sm mo

(2.450) —sinmb cos mb

}, m=1,2,....

We emphasize that these eigenfunctions are not normalized.

We now describe eigenvalues and eigenfunctions on ellipses. Suppose that € is
an ellipse of the form

x? a3
(2.451) Z;+F§<1’ a>b>0.
Set R := +/a? — b2. Then the elliptic coordinates (p,w) are defined by
(2.452) 21 = Rcoshpcosw, x9 = Rsinhpsinw, p>0, 0 <w <27,

in which the ellipse Q is given by 9Q = {(p,w) : p = po}, where pg is defined to be
a = Rcosh pg and b = Rsinh py. Define

(2.453) ho(w) := Ry/sinh? py + sin’ w.

To make expressions short we set

(2.454) q := (A + p) sinh 2pg
and
(2.455) Yo = Ve p2 4 (X4 ) (A + 3p) + ng(£2e200 4+ ng).
The spectrum of (K)* is as follows
Eigenvalues:
1
(2.456) 50 i J=1.4,
where
k e—2npo .
7 = 577 o N\ n ) Z )
1n 2()\+2N)( qn+’7n) n
k e 5, n>2
2n = oy T ANt ), n2 2,
’ 2(A+2
(2.457) O+ 20)
fsn= o (—gn—n7), n>1
3,n 2(A+2/.L) q Tn )s = 4
f e—2npo N )
n= 57y 15 4T Vn ) > 1
4,n 2<)\+2,U/)(qn ’Yn) n
Eigenfunctions:
(i) 1/2:
(2.458) 1 1 1 o L [((A4pe 20 — (A4 3p))sinw
' ho(w) 0] ho(w) (1] ho(w) [((A+p)e 20 + (XA +3p)) cosw]|’
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(i) Kjn, j=1,2,3,4:

Pn
n = n + 3,n n Z ]-7
N GRS V) e
Pn
n = n + n’ n 2 27
v Van * Gl ) + han U
: 220+ \)) + k3 n
903,’” = (N/( ( a P ))) % ¢1,n+¢3,n7 n > ]-7
22+ ) + kan
304,77, = (‘u/( ( K P ))) 2 ’lp2,n +¢4,n7 n Z 17
where
1
(2.460) Dp = (2 — (u/(2(2p + /\)))) e~2mPo
and
1 Cos nw 1 — sin nw
qj)l,n(w) - ho(W) [Sinnw} 9 1#)27”(0.)) - hO (U) |: COS Nw :| 9
(2.461) 1 1 )
€os nw sin nw
"pB,n(w) = ho(W) |:_ sinnw] 5 ¢4,n(w) = h()((,d) |:COS nw:| .
A remark on kg q in (2.457) is in order. It is given by
k 67290 n
2,1 = m(QvL% ),
where
Fi= Vet + (A + ) (A +3p) + ¢(2e20 1+ q).
Since

1
e+ (A )M+ 3p) + 02670+ q) = 7 [(A+3p)e™ + (A + p)e™ ] g
we have \g 1 = % and the corresponding eigenfunction is

i [(A w2 = (04 30) sinw
#2.1= Mo (N +p)e 20 + (A +3p)) cosw|
So it is listed as an eigenfunction for 1/2.

Let us now look into the asymptotic behavior of eigenvalues as n — oco. One
can easily see from the definition (2.455) that

A A+3
'Yf _ Meano + qn T ( + ,U/)Z(’u + ,u) —2np0 + e—2n,000(1)7
where O(1) indicates constants bounded independently of n. So one infer from
(2-457) that
H q —2n 2 —dn
kin = - ne” <0 4 nfe PO O(1),
MPTOQu4 A A+ 2u (1)
H q —2n 2_—4n
k n= PO PoO(1 ,
S To Ty I Wi (1)
(2462) kg — I (>‘ + N’)()‘ + 3”’) 74np0 + ef4np00(1)
T2@u+ ) ApE (A 2p) ’
M A+pw)A+3p)g —4
k n=— npo nPoO 1 ,
4 22ut N | aZ(viow ¢ T° (1)
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as n — oo. In particular, we see that %k, and kg, converge to m while k3 ,,

and k4, to — 31 as n — o0o. We emphasize that the convergence rates are

__®
204)
exponential.

2.15.14. The Helmholtz-Kirchhoff Identities. We now discuss the reci-
procity property and derive the Helmholtz-Kirchhoff identities for elastic media.
From now on, we set I'“(x,y) := T'“(x — y) for z # y.

2.15.15. Reciprocity Property and Helmholtz-Kirchhoff Identities.
An important property satisfied by the fundamental solution I'“ is the reciprocity
property. If the medium is not homogeneous, then the following holds:

(2.463) (y,z) = [[¥(z,y)]", z#y.

If the medium is homogeneous, then one can see from ([2.15.1)) and (2.375)) that
I'“(x,y) is symmetric and

(2.464) I'(y,z) =T%(z,y), x#v.

Identity (2.463|) states that the nth component of the displacement at = due to
a point source excitation at y in the mth direction is identical to the mth component
of the displacement at y due to a point source excitation at = in the nth direction.

PROPOSITION 2.137. Let 2 be a bounded Lipschitz domain. For all x,z € €,
we have

(2.465)
/ or” (y, 2)
a0 ov(y)

PROOF. Our goal is to show that for all real constant vectors p and q, we have

I8

Taking scalar products of equations

ore(z,y)

ay(y) fw(yv Z) - I‘w(xa y)

] do(y) = —2v/—-1S{T*(z, 2)}.

—w

T (,y) or (w)% do(y)

8Z/(y) fw(yvz)p_qrw(xay)

= —-2y/—1q-3{T“(z,2)}p.

ov(y)

(LM 4+ T (y,2)q = 0,(y)g and (LM + w)T (y,2)p = 6. (y)p

with T (y, 2)p and T'“(y, z)q respectively, subtracting the second result from the
first, and integrating with respect to y over €0, we obtain

/Q [(fw(y,Z)p) LMD (y, 2)q) — LYM(T (y, 2)p) - (F“(yvﬂc)q)] dy

=-p- (I¥(z,2)q) +q- (T (z,2)p) = —2V—1q- S {T'*(z,2)}p,

where we have used the reciprocity relation (2.463)).
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Using the form of the operator £, this gives
2V la S e = [ [(f” (1, 2)p) - {VV - (T*(y, 1))}
—(T*(y,z)q) - {VV (T (y, Z)p)}]dy
+ [ wop) 8+ 9.0
Q
~r () {4 V20 an

We recall that, for two functions u, v : R — R¢, we have

(Au+V(V-u) v = 2V-[V'uv] —2V°u: Vv,
V(V-u)-v = V- [(V-u)v] = (V-u)(V-v),

where Vu = (9ju;)¢,_, and V* is the symmetric gradient defined by (2.370).
Therefore, we find

—2v/~1q - S {I¥(z, 2)}p
_ / AV AV (04 09T . p)
Q

v {IV- (T (5, 2)p)(T* (v ) } | dy
+/Qu V- {((T(y, 2)0) + V(T (g, 1)) T (4, 2)p |
-V A{(VT . 2)p + VT (5. 2)p) )T (v @)} dy.
Now, we use the divergence theorem to get
2V Tq S {T%(x, 2)}p
=/()QA[N~{[V-<FW<y 2] (v, 2)p) )
NIy, 2)a) }| do(y)

- {v
[ [N {(V@=(y,2)0) + (V(T=(y,2)0))") T (3, 2)p}
(v
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and therefore, using the definition of the conormal derivative,

—2v/—1q - S {T*(z,2)}p

- /a ) [(r%y, p)- T2y ). W’] do(y)

w(y) v (y)
O (2, y) ww o (y, 2)
= q-—— T (y,2)p—q-T¥=,y)———p| do(y),
/ag [ Ov(y) v2) (:9) v (y) )
which is the desired result. Note that for establishing the last equality we have
used the reciprocity relation (2.463)). |

The proof of Proposition uses only the reciprocity relation and the di-
vergence theorem. Consequently, Proposition also holds in a heterogeneous
medium.

Next, we define, respectively, the Helmholtz decomposition operators H? and
H* for w € L?(2)? by

(2.466) HP [w] := Vo and H[w]:=V X by,

where ¢y, is a solution to
(2.467) /V¢W~Vpdx: / w-Vpdr Ype H(Q),
Q Q

and vy, satisfy V X @by = W — Vo, together with

V Yy =0 inQ,
(2.468) ¥ o
Pw N =(VXty) - N=0 on Q.
The following lemma holds.
LEMMA 2.138 (Properties of the Helmholtz decomposition operators). Let the

Lamé parameters (A, p) be constants satisfying . We have the orthogonality
relations

(2.469) HAHP = HPH® = 0.
Moreover, H® and HP commute with LM : For any smooth vector field w in Q,
(2.470) HO LM w] = LYH [w], o =p,s.

PrOOF. We only prove (2.470). The orthogonality relations (2.469)) are easy
to see. Let H*[w] = Vo and let HP[w] = V X 1py,. Then we have

LY = (N + 2u)VAby 4 uV X Ay,
and therefore,
H LM W] = (A + 21)VA¢y = LYH W],
and
HP LM W] = uV X Ay, = LYHP [w]
as desired. O

The following proposition is an important ingredient in the analysis of elasticity
imaging.



158 2. LAYER POTENTIALS

PROPOSITION 2.139. Let  be a bounded Lipschitz domain. For all x,z € €,

we have
arn;(x’ y)T w
(2.471) /09 T@)I‘p (y,z) = T'% (x,y)T(y)

PRrOOF. First, we note that I'y (y, =) and I'Y(y, ) are solutions of
(2.472) (LM + W) T = HP [5oI] and (LM + w*)TY = H* [So]].

Here,

8ﬁ(y7 ?) do(y) =0.

HP [501] =VV. (FoI), H? [(501] =V xVx (PQI),
where T'g is defined by (2.2).
Then we proceed as in the proof of the previous proposition to find:

LY (2, y) v Ty (y, 2)
—— Ty, I'Y(z,y)—%———— | do

/6 T TR )~ T e L S doty)
A [H*[0:0)(y)T5 (v, 2) = T3 (2, ) HP [0-1] ()] dy
= [H’[do1] * 1““( 2))(x) = [IY () * H[boI]](2),
where * denotes the convolution product. Using the fact that I'y = H?[['*] and
we get

HE[H[0o1] x T4 (-, 2)] =0 and  HP[H*[o] * T4 (-, z)] = 0.

Therefore, we conclude

[H°[00T] * ﬁ(-, 2)](z) = 0.
Similarly, we have
[T (2, ) * HP[do1]] (2) = O,
which gives the desired result. O

Finally the following proposition shows that the elastodynamic reciprocity the-
orem (Proposition2.137)) holds for each wave component in a homogeneous medium.

PROPOSITION 2.140. Let Q) be a bounded Lipschitz domain. For all x,z € <)
and a = p, s,

(2.473)

e Y) g o nTEW )] o e
/aﬂ[ () a2 = Talzy) =505 ]d (y) = —2V=IS{T%(x, )}

PROOF. As both cases, a = p and « = s, are similar, we only provide a proof
for a = p. For a@ = p, we have as in the previous proof

M@ Y 50 ) 1 Tg (y, 2) .
/asz [er(y7 ) Fp( ’y)iay(y) ]d (y)
= [HP[doI] * Ty (-, 2)](x) — [T} (2, ) * HP[GoL]](2).
We can write
[HP[00X) + T (-, 2)] () = [HP[0oI] + T ()] (z — 2)
and

[T (, ) * HP[do]] (2) = [T (-) * HP[do1]](2 — @) = [H[do] + T (-)]](x — 2).
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Therefore,
Ty (z,y) L% (y, 2)
— L2 T (y, 2) — T¥(x, y) —2——= | do(y) = —2vV—13{T¥(x, 2)},
| T ) ~ Ty = 55 doly) = 2T (T (e )
where the last equality results from (2.469)). (I

We emphasize that the proofs of Propositions [2.139] and [2.140] require the
medium to be homogeneous (so that H* and HP commute with £*#), and we
cannot expect these propositions to be true in a heterogeneous medium because of
mode conversion between pressure and shear waves.

2.15.16. Approximation of the Conormal Derivative. In this subsec-
tion, we derive an approximation of the conormal derivative

or*(z,y)/ov(y), ye€IN,xe.

In general this approximation involves the angles between the pressure and shear
rays and the normal direction on 0€2. This approximation becomes simple when €2 is
a ball with very large radius, since in this case all rays are normal to 9 (Proposition
. It allows us to use a simplified version of the Helmholtz-Kirchhoff identities
in order to analyze elasticity imaging.

PROPOSITION 2.141. If N(y) = y — (:= (y —z)/|x —y|) and |z —y| > 1,
then, for a = p, s,

org(z,y)

(2.474) o

=V —1we T (2,9) + o (1> .

[z =y @D72

PROOF. We only prove here the proposition for d = 3. The case d = 2 follows
from exactly the same arguments. Moreover, it is enough to show that for all
constant vectors q,

or« 1
Mawyla _ V-lweLg(z,y)q+o( —— ), a=ps.
v |z — y|

Pressure component: Recall from (2.392) that

" 1 w ]_ w — — ].
IY(z,y) = —EDFp(x,y) = %Fp(x’y)yz®y$+o<x—y|>7

where ® denotes the tensor product between vectors, so we have

Ty va= gTHry) (7700 y—m+o(|x_y|).
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Therefore,

w = AV, - (T¥(x.9)a) N(y)

/JZL [Vy(l";’(x, y)a) + (V, (T (z, y)a))'] N(y)
= y_c#\/jlwr;’(ﬂf,y) [)\ y—z-y—aN+2uly—z® ﬁ)N}

(=)

= T3N3 !
= LTy () (AN — 5= ) + 20((7— 7 N) = 1) — 2]

3
=

1
+\/—1wcpl“;(x, y)qa+o <9_$|> .

In particular, when N = y/—\x, we have

Ty (z,9)q 1
p — _ w
£y V—=lwe, Iy (z,y)q + 0 (|y—m|) .

Shear components: As

1
Mé(r.y) = 5 (+1+D)T(xy)
1 —_— —_— 1
- —_Iw I—qy— _ S
Cg s(mvy)( y .’L’®y x>+0<|m_y>7
we have
1 —_— —_— 1
re =—=TI¥ - y—x- - .
S (@,9)q =z J(z,y) (q (y—z-a)y $)+0<|x_y|)
Therefore,
8]—-‘? z,Y)q w w
I 39, - (02 )a) Ny) + 019,02 (2, )a)

Now, remark that

AW TN = Ay [(a- (7 @)i—E) -7

S

+O<|xiy|>
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and
w1 [V(T(2,y)q) + V(T (2,y)q)'] N

1 —_—
=0 T%(x,y) [q@y—x+y—x®q 20y —z- q)y—x@y—x]N

; 1
*( m)
=) (77 Va0 N7 -2 a) (7 M) )

3

6
< : )

_|_
|z —y|

= \/; I(z,y) [(ZJ/—\JJN) —1} [q— (mq)y/—\l‘}

+u\/€ Iy (z, y)[(q-N—(zf—\w-Q)(/—\fC N)) _x]\ﬁ“cs = (@)

so(mt).

In particular, when N = y/;\:c we have

)y éa; 0L W A T y)‘l*"(Iylxl)'

This completes the proof. ([
The following is a direct consequence of Propositions [2.139] [2.140] and 2.141]

PROPOSITION 2.142 (Helmholtz-Kirchhoff Identities). Let Q C R? be a ball
with radius R. Then, for all x,z € ), we have

@a1s)  tim [ )R o) = - 9{TH@ ). a = pes
and
(2.476) REI—{IOC aQF (z,y)T% (y, z)do(y) = 0.

2.15.17. The Scattering Coefficients and the Scattering Amplitude.
This subsection is dedicated to defining the elastic scattering coefficients in two
dimensions. We first recall some background material on cylindrical eigenfunctions
of the Lamé equation and present the multipolar expansions of the exterior scattered
elastic field.

Consider a time harmonic incident elastic field U satisfying
(2.477) (LM +w*)U(x) =0, VoeR?

Then the total displacement field due to D, represented by u, satisfies the trans-
mission problem
(2.478)

(LM 4+ w?)u(z) =0, Vo eR?\D,
(ﬁxr‘ +w?u(x) =0, VzeD,

(u— U)(z) satisfies Kupradze’s radiation condition when |z| — oo .
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The total field u admits the integral representation

uf ):{U(:L’,w)+8f,[1p](z,w), 2R\ D,

(2.479) ~
SB[QO](CL’,W), r €D,

where unknown densities ¢, € L?(9D)? satisfy the system of integral equations

S% S% @ U
2.480 0 ~ 0 ( ) =1 0U
(2450) =85 s8] ) \w =
ov ~l- ov “l+ ov

2.15.17.1. Cylindrical Elastic Waves and Multipolar Fxpansions. We define & :=
z/|z| for all x € R? \ {0} and write S := {x € R? : z -2 = 1}. The position
vector z € R? can be equivalently expressed as z = (|z|cos ¢y, |z|sinp,) where
@ € [0,27) denotes the polar angle of x. Denote by {&,, &y} the orthonormal basis

vectors for the polar coordinate system in two dimensions, that is,

oD

&, = (cos pz,sinp,), &g = —(sinp,, cos ;).
Consider the surface vector harmonics in two-dimensions
(2481) P (&) =eV" "6, and S, (&) = eV "8y for all m € Z.

It is known, see [360] for instance, that these cylindrical surface vector potentials
enjoy the orthogonality properties

(2.482) /S Po(2) - P (3)do () = 276,

(2.483) Si(2) - S @) do () = 256,
S

(2.484) /S P..(3) - Sm(@)dol(d) = 0,

for all n,m € Z, where 6,,, is the Kronecker’s delta function and do is the infini-
tesimal differential element on S.

Let Hy(r} ) and J,,, be cylindrical Hankel and Bessel functions of first kind of order
m € Z, respectively. Then, for each k > 0, we construct the functions v,, (-, k) and
Wi (+, k) by

(2.485) v, k) := HYD (slz])eV """ and - w(e, k) = T (sla])e¥ ™m0

It is easy to verify that v, are outgoing radiating solutions (i.e., satisfying the
Sommerfeld radiation condition) to the Helmholtz equation Av+#?v = 0 in R?\ {0}
and that w,, are entire functions to Av + x?v = 0 in R? respectively.

Using surface vector harmonics P,,, S,, and functions v,,, w,,, we define

Hﬁ(%fip) =V (, Kp)

V—1m

]

(2.436) sty (HD (spla)) Prn(@) + Y HD () S, (3),

H:,I(.’E, ;‘13) =V X (ézvm(x7"'€8))

_v=lm o

(2.487) o S (sl P () — . (HY (role))) (@),



2.15. INTEGRAL REPRESENTATION OF SOLUTIONS TO THE LAME SYSTEM 163

and
3, p) =V (1)

(2.48%) =iy gl Pon(@) + )81 2),
B0 m0) =V X (6ot 54)

(2.450) Y )P (E) — s (I (o le])) (2,

||

for all ko, > 0 and m € Z, where &€, = (0,0,1) is a unit normal vector to the
(z1,22)—plane and

/

(2.490) (H,g})) (t) = % [ny(t)] and  (Jn) () i= — [Jm(t)].

For simplicity, we suppress the dependence of J% and HS on wavenumbers kg,
« = p, s, henceforth.

The functions J? and J;, are the interior longitudinal and transverse eigen-
vectors of the Lamé system in R?. Similarly, HP, and H?, are the exterior eigen-
vectors of the Lamé system in R?\ {0} [94]. The following result on the completeness
and linear independence of the interior eigenvectors (JP  J ) and exterior eigen-
vectors (HP,, HS) with respect to L?(0D)?—norm holds. The interested readers
are referred to [424] Lemmas 1-3] for further details.

LEMMA 2.143. Let D C R? be a bounded simply connected domain containing
origin and 0D be a closed Lyapunov curve. Then the set {HE HS : m € Z} is
complete and linearly independent in L?(0D)?. Moreover, if w? is not a Dirichlet
eigenvalue of the Lamé equation on D, then the set {JP,,J5 : m € Z} is also
complete and linearly independent in L*(0D)?.

As a direct consequence of Lemma [2.143] corresponding to every incident field
U satisfying (2.477)), there exist constants a?,,a’, € C for all m € Z such that

(2.491) U(z) = Z (a3,J5,(z) + a2, I (7)), x€R%
mEZ
In particular, a general plane incident wave of the form
1 1
U(ZL’) _ 726\/—7153w-d dJ_ + 726\/—71npw-d d
c2 c

(2492) =-— (ﬁv x [e.evTTmma] 4 V-1 [veﬁnpx.dD

2 2
CiKs Cokip

can be written in the form (2.491)) with
v—1
(2.493) al = al (U) = - 5=V Im(=/226) " g (p S},
m m 3k

where d = (cos6,sinf) € S is the direction of incidence and d* is a vector perpen-
dicular to d. In fact, this decomposition is a simple consequence of Jacobi-Anger

decomposition ([2.221]) of the scalar plane wave eV—lrad,
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Moreover, according to [447], for all z,y € R? such that |z| > |y| and for any
vector p € R? independent of z,

r(z, y)p = Y Hi@) [T300) -]

ZHP [ }

an

2.15.17.2. Scattering Coefficients of Elastic Particles. Note that the multipolar
expansion ([2.494]) of the fundamental solution I'“ enables us to derive the expansion

SpW)@) = —¥3 Lo HE@) [y [T00) - $(9)] do(y)

(2.495) —Y Ve Hi@) [y [T2W) - $(0)] doty)

for all z € R? \ D sufficiently far from the boundary D. Consequently, by virtue
of expansion ([2.495)) and the integral representation (2.479)), the scattered field can
be expanded as

(2.494)

(2.496) u(z) — Uz Z [ "H i%Hﬁ(x)} ,
where

(2497) Wi = [op [I50) ¥(0)] do(y), a€fpsh, Vnel

DEFINITION 2.144. Let (go,ﬁn,'tpfn), m € Z, be the solution of (2.480) corre-
sponding to U = J5,. Then the elastic scattering coefficients W (= WD, Xo, M, po, p1, w)])
of D @ R? are defined by

(2.498) Wik | [T ] do)
for m,n € Z, where o and (B indicate wavemodes p or s.

Analogously to Lemma[2.78] the following result on the decay rate of the elastic
scattering coefficients holds.

LEMMA 2.145. There exist constants Co g > 0 for each wave-mode o, 3 = p, s
such that
|+ m|—2
< a7[3
‘ = |n|Ir=1m|ml-1

(2.499) ’Wﬁ{’,g[D,/\o,/\l,ﬂo,ﬂl,w

for allm,n € Z and m,n — oc.

2.15.17.3. Connections with Scattered Field and Far-Field Amplitudes. Con-
sider a general plane incident field U of the form (2.492)) admitting decomposition
(2.491)- (2.493)). By superposition principle the solution (¢, ) of (2.480) is given
by
(2500) (@)= 3 [ahwh + | and (o) = Y [aheh + el

MEZL meZ

This, together with Definition of the scattering coefficients and the expansion
(2.496)), renders the asymptotic expansion
(2.501) u(e) = U(e) =Y WhHE(x) + 35 Hy ()]

ne”Z
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of the scattered field for all x € R? \ D sufficiently far from 0D, where

(2:502) W= Y (dWED + A, WES) B e {p.s),
MEZL
with
(2.503) df = — V-1 af = 1 oV =Im(r/2-6)
" 4Cﬁ 4c5/€5

In order to substantiate the connection between the elastic scattering coef-
ficients and far-field scattering amplitudes we recall that the cylindrical Hankel
functions Hr(tl) admit the far-field behavior

oV TIxlz|
(2504)  H(slal) = VIO 1 0 (|2 2)

T Ve
VTl
(2505)  (H{(slal)) = v=Ir" ,/ eI 10 (jg] 7912

as |z| — oo (see, for instance, [377, Formulas 10.2.5 and 10.17.11]). Consequently,
the far-field behavior of the functions H? and H;} can be predicted as

(2.506)

n(2) @AC’O’PPTL(:%) and  H:(z) @Awyssn(@), as |z| = oo
" NEI, " N

where

(2.507) AP = (VT 4 Drye rm/g\/:

and

(2.508) A8 = (VT + 1)@@@”/2\/?

Thus, for all z € R? \ D such that |z| — oo the scattered field (u — U) in (2.501))
admits the asymptotic expansion

(2.509)

F”p‘ﬂ \/7/13|z|
u(z) — U(z) S Z (Y2 A PP, ()] +€

SAOOSS )
e VAT & AT

On the other hand, the Kupradze radiation condition guarantees the existence of
two analytic functions uS® : S — C? and u%® : S — C? such that

(2.510)

@) - U) = @)+ @) +0 n

u(z) - U(x) = ——F—up(x) + ——ug () + <>, as |r| — oo.
Vx| V| ]2

The functions u®’ and ug’ are respectively known as the longitudinal and transverse

far-field patterns or the scattering amplitudes. Comparing (2.509|) and (2.510|) the

following result is readily proved, which substantiates that the far-field scattering

amplitudes admit natural expansions in terms of scattering coefficients.
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THEOREM 2.146. Let U be the incident plane field given by (2.491f). Then the
corresponding longitudinal and transverse scattering amplitudes can be written as

(2511) uoPO[DaA()?)\lv/'LOvula Z’YPAOO PP )
nez

(2512) ugo[Da)‘OvAh/j/OaMla Z’YSAOO SS 7
nez

where the coefficients v and vy, are defined in (2.502)).

2.15.18. Elastic Scattering by Small Particles. Suppose that an elastic
inclusion D in R? is given by D = 6 B + 2, where B is a bounded Lipschitz domam
in R?. Suppose that D has the pair of Lamé constants ()\ 1) satisfying (2
and (2.394) and denote by p its density. Let y € R?\ D and assume that there
exists ¢g > 0 such that dist(y, D) > co. Let uo(z) = I'“(x,y)@ be an incident
displacement field, where 6 is a unit vector in R%.

Let us be the solution to the transmission problem
(2.513)

(LM +w?p)us =0 in R4\ D,

(ﬁx’ﬁ +w?p)us =0 in D,

U5’7=U5|+ on 8D,
% = % on 0D,
ov | _ ov n

us(z) —ug(r) satisfies the Sommerfeld-Kupradze radiation condition as |x| — +o0.

The leading-order term in the asymptotic expansion of us — ug as 6 — 0 is
expressed in terms of the elastic moment tensor, a concept that extends the notion
of polarization tensors to linear elasticity.

The elastic moment tensor associated with the domain B and the Lamé pa-
rameters (A, u; A, 1) is defined as follows: For ¢,5 =1,...,d, let f;; and g;; solve

SEfisll- — SElgisll+ = wiejlon,
(2.514) 9 3o 9 <o I(xie;)
aposlfill =5, 55l9:] LT lo5;
where (e1,...,eg) is the canonical basis of R?. Then the elastic moment tensor
M := (miqu)?jp =1 1s defined by
(2515) Mijpq = / Tp€q * Gij do.
oB

The following lemma holds [45]. It gives an equivalent representation of M.

LEMMA 2.147. Suppose that 0 < X, i< +oo. Fori,jp,q=1,....d,

(2.516) Mijpg = / [ Olzveq) + a(xpeq)} -y do,
OB

ov ov
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where v;; is the unique solution of the transmission problem

LY =0 in R\ B,

A _ :
L ‘u’Uij =0 in B,

(2.517) vijl+ —vij|l- =0 on 0B,
a'vij . 8’171] —0 on 3B,
81/ + 81/ _

vii(x) — zie; = O(Jz|' =) as |z| — +oo.

Proor. Note first that v;; defined by

S%1gi)(x) + we;, x € R\ B,
2.518 wis(2) = 4
e ) {S%Uij](w% x € B,

is the solution of . Using (for w = 0) and we compute
Mijpq = /a L v 9is do
= /BB Tpeq: {%S%Qijh - 8%3%[9”“_} do
__ /aB Tpeq - % do — /BB e, [%sg[gij”f - %gfg[ﬁj]q do
- /83 % wiej do /BB [% - Splgis] - % - Sh1f5]| dor
B /53{_ 6(?;,%) + a(?;;q)} - Sp1fis) o,

and hence (2.516)) is established. ([

The following symmetry and positive-definiteness properties of the elastic mo-
ment tensor hold [45), [64].

THEOREM 2.148. Let M be the elastic moment tensor associated with the do-

main B, and (X, i) and (A, ) be the Lamé parameters of B and the background,
respectively. Then,

Symmetry: For p,q,i,7=1,...,d,
(2.519) Mijpg = Mijgp;  Mijpg = Myjipg, ONd  Mijpg = Mpgij-

Positive-definiteness: Suppose that (2.394)) holds. If i > u (L < p , resp.), then M is positive
(negative, resp.) definite on the space M3 of d x d symmetric matrices.

The following asymptotic expansion of us — ug as § — 0 holds [22), [24].

THEOREM 2.149. Let K € R?\ D. For wé < 1, the following asymptotic
expansion holds uniformly for all x € K :

(2.520) us(x) — uo(x) = —o¢ (Vuo(z) . MV.T*(z, 2)

+w2(p = §)IBIT* (2, 2)up(2) ) + O(™*).
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2.16. Quasi-Periodic Layer Potentials for the Lamé System

In this section we collect some notation and well-known results regarding quasi-
periodic layer potentials for the Lamé system in R2. We refer to [345], [408), [253]
for the details. Ewald’s method described in Subsection 2213.3] can be used to
efficiently compute quasi-periodic layer potentials for the Lamé system.

As before, we assume that the unit cell Y = [0,1)? is the periodic cell and
the quasi-momentum variable, denoted by «, ranges over the Brillouin zone B =
[0,27)2. We introduce the two-dimensional quasi-periodic fundamental solution
G for w # 0, which satisfies

(2.521) (LM 4+ 0 G (2, y) = Y do(x —y —n)eV "0,
n€eZ?
where I denotes the identity matrix. Here we assume that x, kp # |27n + « for
all n € Z? where 4 and k, are given by (2.388).
Using Poisson’s summation formula (2.279)), we have
Zdox_ _n Fnal_ze T1(2mn+a)-(z— y)I

nez? nez?

We plug this equation into (2.521f) and then take the Fourier transform of both
sides of (2.521)) to obtain

R S 1 &i&j 1 !
a,w — 2
G” (é"y) _(27'[') |:C§ Hg o 52 + wz‘] (/{% — 52 - Kig - £2>:|
" Z 67\/,*1(27rn+a)'y50(£ + 2mn + ),

n€eZ?

where £2 = ¢-€ and ~ denotes the Fourier transform. Then taking the inverse Fourier
transform, we can see that the quasi-periodic fundamental solution G** = (G7;“)
can be represented as a sum of augmented plane waves over the reciprocal lattice:

eV=1@2mn+a) (z—y)

G?éjw lj
1] (x,y) Cg Z 52 ‘27T’/l+a|2
5 nez?
(2.522) K2 — K2 eV=1@mnte)@=y) (2n 4 a); (270 + a) ;
. w? cz2 (k2 — [2mn + a?) (k2 — |27 + af?)

Moreover, it can also be easily shown that
Gawxy Zl"“’x—n— )e\/filn-cu7
nez?
where I'“ is the Green’s matrix defined by ([2.375|).
When w = 0, we define Gro"0 by
— 5
GQ‘?O — 1(2mn+a)-(z—y) ]
i (@ 226 [27mn 4+ «f?
(2.523) W nez

A+ (2mn+ «);(2mn + «);
A+2u [27mn + «f*

if a # 0, while if & = 0, we set

1 V=T _ —0ij A+ 4m3nn;
2.524 G0 = = § 127n-(z—y) (] iy
( ) i (09) s O)e |27 |? + A+2u [2mn|*
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Then G*0 is quasi-periodic and satisfies

(2.525) LYGO (2, y) Z do(x —y—n)I if a0,
nez?

(2.526) LYMGOO (2, y) Z do(x —y —n)I — 1.
nez?

See [59], 45] for a proof.

Let D be a bounded domain in R? with a connected Lipschitz boundary dD. Let
S4% and D% be the quasi-periodic single- and double-layer potentials associated
with G*¢; that is, for a given density ¢ € L?(0D)?,

S*¥el(x) = - G (z,y)p(y) do(y), = €R?,

pelplie) = [ 2o dot), v \oD,

where 0/0v(y) denotes the conormal derivative with respect to y € 0D. Then,
S§%¥[p] and D*[p] are solutions to

(LY 4+ wHu =0

in D and Y \ D and they are a-quasi-periodic.

The next formulas give the jump relations obeyed by the quasi-periodic double-
layer potential and by the conormal derivative of the quasi-periodic single-layer
potential on general Lipschitz domains:

(2.527) % ﬂE(36) = (i %I—l— (IC_O"“’)*) [¢](x) a.e. x € ID,
(2.528) (D**[p])| (x) = <:F %I + ICO“’“’> [¢](x) a.e. z€ID,
+

for ¢ € L?(0D)?, where K is the operator on L?(90D)? defined by

OG> (z,y)
2.529 KY[pl(x) = .V./ _— do
(2.529) [p)(x) =p o o0y e(y) do(y)
and (K~%%)* is the L?-adjoint operator of K~*%, which is given by
—awys _ 9G™(x,y)
(2530) () = pov. [ ZZ o) o).

The formulas (2.527) and (2.528) hold because G**(z,y) has the same kind of
singularity at x = y as that of T¥(x — y).
The following lemma will be of use in the next chapter.

LEMMA 2.150. For any constant vector ¢

(7 + K26 =¥\ Dl6on oD,

and for any ¢ € L*(0D)?,

(2.532) /8D<21+(IC00 )[ \Y\D|/ Y.

(2.531)
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PRrROOF. By Green’s formula and (2.526|) we have for any constant vector ¢
Dlgl(w) = [ LCw)ody =0 [ o
D D

and hence, since ((1/2) I + K%0)[¢] = D*[¢]|_, we readily get (2.531)).
The identity (2.532]) is a consequence of (2.531)). In fact, for any constant vector

¢, we have
1 1
[ oo (greeeor)w= [ (Grexee)iy
oD 2 aD 2
~\D| [ s,
oD
from which follows immediately. (]

2.17. Concluding Remarks

In this chapter, we have briefly reviewed layer potential techniques associated
with the Laplacian, the Helmholtz equation, the Maxwell equations, and the time-
harmonic elasticity system. Our main concern has been on the one hand to charac-
terize the eigenvalues of the Laplacian and Lamé systems with Dirichlet or Neumann
boundary conditions as characteristic values of certain layer potentials which are in
general meromorphic operator-valued functions and on the other hand, to analyze
the Neumann-Poincaré operators associated with the Laplacian and the Lamé sys-
tems. We have also introduced Helmholtz-Kirchhoff identities which play a key role
in the analysis of resolution in imaging and investigated quasi-periodic layer poten-
tials for the Helmholtz equation and the time-harmonic elasticity system. We have
provided spectral and spatial representations of the Green’s functions in periodic
domains and described analytical techniques for transforming them from slowly
convergent representations into forms more suitable for computation. These results
will be useful for studying photonic and phononic crystals.



CHAPTER 3

Perturbations of Cavities and Resonators

3.1. Introduction

This chapter is devoted to investigating perturbations in optical cavities and
resonators. Optical cavities and resonators attracted much interest in photonic
technologies in recent years. Several different designs for resonators have been
studied experimentally and theoretically with a particular emphasis on high quality
factor cavities. The detection of nanoparticles inside cavities and the design of a
resonator which possesses a resonance with the largest possible quality factor have
been considered challenging problems in photonics.

Resonance is a solution to the wave equation which is spatially localized while
its dependence time is harmonic except for decay due to radiation. Finding res-
onance in a linear wave equation with a radiation boundary condition involves
solving a nonlinear eigenvalue problem. The quality factor of a resonator can be
defined as the ratio between the real and imaginary parts of a resonance.

In this chapter, the theory of Gohberg and Sigal is used to establish an asymp-
totic theory for perturbations in eigenvalue problems due to the presence of small
particles inside a cavity.

Using integral equations we formulate the nonlinear eigenvalue problem for a
resonator as a characteristic value problem for a meromorphic operator-valued func-
tion. Then, on one hand, Muller’s method can be used for computing resonances
and on the other hand, the generalized argument principle yields a sensitivity anal-
ysis of the quality factor with respect to the material properties of the resonator.

3.2. Optical Cavities

3.2.1. Eigenvalue Perturbations Due to Small Particles. In this section
we provide a rigorous derivation of a full asymptotic formula for perturbations in
the eigenvalues caused by the presence of a conductive particle of small diameter
with conductivity different from that of the background. To fix ideas, we con-
sider Neumann boundary conditions on the boundary of the background medium.
Dirichlet, Robin or mixed boundary conditions can be treated in exactly the same
way; see Section [2.9]

Let 0 = pup < p2 < ... be the eigenvalues of —A in 2 with Neumann conditions,
namely, the eigenvalues of the problem:

Au+pu =0 in Q,
3.1 0
(3.1) ) on 0},
ov
arranged in an increasing sequence and counted according to multiplicity. Let
(u;)j>1 be an orthonormal basis of L?(2) of normalized eigenvectors. Fix j and

suppose that the eigenvalue p; is simple. It is proved in [9}, (10, [445] that the

171
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eigenvalues are generically simple. As we said in the introduction, by generic, we
mean the existence of arbitrary small deformations of 92 such that in the deformed
domain the eigenvalue is simple. However, note that our assumption is not essential
in what follows and is made only for ease of exposition. In fact, we will dwell briefly
on the splitting of nonsimple eigenvalues in Section [2.9.6

Fix j and suppose that the unperturbed eigenvalue p; is simple. Then there
exists a simple eigenvalue pf, near fi;, associated to the normalized eigenfunction
uf, satisfying the following problem:

Au + w?u =0 in Q\ D,
W2

Auf + ?ue =0 in D,
(3.2) utly —uf|- =0 on 0D,

% — % =0 on 0D

ov |+ ovl- ’

8 €

al:/ =0 on 012,

with w = /u§ and the conductivity & of the particle D is such that 0 < k # 1.
From Chapter [2, we know that the solution of (3.2]) can be represented as

(3.3) () = { Dgluloal(z) + Splel(z) i Q\D,

SyF16)(x) in D,

where the triplet of densities (¢ := ulaq, ¢, 0) € L?(0Q) x L?(0D) x L*(0D) satisfies
the following system of integral equations:

(57 K8) W] - Sple] =0 on 90,
(3.4 4l0] + Sple] - S5 (6] = 0 on 0D,
c| 35 (Pl + s3101) |~ k3 (s571)] | =0 ono.

for w = \/,LT;

By using the jump formula (2.155)), we reduce the eigenvalue problem to the
calculation of the asymptotic expressions of the characteristic values of the operator-
valued function A.(w) given by

1
51— K& -8 0
Wi A(w) == DY S —Sﬁ
o ., 1 e 1 o

We shall now expand the operator-valued function A.(w) in terms of e. We
need the following lemma.
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LEMMA 3.1. Let ¢ € L2(09Q) and let ¢ € L*(0D). Define @(x) = ep(ex + 2)
for x € OB. Then, we have

S5lel(ex + 2) = ——Z (VTw /aBps— "~15(y) do(y), = € OB,

Dgv](ex + 2) Z " Z 8“1)9 (z)x%, x € 0B,

o=

+oo
Splele) = S (1t 30 ST —2)( [ e o). @ eon
n=0 \a|—n

ProoOF. For any Z,5 € 0D, we have

Sﬁ[go](saz/wr (& — §)o(§) do ().

By the change of variables & = ex 4 z and § = ey + 2, we obtain that
Splle) = & [ Tulelo—u)etey +2)doty
= ¢ Tutete - 9)ot) doty)
OB

The first two formulas immediately follow from the following Taylor expansion of
T'y(ex) as e — 0:
1 X

T, (ex) = ——— %(ﬁwe)"m”*l.

Since (A + w?)Dg ] = 0 in Q, D[¢] is a smooth function in 2 and its Taylor
expansion at z yields

Dg Y] (ex + 2) Z Z —GO‘D“’ (z)z“.

\al—n

Finally, for any x € 012, it is easy to see that

S8[el(x) = /8 Tl = )e(d) do (i)

n=0 |a]=n
+o0 1
=Y et Y S0 Tue o) [ yrew) da),
=0 la=n oB
which completes the proof of the lemma. (Il

With Lemma in hand, we only need to write the expansion of 9Dg /v and
(K)".



174 3. PERTURBATIONS OF CAVITIES AND RESONATORS

On one hand, we have, for ¢ € L?(99),

) af vy Dz _
57) l(ex + z) Z Z 81) )81/’ r € 0B, d=2,3.

n=1 ‘ogln

On the other hand, using the Taylor expansion, we get

(z —y,v(z) we)" n
27r|a:—y\2 [1+Z 22"n' )!|g§7y|2
1 1
) ><<1n(w6|my|)+ln77+2njzlj)],dl
oD lelr =) =

_(a:—y,y(m»{_ 1

drlx —y[? elz —y|

+Z (= o) VT e =yl a =3,

and obtain the following expansions.

LEMMA 3.2. Let ¢ € L?(dD). Define p(x) = ep(ex + z),x € OB. Then, for
x € OB, we have

+oo e 2n
(k)" lgllew +2) = (KB 810) + X (~1)" gt =y
< [ o= rtonte = (s ) +n+ 5= 31t oty

for d =2, while for d =3,

e(K9) [@l(ex + 2) = (K%)*[@](x)
1 X1

—M;<m—@><ﬁwe>"+l = vtale o500 doto)

where (K%)* is given by @)

Define ¢(x) = e(ex + z) and 0(z) = ef(ex + 2), = € B. By Lemmas and
the system of equations (3.4]) now takes the form

where in three dimensions A, (w) has the expansion

—+oo

(35) Aw) = (@) An(w),

n=0
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with
%I—icgg 0 0
Aow) = | DELG) S -s) ,
0 TR k(T (K5))

and, for n > 1, writing A, (w) = ((An (W) )1,1r=1,2,3, we have
(An(W))11 = (An(w))13 = 0,
Anlie = (<17 3 o Tea=a)( [ o7 dotw),

|a|=n—1
(A =~ /T [yl doty),
Aas = = [ oy oty
(A = = 37 ~O"DE[(2)a”,
|a]=n
(Anesr = = 32 L DE()
|a]=n

(A1(w))32 = (A1(w))33 = 0, and

(An(@))s2 = —— ((1 1)@” | @ v@le = g2 doty)

"\ -

Anas = (i = D) [ (o= el =l doty)

for n > 2. Similarly, one can compute an analogous asymptotic expansion for A.(w)
in two dimensions.
In three dimensions, it can be shown that

SY -S%
1 * 1 *
§I+ (K%) —k(—§I+ (K%)*)

is invertible. In fact, the inverse is given by

L (FOI= 0)) G- (RS (- (k%))

k—1 *\ — 1 * — *\ — ’
—(M = (KR)) (5T + (KB)")(Sp) ™ (M = (K)")™
where A := (k+1)/(2(k — 1)). Therefore the invertibility of Ap(w) holds for any
w ¢ {\/f;}j>1. This is also the case for Ap(w) in two dimensions.
Before proceeding from the generalized argument principle to construct the
complete asymptotic expansions for pj with respect to €, we provide a rigorous

study of the integral operator-valued function w .Ze(w), when w is in a small
complex neighborhood of | /fi;. The next three lemmas, analogous to Lemmas @

2.67) and are immediate.
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LEMMA 3.3. The operator-valued function /L(w) is Fredholm analytic with in-
dex 0 in C (while in the two-dimensional case in C\ /—1R™) and (A.)"1(w) is
a meromorphic function. If w is a real characteristic value of the operator-valued

function A, (or equivalently, a real pole of (Ac)~(w)), then there exists j such that
w =, /M;-.
LEMMA 3.4. Any \/ii; is a simple pole of the operator-valued function (Ag) ™' (w).
LEMMA 3.5. Let wg = \/fi; and suppose that p; is simple. Then there exists a

positive constant oy such that for |§| < do, the operator-valued function w A, (w)
has ezxactly one characteristic value in Vs, (wo), where Vs, (wo) is a disk of center
wo and radius 69 > 0. This characteristic value is analytic with respect to € in
| — €0, €0]. Moreover, the following assertions hold:

(1) M(Ae(w); 0Vs,) =1,

(i) (A0) (W) = (W = we) ' Le + Re(w),
(iii) L : Ker((Ae(we))*) = Ker(Ae(we)),

where R¢(w) is a holomorphic function with respect to (e,w) €] — €o, €o] X Vs, (wo)
and L. is a finite-dimensional operator.

We are now ready to apply the generalized argument principle. Since we deal
with simple characteristic values, the relevant formula will be as follows, which is
an immediate consequence of Theorem [1.14

LEMMA 3.6. Let wo = \/fij and suppose that p; is simple. Then we = \/p5 is
given by

1 ~ ~
= ———1tr w — wo)Ae(w) - A (w)dw.
2 /—1 6V50( 0) 6( ) dw e( )
Substituting the formula (3.5) into (3.6, we obtain the following complete
asymptotic expansion with respect to € for the eigenvalue perturbations in the
three-dimensional case.

(3.6) We — W

THEOREM 3.7 (Eigenvalue perturbations). The following asymptotic expansion
holds:

+oo +oo
1 1
3.7 We — Wy = ———— - e’ tr B, ,(w)dw,
(3.7 NG )

Vs,

where

Bup)= (=17 > Ag(w) " An, (@) ... Ao(w) " Ay, (@)™

PrROOF. If € is small enough, then the following Neumann series converges
uniformly with respect to w in dVj,:
~ too ~ p
Acw)™ = 3 [Ao(w) ™ (Aofw) = Acw))] Ap(w) 7,
p=0
and hence we may deduce that w. — wq is equal to

1 1 ~ P S, d ~
ﬁz(:)tr /8 SR [Ao) ™ (Aofee) = ()] Ao(w) = A, (),

dw™ €
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As in the proof of Theorem by using the property (1.4]) of the trace
together with identity (2.196]) we have

br /BV (w-— wo)%% [A0() ™ (Ao(w) ~ Ae(w))] ds
—tr] [ =) [Ao) ™ (Aofe) = )] Aol 4L (o) — A

— / (w—wo) [.Ao(w)fl(.Ao(w) - Ae(w))]p Ao(w)A%Ao(w)dw ,
avs,

and therefore,

+oo
et = —NLM;H om0 [Au) (Aofe) = 4] de

1 Vio

(w— wo)Ao(w)_liAo(w)dw.

1
+———tr
2w/ —1 OVsy dw

Since wy is a simple pole of Ag(w)~! and Ag(w) is analytic, we readily get
d
/ (@ — wo) Ao ()L Ao (w)dw = 0.
3‘/50 dw

Thus, it follows that

+oo
We — Wy = _%7\1/?1 Ztr/av (w —wo)%% [AGH (w) (Ao (w) — Ae(w))]l’dw.

Now, a simple integration by parts yields

p

“+o0
we — o = 27“% Z%tr/@v {Ao(w)l(Ao(w) CAW)] de.
Notice from that
(Ao(w)_l(Ao(w) — Ae(w))>

+oo
=(=1PY e Y Aow) A (@) Ao(w) T A, (w)w”
n=p nit...+np=n

Therefore, upon inserting this into the latter formula, we arrive at the desired
asymptotic expansion (3.7)). O

As a simplest case, let us now find the leading-order term in the asymptotic
expansion of ui — p; as € = 0. By GD the leading-order of the expansion of
we — wo is the e-order term and its coefficient is given by

1
(3.8) - ———tr Ao (w) 7t A (w)wdw.
2\/ —1x 3\/50
We can now recover the following result from [71} [69] giving the leading-order
term in the asymptotic expansion of the eigenvalue perturbations.
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COROLLARY 3.8. Suppose p1; is a simple eigenvalue associated with the nor-
malized eigenfunction u;. The following asymptotic expansion holds:

(3.9) 15 — g = €'V, (2) - M(AR), B)Vuy (2) + o(e?),

where M(\(k), B), defined by (2.73), is the polarization tensor associated with the
domain B and the conductivity k.

In view of the positivity properties of M, we can then deduce from formula
the sign of the variation of a given eigenvalue in terms of the conductivity of
the particle. Furthermore, the Hashin-Shtrikman bounds and lead, in
view of , to perturbation bounds for the eigenvalues.

Turning now to the behavior of the perturbed eigenfunction near the particle
D or at the boundary §2, we can prove from [71] that the following inner and outer
expansions of the perturbed eigenfunction with respect to € hold.

LEMMA 3.9. Let u§ be the normalized eigenfunction associated with 5.

(i) The following inner expansion holds for x near z:

Tr— =z

d
(3.10) uj(w) = uj(2) + € Z Oy (2)y ( ) + o(e),
=1

where ¥y is defined by

(3.11) V-14+(k—-1)x(B)Vy, =0 in R,
) Py(z) — 2 = O(|z|' %) as |z| — +oo.

(ii) The following outer expansion holds uniformly for x € 0Q:
(3.12) (uf —uz)(w) = —equj (2) - M(A(k), B)VNG (x, 2) + o(e?),

where Nj is the solution to

(Az + W?)Ng] (i)’], y) = *5y +uj (.’E)'LL] (y) in €2,
N

= Q
ey 0 on 09,
/NgJUJZO

Q

PROOF. We only outline the derivation of the asymptotic expansions
and of uj leaving the details to the reader.

Note first that one can show that the polarization tensor M = (myy) can be
rewritten as

(k- 0 1 — (o — O
(314) myy = (k 1) o5 ¢l 81/ do = (k 1) /8B 81/ -

(3.13)

xy dO’,

where v is the solution to (3.11]).
For any f € L3(f2), define T¢[f] = v, where v¢ is the solution to

V-1+(k-1x(D)Vve=—f inQ,

ove
- 0 on 09,
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and T'[f] = v, where v is the solution to

Av=—f in ),
% o oo
5y — 0 ono.

Now let V be a disk centered at 1 /cuf—7 with radius small enough. For any

w € IV, we get
1

(u=T)" ] = T, Vi
“e i
On the other hand, we have
1
Lus)us = -7 1d ;
(s = 5o [ (0=T9)
see for instance [411]. Thus, it follows from
(=T ug) = (u=T) ]+ (= T) T = T — T) " fus] + hoot.
1
= 1 |:’U,j + (,M - T)_l(T6 — T)[u]] + h.o.t.
that
€ 1 1 -1 €
(3.15) = u; 7 (u=T)"(T° = T)[u;]dp + h.ot.

Y ue, u: +
( _]) 7 J o7 /;_1 v
=3
“j
Here h.o.t. stands for higher-order term. Set ¥,;(z) := ¢;(x) — x;. According to

[71], the following expansion with respect to e holds;

(T° - 2 Z 61”]

Jll

)+ h.o.t. in Q,

and consequently,

Z)] + h.ot. in Q.
€

d
€ -
(n—T)" (T - 7231% =) [W(
“j =
From the definition of T, we can readily get

(u—T>-1[wl<"Z>1=;[ () [ N a).

€ €

€
where N/ V¥ is defined by (2.179). But
=z 1 1 Yy—z
V4o [ NV pn ) dy
HJo €

1 o )

==k | NS

vi_

Therefore, we get from the definition (3.14)) of the polarization tensor and the fact

oD
that 1; is harmonic in B that for = € 99,
(3.16)

d
r—z, 1 —Z -
\I}l( )_’_;/ Nglz/\/ﬁ<x7y)\lll(y7) dy = —ed 1 Z mlllal’Nglz/\/ﬁ(m7 Z)+ hOt
Q

€
U'=1

Z) do(y) + h.o.t.

€
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Inserting lj into 1) and using the spectral decomposition (2.180)) of Nglz/ \/ﬁ,

we finally obtain

(3.17)  (hu§)u§ =u; — e?Vu;(2) - M(A(k), B)VNG? (,2) + h.o.t. on 99,

where N’ is defined by (3.13) or equivalently by the following spectral represen-
tation:

N;{j(x,z):ZM, x#z e

2 YTy
Since
€ Ed(l B k) d
oy 1 1/ Vi
X o (y) — 1 NV (z, ey + z)uj(z) dx ) do(y) + h.o.t.
oB OV |_ NV p(p— —5) 79

%;

=1+o(e"),

by using once again (2.180]), the desired outer expansion follows immediately from
B19).

The inner expansion follows in exactly the same manner as the outer expansion
by observing that

1=k [ N 2 () doly)
oD _ €
o y—z
= (k- 1)/80 Lolz,y) 5~ _( ) do(y) + h.o.t.
=0, (22%) t heot.,

for & near z, where I'y is the fundamental solution of the Laplacian given by (2.2)).
O

Note that if we consider the eigenvalue problem

Au§ + pSu§ =0 in Q\ D,

Auf + kpjus =0 in D,

usle —us|l- =0 on 0D,
(3.18) aﬂlj ]|au;

8V+757:0 on 0D,

% =0 on Of)

ov ’

then a much simpler formula than (3.9) holds. In fact, if we suppose that y;
is a simple eigenvalue associated with the normalized eigenfunction u; (satisfying
Jo(L+ (k= 1)x(D))|u;j|* = 1), then we have

(3.19) 5 = 1y = (1= KDy (=) + ofe?).

See, for example, [69] for the details and for a higher-order expansion. Moreover,

(u§ — uj)(x) = —p(1 — B)Dluy (INY™ (. 2) + o(|D))

holds uniformly in z € 99Q.
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3.2.2. Eigenvalue Perturbations Due to Shape Deformations. Let D,
be an e-perturbation of D i.e., let h € C?(0D) and D, be given by

oD, = { %1% =x+eh(x)v(z), © €D }

Consider the following eigenvalue problem:

Auc + w?u =0 in Q\ D,
w2
Auc + ?ue =0 in D,
(3.20) uly —u|-=0 on 9Dk,
Ous Ous
s - D.,
ov ’Jr ov |- 0 on g
%“V —0 on OQ.

In exactly the same manner as in the previous section, we reduce the eigenvalue
problem (3.20)) to the calculation of the asymptotic expressions of the characteristic
values of the operator-valued function A.(w) given by

1
SI-Ks =83, 0

Wi A(w) = DY Sy, _SDTf
Tpg Gl (Ch)T k(T (K5))

To derive a full asymptotic expansion of the perturbations in the eigenvalues,
we shall expand the operator-valued function A, (w) in terms of e. For this purpose,
we only need to construct high-order expansions of S¥ and (K% )*.

Suppose that wg is a simple eigenvalue of for e = 0. Let V3, be a disk of
center wy and radius dy > 0 so that wy is the only characteristic value of Ay(w) in
Va,.

With (2.141)) and (2.146)) in hand, we write

+oo
Ac(w) = Z(we)”An(w) for w € Vg, .
n=0
Therefore, from
. d

We — Wo = -
¢ dw

(W —wo)Ae(w) ™" — A (w)dw,

1
— tr
2’/T\/ -1 3\/50
we obtain the following complete asymptotic expansion for the eigenvalue pertur-

bations due to a shape deformation of the particle.

THEOREM 3.10 (Eigenvalue perturbations). For e small enough, the following
asymptotic expansion holds:

+ +oo
1 1
3.21 We — Wy = —— - €' tr B, ,(w)dw,
(3.21) 0= le;pg s Baale)
where

Bupw)= (=17 > Agw) A, (@) ... Ao(w) Ay, (@)™

nl+.,.+np=n
n;>1



182 3. PERTURBATIONS OF CAVITIES AND RESONATORS

The leading-order of the expansion of w, — wq is the e-order term and its coef-
ficient is given by

1
e tr v, Ap(w)HA; (w)wdw.

Tedious calculations yield

k—1 ou’ ou’
3.22 e —wp = hlk(=—|-)* + (5=)?| do + O(é?
322 wman =it [ e+ (G2 do k0@
where u satisfying [, [u”]*> = 1 is the normalized eigenvalue of (3.20) for ¢ = 0.
As will be seen later, this is exactly the shape derivative of w.. Another way of
deriving ([3.22) is given in [18]. It is based on fine gradient estimates from [328] (see
also [327]) together with Osborn’s result on spectral approximation for compact

operators in [379].
Let v be the solution to

Av+wiv=0 in Q\ D,
Av+wiv =0 in D,
ou’

vl —v|l- =—h ey |- 0 on 0D,
(3.23) @’ _Gov _ 0, 0uw

ovl+ kau - 6Th8T on 9D,

% =0 on 012,

/vuo =0.

Q

It can be shown that the asymptotic expansion of u€
(3.24) ut —u’ = e(k —1)v + o(e)

holds uniformly on 0.
Observe that if we define ./\/}“{f’D as the solution to

(V~(1+(k—1)x(D))V+w3> 0 (@) = —6, + u(2)u(y) in O,

ONG°
8Z’D =0 on 99,

wo 0 —
/ oplt = 0,
Q

then v admits the following integral representation:

W
ou® 0 Q,OD oud

v(x) = /8D h(y) |:3T(y) oT (y) + kﬁ _

wo
ONG'p

(y) £y

(w‘,y)} do(y).
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In exactly the same manner as in the derivation of (3.22)), if we consider the
eigenvalue problem

Auc + w?u =0 in Q\ D,
w2
Au + ?ue =0 in D,
ufly —ufl— =0 on 9D,
Ous ous
- = Dev
v ’Jr ov |- 0 on 9
Ou =0oru*=0 on 01},
ov

or equivalently,

— 1
Auf 4+ w? (x(Q\ D;) + ZX(D)ut =0 inQ,

(3.25) c
Ou =0oru*=0 on 0},
ov
we can prove that the following asymptotic formula holds:
1
(3.26) we —wo = <wo(+ — 1) | hlu®2do + O(e?),
2 7k oD

where u? is the eigenvalue of (3.25) for € = 0 satisfying the normalization

/Q (X(Q \ D) + Ich(D)> W0 = 1.

Furthermore, the asymptotic expansion of u¢

1
(3.27) ut —u’ = ewd(1 — E)w + o(e)
holds uniformly on 0X2, where
Aw+wiw =0 in Q\ D,
Aw + wiw =0 in D,
wlp —w|l-=0 on 0D,
ow ow
— - =h oD
v ‘+ avl-— " oo
8—w:O orw=20 on 02,
v
/ wu’ = 0.
Q

REMARK 3.11. In [69), [80], asymptotic formulas for perturbations in the eigen-
values of the full Mazwell equations due to the presence of small dielectric particles
are derived.

3.3. Optical Resonators

3.3.1. Integral Formulation of Resonances. The integral formulation de-
scribed below can be applied to resonance problems for Maxwell’s and elasticity
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equations. However, for simplicity, we will limit the presentation to a scalar prob-
lem. Consider the solution u to the following problem:
{ Au + w?n(z)u =0,

3.28
( ) u satisfies the Sommerfeld radiation condition.

We assume that n — 1 is compactly supported in a bounded domain D C R¢ for
d = 2,3, and is assumed to be known.

Keeping in mind that holds for w € C, we can formally rewrite the
solution to in integral form

(3.29) u(z) + w? /D(n(y) — DIy (z —yuly)dy =0, =R

We call a particular w € C a resonance if it yields nontrivial solutions u(z)
of . Hence, resonance is a solution to the wave equation which is spatially
localized while its time dependence is harmonic except for decay due to radiation.
The decay rate, which is proportional to the imaginary part of the resonance value,
depends on the material properties of the resonator. If w is a resonance, then we
call (nontrivial) functions u satisfying the resonant modes.

Define the operator A(w) as

Ao(@)u] = u(z) + w? / (n(y) - DTl — y)uly)dy.

D
Notice that the adjoint Af(w) of Ag(w) is given by

A5(@)le] = vl) + (n(z) = D [ Lol = y)ol)dy.
D
Now given n(z), we have the nonlinear eigenvalue problem Ag(w)[u] = 0, which
can be solved using Muller’s method. We can easily prove that wy is a resonance if
and only if it is a characteristic value of the meromorphic operator-valued function

w = Ag(w).

3.3.2. Optimization of the Quality Factor. We define the quality factor
Q as
Q=12
Sw
where w € C is a resonance. The quality factor is inversely proportional to the
decay rate.

In order to compute the sensitivity of @ to changes in n(z), we can make use
of the generalized argument principle.

Write ne(x) = n(x) + eu(x), where p is compactly supported in D and € is a
small parameter and let wy be a characteristic value of Ap(w). Denote by A.(w) the
operator-valued function associated with n.. Then there exists a positive constant
0o such that for |§] < dp, the operator-valued function w — A.(w) has exactly
one characteristic value in Vs, (wp), where Vs, (wo) is a disk of center wy and radius
do > 0.

Analogously to Lemma [3.6] we have

1 p—
o Tn tr /av% (w — wp)Ae(w) %Ae(w)dw,

We —Wo =
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and hence, the leading-order of the expansion of we — wyq is the e-order term and its
coefficient is given by

1
— ——F—1tr
271’\/ -1 3\/80

where the operator AY‘ ) is defined by
AP @l = [ p(o)Tule = y)uts)dy.

Formula ([3.30) yields the Fréchet derivative of the quality factor ) with respect
to n. Given an admissible set of functions n(z), optimal control can be used to
maximize the quality factor of the resonator D.

(3.30) Ap(w) T AP (w)wdw,

3.4. Elastic Cavities

Let Q be an elastic medium in R? with a connected Lipschitz boundary whose
Lamé constants are A\, u. We consider the eigenvalue problem for the Lamé system
of linear elasticity:

(3.31) LYa 4 ku=pAu+ A+ p)VV-u+ku=0 inQ,

with the Neumann boundary condition du/dv = 0 on 0. Here the conormal
derivative Ou/dv is defined by (2.369).

Suppose that € contains a small particle D of the form D = z + €B, where B
is a bounded Lipschitz domain containing the origin, € is a small parameter, and
z indicates the location of the particle. Due to the presence of the particle D, the
eigenvalues of the domain 2 are perturbed. Our goal in this section is to find an
asymptotic expansion for the perturbation of eigenvalues due to the presence of the
particle. Let k1 < ko < ... be the eigenvalues of and let K < k5 < ... be
the eigenvalues in the presence of the particle. The main result of this section is a
complete asymptotic expansion of k5 — ; as € — 0.

The main ingredients in deriving the results of this section are again the integral
equations and the theory of meromorphic operator-valued functions. Using integral
representations of solutions to the harmonic oscillatory linear elastic equation, we
reduce this problem to the study of characteristic values of integral operators in
the complex plane.

The elastic particles we deal with are soft particles. A soft particle is character-
ized by the transmission conditions on its boundary. We will explicitly calculate the
leading-order term, which is of order €3, the volume of the particle, and is expressed
in terms of the eigenfunctions and the elastic moment tensor. We confine our at-
tention to the eigenvalues of the Neumann boundary value problem. The Dirichlet
boundary case can be treated in a similar way with only minor modifications of the
techniques presented here. We also confine our attention to the three-dimensional
case. The two-dimensional case can be dealt with in an almost identical way.

We now investigate the perturbation of eigenvalues due to the presence of a
small soft elastic particle. Suppose that the elastic medium (2 contains a small
particle D of the form D = z + eB, whose Lamé constants are A, fi satisfying
A=XN(p—f) >0and 0 < A\ ji < +oo. Let w; be an eigenvalue of —LM#
and let xj be the perturbed eigenvalue in the presence of the particle. Then the
eigenfunction uj, corresponding to the (simple) eigenvalue xf, is the solution to

(2.395) with w? = k},. Recall that 5’5 and I€‘B denote the single-layer potential and
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the boundary integral operator, respectively, defined by (2.377) and (2.382) with
A, 1 replaced by A, .
Let u be the solution to

LM+ w?u =0 in Q\ D,
L3+ wPu =0 in D,
ou

(3.32) 5, — 8 on 981,
u|+—u’_:0 on 0D,
5‘4»—%‘7: on OD.

We may assume as before that w? is not a Dirichlet eigenvalue for —£** on D.
By Theorem [2.125] u can be represented as

. {D‘am +8pl¢] i Q\D,

(3:33) S4[0] in D,

where 1, ¢, and 0 satisfy the system of integral equations

(51~ KDY }—swm:o on 09,

(3.34) Dglv] +Sple ] Splo] = on 0D,
oD5lYD) | 9(Splel) S [9}) _

aﬂy aD L ‘_ =0 on 0D.

Conversely, (¢,1,0) € L*(09)3 x L?*(0D)? x L2(8D)3 satisfying yields the
solution to (3.32]) via the representation formula .

In order to derive an asymptotic expansion for k¢, we begin by establishing the
following, which generalizes Lemma [3.1] to the elasticity case.

LEMMA 3.12. Let ¢ € L2(dQ) and ¢ € L*(OD)3. If ¢(z) = ep(ex + 2) for
x € OB, then we have

+o00

335) Splole) = L 3 Lo~ 2) / Yo d(y)do(y), « € 0,
n=0 la|= OB
(3.36) DE[¢](ex + 2) Z Z )(2)z®, = € OB,

n=0 |a]=
and for x € 0B andi=1,2,3,
(3.37)
Spldli(ex + 2)

1 +oo . (\/jl)n 7’L+1 1 -
T dn n:O(ew) (n+2)n! {( c’;fr? + Cz+2)€ij /BB |z — y 1¢j(y) do(y)

n—1 n-—1 . ~
~(er =) [l w0l — 00,0 o)

where 8§ [¢]; denotes the ith component of SE[4)].
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PRrROOF. The series (3.36) is exactly a Taylor expansion of Dg[y](ex + z) at z.
By a change of variables, we have that, for any z € 99,

Splol@) = [ T = p)oadeln) =¢ | TGz — a)ity)doty)

OB

Using the Taylor expansion of I’ (z—z—ey) at z—z, we readily get (3.35). Similarly,
(3.37) immediately follows from a change of variables and (2.372)). This completes
the proof. ([

Let p(x) = ep(ex + z) and J(x) = ef(ex + z). Then using Lemma (13-34)

can be written as follows:

(g +oo
A2 (o] =0, AZ =) (we)" Ay,
%) n=0
where
(11 - K8) 0 0
2 ~
0= | Dsllz) Sk ~S% ;
1 I DR
0 SI+ (K%) 51— (K%)
and forn =1,2,..., A¥ is equal to
(_1)n i QW _ / a
0 o ‘alzzn_l a!a I'“(z —z2) 6By do(y) 0
! L oo S S
J‘ — a-’ﬂ a()(2) n —On
1 1 0(zI) nomw -
o ml:na ) "D (+)(2) K. -K,

Here S,, is the operator from L?(9B)3 into H'(0B)? defined by

Suleli = Z (Sn)ij [es],

Jj=1

(S")ij - S <n+1 + : )eij /33 |z —y[""t - do(y)

Cdm(nt2)nl\ gt a2
L (/Da-1, 1 1 »
— — —yl" i —Yi)(x; —y;) - d )
i (n+2)n! (C’TL+2 c’LH‘Q) /83 o= y" (i = wi) (25 = ;) - do(y)
and K,, = 9S,,/0v. The operators S,, and K,, are defined in exactly the same way

with ¢ and ¢y, replaced by ¢ = /i and ¢, = 4/ A+ 2/
With this notation, the following theorem holds.

THEOREM 3.13 (Eigenvalue perturbations). Let k; be a simple Neumann eigen-
value for —LM in Q without the particle and let k5 be the Neumann eigenvalue
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when §) contains the particle. Let wy := \/k; and we 1= | /K. Then we have

“+oo “+o0
1 1=,
(3.38) we = w0 = 5o ; ; ;e tr /avj By, p(w)dw,

where
(3.39) B p(w) = (—1)P Z (A‘(}’)flA;‘L’l ...(.Ag’)fl./l‘;jpw”.
ni+-+np=n

We now state the following theorem.

THEOREM 3.14. Let Ky, be a simple Neumann eigenvalue for — LM in Q without
the particle, let K, be the Neumann eigenvalue when §) contains the particle, and
let uy, be the corresponding eigenfunction such that |[ug||r2(q) = 1. Then we have

3
(3.40) K — ke =€) mi0i(u);(2)0p(un)g(2) + O(eh),
,J,p,q=1

where (uy,); denotes the jth component of uy, and M = (mf) defined by is
the elastic moment tensor associated with B and the elastic parameters \ and fi.

We note that because of the symmetry of the elastic moment tensor m;{] =

m{,f] = mfﬁ, (see (2.519)), 1D can be written in a more compact form using the

standard notation of the contraction and the strain for tensors:
(3.41) kS — kg = €E(u)(2) : ME(uy)(z) + O(e*),

where a : b = Zij a;;b;; for two matrices a and b and

(3.42) E(uy) = %(Vuk +Vub).

Here, the superscript ¢t denotes the transpose.

It is worth mentioning that if the particle is harder (softer, resp.) than the
background, i.e., i > p and A> A (h < p and )< A, resp.), then M is positive
(negative, resp.) definite (see Theorem [2.148)), and hence k§ > rj (K§ > K,
resp) provided that e is small enough and £(uy)(z) # 0. Formula makes it
possible to deduce the sign of the variation of a given eigenvalue in terms of the
elastic parameters of the particle.

PROOF OF THEOREM [3.14l We first observe from (3.38)) that the e-order term
is given by

1
2y In
the e2-order term is given by

# _ w\—1 qw 1 wy—1 gw)2 2
2\/_717Ttr/(9‘/k|: (./40) A2+2((A0) Al) (wa,

(3.43) tr / (A LAY wdw,
Vi

(3.44)
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and the e3-order term is given by

(3.45) Wlflw " /avk [‘ (AZ)TLAL + (A9) LAY (AG) LAY
| _;((Ag)_lv“i’f]w?’ o,
Introduce
T T T R ]
§I+(ICOB)* ?—(IC%)* Ay A

where the invertibility is guaranteed by Theorem [2.124] As another direct conse-
quence of this theorem, we also have that

(3.47) A (f), As(g) € L (9B)
for any f € H'(0B)? and g € L% (9B) and
(3.48) A,(f)=0for any f e .

Explicit calculations show that (At‘f)fl takes the following form:

(%I —Kg) " 0 0
(A5) ' = 0 A, A,
Y MDEGT-K8) ) As A

Since A;, i =1,2,3,4, are independent of w, we have

(3.49) tr/ (AT AL dw = 0
OV

for any integer n.
From 1) and 1} we readily find (./43’)71 “w is equal to

0 T, 0
3 (Al(:ro‘I)+A2(a(§zl)>>8al)§[~](2) 0 0

jal=1 :
3 (Ag(xal)+A4(a(§zl)))aapgg[.](z) T, —wA3S,
=1

where

Ty (1K) T —2) [ - doly)

Ty = —(Sp) ™' D3 [(%I — K8) T (@ - 2)|(2) /83 - do(y) + AsSi.

Using (3.47)), we can write that

AL (z°T) + Ag(a(m)) do(y) =0 if o] =1

OB 81/
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and easily check that

(3.50) tr/ ((Ag’)’lAf)nw"dw —0,
Vi
for any integer n. Now combining (3.43)—(3.45)), (3.49), and (3.50) gives
e /
3.51 We — Wy = tr A TLAY(AL) T AY W3 dw + O(e?).
(351) o= gt ()T A A s ()

Indeed, we have

0 Ty 0
(.AB))_l.A(ng = (T5 w2(A182 + A2K2) —UJQ(AlsQ + AQKQ)) ,

T6 T4 7&]2(A392 —+ A4K2)
where
_ 1 _ pw\laapw T — = e do
T3—§1(21 Kg) 07T ( )/aBy do(y),
_ 1 _ pw 1 hapw T — 2 . o do
To= 3 O3 [(51-K5) 0T =] ) [ ooty

w?(A3Ss + ALK>),
= Y L (e + (2D o o),

o] =2

To= Y é(Ag(xo‘I) + A4(8(;ZI)))aaDg(-)(z).

jal=2

Using the following identity, whose proof will be given later,

(3.52) tr/ (T1T5 — W Ty (ALS, + AQKQ)) dw =0,
oV,

1
2y —1m
it follows from (3.52)) that

1 wy—1 fqw w\—1 qw, 3
2\/_717Ttr/aVk(A0) AL (AD) ) A4S dos

e 3 [ (e

1 a G ) o
(3.53) = mtrlaz_:l (Al(x I)+A2<7)) 0 D [T ()] (2) dw.

By (2.403)) and (2.404)) we have

(51~ K8) ' 0T*( — 2)(x) = 703(11 k) - 2))

e} t
(3.54) = Z Mo w2 )%, (2)".
By Green’s formula, the following relatlon holds:

(3.55) Difuy(2) = wy(2) + (155 — ) / T (2 — y)uy (y)dy.
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Combining (3.55]) with (2.404)), we obtain

1 W (. _ 1 ‘ Nt 1
sy T DENG (. 2)) () = 5wy ()’ [ e
’ -1
= ﬁuj(z)uj(z)t-
We also have from that
35T DEI(E) = 0un(e) + (i — ) [ O = ppunly) dy.
Using and , it follows that
(3.58)
1 1
0°Dg[T3()](2) dw = — 9%u(2)0°u zt/ B do(y).
7T O PBTCNC b=~ 3 i) [ o7 ot
Substituting into , we obtain
(3.59)
1 / ~1 —1 3
——tr AG) AV (AG) T ASwe dw
2\/_717_[_ (’)Vk( 0) 1( 0) 2
_ 1 a 8(37a1) o 3 t B
NG trla_zl:ﬁl_l (Al(m I) +A2< £y ))8 u(2)0%ug(2) /3By - do(y)
1 d(zT)
_ o ¥l t Jel e}
N trla_zljﬂl_la uy(2)0"ug(z) /63y (Al(x I)—|—A2( 5 ))dcr(y)
1 O(z1)
= — B t B @ «
e Ial—zﬁl—la up(2) U@By (Al(:c I)+A2( = >)d0(y)}8 wp(2).

But, by the definition of A; and As, the (i, j)-component of

[, (@ aa (250 anty

is equal to fmgg. Now, plugging 1) into 1 , we arrive as desired at the

following asymptotic formula:

We —Wo =

63 > aj 4
2\/@1%&276:1 mg; 05(ug)i(2)0a(ur);j(2) + O(€").

In order to complete the proof of the theorem, we verify identity (3.52)). As
before, it is easy to see that

1
——tr T Tsdw
2\/717T A

_ _2\;@ 3 ;!uk(z)t[/aB (As(eo) + Ag(a(;;jl)))do(y)]aauk(z)

al=2

1 ()t/ A(auf)>d()
= 2\/Eu;gz o 2 o o\y),
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1
where uf)(x) = Z —x90%uy(2). Using (3.56)), we also have

a!
|| =2
1 2 ~ it
—t Ty(A1S AS5K5) d
2v/—1n r/avkw 2(AaSs + Al d
1 2 1 -1 - (30 —1
= _ t DEI(=I-KE) T“(x— ASKs(S d d
e r/avkw 3[G1- ) T - 9](2) | AsKa(Sh) do(y) d
=— ‘/jk trug(z)ug(2)’ [ AxKa(SH) ' do(y)
oB
= Vo) [ AR5 [us()] dofy).
oB

Inserting the Taylor expansion of uy at z into (LM + k), = 0 yields

(3.60) E’\’”ug) + kpug(z) = 0.
Since 8¢ = 8P + Z w"S,,, we get
n=1
(3.61) L285(8%) ™ [ue(2)] + up(2) = 0.
By the definition of A,, and the jump relation of a single-layer, we have
0 0 0 x 0
Ag(f) = - ShALE)| — 5 ShAD)| =F+ ZShAD)| - 5 ShAL(f)]
and hence
(3.62) As(f)do = / fdo.
OB dB

From (3.60), (3.61)), and (3.62)), we conclude that

/6B A (agﬁ) — rrA2K2(Sp) ! [k (2)] do(y)

v

ou'? -
_ /63 S — K (85) 7 [un(2)] do(y)

- / A — s L85 (85) 7 [un(2)] dy =0,
B

which completes the proof. O

3.5. Eigenvalue Perturbations Due to Shape Deformations

Let Q € R2. As in Subsection we consider D, to be an e-perturbation of
D & Q. The boundary 0D, is then given by

8D€={§3:5::x+eh(x)N(x), x € 0D },

where h € C?(9D). Here N is the outward normal to D, T denotes the tangential
vector, and 7 is the curvature of 0D.
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Consider the following eigenvalue problem:

LM + w?u =0 in Q\ D,

L e 4 wut =0 in D,

ou‘

=0 2)9)

(3.63) o on 0id,

u5|+—u€|7:0 on 0D,

oJu® ou®

W|+—E|_:O onaDe,

with the normalization [, [u|® = 1.
The following theorem from [19] holds.

THEOREM 3.15. The leading-order term in the perturbations of the eigenvalues
due to the interface changes is given by

wl—w=e h(z) M[u°](z) : £(u®)(x) do(x) + o(e),
oD
where E(u°) is defined by and
o -T) d(u’ - N)
0] — 7. 10 0 0.
M[u’] =aV ul+b5(u)+c( 5T + 7Tu V)T®T+d 5N N® N,
with 549
@ = (-~
A+2n
M ~
_ 2N+ 201 — A u)
C = 2 — — = — =< |,
(i M)( A+20 H
. X\ — )
d = 2(i-p Lot
A(A +25)

Here, I is the identity matriz, a ® b := a;b; is the tensor product between vectors
in R2, and T is the tangent vector to OD.

3.6. Concluding Remarks

In this chapter we have rigorously derived asymptotic expansions for the eigen-
values of the Laplacian and the Lamé system in singularly perturbed cavities. These
asymptotics are with respect to the size of the perturbation. We have also formu-
lated the problem of finding resonances of an optical resonator as a characteristic
value problem for a meromorphic operator-valued function.
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CHAPTER 4

Diffraction Gratings

4.1. Introduction

Diffractive optics is a fundamental yet vigorously growing technology which
continues to be a source of novel optical devices. Significant recent technology ad-
vances have led to the development of high precision micromachining techniques
which permit the creation of gratings (periodic structures) and other diffractive
structures with tiny features. Current and potential application areas include cor-
rective lenses, antireflective interfaces, beam splitters, and sensors. Because of the
small structural features, light propagation in micro-optical structures is generally
governed by diffraction. In order to accurately predict the energy distributions of
an incident field in a given structure, the numerical solution of the full Maxwell
equations is required. If the field configurations are built up of harmonic electro-
magnetic waves that are transverse, then the Maxwell equations can be reduced
to two scalar Helmholtz equations. Computational models also allow the exciting
possibility of obtaining completely new structures through the solution of optimal
design problems.

The basic electromagnetic theory of gratings has been studied extensively since
Rayleigh’s time (1907). Recent advances have been greatly accelerated due to sev-
eral new approaches and numerical methods including differential methods, integral
methods, analytical continuation, and variational methods, to name but a few.

Diffractive optical elements, as opposed to the traditional optical lenses, have
many advantages. They are light, small, and inexpensive. Often diffractive struc-
tures exhibit certain periodicity. There are two classes of grating structures:

e linear grating (one-dimensional gratings),
e crossed gratings (biperiodic or two-dimensional gratings).

The chapter begins with basic electromagnetic theory for diffraction gratings.
We introduce the basic physics and present the system of Maxwell’s equations as
well as the two fundamental polarizations. The well-known grating formula is also
derived. Then the method of boundary variations is also discussed. This method
is based on the observation that since electromagnetic fields behave analytically
with respect to perturbations of a scattering surface, they can be represented by
convergent power series in a perturbation parameter. The effects of small defects
in a diffraction grating is addressed using an integral representation formulation.

4.2. Electromagnetic Theory of Gratings

4.2.1. Time-Harmonic Maxwell’s Equations. The electromagnetic wave
propagation is governed by Maxwell’s equations. Throughout, we shall restrict our
attention to time-harmonic electromagnetic fields with time dependence (e~V~1%t),

197



198 4. DIFFRACTION GRATINGS

(4.1) E(x,t) = E(z)e V1wt
(4.2) H(x,t) = H(x)e V-1t

for some operating frequency w > 0 with £ and H being respectively the electric
and magnetic field.
The time-harmonic Maxwell equations take the following form:

(4.3) VxE = —lwuH,
(4.4) VxH = —vV/—lweE,
where p is the magnetic permeability and ¢ is the electric permittivity. Note that
from and , it follows that
(4.5) V-(E) = 0,
(4.6) V- (uH) = 0.

The fields are further assumed to be nonmagnetic and g = po (usually the
magnetic permeability of vacuum). Then becomes

V-H=0.
It follows from that the following jump conditions hold:

e the tangential components of £ and H must be continuous crossing an
interface,

e the normal components of eF and H must be continuous crossing an
interface.

In a homogeneous and isotropic medium, ¢ does not depend on x. By taking
the curl of (4.3) we obtain that

—AE+4+V(V-E)=+v—-1lwuV x H.
Using (4.4)), we have
~AE+V(V-E) =w?euE
or the Helmholtz equation

(4.7) AE +k*E =0

with k = w,/epo.
Similarly, H satisfies
AH +k*H =0.
Note that in a dielectric medium k? is real and positive. The wavelength X is given
by A = (27)/k.

4.2.2. Grating Geometry and Fundamental Polarizations. Through-
out, a grating is always assumed to be infinitely wide.

Figure shows the grating geometry. We denote the period, height, and
incident angle by A, h, and 0, respectively.

An alternative way to specify the periodicity is by means of ¢.

For a 1-D grating (linear grating):

e(z1 +nA, x2) = e(x1,22), n€Z.
In the case of a crossed grating with period A = (A1, A2) we have

e(xy +niAy, 2 +nolo, x3) = (1, 22,23), ¥V ni,ng € Z.
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Incident plane wave

/ Region I
/\—/Regio}

FIGURE 4.1. Grating geometry.

We assume that above the interface ¢ is real and positive. However, below the
interface the parameter ¢ can be real which corresponds to a dielectric medium;
complex corresponding to an absorbing or lossy medium; or perfectly conducting.

In the next three sections we shall discuss two separate cases: The perfectly
conducting grating and the dielectric grating.

Suppose that a grating is illuminated under the incidence 6 by a plane wave of
unit amplitude propagating in Region I (Figure . The incident vector K; lies
in the (21, 22) plane

K; = k1 (sin @, — cos9,0).

The electromagnetic fields are assumed to be independent of z3. We consider the
following two fundamental cases of polarization: T'E (transverse electric) and T'M
(transverse magnetic).

In TE polarization, the electric field is parallel to the grooves or points in the
x3 direction, i.e.,

E = u(xq,29)es

where u is a scalar function and (e, e2, e3) is an orthonormal basis of R3.

In TM polarization, the magnetic field is parallel to the grooves

H = u(z1,z2)es.
As we shall see, the resulting Maxwell equations in these two polarizations can

be quite different.

4.2.3. Perfectly Conducting Gratings. In this section, the grating is as-
sumed to be perfectly conducting. In order to treat the two fundamental polariza-
tions simultaneously, we denote u = E3(x1,z2) in TE polarization; = Hs(z1, z2) in
TM polarization, where the subscript 3 stands for the third component. Assume
that the grating is expressed by x9 = f(x1). Then u = 0 in Region IT (2o < f(x1)).
In Region I, the field u satisfies

(4.8) Au+ k*u = 0if 25 > f(21).

We next derive the boundary condition of u on x5 = f(x1). Using the jump
conditions and that F is zero in Region II, we have

(4.9) vxE=0 onaxs=f(x1),

where v is the outward normal to Region II.
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In TE polarization, F = (0,0, u), hence (4.9)) implies that
(4.10) u(zy, f(x1)) =0,

i.e., a homogeneous Dirichlet boundary condition.
In TM polarization, H = (0,0,u). We obtain by using Maxwell’s equations
and the condition (4.9) that

(4.11) % =0,
OV |oy=f(a1)
which is a homogeneous Neumann boundary condition.
Define the scattered field as the difference between the total field v and the
incident field u! = eV~ 1ow1—Fr2)

(4.12) u® =u—u'.
Here,

o = kysin6,
4.13
(4.13) { B = ky cosf.

Since the incident field v’ satisfies the Helmholtz equation everywhere, we can easily
show that

(4.14) Au® + E2u® =0 for x5 > f(21).

From (4.10]) and (4.11]), u® satisfies either one of the following boundary conditions:
TE polarization:

(4.15) u® = —u' on xy = f(x1).

TM polarization:
ou® ou?
o v
Next, since the problem is posed in an unbounded domain, a radiation condition is
needed. We assumed that u® is bounded when x5 goes to infinity and consisted of
outgoing plane waves. This radiation condition is also referred to as the outgoing
wave condition.

The grating problem can be stated as: find a function that satisfies the Helmholtz
equation ([.14), a boundary condition on {z3 = f(z1)}, and the outgoing wave con-
dition.

Motivated by uniqueness, we shall seek the so—called “quasi—periodic” solutions,
i.e., solutions u® such that us(xhxg)e_\/jl”l is a periodic function of period A
with respect to x; for every x5. In fact, if the grating problem attains a unique
solution then we want to show that

v(xy,x2) = u(z, xg)e_‘/jlo”“

is a periodic function of period A, i.e.,

(4.16)

on x9 = f(x1).

v(xy + A, z2) = v(z1, 22)
or equivalently
(4.17) u(z + A, mg)e VTN = uf (@),

Because of uniqueness, if w(zy, ) = u®(z; + A, 25)e”™V 1" is also a solution of
the grating problem, then it must be identical to w®. It is obvious that w satisfies
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the Helmholtz equation (4.14). The boundary conditions (4.15)) and (4.16|) are also

satisfied by observing that u’ is a quasi-periodic function and using the boundary
condition of u®.

4.2.4. Grating Formula. Since u®(z1,22)e” V=191 is periodic in z1, it fol-
lows by using a Fourier series expansion that

us(xl’ ‘%2) _ e\/jloc:cl Z Vn(xg)e\/jln%‘asl
nez
(4.18) = > Va(ap)eV lonm
nez
with
2mn
4.19 n=a4
(4.19) ap =a+ n
or equivalently,
2
(4.20) an = kysinf + n%

Thus, in order to solve for «*® it suffices to determine V;,(z2).
Now in the region {zo > max{f(xz1)}}, u®(x1,z2) satisfies the Helmholtz equa-
tion. Substituting (4.18) into the Helmholtz equation gives

2
Z d Vn(2x2) + (k% _ ai)vn(x2) e\/jln%'a:l - 0.
nez de

Hence

d*v,
TVlE2) 4 (07— 02 Wala) =0,
2

Define

VE? — a2 k> a2,
421 8, =
(4.21) V—=1y/a2 —k? k? <a2.

Then, solving the simple ordinary differential equation yields
Vi(x2) = Ane P2 4 Bne‘mﬁ"“.
The radiation condition implies that A, = 0. Actually if |k1| > |, | then e~ V=182

represents incoming waves instead. If |ki| < |a,| then e~V ~18»%2 is unbounded
when x5 goes to infinity. Therefore we arrive at the Rayleigh expansion of the form

u’(zy,20) = E BpeVlonmitv=18az2  «outeoing waves”
lon | <k1
(4.22) + E BpeVtonmitvV =182 “oyanescent waves” .
[on [ >k
Denote

U={n,lan| < k1}.
Each term (n € U) of the outgoing waves in represents a propagating plane
wave, which is called the scattered wave in the nth order. If |n| is large (n € U), then
the corresponding term in represents an evanescent wave B, e~ P12 eV Tanz
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0
0o
01 \\ / 0_1
92 —— — 0 9

FIGURE 4.2. Geometric interpretation of the grating formula.

which propagates along the z;-axis and is exponentially damped with respect to
xo. The scattered wave in the nth order takes the form:

(4.23) Yn(x1,29) = BpeV TanmitV=Iyki—ol @2 g5 [,
Since |a,/k1] < 1, we denote

o T i
4.24 A ing,, -~ <9, <~
(4.24) o 8infn, —5 <0 <5
From (4.19)), we have

n o . 2

(4.25) % =sinf, =sind + J—X

and (4.23) becomes
(426) wn(xh -TQ) _ Bne\/jlkl (1 sin 6,,+x2 cos 9")’

where 6,, is the angle of diffraction.
Thus we have derived the following grating formula:

2
4.27 sinf,, = sinf + nﬁ or kysinf,, = kysinf + M,
A A
where \; is the wavelength in Region I and
27
k= —.
L=

In the next theorem we state a reciprocity property.

THEOREM 4.1. Let 6 and 6,, be the angle of incidence and the angle of diffrac-
tion of the nth order, respectively. Then when the angle of incidence is 0/ = —0,,
the nth scattered order propagates in the direction defined by 0, = —0.

The grating efficiency E,, is the measurement of energy in the nth propagating
order. It is defined as
(bs
(4.28) E, = ﬁ,
where ¢ and ¢¢ are the fluxes of the Poynting vectors associated with the incident
wave and the nth scattered wave respectively through a unit rectangle in which one
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v ~

/’\/\/’\/\

FI1GURE 4.3. The reciprocity theorem.

side is parallel to the xi-axis while the other is parallel to the zz-axis. It is easy to
show that

cos b,

4.29 E, = |B,|? )
(4.29) | B v

We next state a simple result which is convenient in many applications. The
proof is based on integration by parts.

LEMMA 4.2. Assume that uy and us are two functions which satisfy the Helmholtz
equation
Au+k*u=0
and either a homogeneous Dirichlet or a Neumann boundary condition. Then for
any xo > max f(x1),

A
8UQ 6u1
4. — —Us—— =0.
( 30) /0 (u1 8302 ug 8’132 )dl‘l 0

THEOREM 4.3 (The conservation of energy).

(4.31) > B, =1

This is to say, the incident energy is equal to the scattered energy.

PROOF. Let u be a solution of the Helmholtz equation with either the Dirichlet
or the Neumann boundary condition. Since k; is real, u also satisfies the equation
and the boundary condition. By applying Lemma to u and u, we get

A _
(4.32) %/ < ou au) dx1 = 0 for zo > max f(l‘l)
0

Ory o

or
(4.33) %S {/OA uggz} =0 for zo > max f(z1).
Next,
u = eV lom—V=1fz2 4 Z B, eV lonzi+V=1Bna
nel
(4.34) £ Y B Tenn VA

ngU
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and
U= e V-lomi+v-18z2 Z B, eV lanm1—V=1bnz2
nel
(4.35) + Z B, eV lane1—V=1bnz2
ngU
Substituting (4.34]) and (4.35]) into (4.33]), we find
B = Z ﬂn‘BnFa
nelU
or equivalently
> E,=1

nelU
(Il

4.2.5. Dielectric Gratings. Recall that Region II is filled with a material of
real permittivity es.

The solution of the grating problem satisfies:

In Region I,
(4.36) Au+kiu=0 if o > f(z1).

In Region II,
(4.37) Au+k3u=0 if o < f(x1).
Also, outgoing wave conditions are satisfied by u® = u — u® (for x5 — +00) and by
u (for 9 — —00).

From the jump conditions and Maxwell’s equations, we have that w is continu-
ous, du/dv is continuous in TE polarization, and (1/¢)0u/0v is continuous in TM
polarization.

Again, the quasi-periodicity of the field follows from the uniqueness of the
solution. Then for zo > max f(x1)

(4.38) w(zy, xp) = eV1om Z Vn(mg)eﬁ"%zl.
neL

Substituting ([4.38) into (4.36)) and (4.37)), we obtain the Rayleigh expansion outside
the groove

(4.39) u(xy, o) = e(V—Toai—v=1fz2) 4 Z:ltinta\/filo“"ml+\/jﬁ"””2

with oy, = k1 sin€ + nZF and 82, =k — 2.
If x2 < min f(.’l?l)
) = ZT” e\/jloénxlf\/jlﬁnzﬂm

neEZ

u(xy, o

with
2 2 2
n2 — k2 — Q.
These two expansions contain propagating and evanescent waves depending on the
value of n.
For j = 1,2 denote by

Uj = {Tl,ﬂzj > 0}
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Then if n € Uy, o? < k%, we have

2
(4.40) oy = kysinf + n% = k1 sin6,1, —g <O, < g7

Bn1 = k1costpy,

and R,eY ~lon®1+vV—18n122 represents a plane wave propagating in the 6,,; direction.
Similarly, if n € Us, then

2
(4.41) oy, = ko sinf + n% = ko sin6,o, —g < bOpo < g,

Bna = kg cos b2,

and T),eV~ton®1=V=18n222 gtands for a transmitted plane wave propagating in the
60,2 direction.

Equations (4.40) and (4.41) are the grating formulas.

4.3. Variational Formulations

4.3.1. Model Problems: TE and TM Polarizations. Consider a time-
harmonic electromagnetic plane wave incident on a slab of some optical material in
R3, which is periodic in the z; direction. Throughout, the medium is assumed to be
nonmagnetic and invariant in the x3 direction. We study the diffraction problem
in TM (traverse magnetic) polarization, i.e., the magnetic field is transversal to
the (x1,x9)-plane. The case when the electric field is transversal to the (z1,2s2)-
plane is called TE (transverse electric) polarization. These two polarizations are
of primary importance since any other polarization may be decomposed into a
simple combination of them. The differential equations derived from time harmonic
Maxwell’s equations are quite different for the TE and TM cases: In the TE case,
(A + k?)u = 0, where E (the electric field vector) = u(x1,z2)es; In the TM case,

1

k2
where the magnetic field vector H(z) = u(x1,22)es. In both cases, k = w./zug =
wq, where ¢ is the index of refraction of the medium.

Let us first specify the problem geometry. Let S; and Sy be two simple curves
embedded in the strip

V- (Vu)+u=0,

Q= {(.Tl,l'g) S Rz b <ag < b},

where b is some positive constant. The medium in the region Q between S; and S
is inhomogeneous. Above the surface S; and below the surface So, the media are
assumed to be homogeneous. The entire structure is taken to be periodic in the
x1-direction. Without loss of generality, we assume that S; and Sy are periodic of
period A with respect to Z.

Let Q1 = {z = (21,22) € R? 1 25 > b}, Qo = {z = (z1,72) € R? : 29 < —b}.
Define the boundaries I'y = {25 = b}, I's = {&2 = —b}. Assume that S; > S
pointwise, i.e., if (z1,22) € S1 and (21, 2%) € Sa, then x5 > x}. The curves S; and
Sy divide € into three connected components. Denote the component which meets
'y by Qf; the component which meets I's by Q3 ; and let Qp = Q \ (ﬁf U ﬁ;—)
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Suppose that the whole space is filled with material with a periodic dielectric
coefficient function ¢ of period A,

€1 in Q;r Uﬁl,
e(x) =4 eo(z) inQy
Eo in Q;r @] QQ,

where gg(z) € L™, 1 and e are constants, €1 is real and positive, and Reqy > 0,
Seg > 0. The case Sea > 0 accounts for materials which absorb energy (see, for
instance, [I38]). For convenience, we also need the “index of refraction” ¢ = |/epg

q1 in Qir @] ﬁl,
q(x) =4q qlz) inQo,
q2 in Q;_ U QQ,

where ¢ is the dielectric constant and g is the free space magnetic permeability.
We want to solve the Helmholtz equation derived from Maxwell’s system of
equations

(4.42) V- (%Vu) +w?u=0 inR?
q

when an incoming plane wave
ul($1,$2) _ e\/flaxlf\/flﬁxrz

is incident on S from ;, where « and 8 are given by with —7/2 < 0 < 7/2
being the angle of incidence.

We are interested in “quasi-periodic” solutions w, that is, solutions w(z1, z2)
such that u(z1, xg)e’\/jlo‘“’l are A-periodic. Define uy (z1,z2) = u(z1, mg)e*\/jlazl.
It is easily seen that if u satisfies then u, satisfies

1
(4.43) Vo (5 Vatia) + w’uq =0 in R?,
q

where the operator V,, is defined by
Vo=V+v-1(e,0).
We expand u,, in a Fourier series:

(4.44) U (21, 22) = Zu((l") (wg)e\/jl%Tn“,
ne
where

u{™ (z4) = /1\//\ ua(xl,xg)e_\/jl¥”ldx1.
Introduce the sets ’
M ={reR*: 29 =01}, Th={ry=—b},
with 0 < by < b being such that Qg C {—by < x5 < b1 }. Let
Dy={zecR*:2y>b} and Dy={zcR?:zy< b}
Define for j = 1,2 the coefficients
(4.45) B} (o) = e‘/j”y/2|kj2. —a2V? = e\/jl“’y/2|w2q]2» —- 2|2 neuz,
ay, is defined by , k; = wg;, and
(4.46) vy = arg(ka- —a?), 0< vj < 2m.

J n
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‘We assume that
(4.47) kJQ» #a? forallneZ,j=1,2.

This condition excludes “resonance” cases and ensures that a fundamental solution
for (4.43)) exists inside Dy and Ds. In particular, for real ks, we have the following
equivalent form of (4.45)

/k2 — a2, 2
na) = k o? k >a
’ V=1 /a2 — k3, k2 <o

Notice that if Ik; > 0, then is certainly satisfied.
From the knowledge of the fundamental solution (see, for instance, [170] and

[195]), it follows that inside Dy and Ds, u, can be expressed as a sum of plane
waves:

(4.48) ualp, = Y afetV TtV =g

nez
where the a} are complex scalars.

We next impose a radiation condition on the scattering problem. Since 87 is
real for at most finitely many n, there are only a finite number of propagating plane
waves in the sum , the remaining waves are exponentially damped (so-called
evanescent waves) or radiate (unbounded) as |x2] — oco. We will insist that u,
is composed of bounded outgoing plane waves in D; and Ds, plus the incident
incoming wave u* in Dj.

From (4.44)) and (4.48) we then have the condition that

(4.49)
ug‘n)(b)e\/jlml(a)(“_b) in Dy for n #£0,
u(n) (x2) u((,uO) (b)e\/jlﬁ(wz_b) + e—\/jlﬂ932 _ emﬁ(wz—2b) in Dy for n = 0,
u((ln)(,b)ef\/jlﬁg(a)(wﬁb) in Ds.
From (4.49) we can then calculate the normal derivative of u2(z2) on I';,j =1,2:
) VI8 (@ua ) onTy forn #0,
(4.50) az =9 V- ﬁua (b) —2¢/—=1Be V=18 on T, forn =0,
T \/flﬂg(a)u&n)(fb) on Ts.

Thus from (4.48) and (4.50), it follows that

(4.51) %L = > VB (@u (b)eY TR — 2y/=1Be VTR,
v I nez
au 27n
YHa — n (n) V=125 gy

(452) = . ;;Z\/ 185 (a)ul™ (—b)eV 125" |

where the outward normal vector ¥ = (0,1) on I'; and = (0, —1) on T's.
In particular, the above discussion yields the following simple result.

LEMMA 4.4. Suppose that o2 > k3. Then
ul™ (b) = ulM (by)e~ C-PIVAR R
Similarly, if a2 > |ka|?, then
Ul (=b)| = [ul™) (—by )|~ (b—b1)sin(2/2) V(@2 —R(k3))2+(3(k3))%
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PRrROOF. The first identity is a simple consequence of (4.49) since k? is real.
Recall that from (4.46)),

28 = arg(R() — a2 + vIS(K2)).
Using (4.49)), we have
ul™(—b) = ugn)(,bl)ef(b*bl)lb’?I(Sin(%?/?)f\/TICOS(VSN))

(03

and hence
|u£¥”)(7b)| - |u&n)(,b1)|e*(b*b1)Sin(“/r?/?) V(@2 —R(k2))2+(3(k3)),
which completes the proof. O

REMARK 4.5. Actually, when o2 > |ka|?, the angle v§ /2 < 7/2 will approach
/2. Thus, there exists a fized constant oo, such that

(4.53) dp < sin(vy/2) < 1.

Since the fields u, are A-periodic in x;, we can move the problem from R? to
the quotient R?/(AZ x {0}). In what follows, we shall identify { with the cylinder
Q/(AZ x {0}), and similarly for the boundaries I'; = I'; /AZ. Thus from now on,
all functions defined on €2 and I'; are implicitly A-periodic in the x; variable.

For functions f € Hz(T';) (the Sobolev space of A-periodic complex valued
functions), define, in the sense of distributions, the operator T by

(4.54) Te(f)(zn) = Y V=187 (a) fMe TR,
nez

where
w1 [ —VI3na
== f(z1)e KT dry.
Ay

It is necessary in our study to understand the continuity properties of the above
“Dirichlet-to-Neumann” maps. Fortunately, this is trivial by observing that 77" is
a standard pseudo-differential operator (a convolution operator) of order one from
the definition of 37'(«). Thus the standard theory on pseudo-differential operators
(see, for instance, [441]) applies.

LEMMA 4.6. For j = 1,2, the operator T : H%(Fj) — H_%(Fj) is continuous.

The scattering problem can be formulated as follows: find u, € H'(2) such
that

1

(4.55) Va- (q—QVaua) +wu, = 0inQ,
(4.56) T8 ua] — %L: = 2V=18e V=1 on Ty,
(4.57) T9ua] - 2%~ 0 onTy.

ov
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An equivalent form of the above system is

1

(4.58) va.(?vaaa)+w2aa = —finQ,
. O,

(4.59) TPfia] = 5% = 0 only,
_ . O,

(4.60) TS [ta] — % = 0 onTly,

where f € (HY(Q))" and @, = us — ug with ug a fixed smooth function. In fact, ug
may be constructed in the following way: Let ug be a smooth A-periodic function
supported near the boundary I';. It can be further arranged that ug(z1,b) = 0 and
—Op, U0 = 2\/—7166_\/_71&7 on I'y. Clearly, @, = uy, — ug solves the above equation
with f = V, - (q%Vauo) + w?ug € (HY(Q))', the dual space of H(Q).

For simplicity of notation, we shall denote @, by u,. One can then write down
an equivalent variational form: Given f € (H'(Q)), find u, € H'(Q) such that

(4.61) a(ua,¢) = (f,¢), Vo€ H(Q),

here the sesquilinear form is defined by
1
a(wy,wy) = /—Qle-VuTQ—/( 2 )’wﬂﬂg—\/ a/ (0, w1 )W3
Q4 Q >
I 1 1
+v— a/ —5 W10z, Wa — / —2T10‘[w1]w72—/ — 15 [w: |wa,
I

r, 4 q5

where [ represents the dual pairing of H~2 (T';) with Hz (Ty).
J
We first state the existence and uniqueness of the solution to the continuous
scattering problem. The proof is from [104], 112}, [192].

THEOREM 4.7. For all but a countable set of frequencies wj, |w;j| — +oo, the
diffraction problem has a unique solution u, € H'(Q).

For simplicity, from now on, we shall remove the subscript and superscript
and denote uq, T}* by u, Tj, respectively. In the proof of Theorem we denote
k? = k?w? to illustrate the explicit dependence on the frequency parameter w.

PRrROOF. Write a(wy,ws) = By (wy,ws) + w?Ba(wy,ws) where
Bl(wl,wg) = /—le Vw2+2/ 710111)2 Ve Oé/ (chwl) wo
_— 1 _ 1
+\/ Oé/ wlamwg / —le[wl]wg 7/ —Tg[wl]wg,
I

Ty ql 2 q2
OCQ
Bg(wh’wg) = —/<1+ ﬁ)wlﬁg
Q

It follows that

2 1 1 1
By (u,u) :/ 5|Vl +2/ —|u|2—2a/ —S3(u amu)—/ —2T1[u}ﬂ—/ — T u]
Q4 q° Qd r, 4 r, 42
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Next denote ; = ﬁ by o/ —+/=10". Clearly, ¢’ > 0 and ¢” > 0. Also, denote

-2 by 05 — /=103, where 03 > 0 and 07 > 0. Thus
2

R{B:1(u,u)} = /a’|Vu\2+2/ a20’|u|2—2a/ o'S(u Oy, 1)
Q Q Q
1 1
-R{ | =T [u]ﬂ+/ — Thlulu}
r, 4 r, 42
o’ 9 1 _ 1 _
> —|Vul]* = R{ — T [u]a + — Tolulu},
Q 2 r, @ r, 43
and
—{B1(u,u)} = /J”|Vu|2+2/ 0420”|u|2—2a/ o"S(u Oy, u)
Q Q Q
1 1
+{ —QTl[u}ﬂ+/ — Tolu]u}
I ql I's q2
0_// 9 N 1 i 1 7
> 7|Vu| + — T [u]u + — T [ulu}.
Q r, 41 I, 42
Further,

1 1
- / STn = =3 S AV=IB 2
r qi
1 n n 1 n n
= 3 S AQE) W - VTN ARG P,
1 1
and it is easy to see that
1 1
[ Smbin = =3 VA (b
r 2

N
ZAIBSI\u(”)(—b)IQpn

where p,, = p}, — v/—1p!/ with
Py = —03 cos(73/2) + o5 sin(v3 /2)
and
Pl = 05 c08(73 /2) + o5 sin(v3 /2).
Recall that
7 = arg(R(kF) — af, +V-13(k3))

and 0 < 4% < 27. Then it follows that p! > 0 for all n and the set {n : p], < 0} is
finite. It is also easy to verify that |p//| > |pl,| for n € {n : p), < 0}. Moreover, for
fixed w ¢ B where B is defined by

Bi:={w:p}w)=0, j=1,2},

we have
1871 > C(1+ )2, j=1,2,
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Combining the above estimates, we have

|B1(u,u)] > C|:/Q |Vu|2 + Hu||§{1/2(pl) + Z(|PZ| - |p;|)|u(n)(_b)|2

neA
'y |p::||u<”><—b>|2}

ngA

Y

cl /{ 902+ [l 21y + 20 ey

Cllul |§{1(Q)’

Y

where the last inequality may be obtained by applying some standard elliptic esti-
mates; see [236]. Therefore, we have shown that

(4.62) 1By (uyw)| > Clull g,

i.e., By is a bounded coercive sesquilinear form over H'(f). The Lax-Milgram
lemma then gives the existence of a bounded invertible map A; = A;(w) : H(Q)) —
(H'(2))" such that (Aju,v) = Bi(u,v), where ’ represents the dual space. More-
over, A7 is bounded. Notice that the operator Ay : HY(2) — (H'(Q))’ defined by
(Agu,v) = Ba(u,v) is compact and independent of w.

Holding wg ¢ B fixed, consider the operator A(wp,w) = A1(wp) + w?As. Since
A; is bounded invertible and A, is compact, we see that A(wg,w)”! exists by
Fredholm theory for all w ¢ £(wp), where £(wyp) is some discrete set. It is clear that

[[A1(w) — A1 (wo)|| = 0, as w — wp.

Thus, since ||A(w, w)— A(wg, w)|| = ||A1(w)— A1 (wp)]| is small for |w—wq|sufficiently
small, it follows from the stability of bounded invertibility (see, for instance, Kato
[290, Chapter 4]) that A(w,w)™! exists and is bounded for |w — wp| sufficiently
small, w ¢ E(wp). Since wy > 0 can be an arbitrary real number, we have shown
that A(w,w)! exists for all but a discrete set of points. O

4.3.2. Biperiodic Structures. Consider a time-harmonic electromagnetic
plane wave incident on a biperiodic structure in R3. The periodic structure sepa-
rates two homogeneous regions. The medium inside the structure is heterogeneous.
The diffraction problem is then to predict energy distributions of the reflected and
transmitted waves. In this chapter, we study some mathematical aspects of the
diffraction problem. We introduce a variational formulation of the diffraction prob-
lem by dielectric gratings. Our main result is concerned with the well-posedness of
the model problem. It is shown that for all but possibly a discrete set of frequen-
cies, there is a unique quasi-periodic weak solution to the diffraction problem. Our
proof is based on the Hodge decomposition and a compact embedding result. An
energy conservation for the weak solution is also proved. An important step of our
approach is to reduce the original diffraction problem with an infinite configuration
to another problem with a bounded domain. This is done by introducing a pair of
transparent boundary conditions. We emphasize that the variational approach is
very general. In particular, the material coefficients € and p are only assumed to be
bounded functions. The geometry can be extremely general as well. The incident
angles and grating shapes may be arbitrary. Moreover, a class of finite element
methods can be formulated based on the variational approach.
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4.3.3. Diffraction Problem. We first specify the geometry of the problem.
Let A1 and As be two positive constants, such that the material functions € and p
satisfy, for any ny, no € Z,

e(wy +n1Ay, w2 +n2ho,w3) = (21,72, 73),
p(r +ni1A1, w2 + oo, z3) = plzr,T2,73).
In addition, it is assumed that, for some fixed positive constant b and sufficiently
small § > 0,
e(z) = e, plr)=p forxzz>b—94,
e(x) = e2, wulx)=ps forxs < —b+74,
where €1, €9, 1, and us are positive constants. All of these assumptions are
physical.

We make the following general assumptions: e(z), pu(z), and S(z) are all real
valued L*° functions, e(z) > eo and u(x) > po, where €9 and po are positive
constants.

Let Q={reR3: —b<a3<b}, U1 ={z€R3:23>b}, o={reR3:23<
—b}.

Consider a plane wave in {2

(463) E' = se\/jlq% ’ Hi = pe\/jlq-z ,

incident on Q. Here ¢ = (a1, an, —8) = w,/E1p1(cos b1 cos Oa, cos 0y sin Oy, — sin 67)
is the incident wave vector whose direction is specified by 6, and 6y, with 0 < 6, < 7w
and 0 < 0y < 2m. The vectors s and p satisfy

1
(4.64) s=—I(pxq), ¢-q=weipr, p-q=0.
wel
We are interested in biperiodic solutions, i. e., solutions E and H such that the
fields E,, H, defined by, for a = (a1, as,0),
(465) Eoc = e_\/jla.xE(xtham?))u
(466) Ha = efﬁa'zH(ml,xQ,xg,),

are periodic in the xq-direction of period A; and in the xo-direction of period As.
Denote

Va =V + vV —la=V + vV —1(0&1,&270) .
It is easy to see from (4.3) and (4.4) that E, and H, satisfy

1
(4.67) o (;va x Ea) — w¥E, =0,

(4.68) Vo X By =vV—lwu(z) Hy.

In order to solve the system of differential equations, we need boundary con-
ditions in the x3 direction. These conditions may be derived by the radiation
condition, the periodicity of the structure, and the Green functions. To do so, we
can expand E,, in a Fourier series since it is A periodic:

) 27n 27n
(469) Ea(x) = E};v(x) T Z U(gn) (xB)e\/*l( ATt TR xz))
nez




4.3. VARIATIONAL FORMULATIONS 213

where E! (z) = Ei(a:)e"/jlo"x and

Ay A2 g _\/_—1(27m1 o422 4,)
E!(x))e A1 A2 dxidxs.

U(") (z3)

1A2
Denote
I ={zxecR3: 23 =>b}and Ty = {x3 = —b}.
Define for j = 1,2 the coefficients
(n) Vwrejp; — lom[?, w? EJMJ > [ l?,
(4.70) P te) = { V=1l —wiejn;, wlejp; < |anl?,
where
an = a+ (2mn1 /A1, 2709/ A2,0).

We assume that w?e;u; # |ay,|? for alln € Z?, j = 1,2. This condition excludes
“resonances”.
For convenience, we also introduce the following notation:

Af ={nez?: 3(B") =0}
Ay ={nez*: (") +0}

Observe that inside Q; (j = 1,2), € = ¢; and p = p;, Maxwell’s equations then
become

(4.71) (A +w?ejp)Eq =0,

where A, = A +2y/~1a -V — ||
Since the medium in Q; (j = 1,2) is homogeneous, the method of separation

of variables implies that E, can be expressed as a sum of plane waves:
(4.72)

. (n) 27n 27n
Ea|Qj = E(lx(x) + Z A§'n)€i\/jwj stV =1( /\1135lJr A2212), j=12,

n=(n1,n2)€Z?

where the Ag-n) are constant (complex) vectors, where E’ (z) = 0 in Q.

We next impose a radiation condition on the scattering problem. Due to the
(infinite) periodic structure, the usual Sommerfeld or Silver-Miiller radiation con-
dition is no longer valid. Instead, the following radiation condition based on the
diffraction theory is employed: Since 37" is real for at most ﬁnltely many n, there are
only a finite number of propagating plane waves in the sum , the remaining
waves are exponentially decaying (or unbounded) as |x3| — 0. We will insist that
F, is composed of bounded outgoing plane waves in €27 and )5, plus the incident
(incoming) wave in Ql

From and (| we deduce

" (p)eV T @t
(473) E((Xn)(xd) _ U(,Zn)(b)e 1 (:’:) mn Ql)
U, (—b)e*ﬁﬁz (@3+0)  in Q.

By matching the two expansions ) and ( -7 we get
(4.74) A = Ug@(b)e—ﬁﬁi b on Ty,
(4.75) AY = U™ (—p)e VI on Ty,
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Furthermore, since in the regions {z : z3 >b— 390} U{x: a3 < —b+d},
V-E=0, V-E'=0
or 4
Vo -Ea=0, Vo-Ei =0,
we have from that
(4.76) an - UM ®) + MU ®B) = 0 onTy,

)

(4.77) an - UM (=) — B0 (=b) = 0 onTa.

a7

LEMMA 4.8. There exist boundary pseudo-differential operators B; (j = 1,2)

of order one, such that

(4.78) vx (Vo x (Ey—E!)) = BiP[E,—E!] onTy,
(4.79) vx (Vo x Ey) = ByP[Ea] onTs,
where the operator B; is defined by
(4.80)
1 n n " n —g(2mny | 270y
Bilf] = V=1 Y {8 57,00+ (an- f)an}e? TR

nez? Fj

where P is the projection onto the plane orthogonal to v, i.e.,

PIf] = —v x (v x f),

and

27n

Ar Ao 1 1 2mng
f = AflAz_l/ f(m)e_F( AR ) ey iy,
0 0

Here v is the outward normal to §.

12)
)

The proof may be given by using the expansion (4.72)) together with (4.74 ,

and some simple calculation.

REMARK 4.9. The Dirichlet-to-Neumann operator B carries the information
on radiation condition in an explicit form. Here it is crucial to assume that 5™ is

nonzero.

We introduce the L? scalar product

9= 13
A
where A is the domain.

Denote by Bj the adjoint of B;, that is,

<Bj[f]> g> = <f7 Bj*[g]>7
for any f and g in L3(T';).

It is easily seen that the adjoint operator of B; in the above lemma is given by

(4.81)

27ng 27y

* ]- —n n n n — xT xT
Blf) = V=1 Y. =B 57,00+ (- ) b TR R ),

nez? Pj
Define
A= M7 x AyZ x {0} C R3.
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Since the fields E, are A-periodic, we can move the problem from R3 to the quotient
space R?/A. For the remainder of the section, we shall identify  with the cube
/A, and similarly for the boundaries I'; = I'; /A. Thus from now on,

all functions defined on 2 and I'; are implicitly A-periodic.

Define V- by Vo - u = (02, +vV—1ar)us + (0p, + vV —1a)us.

Let H™ be the mth order L?-based Sobolev spaces of complex valued functions.
We denote by H"(€2) the subset of all functions in H™ (£2) which are the restrictions
to Q of the functions in H" (R? x (—b, b)) that are A-periodic. Similarly we define
H}J'(Q;) and H)*(T;). In the future, for simplicity, we shall drop the subscript p.
We shall also drop the subscript a from E,, E!, V., and V,-.

Therefore, the diffraction problem can be reformulated as follows:

VX (3VxE)-w?eE=0inQ,
(4.82) vx (VxE)=BP[E] - fonTy,
v X (V x E) = ByP[E] on Ty,

where

(4.83) f = (B P, = v (V% E)lr,)

The weak form of the above boundary value problem is to find E € H(curl, Q2),
such that for any F' € H(curl, Q)

(4.84) /leE~VxF
QM

_ 1 — 1 — —
—/w2sE-F+ —BP[E]-F + —BQP[E]-F:/ f-F.
Q r, M1 r, M2 r

4.3.4. The Hodge Decomposition and a Compactness Result. We present
a version of the Hodge decomposition and compactness lemma. The results are cru-
cial in the proof of our theorem on existence and uniqueness. We also state a useful
trace regularity estimate. We remark that for simplicity, no attempt is made to
give the most general forms of these results.

Let us begin with a simple property of the operator B;. From now on, we
define Vr,- as the surface divergence on I';.

PROPOSITION 4.10. For j = 1,2 and g € H'(Q2)

75)?/ BjP[Vq]-Vq>0.
L
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Proor. Using the definitions of the operator B; in 1) and [3](.") in 1 ,

we have by integration by parts on the surface

*?R/ B;P[Vq|-Vq = 3?/ Vr - B;P[Vq]-q
T, T,

= R (VI Yl

nez? J

(n))2 2
B/ + lay,
> i I(n) o )\OénIQICI(")IQ
neA; |6 ‘
- X et SR 20
nGA; | ‘
Recall that V, V-, are the shorthand notations of V++/—1a, V-, respectively. [

LEMMA 4.11. For any function f € (H'(2))" which is smooth near T'y and T,
the boundary value problem

V- (eVp) = finQ,
(4.1) 61% = —ﬁvp - B1P[Vp] on T,
€2 gfj = fin - BoP[Vp| on Ty,
has a unique solution in Hy(Q) ={q: q€ H (), [,q=0}.

PROOF. We examine the weak form of the boundary value problem (4.1)). For
any ¢ € Hg(2), multiplying both sides of (4.1} . ) by ¢ and integrating over Q yleld

/V (eVp) - q—/f

After using the boundary conditions integration by parts gives that

— 1
(4.2) /€Vp-Vq+ —Vr B P[Vp]-q+ —Vp B;P[Vp]-g=— /f
Q

r, M1 Iy M2

Denote the left-hand side of (4.2)) by b(p,q). Keeping in mind that p and ¢ are
periodic, from integration by parts on the boundary, we obtain

— 1 [ 1 _
b(p.q) = /Q Vp- Vi~ [ PV PV - / - BaP(Vy] - PV
T, 1)

The variational problem takes the form: to find p € Hg (), such that
b(p,q) = —/Qf@ Vq € Hy ().
It is now obvious from Proposition that
1 —_— 1 e
Rop.p) = [ Vol —%{ [ BiPIVH- P+ [ - BaPIVe- PO}
Q r, M1 Iy M2
C[IVpll72q)-

Therefore by a version of Poincaré’s inequality ( fQ p = 0), we obtain

Ro(p,p) > Cllpll 7 (g)-
The proof is complete by a direct application of the Lax-Milgram lemma. O

Y
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Next, we present an embedding result. Let W () be a functional space defined
by

(4.3) {u . we H(cwl,Q), V- (cu) =0in Q, and
(4.4) wreju v = —in-BjP[u] onl;, j= 172}.
Hj

LEMMA 4.12. The embedding from W (Q) to L?(2) is compact.
PROOF. Let u be a function in W (). Define an extension of u by
(51 in Ql,
uw=+< wuin €,
u9 in 027

where u; (j = 1,2) satisfies

V x V xuj —w?ejpuju; =0in Q,

u; X v=uxvonly,

the radiation condition at the infinity.
Since the medium in §2; is homogeneous, it may be shown that

1
(4.5) w?ejuj-v=——Vr-BjPlulonT;, j=1,2.
M
In the following, we outline the proof of (4.5). In fact, it is easy to see that the
function u; satisfies the boundary condition
v xV x u; = BJP[UJ]
Hence
(46) Vr- (V x V x Uj) =Vr- (BJP[U,J])
But
V- (v xVxu;)=—(VxVxuj)-v,

which together with the Maxwell equation for u; yield that
(47) — w2ajujuj V= VF . B]P[u]]
From (4.6)), (4.7)), the boundary identity (4.5 follows.

Therefore from [ x v] =0, it follows that [t -v] =0 on I'; and then
V. (Eﬂ) =0 il’lﬁUQl UQQ.

It follows from [z x v] = 0 on I'; and the radiation condition that u € H(curl, D)
for any bounded domain D C QU Q; U Q.

Now let {u;} be a sequence of functions in W that converges weakly to zero in
W(£2). Construct a cutoff function x with the properties: x is supported in Q50
and x = 1 in Q. Hereﬁz{—b’gmggb’, 0 <21 <A1, 0<a <Ay} with
b >b.

Hence

{Xﬂj}CW:{U: ve H(eurl,Q), V- (ev) =0, 1/><v200nx3:b',—b’}.



218 4. DIFFRACTION GRATINGS

It follows from a well known result of Weber [454] that the embedding from W(Q)

to L?(2) is compact. Therefore the sequence {u;} converges strongly to zero in
L?(Q)), which completes the proof. O

We now state a useful trace regularity result.

PROPOSITION 4.13. Let D be a bounded domain. For any n > 0, there is a
constant C'(n) such that the following estimate

v x u||H—1/2(aD) <V xull2(py + C)llullL2(p)
holds.
PROOF. The proof is straightforward. For the sake of completeness, we sketch

it here.
For any function ¢ € H'/?(9D), consider an auxiliary problem

Vxwa—i—n%w = 0inD,
—v X (VX w) = ¢ ondD.
The result of the proposition follows immediately from estimating |(vx, ¢)|. O

4.3.5. Existence and Uniqueness of a Solution. In this section, we in-
vestigate questions on existence and uniqueness for the model problem. Our main
result is as follows.

THEOREM 4.14. For all but possibly a countable set of frequencies wj, w; —
“+00, the variational problem admits a unique weak solution E in H(curl, ).

PrOOF. The proof is based on the Lax-Milgram lemma. We first decompose
the field F into two parts

E=u+Vp, uc H(curl,Q), pec HY(Q).
By choosing E = u+ Vp, F = v in (4.84), we arrive at
1 _
(4.1) /—qu~V><v
QM

1 1
—wz/ eu-v4+ | —BPlul- v+ | —ByPu]-v
Q r; M1 Iy M2

1 1
—w2/ eVp-v+ — B P[Vp]-v+ — By P[Vyp] »@:/ f-w.
Q r, M1 Iy M2 I,

Similarly by choosing F = u + Vp, F = Vq in (4.84), we get

= 1 — 1 —
(4.2) —w? / eu-Vq+ — B Plu] - Vg + — By Pu] - Vg
Q r, H1 Iy M2

— 1 - 1 _ _
—wQ/ eVp-Vq +/ — B P[Vp]-Vq +/ — By P[Vp] - Vq = f-Vq.
Q r, H1 Iy, M2 I,

We use the following Hodge decomposition:

EFE=u+Vp,
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where p € H'(Q) and v € W (). The functional space W consists of all functions
U € H(curl, Q) that satisfy

V-(eu) = 0 in Q,
(43) w251u V== iVF : BlP[u] on I'y,
wlegu v = — tvp - ByPlu] on T's.

The fact that this decomposition is valid follows from Lemma Actually, it is
obvious to see that for any given F, Lemma implies that there is a function p,
such that V - (eVp) = V - (¢E) and the suitable boundary conditions. Therefore,
u = E — Vp solves the problem .

Moreover, according to Lemma the embedding from W () to L?(Q) is
compact. We point out that the embedding from H(curl, Q) to L?(Q2) is not com-
pact.

Denote the left-hand sides of (4.1)), (4.2)) by a1(u,v), az(p, q), respectively.
After some simple calculation, we obtain for u, v € W, p, ¢ € H' that

ai(u,v) = / leu~va
QkM
—w2/ su-6+i By Plu] ~6—|—i ByPlu] -
Q M1 Jry M2 Jr,
(4.4) ]
- [ Ve (@ BOPH
Ty #11
— | —pVr-((B; — B2)P[v])
Iy H2
and
as(p,q) = *wz/ eVp- Vg
(4.5) Q

1 — 1
+— B P[Vp]-Vq+ — By P[Vp] - Vq.
M1 Jry Iy M2

By taking v = u, ¢ = p, we deduce from (4.4)), (4.5) that

ax (1, u) — as(p, p) = / AV % uf?
Q

1 1
—wz/e\u|2+—/ BlP[u]ﬂ—F—/ ByPlu] - @
Q B Jr, M2 Jr,

1 0 [
46) - / o Ve (BT = B PR - / 2 ip Ve (B ~ B Pl))
2 2
+w1 /QE\Vp\ 1
—— | BiP|Vp|-Vp— | —ByP[Vp|-Vp= [ f-(u—Vp).
M1 Jr, Ty M2 Ty
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Thus, we have

%{al(u,u) - ag(p,p)} > dp||V x u||%2(9) +V xXu-u)

—w2/ elul® + ?R{i By Plulu + L By Plu] ﬂ}
Q

M1 Jr, K2 Jr,

(4.7) S I
R{ [ Ve (BT BIPRD + [ Ve (B B)P) |
1 — 1 —
+w2/ﬂz€|Vp|2§R{Ml/Fl B1P[Vp|-Vp — 5 ngP[Vp)'Vp}.

We now estimate the terms on the right-hand side of (4.7) one by one.
It follows from the boundary condition (4.80]) that

1 B 1 " 1 .
R [ —BiPln = — 3 {IBIPLO)E - —la, - Pt}
T3 Hi K neA; |Bg ‘
J
1 1 (n)2 2 ()12
Z o ) ‘6(n)|(|ﬂj " = lam[") [ Plu™]|
J nGA; J

> el X ull e

where to get the last estimate, we have used the expression (4.70). An application
of Proposition [£.13] then leads to

1 1
R —BPuﬂ+/ —BoPlulu | > —nl|V x ull72q) — C)||ullF2(q) -
{ [ arBiPlau+ | BaPlufa > nllV xulf) = CODllullt o

We next estimate the term

([ Ve (B - BIPRD}.

i Hi
From (4.80) and (4.81)),

Vr - ((Bj — B;)P[v])
n n n n —1
v S {WETB + VTR )0, o8, 0) + (L
nez? 5]' )
+ L(ﬁ)l)(an . v("))an}eﬁ(2xl w1t 22 )
3t

J
=3 2{18lan o™ +

nEA?

| (1 )|an . ,U(n)|an|2}e\/jl(2171u 11+21;2z2).
/3_"

J
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Thus

o, -E(")|an|2}
J

1
185"
=R Z {2w2€j|ﬁj(-n)|_1p(")an ~E(")}

nEAj
< Clplgra@wplly X vllg-12(r,)-

Hence Proposition [£.13] and the trace theorem may be used once again to obtain
that

1 e —
-2 %{/F P V(B =B)PIe) | < lpl3s o+l xella oy +C)lol ey
. T

j=1,2

Finally by Proposition [1.10]

1 — 1
—-R® | —B;P[Vp|-Vp= ER/ —Vr-BjP[Vp|-p>0.
T, Hj r; My

Combining the above estimates, we have shown for any v € W and p € H' that
the following Garding type estimate holds:

S‘E{al(u,u) - az(Pap)} > Cluu”%{(curl,ﬁ) + CQHPH%P(Q) - 03(”“”%2(52) + ||PH%2(Q))'

Denote the left-hand side of (4.84) by a,,(F, F). Since the embedding from W to

L? is compact and the dependence of the bilinear form a(,) on w is analytic outside

a discrete set A (the set of resonances frequencies w§") = Llan>,n € Z?j=1,2),
J

the meromorphic Fredholm theorem holds. To prove the theorem it suffices then

to find a frequency w € C'\ A such that the bilinear form a,(,) is injective. Let
us choose w = /=1, for some positive constant A. If E € H(curl, ) is such that
aix(E,F) =0 for any F € H(curl,2) then define the extension of E by

E1 in Qh
E={ EinQ,
E2 in QQ,

where E; (j = 1,2) is the unique solution in Hiec(curl, ;) of the Maxwell equations

(48) V x V x E]‘ —w25j,quj =0in Qj,
. i xv=Exvonly,
4.9 E; E Iy
(4.10) the radiation condition at the infinity.

From the (transparent) boundary condition satisfied by E on I'; it follows that
- 1 - -
[Exv]=[-VXxExv]|=[E-v]=0
i

on I';. Moreover, since w is a pure complex number, E is exponentially decaying
as |r3| — +oo. It follows that E is a solution in H (curl, R3) (i.e., of finite energy)
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of the homogeneous Maxwell equations and so,

1 ~
/ ~|VxEP?=0
R3 M

which implies that E =0 in R3. The uniqueness of a solution to the problem for
this particular choice of frequency w gives the claim. The proof is complete. ([

4.3.6. Energy Conservation. In this section we study the energy distribu-
tion for our diffraction problem. In general, the energy is distributed away from the
grating structure through the propagating plane waves which consist of propagating
reflected modes in 2y and propagating transmitted modes in 5. It is measured by
the coefficients of each term of the sum .

Since no energy absorption takes place, the coefficients of propagating reflected
plane waves are

rm = EM™(be —V=T5" for n #0,n € A],
ro = U(O (b Fﬁ

Je
where again A] = {n € Z?: %(ﬁ( ) = 0}. Hence, the energy of each reflected
mode may be defined as

forn =0,

B, |2

B

and the total energy of all reflected modes is

Z B a2

nEAJr

Similarly, the coefficients of each propagating transmitted mode are
(n)
n=FEM(=b)e V150 forne Af

where A = {n € Z* : %(ﬁén)) = 0}. The energy of each transmitted mode is

defined by
85" [t

p2f
and the total energy of all transmitted modes is

&= 1B Hzﬂ Z B2n [tn?.

REMARK 4.15. In optics literature, the numbers &, and & are called reflected
and transmitted efficiencies, respectively. They represent the proportion of energy
distributed in each propagating mode. The sum of reflected and transmitted effi-
ciency is referred to as the grating efficiency [400].

The following result states that in the case of no energy absorption the total
energy is conserved, i.e., the incident energy is the same as the total energy of the
propagating waves.

THEOREM 4.16. Assume that the material coefficients eo(x), €1, 2, p(x), w1,
and pg are all real and positive. Then

E+ & =|s].
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Thus the total energy that leaves the medium is the same as that of the incident
field.

PrOOF. Multiplying both sides of the equation (4.82) by E and integrating it
over (), we obtain

/ﬂVXEP
Q

1 — 1 — -
—/w%mﬁ+ ——&PWLE+/——&PWLE: f-(B),
Q r, M1 ry, M2 r,

where f is defined by (4.83]).
Taking the imaginary part of (4.1), we get
1 ) min 1 ) min 1
S Lemipop . 3 Lgmipep = Ly (2F—w
M1 cat M2 H1
neig

+
neA]

(4.1)

s- Ee V-1t dx) .
I'y

The proof is completed by noting that
|7"0|2 = |U(0)e—¢jlﬁb|2 _ |(E(0) . (Ei)(o))e—\/jlﬁb|2
|E(0)|2 — 2R (S . We*\/jlﬂb) + ‘8‘2

4.4. Boundary Integral Formulations

The boundary integral equation method was one of the first methods in grating
theory. It has been used for the investigation of diffraction gratings of different
kinds. In this section we present boundary integral formulations for scattering
problems by dielectric periodic and biperiodic gratings.

4.4.1. Dielectric Periodic Gratings. In this section we establish an integral
formulation for the diffraction problem from a one-dimensional dielectric grating.
We consider ) and @ subject to the quasi-periodic radiation conditions
on u’ derlved in Subsectlon 4251 As before, we denote the period A and let
I = {25 = fa1)}/(AZ\ {0}).

We introduce the quasi-periodic Green’s function for the grating, which satisfies

(4.2) (A+E)G (z,y) =Y do(x —y — (nA,0))eY 1A,
nez

We have

(4.3) GoF(z,y) = == ZH&” (Kl — (nA, 0) — y[)e¥/=TmoA,
nez

where Hél) is the Hankel function of the first kind of order 0.
If k # ||,V n € Z, where o, is defined by (4.19), then by using Poisson’s
summation formula

(4.4) Z eV TR Fo)mn Z So(z1 — nA)eY T,
neZ neZ
we can equivalently represent G** as

\/—71(,!.,,,(11 _y1)+\/jlﬁn(m2_y2)
o e
(45) ey = Y . ,

nez
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where (3, is given by

k2 — a2 k* > a2,
(4.6) Bn = { :

V=1ya2 —k? k* <a?.

Let Sp * be the quasi-periodic single-layer potential associated with G** on T’;
that is, for a given density ¢ € L?(T),

%“mm=£cwumaww@,xew.

Analogously to (2.165), u can be represented using the single layer potentials Spt ok
and Sp Rz as follows:

u' () +3?7k1[7/1](95)7 r € {r = (21,72) : w2 > f(21)},
S?’kz[ﬂ(x)a r€{r = (r1,12) w2 < f(21)},

(4.7) u(zx) = {

where the pair (p,1) € L*(T) x L?(T') satisfies

Spk2lp] — SPMY) = u!
(4.8) mﬁ“ww L ASEM D] ou onT.

ov

ov ov

+

THEOREM 4.17. For all but possibly a countable set of frequencies wj, w; —
400, the system of integral equations (@ has a unique solution (p,v) € H‘1/2(1") X
H-Y2(T).

PROOF. Since the Fredholm alternative applies for , it is enough to prove
uniqueness. Let (p,7) € H™'/2(I") x H='/2(T') be a solution to and let v be
given by with u® = 0. Then, v satisfies the variational problem and
Theorem [£.7] yields that for all but a discrete set of w, v = 0. O

4.4.2. Dielectric Biperiodic Gratings. We consider the diffraction prob-

lem in Subsection We denote by T' = {z3 = f(a1,22)}/(AMZ\ {0}) x A2Z \
{0})), where A; is the period of the grating in the direction z; for j = 1,2. Suppose

that

e(x) = e, p(@)=m forzz> f(x1,22),
e(x) = e2, p(x)=p2 forzz < f(z1,22),

where €1, €2, 141, and us are positive constants.
Analogously to (2.319)), the electric field E' can be represented as

B (@) + iV x S el (@) + V x V x P[] (a),
v €{z = (z1,22,23) : 3 > f(71,72)},
1V x SEF2 0] (2) + V x V x S&F2 [y (),

x € {x = (21,72, 23) : w3 < f(x1,22)},

(4.9) BE(z) =
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where the pair (p,¢) € (H:;%(div,l’))2 satisfies
(4.10)

M2 ;Lﬂlf + HZM%J@Q _ ,UlM?’kl E?,kz _ E?,k‘l ;
L(X,kg _ La,kl (k% + k%) I+ @M(X,kg _ ﬁMQ,kl |: /lp :|
r r 2,[,L2 2,“1 12 r m r
_ vx E?
| V/=Iwv x H? F’
where Ef'f’k and /\/lff’k are respectively defined by (2.306) and (2.306) with I'y, re-

placed with G** and D with I
The following result can be proved similarly to Theorem

THEOREM 4.18. For all but possibly a countable set of frequencies wj, w; —
1
2

400, the system of integral equations has a unique solution (¢, 1) € (HT (div, I‘))2,

4.5. Optimal Design of Grating Profiles

For simplicity, we focus the presentation to the dielectric periodic gratings
described in Section Assume that the material above the periodic interface
S := {xo = f(z1)} has refractive index k; and the material below the interface has

index ko. Both ki and k9 are assumed to be real. Define
(2) = k} if z is above S,
WSV Z k2 if 2 is below S.

Let b > max | f(z1)| and let an incoming plane wave
ui _ emawl—ﬁﬂwg
be incident on S from zg > f(x1) with
a =wkysinf, [ = wkjcosb,

and —7/2 < 0 < w/2 being the angle of incidence.
Then consider the scattering problem

(4.11) (Ap+as)u = 0 in{-b< z2 < b},

(4.12) (17 — . Ju = 2\/j16€_V 18 on {z3 = b},
2
0
(4‘13) (Tél - 871‘2)114 = 0 on {IEQ = —b},

where A, = A + 2y/—1ad,, — o?, and periodic boundary conditions are assumed
in z1. The operators T7*, j = 1,2, are defined by .

Suppose that the materials, the period of the structure, and the frequency of
the incoming waves are fixed. There are then a fixed number of propagating modes,
each of which corresponds to an index n for which the propagation constant 57 is
real-valued. Let us define the set of indices of the reflected propagating modes

P, ={neZ:B}(a) R},
and indices of transmitted modes

Po={meZ: By (a) e R}
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The coefficients of each propagating reflected mode are determined by the trace of
the solution w on the artificial boundary {zs = b}:

rn = up(b)e V1D forn#0, nin P,

ro = up(b)e”V1P — constant for n =0,
where

1 A n
Up(T2) = X/o U($17$2)67\/jl2Tw1dI1.

Similarly, the coefficients of the propagating transmitted modes are
tm = Um (=b)e” V=120 for m in P,.
Writing the reflection and transmission coefficients as vectors

r= (rn)nEPT» t= (tm)mGPﬁ

denote the pair (r,t) = F. The coefficients r, and t,,, and hence F', are functions
of the interface profile S. Denote this dependence by F(.5).

A general optimal design problem is to find a profile S such that F'(S) is as
close as possible to some specified diffraction pattern g. Asking that F(S) is close
to g in a least-squares sense, one obtains the problem

: 2
(414) wmin J(5) = | F(S) - g1,

where S is some admissible class of profiles. One could of course generalize further
and specify a range of incidence angles or a range of frequencies (or both).

To implement the least squares approach, we calculate the gradient of the cost
functional with respect to the interface profile S. The representation formula
is useful. From Section the calculation of the sensitivity of uw on z3 = b
with respect to changes of the profile is straightforward and therefore, the Fréchet
derivative of J can be easily obtained.

4.6. Numerical Implementation

In this section we use the boundary integral representation of the dielectric
periodic grating described in subsection to numerically determine the electric
field in the case of a periodic array of spherical particles located on the x;-axis.
Denote by €27 and 5 the region outside the particles and the region representing
the particles, respectively. Let e; and u; represent the corresponding material
parameters. Let k; = w, /g5 (j =1, 2) be the wavenumber outside and inside the
particles, respectively.

The discretization of the system is performed in precisely the same manner as
described in Subsection [2.13.4] and leads to the system of equations

S_ —S+ @ - Ug
oSt =S, 0 )\ g )0
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where Sy and S, are N x N matrices given by

(4.15) (S-)ij = G*F2 (2@ — 2UN) T (D) (511 — t;),
(4.16) (S4)ij = G*M (2D — 2T (@9)|(tj1 — t)
1 oGak: , ,
(4.17) ()i = —3%+ (@ — 2D T(@D)|(tj41 — t5),
1 oGk ; ;
(4.18) (84)ij = 0t —5, (@ — 20N T(@D)]|(tj31 — t;),

for i # j and i, = 1,2,...,N, and where G®* is the quasi-periodic Green’s
function defined by (4.2). Once we solve this system for the density functions
and 1, the electric field can be calculated using

_ Jua(@) + S1Wl(@), e,
(4.19) ulz) = {S o,

Since G** is extremely slow to converge we must use the Ewald representation of
the Green’s function to accelerate the convergence; see Subsection Recall
that the Ewald representation of the quasi-periodic Green’s function is given by

G (2,y) = Gt () + Gk (2, ),

spec spat
with
G? ]gc( Z *ran(wl Y1)
’ A V=18
x |eV=1Bnlzaweleopfe( Y 16n + |2 — y2|E
2F
V=18,
+ eVl —uzlorfe bn _ |ze —y2|€ ) |,
2F
a, k A
Gapat(®,y) = =1~ Z eV =tom Z (25) q! Eq1(R,E),
mEZ
where a, = —a + %, 8, = —\/k? — a2, erfc(z) is the complementary error
function

erfe(z / *t dt,
f

and F, is the gth order exponential integral which is defined as

oo ,—=zt
E,(2) :/1 < __at.

ta

We set A = 1 and the radius of the particles to be 0.4. We set the incident plane
wave to be ul(zy,xy) = 3V *176:2) where o = ky sin(d), 8 = k cos(d) with
0 = w/8. As we are considering a non-magnetic material we set the permeability
to be p1 = pe = 1. For the permittivity we set €1 = 1 and 2 = 5. We set
the operating frequency to be w = 1. The resulting incident, scattered, and total
fields are shown in Figure [f.4] These numerical results are obtained using Code
One-Dimensional Dielectric Diffraction Grating.



http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial7/7.1 1-D Dielectric Diffraction Grating.zip
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x2

FI1GURE 4.4. The incident electric field, scattered electric field, and
total electric field for a dielectric grating consisting of a periodic
array of spherical particles on the x;-axis.

4.7. Concluding Remarks

In this chapter we have established uniqueness and existence results for solu-
tions to electromagnetic scattering problems by gratings. We refer the reader to
[89], 204, 205, [206] for the analysis of the scattering of elastic waves by diffraction
gratings. The results of Section [2.7] together with those in the previous section can
be used to perform optimal design of periodic interfaces that give rise to a speci-
fied diffraction pattern. Note that by making assumption , we have excluded
Wood anomalies. In [146), [147], a methodology based on use of a certain shifted
Green function is introduced. It provides a solver for problems of scattering by
gratings which is valid and accurate, in particular, at and around Wood anomaly
frequencies, at which the quasi-periodic Green function ceases to exist.



CHAPTER 5

Photonic Band Gaps

5.1. Introduction

Photonic crystals are structures constructed from electromagnetic materials ar-
ranged in a periodic array. They have attracted enormous interest in the last decade
because of their unique optical and electromagnetic properties. Such structures
have been found to exhibit interesting spectral properties with respect to classical
wave propagation, including the appearance of band gaps [456), 278, [414].

In order to study the propagation of light in a photonic crystal, we shall use the
Maxwell equations. In general the electromagnetic fields are complicated functions
of time and space. If the field configurations are built up of harmonic electromag-
netic waves that are transverse, we can reduce the Maxwell equations to two scalar
Helmholtz equations. Throughout this chapter, we will focus on this scalar model
which is also the underlying model for the acoustic analog of photonic crystals.

Our aim is to analyze the contrast and geometry dependence of the band gap
of the frequency spectrum for waves in photonic crystals. We consider photonic
crystals consisting of a background medium which is perforated by an array of
arbitrary-shaped holes periodic along each of the two orthogonal coordinate axes
in the plane. The background medium is of higher index. It has been proved that
the high contrast of a photonic crystal favors spectral gaps; see [218, [259], 260}
423, [463, 464, [280].

In this chapter we adopt the high-contrast model to give a full understanding of
the relationship between variations in the index ratio or in the geometry of the holes
and variations in the band gap structure of the photonic crystal. We provide such
a high-order sensitivity analysis using a boundary integral approach with rigorous
justification based on the generalized Rouché theorem.

Carrying out a band structure calculation for a given photonic crystal involves
a family of eigenvalue problems, as the quasi-momentum is varied over the first
Brillouin zone. We show that these eigenvalues are the characteristic values of
meromorphic operator-valued functions that are of Fredholm type of index zero.
We then proceed from the generalized Rouché theorem to construct their complete
asymptotic expressions as the index ratio goes to infinity. We also provide their
complete expansions in terms of infinitesimal changes in the geometry of the holes.

Our integral formulation in this chapter of the photonic band gap problem offers
an efficient approach to the computation of the band gap structure which is based
on a combination of boundary element methods and Muller’s method described in
Section

In this chapter we confine our attention to the two-dimensional case to demon-
strate our approach and results. The asymptotic results for the band gap structure
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with respect to the index ratio and the geometry of the holes can be obtained in
three dimensions with only minor modifications of the techniques presented here.

5.2. Floquet Transform

In this section, the Floquet transform, which in the periodic case plays the
role of the Fourier transform, is established and the structure of spectra of periodic
elliptic operators is discussed.

Let f(x) be a function decaying sufficiently fast. We define the Floquet trans-
form of f as follows:

(5.1) Ulf)(r,0) = 3 fla—mpe T

nezd
This transform is an analogue of the Fourier transform for the periodic case. The
parameter « is called the quasi-momentum, and it is an analogue of the dual variable
in the Fourier transform. If we shift 2 by a period m € Z?, then we get the Floquet
condition

(5.2) Ulf)(@ +m,a) = eV 1Y f](x, ),

which shows that it suffices to know the function U[f](x, «) on the unit cell ¥V :=
[0,1)¢ in order to recover it completely as a function of the z-variable. Moreover,
U[f](z, ) is periodic with respect to the quasi-momentum «:

(5.3) Ulf)(x, o+ 2mm) = U[f](z,a), m e Z%

Therefore, a can be considered as an element of the torus R?/(27Z4). Another way
of saying this is that all information about U[f](z, @) is contained in its values for
a in the fundamental domain B of the dual lattice 27Z?. This domain is referred
to as the (first) Brillouin zone.

The following result is an analogue of the Plancherel theorem when one uses the
Fourier transform. Suppose that the measures da and the dual torus R?/(27Z9)
are normalized. The following theorem holds. See [305] for a proof.

THEOREM 5.1 (Plancherel-type theorem). The transform
U: LR — L*(RY/(2rZ%), L*(Y))

is isometric. Its inverse is given by

U = [ gty

where the function g(x, o) € L*(R?/(2rZ%), L?(Y)) is extended from Y to all x € R?
according to the Floquet condition .

The books [288), [305), [411] give more detailed treatments of this subject.

5.3. Structure of Spectra of Periodic Elliptic Operators

In this section we will briefly discuss spectral properties of periodic elliptic
operators. See [411], [B05], 43T, [304] for details and references.

Consider a linear partial differential operator L(z,d,), whose coefficients are
periodic with respect to Z?,d = 2,3. A natural question is about the type of
spectrum (absolutely continuous, singular continuous, point) of L (see Appendix
IA]). It is not hard to prove that for a periodic elliptic operator of any order, the
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singular continuous spectrum is empty. For any second-order periodic operator
of elliptic type, it is likely that no eigenvalues can arise. Although it has been
unanimously believed by physicists for a long time, proving this statement turns
out to be a difficult mathematical problem. See [304].

Due to periodicity, the operator commutes with the Floquet transform

U[Lf](z,a) = L(x, 0. )U[f](x, ).

For each «, the operator L(x, d,)) now acts on functions satisfying the corresponding
Floquet condition . In other words, although the differential expression of the
operator stays the same, its domain changes with a. Denoting this operator by
L(«), we see that the Floquet transform U expands the periodic partial differential
operator L in L2(RY) into the direct integral of operators

®
(5.4) / L(a) da.
R4/ (27Z4d)
The key point in the direct fiber decomposition (5.4]) is that the operators L(«) act
on functions defined on a torus, while the original operator acts in R9.
If L is a self-adjoint operator, one can prove the main spectral statement:

(5:5) o(L) = | o(L()),

where ¢ denotes the spectrum.

If L is elliptic, the operators L(a) have compact resolvents and hence discrete
spectra. If L is bounded from below, the spectrum of L(«) accumulates only at
+00. Denote by p,(«) the nth eigenvalue of L(«) (counted in increasing order with
their multiplicity). The function o — g, () is continuous in B. It is one branch
of the dispersion relations and is called a band function. We conclude that the
spectrum o (L) consists of the closed intervals (called the spectral bands)

min p1, (o), max (o) |
[0} e

where ming, p,(a) — 400 when n — 4o0o0. In dimension d > 2, the spectral
bands normally do overlap, which makes opening gaps in the spectrum of L a
mathematically hard problem. But, it is still conceivable that at some locations
the bands might not overlap and hence open a gap in the spectrum. It is commonly
believed that the number of gaps one can open in a periodic medium in dimension
d > 2 is finite. In the case of the periodic Schrodinger operator, this constitutes the
Bethe-Sommerfeld conjecture. Since the major and inspirational work by Skriganov
[430], significant progress has been made on this problem. See, for example, [304],
288, (394, (395, [289), [396].

5.4. Boundary Integral Formulation

5.4.1. Problem Formulation. The photonic crystal we consider in this chap-
ter consists of a homogeneous background medium of constant index k which is
perforated by an array of arbitrary-shaped holes periodic along each of the two
orthogonal coordinate axes in R%. These holes are assumed to be of index 1. We
assume that the structure has unit periodicity and define the unit cell Y := [0, 1]2.
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We seek eigenfunctions u of
(5.6) V-I+(k-1)x(Y\D)Vu+w?>u=0 inY,
) e~ Vlawy g periodic in the whole space,

where x(Y \ D) is the indicator function of Y\ D. Problem (5.6 can be rewritten
as

EAu + w?u =0 inY \ D,
Au+w?u=0 in D,
(5.7) uly = ul- on 0D,
ou ou
@L =l on 0D,
e~ V-lawy ig periodic in the whole space.

For each quasi-momentum variable «, let 0, (D, k) be the (discrete) spectrum of
(5.6)). Then the spectral band of the photonic crystal is given by

U oa(D, k).
a€[0,27]?
We shall investigate the behavior of o,(D, k) when k¥ — +o00 in Section and
that under perturbation of D in Section [5.7]
Note first that if D is invariant under the transformations

(5.8)  (z1,22) = (—x1, —72), (z1,22) = (—z1,22), (z1,22) > (22, 71),

then all possible eigenvalues associated with (5.7) for any « € [0,27]? must occur
with o restricted to the triangular region (the reduced Brillouin zone)

(5.9) T:= {az(al,ag):()goqS?T,Ogozggoq}.

Consequently, to search for band gaps associated with D with the symmetries ,
it suffices to take a € T rather than « € [0, 272

Note also that a change of variables 2/ = sz and a simultaneous change of the
spectral parameter w’ = sw reduce the problem to the similar one with the
rescaled material property (1 + (k — 1)x(sY \ sD)). This means that in rescaling
the material property of a medium, we do not need to recompute the spectrum,
since its simple rescaling would suffice. Another important scaling property deals
with the values of the material property. It is straightforward to compute that if
we multiply the material property by a scaling factor s, the spectral problem for
the new material parameter s(1+ (k—1)x(sY \ sD)) can be reduced to the old one
by rescaling the eigenvalues according to the formula w’ = /sw. These two scaling
properties mean that there is no fundamental length nor a fundamental material
property value for the spectral problem [304].

Suppose now that w? is not an eigenvalue of —A in Y \ D with the Dirichlet
boundary condition on dD and the quasi-periodic condition on dY and w?/k is
not an eigenvalue of —A in D with the Dirichlet boundary condition. Following
the same argument as in , one can show that the solution u to can be
represented as

(5.10) u(z) = { §*[g](x), zeD,

H(z)+S*VE[y](z), ze€Y\D,
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for some densities ¢ and 1 in L?(0D), where the function H is given by
ou

H(z) = fsy’ﬁ[way] + Dy Vulay], zeY.

Here, the quasi-periodic single- and double layer potentials are introduced in Section
In order to keep the notation simple, we use S** and D** instead of S5
and D} for layer potentials on D.
Now by (2.290) we have H = 0, and hence
S*[g](z), z €D,
u(z) = o, -
SUVE[Yl(z),  xeY\D.
A proof of the representation formula (5.11]) will be given later in Section

In view of the transmission conditions in (5.7)), the pair (¢,%) € L?(0D) x
L?(0D) satisfies the following system of integral equations:

S[g] = ST VE[] =0 on 9D,
(- %1 () ) o] - k(%] +(KV) )] =0  on oD,

The converse is also true. If (¢,1) € L2(0D) x L?(dD) is a nonzero solution of
(5.12)), then u given by (|5.11)) is an eigenfunction of ([5.6)) associated to the eigenvalue
2

w?.
Suppose a # 0. Let A%*(w) be the operator-valued function defined by

(5.11)

(5.12)

Sew —SVE

k

Then, w? is an eigenvalue corresponding to u with a given quasi-momentum « if
and only if w is a characteristic value of A%k,
For a = 0, let A%* be given by

(5:13) AT (w) 1= 1(;I—(K‘“’w)*> %I+(K‘a’ﬁ)*

N 80« G
(5.14) A0k (W) = k
Ly (KOw)* Ly (K" VR )*
2 2

By a change of functions, it is easy to see that w is a characteristic value of
A0E if and only if w? is an eigenvalue of for a = 0.

Consequently, we have now a new way of looking at the spectrum of by
examining the characteristic values of A%* and ALk,

The following lemma will be useful later.

LEMMA 5.2. The operator-valued function A%* is Fredholm analytic with index
0 in C\ v—1R~. Moreover, w — (A%F)~1(w) is a meromorphic function and its
poles are on the real axis.

PROOF. Because of the logarithmic behavior of quasi-periodic Green’s func-
tions, we shall restrict the set on which we define the operator A%* to C \vV—1R".
To see that the operator-valued function A%* is Fredholm analytic with index 0 in
C\ vV—1R", it suffices to write

Sa,O _SOC70 Sow Sa,O 78“7% +SD¢,0
AWy =1 1 1 +

1
7 iy - —,w\* —a,w\*
2% 2 P I

= AY4+B%(w).
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Since A® is invertible and B® is compact and analytic in w, it follows that A%
is Fredholm analytic with index 0. By the generalization of the Steinberg theorem
given in Chapter [1| (Theorem , the invertibility of A%*(w) at w = 0 shows
that w +— (A**)~1(w) is a meromorphic function. Let wy be a pole of (A%*)~1(w).
Then wy is a characteristic value of A%¥. Set (¢, 1)) to be a root function associated
with wp. Define

u(zx) =

{ §*[gl(z), «eD,
SVEW](z), zeY\D.

Then, integrating by parts, we obtain that

/ (14 (5~ Dy(Y \ D))|Vul?® - 2 / uf? =0,
Y Y

which shows that wq is real. O

It can be easily seen that the same result holds for A0k,

5.4.2. Numerical Approach for Band Structure Calculations. Band
structure calculations reduce then to the computation of the characteristic values
of A%* for a moving through the Brillouin zone. It is important to note that in this
formulation, one is no longer seeking eigenvalues of a differential equation. Instead
one is seeking nontrivial solutions to a homogeneous linear system in which the
spectral parameter w plays a nonlinear role. The advantage gained is that we avoid
having to discretize the whole cell Y, but only discretize the material interfaces
themselves. To find such solutions numerically, we first have to discretize all the
integrals in and .

After the integrals are discretized, we obtain a rather involved linear system
which, for a fixed value of w, we can write in the form A**(w)[z] = 0. The
unknown vector x represents point values of the densities ¢ and ¥ on 9D. Thus,
if N points are used to discretize 9D, there are 2N unknowns. Lemma [5.2] ensures
that the entries of the matrix A®* are analytic, nonlinear functions of w. Finding
the characteristic values corresponds to finding values of w for which the system
of equations A**(w)[z] = 0 has nontrivial solutions. An efficient strategy first
described in [I72] is based on determining a new function of w:

1
(@, AF(w) = yl)”

flw) =

where x and y are two fixed random vectors. It is straightforward to verify that
the function f(w) is an analytic function of its argument. Moreover, since

[[A%* (w) | = +o0

when w corresponds to a characteristic value, we have that f(w) = 0. In short, the
singular matrix problem has been turned into a complex root finding process for
the function. Muller’s method described in Section [I.6] can be used to find complex
roots of f(w). This approach is both efficient and robust [I72}, 186]. In this section
we discuss the details of its implementation and present numerical examples.
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5.4.2.1. Empty Resonance. The appropriate Green’s function for the layer po-
tentials used in the previous section is the quasi-biperiodic Green’s function G?’w
which satisfies

(5.15) (A + w2)G?’w (z,y) = Z Soz —y — m)e\/jlm‘a,

meZ?

If w # [27m + |,V m € Z2, then G?’“’ has the spectral representation (2.280). In
the context of the standard boundary integral approach to numerical computation,
when the parameters w and « are such that w ~ |[27rm + «| for any m € Z2, the
quasi-periodic Green’s function Gg"w can have highly aberrant behavior that makes
determining characteristic values of A%*(w) impossible. This phenomenon, which
is known as empty resonance, is due to the resonance of the empty unit cell Y with
refractive index 1 everywhere and quasi-periodic boundary conditions.

In order to deal with this issue it is necessary to use an approach that is less
susceptible to the problem, or an approach that avoids it altogether. We will
briefly discuss the Barnett-Greengard method [123] for quasi-periodic fields which
was developed specifically to tackle the problem of empty resonances. We will
then present a numerical example in which the photonic crystal band structure is
calculated using the multipole method and incorporates lattice sums, an approach
which was found to be much less susceptible to the empty resonance problem.

5.4.2.2. Barnett-Greengard Method. The Barnett-Greengard method avoids the
problem of empty resonances by introducing a new integral representation for the
problem that doesn’t use the quasi-periodic Green’s function. Instead, the usual
free-space Green’s function is used and the quasi-periodicity is enforced through
auxiliary layer potentials defined on the boundary of the unit cell.

The quasi-periodicity condition in [5.6] can equivalently be written as a set of
boundary conditions on the unit cell Y. Let L represent the left wall of the unit
cell and B represent the bottom wall. Define a := eV=1k1 and b := eV~ %2 Then
the quasi-periodicity condition can be stated as:

;t|L+e1 = agﬂL
alte, = aglL
;ﬁJBnLeg = gU|B
SlBres = bgplp

Recall that the usual boundary integral formulation enables the determination of
characteristic values of the operator valued function A%*(w) given in by finding
the values w such that the equation

A*H(w)[9] =0,

has a non-trivial solution ¥ € L?(9D) x L?(OD). We note that the elements of
A%¥(w) are quasi-periodic layer potentials. The Barnett-Greengard method uses
an analogous equation

XM (w)[¥] = &,

(2 §) 0= (1) (7)

where
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and the operators A, B,C, and @, which will be explained shortly, involve layer
potentials which utilize the free-space Green’s function. 7 represents surface poten-
tials for the inclusion, and £ represents auxiliary surface potentials defined on the
boundary of the unit cell. m and d are called the mismatch and the discrepancy,
respectively. m represents the amount by which the matching conditions at the
interface fail to be satisfied and is defined as:

U4+ — U|I—
mI:(auI+au| )
v I+ ov!—

The discrepancy d represents the amount by which the the quasi-periodicity con-
ditions on the boundary of unit cell fail to be satisfied:

ulr, —a  ulpye,

Ou| a7187u|
d = v | L . ov | L+e1
ulp — b7 u|Be,
ou

—10u
el =07 G| Byes

The aim is to find non-trivial surface potentials such that the mismatch and dis-
crepancy are both zero. With that in mind, the characteristic values of the operator
valued function £%*(w) are the values w such that the equation

£k (W)W =0,

has a non-trivial solution ¥ € L?(0D)%.
Before we discuss the operators used to construct £%*(w) let us introduce the
generalized layer potentials:

Sp,.palel(x) = / > a"bG¥(x,y + mer + nez)p(y) do(y),
9D: m,ne{-1,0,1}

myn 9G*
ov(y)

Dol = [ 30 4 g atme + nes)olo) dot)

m,ne{—1,0,1}

D, palel(x) = / S . (2, + mes + nea)p(y) do(y),

9D m,ne{—1,0,1}

~ 0?Gv
To, D, o] (x :/ a0 —————(z,y + mey + ne do
oalele) = | mvne{z_:lm} SoonGy) Y+ mer + nea)p(y) do(y)

for x € D;y.

These layer potentials involve summations over the nearest 3 x 3 neighboring
images. This direct summation over the nearest neighbors, such that their contri-
bution will be excluded from the auxiliary quasi-periodic representation, has been
found to result in much improved convergence rates in the fast multipole literature.
If the curves Dy and D, both represent the inclusion D we drop subscripts and
use the notation S for the generalized single layer potential, and similarly for the
other layer potentials.

Now we are in position to describe the role of the operators A, B,C, and Q.
These operators are arrived at by substituting the representation formula

{ S[gl(z) + D[¥](x) re D,

4= 8l0l(e) + Blul() + ugrlél() =€ Y\,
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into the expressions for m and d. ugp is an auxiliary field that is represented by a
set of layer potentials on the specific borders of the neighboring cells that touch the
borders of the unit cell, and £ represents the auxiliary densities, associated with
ugp which are defined on these borders. The operator A is similar to the A%*(w)
operator in the usual boundary integral formulation. It describes the effect of the
inclusion densities on the mismatch and is defined as

A (L 0Y, D-D S§-8
N0 I T—-T D-—D* |’
The operator C' describes the effect of the inclusion densities on the discrepancy
and is defined as:

_ i~ - s
Drop —a "Drie,op —Srp.op —a "Site,,0D
. i b 2
o.—| Teop—a Trseop  —Drop —a Diie op
T ” —17 Q¢ 13
Dp,op — b "Dptes,op  —SpEap — b SBtes,0D

Ts.op =0 " TByesop —Dhop —b '"Dhie,0p
Due to symmetry and translation invariance it can be shown that significant can-
cellation occurs when summing over the nearest neighbor terms, and therefore the

operator C' can be further optimized.
The operator @ describes the effect of the auxiliary densities on the discrepancy

and is defined as:
Q::I+( Qrr QLB )

QBL QBB
where
ma™bF D - mHrES
L,L+mej+nes ma L,L+me;+nes
Qrr = me{-1,1},ne{-1,0,1} me{—1,1},ne{-1,0,1}
LL -— k k
ma™b 7-L,L+mel+neg - E ma™b DE,L+mel+neQ
me{—1,1},ne{-1,0,1} me{—1,1},ne{-1,0,1}
—2 —2
E bm(aDL,B+el+mez —a DL,B—2el+mez) E bm(_aSL,B+el+mez +a SL,B—261+mez)
Qrp = me{0,1} me{0,1}
T § m -2 § m * —2 1k
b (a7—L,B+€1+m€2 —a 7-L’B*261+m62) b (_a’DL,B+el+mez +a DL,B*2€1+7TL62)
me{0,1} me{0,1}
§ -2 § —2
a™ (bDB,L+mel+eg —-b DB,L+m6172eg) am(_bSB,LerelJreQ + b SB,L+m6172€2)
QpL = me{0,1} me{0,1}
T E m —2 § m * — 24k
a (bTB,L+m€1+€2 —b TB,L+T7’L€1—2€2) a (_bDB,L—i-mel—i-ez + b DB,L+m€1—2€2)
me{0,1} me{0,1}
§ k § k
mamb DB,BerelJrnez - mamb SB,BerelJrnez
Q e me{-1,1},ne{-1,0,1} me{-1,1},ne{—1,0,1}
BB -— k k
ma™b TB,B+me1+ne2 - E ma™b D*B,B+mel+n62
me{-1,1},ne{—-1,0,1} me{-1,1},ne{-1,0,1}

Again, due to symmetry and translational invariance the terms of the operator @
are subject to cancellation.
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Finally, the operator B, which describes the effect of the auxiliary densities on
the mismatch, is defined as:

. min DBD,L+mel+neg _SaD,L+mel+neQ 0 0
b= 2 N —D;, 00)"
mel0,1]me{—1,0,1} 0D, L+me1+mnez OD,L+mei+nes
§ : ambn 0 0 DBD,B+mel+neQ _SaB,LerelJrneQ
* .
0 0 %D’B+m€1+”82 _DBD,B+mel+neg

me{—1,0,1},ne{0,1}

By avoiding the use of the quasi-periodic Green’s function, the Barnett-Greengard
method can be used for photonic band structure calculations that are free from the
issue of empty resonance.

5.4.2.3. Multipole Expansion Method. When D is a circular disk of radius R,
the integral equation admits an explicit representation. In this case, the solution
can be represented as a sum of cylindrical waves .J,, (kr)eV =1 or Hfll)(kr)e\/jlno.
Here we give a multipole expansion interpretation of the integral operator A®F. It
results in a numerical scheme which is much more efficient than one obtained with
the usual discretization.

Recall that, for each fixed k, &, we have to find a characteristic value of A%*(w)
defined by where w in the original operator A®* is replaced by vkw. The
corresponding solution is associated to transverse magnetic mode and k represents
the permittivity of the inclusion.

From the above expression, we see that A%* is represented in terms of the
single layer potential only. So it is enough to derive a multipole expansion version
of the single layer potential.

Before computing S**[¢], let us first consider the single layer potential 4[]
for a single disk D. We adopt the polar coordinates (r,6). Then, since D is a
circular disk, the density function ¢ = () is a 2m-periodic function. So it admits
the following Fourier series expansion:

Y = Z ane\/jnea

nez

for some coefficients a,. So we only need to compute u := S%[eV~1"’] which
satisfies

Au+w?u=0 inR?\D,

Au+w?u=0 in D,
(516) ’LL‘+ = ’Z,L|_ on aD,

ou ou

e e — v—=1no oD

ovly Ovl- € on ’

u satisfies the Sommerfeld radiation condition.

The above equation can be easily solved by using the separation of variables tech-
nique in polar coordinates. It gives

(5.17) S5 —1n9] an(wR)lET,(LU(cur)ev —1nfd |r| > R,
. Sle =
CHT(LI)(UJR)Jn(WT)CV —1no Ir| <R,

where ¢ = =12 VEMR.
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Now we compute the quasi-periodic single layer potential S**[eV~1"?]. Since

oL,W 7]‘ 1 —1lm-«
Gy (ey) = = D Hy(wla —y —m)eV =T,

meZ?
we have
Sa’w[e\/jlm‘)] _ Sg[ex/jlna] 4 Z 55+m[6‘/jl"9]e\/jlm‘a
meZ2,m#0
=88V + cJn(wR) Z HD (wrpy)eY " nbm v/ =Tm-a

meZ?

Here, D + m means a translation of a disk D by m and (r,,,0,,) are the polar
coordinates with respect to the center of D+m. By applying the following addition
theorem:

HD (wr)e¥ ™10 =3 7 (=1)" H (wlml)ey =180 gy (wr)eV 1,
leZ
we obtain
(5.18)  S*[eV 1) = Sp[eV ) + eJn (WR) Y (1) QuorJi(wr)eY Y,
€7
where @, is so called the lattice sum defined by
Qn = Z H7(L1)(w‘m‘)e\/jlnarg(m)e\/jlma.
meZ2 m#0
So, from (5.17) and (5.18)), we finally obtain the explicit representation of S**.
For numerical computation, we should consider the truncated series
N
Z anSa,w[e\/jlné'L
n=—N
instead of S*“[p] = > -5 anS®¥ eV 1] for some sufficiently large N € N. Then,
using eV=Ind a5 4 basis, we have the following matrix representation of the operator

Sow.

S_N-N S_N—(N-1) e S_N.N a_nN
- S—v-1),-N  S-(N-1,-(v-1) SN || G-y
S*“lellop = . . : . ,
SN,—N SNN ayn

where S, ,, is given by

Sy = cIn(WRYHM (WR)S i + ¢Jn(WR)(—1)" "™ QI (wR).

Similarly, we also have the following matrix representation for 8%(:’“) |+ on OD:
+ + +
i/—N,—N ‘i/—N,—(N—l) i/—N,N a_nN
! ! /
o8« | SCwenon SSven -y vy || @i

iy ] N

)

i+ t
SN,fN SNN ayn
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where S/£ is given by

SE = %[j: 1+ c(Jn S(HDY + T Hgl>)(wR)] Soun

+ cJn(WR)(=1)"""Qp_mwJ! (WR).

The matrix representation of A%*(w) immediately follows.

5.4.2.4. Computing the Lattice Sum Efficiently. Unfortunately, the series in the
definition of Q¢ suffers from very slow convergence. Here we provide an alternative
representation which converges very quickly. For n > 0, Q% can be represented as

Qn = QS + AQn
where AQ, is given by
1 6\/jln6',,L e\/jlnﬂ,n
AQn = Z o\ o=V =Ta(2)g—v—1 (=" —V=Ta(2)g—v-1
ey Ym \ € e Tm — 1 e e Tm o — 1

Bm = Oz(l) +2mm, 0, = Sin_l(ﬂm/w)a Tm = V w? — 72n,

and Q¢ is given by

e 2v/—1 w, 2V/-1 2y=1(w*+28})
%= - T - T - Ty O
1 1 1 w?+2p2
VI G
G e—zﬁleo e—zﬁlem 2/—116_ ( 1)1 w 2l
Qo = -2v-1 Fo _2\/jlmze:z Fm + Ym  mm (4m7r)
1\l
N 4(21+1)+§
V=1 o oo (LEm =1 s2m\2m (1)
e L U (%) B0,
e —/—=1(21-1)0,, e\/jl(zl—l)e,m (71)1501 w 20—1
Q5 172\/7"1262 Fm B Y—m +V-1 (mm)? (M)
—1(2l 1)6¢ ( )Bol w
W 2 (E) ‘@t
2 4 ymg2m (Il+m-1)! 27\ 2m+1 a(l)
X 2m+ DIl —m—1) (7) Bam1 (527,

where B,, is the Bernoulli polynomial and

_ (Jer o, W > Boms
R (Vs gy W < B
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5.4.2.5. Numerical Example. Now we present a numerical example in which we
assume D is a circular disk of radius R = 0.42 and k = co. We use Code Photonic
Crystal Band Structurel The computed band structure is shown in Figure|5.1} The
truncation parameter for the cylindrical waves is set to be N = 8. The points I', X
and M represent o = (0,0), o = (7,0) and « = (7, 7), respectively. We plot the
characteristic values w along the boundary of the triangle '’X M. A band gap is
clearly present.

° ?
1.6 Ooo " 00° OOOOOO %3
o ooo° %, o
A 50° R 2
14 P e Oo, o%_
08300007 ©oo
1.2+
o
&1 1
=
3 %,
ooo
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o mf
0.6 °, 00
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0.4r % o°
o o2
o o
o o
0.2 - :
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FIGURE 5.1. The band structure for a biperiodic array of circular
cylinders each with radius R = 0.42 and k = co. The frequency is
normalized to be w/(mwc) where ¢ is the speed of light.

5.5. Sensitivity Analysis with Respect to the Index Ratio

Let us now turn to the sensitivity of the band gap with respect to the contrast
and/or the shape of the inclusion.


http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial8/8.1 Photonic Crystal Band Structure.zip
http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial8/8.1 Photonic Crystal Band Structure.zip

242 5. PHOTONIC BAND GAPS

Expanding the operator-valued function A®¥ in terms of k and small pertur-
bations of the shape of D, we calculate asymptotic expressions of its characteristic
values with the help of the generalized Rouché theorem.

5.5.1. Preliminary Results. The following lemma, which is an immediate
consequence of ([2.289)), gives a complete asymptotic expansion of A%* as k — +o0.
Let §“ and (K, ““)* be given by (2.289). Let the operators

Saw _Sa,O

AO (w) = 0 %I + (’C—a,O)* )
0 g
(ly(w) = 1 —,w\ * — QLW % ?
(51— k=)) (k™)

and, for [ > 2,

a _ 0 _Sl%w
Al (w) - < 0 (,C;a,w)* )
LEMMA 5.3. Suppose o # 0. We have
+00 1
(5.19) A*K(w) = AF (W) + > TAT ().
1=1

We now have the following lemma for the characteristic values of Ag.

LEMMA 5.4. Suppose a # 0. Then w§ € R is a characteristic value of A§ if
and only if (w)? is either an eigenvalue of —A in D with the Dirichlet boundary
condition or an eigenvalue of —A in Y \ D with the Dirichlet boundary condition
on 0D and the quasi-periodic condition on JY .

PRroOOF. Suppose that w = w{ € R is a characteristic value of A§. Then there
is (¢, 1) # 0 such that

5% [6] — 82l =0,
(57 + "))l =0

It then follows from Lemma that ¢ = 0 and hence S**[¢] = 0 on dD. Since
¢ # 0, S**[¢] # 0 either in D or in Y \ D and hence (w§')? is either an eigenvalue
of —A in D with the Dirichlet boundary condition or an eigenvalue of —A in Y\ D
with the Dirichlet boundary condition on @D and the quasi-periodic condition on
dY, and S*“[¢] is an associated eigenfunction.

Conversely if (w§)? is an eigenvalue of —A in D with the Dirichlet boundary
condition, then by Green’s representation formula, we have

(5.20) on 0D.

u(z) = -8M [%‘SD], z e D.

Thus (5.20) holds with (¢,9) = (0u/0v|sp,0). The other case can be treated
similarly using (2.290)). This completes the proof. ([l
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At this moment let us invoke the results in [260] (see also [218), 259 [423]).
In [260], it is shown, by a completely different argument which involves the conver-
gence of quadratic forms, that the spectrum of for a # 0 accumulates near the
spectrum of —A in D with the Dirichlet boundary condition on 9D as k — +oo.
According to this result, the eigenvalue of the exterior problem is not realized as
a limit of eigenvalues of the problem (5.6). In fact, the limit of the corresponding
eigenfunctions is given by

(2) = S““9], z €D,
T s =0, wev\D,

where the pair (¢, 1)) is defined by (5.20). If (w§)? is an eigenvalue for the exterior
problem and not for the interior problem, then §*“[¢] = 0 in D and hence u = 0
inY.

The following lemma was first proved in [260}, 259].

LEMMA 5.5. Let (w°)? (with w® > 0) be a simple eigenvalue of —A in D with
the Dirichlet boundary condition. There exists a unique eigenvalue (w**)? (with
w*k >0) of lying in a small complex neighborhood V' of w°. Indeed, w® and
w*k are simple poles of (AS)~! and (A“*)~1, respectively.

5.5.2. Full Asymptotic Expansion. Combining now the generalized Rouché
theorem together with Lemma we are able to derive complete asymptotic for-
mulas for the characteristic values of w + A%*(w). Applying Theorem yields
that

wa,k _ wO _

1 —OJO a,k—lwi a,kw W
st [ @) @) A )

Suppose that the quasi-momentum « # 0. We obtain the following complete as-

ymptotic expansion for the eigenvalue perturbations w®* — w0,

THEOREM 5.6. Let V' be as in Lemmal[5.5. Suppose o # 0. Then the following
asymptotic expansion holds:

(5.21) wk — W0 = QFWZ Z /
where

(5.22)  Bp,) =17 Y (A THWAN (@) (AF) T (w)AG (W)

and

(Sa,w)—l (Sa,w) 1Sa 0(21 + (Ic—a O) )
(523)  (AF) ' (w) = 1
0 (G + (K0!

5.5.3. Leading-Order Term. Let us compute the leading-order term in the
expansion of w®* — w0, Let u® be the (normalized) eigenvector associated to the
simple eigenvalue (w")? and let ¢ := Ou®/dv|_ so that

(5.24) uO(z) = —S**[¢](x) for x € D.
We first establish the following lemma.
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LEMMA 5.7. The following identity holds:
d
(5.29 (0 2510l o) = =200 [ P
w D
ProoOF. From (2.278|), it follows that
d LW 2 d LW _ a,w
A%G (z,y) +w %G (z,y) = —2wG**(z,y),
and therefore,

iGW(x,y) = 2w / G (z,2)GM(2,y)dz.
Y

dw
Consequently, for any ¢ € L?(0D),
dS“¢[l(z) _ d aw
= 8DG (z,9)¥(y) do(y)
d
zlgaaewwaww@ww@>

_ o / Go(@,2) [ GOz, y)u(y) do(y)dz
Y oD

=— Qw/ G (x,2) SV Y] (2)dz.
Y
Using the fact that

S —u° in D,
524" = {

0 in Y\ D,
we compute

5[] ~ ds—o
R /8 0T R dote)

= —2w /6D (p(:c)/yGo"w (x,2)S™* [@](2)dzdo(x)
= —2° o (1 NG (y, 2) ()P zdo(x) do
=2t [ ]| @ e )R dzde (@) do(y)

= —2w0/
Y
= —2w0/

Y
= —20° [ |[u%(2)|? dz,
D

(e

2
dz

/ G’ (z, 2)p(z)do(z)
oD )
dz

52" [¢](2)

which yields the desired formula.

We are now ready to prove the following theorem.

THEOREM 5.8. Let v* be the unique a-quasi-periodic solution to

Av® =0 inY \ D,
(5.26) | ud
E N = E 3 on 8D
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The following asymptotic expansion holds:
JL
L AV A
k 2w0/ 02
D

PRrOOF. Because of ([5.24)), we get

1 —a,w\ %

(57~ (K"l = o

Moreover, since w® is the only simple pole in V of the mapping w + (S*“)~1 we
can write [78]

(5.27) Wk — 0 = + O(ﬁ) as k — +o0.

1
(™) = —— T+ Q™

where the operator-valued function Q** is holomorphic in w in V, T : L?(0D) —
span{p} is such that T8>+’ = §*«"T =0, and

d 1
T—S8% = 5
dw o lell7e
is the orthogonal projection from L?(9D) into span{¢}. Here (-,-) is the L2-inner
product on 0D. It can also be shown that

(5.28) T = ! (@5°) @

d o,w
<§07 @S [90]|w=w0>

It then follows from the residue theorem that
1

2v/—1mw
Let

<§Ov '><,0

tr /a 5)7 (@A] () = 12 [0 0)) T (G Ik,

v (z) = 3%0(%” (k=) " ol(x), e¥\D.

Then v is the unique a-quasi-periodic solution to (5.26) and

1 1
—t A T Hw) A (w)dw = ——5—(p, Tv®).
57T ) AR e = (e T
Therefore, we have from (5.21])
1 1
a,k 0 «
W —w = —————(p, Tv*) + O(—) as k — +oo.
KllellZ k2
By virtue of (5.28]), it follows that
1 @ 1 [e3
W“@’TU ) = 7 (p,v*)
L <SD’ 78a7w[<'0]|w:w0>

dw
Integration by parts yields

oy == [ _[vee
v\D

and hence we obtain (5.27)) from Lemma This completes the proof. O
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Note that if u° is normalized, then (5.27)) can be rewritten as

1 1
(5.29) @ﬂ%kwwfsz/‘|vwﬁ+opﬁ as k — +o0

5.5.4. Periodic Case. Turning now to the periodic case (o« = 0), we first
introduce the following notation. Let xY" denote the constant function 1 on Y. Let
the operator A be acting on span{x(Y), Hi (D)}, with

~A(ulp) in D,

1 0 : —
|Y\D|/3D31/(U|D) inY\D.

See [260]. It is worth mentioning that the eigenvalue problem for A can be written
as

(5.30) Au =

Au+w?u=0 1in D,

1
u—l—f/u:O on 0D.
Y\ D|Jp

Define the sequence of operator-valued functions (AY);en by

SOw _i
~ 2
(5.31) AS(w) = W Jop
1 0,w * 1 0,0 *
L = (K<) ST+ (K)

N o, [0 =8
(5.32) Al(w)—<0 (’C%w)*), Al(w)—<0 (,C?,w)*>

for [ > 2, and set

(3:33) B, =(-1" > (A @A, ). (AY) W) A ().

Here, the operators SZO’W and (IC?’“’)* are given by (2.289)) with oo = 0.
The following complete asymptotic expansion of A%* as k — 400 holds:

+oo
~ ~ 1 ~
A" (w) = AY(w) + E EA?(W).
=1

On the other hand, we have the following lemma on the characteristic value of ./18,
whose proof will be given in Section [5.9]

LEMMA 5.9. Suppose that (@%)? (with @° > 0) is not an eigenvalue of —A in
Y \ D with Dirichlet boundary condition on 0D and the periodic condition on 0Y .
Then (@°)? is an eigenvalue of A if and only if @° is a characteristic value of the
operator-valued function JZS,

Analogously to Theorem [5.6] the asymptotic formula for o = 0 follows from a
direct application of Theorem [1.14]
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THEOREM 5.10. Suppose a = 0. Let (@°)? (with @® > 0) be a simple eigenvalue
of A. There erists a unique eigenvalue (w%*)? (with W% > 0) of lying in a
small complex neighborhood of (@°)% and the following asymptotic expansion holds:

—+oo +oo
1 1 1 ~
(5.34) WOk @t = - — tr B (w)dw,
2v/—1m pz::l P nz::p kn oV P

where V is a small complex neighborhood of &° and E?L’p(w) is given by .

5.5.5. The case when |a| is of order 1/vk. In this subsection we derive
an asymptotic expansion which is valid for |a| of order O(1/+v/k), not just for fixed
a # 0 or a = 0, as has been considered in the previous subsections. We give the
limiting behavior of w®* in this case.

Recall that we seek for the characteristic value of the operator-valued function
w = A%F(w) where A%F(w) is given in . One of the difficulties in dealing
with the operator when |a| is of order 1/v/k is that A%*(w) has a singularity at
w? = |a|?/k as one can see from the first formula in Subsection In order
to avoid this difficulty, we use an argument different from those in the previous
sections.

Note that finding a characteristic value of A%*(w) is equivalent to finding a
nonzero (p, 1) satisfying

§*[p] = SVVE Y] = 0,
(5.35) 1/1 oo 1 —a,
(37 (= Y+ (514 067 1wl =0
on OD. If such a pair (¢, ) exists, then ¢ # 0. In fact, if ¢ = 0, then

08 E )
ov

k

S*VE[p] =0 and

= (11 + (/C‘“’&%)*> [y] =0 on dD.
n 2

If k is so large that w?/k is not a Dirichlet eigenvalue on D, then it follows that
S*Vr [¢] =0in D and Y \ D, and hence 9 = 0. Therefore finding a nonzero (¢, 1)
satisfying ([5.35)) amounts to finding a nonzero ¢ satisfying

(- cmoor) wu(b s ety Yoo e -tsm] o =0

on &D. Thus finding a characteristic value of A%*(w) is equivalent to finding a
characteristic value of the operator-valued function

1 o
(536) w — (2I _ (ICO&,UJ)*) + k‘Na’\/ESa’w,

where we put

Sk

(5.37) N®F = <1I+ (K‘a’fﬁ)*>(5‘*w)—1_

2
Note that N V& can be extended to the Dirichlet-to-Neumann map for

w? —
A‘i’? OHY\D
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with a-quasi-periodic condition on dY', which is defined for

w2

? < oce]nii;l,w]z KJ(O().

Here k(a) is the smallest eigenvalue of —A with the Dirichlet boundary condition
on 0D and quasi-periodicity on 9Y. Furthermore, N“'VF depends smoothly both
on w and «. Therefore, we have the expansion

; 2 g 1
N*VE = N0 4 &2 ot o).
* + k d(t?) |t:0+ k2

A further expansion in terms of « yields

; 2 1
. N = N0 4 2N lo] =
(5.38) F +2 +O(k +lz )
where
\ d 0,t
(5.39) N := d(tQ)N l,—o-

The expansion ([5.38]) was first obtained by Friedlander [218].

In order to obtain a better understanding of the operator N, let us consider
the following problem for ¢ small:

Aug +t?u; =0 in Y\ D,

up = f on 0D,
uy and % are periodic on 9Y.
ov
Since
ou
NO’t[f] = 87; oD
one can see that
- ow
(5.40) N =22
o |ap

where w = du;/9(t?)|ap, which is the solution to

Aw+uy=0 inY\D,
w=0 ondD,

0
w and au are periodic on 9Y.

ov
Using 1D we can derive relevant estimates for N. We have

< Cllwlm(py < C'Mluollg-1(py-
H-1/2(9D)

. ow
IN U vt = |

Therefore, we have for example

(5.41) ||N[f]HH—1/2(8D) < C|fllg1/200)-

It should be noted that the estimate ([5.41)) is not optimal.
The following lemma will be useful.
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a,k

LEMMA 5.11. Let uy,ua,... be the eigenfunctions corresponding to 0 < w;™™ <
wg’k <.... For a given constant M there exists C such that
1

(5.42) u;

1
< (lal+ 1) Il o)

- s
10D| Jap JHH1/2(8D)

for all j satisfying w?’k < M. Furthermore,

(5.43) ‘ / u; + / Nlui|op]w;
D oD

provided that w?’k £ wjo‘k If w?’k = wjo-"k for some i # j, then we can choose u;

and u; in such a way that holds.
PRrROOF. We get from ([5.38)) that

1 1 (Ou; IR
NOO {Uj ~790] Jop uj] =% <ayj — (wj )QN[UjaDO

1
<C (|a| + k:) lwill oy lluj L (),

Note that N 0.0 i5 the Dirichlet-to-Neuman map defined on 0D for the Laplacian
in Y\ D with the periodic boundary condition on dY’, and hence it is invertible as

an operator from Hé/Z (D) into Hglﬂ (0D), where the subscript 0 indicates the
zero-mean value (in a weak sense for Ho_l/z(f)‘D)). Since N*0 — N%0 = O(|a]) as
an operator from H'/2(dD) into H~1/2(9D), (5.41) leads to

-

1 1
’ u j <C (|Oé + k) 1wl /200y,
H/2(8D)

7 |oD| Jap
from which (5.42) follows.
To prove ((5.43)), we introduce a notation for the quadratic form: Let

(5.44) E(u,v) = /D Vu - Vudz.

Since N®«™" is the Dirichlet-to-Neuman map for the exterior problem, it follows
from the divergence theorem that

(wfh)? (/D Uit +/8D N[“ibDM)
= Bluuy) — [ (b @28 ol

We also have

wtp ([wem+ [ Sulopin )

— Bl - [ (u BN s o] — <w?”“>2zv[ui|an})uj

a,k o . —
:E(ui,uj)—/ (k:N""“’J‘ — (W ’k)QN) [ui|lop]tj,
oD
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where the last equality holds thanks to the fact that the Dirichlet-to-Neuman map
is self-adjoint. Consequently,

(2 = ) ([ [ Wlwdol,)

L (o™ = () = ot — 2 ) ol

= /8D <(kNo¢,w;’"k _EN®O _ (w?,k)QN)

a,k

— (kN — N0 — (wf"k)QN)> [wilap|T;.
Hence, (5.43) follows from (|5.38)), and the proof is complete. O

The estimate (5.42)) shows that if |a| and 1/k are small enough, then u; is
almost constant on 0D, which is in good agreement with the case when o = 0.

5.6. Photonic Band Gap Opening

In this section we discuss the photonic band gap opening in the limiting case
as k tends to +0o. We will not include proofs in this section since very similar ones
will be given in Section [6.3

Let w; be the eigenvalues of —A in D with Dirichlet conditions and let w; be
the eigenvalues of A defined in . Then the following min-max characterization
of w; and @w; is proved in [260] (see also Lemma |6.16]):

(5.45 w? = min max E(u,u
) J ; UGNJ’7|\U\|L2(D):1 ( I )a

and

~ . E
0 et
Nj weNj |lullp2py=1 1- |/ u’2
D

where the minimum is taken over all j -dimensional subspaces N; of H} (D) and
the quadratic form F is defined by (5.44). Using the min-max characterization, one
can show the following interlacing relation:

(547) Wj Swj Sw]‘+17 j = 172,....

One can also show the following: For any € > 0 and j, there exist ¢; and cs
sufficiently small such that we have

~ k
(5.48) W;—e< wjo-‘H < wjt1

for |a] < ¢; and k > 1/c3. See Lemma
Since 0 is an eigenvalue of the periodic problem with multiplicity 1, combining

formulas (5.21)), (5.34]), and (5.48]) shows that the spectral bands converge, as k —

+00, to
(549) [O, wl} U [(:Jl,LUQ] @] [(:12, (.d3] U... s
and hence we have a band gap if and only if the following holds:

(5.50) w; <w; for some j.
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It is proved in [260] that the spectral bands converge to in a somewhat
different way and holds provided that f p U # 0 where u; is an eigenfunction
corresponding to w

As we will see in the next chapter, the situation for the phononic crystal is
more subtle and complicated. Among other reasons, it is because, unlike the case
of the Laplace operator, 0 is an eigenvalue of the periodic problem for the Lamé
system with multiplicity 2 (in two dimensions).

5.7. Sensitivity Analysis with Respect to Small Perturbations in the
Geometry of the Holes

Suppose that D is of class C2. Let D. be an e-perturbation of D; i.e., let
h € CY(OD) and dD, be given by
oD, = {3? &=+ eh(x)v(z), z € ID }
Define the operator-valued function A% by
a,w @
Sp. =Sp, Ve
Adiwe= | 101 _ —a,

H(57- 06 ) Sr 0y

Write
oG 1 {z—y,v(x))
ov(x) (@,9) = 21 |z —yl?

where R**(z,y) is smooth for all z and y. Following Section [3.2.2] we have a
uniformly convergent expansion for the length element do.(y) on dD; i.e.,

do. () Z o™ (y)do(y),

where o(™) are bounded functions, and easily prove that the following lemma holds.

+ R (z,y),

LEMMA 5.12. Let U, be the diffeomorphism from 0D onto 0D, given by ¥ (x) =
x +eh(x)v(x). Let N € N. There exist C depending only on N, the C2-norm of D,
and ||hllc1apy such that for any @ € L*(dD.),

N
‘((’CDT“) [P]) 0 e — (K9*)* Z ki)

N

SpU Pl o e — 8*[p] = €S [w]

n=1

< CN Mgl L2 op)
L2(8D)

and

< CeN Yol L2 o)
L2(8D)

where ¢ := o V.. Here

SR =3 X 5 [ 06 ) h(awle)-n)v(0) e )e)io ),

=0 |B|=l
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and
K& el (@) = SV [l (z)

> % /aD 0" R (z, ) (h(x)v(x) — h(y)v(y)'e" D (y)e(y) do(y),

1=0 [B]=1

and the bounded operators ICSJ") = IC(D"L are defined in .

The sensitivity analysis with respect to small perturbations in the geometry of
the holes consists of expanding, based on Lemma[5.12 A in terms of € to calculate
asymptotic expressions of its characteristic values. This can be done in exactly the
same manner as in Theorem [5.6

5.8. Proof of the Representation Formula

In this section we provide a proof of representation formula ([5.10) which plays
a central role in our analysis.

THEOREM 5.13. Suppose that w? is not an eigenvalue for —A in 'Y \ D with
Dirichlet boundary condition on 0D and quasi-periodic boundary condition on Y
and assume w?/k is not an eigenvalue for —A in D with Dirichlet boundary condi-
tion on 0D. Then, for any eigenfunction u of (@, there exists one and only one
pair (¢,1) € L?(D)x L%(0D) such that u has the representation . Moreover,
(¢, 1) is the solution to the integral equation . The mapping u — (¢, ) from
solutions of (@ to solutions of the system of integral equations s one-to-
one.

We first prove the following lemma.
LEMMA 5.14. Suppose that u is an eigenfunction of (@) Then
ulop L Ker(§™4%).
Here S~ is considered an operator from L?(0D) into H*(dD).

PROOF. To prove this lemma, we observe that, since (A + w?)u = 0 in D,

ou
) = D ulop] (@) - 5 | 3] | @), weD,
and consequently,
1 0

Let ¢ € Ker(S™**). Because of the assumption on w?

that S~*[¢] =0 in Y \ D, and hence

, we immediately deduce

(g =0,

5.51
o0 S0+ ()16 =0

on 0D.
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Then, we have

%@\80,@ = (K**[ulop], ¢) — <S“’“’ [&L } ,¢>>

ovl-
e Ml o aw
~ Culop, (K2 To]) ~ (G| 5719])
1
=~ {ulop, 8} — 0,
which proves the lemma. ([

PrROOF OF THEOREM [5.13l We first note that the problem of finding (¢, ) is
equivalent to solving the two equations

S§¥¢[¢] = ulap on D,
(5.52) 1 er O

(= 51+ (™)) = 52| onoD
and

SUVE[¥] = ulop on 9D,
(5.53)

Ou ‘ on 0D.

1 o

iy RV AL —
(T + 0wl = 21|
Here we only consider the problem of finding ¢, the solution to (5.52)); the problem
of finding v can be solved in the same way.

From Lemma it follows that there exists ¢g € L?(9D) such that
S0+ ¢] =ulogp on dD, V¢ € Ker(S¥¥).

Hence, to show existence of a solution to ([5.52)), it suffices to prove that there exists
¢ € Ker(8§%%) such that the second equation in ([5.52)) is satisfied by ¢o+¢@. Thanks
to the second equation in ([5.51)), this equation becomes

0 (S*¥[go] — u)
(5.54) = ‘7,
and then, we only need to show that
0 (Sa,w [QSO] — U) a,w

which is an immediate consequence of the fact that S*“[¢pg] — u is a solution to
A + w? in D with the Dirichlet boundary condition. We have then proved the
existence of a solution to .

Suppose now that we have two solutions ¢, and ¢s to . Then, because of
the assumption on w?, we have S*“[¢; — ¢2] = 0 in Y \ D, and hence

(S04 (K=2)") 61— éa] =0 on OD.

By the second equation in , we have ¢1 = ¢o.

So far, we have shown that there are unique ¢ and v satisfying and
, respectively. The jump conditions satisfied by v immediately show that the
pair (¢,1) satisfies the system of integral equations .

Conversely, suppose that (¢, 1) is a nontrivial solution to the system of integral
equations . Then defining u by , we only need to show that u is not
trivial to conclude that u is an eigenfunction of . Suppose that ©« = 0 in Y.
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Then S““[¢] = 0 in D, and by the assumption on w?, we deduce that S*“[¢] = 0 in
Y\ D. Finally, from the jump of the normal derivative of S**“[¢] on D, we deduce
that ¢ = 0. The assumption on w?/k leads to v» = 0. This is in contradiction to
the fact that (¢,) # (0,0). This completes the proof. O

5.9. Characterization of the Eigenvalues of A

Let wg be a characteristic value of the operator-valued function ,18. Let (¢,)
be a root function associated with cwg. Set

u=s"igl- % [

Wy Jop
and )
= o= | (5T + (K)o
VD] Jon' 2 e
It follows from (2.291) that
1
CcC = 72/ w
Wy Jop

and therefore, —A(u + ¢) = G3(u+¢) in D and u = 0 on dD. Thus, we conclude
that @3 is an eigenvalue of A.

Conversely, assume that @ (with @y > 0) is an eigenvalue of A associated with
u + ¢, where u € H} (D), and
B 1 ou
T IY\DIEE Jop v
Let ¢ be a solution to
1 _ Ou

(5.55) (51—(/@@0)*)[@ 5, onoD.

Such a solution exits even though @Z is an eigenvalue of the Laplacian in D with
Neumann boundary condition since in this case du/dv is orthogonal in L? to the
associated Neumann eigenvector. Set

(5.56) ) = —(%IJr (K0-0))~1 Blﬂ .

Then, (¢,1)) satisfies

0.5 1
s R /aD ( 6 ) .
)* w ’

1 & 1
7[ _ ,CO,wO * 7[ ICO’O
(O

which proves that &y is a characteristic value of ./Tg.

5.10. Maximizing Band Gaps in Photonic Crystals

Let Y denote the periodic unit cell [0,1)2. To study the optimal design of
photonic band gaps, we consider the quasi-periodic eigenvalue problems:

(5.57) —(V4+V=1a) - (V+V-1a)uy = (w*)*q(x)uq

and

(5.58) —(V+V=1a)—— - (V+ V-1a)vy = (w*)*Va,

1
q(z)
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where « is in the Brillouin zone and the density function ¢(z) is given by

q forxeQ\D,
5.59 =
( ) a(w) { g2 forxz e D.

The eigenvalue problem is for the transverse magnetic polarization while
is for the transverse electric polarization.

The spectrum of (resp. ) is composed of a sequence of nonnegative
eigenvalues, each of finite multiplicity. Repeating them according to multiplicity,
we denote them

0 <wi <w§ <wg...— +00.

If we use the level set method (see Appendix [B.2]) to represent the interface
0D, then

a1 for {z,¢(x) <0},
q(z) =
g2 for {z,¢(z) > 0}.
A typical design goal is to maximize the band gap in the transverse magnetic
or the transverse electric case. In both cases, we write [185] [286), 257, [159]

(5.60) JID] = igf Wiy — supw;

and maximize J[D] with respect to the level set function ¢. An analysis of the
problem shows that it may be nonsmooth, i.e., Lipschitz continuous but not differ-
entiable with respect to ¢, for several reasons [I85]. First of all, the inf and sup in
the definition of J are nonsmooth functions. Moreover, multiple eigenvalues intro-
duce a nondifferentiability with respect to ¢. However, one can still use generalized
gradients and bundle optimization techniques to overcome this difficulty.

The generalized gradient of a locally Lipschitz function is defined as follows
[I76, Chapter 2]. Let X be a real Banach space and let f : X — R be Lipschitz
near a given point € X. Define

f(x,v) = limsup w

y—x,t—07+ t
The generalized gradient of f at x, denoted Jf(z), is the (nonempty) weak*-
compact subset of X* (the dual space of continuous linear functionals on X') whose

support function is f(z,-). Thus ¢ € df(z) if and only if f(z,v) > (¢,v) for all v
in X. It is also worth noticing that if f admits a Gateaux derivative f/(z) at z,
then f((z) € 0f(x). Moreover, if f is continuously differentiable at x, then 0f(x)
reduces to a singleton: df(z) = {f'(x)}.

Let co denote the convex hull, i.e., the set of all convex combinations of elements
in the given set. Returning now to our optimal design problem, the generalized
gradient of w$* with respect to ¢ can be written as follows [185), [286]:

o 1 a2 ()
Opwj C co { — §(q2 — Wi |ual” t ua € VTM(q,a)},
in the transverse magnetic case, and

Ll 19 v Ta)ual? v € V¥é<q,a>}7

Wi g @

Opw} C co {
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in the TE case, where VT(JK/I (and VJ(J})E) are the span of all eigenfunctions u, (and
vy ) associated with the eigenvalue w§, respectively, and satisfying the normalization
[y dlual® =1 and [, [va* = 1. The shape derivatives of J[D] are given by

dsJ[D] = / Vry(or Vrg) 0 - vdo,
aD

where the velocities which give the ascent direction for the optimization are [185],
286]

1 .
Ve C co { — —(q2 — ql)w?+1|ua|2 T Uy € V(T]A'Zl)(%a)}

(5.61) 2 |
~oo { = S~ aflual s € Vs (0000
and
1 1 1 ;
Vre C co {2a( — WV + V=1a)va|? : v, € V;fgl)(q, a)}
(5.62) Kivr @2 @

—co{ ! (1—1)(V+\/—71a)va|2:va€V(TJg(q,a)}.

Wi @
5.11. Photonic Cavities

Let k be a positive constant and let k(z) be a periodic function with period 1

in ;1 and x5 such that .
k inY\D
k() = n¥YA\D,
1 inD.
Consider the solution u to the following problem:

(5.63) V - k(2)Vu + w?n(z)u = 0.

Suppose that n(z) — 1 is compactly supported in a bounded domain Q C R?, and
is assumed to be known. €2 is a localized defect inserted into the photonic crystal.
It can be proved that the introduction of a localized defect does not change the
essential spectrum of the operator.

Assume that the operator V - k(x)V has a gap in the spectrum and seek for
w inside the bandgap such that (5.63) has a nontrivial solution. As in Chapter
we can use an integral formulation to compute w. We can formally rewrite the
solution to in integral form

(5.64) u(r) + w? /Q(n(y) ~1)Gy(z,y)u(y)dy =0, z€R?

where G, is the Green’s function of V-k(z)V+w? in R?. Notice that for frequencies
in the band gap, G, is exponentially decaying. We have [180]

(5.65) |G (z,9)| = O(e_CdiSt(WQ’U(_v'k(”)v))) as |z —y| — oo

with C being a positive constant and o(—V - k(z)V) is the spectrum of —V - k(x)V.

We call w a defect mode if its value in yields nontrivial solutions u(x) of
(5.64]). Hence, in view of , a defect mode is a solution to the wave equation
which is exponentially localized in the defect while its time dependence is har-
monic and can be computed by the same approach as the one presented in Chapter
[3:3] Moreover, using the generalized argument principle, we can also compute the
sensitivity of the defect modes with respect to n and Q.
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5.12. Concluding Remarks

In this chapter we have first discussed the structure of spectra of periodic
elliptic operators. The main tool of the theory is the Floquet transform. We
have also performed a high-order sensitivity analysis of the spectral properties of
high contrast band gap materials, consisting of a background medium which is
perforated by a periodic array of holes, with respect to the index ratio and small
perturbations in the geometry of the holes. The asymptotic expansions have been
obtained by transforming the spectral problem into a system of equations involving
singular integral operators, a Taylor expansion of the associated kernels, and the
generalized Rouché theorem. The leading-order terms in our expansions have been
explicitly computed.

Our approach in this chapter will be extended in the next chapter to the equa-
tions of linear elasticity.






CHAPTER 6

Phononic Band Gaps

6.1. Introduction

In the past decade there has been a steady growth of interest in the propaga-
tion of elastic waves through inhomogeneous materials. The ultimate objective of
these investigations has been the design of the so-called phononic band gap ma-
terials or phononic crystals. The most recent research in this field has focused
on theoretical and experimental demonstrations of band gaps in two-dimensional
and three-dimensional structures constructed of high contrast elastic materials ar-
ranged in a periodic array. This type of structure prevents elastic waves in certain
frequency ranges from propagating and could be used to generate frequency filters
with control of pass or stop bands, as beam splitters, as sound or vibration protec-
tion devices, or as elastic waveguides. See, for example, [448), 186, 307, 427].

To mathematically formulate the problem investigated in this chapter, set D
to be a connected domain with Lipschitz boundary lying inside the open square
(0,1)2. As in Chapter [5| an important example of phononic crystals consists of a
background elastic medium of constant Lamé parameters A and p which is perfo-
rated by an array of arbitrary-shaped inclusions Q = J,, .42 (D + n) periodic along
each of the two orthogonal coordinate axes in the plane. These inclusions have
Lamé constants A, zr. The shear modulus p of the background medium is assumed
to be larger than that of the inclusion i. Then we investigate the spectrum of the
self-adjoint operator defined by

2
_ 0 (¢ Ok
(6.1) u— -V (CVu)=— Y (%j<cukz axl>’

Jik,l=1

which is densely defined on L?(R?)2. Here the elasticity tensor C is given by

(6.2) Cijm = ()\X(RQ\Q)+XX(Q)>(Sij5kl+(MX(RQ\Q)+/7X(Q)>(5ik5jl+5il5jk)a

where x(Q2) is the indicator function of €.

In this chapter we adopt this specific two-dimensional model to understand the
relationship between the contrast of the shear modulus and the band gap structure
of the phononic crystal. We will also consider the case of two materials with different
densities in order to investigate the relation between the density contrast and the
band gap structure.

By Floquet theory in Section the spectrum of the Lamé system with pe-
riodic coefficients is represented as a union of bands, called the phononic band
structure. Carrying out a band structure calculation for a given phononic crystal
involves a family of eigenvalue problems, as the quasi-momentum is varied over the
first Brillouin zone. The problem of finding the spectrum of is reduced to a

259
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family of eigenvalue problems with quasi-periodicity condition; i.e.,
(6.3) V- (OVu) 4+ w?u = 0 in R?,

with the periodicity condition

(6.4) u(z +n) = eV u(z) for every n € Z>.

Here the quasi-momentum « varies over the Brillouin zone [0,27)2. Each of these
operators has compact resolvent so that its spectrum consists of discrete eigenvalues
of finite multiplicity. We show that these eigenvalues are the characteristic values of
meromorphic operator-valued functions that are of Fredholm type of index zero. As
in Chapter [5] this yields a natural and efficient approach to the computation of the
band gap phononic structure which is based on a combination of boundary element
methods and Muller’s method for finding complex roots of scalar equations. See
Section[I.6] Following Chapter[5 we proceed from the generalized Rouché theorem
to construct complete asymptotic expressions for the characteristic values as the
Lamé parameter p of the background goes to infinity. For a # 0, we prove that the
discrete spectrum of accumulates near the Dirichlet eigenvalues of the Lamé
system in D as u goes to infinity. We then obtain a full asymptotic formula for the
eigenvalues. The leading-order term is of order 1! and can be calculated explicitly.
For the periodic case o = 0, we establish a formula for the asymptotic behavior
of the eigenvalues. It turns out that their limiting set is generically different from
that for o # 0. We also consider the case when |« is of order 1/,/z and derive an
asymptotic expansion for the eigenvalues in this case as well. Not surprisingly, this
formula tends continuously to the previous ones as a,/jt goes to zero or to infinity.
We finally provide a criterion for exhibiting gaps in the band structure. As we
said before, the existence of those spectral gaps implies that the elastic waves in
those frequency ranges are prohibited from travelling through the elastic body. Our
criterion shows that the smaller the density of the matrix, the wider the band gap,
provided that the criterion is fulfilled. This phenomenon was reported in [202]
where it was observed that periodic elastic composites, whose matrix has lower
density and higher shear modulus compared to those of inclusions, yield better
open gaps.

6.2. Asymptotic Behavior of Phononic Band Gaps

The phononic crystal we consider in this chapter is a homogeneous elastic
medium of Lamé constants A, p which contains a periodic (with respect to the
lattice Z?) array of arbitrary-shaped inclusions Q = J,,cz2(D + n). These inclu-
sions have Lamé constants X, 1.

We use the same notation as in Chapter |5} Let Y = (0,1)? denote the fun-
damental periodic cell. For each quasi-momentum «a € [0,27)?, set o,(D) to be
the (discrete) spectrum of the operator defined by with the condition that
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e~ V~laZy is periodic. In other words, o, (D) is the spectrum of the problem

LM+ w?u =0 inY\ D,
LY+ wPu =0 in D,
(6.5) u]+ —u|l_=0 on D,
Ju
81/|+ 81/| =0 on 0D,
e~ V-lazy g periodic in the whole space.

Recall that £M# denotes the elastostatic system corresponding to the Lamé con-
stants A and 1 and 9/0V is the corresponding conormal derivative.

By the standard Floquet theory briefly described in Section the spectrum
of has the band structure given by

(6.6) U ou(D).
a€l0,27)2
The main objective of this section is to investigate the behavior of o,(D) as u —

+00.

6.2.1. Integral Representation of Quasi-Periodic Solutions. In this sub-
section, we obtain the integral representation formula for the solution to . We
denote by g‘“,ﬁ“ﬂ and K¢ the layer potentials on dD associated with the Lamé
parameters (\, Ji).

We first prove the following lemma.

LEMMA 6.1. Suppose that w? is not an eigenvalue for —LM* in D with the
Dirichlet boundary condition on OD. Let u be a solution to . Then we have

ulop L KerS® and ulpp L Ker(S™*)*.

Here 8% and 8*% are considered to be operators on L*(0D)?.

ProOF. We first observe that, since (Ex’ﬁ +w?)u =0 in D, we have

~ <. |0
(6.7) u(z) = D¥ [ulgp] (z) — S¥ {8;71 ] (z), =€ D,
and consequently by (2.156)) it follows that

1 =0 <. | Ou
(68) *11|5D =K [u‘aD] -8 l:a,]/v _:l :

Let ¢ € Ker(S¥); i.e., S¥] ] =0 on 0D. By Lemma [2.123} we have S¥[¢] =
in R? \ D and hence (1/2) o+ IC“) [¢] = 0 by 1' Then we have from 1@)

6
(

u|aD, = (K ulan), ¢) - <Sw [g‘i }¢>
<u|aD, rel) - (Gl -8

- 2 <u|8D7 >7

which implies (u|gp, ¢) = 0, and hence ulyp L Ker S¥.
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Observe that if u is a-quasi-periodic, then

Dg’/vw [ulay] =0 and S}Ci,w |:(8911/1 +:| =0 on 8Y7

where Dy’ and Sy are the (a-quasi-periodic) double- and single-layer potentials
on JY. Thus we have

u(a) = =D ulop] () + 57 | 32| | @), we¥\D,
and consequently,
Sulon = —K* [ulop] + 5% [g‘:u |
Let ¢ € Ker(S*%)*. Since (§**)* = S~**, we have
S74¥[¢] =0 on OD.

2

Since w? is not a Dirichlet eigenvalue of —£** in D, we immediately get

S *¥[¢p] =0 in D,
and hence
1 *
—§¢ + (K*“)"[¢] =0 on dD.

Therefore, we can deduce that

5 (ulon, 8) = — (K [ulap]  6) + <$ B:u ’¢>

— — (ulap, (= Tol) + (5] 571

1

- _5 <u|aDa¢> )

which implies (u|gp, ¢) = 0. This completes the proof. O

We now establish a representation formula for solutions of (6.5]).

THEOREM 6.2. Suppose that w? is not an eigenvalue for —LM* in D with the
Dirichlet boundary condition on 0D. Then, for any solution u of , there exists
one and only one pair (¢,) € L?(0D)? x L?*(0D)? such that

(6.9) aw) = SWE@,  weD,
| s*ll@). =¥ \D.

Moreover, ($,) satisfies

S¥[¢] — S¥[Y] = 0 on 0D,
(610) 1 W * 1 — W\ *

(57— Ry )iel+ (31+ ()" )wl =0 onoD,
and the mapping u — (¢, ) from solutions of in HY(Y)? to solutions to the
system of integral equations in L?(0D)? x L%*(0D)? is a one-to-one corre-
spondence.
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PRrOOF. We first note that the problem of finding (¢,) satisfying and
(6.10)) is equivalent to solving the following two systems of equations:

S¥[¢] = u|ap on 8D,

(6.11) 1 o du

(= 51+ E)")lo] = 5‘, on 8D
and

SU[Y] =ulop on 9D,
(6.12) 1 o 9

(31+(K) )m:ai:h on 9D.

In order to find ¢ satisfying 1) it suffices to find ¢ satisfying Sw [¢] =uin
D. Suppose for a moment that the following holds:

(6.13) ISY = {(b:qﬁLKerg“’}.

It then follows from Lemmathat there exists ¢g € L?(0D)? such that
(6.14) S8“[¢o] =ulsp on AD.

Observe that if w # 0, then the solution to the Dirichlet problem for LM 4 w? may
not be unique, and hence lj does not imply §“[¢p] = u in D. However, since
(LM 4+ w?)(u — S¥[¢o]) = 0 in D, we get by Green’s formula
- ~ T - .
u—8¥¢g] = —8¥ {35 (u — S“[(ﬁo}) ‘_} in D,

and therefore,
S 0 S .
u=3_5 {gﬁo—a;(u—S [qﬁo])‘] in D.

To prove the uniqueness of ¢ satisfying (6.11)), it suffices to show that the
solution to ~
S¥[¢] =0 on 0D,

(- %1 4+ (R))[9) =0 ondD

is zero. By the first equation in the above and Lemma [2.123} S¥[¢] = 0 in R\ D
and hence

0 % 0 %
- 7,\,8“) ‘ — —NSW ‘ == 0
6= 55510, — 55519
Similarly, we can show existence and uniqueness of 1 satisfying
u=S8%[] inY\D,

which yields (6.12). To complete the proof, we shall verify that (6.13) holds. Let
G be a subspace of H'(d2) such that

G:= {¢:¢5J_Ker g‘“’}

Since N N
(§“¢,9) = (¢, 5%), Vo, € L*(99),

it is easy to see that $S8¥ C G. Tt remains then to show that

dim H'(8€)/S$ 8% < dim H' (8Q)/G.
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Let ¢1,¢2,...,¢, be an orthonormal basis of Ker S*. Since H L(0Q) is dense in
L?(082), we can take ¢1,da, . .., ¢ in H*(9Q) such that ||¢; — d;||L2(a0) < € for all

j. Then %1, ¢2, ..., Pp is linearly independent in H'(9€2)/G. To see this, suppose
that

a161 + - + andy € G.
By taking the inner products with the ¢;’s, we obtain

G101 ... 1 n a
z | =0
Gn-G1 ... Gn-bn) \0n
Since N N
G 1 .. Q1 On
T
is invertible (as it is a small perturbation of the identity), we have a; = ... = a, = 0.
Hence,
dim H'(8€)/S$ 8% = dim Ker §* < dim H'(9Q)/G,
and we can conclude that G = S S¥. O

Let A*#(w) be the operator-valued function of w defined by

gw _Sow
6.15 Arey= 1 - 4
(6.15) ) ST — (R ST+ (ko)

By Theorem w? is an eigenvalue corresponding to the quasi-momentum o if
and only if w is a characteristic value of A%*(w). Consequently, we now have a new
way of computing the spectrum of parallel to our formulation in the previous
chapter of the band structure problem for photonic crystals. This way consists
of examining the characteristic values of A“*(w). Based on Muller’s method for
finding complex roots of scalar equations, a boundary element method similar to
the one developed in Subsection [5.4.2] for photonic crystals can be designed for
computing phononic band gaps.

6.2.2. Full Asymptotic Expansions. Expanding the operator-valued func-
tions A%H(w) in terms of p as p — +o0o, we can calculate asymptotic expressions
of their characteristic values with the help of the generalized Rouché theorem, and
this is what we do in this subsection.

We begin with the following asymptotic expansion of G77*(x,y) in (2.522).

LEMMA 6.3. Let 7, = 1 — (cp/c)?. As p — +o0,

+00 w2(-1) T(2mnt-a)-( ) _5”,
Giay) =Y T X e (e
(6.16) =1

nez?

(2mn + a);(2mn + a); >
Ti )

|20 + of2(+D)
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for fized oo #£ 0, while for a = 0,

(6.17)
5. T 20-1 8 T
0w _ 0y 2y Tn(a—y) in;
Gii*(@y) = =3 + (2720 > e ( |n|21 +Tl|n2(l+1)) :
=1 nez2\{0}
The derivations of (6.16)) and (6.17) are straightforward. In fact, since
1 1 = w?
— 27 2 = & 2(k+1)’
1271 + «f w? 270+ of? = pk2mn + a2+

one easily shows that (6.16)) and (6.17)) hold.
We can write (6.16) and (6.17) as

(6.18) G (z,7) Z G (z,y)
and
(6.19) G (z,y) —I+Z Gow (z,y),

where the definitions of G;"“(z,y) and Gl’ (z,y) are obvious from and
(6.17). We note that G“(z,y) and G}*(z,y) are dependent upon p because
of the factor 7;. However, since |7;| < C for some constant C' independent of p
and [, this will not affect our subsequent analysis. We also note that G{"(z,y) is
independent of w and

(6.20) G(z,y) = nG*(z,y),

where G*(z,y) is the quasi-periodic fundamental function defined in (2.523).
Denote by §* and (K, **“)*, for | > 1 and a € [0,27)?, the single-layer

potential and the boundary integral operator associated with the kernel G} (x, y)

as defined in ([2.530)) so that

|
(6.21) S =3%" Esfv“ and  (K~%%)* = - ().

I M*

~1
< it

LEMMA 6.4. The operator (1/2) I + (K=*0)* : Lz(aD) — L%(0D)? is invert-
ible.

Before proving Lemma let us make a note of the following simple fact: If
u and v are a-quasi-periodic, then

(6.22) @ vdo = 0.
oY 81/
To prove this, we observe that
V=la-x -
du V= 78( u) e~V—laay 4 /1 {)\a . (e*‘/jlo"””u)N
Yy v oy ov Yy

2001 Ny + g Ny a1 N v Ta=z } S/ —Tazy
+ K ( a2N1 OllNl + 20421\72) (e U) ¢ v
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Here N = (N, N3) is the outward unit normal to the unit cell Y. Then the inte-
grands over the opposite sides of JY have the same absolute values with different
signs and therefore the integration over 9Y is zero.

PrOOF OF LEMMA [.4l For a # 0, we show the injectivity of (1/2) I+(K~*0)*.
Since (1/2) I + (K°)* and (K=29)* — (K°)* are compact, then from the Fredholm
alternative, the result follows. Suppose ¢ € L?(9D)? satisfies

1
(§I+ (K=*%)*)[¢] =0 on OD.

Then by (2.527), u := S*9[¢] satisfies
LMu=0 inY\D,
ou

5‘1/‘+

u is a-quasi-periodic in the whole space.

Therefore, it follows from (6.22)) that

=0 on 0D,

0 0
/ (A|V~u|2+E\Vu+Vut|2): —u-ﬁ—/ A G=o.
Y\D 2 oy Ov ap OV |,
Thus, u is constant in Y\ D and hence in D. Thus, we get
Ou ou
=—| ——| =0.
¢ ov ‘+ ov ‘_

For the periodic case o = 0, the proof follows the same lines. Since (K%0)* —
(K°)* is compact, it suffices to show the injectivity of (1/2) 1 + K%0. Let ¢ €
L?(0D)? satisfying ((1/2) I + K%%)[¢] =0 on dD. Then u := D%0[¢] satisfies

LMu=0  in D,
u_=0 on 0D,

and therefore u = 0 in D. Furthermore, if ((1/2) I + K%%)[¢] = 0, we can show
that ¢ € H'(9D)? and 9(D*[¢]) /ay] = 9(D*0[¢)) /ay] . See [B] for the details.
Then we have ’ B

LMu=0 inY\D,

Ju

ool
u is periodic in the whole space.

=0 on 0D,

Therefore, it follows that
-a=0.

) )
/ (A|v-u|2+ﬁ\vu+vut|2)= —“-ﬁ—/ gu
Y\D 2 oy Ov ap OV |,

Thus, u is constant in Y \ D, and hence ¢ = u|_ — u|, is constant. By (2.531)), we
obtain that

0= (%H/CO’O)M] — Y\ D¢,

which implies that ¢ must be zero. This completes the proof. [
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We now derive complete asymptotic expansions of eigenvalues as y — +o00. We
deal with three cases separately: a # 0 (not of order O(1/,/it)), a = 0, and || of

order O(1//1).

6.2.2.1. The case a # 0. The following lemma, which is an immediate con-
sequence of (6.21)), gives a complete asymptotic expansion of A**#(w) defined in

(6-15) as p — +oc.
LEMMA 6.5. Suppose o # 0. Let
Sv 0

6.23 Af(w) = 1 ~ 1 ’
( ) 0( ) fI—(ICW)* fI—l—(IC_a’O)*
2 2
and, forl>1,
0 -5
(6.24) P(w) =

o%%ﬁf
Then we have
=1
(6.25) A% (w) = Af(w) + EA;Y(W).
=1

All the operators are defined on L*(0D)? x L*(0D)2.

Note that it is just for convenience that there is 1/p in the definition of Af*(w).
This of course does not affect any of our asymptotic results.

LEMMA 6.6. Suppose a # 0. Then the following assertions are equivalent:
(i) w*? € R is a characteristic value of Ag(w),
(i) w™0 € R is a characteristic value of ¥,
(iii) (w™*%)? is an eigenvalue of — LM in D with the Dirichlet boundary con-
dition.

Moreover, if u is an eigenfunction of LM i D with the Dirichlet boundary
condition, then ¢ := 0u/dv|_ is a root function of 8. Conversely, if ¢ is a root
function of g“’, then u := —gw[go] is an eigenfunction of — LN in D with the
Dirichlet boundary condition.

ProoOF. By Lemma (1/2) I + (IE*Q’O)* is invertible. Thus characteristic
values of A§(w) coincide with those of . On the other hand, Green’s identity

|i shows that the characteristic values of S¥ are exactly the eigenvalues of — LN
in D with the Dirichlet boundary condition. The last statements of Lemma [6.6] also

follow from (6.7)). O

LEMMA 6.7. Every eigenvector of 8% has rank one.

PROOF. Let ¢ be an eigenvector of S“ associated with the characteristic value
WY de., Se’ [¢] = 0 on OD. Suppose that there exists ¢*, holomorphic in a neigh-
borhood of w® as a function of w, such that ¢‘”0 = ¢ and

S9[¢7] = (w? — (W°)})y*
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for some ¢, Let u®(z) := S¥[¢*](z), z € D. Then u® satisfies

(Ex’ﬁ +w?)u® =0 in D,
@ = (w? — (W°)?)y* on dD.

u

By Green’s formula, we have

(w2,(wo)z)/ uw,uwo:/ U D iy gt
D D

o wapi 2 _ 02/ waW
[ e T — w0 [ e T

Dividing by w? — (w®)? and letting w — w°, we arrive at

[rup= [ g O
D oD ov

Therefore, we conclude that 1/)“’0 is not identically zero. This completes the proof.
O

By Lemma/6.4{and the fact that S is Fredholm, we know that A% (w) is normal.
Moreover, Lemma says that the mult1p11c1ty of A% (w) at each eigenvalue (w®)?
of —LMF is equal to the dimension of Ker S’ Combining this fact with Theorem
1.15] we obtain the following lemma.

LEMMA 6.8. For each eigenvalue (w®)? of — — LN and sufficiently large p, there
exists a small netghborhood V/ ofw > 0 such that A% is normal with respect to

OV and M(A** V) = dim Ker 8’

Let (w°)? (with w® > 0) be a simple eigenvalue of —£*# in D with the Dirichlet
boundary condition. There exists a unique elgenvalue (w*H)? (with w** > 0) of
. 6.5) lying in a small complex neighborhood V' of w". Combining the generalized
Rouché theorem with Lemma we are now able to derive complete asymptotic
formulas for the characteristic Values of w— A%#(w). Theorem yields that

1 d

tr w — WA (W) — A% (W) dw
s [ @) A )
Then we obtain the following complete asymptotic expansion for the eigenvalue
perturbations w®# — w°. It is proof is similar to that of Theorem

(6.26) Wt — W0 =

THEOREM 6.9. Suppose a # 0. Then, for sufficiently large u, the following
asymptotic expansion holds:

(6.27) wrH — 0

%rz thr/ B (w
where

(6.28) By, ()= (1" > Af(w) A (w). . Af (w) T AL (w).
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6.2.2.2. The case « = 0. We now deal with the periodic case (« = 0). By
(6.17) we have

(6.29) A% (w) )+ Z AO
where
~ 1
SUJ _72 . dU
(6.30) Ajw) =1 e
7wy T 0,0 *
L= (k=) I+ (K)
and, for [ > 1,
0o -S*
(6.31) A (w) = "
l 0 <K&o

Here we consider the following eigenvalue problem:

(,c“‘ﬂu u=0 in D,
(6.32)

on OD.
IY\D\

We note that it has a discrete spectrum and its eigenvalues are nonnegative since
we have

/X|V-u|2+ﬁ|Vu+Vut|2 / u-a—g—/ u- LN
D 2 op 0O
= — t+w / u?
IY\DL/ St [
+w/Wm2

The eigenvalue of (6.32) is related to the characteristic value of A°(w) as follows.

LEMMA 6.10. Equation has a nonzero solution if and only if w is a
characteristic value of the operator-valued function A}(w).

PROOF. Suppose that there exists a nonzero pair (¢,) such that
AO w <¢) — O7
0( ) w

(6.33) S¥[p] — i/ Ydo=0 on dD,
oD

w?

or equivalently,

1 ~

(6.34) (21 - (ICW)*) (0] + (;I - (,Co,o)*> [¢] =0 on dD.
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In particular, ¢ is nonzero by the invertibility of (1/2) I+ (K%9)*. Let u := S¥[g).
Then we have
OJu
|Y\D| wQ\Y\D| op 0D
1 1
- - ( —
WY\ D| Jap 2

_ w2Y1\D| [ @H </c°’°>*) 0

+(K=)")[¢]

1
W op
where the last equality follows from (2.532)). Therefore, by (6.33), u is a nonzero

solution to (6.32)).

Suppose that (6.32)) has a nonzero solution u. Following the same argument as
in the proof of Theorem we can see that there exists ¢ such that

S¥[¢] = ulap on 0D,
(6.35) 1 S s 0

(= 51+ (K))ld] = a% on dD.
If we set

v=(Gr+ 000 5]

A0(w) (i) ~0.

This completes the proof. ([

then (¢, ) satisfies

We also have the following lemma.

LEMMA 6.11. Every eigenvector of A)(w) has rank one.

PROOF. Suppose that (i
with characteristic value w?; i.e., there exist ¢* and ¥*, holomorphic as functions

of w, such that qﬁ“’o = ¢, w“’o =1, and
A3) (§2) = w-uty (j»f;) ,

for some <2§w> € L2(0D)?. In other words, the following identities hold on dD:

> is an eigenvector of AJ(w) with rank m associated

- 1 ~
S -5 [ o= =),

(37— @) 01+ (514000 ) ) = (0 -ty
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It then follows from (2.532f) that

~ 1 1 ~
S¥¥] — ~ — JC@)* “1d
- Y\D|w2/3D( ! e de
. 1 1 (w—wo)™ ~
:Sw wl _ — / *I+ K:O,O* deﬂ-if de’
[9°] Y \ D|w? 8D(2 ( ) )[1/) ] Y\ D|w? aDw
= 1 (w—wh)™ ~
= Sw “l— 7/ wda + e —— de'
197 w? 8Dw Y\ Dlw? 6D¢
~ 1 ~
= Wwom(¢w+/ 'l/}wd0'>
= YADE Joo
Let
~ 1 ~ -
Yo=Y + 77/ 1/J“d0> and u” :=S8Y[¢p"].
! ( Y\ Dl? Jon .
Then u“ satisfies
(£X"7 +wHu* =0 in D,
1 8u“’ 0
w _ all _ m, w D.
u |Y\D|w2/aD 5 7d0+(w w)™n*  on 9
By Green’s formula, we have
—5 o’ — Ouv
2 0\2 W, w0 w | [ L
(w (w))/Du u /aDu 55 U 8§d0
1 1 1 u ou’ oum L ou’
(@ @) o e e e

Dividing by w? — (w”)? and letting w — w’, we obtain

0 2
/ ‘uw0’2 + 1 / ou¥ do
D Y\ D|(w)*| Jop ¥

Since the term on the left is nonzero, we conclude that m = 1. This completes the
proof. O

) w—wl)m o Ouv’
= hﬁmO 75}2 — (wO)Z/ n - % do.
wrw oD

Analogously to Theorem [6.9] the following asymptotic formula for ov = 0 holds.

THEOREM 6.12. Suppose a = 0. Let (@°)? (with &° > 0) be a simple eigenvalue
of . Then there exists a unique characteristic value w%* > 0 of A°(w) lying

in a small complex neighborhood V of @° and the following asymptotic expansion
holds:

—+o0 —+o0
1 1 1
6.36 WOH 0 = — ) = —tr/ By, p(w)dw,
( ) 271—\/_71121)712:1)”" ey 7P( )
where

(6.37) Bupw)= (=1 > AJw) A, ). AJ(w) AL ().

ni+-+np=n
n;>1
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6.2.3. The case when |a| is of order 1/,/p. In this subsection we derive
an asymptotic expansion which is valid for || of order O(1/,/1), not just for fixed
a # 0 or a = 0, as was considered in the previous subsections. We give the limiting
behavior of w®* in this case. The argument of this subsection is similar to that
of Subsection The only difference is that while the operators in Subsection
5.5.5| are scaled by k, we deal with unscaled operators here, since there are two
parameters p and .

For exactly the same reason as in Section [5.5.5] we consider the operator

N = (;H (IC”‘*”)*) (§)~t,

which can be extended to the Dirichlet-to-Neumann map on 9D for LM 4 w?
in Y \ D with the Dirichlet boundary condition on dD and the quasi-periodicity
condition on JdY. Note that the Dirichlet-to-Neumann map is defined for
w?< min k()

o€ |—m,m)?
where k(a) is the smallest eigenvalue of —£*# with the Dirichlet boundary con-
dition on D and quasi-periodicity on 9Y. It is easy to see that x(a) behaves
like O(p) as p — +oo. Furthermore, N®“ depends smoothly both on w and «.
In particular, since (1/u)S*% and (1/2) 1 + (K*%)* depends on w?/u, so does
(1/u) N*“_ and hence we have the expansion

: 1
(6.38) N = N0 1 2N 4+ O(la|) + O <u> ,
where
. d
N := NO«| .
d(w2> |w:0

As for (5.41), we can show that N : H/2(dD) — H~'/2(dD) is bounded. Note
that

(6.39) N0 = O(p)

in the operator-norm from H'/2(9D) into H~'/2(0D), as p — +oc.
The following lemma, which is an analogous to Lemma for the photonic
band gap, will be used later.

LEMMA 6.13. Let uy,ug,... be the eigenfunctions corresponding to 0 < wi™* <
wg’” < .... For a given constant M there exists C such that
1

(6.40) u,

= .
?19D] Jop ]HH1/2(6D)2

1
< Clwy i (e (a| n M) ,

for all j satisfying w?’” < M. Furthermore,

(6.41)

_ . _ 1
/ u; U+ [ Nuilop] - 05| < Clluill gy py2 llu; | a2 (o2 <|04| + ) ;
D aD K

provided that w;™" # wi". If ™" = W™ for some i # j, then we can choose u;

and u; in such a way that holds.
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PROOF. In view of (6.38)), we have

1 1 10u; 1 -
N0,0 i = C QO 2 Viua,;
- [uj — EA uj} o ,u( ' )"N[ujlop]

1 1
+ E(NO’O — N*[uj|ap] + O(lal) + O(;)-
Since N0 = N%0 + O(ula|), we can derive (6.40) in exactly the same way as in
Lemma 5111

To prove (6.41), let E be given by (2.385) with (), x) replaced with (X,ﬁ),
namely

(6.42) E(u,v):/DX(V-H)(V-V)—Fg(Vu—i—Vut)-(Vv—FVvt).

We then obtain from the divergence theorem, as we did in the proof of Lemmal5.11

(wir)? (/D u; -0 +/8DN[U1‘\8D] 'Uj>

~ Blurw) - [ (N - <w?’“>2z'v) fwilon] - T
oD

(w")? (/D u; -5 +/8D NTuilop] 'uj>

= E(u;,u;) — /8D(N“’wj "= (w2 N)[wilop] - 1.

It then follows that

(= ) ([ oews [ Nludool w)

= [ (e = e - (e ) ool

and

_ / ((Na,w;"’“ . Na,O . (w?,u)2N) o (Na’wf“”‘ i Na,O o (W,‘a’u)zN)>[ui|8D] . ﬁj'
aD
Hence, (6.41) holds and the proof is complete. O

The estimate (6.40) shows that u; is almost constant on 0D and there is a
function u; with a constant value on 0D satisfying

~ 1
(6.43) 155 = 0l oy < sl o (1ol + 7).
In fact, it is quite easy to find such a function. Let w; be the solution to
L3Vw, =0 in D,
1
Wj:uj—m 8Duj on 0D.

Then, thanks to (6.40), we have

1
Wil < Clusllancon (Jal + 1)
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and hence u; = u; — w; does the job.

6.2.4. Derivation of the Leading-Order Terms. For a # 0, let us write

down explicitly the leading-order term in the expansion of w®* — w% We first

observe that
()7 0
Aa w -1 _ -1 ~ . -1
O( ) (11 + (’Cfa,o)*> (11 _ (’Cw)*) (Sw)71 <EI + (’Cfa,O)*>
2 2 2
Next, we prove the following lemma.

LEMMA 6.14. Let u® be an eigenvector associated to the simple eigenvalue (w)?

and let ¢ := 0u®/dv|_ on OD. Then we have, in a neighborhood of W°,
~ 1
6.44 St = T+ Q¥
(6.4) (F) = T,
where Q% are operators in L(H?(0D)?, L>(0D)?) holomorphic inw and T is defined
by

(6.45) T(f) e -0
2w0/ lu’|?
D
where { , ) is the inner product on L*(0D)>.

PRrOOF. By Lemmal6.7] there are operators T and Q“ in £L(H?(0D)?, L?(9D)?)
such that (S8%)~! takes the form

6.46 Syt = T+ Q¥
(6.46) (§) = =T+ ",
where Q% is holomorphic in w. Since
6.47 [=8¥8%)~t = ST 4+ 8¥ Q¥
(6.47) (8%) S TS,
by letting w — w?, we have
(6.48) S8'T =o0.
Similarly, we can show that
6.49 T84 =0.

D

It then follows from and that

Im A = Ker ¥ = span{p} and KerA= ImS*’ = span{p}t.
Here span{y} denotes the vector space spanned by . Therefore
(6.50) T =C(,p) e,

for some constant C.

By Green’s formula, we have for z € D,
= ~. [0u® ~
Sl =5 | 50| | @ - o] @

(6.51) —wkﬂﬂ%ﬁﬁwfww@@—wwy
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In particular, we get

(652  S°lpl() = @ — ()?) /D T(z — y)u(y)dy, x € oD.
Expanding I'* (x —y) in w gives
653)  &[¢l(x) = 2°(w — &) /D T (& — y)u®(y)dy + (w — w*)? A%,

for some function A“ holomorphic in w. Therefore, it follows that
(6.54) (8)~1 {w / (2 —y)uo(y)dy} -
D

where B¥ is holomorphic in w, which together with (6.46)) implies that

w_wosoJrB“,

(6.55) T [Zwo/ fwo(- - y)uo(y)dy] = .
D

Note that if we take w = w? in (6.51)), then

(6.56) w(z) = -8*"[¢](z), x € D.

It then follows from (6.50]) and (6.55) that
1=C <2w0/ " (a0 — y)u’()dy, w>
D

=20uw° <u0,6~'w[g0]> = —20u° /D [’ %

This completes the proof. ([l

Because of (6.56)), we have

1 o,
(6.57) (51 — (K )¢l =¢ on dD.
Observe from (6.23) and (6.24)) that the diagonal elements of A (w)~1A$(w) are 0
and
—(%I—i— (IC_“’O)*)71 = (%I— (/EW°)*)(§°J)—1S§W + an operator holomorphic in w.

Identity (6.20] implies that S;** = pS*?, and hence (6.44) yields

1 @ —1 g _ ,0 1 —a,0y*\ 1 1 ~rpwfyx
pyy tr BVAO(w) A (w)dw = —ptr [TS (21—|—(IC )*) (21 (K ))]
Since Im T = span{p}, it follows from that

« 1 —a,0yx) 1 1 Swdy*
tr [TS™0 (5 1+ (K70)) 7 (51— (K*)")]
([ ) G- ©))] i)
B H‘PHQLz(aD)

([rs=oGr+ =) lele)

||<PH2L2(3D)
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We set
-1
1 —
v (z) := pS*° (21 + (/C_O"O)*) [ol(z), xeY\D.

Then v is the unique a-quasi-periodic solution to

LYFve =0 inY\D,
% . = uaa—l,l;‘_ on 0D,
and
L[ A A @) = (0, TV
2rv/=1 Jov l[ol]7 2
/ LAV v+ B 4 (v
_ 1J/v\p 2
1 2w0/ |u0‘2
D

Thus the following corollary holds.

COROLLARY 6.15. Suppose a # 0. Then the following asymptotic formula
holds:

A 1
/ ZIV v 4 S| Vv 4 (Vv
1 Jy\D 1 2

1
(6.58) w0 = L0 (2>
H 2w0/ |u0‘2 H
D
as b —» +00.
The formula (6.58)) may be rephrased, like (5.29)), as
1 A 1 1
wa,u27w02:77/ 7v.va2+7vva+ vvat2+0(>’
(W™H)7 = (") My\ﬁu\ "+ 5l (Vv 2

assuming that u® is normalized.

When a = 0, it does not seem to be likely that we can explicitly compute the
leading-order term in a closed form as in the case o # 0. However, we can compute
the leading-order term in the asymptotic expansion of w%# — 0.

Let u® be the (normalized) eigenvector of associated with the simple
eigenvalue wy. Let (%0, {/;0) satisfy with u replaced by u’ and w = &°. Since

@ is the only simple pole in V' of the mapping w + A$(w) ™!, one can prove that

o) (@) (e 0
w=wo \ %o Yo 0 (-,%0) o

+ an operator-valued function holomorphic in w,

A = o (oA

w—o~J0

which allows us to make explicit the leading-order term in the expansion of w%# —°.

Similar calculations and expressions in the transition region (Ja| = O(1/,/1)) can
be derived as well.
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6.3. Criterion for Gap Opening
Following Chapter [5| we provide in this subsection a criterion for gap opening
in the spectrum of the operator given by (6.1]) as u — +o0.

Let w; be the eigenvalues of — LM in D with the Dirichlet boundary condition.
Let @; denote the eigenvalues of (6.32). We first prove the following min-max
characterization of w; and @;.

LEMMA 6.16. The following min-max characterizations of w]? and 5;12 hold:

6.59 w?=min max E(u,u
(6:59) 7 Nj ueN; =1 ()
and

(6.60) ©? =min  max

E(u, u)
J Nj weNj|lull=1 4 |/ u|27
D

where the minimum is taken over all j-dimensional subspaces N; of (H(D))?.
Recall that H&iD is the set of all functions in H'(D) with zero-trace on dD and

E is given by .

PROOF. The identity (6.59) is well known [290]. Note that if v satisfies the
Dirichlet condition on 8D, then v := v — f p v satisfies the boundary condition
1

6.61 \~7+77/$:0 on OD.
(6:61) v\D| )

Conversely, if v satisfies (6.61]), then

~ 1 ~
V=V — v
Y /,
obviously satisfies the Dirichlet boundary condition.

Observe that the operator with the boundary condition in is not self-
adjoint, and hence Poincaré’s min-max principle cannot be applied. So we now
introduce an eigenvalue problem whose eigenvalues are exactly those of . Let
H = span{HZ(D), x(Y)} in L*(Y) where HZ(D) is regarded as a subspace of L?(Y))
by extending the functions to be 0 in Y \ D. Let G be the closure of H in L*(Y).
Define the operator T : H x H — G x G by

— LM on D,

Tu = 1 S _
7/£’“u on Y\ D.
Y\ D[ Jp

The constant value of Tu in Y \ D was chosen so that J; Tu = 0. Then one can
easily see that T is a densely defined self-adjoint operator on H x H and

(6.62) (Tu,v)y = E(u,v) foru,veH x%H.
Here (, )y denotes the inner-product on L?(Y)?. One can also show that nonzero
eigenvalues of T are eigenvalues of (6.32) and vice versa.

Let M; be a j-dimensional subspace of H x H perpendicular to constant vectors
which are eigenvectors corresponding to the eigenvalue zero. Then by Poincaré’s



278 6. PHONONIC BAND GAPS
min-max principle, we have

~2 __ <T'll, u>Y
w7 = min max
J M; ueM; <u,u>y
. E(u,u)
= min max
M; ueM; (u,u)

Y
E(v—/v,v—/v)
= min max D D

N; VvEN; (v—/ v,v—/ vy
D D

. E(v,v)
= min max )
;e J<v,v>Df|/ v[?
D

where (, ) p denotes the inner-product on L?(D)?, which completes the proof of the
lemma. (]

LEMMA 6.17. The eigenvalues w; and w; interlace in the following way:
(663) wj §L~dj §Wj+2, j = 1,2,....

PRrooOF. Lemma ensures that the first inequality in is trivial. Then
we only have to prove the second one. Let u; denote the normalized eigenvector
associated with w;. Let N; o denote the span of the eigenvectors uy, ..., u 42 and
let N be the subspace of Nj; composed of all the elements in N;y o which have

zero integral over D. Since the set of constant vectors has dimension 2, N is of
dimension greater than j. Therefore, we have w; < wji2, as desired. O

We will also need the following lemma.

LEMMA 6.18. For any € > 0 and j, there exist c1 and co sufficiently small such
that we have

(664) ajj —e< w;!jrl; < Wij+2
for ol < ¢ and p > 1/cs.

PROOF. The second inequality easily follows from the min-max principle for
eigenvalues with Dirichlet boundary condition on 9D and with quasi-periodicity on
aY.

To prove the first inequality, let uy, ..., u; be eigenfunctions corresponding to

(Wi™)?, .., (wi")?, respectively, satisfying

/ lw,|? + Nu;lop] -1 = 1,
D oD
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together with the orthogonality condition

the aid of (6.41) and the divergence theorem, that

E(u,u) — N lu|gp] - T
oD

[k [ Nulo] -

J
3 Ry ( R
=1 D

oD

6.41]).

Kuon] )

J
For u = E c;u;, we have, with
i=1

1

203 (/D |ui2+/aDN[ui|8D]'ui>

+O(lal) + O(;).

i=1
Hence, we have
E(u,u) - / N [u|yp] - T )
(6.65)  (w;")? = e O(|al) + O(-),
we) [P [ Nfulan] z
where (uy,...,u;) denotes the span of the eigenvectors ui,...,u; (i.e., N;).
Since
7/ N*Oulsp] -1 >0,
oD
we get
E 1
666 ("> max (u. ) +0(al) + O(4).
st [ [ Nfulo] @ g
oD
Let u;, ¢« = 1,...,7, be an approximation of u; with constant values on 0D

satisfying (6.43]). Then, one can see that

(6.67) (W) > e

J

N[U]-U =
oD

for any constant vector U, and hence we obtain

E(u,u)

1
e +0(la]) + 0 (u) .
1y---5Uj / |u|2 / Nu|8D

By the definition of N, we can easily check that

Y\ DJ[U[*

(w?“"“)2 > max

Thus we get

(6.68) wj(@)? > min max

E(u,u)

1
+0(laf) + 0 () .
UE (VL Vy) /|u|2+|Y\D||u\BD\2 g

1
pin ma +0(ah+0/+).
/\ 2 4 ¥\ Dlfulop|? z
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where N is a j-dimensional subspace of H'(D)? of elements with constant values
a.e. on 0D. Recalling that
- E(u,u
T T
v
U o  Dlulon
D

we finally arrive at
~ 1
(W)? =@y +O(laf) + 0 <M> :

which gives the desired result. (Il

Since 0 is an eigenvalue of the periodic problem with multiplicity 2, combining

formulas (6.27)), (6.36)), and Lemma shows that the spectral bands converge,
as pu — +o00, to

(6.69) [0, 1] U [0, w2] &5, wjiv2],

j=1
and hence we have a band gap if and only if the following holds:
(6.70) wjty1 < w; for some j (criterion for gap opening).

Observe that by (6.59) and the gap opening criterion is equivalent to

_ E
671)  mwin  mex  Buuw<min e —Bon®
Nj+1 ueN; 11, [|ul|=1 Aa ueNpllull=1 1= |/ u‘g

D

where N is a j-dimensional subspace of H}(9D)?.

To find conditions on the inclusion D so that the gap opening criterion is
satisfied by rigorous analysis is unlikely. However, finding such conditions by means
of numerical computations will be of great importance. It should be emphasized
that the criterion is for the case when the matrix and the inclusion have the
same density, assumed to be equal to 1.

6.4. Gap Opening Criterion When Densities Are Different

We now consider periodic elastic composites such that the matrix and the
inclusion have different densities.

Suppose that the density of the matrix is p while that of the inclusion is 1 (after
normalization). The Lamé parameters are the same as before. In this case, the first
equation of the eigenvalue problem has to be replaced by

(6.72) LMu+ pwPu=0 inY\D.

Hence we can show by exactly the same analysis that the asymptotic expansions

(6.27) and (6.36) hold if we replace the operators (6.30) and (6.24) (and (6.31))

with the new operators (depending on the density p) given by

. 1
S¥ —— - do

(6.73) A=, 1Pw2 oD
51— (k) §I+(IC0’°)*
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and

1—1 0 —Sf“w
6.74 A(X w) = - p —o,w 5 l 2 1,
( ) l ( ) p 0 ;(ICZJrl )

respectively, and the eigenvalue problem ((6.32)) with the eigenvalue problem

(£)"“ + wHu=0 in D,

(6.75)
p|Y \ D / on dD.

Let {&;} be the set of eigenvalues of (6.75). In order to express w; using the
min-max principle, we define (, )y by

(6.76) (u,v>y:/u-v—|—p/ u-v.
D Y\D
We also define T, as before, by

LMy on D,
(6.77) Tu= 717/[:&;711 on Y\ D.
plY \ DI Jp

Then T is self-adjoint with respect to (, )y. By Poincaré’s min-max principle
again, we have

~2 <Iu7 u>Y
(U = min max ———
M; ueM; (u,u)y

. E(u,u)
= min max
M; ueM; (u,u)Y
. E(v,v)
= min max
N]' VENj < ]. / ]. / >
vee——— [ vV —m [ v
|D|+ p|Y'\D| Jp Dl +plY\D[Jp /y
E(v,v)
= min max

1 2
~ ol Y]
Dl +plY \D|"Jp
where M; and N; are the same as in the proof of Lemma Therefore, we have
the following min-max characterization of the eigenvalues of problem (6.75):

E(u,u)

(6.78) &]2 min max
N; ueN;
< ) >D

1 2
- =g [ vl
|D|+plY \ D|"Jp
We then get a band gap criterion for the different density case which is equivalent

to @70):

. E
(6.79) min max E(u,u) <min max (u, u) .
Nj1ueN; 1, [[ul|=1 N; ueNj|lu|=1 ; 1 7|/ k
[ D]+ p[Y \ D|
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It is quite interesting to compare (6.79) with (6.71]). If p < 1, then

E E
(6.80) min  max _Blwu) < min  max (u,u)
N; ueNj,Huu:11_|/ w2 N oweNplli=ty
D

1 2’
S——
[Dl+plY \D|"Jp
which shows that the smaller the density p, the wider the band gap, provided that
is fulfilled. This phenomenon was reported by Economou and Sigalas [202]
who observed that periodic elastic composites whose matrix has lower density and
higher shear modulus compared to those of inclusions yield better open gaps. The
analysis of this chapter agrees with these experimental findings.

6.5. Concluding Remarks

In this chapter we have reduced band structure calculations for phononic crys-
tals to the problem of finding the characteristic values of a family of meromorphic
integral operators. We have also provided complete asymptotic expansions of these
characteristic values as the shear modulus goes to infinity, established a connection
between the band gap structure and the Dirichlet eigenvalue problem for the Lamé
operator, and given a criterion for gap opening as the shear modulus becomes large.
The leading-order terms in the expansions of the characteristic values were explicitly
computed. An asymptotic analysis for the band gap structure in three-dimensions
can be provided with only minor modifications of the techniques presented here.
Our results in this chapter open the road to numerous numerical and analytical
investigations on phononic crystals and could, in particular, be used for systematic
optimal design of phononic structures as well as for efficient computations of the
band structure problem.
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CHAPTER 7

Plasmonic Resonances for Nanoparticles

7.1. Introduction

Driven by the search for new materials with interesting and unique proper-
ties, the field of nanoparticle research has grown immensely in recent decades
[329]. Plasmon resonant nanoparticles have unique capabilities such as enhanc-
ing the brightness and directivity of light, confining strong electromagnetic fields,
and the outcoupling of light into advantageous directions [418]. Recent advances in
nanofabrication techniques have made it possible to construct complex nanostruc-
tures such as arrays using plasmonic nanoparticles as components. A reason for
the thriving interest in optical studies of plasmon resonant nanoparticles is due to
their recently proposed use as labels in molecular biology [272]. New types of can-
cer diagnostic nanoparticles are constantly being developed. Nanoparticles are also
being used in thermotherapy as nanometric heat-generators that can be activated
remotely by external electromagnetic fields [99].

The optical response of plasmon resonant nanoparticles is dominated by the
appearance of plasmon resonances over a wide range of wavelengths [329]. For
individual particles or very low concentrations of non-interacting nanoparticles in
a solvent, separated from one another by distances larger than the wavelength,
these resonances depend on the electromagnetic parameters of the nanoparticle,
those of the surrounding material, and the particle shape and size. High scattering
and absorption cross sections and strong near-fields are unique effects of plasmonic
resonant nanoparticles. In order to profit from them, a rigorous understanding of
the interactive effects between the particle size and shape and the contrasts in the
electromagnetic parameters is required. One of the most important parameters in
the context of applications is the position of the resonances in terms of wavelength
or frequency. A longstanding problem is to tune this position by changing the
particle size or the concentration of the nanoparticles in a solvent [235] [329]. Tt
was experimentally observed, for instance, in [235], [419] that the scaling behavior
of nanoparticles is critical. The question of how the resonant properties of plas-
monic nanoparticles develops with increasing size or/and concentration is therefore
fundamental.

In this chapter we use the full Maxwell equations for light propagation in order
to analyze plasmonic resonances for nanoparticles. We mathematically define the
notion of plasmonic resonance. At the quasi-static limit, we show that plasmon res-
onances in nanoparticles can be treated as an eigenvalue problem for the Neumann-
Poincaré integral operator and unfortunately, they are size-independent. Then we
analyze the plasmon resonance shift and broadening with respect to changes in size
and shape, using the layer potential techniques associated with the full Maxwell

285
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equations. We give a rigorous detailed description of the scaling behavior of plas-
monic resonances to improve our understanding of light scattering by plasmonic
nanoparticles beyond the quasi-static regime. On the other hand, we present an
effective medium theory for resonant plasmonic systems. We treat a composite ma-
terial in which plasmonic nanoparticles are embedded and isolated from each other.
The particle dimension and interparticle distances are considered to be infinitely
small compared with the wavelength of the interacting light. We extend the validity
of the Maxwell-Garnett effective medium theory in order to describe the behavior
of a system of plasmonic resonant nanoparticles. We show that by homogenizing
plasmonic nanoparticles one can obtain high-contrast or negative parameter mate-
rials, depending on how the frequencies used correspond to the plasmonic resonant
frequency.

7.2. Quasi-Static Plasmonic Resonances

7.2.1. Uniform Validity of Small-Volume Expansions. We consider the
scattering problem of a time-harmonic electromagnetic wave incident on a particle
D. The homogeneous medium is characterized by electric permittivity &, and
magnetic permeability p,,, while D is characterized by electric permittivity . and
magnetic permeability u., both of which depend on the frequency. Define

km = W\EmMm, kc = Wy/Eclc,
and
ep = emX(R*\ D) +ecx(D),  pp = emx(R*\ D) +e.x(D).
For a given incident plane wave (E*, H?), solution to the Maxwell equations in free

space ([2.316|), the scattering problem can be modeled by the system of equations

(2.317)) subject to the Silver-Miiller radiation condition (|2.318)).
Let D = z+ 0B where B contains the origin and |B| = O(1). For any z € 9D,

r—z

let 7 = 5% € 9B and define for each function f defined on 9D, a corresponding
function defined on B as follows

(7.1) n(f)(x) = f(z +07).

The following result follows from [34]. It is a refinement of Theorem [2.122] Tts
proof is sketched at the end of this chapter.

THEOREM 7.1. Let
dy = min {dist(AWo—((ICOD)*) U fa((ICOD)*)),dist()\g,a((lC%)*) U fa((/c%)*))} .

Then, for D = z + 6B € R? of class CY for a > 0, the following uniform far-field
expansion holds

(7.2)
E*(x) —@V x Gy, (x — 2)M (A, DYH (2) — w? 1 G, (x — 2)M (Ao, D) E'(2)
51"
+O(7)a

do

where Gy, (€ —z) is the Dyadic Green (matriz valued) function for the full Mazwell
equations defined by and M (X, D) and M(Ae, D) are the polarization ten-
sors associated with D and the contrasts A, and A given by with k = pe/ e
and k = €. /e, respectively.
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Suppose that €. and p. are changing with respect to the angular frequency w
while ¢,,, and p.,,, are independent of w. Because of causality, the real and imaginary
parts of €. and . obey Kramers-Kronig relations

1 O SP(W
RF(w) —fp.v./ de’,
77

w—w

(7.3) oo ,
SF(w) = %p.v./ REW) dw’,

w—w

F(w) = ec(w) or pc(w). The permittivity and permeability of plasmonic nanopar-
ticles in the infrared spectral regime can be described by the Drude model given
by
w? W2
- 5 c\W) = Um 1-F )
w(w—i-\/—ilr—l)) He(w) = p ( wz—w§+ﬁr—1)

where w,, is the plasma frequency of the bulk material, 7=! is the damping coeffi-
cient, F' is a filling factor, and wy is a localized plasmon frequency.

(7.4) ec(w) =em(1

DEFINITION 7.2. We call w a quasi-static plasmonic resonance if dy(w) < 1.

Notice that, in view of (2.72)), if w is a quasi-static plasmonic resonance, then
at least one of the polarization tensors M (\., D) and M ()., D) blows up.
Assume that the incident fields are plane waves given by

Ez(l‘) _ pe\/filkmd-z7
Hi(z) = dxpeV/ Thmde

where p € R? and d € R? with |d| = 1 are such that p-d = 0.
From Taylor expansions on the formula of Theorem it follows that the
following far-field asymptotic expansion holds:

V—1km|z|
€ — — &)z [~
Es(z) = —W(wumkmeﬁw V2 (& x )M (A, D)(d x p)
. 1 4
_kfneﬁkm(dI)Z(I—fi‘t)M(/\E,D)p> +O(W) —|—O(%)

as |x| = +oo, where & = x/|z| and t denotes the transpose. Therefore, up to an

error term of order O(%), the scattering amplitude A, defined by (2.342)) is given

by

(7.5)

Ao (&) = WimkmeY HEm@=D= (G5 Y M (N, D)(dxp)—k2,eV = Fm(d=2)2 (1 _331) M (X, D)p.

Formula allows us to compute the extinction cross-section Q¢*! in terms of
the polarization tensors associated with the particle D and the material parameter
contrasts. Moreover, an estimate for the blow up of the extinction cross-section
Q°*! at the plasmonic resonances follows immediately from .

THEOREM 7.3. We have

Qe = : 4;;‘2% [p~ [wumkm(d X I)M()\N,D)(d X p) — k:gl(l — ddt)M()\57D)p” .
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7.2.1.1. Shape Derivative of Quasi-Static Plasmonic Resonances. In order to
compute the shape derivative of quasi-static plasmonic resonances, it suffices to

compute the shape derivative of eigenvalues of the Neumann-Poincaré operator
(K9,)".
Let D, be given by

oD, = { Z:%=x+eh(x)v(z), x€ID },

where h € C}(9D) and 0 < € < 1. From Lemma we have
(KD,)"[]) 0 We = (Kp)*[] + k5[] + O(),
where K2 - L2(0D) — L2(0D) is defined by (2.144
D y (2. ).

Assume that \; is a simple eigenvalue of (K,)* associated to the eigenfunction
¢j. Then, there exists an eigenvalue A of (K%.)* in a small neighborhood of A;
and the following asymptotic formula for A as e — 0 holds:

X5 = X + (K 04, 65) 12(0m) + O().
The shape derivative of \; is therefore given by (ICS)[qu], ®5)12(oD)-

7.3. Effective Medium Theory for Suspensions of Plasmonic
Nanoparticles

In this section we derive effective properties of a system of plasmonic nanopar-
ticles. To begin with, we consider a bounded and simply connected domain 2 € R?
of class C1® for a > 0, filled with a composite material that consists of a matrix
of constant electric permittivity €,, and a set of periodically distributed plasmonic
nanoparticles with (small) period n and electric permittivity e..

Let Y = (—1/2,1/2)? be the unit cell and denote § = 1® for 8 > 0. We set the
(rescaled) periodic function

v =emX(Y\D) +ecx(D),
where D = 0B with B € R? being of class C*® and the volume of B, | B|, is assumed
to be equal to 1. Thus, the electric permittivity of the composite is given by the
periodic function

() =~(2/n),
which has period 7. Now, consider the problem
(7.6) V- -yVu,=0 in Q
with an appropriate boundary condition on 0f2. Then, there exists a homogeneous,
generally anisotropic, permittivity v*, such that the replacement, as n — 0, of the
original equation (7.6]) by
V"Y*VUOZO in Q

is a valid approximation in a certain sense. The coefficient v* is called an effective
permittivity. It represents the overall macroscopic material property of the periodic

composite made of plasmonic nanoparticles embedded in an isotropic matrix.
The (effective) matrix v* = (7;;,)p,q=1,2,3 is defined by [45]
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where u,, for p = 1,2, 3, is the unique solution to the cell problem
V-4Vu,=0 inY,
(7.7) up, —x, periodic (in each direction) with period 1,
Jy up(x)dz = 0.
Using Green’s formula, we can rewrite v* in the following form:
Oy

(7.8) Ypqg = Em /{W uq(z) 5 (x)do(z).

The matrix v* depends on 7 as a parameter and cannot be written explicitly.
Let 8%7ﬁ and (K%,ﬁ)* be the single layer potential and the Neumann-Poincaré
operator, respectively, associated with the periodic Green’s function Gy defined in

[@.115) for d = 3.

From Theorem [2.40] we get

0 SY
Ypg = Em / (yq +C, + 3%,n[¢q](y)) (yp hl gj [d)p](y)) do(y),
oY

where

(7.9) $p(y) = Al = (Kp p)") " [vpl(y) for y in OD,

and p=1,2,3.
Because of the periodicity of SOD7ﬁ[¢p], we get

dSY
(7.10) Ypg = Em (5pq + /{W yq%(y)da(y))-

In view of the periodicity of 31037;1[@7}» the divergence theorem applied on Y\ D and
Lemma [2:39] yields

aS%,jj [qsp] .
/ay Yo, W)= /BD Yatp(y)do(y).

Let
¥yp(y) = ¢p(dy) for y € OB.
Then, by (7.10), we obtain
(7.1) 7" = el + fP),
where f = |D| = 6%(= 1®?) is the volume fraction of D and P = (Ppy)p.g=1.23 is
given by

(7.12) Py = /6 ()i ).

Now we proceed with the computation of P and prove the main result of this
section, which shows the validity of the Maxwell-Garnett theory uniformly with
respect to the frequency under the assumptions that

(7.13) f < dist(A(w), o((K%)*)?/°  and (I — SRy To) ™ = 0(1),

where R;:(w) and Tp are to be defined and dist(\:(w),o((K%)*)) is the distance
between \.(w) and the spectrum of (K%)*.
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THEOREM 7.4. Assume that holds. Then we have

i ( f8/3 )
3 dist(Ae (w), o ((K%)*))2/’

uniformly in w. Here, M = M (A (w), B) is the polarization tensor (2.71) associated
with B and \;(w).

PRroOF. In view of Lemma and (7.9), we can write, for x € 9D,

(@) = (KB fonl(o) - [ ORlz ~y)

op Ov(x)

(7.14) Y =en(I+fMI-M)")+0

bp(y)do(y) = vp(),

which yields, for x € 9B,

Ae(w)T — (K2)") [ty (z) — & /

oB

OR(0(z —y)) _
W@a(@/ﬂ“@) = vp(x).

By virtue of Lemma we get

VR(G(r —y)) = ~5 ( —9) + O@)

uniformly in z,y € dB. Since [, ¢, (y)do(y) = 0, we now have
(B (w) — 8Ty + 55T1)[1/)p](x) = 1p(x),

and so

(7.15) (I = 6°Ry ) To + Ry T ) (2) = Ry, ) (2),

where

Ry @)tpl(@) = (Ae(@) = (K)")[p](x),

Tolvpl(z) = @ /8 _wp(u)do(y),
171\ c¢m= 0By, 1= 98)) = O(1).

Here, H*(0B) is defined by (2.18)) with Q replaced with B. Since (K%)* : H*(0B) —
H*(0B) is a self-adjoint, compact operator (see Theorem , it follows that

(7.16) [(Ae(w)I — (’COB)*)_lH.C(?-l*(aB)»H*(BB)) < dist()\s(w),ca((lCOB)*))

for a constant c.
It is clear that T} is a compact operator. From the fact that the imaginary part
of Ry, (w) is nonzero, it follows that I — 53R;:(W)TO is invertible.
Under the assumption that
(I =R, To) ™ = O(1),
65 < dist(\e(w), o ((K%)%)),
we get from ([7.15)) and ([7.16)

Up(x) = (I =0Ry,To+ 38Ry 1) R[] (),

3p-1 1p—1 8
= (-0 RXE(M)TOY RXE(W)[VP](C”) + O(dist(/\e(w),c((/COB)*)))'
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Therefore, we obtain the estimate for 1,

Yy = O(dist(Ag(w)le((’CoB)*))).

Now, we multiply (7.15) by y, and integrate over 0B. We can derive from the
estimate of 1, that
/ &°
PI—=M)=M+O
(=) =M+ (dist()\g(w),a((ICOB)*))Q)’

and therefore,

P=M(+ gM)‘l +0

55
(dist()\s(w),a((lc%)*)2)
with P being defined by (7.12)). Since f = 63 and

63
M = 0( G o ()

it follows from (7.11]) that the Maxwell-Garnett formula (7.14) holds (uniformly in
the frequency w) under the assumption ([7.13)) on the volume fraction f. a

REMARK 7.5. As a corollary of Theorem we see that in the case when
fM = O(1), which is equivalent to the scale f = O(dist(/\g(w),a((lCoB)*))), the
matriz fM (I — %M)_1 may have a negative-definite symmetric real part. On the
other hand, if dist(Ae(w), o ((K%)*)) = O(f18) for 0 < 8 < 2/3, then the effective
matriz v* may be very large. This provides evidence of the possibility of constructing

negative and high-contrast materials using plasmonic nanoparticles in appropriate
regimes.

7.4. Shift in Plasmonic Resonances Due to the Particle Size

In this section we analyze the shift of the plasmon resonance with changes in
size of the nanoparticle.

Let Mg be defined by with D replaced with B and let 0, j = 1,2, 3, be
given by . For simplicity we assume that Conditions [2.105] and [2.107] hold.

We consider the original system of integral equations ([2.321]) for a given incident
plane wave (E, H"). With the same notation as in Section [2.14} the following result

holds by using Lemmas [2.112] and [2.113]

LEMMA 7.6. Let n be defined by . The system of equations (2.321)) can be
rewritten as follows:

n(v x EY)
7.7 wa@) (") ) = fm, = Mo :
( ) B( )( ‘*”7(¢) 77( —1v x HZ) .
Em — e
where
(7.18)
kam - chc 1
M — My + 2l B2 1eB2 59 ————(6Lp1 + 8 Lp2) + O
Wg(6) = Hm = He m — fhe
B(0) 1 ) 3 ggmMgE — M,
P— (5,63,1 + 6 ,CB,Q)-‘FO((s ) Al —Mp+96 P—
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and the material parameter contrasts A\, and \. are given by

fhe + fm EctEm
7.19 N=———— A==
( ) a 2(U7n - ﬂc) 2(€m - 50)

It is clear that

A — M 0
0 NI - Mp )

Moreover,

Wg(8) =Wg,o + Wp 1 + 6°Wg 2 + O(6%),
in the sense that

[Wg(8) = Wgo — 0Wp1 — 8*°Wg | < C§°

for a constant C' independent of 6. Here [|A| = sup, ; ||A”HH for any

T 3 (div,8B)
operator-valued matrix A with entries A; ;.
We are now interested in finding W5 (8). The following result holds.

LEMMA 7.7. The system of equations (2.321)) is equivalent to

n(v x Ei)(l)

Mm — He
n(lb)g n(v x Y@
n(y) —
2 = Hm — He
(7.20) Wg(9) wn(d) D) n(v/=1v x H)D) 83,
WW(¢)(2) Em — €e¢ )
n(v/—=1v x H)®
Em — e
where
WB(é) = Wpgo+dWp1+ (SZWB)Q + 0(53)
with
Wgo = Aul = Mp O _ ,
' O Al — Mp
1 ~
o —Lp1
I/VB,1 — 1 _ Hm — e ,
Lp1 O
Em — e
1 " ~
Mk, — LB
WB,2 — /ufm lﬂc ~ le ,Ufc~ ,
»CB,Q % 2
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and
v —A 5(K%)*Aop 0
Mer — BB 7
i ( Rp K
MH _ AiéVBB ’ (/‘mMIJCBTQ - /‘CMIJCBC,z)VBB AgévﬂB : (NmMg?z - NCMIE,Q)CJﬂaB
B2 —Agécurlag(um/\/l%”fz — ucM%,Q)VaB —AgécurlaB(umM’B:LQ — ucMIE{Q)curlaB
= _ AghVos - (emMigy —ecMis Vo AghVos - (emMiyy — ecMbs,)eutlop
B2 —A‘écurlaB (5,,1./\/11253”,‘2 - ac./\/lgz)vag —AgécurlaB (5m./\/lg:‘2 - ECM%CQ)CUI"IQB
Cr. A,5Vos  LpsVaos AL EVon 'EB,SCJEI@B
. —AgécurlaBEB’SVg)B —AgécurlaBEB)scurlgB
fors=1,2.
Moreover, the eigenfunctions of Wpo in H(0B)? are given by
v = () im0azeim12s
oy = ( o ) L J=0L2 =123,
Vi

associated to the eigenvalues A\, — Aj; and Ao — \j;, respectively, and generalized
etgenfunctions of order one

Uijsg = < T/J]b&g )»

(@)
Vaise = < V3,9 )

associated to eigenvalues A\, — A3 and A\. — A3, respectively, all of which form a
non-orthogonal basis of H(OB)?. Here, H(OB) is defined by with D replaced
with B.

PROOF. The proof follows directly from Lemmas and [2.106 [

We regard the operator Wg(d) as a perturbation of the operator W o for small
6. Using perturbation theory, we can derive the perturbed eigenvalues and their
associated eigenfunctions in H(0B)2.
We denote by I' = {(k,j,i) : k = 1,2;5 = 1,2,...;i = 1,2,3} the set of indices
for the eigenfunctions of Wg o and by I'y = {(k:,j,3,g) k=1,2,7=1,2,... } the
set of indices for the generalized eigenfunctions. We denote by «, the generalized
eigenfunction index corresponding to eigenfunction index v and vice-versa. We also
denote by

Mo — N, k=1
7.21 = T ’
(7.21) ™ { A — N, k=2

CONDITION 7.8. A\, # A..

In the following we will only consider v € T" for which there is no generalized
eigenfunction index associated. In other words, we only consider v = (k,4,j) € T
such that \;; € o1 U oy (see for the definitons). We call this subset Tyjpy,.
Note that Conditions [2.105] and [7.§] imply that the eigenvalues of Wp o indexed by
v € Iy are simple.

)

)
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THEOREM 7.9. Asd — 0, the perturbed eigenvalues and eigenfunctions indexed
by v € I'sim have the following asymptotic expansions:

(7.22) (0) = 7+ 0T+ 872+ 0(°),
U, (8) = W, +0¥,,+0(6%),
where
_ <W371\1177\117>H(8B)2 -
Tyl = =~ =0,
(Uy, Uy ) H(0B)2
(7.23) T = (Wp 2V, ¥y)rop)> — WB.1Vq1, Va)H(9B)?
. Lo = i )
<\I]7’ \II’Y>H(BB)2
(T’Y*WB,O)\II'y,l = *WB,l\ij'

Here, \T/,y/ € Ker(7y — Wp ) and W is the H(0B)? adjoint of Wg..
Using Lemma and Remark we can solve ¥, ;. Indeed,

—Wp 1V 7\:[/ AW, v, .,
\11771 _ Z a( B,1 %~ ’Y) Y + Z a(_WB,ll:[/fy,\I/—y;)( Vg + 2 )2)

Ty — Ty Ty — Ty (Ty — Ty

~y'er v4€Tg
’
v FEy ~'F#y

+ O‘(_WBJ\IIW\IIW)W’W
By abuse of notation,
04(331,’(/),@) 7:(17%2)’ K/:(jvi)v
7.24 alz,¥,) = J .
(724 e ={ aee) T2l
for

x = ( o > € H(OB)>
T2
with « being introduced in Definition |2.108

Consider now the degenerate case 7 € I'\I'yim =: Tqeg = {y = (k,4,j) € T
st Aj; € o3}. It is clear that, for 7 € TI'qey, the algebraic multiplicity of the
eigenvalue 7., is 2 while the geometric multiplicity is 1. In this case every eigenvalue
7, and associated eigenfunction ¥, will split into two branches, as § goes to zero,
represented by a convergent Puiseux series as

(7'25)—’}’7h(5) = Tyt (_1)h61/27—%1 + (_1)2h62/27-%2 + 0(63/2)7 h=0,1,
U,n(0) = Uy + (=D)"6YV20, 4 (—1)?"6%20, 5, + 0(8%?), h=0,1,
where 7, ; and ¥, ; can be recovered by recurrence formulas; see Section [2.9.6}
Recall that the electric and magnetic parameters, €, and pu., depend on the
frequency of the incident field, w, following a Drude model. Therefore, the eigen-
values of the operator Wg o and the perturbation in the eigenvalues depend on the
frequency as well, that is,
77(67(")) = Tv(w) + 627—%2(0‘)) + 0(53)7 Y € Lsim,
Ton(b,w) = Ty 48V (=) 1 (w) + 62 2(—1)?" 7, o(w) + O(0%?), 7y €Tdeg, h=0,1.
In the sequel, we will omit frequency dependence to simplify the notation. However,

we will keep in mind that all these quantities are frequency dependent.
We first state the following result.
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PROPOSITION 7.10. If w is a quasi-static plasmonic resonance (as stated in
Definition , then |7,| < 1 and is locally minimized for some v € T' with T,

being defined by (7.21]).
Then we recall two different notions of plasmonic resonance [70].

DEFINITION 7.11. (1) We say that w is a plasmonic resonance if |7 ()| <
1 and is locally minimized for some vy € Lim or |7y 1(8)] < 1 and is locally
minimized for some v € I'geg, h =0, 1.

(ii) We say that w is a first-order corrected quasi-static plasmonic resonance
if |7y + 0°7y 2| < 1 and is locally minimized for some y € Tgim or |7 +
§Y2(=1)hr, 1| < 1 and is locally minimized for some v € e, h = 0, 1.
Here, the correction terms 7,2 and 7,1 are defined by and (7.25).

Note that quasi-static resonance is size independent and is therefore a zero-
order approximation of the plasmonic resonance in terms of the particle size while
the first-order corrected quasi-static plasmonic resonance depends on the size of the
nanoparticle.

We are interested in solving equation (7.20))
Wp(0)[¥] = f,
where
n(v x BH)M

Hm —

oo (T
— n — m — Mc
gl B R NE S I
wn m ~ Cc
n(x/—ilv xgHi)(Q)
Em — Ec

OB

for w close to the resonance frequencies, i.e., when 7(J) is very small for some
v's € Tgim or 7y p(0) is very small for some 7’s € T'geg, h = 0,1. In this case,
the major part of the solution would be the contributions of the excited resonance
modes ¥ (8) and ¥, 5(9).

It is important to remark that problem could be ill-posed if either R(e.) < 0
or R(u.) < 0 (the imaginary part being very small), and these are precisely the
cases for which we will find the resonances described above. In fact, what we do
is solve the problem for the cases R(e.) > 0 or R(p.) > 0 and then, analytically
continue the solution to the general case. The resonances are the values of w for
which this analytic continuation ”almost” ceases to be valid.

We introduce the following definition.

DEFINITION 7.12. We call J C T' an index set of resonances if the 7,’s are
close to zero when v € T' and are bounded from below when v € T'°. More precisely,
we choose a threshold number ng > 0 independent of w such that

[7y| >0 >0 for v e JC

From now on, we shall use J as our index set of resonances. For simplicity, we
assume throughout this paper that the following condition holds.
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CONDITION 7.13. We assume that A, # 0, Ac # 0 or equivalently, pic # —fim,
Ec £ —Em-

It follows that the set J is finite.
Consider the space Ey = span{¥,(6), ¥y 1(d); v € J, h =0,1}. Note that, under
Condition [7.13] £ is finite dimensional. Slmllarly, we define & ;. as the spanned by
U, (8), ¥y p ((5), v € J¢ h =0,1 and eventually other vectors to complete the base.
We have H(OB)? = E£; @ Eje.

We define P;(6) and Pj-(d) as the (non-orthogonal) projection into the finite-
dimensional space £; and infinite-dimensional space &je, respectively. It is clear
that, for any f € H(0B)?

f=P;0)f]+ Pse(0)[f].
Moreover, we have an explicit representation for Py(d)

(7.26) PyO)fl= D as(£T0)T0)+ Y as(f, Uy n(8) ¥y n(d).

VEJmFsim YE€JNTgeg
h=0,1

Here, as in Lemma [2.109
(f, 04 (0) om)2

o » = 0 = 3 ) sim
s(f,¥4(0)) (W, (5), 0 (5)>H(aB)2 yeJNT
ol W)= @<<> GZT?W . 7€ NTaeg, h=0,1,

where ., € Ker (7, 4(8) — W5(6)), V.5 € Ker(7y4(8) — Wi(8)) and W (6) is the
H(0B)?-adjoint of Wg(¥).
We are now ready to solve the equation Wg(§)¥ = f. In view of Remark
(7.27)
- [, ¥4(9)) as(f, ¥ -
v=wy' o))=Y, WDONLO, s aslh Bl ) e )11

7 (9) Ty, n (6
yEJNTsim ’Y( YE€JINT geg 7k ( )
h=0,1

The following lemma holds.

LEMMA 7.14. The norm [|W5" (8)Pse(0)|| z(r(om)2, H(oB)2) i uniformly bounded
inw and 9.

Proor. Consider the operator
Wg(8)|je : Pye(0)H(OB)? — Pye(6)H(0B).

We can show that for every w and ¢, dist(o(Wg(d)|sc),0) > &, where o(Wp(0)|-)
is the discrete spectrum of Wg ()| .. Here and throughout the paper, dist denotes
the distance. Then, it follows that

W5 (8)Pre (Ol = W5 (6)]5e Pre (G| S iexp(c NP () < iexp(%)Hfll
Mo 77 Mo

where the notation A < B means that A < CB for some constant C' independent
of A and B. O

Finally, we are ready to state our main result in this section.
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THEOREM 7.15. Let 1 be defined by (7.1]). Under Conditions
and the scattered field B = E — E* due to a single plasmonic particle has the

following representation:

E* = iV x S5 [)(2) + V x V x SEn[g](z) € R3\D,

where
= 7 (Vopd® + curlypp®),
= %n’l (Vopd™W + curlppg®),
e
5 (2) alf, )., + 06 )T+ ()T O
v=| o |- 3 SEETERs 3 sttt on,
(Z(Q) v€JNlsim v YEJ N geg 7,0 7,1
and
aipy = FBmonrm = (18 o (ra £ )
1 = - ’
_ (f,9,) nomy?
Glf) = AR,
a, = <‘Ier7 \II’Y,1>H(8B)2 + <\IJ%17 \IJ’Y>H(BB)2a
az = (Y, Y, 2)m0B) +(Vq2, Ve moB)y + (Va1 Vat) HOB)2-

PROOF. Recall that

_ (/. 0(3)) 5 () s (f, Uy 0O (8) | oo
v= 2 SRR S WE OPe O]

YEJ ML sim YEJNDgeg

h=0,1
By Lemma[7.14] we have W' (6)Ps-(8)[f] = O(1).
If v € J N Tgim, an asymptotic expansion on 4 yields
as(f, ¥y(6))V4(6) = alf, ¥,) ¥, + O(0).

If v € JNT4eg then (¥, \ile(aB)z = 0. Therefore, an asymptotic expansion on ¢
yields

(=)™, 0+) r(om)= ¥y

as(f, ¥y n(0)¥,n(0) = 51724, +
1 ~ ~ a -
aj ((<f, ‘11%1>H(83)2 - <f7 \I/7>H(BB)2 i)wy + <f, ‘I]7>H(E)B)2 \11%1>
+0(5'/?)
with
ar = (U, Uy ) uony + (Uy1, Uy mony2,
az = (U, Uy mony + (U2, ) mony: + (Va1 Uat) Hion)2.

Since 7,1,(8) = 7y + 6Y/2(=1)"7, 1 + O(9), the result follows by adding the terms

as(f, ‘1’7,0(5))‘11%0(5) and as(f, \IJV,I(‘S))\PWJ(‘S)
Ty,0(6) 7y,1(6) '
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The proof is then complete. O

COROLLARY 7.16. Assume the same conditions as in Theorem @ Under the
additional condition that

. 3 .
(7.28) ve%?sim |7y ()] > 67, wegrlwllr“ldeg |7y (8)] > 6,
we have
LU+ 035 U, + v O(6%/?
. Z Oé(f ’Y) ’2Y ( ) + Z Cl(f) Yy C;(f) ;,1 + ( )+O(1)
vE€JNTsim Ty + 0%y 2 YEJNCdeg (E 57%1

COROLLARY 7.17. Assume the same conditions as in Theorem[7.15. Under the
additional condition that

. 2 . 1/2
(7.20) i R0 > 2, min |50 82
we have
USRI [0l¢) v v v v
v= 3 ALBIEOD 5 el o) (Y 2 o)
~€JMTsim T €I deg ™ ™ Ty

PRrROOF. We have

; —1 as(f, Y 0(0)Ws0(0) | as(f, We,1(0) W, 1(0)
lim W5 (0) Popan(w, o (9),0-, o3 [f] = lim ) + e
= WB?})((S)Pspan{\I’w\Ilwg } [f}
a(f’ \PV)\PW \I/fyg ‘II'Y
= R — \I} 3
T’y + a(f’ 'Y;g) T—y + 7_3 )

where v € JNTeq, f € H(OB)? and Pspang is the projection into the linear space
generated by the elements in the set E. (|

REMARK 7.18. Note that for v € J,
T, A~ min {dist()W, a((K%)*) U —0((1603)*)),dist()\s,o((lCOB)*) U —a((ICOB)*))} .

It is clear, from Remark that resonances can occur when exciting the
spectrum of (K%)* or/and that of —(K%)*. We substantiate in the following that
only the spectrum of (K%)* can be excited to create the plasmonic resonances in
the quasi-static regime.

Recall that

n(v x EHM
Hm — e
n(v x El)(2)

f — Hm — He .
n(v/—1v x H)®) ’
oB
Em — Ec X
n(v/—1v x H)®
Em — Ee

and therefore,
n(vx B AGpVap (v x EY)
Hm — He Hm — He

fi:=
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Now, suppose v = (1, 4,1) € J (recall that J is the index set of resonances). Then
Ty = Ay — A1j, where A1 j € o1 = o(—(K%)*)\o((K%)*). From Remark [2.110]

a(f, V) = (Ao fi,ej1)n = alf,¥y) = ﬁ(VaB (v x EY), 1)1+

m C

where ;1 € H§(0B) is a normalized eigenfunction of (K%)*(0B).
A Taylor expansion of E’ gives, for z € 0D,

; o~ (v —2)POPE (2
= 3 B VB

P AT
Thus,
n(v x B')(&) = n(v)(Z) x E'(2) + 0(3),
and
Vo -n(v x E')(&) = —n)(@) V xE(2)+0(5)
0(9).

Therefore, the zeroth-order term of the expansion of Vap - n(v x E) in § is zero.
Hence,

a(f,0,) =0.

In the same way, we have
Ol(f, \II’Y) = 07
a(f,¥,,) = 0

for v = (2,4,1) € J and ~, such that v € J.
As aresult we see that the spectrum of —(K%)* is not excited in the zeroth-order
term. However, we note that o(—(K%)*) can be excited in higher-order terms.
Finally, we sketch a proof of Theorem From , we have

E(2) = pmV X S [g](z) + V X V x SEn (4] (z), zeR*\D,

where ¢ and ¢ are determined by (7.17). Since Wg(d) = Wg,o + O(9), formula
(7.2) follows by using the identities stated in Lemma [2.102

7.4.1. Numerical Examples. Here we present numerical examples to demon-
strate the shift of the plasmonic resonance. The first example involves a spherical
nanoparticle of radius R with permittivity e.. For the permittivity €., we use
Drude’s model as follows: €.(w) = 1 — w2 /(w(w + V—17)) where w, = 5.8(eV)
and v = 0.2. We compute the extinction cross-section Q¢** as a function of the
operating wavelength A\ = 2w¢/w. Due to spherical symmetry, it can be shown that
Q°*! has the following simple representation

2 V—1km

WTE' WTJV]
(ka)2 — ( n + n )}7

where WI'F and WM are the scattering coefficients of a spherical structure. We
have already seen in section how to compute W.'F and W™ using Code Scat-
tering Coefficients for Maxwell’s Equations . We use Code Plasmonic Resonance
Shift| to repeatedly plot Q¢** while changing the radius R from 5 nm to 30 nm in
Figure The shift of the plasmonic resonance is clearly shown.


http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial6/6.1 Scattering Coefficients for Maxwell's Equations.zip
http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial6/6.1 Scattering Coefficients for Maxwell's Equations.zip
http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial9/9.1 Plasmonic Resonance Shift.zip
http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial9/9.1 Plasmonic Resonance Shift.zip
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We also present numerical example of a spherical shell with outer radius R and
inner radius R/2. We also assume the outer sphere has the permittivity €. and the
inner sphere has the same permittivity as background. In Figure we plot Q%
for the shell for various values of radius R. Again, the shift of plasmon resonance
is clearly shown.

7.5. Plasmonic Resonance for a System of Spheres

Confining light at the nanoscale is challenging due to the diffraction limit.
Strongly localized surface plasmon modes in singular metallic structures, such as
sharp tips and two nearly touching surfaces, offer a promising route to overcome
this difficulty. Recently, transformation optics has been applied to analyze various
structural singularities and then provides novel physical insights for a broadband
nanofocusing of light.

Among three-dimensional singular structures, the system of nearly touching
spheres is of fundamental importance. In the narrow gap regions, a large field en-
hancement occurs. The significant spectral shift of resonance mode also occurs due
to the plasmon hybridization. A cluster of plasmonic spheres such as a heptamer
and a octamer can support collective resonance modes such as Fano resonances. For
theoretical investigations of these phenomena, the numerical computation plays a
important role. Unfortunately, in the nearly touching case, it is quite challeng-
ing to compute the field distribution in the gap accurately. In fact, the required
computational cost dramatically increases as the spheres get closer. The multipole
expansion method requires a large number of spherical harmonics and the finite
element method (or boundary element method) requires very fine mesh in the gap.
Moreover, the linear systems to be solved are ill-conditioned. So conventional nu-
merical methods are time consuming or inaccurate for this extreme case.

Here we present a hybrid numerical scheme that overcomes difficulty. The
key idea of our hybrid scheme is to clarify the connection between Transformation
Optics and the image charge method. The developed code is Code Plasmonic
Resonance for Nearly Touching Spheres.

7.5.1. Two Metallic Spheres. We consider the two metallic spheres which
are shown in Figure The permittivity € of each individual sphere is modeled
ase=1— wg/(w(w +1/—17)) where w is the operating frequency, w, is the plasma
frequency and ~ is the damping parameter. We fit Palik’s data [390] for silver
by adding a few Lorentz terms. We shall assume that the plasmonic spheres are
small compared to optical wavelengths so that the quasi-static approximation can
be adopted.

7.5.2. Transformation Optics. Let us briefly review the transformation op-
tics approach by Pendry et al. [397]. To transform two spheres into a concentric
shell, Pendry et al. introduced the inversion transformation ® defined as

(7.30) r' = ®(r) = R%(r — Ro)/|r — Ro|* + R,

where Rg, Ry and Ry are given parameters. This inversion mapping induces the
inhomogeneous permittivity € (r') = R%|r’ — R} |e in the transformed space. Then,
by taking advantage of the symmetry of the shell, the electric potential can be
represented in terms of the following basis functions:

(7.31) mo(r) = [f = Ry|()FHED Y9, )


http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial9/9.2 Plasmonic Resonance for Nearly Touching Spheres.zip
http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial9/9.2 Plasmonic Resonance for Nearly Touching Spheres.zip
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FiGure 7.1. Extinction cross-section Q%! for a spherical

nanoparticle and a shell of radius R. We change the radius R
from 5(nm) to 30(nm). The inner radius of the shell is set to be
R/2. The shift of plasmon resonance is clearly shown.
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z
)\ ¢ = B3l — Rije
X Yy €0 = 1

FIGURE 7.2. Two spheres and the transformation optics inversion
mapping. (a) Two identical spheres, each of radius R and per-
mittivity €, are separated by a distance §. The distance between
their centers is 2d. The background permittivity is g = 1. (b)
The transformation optics inversion mapping transforms the lower
sphere B_ (or the upper sphere By ) into a sphere of radius R’ (or
a hollow sphere of radius R”) centered at the origin, respectively.

*S-——@

B. B+

FiGURE 7.3. Image charges for two spheres. Red and green
circles represent image charges placed along the z-axis.

where, {Y,;"} are the spherical harmonics. We will call M}', a transformation
optics basis.

Let us assume that two plasmonic spheres By U B_ are placed in a uniform
incident field (0,0, EgR{eV~1“"}). Then the (quasi-static) electrical potential V'
outside the two spheres can be represented in the following form:

(7.32) V(r) = —Epz + i Ap (M), (r) =M _(r))

n=0

Here, the coefficients A,, can be determined by solving some tridiagonal system.
Unfortunately, it cannot be solved analytically.
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7.5.3. Method of Image Charges. Now we discuss the method of images.
Since the imaging rule for a pair of cylinders is simple, an exact image series solu-
tion and its properties can be easily derived. However, for two dielectric spheres, an
exact solution cannot be obtained due to the appearance of a continuous line image
source. Poladian observed in [401] that the continuous source can be well approxi-
mated by a point charge and then derived an approximate but analytic image series
solution. Let us briefly review Poladian’s solution for two dielectric spheres. Let
7 = (e—1)/(e+1), s = cosh ' (d/R) and o = Rsinhs. Suppose that two point
charges of strength +1 are located at (0,0, +z29) € By, respectively. By Poladian’s
imaging rule, they produce an infinite series of image charges of strength +uy at
(0,0,+2;) for k=0,1,2,..., where 2z, and uy are given by

i sinh(s+to)
sinh(ks + s + o)

Here, the parameter tq is such that zp = acoth(s + ty). See Figure The
potential U(r) generated by all the above image charges is given by

(7.33) z = acoth(ks +s+1ty), up=r

(7.34) U(r) =Y up(D(r —z) — T(r +z1))
k=0

where z, = (0,0, ;) and I'(r) = 1/(4x]r]).

Let us consider the potential V' outside the two spheres when a uniform incident
field (0,0, EgR{eV~1"}) is applied. Let po be the induced polarizability when a sin-
gle sphere is subjected to the uniform incident field, that is, pg = EqR327/(3 — 7).
Using the potential U(r), we can derive an approximate solution for V(r). For
|7| =~ 1, we have
9(U(r))

820 zo=d + QU(r)|ZO:d7
where @ is a constant chosen so that the right-hand side in equation has no
net flux on the surface of each sphere. The accuracy of the approximate formula,
equation , improves as |e| increases and it becomes exact when |e|] = oo.
Moreover, its accuracy is pretty good even if the value of |¢| is moderate.

We now explain the difficulty involved in applying the the image series solution,
equation ([7.35)), to the case of plasmonic spheres. In view of the expressions for uy,
equation , we can see that equation is not convergent when |7| > e®.
For plasmonic materials such as gold and silver, the real part of the permittivity
€ is negative over the optical frequencies and this means that the corresponding
parameter |7| can attain any value in the interval (e®, 00). Moreover, it turns out
that all the plasmonic resonant values for 7 are contained in the set {7 € C: |7| >
e*}. So, equation cannot describe the plasmonic interaction between the
spheres due to the non-convergence.

(7.35) V(r) = —FEgz + 47pg

7.5.4. Analytical Solution for Two Plasmonic Spheres. Here we present
an analytic approximate solution for two plasmonic spheres in a uniform incident
field (0,0, EgR{eY~1%*}). More importantly, we shall see that our analytical ap-
proximation completely captures the singular behavior of the exact solution. This
feature is essential in developing our hybrid numerical scheme.

The solution which is valid for two plasmonic spheres can be derived by es-
tablishing the explicit connection between transformation optics and the method
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FIcURE 7.4. Exact solution vs Analytic approximation. a,
Field enhancement plot as a function of frequency w for various
separation distances d. The solid lines represent the approximate
analytical solution and the dashed lines represent the exact solu-
tion. T'wo identical silver spheres of radius 30 nm are considered.
b, Same as a but for the absorption cross section.

of image charges. We can convert the image series into a transformation optics-
type solution by using the explicit connection formula. The result is shown in the
following theorem.

THEOREM 7.19. If|7| & 1, the following approzimation for the electric potential
V(r) holds: forr € R®\ (By UB_),

(7.36) V(r) & —Eoz + Y A (M0 () = MS_(x)
n=0

where the coefficient Zn s given by
2ra 2n+1—1p

(7.37) An = Eog 0 Canims —
. = 2n+1
Yo = Z 2n+1 /Z e(2n+1)s _
n*O

As expected, the above approximate expression is valid even if || > e®. There-
fore, it can furnish useful information about the plasmonic interaction between the
two spheres. As a first demonstration, let us investigate the (approximate) reso-
nance condition, that is, the condition for 7 at which the coefficients gn diverge.
One might conclude that the resonance condition is given by 7 = e(??*+1s How-
ever, one can see that A, has a removable singularity at each 7 = 2"tV In fact,
the (approximate) resonance condition turns out to be

> 1
(7.38) > s =0
n=0

In other Words the plasmonic resonance happens when 7 is one of the zeros of
equation (7.38). It turns out that the zeros {7,}22, lie on the positive real axis
and satlsfy, for n=20,1,2,.

(7.39) e<2”+1>5 < Tp < (23,
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The above estimate helps us understand the asymptotic behavior of the resonance
when two spheres get closer. As the separation distance ¢ goes to zero, the param-
eter s also goes to zero (in fact, s = O(6/?)). Then, in view of equation ,
7, will converge to 1 and the corresponding permittivity €, goes to infinity. This
means that a red-shift of the (bright) resonance modes occurs. Since the approxi-
mate analytical formula for V' becomes more accurate as |e| increases, we can expect
that accuracy improves as the separation distance goes to zero. It also indicates
that our formula captures the singular nature of the field distribution completely.
Furthermore, the difference between 7,, and 7,41 decreases, which means that the
spectrum becomes almost continuous.

We now derive approximate formulas for the field at the gap and for the ab-
sorption cross section. From Theorem [7.19] we obtain the following:

87 [w= (2n+1)2
E(0,0,0) ~ Ey — E03 — [Z 6((2n+1)s )_ T(—1)"

(7.40) 00 n=0

2n+1 "
_’YOZ (2n+1)5 _ (_1) :|

In the quasi-static approximation, the absorption cross section o, is defined
by 0, = wS{p}, where p is the polarizability of the system of two spheres. From
Theorem [7.19] o, is approximated as follows:

870 [ o= (2n + 1)?
O—QNWEO3—T|:Z€(2”’+1)S—T

= 2n+1
- — (2n+1)5 — T Z e(2n+1

We compare the above approximate formulas Wlth the exact ones. Figure [7.4]
represents respectively the field enhancement and the absorption cross section o, as
functions of the frequency w for various distances ranging from 0.001 nm to 10 nm.
The strong accuracy of our approximate formulas over broad ranges of frequencies
and gap distances is clearly shown. As mentioned previously, the accuracy improves
as the spheres get closer. It is also worth highlighting the red-shift of the plasmonic
resonance modes as the separation distance § goes to zero.

(7.41)

7.5.5. Hybrid Numerical Scheme for a Many-Spheres System. Now
we consider a system involving an arbitrary number of plasmonic spheres. If all the
spheres are well separated, then the multipole expansion method is efficient and
accurate for computing the field distribution. However, when the spheres are close
to each other, the problem becomes very challenging since the charge densities on
each sphere are nearly singular. To overcome this difficulty, Cheng and Greengard
[171], 173] developed a hybrid numerical scheme combining the multipole expansion
method and the method of images.

Let us briefly explain the main idea of Cheng and Greengard’s method. In
the standard multipole expansion method, the potential is represented as a sum of
general multipole sources Y, (r) = Y™(0,$)/r'*! located at the center of each of
the spheres. Suppose that a pair of spheres is close to touching. For convenience, let
us identify the pair as B; UB_. A multipole source ), located at the center of B
generates an infinite sequence of image multipole sources by Poladian’s imaging rule.
Let us denote the resulting image multipole potential by U~ - We also define U,

m’
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FIGURE 7.5. Multipole expansion method versus Hybrid scheme.
a) d) Two examples of three spheres configuration. (b) and (c)
The field enhancement at point A as a function of frequency for
the configuration (a) using the multipole expansion method and
the hybrid method, respectively. The parameters are given as R =
30 nm, § = 0.25 nm and S = 80°. The uniform incident field
(0,0, R{eY~1“"}) is applied. (e) (f) Same as (b) and (c) but for
the configuration (d).

in a similar way. Roughly speaking, Cheng and Greengard modified the multipole
expansion method by replacing a multipole source Y}, with its corresponding image
multipole series Uli.

Since the image series U lfn captures the close-to-touching interactions analyti-
cally, their scheme is very efficient and highly accurate even if the distance between
the spheres is extremely small. However, the image multipole series Uljfn are not
convergent for |7| > e®. Hence it cannot be applied to cluster of plasmonic spheres.
Therefore, in order to extend Cheng and Greengard’s method to the plasmonic case,
it is essential to establish an explicit connection between the image multipole series
Ufn and transformation optics. We develop a hybrid numerical scheme valid for
plasmonics spheres by replacing the image multipole series with its transformation
optics version.

Next, we present numerical examples to illustrate the hybrid method. We
consider two examples of the three-spheres configuration. We provide a comparison
between multipole expansion method and the hybrid method by plotting the field
enhancement at the gap center A. For the numerical implementation, only a finite
number of the multipoles ), or hybrid multipoles Uljfn should be used. Let L
be the truncation number for the order I. In Figures b) and e), the field
enhancement is computed using the standard multipole expansion method. The
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computations give inaccurate results even if we include a large number of multipole
sources with L = 50. On the contrary, the hybrid method gives pretty accurate
results even for small values of L such as L = 2 and 5 (Figures c) and
f)). Furthermore, 99% accuracy can be achieved using only L = 20. For each
hybrid multipole U lj;@, the transformation optics harmonics are included up to order
n = 300 to ensure convergence and we note that the multipole can be evaluated
very efficiently.

To achieve 99.9% accuracy at the first resonant peak, it is necessary to set
L = 150 in the multipole expansion method which means a 68,400 x 68,400 linear
system needs to be solved. However, the same accuracy can be achieved with
only L = 23 in the hybrid method. The corresponding linear system has size
1,725 x 1,725 and it can be solved 2,000 times faster than the multipole expansion
method.

7.6. Concluding Remarks

In this chapter we have analyzed plasmonic resonances for nanoparticles. We
have estimated the plasmon resonance shift due to changes in size and shape of the
nanoparticles. We have derived effective electromagnetic parameters of a composite
material in which plasmonic nanoparticles are embedded. We have shown that by
homogenizing plasmonic nanoparticles one can obtain high-contrast or negative
material parameters, depending on how the frequencies used correspond to the
plasmonic resonant frequency. These results will play a key role in later chapters in
the analysis of super-resolution imaging mechanisms and sub-wavelength bandgap
crystals.






CHAPTER 8

Imaging of Small Particles

8.1. Introduction

In this chapter we consider, in the presence of noise, the detection and localiza-
tion of small particles from multi-static measurements. Multistatic imaging usually
involves two steps. The first consists in recording the waves generated by the par-
ticles on an array of receivers. The second step consists in processing the recorded
data in order to estimate some relevant features of the particles. We apply the
asymptotic formulas derived in Theorems [2.88] [2.122] and [2.149] for the purpose of
identifying the locations and certain properties of small particles. We introduce di-
rect (non-iterative) reconstruction algorithms that take advantage of the smallness
of the particles, in particular, the MUltiple Signal Classification algorithm (MU-
SIC), reverse-time migration, and Kirchhoff migration. We analyze their resolution
and stability with respect to noise in the measurements. Resolution analysis is to
estimate the size of the finest detail that can be reconstructed from the data while
stability analysis is to quantify the localization error in the presence of noise. We
refer the reader to [37] for more details on these direct imaging algorithms.

Taking into account the sparsity of the problem of imaging small particles, we
show that it can be recast to a joint sparse recovery problem and outline the algo-
rithm proposed in [314]. In [168], other /; minimization-based imaging methods
are designed for locating small particles. In particular, a hybrid approach combining
the use of singular value decomposition with /; norm minimization is introduced.

8.2. Scalar Wave Imaging of Small Particles

8.2.1. MUSIC-type Method. Let By := {|z| < R}. Let D be a small
particle with location at z € Bgr and electromagnetic parameters ¢, and p.. Let
x4 = 1,..., N be equi-distributed points along the boundary 0Bg for N > 1.
The array of N elements {z1,...,2x} is used to detect the particle. The array of
elements {z1,...,2N} is operating both in transmission and in reception. Let uj

be the scattered wave by D corresponding to the incident wave I'y, (z — z;). From
Theorem 2.88] it follows that

uf(x) = 5¢ (szkm (z —x; )MV, Ty, (x—2) + kfn(;—c —1)|B|Tk,, (2 — )Tk, (z — z)>
—|—O((5d+1)7

where M is the polarization tensor defined in (2.71)) with A\ given by (2.264).
Suppose for the sake of simplicity that D is a disk. Define the N x N data
matrix by

(8.1) A¥ = (uj(xl))”,
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and introduce the N-dimensional vector fields g\)(z%), for 2% € By and j =
.,d+1, by
(8.2)
: 1 t
g9 (z%) = <ej~Vszm (2%—21),...,¢;-V.T, (z—xN)> ,

VEN ey - VT, (25 — )2
forj=1,...,d, and

(8 3) g(d+1)

\/Zz NORERT (ka(zsxl),...,ka(szN)>t,

where {e1,...,eq} is an orthonormal basis of R9.
Let g(2%) be the N x d matrix whose columns are ¢(V) (2%), ..., (¥ (2%). Then,

from (2.82), (8.1) can be written as

+ —_—t
A9~ 7,9(2)g(2) + 29"V (2)gW D (2)

where
o N
T -:2|D| o QO Valk, (e =),
Hm i=1
N
= [D|k3, (*c — DO Th, (2 —2)).

i=1
Let P be the orthogonal projection onto the range of A“. The MUSIC-type imaging
functional is defined by

d+1
+ /

(34) o) i= (D T = PN o)

This functional has large peaks only at the locations of the particles [37].

8.2.2. Reverse-Time Migration and Kirchhoff Imaging. A backpropagation-
type imaging functional at a single frequency w for the particle D is given for
2% € Bg by

d+1
(8.5) Tep(2%,w Zu ;)@ (25) - g (2%,

where g\) are defined by (8.2)) and .
For sufficiently large N we have

N

1 N

N DT (w5 = 2500, (2 = 25) ~ ST, (2 = 25),
j=1

and

N
1 o 2—25 -5
o S VLT ( — 2%) - VT (2 = #5) ~ ST, (2 = =) ()"

|z — 25| Mz — 29|

where A ~ B means A ~ CB for some constant C'.
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Therefore,

sinc(ky,|z — 2°|) ford =3,

Tpp(2°,w) ~
Bp (27, w) {Jo(km|zzs|) for d = 2,

where sinc(s) = sin(s)/s is the sinc function and Jy is the Bessel function of the
first kind and of order zero.

These formulas show that the resolution of the imaging functional is the stan-
dard diffraction limit. It is of the order of half the wavelength 27 /k,,.

Note that Zgp uses only the diagonal terms of the response matrix A%, defined
by . Using the whole matrix, we arrive at the Kirchhoff migration functional:

d+1
(8.6) Tim (25, w) = ZQ(T(ZS) : Awg(j)(zs) _

j=1
REMARK 8.1. Suppose for the sake of simplicity that pe. = pim. In this case the
response matrix is
A% = 7.t (2)g D ()

and we can prove that Tyy is a nonlinear function of Ty [40]. In fact, we have

IKM(ZS,w) =T <1 — Il\_,[%(zs,w)) .

It is worth pointing out that this transformation improves neither the stability nor
the resolution.

Moreover, in the presence of additive measurement noise with variance k2,0
the response matrixz can be written as

2
noise’

—_—
Av — Teg(d+1)(z)g(d+1)(z) + Tnoisekm W,

where W is a complex symmetric Gaussian matriz with mean zero and variance 1.
Let E and Var denote the mean and the variance, respectively. According to
[40], the Signal-to-Noise Ratio (SNR) of the imaging functional Iy, defined by

IR (T = G gy

is then equal to
-
8.7 SNR(Z; = £
( ) ( KM) kmanoise
For the MUSIC algorithm, the peak of Iyy is affected by measurement noise.
We have

IMU(Z,W) _ le%ilse Zf Te 2> Onoises
1 Zf |TE| < kmanoise .

REMARK 8.2. Consider m closely spaced particles Ul (0B, + z) and let the
magnetic permeability and electric permittivity of the particle 0Bs + z, for s =
1,...,m, be given by ;L((:S) and 523), In view of Theorem 2.9&, only the position z,

()
the overall polarization tensor M defined by (2.27¢), and >, ((3= —1)|Bs|) can
be reconstructed from measured far-field data.
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8.2.3. Joint Sparse Recovery. In this subsection we show that the problem
of imaging small particles can be recast to a joint sparse recovery problem. The
following algorithm was proposed in [314].
Let us first recall the Lippmann-Schwinger representation of u;. We have
(8.8)
60 = [ (om0 T ) V) U, (-5 0) ) i x € R,

l’LC Mm m

Then we approximate Vu; and u] in the search domain OF by either piecewise

J
constant functions or splines as

ZH&” UORT
Vui(y) = :

L d
21:1 0‘1(7j)¢(d) (y7 yl)

and
L

s d+1
Uj (y) = Z al(,j+ )¢(d+1) (y7 yl)7
1=1
where {y,}£ ,, for some L € N, are finite sampling points of 2 and & (y, y1) is
the basis function of the nth coordinate with n € {1,...,d + 1}.
With these definitions at hand, we obtain from (8.8)) the following matrix equa-
tion:

(g
(89) AY = [S(l)’ o S(d-ﬁ-l)} : ,
(al(t?q))lg
where A% is the data matrix and S = [S™), ... S(@*+D] is the sensing matrix with
1 1
(8™ = (o = =) [ (T, (= 9) - 2)o™ (o)
He  Hm Jos

forn=1,...,d, and
Ec
(SEH); s = k2 (? - 1)/9 Ty, (z; — y)o"“* (y, 1) dy.
1
(al(,j))lJ
Here, (ej,...,eq) is an orthonormal basis of RY, Let X = . The

(Oéz(dﬂ))l,j

solution X to has a pairwise joint sparsity meaning that (ozl(lj)) .,(al(fif 1))
are nonzero at the rows corresponding to the particle’s location. Based on ,
we can formulate in the presence of measurement noise the following joint sparse
recovery problem:

ng}n | X1l subject to ||A¥ — SX||% < n,
where || X||o denotes the number of rows that have nonzero elements in the matrix

X, n is a small (regularization) parameter, and || || denotes the Frobenius norm.
We refer to [314] for an implementation of this algorithm.
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8.3. Electromagnetic Imaging

Let Bg := {|z| < R}. With the notation of Subsection we denote by D
a small elastic particle (with location at z € B and electromagnetic parameters &,
and ;). Let 2;,4 = 1,..., N be equi-distributed points along the boundary dBp, for
N > 1. The array of N elements {x1,...,2n} is used to detect the particle. Let
01,...,0y be the corresponding unit directions of the incident fields/observation
directions. For the sake of simplicity, we suppose that D is a ball and p. = p,.
We choose the incident electric field to be such that

(8.10) E'(z) = Gy, (v — 2;)0;, xR,

where Gy, (z—z) is the Dyadic Green (matrix valued) function for the full Maxwell
equations defined by (2.364). Let E? denote the solution to (2.317) corresponding

to the incident field E* given by (8.10).
The asymptotic expansion ([2.122)) yields

s _ 2 €m —Ec
(8.11) Ej(z) = 3kmm|D|ka (z — 2)Gg,, (2 — 7;)0,
+0(8%).

Here we have used the explicit formula (2.84]) of the polarization tensor for a ball
in three dimensions.
The measured data is the N x N matrix given by

2]
Introduce the N-dimensional vector fields g(j)(zs)7 for 2° € Br and j = 1,2, 3, by
(8.13)

gV (%) = —
\/Zi:1 lej - G, (25 — 28]

With this at hand, the MUSIC, reverse-time migration, Kirchhoff, and joint
sparse recovery algorithms described in the previous subsection can be easily ex-
tended to the electromagnetic case [43]. The performance of reverse-time migration
and Kirchhoff algorithms in the presence of measurement noise is investigated in
[136].

1

t
(ej-ka (25—1'1)017 e ,(:’j-ka (ZS—Z‘N)GN) .

8.4. Elasticity Imaging

8.4.1. MUSIC-type Method. Let d = 2 and let Bg := {|z| < R}. Let D
be a small elastic particle (with location at z € Br and Lamé parameters X and ).
Let z;,7=1,..., N be equi-distributed points along the boundary dBg for N > 1.
The array of N elements {z1,...,zy} is used to detect the particle. Let 01,...,0x
be the corresponding unit directions of incident fields/observation directions. The
array of elements {z1,...,zy} is operating both in transmission and in reception.
For the sake of simplicity, we take d = 2. We choose the incident displacement field
to be such that

(8.14) ) () =T(z,2;)0;, x¢cR?

and denote by ugj ) the solution to (2.513)) corresponding to the incident field u((]j ),
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From the asymptotic expansion (2.520)), we have

(uy i) () = —o° (Vzr%x, 2) - MV (T(z,2;)6;)
(8.15)
+0%(p ﬁ)|B|r°J<x7z>rw<z,xj>0j) +0(8%).

The measured data is the N x N matrix given by

(8.16) AY = ((ugﬂ —u) () - 0,»)
0,J
For any point € R2, let us introduce the N x 2 matrix of the incident field
emitted by the array of N transmitters G(z,w), which will be called the Green
matrix, and the IV x 3 matrix of the corresponding independent components of the
stress tensors S(x,w), which will be called the stress matrix:

(8.17) G(z,w) = (T¥(2,21)01,...,T%(z,2n)0N)"
(8.18) S(z,w) = (s1(x),...,sn(x))",
where

s;(x) = [0 (2), 0% (2),0) (2))', oW (z) = CV*(T¥(x,x,)8)),

where C is the elasticity tensor defined by (2.371)).
One can see from (8.15) and (8.16) that the data matrix A% is factorized as
follows:

(8.19) AY = —§°H(z,w) D(w) H(z,w),
where
(8.20) H(z,w) = [S(z,w), G(z,w)]
and D(w) is a symmetric 5 x 5 matrix given by

L[M] 0
(8.21) D(w) = ( 0 wp- f))|B|I)

for some linear operator L.

Consequently, the data matrix A% is the product of three matrices H!(z,w),
D(w) and H(z,w). The physical meaning of the above factorization is the following:
the matrix H!(z,w) is the propagation matrix from the transmitter points toward
the particle located at the point z, the matrix D(w) is the scattering matrix and
H(z,w) is the propagation matrix from the particle toward the receiver points.

Recall that MUSIC is essentially based on characterizing the range of the data
matrix A%, which is the so-called signal space, forming projections onto its null
(noise) spaces, and computing its singular value decomposition.

From the factorization of A“ and the fact that the scattering matrix D
is nonsingular (so, it has rank 5), the standard argument from linear algebra yields
that, if N > 5 and if the propagation matrix H(z,w) has maximal rank 5 then the
ranges Range(H(z,w)) and Range(A) coincide.

The following is a MUSIC characterization of the location of the elastic particle
and is valid if N is sufficiently large.

PROPOSITION 8.3. Suppose that N > 5. Let a € C°\ {0}, then
H(z)a € Range(A¥) if and only if 2% =2z
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In other words, any linear combination of the column vectors of the propagation
matrix H(z%,w) defined by belongs to the range of A“ (signal space) if and
only if the points z° and z coincide.

If the dimension of the signal space, s (< 5), is known or is estimated from the
singular value decomposition of A%, defined by A“ = Vﬁﬁt, then the MUSIC
algorithm applies. Furthermore, if v; denote the column vectors of the matrix V
then for any vector a € C° \ {0} and for any space point z° within the search
domain, a map of the estimator Zyy (2, w) defined as the inverse of the Euclidean
distance from the vector H(z®,w)a to the signal space by

N

(8.22) Tau (25, w) = ( S o H(zs,w)a|2)

1=s+1

—1/2

peaks (to infinity, in theory) at the center z of the particle. The visual aspect
of the peak of Zyy at z depends upon the choice of the vector a. A common
choice which means that we are working with all the significant singular vectors
isa = (1,1,...,1)t. However, we emphasize the fact that a choice of the vector
a in with dimension (number of nonzero components) much lower than 5
still permits one to image the elastic particle with our MUSIC-type algorithm. See
the numerical results below. It is worth mentioning that the estimator Zyy (2%, w)
is obtained via the projection of the linear combination of the column vectors of
the Green matrix G(z°) onto the noise subspace of the A“ for a signal space of
dimension [ if the dimension of a is .

Let us also point out here that the function Ty (2°,w) does not contain any
information about the shape and the orientation of the particle. Yet, if the position
of the particle is found (approximately at least) via observation of the map of
Tavu(2°,w), then one could attempt, using the decomposition (8.19)), to retrieve
the elastic moment tensor of the particle (which is of order §2).

Finally, it is worth emphasizing that in dimension 3, the matrix D is 9 x 9 and
is of rank 9. For locating the particle, the number N then has to be larger than
9. We also mention that the MUSIC algorithm developed here applies to the crack
location problem in the time-harmonic regime.

8.4.2. Reverse-Time Migration and Kirchhoff Imaging. Suppose for
simplicity that a small elastic particle (with location at z € Bg) has only a density
contrast and set 8; = 0 for all j. Formula (8.15)) simplifies to

(uf —uf) (@) = —8%2(p — p)| BT (z, 2)T* (2, 2,)0 + O(5?).
Thus, for a search point z° € Bp, it follows by using (2.475|) that

N
1 - . .
S TECS w) () - uf) (@)
i=1
62 W/ LS w
= Zw(p— PIBISTS(S, 2)T (22,0,

«
We introduce the reverse-time migration imaging functional Zgy o (2%, w) for a = p
or s given by
N

N
1 _ ) )
(8.23) 2 Z 2(25,2,)0 - S T9(z5 )Y —ul)(z:).
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(a) p (b) e (¢) MUSIC reconstruction

FI1cURE 8.1. From left to right: The magnetic particle with coef-
ficient p, the electrical particle with coefficient e, and the recon-
structed fields using MUSIC algorithm.

IRM,Q(,ZS ,w) consists in backpropagating with the a-Green function the data set

{(u((;j — ))(331)} both from the source point z; and the receiver point z;.

Using ([2.475|) and the reciprocity property (2.463) we obtain that

62
Trara(+%,0) = =55 (0 = P)IBIISTE(:5, 2)6
«
The imaging functional Zr o (2°,w) attains then its maximum (if p < p) or mini-
mum (if p > p) at 2° = z.
The imaging functional Zru,q (2, w) can be simplified as follows to yield the
so-called Kirchhoff migration imaging functional T o (2, w) given by

N
1 . )
(8.24) o Z o~V =Tra(lz;—2%+|25—zil) g | (u((sj) _ ué]))(xi).
ij=1
The function Zkwm,q also attains its maximum at 25 = z. In this simplified version,
backpropagation is approximated by travel time migration.

REMARK 8.4. The joint sparse recovery framework in Subsection [8.2.5 was
extended to allow for the accurate reconstruction of elastic particles in [457].

8.5. Numerical Illustrations

In this section we present a numerical example for direct imaging of small
particles with MUSIC. We use Code Direct Imaging With MUSICL We consider two
particles: one magnetic and the second dielectric, as shown in Figures a) and
b). We give in Figure ¢) a map of Tyy(2°,w) obtained via the projection
of the linear combination of the matrix g(2°) onto the noise space of A“.

8.6. Concluding Remarks

In this chapter we have introduced direct algorithms for small particle detec-
tion. We have seen that the MUSIC algorithm is based on characterizing the range
of the data while reverse-time migration and Kirchhoff imaging are based on ex-
tracting phase information from the data in order to locate the particles. Based


http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial1/5.2 Direct Imaging With MUSIC.zip
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on Lippmann-Schwinger integral formulations, we have also provided a joint sparse
recovery framework for small particles.

As a direct consequence of Helmholtz-Kirchhoff identities, we have also shown
that the resolution limit, defined as the minimum distance required between two
small particles to distinguish between them, is of the order of half the the operating
wavelength. The purpose of the next chapter is to investigate super-resolution
imaging mechanisms.






CHAPTER 9

Super-Resolution Imaging

9.1. Introduction

Super-resolution has many applications in nanophotonics. It is being intensively
investigated as a technique that can potentially focus electromagnetic radiation in
a region of the order of a few nanometers beyond the diffraction limit of light and
thereby cause an extraordinary enhancement of the electromagnetic fields [272].

As shown in the previous chapter, the resolution in the homogeneous space for
far-field imaging systems is limited by half the operating wavelength, which is a
direct consequence of Helmholtz-Kirchhoff identities. In order to differentiate point
sources or small particles which are located less than half the wavelength apart,
super-resolution techniques have to be used.

While many techniques exist in practice, here we are only interested in the one
using resonant media. The resolution enhancement in resonant media has been
demonstrated in various recent experiments [91) [316} [317), [318], 319]. The basic
idea is the following: suppose that we have sources or particles that are placed inside
a domain of typical size of order of the wavelength of the wave the sources can emit,
and we want to differentiate them by making measurements in the far-field. While
this is impossible in the homogeneous space, it is possible if the medium around
these sources or particles is changed so that the point spread function, which is the
imaginary part of the Green function in the new medium, displays a much sharper
peak than the homogeneous one and thus can resolve sub-wavelength details. The
key issue in such an approach is to design the surrounding medium so that the
corresponding Green function has the tailored property.

9.2. Super-Resolution Imaging in High-Contrast Media

In this section, we present the mathematical theory for realizing this approach
by using high-contrast media. We show that in high-contrast media, the super-
resolution is due to the propagating sub-wavelength resonant modes excited in
the media and is limited by the finest structure in these modes. For the sake of
simplicity, we consider inverse source problems. The problem of imaging small
particles can be handled by a similar approach.

9.2.1. Inverse Source Problems. We consider the following inverse source
problem in a general medium characterized by refractive index n(z):
Au + E*n(x)u = f,
u satisfies the Sommerfeld radiation condition.

We assume that n — 1 is compactly supported in a bounded domain D € R¢
for d = 2,3, and is assumed to be known. We are interested in imaging f, which
can be either a function in L?(D) or consists of a finite number of point sources

319
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supported in D, from the scattered field u in the far-field. Denote by ®(z,y) the
corresponding Green function for the media, that is, the solution to

A:L(bk(xay) + an(aj)@k(w,y) = 51/(33)’
®,, satisfies the Sommerfeld radiation condition

with d, being the Dirac mass at y, we have

u(z) = Kp[f](x) = / By (. 9)  (4) dy.

D

The inverse source problem of reconstructing f from u for fixed frequency is

well-known to be ill-posed for general sources; see, for instance, [17, 45|, 116].

While there are many methods of reconstructing f from u, we concentrate on the
following three most common ones in the literature:

(i) Time reversal based method;
(i) Minimum L2-norm solution; and
(iii) Minimum L!-norm solution.

9.2.2. Time Reversal Based Method. We first present some basics about
the time-reversal-based method. The imaging functional is given as follows:

(9.1) I(x) = / By (2, 2)u(2) ds(2) = KbKp[f](2),

where IT' is a closed surface in the far-field where the measurements are taken, and
K% is the adjoint of Kp viewed as a linear operator from the space L?(D) to L?(T).
Physically, the operator K}, corresponds to time-reversing the observed field. This
imaging method is the simplest and perhaps the mostly used one in practice.

The resolution of this imaging method can be derived from the Helmholtz-
Kirchhoff identity. As a corollary of Theorem [2.76] the following result holds.

COROLLARY 9.1. We have
1
I(a) = KpKlflia) ~ —1 | 90ula,n) ) do

If we take f to be a point source, we obtain the point spread function of the
imaging functional, which shows that the time-reversal based method has resolution
limited by S (z,y).

9.2.3. Minimum L2-Norm Solution. We now consider the second method
which is based on L?-minimization. We assume that the source f € L?(D). The
method is given as follows:

(9.2) min ||g||z2(p) subject to Kplg] = u,
which can be relaxed in the presence of noise as follows:
(9.3) min ||g||.2(p) subject to [[Kp(g] — U“%z(F) <4

with § > 0 being a given small parameter.
In order to obtain an explicit formula for this method, we consider the singular
value decomposition for the operator

Kp : L?(D) — L*(T).
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We have
Kp = Z o P,
1>0
where oy is the [th singular value and P, is the associated projection. The ill-
posedness of the inverse source problem is due to the fast decay of the singular
values to zero; see, for instance, [45], 432].
By a direct calculation, one can show that the minimum L2-norm solution to

(19.2)) is given by

PP,
(94) 1) = 3 Tk )0,
>0 !
while the regularized one, which is the solution to (9.3)) is given by
P*P,
9.5 I, (z) = L= g*K ;
(95) 0 =3 ol

with « as a function of § introduced in ([9.3)) being chosen by Morozov’s discrepancy
principle; see, for instance, [240].

9.2.4. Minimum L!'-Norm Solution. The method of minimum L'-norm
solution is proposed in [162], 163]. Assume that f is equal to a superposition of
separate point sources. The method of minimum L'-norm solution is to solve the
minimization problem

min ||g||1(p)y subject to KpKplg] = Kp[u],
or its relaxed version, which reads as
min ||g|[1(p) subject to [[KpKplg] — KB[U]H%z(F) < 4.

In [162], 163], it is shown that under a minimum separation condition for the point
sources, the inverse source problem is well posed. A main feature of their approach
is that the L'-minimization can pull out small spikes even though they may be
completely buried in the side lobes of large ones.

It is worth emphasizing that without any a priori information, the resolution
of the raw image, which is obtained by time-reversal method, is determined by the
imaginary part of the Green function in the associated media.

9.2.5. The Special Case of Homogeneous Medium. In a homogeneous
medium, we have n = 1. For simplicity, we consider the case d = 3 and recall that

eV—1klz—y|

o T —y) = -
k($7y) k(x y) 471_‘1, — y‘
In the far-field, where kly| = O(1) and k|z| > 1, we have |z —y| = |z| — & -y, where

T = . Thus
] )

eV—lklz—y| eV=Tklz|
u(e) =~ [ dy ~ f(k),
D

dt|z — y| Ut 47 ||

where f is the Fourier transform of f.
If we make measurements on the surface 0 Bg, the sphere of radius R and center
the origin, then we have
oV=TkR
k).
g (k)

u(z) = —
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Using the time-reversal method, we have for R large enough

Ve klz yl
I kz-(y—z) d d / SlIl
O~ g5z |, | e () dy ds o)
where the imaging functional I is defined by (9.1 . ) with I' = 0Bg.

9.2.6. Green Function in High-Contrast Media. Throughout this sec-
tion, we set the wavenumber k to be the unit and suppress its presence in what
follows. We assume that the wave speed in the free space is one. The free-space
wavelength is given by 2m. We consider the following Helmholtz equation with a
delta source term:

(9.6) A, ®(2,20) + Bz, 20) + Tn(2)X (D) (2)®(2,20) = 6(x — 20) in RY,

where x(D) is the characteristic function of D, which has size of order of the free-
space wavelength, n(x) is a positive function of order one in the space of C*(D)
and 7 > 1 is the contrast. We denote by ®g(z,z) the free-space Green’s function

Fl(x — .1‘0).
Write ® = v + ®g, we can show that
(9.7) Av+v = —7mn(x)x(D)(v+ ®).
Thus,
wlaan) = =7 [ oo (s6020) + @0l 0))
D
Define
98) Kolfl(a) = = | nla)@alar)(0) .
Then, v = v(z) = v(x, zp) satisfies the following integral equation:
(9.9) (I —7Kp)[v] = TKp[®(-, zo)],
and hence,

o(z) = (=~ Kp) Kp[®(, 70)].
In what follows, we present properties of the integral operator Kp.
LEMMA 9.2. The operator Kp is compact from L?(D) to L*>(D). In fact, Kp is
bounded from L?(D) to H?(D). Moreover, Kp is a Hilbert-Schmidt operator.

LEMMA 9.3. Let o(Kp) be the spectrum of Kp defined by (9.8). We have

(i) o(Kp) = {0, A1, A2y ..., A, ...}, where [Aq| > |Ao| > |A5] > ... and A\, —

(ii) ({)6} = o(Kp)\op(Kp) with o,(Kp) being the point spectrum of Kp.
PROOF. We need only to prove the second assertion. Assume that Kp[u] =

Jp @o(z,y)n(y)u(y) dy = 0. We have 0 = (A + 1)Kp[u] = nu, which shows that
u = 0. The assertion is then proved. (Il

LEMMA 9.4. Let Kp be defined by , Then, \ € o(Kp) if and only if there
is a non-trivial solution in Hﬁoc(Rd) to the following problem.:

(9.10) (A4 Du(z) = tn(z)u(z) in D,
(9.11) (A+1u=0 in R\D,

(9.12) u satisfies the Sommerfeld radiation condition.
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PROOF. Assume that Kp[u] = Au. We define a(z) = [, ®o(z,y)n(y)u(y) dy,

where z € R?. Then @ satisfies the required equations. O

Notice that the resonant modes have sub-wavelength structures in D for [A| < 1
and can propagate into the far-field. It is these sub-wavelength propagating modes
that cause super-resolution.

LEMMA 9.5. Let H; denote the generalized eigenspace of the operator Kp for
the eigenvalue ;. The following decomposition holds:

L*(D) = |J #;.
PROOF. By the same argument as the one in the proof of Lemma [0.3] we can
show that Ker K}, = {0}. As a result, we have
Kp(L2(D)) = (Ker K}) ™ = L*(D),
and the lemma is proved. (I

LEMMA 9.6. There exists a basis {uj;r}, 1 <1 <m;,1 <k <nj,; for H; such
that

Kp (1153 Ujimy g n,) = (W5,0,05 05 Ui ) g ,
Ijm;
where Jj; is the canonical Jordan matriz of size n;,; in the form
A1
Jii= !
Js

A1

Aj

PrOOF. This follows from the Jordan theory applied to the linear operator
Kpl, : Hj — H; on the finite dimensional space H;. O

We denote I' = {(j,[,k) e Nx NxN;1 <1 <mj;,1 <k <nj;} the set of
indices for the basis functions. We introduce a partial order on N x N x N. Let
v = (4,k, 1) e T,v = (§/,l',)k') € T, we say that 4/ < v if one of the following
conditions are satisfied:

(i) j>J%
(i) j=41>14

(i) j=4,1=0Uk>Fk.

By the Gram-Schmidt orthonormalization process, the following result is obvi-
ous.

LEMMA 9.7. There exists an orthonormal basis {e., : v € I'} for L*(D) such

that
€y = E , Oy Uy
v =2y

where a~ ~ are constants and a .~ 7# 0.
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We can regard A = {ay ' }+er as a matrix. It is clear that A is upper-
triangular and has non-zero diagonal elements. Its inverse is denoted by B =
{by 4}y ~7er which is also upper-triangular and has non-zero diagonal elements.

We have
Uy = E by, €y
Rinte’

LEMMA 9.8. The functions {e,(x)e (y)} form a normal basis for the Hilbert
space L?(D x D). Moreover, the following completeness relation holds:

Sz —y) =) ey(z)es(y).

By standard elliptic theory, we have ®(z,x¢) € L?(D x D) for fixed 7. Thus
we have

(9.13) Oz, m0) = Y ey (2)e7 (20),
e
for some constants o, s satisfying
Dl = 112, 20) [12(pxp)y < o0
e

To analyze the Green function ®, we need to find the constants o, .. To do
so, we first note that

(I)()(I',LU()) = KD[(S(- —.’Eo)}.

1
n(zo)
Thus,

B(r,w0) = Bola, 7o) + (- —Kp) "KRIG( — o)

Bolean) + s Do) —Ko) bl
We next compute (1 —Kp)~'K%[e,]. For ease of notation, we define u;;j = 0
for £k < 0. We have
Kplujiel = ANujik+ujir—1 forall j,lk,
and
K% [ujie] = )\?Uj,l,k +2X\u k-1 +uj -2 forall j,1 k.

On the other hand, for z ¢ o¢(Kp), we have

1
—Kn) Y. - = . T i = s
(2 —Kp) ™ lujun] = — 3, G W AR P S)E b
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and therefore, it follows that

2 2 2
(2= Kp) KD fuss] = LUM N Luﬂkil...jL Luﬂ )
FLE) Z_AJ sby (Z_AJ)2 PLE) (Z_A])k PLE)

2 Y Y
7u _ 7U- _ PR 711/»
- _ )‘j 7, k—1 (Z — )\j)Q gl k—2 (Z — /\j)k_l J,l,1

1 1 1
+—Fu j l,k—2 + U j,l,k—3 """ + N oo Wyl
Z*)\j 7 (Z*)\j)2 J (Z*Aj)k 277

A3 A2 2\

_ j _
n —/\ ujlk—’_((z—)\j)Q+z—)\j>u]’l’k71

+( A2 Lyl )u
(Z — )\j)?’ z — )‘j z — )‘j Jlh=2

N +( Ny )u
e (Z — )\])k (Z _ )\j)k71 (Z . Aj)k‘72 7,0,1

= E Ay y Uy
’Y/

where we have introduced the matrix D = {d,  }+ ~¢r, which is upper-triangular
and has block-structure.
With these calculations, by taking z = 1/7, we arrive at the following result.

THEOREM 9.9. The following expansion holds for the Green function

(9.14) O(x,m0) = Po(,20) + 3 Y 0ty ymey(20)eym (),
yel'y" el

where

a%’)’”’ = ( ) E E a”Y 'Y/d’y //b " ///,

V2V =y

Moreover, for =1 belonging to a compact subset of R\ (R N U(KD)), we have
the following uniform bound:
Z |ty [ < o0
7Y

Alternatively, if we start from the identity,

S@—m0) = D ey(x)ey (o)
,\///
Z Z Z a/,yll’,yla,yll,,yl// u,yl (.’L‘)u,yu/ (1‘0)7

’Y” ’)’/ j’Y” 'Y/// j,.y//

then we can obtain an equivalent expansion for the Green function in terms of the
basis of resonant modes.

THEOREM 9.10. The following expansion holds for the Green function:

(9.15) ®(z,z0) = Po(z,20) + Z Z Z Byt oy iy (2)0 7 (20),

1"

7 er " 24" v=y"
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where

(916) ﬁ,y s "/W = m Z (l " ///a " /d

¥ =y

Here, the infinite summation can be interpreted as follows:
(9.17)

lim Z Z Z Byt oyt (2)0 7 (20) = @(2,20) = Po(,20)  in L*(DxD).

Yo—>00
’Y” <"}/0 ,Y/j,y// ,Y/// j,)///

In order to have some idea of the expansions of the Green function ®(z,y), we
compare them to the expansion of the Green function in the homogeneous space,
i.e. ®g(x,y). For this purpose, we introduce the matrix H = {h 4 },,/ecr, which

is defined by
4= Z By ity
,Y/

In fact, we have
Rk = A5 Ou O ke + 05O Ok~ 1,1
where § denotes the Kronecker symbol.

LEMMA 9.11. (i) In the normal basis {ey}er, the following expansion
holds for the Green function ®o(x,xo):

(918) (I)(J(x,l‘o) = Z Z 64,),7,),/113(1'0)e.yw(:E)7

~er ’Y/'IEF

where

o)}

oy E E a,\/),ylh’_y //b " /ll_

/<,Y ’Y” <'Y
Moreover, we have the following uniform bound:
|6y 2 < C < o0
¥y :
v

(ii) In the basis of resonant modes {u~}~cr, the following expansion holds for
the Green function ®o(x,xo):

(9.19) (x,20) Z Z Z gy U (T) T (20),

11

v er~"" 24" y=y"
where
9.20 B "= § Ty By .
( ) v vy n(xo) ¥y
v =y"
Here, the infinite summation can be interpreted as follows:

gli)noo Z Z Z 1y Uy (T)T 7 (20) = Po(, m0)  in L*(D x D).

7 <oy =y =y
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Based on the resonance expansions of the Green functions in high-contrast me-
dia and in the free space, we can now propose an explanation for the super-resolution

phenomenon. Observe that the difference between the coefficients 8.~ and

Bv”mv"' in 1) and 1} are the quantities d, - and h, (a’YNKY' are con-
stants). If, for example, we consider the special case where the spaces H; are of
dimension one, then we have

2
— J — .
dyy = 5%7’7)\} Pyt = 0y g
A

and therefore,

which shows that the contribution to the Green function ® of the sub-wavelength
resonant mode u, is amplified when z is close to A;.

Therefore, we can see that the imaginary part of ® may have sharper peak
than that of ®y due to the excited sub-wavelength resonant modes. When the
high contrast is properly chosen (the frequency is fixed), one or several of these
sub-wavelength resonance modes can be excited, and they dominate over the other
ones in the expansion of the Green function ®. It is those sub-wavelength modes
that essentially determine the behavior of ® and hence the associated resolution in
the media. Therefore, we can expect super-resolution to occur in this case.

REMARK 9.12. Using the Mazwell-Garnett effective medium theory for Mazwell’s
equations derived in Section for dilute periodic distributions of plasmonic
nanoparticles, one can see that near plasmonic resonances the effective (or overall)
permittivity €* is high. By investigating the spectral properties of the operator

Elo— [ (" (y) — em)Gr,, (z,y)dy, x€Q,
Q

where Gy, is defined by with ky, = W\/Emfim, one can extend our results in
this section to the case of the full Mazwell equations and give evidence of the super-
resolution phenomenon for electromagnetic waves in composite materials made of
plasmonic nanoparticles.

9.2.7. Numerical Illustrations. Here we consider a more general situation
than in the previous theoretical analysis and explain how to compute the Green’s
function numerically. We also present a numerical example in which a high-contrast
medium is represented as a disk.

9.2.7.1. Solving an Integral Equation for the Green’s Function. The Green’s
function @ is the solution to the following problem:

1 1
V- ;V®(~,xo) + w?ed(-, z0) = ;5% in RY,

C

(9.21)
(-, z0) satisfies the Sommerfeld radiation condition.
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It can be shown that the above problem is equivalent to the following system of
equations:

(A+kg)®(7$0) :5x0 n _D7
(A+k2)®(-,20) =0 inR*\D,
(9.22) (-, o)+ = @(-,0)|- on ID,
1 92(,z0) _ 1 92(,20)

o  Ov v pe  Ov 1=
(-, ) satisfies the Sommerfeld radiation condition.

on 0D,

Note that the wave number k. plays the role of the high contrast parameter anal-
ogously to 7 in the previous theoretical analysis.

Let @< be the free space Green’s function with wave number k.. Since <I>§C
satisfies

(9.23) (A + k2O (-, x0) = 64, in RY,

we see that v := & — <I>§°‘ satisfies Av + k2v = 0 in D. Therefore we can represent
the Green’s function ® using the single layer potential as follows:

‘bgc(xaxo)+8gg[¢}(z)7 T € Da

Next we determine the densities ¢ and ¢. From the transmission conditions on
0D and the jump relations for the single layer potentials, we get
(9.25)
Splel = Spr ] = —85° (- o)
11 11 1 0k (-, xo)  on dD.
— (=T + (KFe) — — (=T + (Khmy = ——0 7
(T 0| = G (K lel| = -

The above system of integral equations has the same form as that of (2.171). We
have already discussed how to solve that system of equations numerically in Chapter

2

9.2.7.2. Explicit Expression of Green’s Function for a Disk. Let D be a disk of
radius R located at the origin. Then it can be shown that the explicit solution is
given by

V=1
— Y B (ker) + ado(ker), 7] < R,

(9.26) D(r,0) = 4
bHy (kmr), Irl > R,

where (r,0) are the polar coordinates and the constants a and b are given by
VT B HED (ke R)(HEY) (ki R) = B HEY (ko R)(HGY) (k)
4 B HED (b R)Jy (ke R) — o Jo (ke R) (HV) (ki R)
VT 2B (ke R) Ty (keR) — 2= (VY (ke R) Jo (ke R)

4 e g (o R) Jg (ke R) — 222 Jo (ke R) (HS ) (K R)

a =

b=—




9.2. SUPER-RESOLUTION IMAGING IN HIGH-CONTRAST MEDIA 329

9.2.7.3. Resonant Wavenumber k. for a Disk. It is also worth emphasizing
that we can derive resonant values for k.. From the expressions for a and b, we can
immediately see that the nth resonant value k. ,, is nth zero of

ke, km /
(9.27) 2 B (ke R) T (ke R) — ~ Jo (ke R)(HSD) (ki R) = 0.

He Hm
So the resonant values for k. can be computed using Muller’s method. When we
solve the above equation, we need to be careful because p. depends on k. via
fie = k2 /(w?ec).

9.2.7.4. Numerical Example. Let D be a circular disk of radius R = 2 centered
at the origin O in R2. We fix w = 1, ¢, = ¢, = 1 and j,, = 1. Then p, is
determined by p. = k2.

First, let us compute the distribution of the resonant values for k.. To do
this, we plot the term on the left-hand side of as a function of k.. The plot
is shown in Figure [0.1] and it shows that there are many local maximum points
which converge to zero as their corresponding wave number k. increases. This
reflects the fact that the resonant values k., (or the corresponding eigenvalues of
the operator Kp) are complex numbers and 1/k., converges to zero as n — oc.
This is in accordance with our previous theoretical analysis of the super-resolution
phenomenon because a large wavenumber k. plays the role of the high contrast
parameter 7.

0 | ko(Ay) | ko(Bn)
1 1.86 2.74
2 3.48 4.32
3 5.08 5.9

TABLE 9.1. Corresponding value of k. to the points A,, and B,,.

Next we determine how the shape of I® changes as a function of k.. We choose
three local maximum (or minimum) points A;, As and As (or By, By and Bs) as
shown in Figure At the point A1, As or As, we expect that the corresponding
3P does not have a sharp peak because the term on the left-hand side of is
not small, which means k. is not close to a resonant value. On the other hand, we
expect that 3P has a sharper peak than that of %CI)’S"‘ at the points By, By and
Bs. The (approximate) numerical values of k. corresponding to the points A,, and
B,, are shown in Table

First we consider the non-resonant case. In Figure we plot S® when k. =
ke(An),m = 1,2,3 over the line segment from (—R,0) to (R,0). The dotted line
represents the imaginary part of <I>§’". The blue circles and the red lines represent
the exact values and the numerically computed values, respectively. We note that
in this case the peak is not sharper than that of the free space Green’s function, as
shown in Figure [9.2

Next, we consider the resonant case. In Figure we plot S® when k., =
k.(By),n = 1,2,3 over the line segment from (—R,0) to (R,0). In contrast to the
previous case, in the case of a resonant k. the peak is sharper than that of the free
space Green’s function. Also the sub-wavelength structure of the resonant mode is
clearly shown in Figure (9.3
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0.8 T T T T

FIGURE 9.1. The plot for the term on the left-hand side of
as a function of k.. D is a disk with radius R = 2. The parameters
are w = 1,6, = 1,6 = 1, ty, = 1 and p, is determined by p, =
k2/(g.w?). Three local maximums (or minimums) are marked as
A, (or B,,), respectively.

Code Super-resolution in High Contrast Media was used to generate the nu-

merical results shown in Table [0.1] and Figures and

9.3. Super-Resolution in Resonant Structures

By modifying the homogeneous spaces with sub-wavelength resonators, we can
introduce propagating sub-wavelength resonance modes to the space which encode
sub-wavelength information in a neighborhood of the space embedded by the sub-
wavelength resonators, thus yielding a Green’s function whose imaginary part ex-
hibits sub-wavelength peaks, thereby breaking the resolution limit (or diffraction
limit) in the homogeneous space. In this section, using the fact that plasmonic
particles are ideal sub-wavelength resonators, we consider the possibility of super-
resolution by using a system of identical plasmonic particles.

9.3.1. Multiple Plasmonic Nanoparticles. We consider the scattering of
an incident time harmonic wave u? by multiple weakly coupled plasmonic nanopar-
ticles in three dimensions. For ease of exposition, we consider the case of L particles
with an identical shape and use the Helmholtz equation for light propagation.

We write D; = z; + 65, Il =1,2,...,L, where D is centered at the origin.
Moreover, we denote Dy = 6D as our reference nanoparticle and let

L

D={JDi, ep=enx(®B\D)+ecx(D), pp = pmx(R*\D)+ pex(D).
=1

We assume that the following conditions hold.


http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial1/5.3 Super-resolution in High Contrast Media
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FIGURE 9.2. The plot for S® when k. = k.(A,),n =1,2,3 over
the line segment from (—R,0) to (R,0). The dotted line represents
the imaginary part of @lgm. The blue circles and the red lines
represent the exact values and the numerically computed values,
respectively. In this case the peak is not sharper than that of the
free space Green’s function.

CONDITION 9.13. We assume that the numbers e,,, Poms Ecs fhe aTE dimensionless
and are of order one. We also assume that the particle D has size of order one and
w is dimensionless and is of order o(1).
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15-

FIGURE 9.3. The plot for S® when k. = k.(Bp),n = 1,2,3 over
the line segment from (—R, 0) to (R, 0). The dotted line represents
the imaginary part of @lgm. The blue circles and the red lines
represent the exact values and the numerically computed values,
respectively. In this case the peak is sharper than that of the free
space Green’s function. Also the sub-wavelength structure of the
resonant mode is clearly shown.

CONDITION 9.14. Let

(9.28)

Hm + fe

A= ——————.
2(Um _,uc)
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We assume that A # 0 or equivalently, pic # — i -

CONDITION 9.15. The size § of the particles is a small parameter and the
distances between neighboring particles are of order one.

The scattering problem can be modeled by the following Helmholtz equation:

1
V. —Vu+w?’epu=0 inR*\ID,
1235]
uy —u— =0 on dD,
(9-29) 1 Ou 1 Ou
———| ———| =0 ondD,
Hom, OV + M ov|_
u® :=u — u’ satisfies the Sommerfeld radiation condition.
Let
uz(x) _ e\/jlkmdm’
—1lkn,d-x
Fii(z) = |apl = VT ’aDu
ou’ Tk dz
Fia(e) = ——-(x) = —V=TkpeY Ty ()|,
v aD,

and define the operator K%p,Dz by

Kb, oil01) = | Mele —9) ) do(y), € oD,

oD, ov(z)

Analogously, we define

Sh b)) = / Tw(z — y)b(y)do(y), = €D,
16)

Dy

The solution u of (9.29)) can be represented as follows:

L
u'+ > S, w e RA\D,

u(x) =49
ZSEFZ[(ZSI], .’IJGD,
1=1

where ¢, € H —3 (0D)) satisfy the following system of integral equations
Sprln] = SElod + Y Sk p,[ep] = Fut,
p#l
1 k. 1,1 ko \
(51 + (Kl )l + —(51 (K%5)°) ]
+7 Z ICD Dl Fl,27

™ p#l

and
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9.3.2. First-Order Correction to Plasmonic Resonances and Field Be-
havior at Plasmonic Resonances in the Multi-Particle Case. We consider
the scattering in the quasi-static regime, i.e., when the incident wavelength is much
greater than one. With proper dimensionless analysis, we can assume that w < 1.
As a consequence, S’E; is invertible. Note that

d1 = (S5) T (SEr ] + Y SEr b, [¥p] — Fia)-

p#l
We obtain the following equation for ;’s,
Ap(w)[y] = f,
where
Ap, (w) 0 A 2(w)
AD2 (OJ) ./4271((,&)) 0
Ap(w) = . + : 0
-ADL (w) .ALJ(M) N AL,L—l(w)
(01 i
P2 fa
w = ~ ) f: : )

YL IL

with
1 1 Ko\ * 1.1 ke \* kc\—1 ok
(9-30) Ap, @) = = (51 + (K5)") + -~ (51 = (K5)") (S5,) 7857
and
11 ke %\ [ cke\—1 ok, I ok
App(w) ;(51 - (Kp,) )(SDLL) Sprp, + r’CdZ,Dw
1,1
fi = Rzt -(51 - (Kp))Sp) ™ Fial

Forj=1,...,L,1let H*(0D;) and H(0D;) be respectively defined by (2.18)) and
2.20) with Q replaced with D;. We first consider the operators Sjlgj and (IC,’“DJ_)*.
The following asymptotic expansions hold. Its proof is immediate.

LEMMA 9.16. (1) Regarded as operators from H*(0D;) into H(OD;), we
have
Sp, = 8p, +kSp; 1+ k*8p, 2 + O(k*6),

where S%j = 0(1) and Sp, ,m = O(0™);
(ii) Regarded as operators from H(OD;) into H*(0D;), we have

(Sp,) " = (Sh,) " +kBp, 1+ K Bp, 2 + O(k*6°),

where ng,l = O(1) and Bp; m = O(6™);
(iii) Regarded as operators from H*(0D;) into H*(0D;), we have

(Kp,)" = (Kp,)" +k*0(8%),
where (IC%],)* =0(1).

We also need the following result.
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LEMMA 9.17. (1) Regarded as an operator from H*(0D;) into H(OD;) we
have,

Sh,py = Si100 + 8101 + Sji02 + kSji1 + kSji20 + O(0*) + O(k?6%).
Moreover,
Sjtmn = 0" ).
(i) Regarded as an operator from H*(0D;) into H*(0D;), we have
’le)j,Dl = Kj 1,00+ O(k*6°).
Moreover,
Kji00 = O(8%).
Finally, the following asymptotic expansions hold.

LEMMA 9.18. (i) Regarded as operators from H*(0D;) into H*(0D;), we
have

Ap,(w) = Ap, o + O(8°w?),
(ii) Regarded as operators from H*(0Dy) into H*(0D,), we have

L

Aiy(@) = - (1065, ) () (Snan +Spa0) + 2 Kptot 02 +0(8).
Moreover,
(57— (D)) 0 (8D) F oS00 = O()
(%I —(KD,)") 0 (Sp,) " 0 Spi02 = 0O(8%),
Kpioo = 0(6?%).

PROOF. The proof of (i) follows from Lemma We now prove (ii). Recall
that

ST (k) = 5T (D) + 0w,
(Sh)™ = (SB) 7!~ helSh) ' Spa(SB,) ! + O(0%?),
S%:,Dl = 85100+ Sp101 +Spi02 + kmSpi1 +E2Sp 120+ O(6*) + O(w?6?)
/c’,gbl = Kpu00+ OW?é?).

Using the identity
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we can derive that

1.1 . _ 1
Auplw) = - (51 = (Kp)")(Sp) " Sp; p, + Koot 0(6%w?)
11 . _ 1
= ;(51 — (K%,)")(8D) 'S b, + Koo+ 0(8%w?)
Ll o ey e0 -1 2 4
= p (21 (’CDZ) )(SDZ) (Sp,l,o,o + Sp11,011 + $p711072 + km8p1171 + kmSp,l,zo +0(0 ))
1
+M7’Cp,l,o,o + 0(52w2)
11 § - 1
= u— (51 — (’CODZ) )(S%z) 1 (Sp,l,o,l + Spﬁlyo,g) + Tlcp711070 + 0(52(4}2) + 0(54)
The rest of the lemma follows from Lemmas [0.16] and O

Denote by H*(0D) = H*(0D1) x ... x H*(0Dr), which is equipped with the
inner product
L

(Y, Py~ = Z<¢la¢l>?—[*(8Dl)~
1=1
With the help of Lemma the following result is obvious.

LEMMA 9.19. Regarded as an operator from H*(9D) into H*(0D), we have
Aw) = Apo+Ap1—+0Ww?é?) +0(s*),

where
Ap. o 0 Api12  Apjs
A A 0 A
Apo = D30 , Apa = D,1,21 D,1,23
Ap..o Apir1 Apirr—1 O
with
1 1 1 1
_ - J—(— - — ICO *
Api0 (2/~Lm+2/~’/c) (uc um)( D)%
11 . B 1
Apipgs = ;(51 - (’COD,,) )(S%p) "(Sqp01 + Sgpo2) + Tlcq,p,o,w
It is evident that
o0
(9.31) Ap o] =D (W, i) w-eit
J=01=1
where
1 1 1 1
9.32 T o= — 4 — (= = —)\,,
(9:32) ’ 2m  2pte (uc um) !
(9.33) Yil = pje

with e; being the standard basis of R” and (Aj,p;) being the eigenvalues and
associated eigenfunctions of the operator (K9, )*.

We consider A(w) as a perturbation to the operator Ap o for small w and
small 4. Using a standard perturbation argument, we can derive the perturbed
eigenvalues and eigenfunctions.
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In what follows, we only use the first order perturbation theory and derive the
leading order term, i.e., the perturbation due to the term Ap ;. For each [, we
define an L x L matrix R; by letting

Ripg = (Apaleipl @)
- <AD,1[<PZ6p], galeq>H*,
<AD71,pq [eils <PZ>H* .

LEMMA 9.20. The matriv Ry = (Ripq)p.q=1,...,1. has the following explicit ex-

,,,,,

pression:

Ripp = 0,

& - ,/ [ G @t @)
' - ' 5 x)pi(y)do(z)do(y
lpq e \al =1 /0Do /Do |Zp—Z I° o

1 2 b
+ y)do(x)do(y
QWC ) ] @ atst)iow
= 0(&), p#q

PRrooF. It is clear that R;,, = 0. For p # ¢, we have

Rl,pq Rl ,Pq + Rl Pq + Ri g

1,pq>
where
Rl = (100,65, Spponle o),
e \\2 > P H*(0Dy)
R = i<gf—marwﬁﬂ”%@wW¢W%mw;
Rll,;{yé = Mim (Kqp0,0lei], o1 >H 8Dy

We first consider R/, . By the following identity

1 i 1 1
(51 - (ICODP) )SDz [p] = 5%l(§f - ’COD,,)[SM] = (N - 5)9017
we obtain
Rl = (51— (K$,))(8D,) " Supoalod. S Lo
l,pq Lhe 2 D, D, q,p,0, » Dy LQ(BDl),
1

1
= — (N = 5HSaw 012l Sb, [01]) 120,
Using the explicit representation of S, 50,1, we further conclude that

Rl pq
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Similarly, we have

1 1
R}, = E(Aj_§)<Sq7p7072[90l]aS&[‘PlDLz(aDl)a

1 (2p — 24)P Sapr®y”

=—(\; - / / 1 - j) 5 mayﬁ+ﬁ)@l(x)@l(y)do(x)da(y)
He \Ofl 5|=17 9Do /Do 7|2p — 24 T|Zp — Zq
3 »— 24)°1P

— Aj— q B d d
) 2 > ] B matieein)

+47rup Z /3[)0 /aDO mm y ei(@)pi(y)do(z)do(y)-

o =1

Finally, note that

1 1
K = —qa- - - 7
q,p,0,0[‘Pl] 47T|Zp _ Zq|3a V(x) 47T|Zp _ Zq|3 mzz:la’mym(x)
where a,, = ((y — ZQ)m7@l>L2(8DQ)7 and a = (ay,as,a3)t.
Therefore, we have
1
R{fg{] = 7M7m<’Cq,p,0,0[S0l]’¢l>H*(aDl)
1
- _47r|zp — zqPtim {a-v(@), cpl>7'i*(6‘Dz)
1 < 1 0 0 \—1
= (5= (Kp)")(Sp,) (a-(z—2p)), ¢
Ar|zp — 2g|* im (2 br ) br : H*(8Dy)

1 1
- M= YWa-(z— ,
Ar|z, — zq|3um( / 2)<a (= 2p)s ), (0Dy)

1 1
:——)\-—f/ / z - ypi(x)p(y)do(x)do(y).
i) [, [ e vaat)eo)

This completes the proof of the lemma.
O

We now have an explicit formula for the matrix R;. It is clear that R; is
symmetric, but not self-adjoint. For ease of presentation, we assume the following
condition.

CONDITION 9.21. R; has L-distinct eigenvalues.

We remark that Condition is not essential for our analysis. Without this
condition, the perturbation argument is still applicable, but the results may be
quite complicated. We refer to [290] for a complete description of the perturbation
theory.

Let 7;; and X;; = (X1, - .,Xj,l,L)t, l=1,2,...,L, be the eigenvalues and
normalized eigenvectors of the matrix R;. We remark that each X;; may be com-
plex valued and may not be orthogonal to other eigenvectors.

Under perturbation, each 7; splits into the following L eigenvalues of A(w),

(9.34) Tia(w) = 75 + 750+ O(6Y) + O(w?6?).
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The associated perturbed eigenfunctions have the following form
L
(9.35) ji(w) = ZXj,l}pepgoj + O(0%) + O(w?s?).
p=1

We are interested in solving the equation Ap(w)[¢)] = f when w is close to the
resonance frequencies, i.e., when 7;(w) are very small for some j’s. In this case, the
major part of the solution would be based on the excited resonance modes ¢; ;(w).

For this purpose, we introduce the index set of resonances J just as we did in

(7.12)) for the single particle case.

DEFINITION 9.22. We call J C N index set of resonances if the 7, ;(w)’s are
close to zero when j € J and are bounded from below when j € J¢. More precisely,
we choose a threshold number ng > 0 independent of w such that

|Tja(W)] =m0 >0 for jeJC.
For simplicity, we assume that the following conditions hold.

CONDITION 9.23. Fach eigenvalue Aj, j € J, of the operator (IC%l)* is simple.
Moreover, we have w? < 6.

We define
Pr@psmt) = { g TET
In fact,
0360 Piw) = Y P) = 3 g [ (€= Ap(e)) e
jeJ jeJ 5

where 7, is a Jordan curve in the complex plane enclosing only the eigenvalues
Tj1(w) for I =1,2,..., L among all the eigenvalues.

To obtain an explicit representation of P;(w), we consider the adjoint operator
Ap(w)*. By a similar perturbation argument, we can obtain its perturbed eigen-
value and eigenfunctions. Note that the adjoint matrix R;- = Rj has eigenvalues 7;;

and corresponding eigenfunctions X;;. Then the eigenvalues and eigenfunctions of
Ap(w)* have the following form

Tiw) = 1 +750+ 06 + O(w?é?),
Giiw) = @1+ 0(8*) + O(w?s?),
where
L
Pi1 = Z ij,l’pezﬂ@j
p=1

with Xj,l,p being a multiple of X ; ;.
We normalize ¢;; in a way such that the following holds:

(0j.p)Pia)m*@D) = Opgs
which is also equivalent to the following condition
+ ~
Xjp Xjg = Opg-

Then, we can show that the following result holds.
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LEMMA 9.24. In the space H*(OD), as w goes to zero, we have
f=wfo+O0W?6?),
where fo = (fo1,--., fo,r)" with

1 1.1
ot = VT B’ ot (Ldute) + L (51 (kD)) (Sl (o - 2] ) = 0%
ProOOF. We first show that
3 1im
lullse- @00 = 33l oy Nallecomey = 03 [l
for any homogeneous function w such that w(dz) = 6™u(xz). Indeed, we have

n(u)(z) = 6™u(z). Since HU(U)H%*(aE) = 57%”“”%*(6&,)7 we obtain

3 31m
lllrs @) = 82 1)l 03, = 5™ ull - 55,

which proves our first claim. The second claim follows in a similar way. Using this
result, we arrive at the desired asymptotic result. ([l

Denote by Z = (Z1,...,21), where Z; = \/—1k,,eV~tknd2i  We are ready to
present our main result in this section.

THEOREM 9.25. Under Conditions [9.13, [9.17], [9.15, and [9.21], the scattered
field due to L plasmonic particles in the quasi-static regime has the following rep-
resentation

L

Z Dz wl

1
where ¥ = (Y1, ... ,wL)t has the following asymptotic expansion:

ZZ (£, %5.0(@)) 3 5(w) + Ap (W) (Pre(w)f)

jed i=1 7j(w)
ZX; 151+ O(w?5?
ZZ ‘PJ)?—[ 1(é)DE) L P4, (w ) +O(w6%).
S A=A+ ( — )T+ O(8Y) + O(62w?)
PROOF. The proof is similar to that of Theorem (I

As a consequence, the following result holds.

COROLLARY 9.26. With the same notation as in Theorem [9.28 and under the
additional condition that

s agp
min |7, (w)| > w07,
for some integer p and q, and
Tji(w) = Tj1pq + 0o(w?dP),
we have

b= EL:W v(x )%)H*(@DO)ZXJMDJHFO( )+O(w6%).

-
jeJ =1 J:lpsg

9.3.3. Super-Resolution by Using Plasmonic Nanoparticles.
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9.3.3.1. Asymptotic Expansion of the Scattered Field. In order to illustrate the

superfocusing phenomenon, we set
) e\/—lkm|x—m0\
K3
uw(z) =T (r—x9) = ————F.
(@) = T (& = 20) = =

LEMMA 9.27. In the space H*(OD), as w goes to zero, we have
f=fo+0(wi?) +0(5%),
where fo = (f0,17 ey f07L)t with

1 1 1.1 3
- _ - _ . (2T — 0 \x 0 \—1 _ . _ — 5
ot = =g (= an) @)+ - (5T = (K)o = aw) - (2 = 2] ) = 000
PRrOOF. Recall that
1.1 e
fi=Fia+ o (51 = (K)*) (k)™ [Fal
We can show that
F, —-iﬁf————i;——(— ) () +0(62)+0(ws?)  in H*(9D))
1,2 = o 81/ = 47T,um‘zl _x0|3 Z1—Xg) VT w 1mn 1)-
Besides,
; e\/?lkm‘zl_xﬂ D O 5§ O 5§ . aD
w@)lon: = == X O s (o) (2-2)+ 0(02)+0(wo?) - in H(OD).

Using the identity (51 — (K9,)*)(SD,) " [x(8D;)] = 0, we obtain that
1 1

11 ke v [ Qkey—1 0 ¥/ Q0 \—1
E(il_(’CDl) )(SDI) [Fiq1] = —m(§f—(lcpl) )(SDL) [(z1—20)-(z—21)].
This completes the proof of the lemma. (I

We now derive an asymptotic expansion of the scattered field in an intermediate
regime which is neither too close to the plasmonic particles nor too far away. More
precisely, we consider the following domain

. 1
Dsr={z € R% min |z —2|> 6, max |z —z|< -}
1<I<L 1<I<L k

LEMMA 9.28. Let ¢y € H*(8Dy) and let v(x) = S} [v1)(x). Then we have for
x € D57k,

o@) = Tulo— =) a7 /8  bi)da(s) + OGH) e

|z — z| \x—zl\.

k(@ —2) [ hiy)do(y).
9Dy
Moreover, the following estimates hold

v(z) = O(%) if dily)do(y) =0,

0Dg
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PrOOF. We only consider the case when [ = 0. The other case follows similarly
or by coordinate translation. We have

—Shl@) = T do(y) = I
o) =il = [ Tute—putiot) = - [ G umaoty)
Since

Tufo —9) = Tulo)+ 30 Zi8 e 37 57 S e,

la=1]| m2>2 |a=m|

and

OT'k(x) __e\/jlkm 1 =z .

e = g (o~ YT = T (g VI

we obtain the required identity for the case [ = 0. The estimate follows from the
fact that

2|a|+1
2

HyaHH((’)Do) =0(0 ).
This completes the proof of the lemma. O
Denote by
T—z
Suek) = Due-2) 5 [ yewio).
|z — 2 8Dy

Si(e.k) = Ti(e— =) /8 alahdoly).

1

H;ji(z0) "I —wof

((z1 — o) - V(I)APJ‘M*(@DO)-
It is clear that the following size estimates hold

Sl k) = 0(3%),  Sy(z,k) = 0(8%), Hj(zo) = O(6%) forj#0, Hoy(wo)=0.
THEOREM 9.29. Under Conditions[9.13,[9.14), [9.13, and[9.21], the Green func-

tion @y, (x,x0) in the presence of L plasmonic particles has the following represen-

m

tation in the quasi-static regime: for x € Ds

m 7

Q. (x,20) = T, (z— o)
Z Z H;p(20) Xj1,0 X5, qlsaxg(x km) + O(0%) + O(wd®) +0(6%).
Jeri=1 AT A +( ;Tn) 7ji+0(81) + 0(6%w?)

PROOF. With ui(z) =Ty, (v — x¢), we have

=YY" ajpit Y. aoipos+ 00 (62),

jeJ 1<I<L 1<I<L
where
a0 = (@) op) = (for Bra)a-op) + O(wd?) + O(67),
= (= 2Kt plan) + O(wt?) +0(),

aol = <f’850,l>H*(aD):O(5g).
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By Lemma [0.28]

515"‘ [pjal(x) = Z 3 Xjippiep)(x) = Z X}l,pSlB: [p;](2)
1<p<L 1<p<L
= Y Xj1pSip(a.km) + O(F%) + Ows?).
1<p<L
On the other hand, for 7 = 0, we have
Sy leodll@) = 0(5%),

To.(w) = T+ O0(8*) + O0(5%w?) = 0(1).

Therefore, we can deduce that

v - S wisipled+ Y astyled + 06,

jeJ 1<I<L 1<I<L
1 -
- ZZ” (G = o 00) Ky X, S0 ) +O8”) + O(6"))
jeJi=1 > m
—1—0(63)

_ ZZ Hyp(@0) X1 qulsjz(x Ko, )+O(W53)+O(54)+0(53)'
ierim AN —|—( ﬂ) i1+ O(6%) + O(62w?)
O

9.3.4. Asymptotic Expansion of the Imaginary Part of the Green’s
Function. As a consequence of Theorem we obtain the following result on
the imaginary part of the Green function.

THEOREM 9.30. Assume the same conditions as in Theorem [9.29. Under the
additional assumption that

1 1 .-
A=\ + (— ) > 0(8Y) + 0(5%w?),
e ,Ufm
1 1.4 1 1.1
§R<)\)\-+ — - — T'> < %()\)\-Jr — - — T'>
! (uc um) 7 ! <uc um) 7
for each l and j € J, we have
%(I)km(a},xo) = SFk (35*1'0)+O(53)
sz( 50(20) X1 p X 1,054 (, 0)+O(W53)+O(54))
JjeJ l=1
X 1 T ,
A — )\ +(7C_M7m) Tj,1

where x,x9 € Ds i, -

Note that # (ij(xo))?j 1,0 X5,1,¢55,9(, O)) O(63). Under the conditions in

Theorem [0.30] if we have additionally that
1 1
-1
A=A+ G =) o

&2
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for some plasmonic frequency w, then the term in the expansion of S®y (z,xz¢)
which is due to resonance has size one and exhibits a sub-wavelength peak with
width of order one. This breaks the diffraction limit 1/k,, in the free space. We also
note that the term ST, (x — x) has size O(w). Thus, we can conclude that super-
resolution (super-focusing) can indeed be achieved by using a system of plasmonic
particles.

REMARK 9.31. The results of this section on the super-resolution effect obtained
by using a finite system of plasmonic nanoparticles can be extended to the full
Mazwell equations.

9.4. Super-Resolution Based on Scattering Tensors

9.4.1. Multipolar Expansion. In this subsection we use the same notation
as in Section . We consider for the sake of simplicity the two-dimensional
case. We let Br := {|z|] < R} and D be a small particle located at z € Bp
with electromagnetic parameters ¢, and p.. We set z;,7 = 1,..., N to be equi-
distributed points along the boundary 0Bpg for N > 1. The array of N elements
{x1,...,2n} is used to detect the particle. The array of elements {z1,...,zn} is
operating both in transmission and in reception. Let uj be the wave scattered by
D = z 4+ 6B corresponding to the incident wave Iy, (z — ;).

From the multipolar expansion , it follows that

_ ’
nAl UL e

(9.37) wi(x) = D, —ir 0 Tk (2 = 2)0. T, (5 = 2) W
'[=0 |I|=0
+O(5n+2) ,

where W), is the scattering tensor defined by l)
Therefore, the entries ay; of the data matrix A“ introduced in (8.1) can be
approximated as follows:

(938) afj = g(ﬂ?i, Z)Wg(mjv Z)t + O(6n+2) )
where g(x;, z) is a row vector of size (n + 1) x (n + 2)/2, which is given by
1
(939) g(xia Z) = (ﬁalrkm (xz - Z)) l1|<n >
and W is defined by
_ (S 1717
(9.40) W = ("W e

If 0 is small, then high-order terms in can be neglected. In this case, the
analysis of the data matrix reduces to the one in Section [8.2] which is based on the
dipolar approximation . As ¢ increases, more and more multipolar terms
could be included in formula in order to approximate the data matrix. For
fixed ¢, the number of multipolar terms (or the maximal resolving order) which can
be robustly reconstructed from the measured data depends only on the signal-to-
noise ratio and can be estimated as a function of the signal-to-noise ratio [76].

In view of , the signal space of the data matrix A“ becomes richer. The
set of the singular vectors consists of the Green function and its derivatives. In order
to locate the particle, exactly the same imaging functionals constructed in Section
[B:2 can be used. They peak at the location of the particle. However, the significant
singular values are perturbed, even those associated with the dipolar approximation
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(2.274). Indeed, when ¢ is increasing, new significant singular values can merge.
Those are related to higher-order multipolar terms. They can be expressed in terms
of the scattering tensors Wj;,. These new singular values, which are intermediate
between the three larger ones (in the case of a single particle) and zero, contain
some information on the particle and give a better approximation of its shape and
electromagnetic parameters.

9.4.2. Reconstruction Procedure. In this subsection we first present for-
mulas for the reconstruction of the size and material parameters of the particle
from the data matrix A“. Then we introduce optimal control and dictionary-based
matching approaches to identify the shape of the particle.

Once the location z of the particle is estimated for instance by using MUSIC
algorithm, the matrix W can be recovered from the data matrix A“. The size |D|
and the electric permittivity € can be estimated as follows:

1 —
1Dl = 5 IWe,0,00)

and N
. _ Meo.00l
= W PunlD]

By we know that (Wll/)‘ i|=|'|=1 is approximately the polarization tensor
associated with D and A given by . Therefore, by and an
equivalent ellipse can be computed and an estimate of u. can be found.

Once the equivalent ellipse is reconstructed we can use it as an initial guess and
minimize using an optimal control scheme the discrepancy between the computed
and measured matrix W; see [49]. The level set method can be implemented in
order to reconstruct separately closely spaced particles [39].

In [76], a dictionary matching approach is proposed. It is an alternative to the
optimal control approach. It relies on learning the geometric features contained
in the matrix data. In the dictionary matching approach, we identify and classify
a particle, knowing in advance that the latter belongs to a certain collection of
particles. The method relies on computing the invariants under rigid motions from
the extracted scattering tensors and allows us to handle the scaling within certain
ranges. A particle is classified by comparing its invariants with those of a set of
learned shapes at multiple-frequencies. The larger the frequency band used, the
better the classification performance of the dictionary matching algorithm.

The reconstruction results obtained by the optimal control method and the
dictionary matching approach are far beyond the resolution limit.

9.5. Concluding Remarks

In this chapter, we have provided a mathematical theory to explain the super-
resolution mechanism in high-contrast media. We have investigated the behavior
of the Green’s functions of high-contrast media. Our resonance expansions of the
Green’s functions, which were first derived in [83], are the key to mathematically
explaining the super-resolution mechanism in high-contrast media. From
and , we have proved that the super-resolution is due to propagating sub-
wavelength resonant modes. It is worth mentioning that in and , we
have observed that a phenomenon of mixing of modes occurs. This is essentially
due to the non-hermitian nature of the operator Kp.
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CHAPTER 10

Near-Cloaking

10.1. Introduction

To cloak a target is to make it invisible with respect to probing by electromag-
netic or elastic waves. Extensive work has been produced on cloaking in the context
of electromagnetic and elastic waves. Many schemes for cloaking are currently un-
der active investigation. These include interior cloaking, where the cloaking region
is inside the cloaking device, and exterior cloaking in which the cloaking region is
outside the cloaking device.

In this chapter, we focus on interior cloaking and describe effective near-
cloaking structures for electromagnetic and elastic scattering problems. The focus
of the next chapter will be placed on exterior cloaking.

In interior cloaking, the difficulty is to construct material parameter distribu-
tions of a cloaking structure such that any target placed inside the structure is
undetectable to waves. One approach is to use transformation optics (also called
the scheme of changing variables) [303), [243], 143, [446], 254, [409]. The princi-
ple behind transformation optics is to use a coordinate transformation to derive
the spatial dependent material parameters to guide the wave. Transformation op-
tics takes advantage of the fact that the equations governing electromagnetic and
acoustic wave propagation have transformation laws under change of variables; see
Subsection [2.14.4] They are form invariant under coordinate transformations. This
allows one to design structures that bend waves around a hidden region, returning
them to their original path on the far side. The change of variables based cloaking
method uses a singular transformation to boost the material properties so that it
makes a cloaking region look like a point to outside measurements. However, this
transformation induces the singularity of material constants in the transversal di-
rection (also in the tangential direction in two dimensions), which causes difficulty
both in the theory and applications. To overcome this weakness, so called ‘near-
cloaking’ is naturally considered, which is a regularization or an approximation of
singular cloaking. Instead of the singular transformation, one can use a regular
one to push forward the material parameters, in which a small ball is blown up
to the cloaking region [299), 298]. Enhanced cloaking can be achieved by using
a cancellation technique [56], [57]. The first stage of this approach involves de-
signing a multi-coated structure around a small perfect insulator to significantly
reduce its effect on boundary or scattering cross-section measurements. The multi-
coating cancels the generalized polarization tensors or the scattering coefficients of
the cloaking device. One then obtains a near-cloaking structure by pushing for-
ward the multi-coated structure around a small object via the standard blow-up
transformation technique.

349
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The purpose of this chapter is to review the cancellation technique. We first
design a structure coated around a particle to have vanishing generalized polariza-
tion tensors of lower orders and show that the order of perturbation due to a small
particle can be reduced significantly. We then obtain a near-cloaking structure by
pushing forward the multi-coated structure around a small object via the usual
blow-up transformation.

When considering near-cloaking for the Helmholtz equation, we construct struc-
tures such that their first scattering coefficients vanish. Analogously to the quasi-
static limit, we prove that, after applying transformation optics, structures with
vanishing scattering coefficients enhance near-cloaking. We emphasize that such a
structure achieves near-cloaking for a band of frequencies. We also show that near-
cloaking for the Helmholtz equation becomes increasingly difficult as the cloaked
object becomes bigger or the operating frequency becomes higher. The difficulty
scales inversely proportionally to the object diameter or the frequency.

Finally, the cancellation technique is extended to the full Maxwell equations
and the Lamé system.

The results of this chapter are from [56), 57, 58, [d].

10.2. Near-Cloaking in the Quasi-Static Limit

To explain the principle of construction of cloaking structures, we review the
results on the quasi-static model obtained in [56].

Let Q be a domain in R? containing 0 possibly with multiple components with
smooth boundary. For a contrast A, recall that the generalized polarization tensors
Map(X, Q) associated with Q and A are defined in (2.69).

Let P,,(z) be the complex-valued polynomial

(10.1) Po(z) = (z1 + \/—71.’1:2)7” — Z amz® + V=i Z bglxﬁ.

lo|=m |B]=m

Using polar coordinates = = reV 1% the above coefficients a™ and bj" can also be
characterized by

(10.2) Z antx® =r™cosmb, and Z bgbx’g =r"sinmf.

lee|=m |Bl=m

We introduce the following combination of generalized polarization tensors us-

ing the coefficients in ((10.1)):
(10.3) M, = > > araiMag,

lee|=m |B|=n

(10.4) M, = 3" > albiMags,
|al=m |§]=n

(10.5) Mg, = > > blaiMag,
|al=m |§]=n

(10.6) M, = 3" b M.

lal=m |B]=n
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For a given harmonic function H in R?, consider

(10.7) { V'(00X(R2 \ Q) + ax(ﬂ))w =0 inR?,
U(.Z')—H(m):Oﬂx‘—l) as |x‘ —>OO,

where o and o are conductivities (positive constants) of R2\ Q and , respectively.
If the harmonic function H admits the expansion

H(x)=H(0)+ Z " (as,(H) cosnf + aj (H) sinnf)

with = (r cos 6, rsinf), then, we have the following formula

cosmb
(

(u—H)@)=-)_ M as, (H) + My, a, (H))

m=1 n=
sin m@
10.8 - (M35 al (H) + M33 as (H = |z| =
( ) Z Amrmr™ — Mn n( )+ mn n( )) asr |$| o0,
where MSS, , M5 M3, and M3S, are defined by (10.3)(10.6).

In order to make u look hke H for large |z|, we construct structures with van-
ishing generalized polarization tensors for all |n|,|m| < N. We call such structures
GPT-vanishing structures of order V. To do so, we use a disc with multiple coatings.
Let € be a disc of radius 1. For a positive integer N, let 0 < ryy1 <7y <--- <711
and define

(109) Aj = {Tj+1 <r= |IL’| < T’j}, J = 1,2,...,N.

Let Ao =R?\ Q and Ay41 = {r <7ny1}. Set o to be the conductivity of A; for
i=1,2...,N+1,and og = 1. Let

N+1

(10.10) o= oix(4))
j=0

Because of the symmetry of the disc, one can easily see that

(10.11) Mg o] = M [o] =0 for all m,n,
(10.12) M lol=M> 0] =0 ifm+#n,
and
(10.13) Mol = M5 o] foralln.
Let M,, = M55, n=1,2,..., for the simplicity of notation. Let
0; —0j-1 .
10.14 P s =1,...,N+1.
( ) % 0;+ 051 J

One can prove that [56]
(10.15) |M,,| < 27nri™  for all n € N.

The following is a characterization of GPT-vanishing structures. Again, see [56].
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PROPOSITION 10.1. If there are nonzero constants (1, ..., n+1 (1] < 1) and
ry > - >ryp1 > 0 such that
N+1 1 C-rle
(10.16) H [C o 11 ] is an upper triangular matriz for | =1,2,..., N,
2
j=1 =707

then (2, 0), given by , 110.10)), and (10.14)), is a GPT-vanishing structure of

order N, i.e., My = 0 forl < N. More generally, if there are nonzero constants
(1,(2,C3, .- (|Cj| <1)andry >ry>rsy>... such that r, converges to a positive
number, say roo > 0, and
St 1 C_T,—Ql
(10.17) H |:C‘T2l J 1] } is an upper triangular matriz for every
j=11>077
then (2, 0), given by , , and , is a GPT-vanishing structure
with M; = 0 for all [.

Let (©2,0) be a GPT-vanishing structure of order N of the form (10.10). We
take r1 = 2 so that Q is the disk of radius 2, and ry411 = 1. We assume that
on+1 = 0 which amounts to the structure being insulated along dB;. For small
6 >0, let

1
(10.18) Uy (z) = 5% TE R?.

Then, (Bas,00 ¥ 1 ) is a GPT-vanishing structure of order NV and it is insulated on
0Bs.

For a given domain €2 and a subdomain B &€ 2, we introduce the Dirichlet-to-
Neumann map Aq glo] as

ou
(10.19) Aaplo](f)=o5-1
Vlea

where u is the solution to

V-oVu=0 inQ\ B,

(10.20) % =0 on 0B,
u=f on 082,

where v is the outward normal to B. Note that with Q = By, Aq p,[o o \I'%] may
be regarded as small perturbation of Ag ¢[1] if M; = 0 for all [ < N. A complete
asymptotic expansion of Ag g,[o o \I!%] as 0 — 0 can be obtained and it can be
proved that

(10.21) HABZ,Ba {Uo\p%} _ABz,@[l]H < 0§2N+2

for some constant C' independent of d, where the norm is the operator norm from
HY2(99) into H~'/2(98). 1In fact, if f admits the Fourier expansion f(f) =
Z fne‘/jl"‘g, then we have

ne”Z

[n[(8/2)%" M oV =Tnt
27|n| — (6/2)2\"|M|n‘ " ’

(b [70 03] = A ol1])(f) = 3

neZ
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From (|10.15)) , it follows that as § — 0,
|M,[0%" < C5*NT2 forallm € N

for some constant C' independent of n and hence, (10.21]) holds; see [56]. We then
push forward o o ¥ 1 by the change of variables Fj,

3—45

(( ) - )|\)|| for 26 < |z| < 2,
(10.22) ( + 55 )ﬁ for § < |z| < 26,

% for x| <4,
in other words,

(DF5)(c 0 W, )(DFy)!

10.2 F5)(0oW,) = 5 Eot.
( 0 3) ( 5) (O’O 3) |det(DF5)| o Ls

Note that Fs maps |x| = 6 onto |z| = 1, and is the identity on |z] = 2. So by
invariance of the Dirichlet-to-Neumann map, we have

(10.24) AB,.B, [(Fg)*(aolll%)] = Ap, 5, {UO\II%} .

Identity (10.24)) can be proved using the divergence theorem [143]. Thus we obtain
the following theorem from [56], which shows that, using GPT-vanishing structures
we achieve enhanced near-cloaking.

THEOREM 10.2. Let the conductivity profile o be a GPT-vanishing structure of
order N such that o1 = 0. There exists a constant C independent of § such that

(10.25) HABQ,Bl [(Fg)*(a o qf%)} — Ap,oll] H < O52NH2

REMARK 10.3. It is worth emphasizing that the conductivities of the constructed
near-cloaking devices are anisotropic. Nevertheless, they can be approximated by
concentric isotropic homogeneous coatings [38, [409]. The approzimation is in
the sense that it minimizes the discrepancy between the associated Dirichlet-to-
Neumann maps for only the first few eigenvectors.

REMARK 10.4. If we consider the spectra of the Laplacian with Dirichlet or
Neumann boundary conditions inside on one hand the near-cloaking device of order
N and on the other hand the homogeneous disk of conductivity one, then one can
show that the first eigenvalues are approzimately the same (up to an error of order

of 62N+2),

10.3. Near-Cloaking for the Helmholtz Equation

Analogously to the quasi-static case, in order to achieve enhanced near-cloaking
for the Helmholtz equation, we construct multi-coated structures such that their
first scattering coefficients vanish. Then by pushing forward the multi-coated struc-
tures via the transformation optics, we obtain enhanced cloaking with respect to
scattering cross-section measurements.
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10.3.1. Scattering Coefficients. Let D be a bounded domain in R? with
smooth boundary 0D, and let (g, 110) be the pair of electromagnetic parameters
(permittivity and permeability) of R? \ D and (e, ) be that of D. Then the
permittivity and permeability distributions are given by
(10.26) e =eox(R*\ D) +ecx(D) and  p= pox(R*\ D) + pex(D).
Given a frequency w, set k. = w,/ecpic and kg = w,/Eofip. For a function U’
satisfying (A + k2)u’ = 0 in R?, we consider the scattered wave u, i.e., the solution
to (£.163).

Suppose that u’ is given by a plane wave eV—Tkolw with ¢ being on the unit
circle, then yields , where W, given by , are the scattering
coefficients, £ = (cos ¢, sinf¢), and = = (|z|,6).

Let far-field pattern As[e, 1, w], when the incident field is given by eV~ 1hoé@,
be defined by . As shown in Theorem the scattering coefficients are
the Fourier coefficients of As[e, p, w].

The scattering cross-section Q*[e, u,w] is defined by
2

27
(10.27) Q%le, p,w](0") ::/O Aoole, pyw](0,0")| do.

It is worth recalling that the optical theorem (Theorem leads to a natural
constraint on W,,,,. In fact, or equivalently holds.

In the next subsection, we compute the scattering coefficients of multiply coated
inclusions and provide structures whose scattering coefficients vanish. Such struc-
tures will be used to enhance near-cloaking. Any target placed inside such struc-
tures will have nearly vanishing scattering cross-section @*, uniformly in the direc-
tion €’.

10.3.2. S-Vanishing Structures. The purpose of this subsection is to con-
struct multiply layered structures whose scattering coefficients vanish. We call such
structures S-vanishing structures. We design a multi-coating around an insulated
inclusion D, for which the scattering coefficients vanish. The computations of the
scattering coefficients of multi-layered structures (with multiple phase electromag-
netic materials) follow in exactly the same way as in Subsection The system
of two equations (2.171)) should be replaced by a system of 2x the number of phase
interfaces (—1 if the core is perfectly insulating).

For positive numbers rq,...,rp4; with2 =7 >7r9 > .- >rpp; =1, let

Aji={z:rjp <l|z|<r;}, j=1,....,L, Ay:=R*\ 4,
and
Arp1(=D) ={z:|z| < 1}.
Let (p44,€5) be the pair of permeability and permittivity of A, for j =0,1,..., L+1.
Set o =1 and g = 1. Let

L+1 L+1
(10.28) p=> mix(4;) and =Y e;x(4;).
§=0 j=0
In this case the scattering coefficient W, = Wy |1, €, w] can be defined using

(2.219). In fact, if u is the solution to
1

(10.29) V.- ~-Vu+w?eu=0  inR?
1
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with the outgoing radiation condition on w — U where U is given by (2.218]), then
u — U admits the asymptotic expansion (2.219) with kg = w\/Eog.
Exactly like the conductivity case, one can show using symmetry that

(10.30) Wypm =0 if m #n.
Let us define W,, by
(10.31) Wy = Wan .

Our purpose is to design, given N and w, material parameters  and & so that
Wl e,w] = 0 for |n| < N. We call such a structure (p, €) an S-vanishing structure

of order N at frequency w. Since H(l) = (- 1)"H,(11) and J_,, = (=1)"J,, we have
(10.32) W_p =Wy,

and hence it suffices to consider W,, only for n > 0.
Moreover, from Lemma it follows that there exists &y such that, for all
é S 607

2n
(10.33) [Wle, i, 0w]| < %(52" for all n € N\ {0},

where the constant C' depends on (g, u,w) but is independent of 4.
Furthermore, note that (2.240]) leads to

(10.34) Sm > Wle, i, w] \/HZ

newz nez

nles pyw

Let k; := w,/lye; for j = 0,1,...,L. We assume that pr4; = +o0o, which
amounts to the solution satisfying the zero Neumann condition on |z| = rp11(=1).
To compute W,, for n > 0, we look for solutions u,, to (10.29) of the form
(10.35)

un(a:)—a( ) T (k;r)e V=Ind b(n HWM (kjr)e V=Tng red;, j=0,...,L

)

with aé ") — 1. Note that

(10.36) W, = 4v/=1p" .
The solution u,, satisfies the transmission conditions
Un|+ = up|— and ! % _ 1 0u, on |z| =r;
i e pi—1 Ov i Ov - /
for j =1,..., L, which reads
(1)
Jn (k) _ HV(k; & ) a§n)
/ <3 J/ J J ZJ H(l) 7“ bg”)
I (K- 17‘j) ;! )(kjflr ) ]
(10.37) =| [&=1 4 gj-1 ( (1))’ {n)
Jo(kj_a1r — | H kij_qr (n)
11 n(kj—1r;) 11 n (kj—175) b,
The Neumann condition 88“" | =0 on |z| = rr4+1 amounts to

0 0 (n)
(10.38) [J;L(,%) (H,gl))'(kL)] [b(”)] [8}
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Combining (10.37) and ([10.38)), we obtain

(n)
0 n a
(10.39) M = P™e, p,w] [b?")] ,
0
where

., 0 0 0
Pt )[€,M,w] = |:p(n) (n):| = (—*V lw) HMJTJ [J/
21" P22

0
(Y o)
L \/7( (1)) (kjry)  —H (kjr)) In(kj_17j) H® (k7))
1;[ \/7](7f r5) In(kj15) Z:lljé(kj*lrj) \/%(H(l)> o)

In order to have a structure whose scattering coefficients W,, vanishes up to
the Nth order, we need to have bén) = 0 (when aén) =1) forn=0,...,N, which

amounts to
(10.40) P =0 forn=0,...,N,
because of ((10.39). We emphasize that pgg) # 0. In fact, if pgg) = 0, then (10.39)

can be fulfilled with aén) = 0 and bén) = 1. It means that there exists (u,e) on
R?\ D such that the following problem has a solution:

1 _
V-;Vu—i—wzeuzo in R?\ D,
(10.41) %’ =0 ondD,

ovl+
u(z) = Hr(tl)(kor)e\/?lne for || =7 > 2,

which is not possible.

We note that (10.40) is a set of conditions on (p;,¢;) and r; for j =1,..., L.
In fact, p( ") is a nonlinear algebraic function of pj, 5 and r;, j = 1,..., L. We
are not able to show existence of (uj,¢;) and rj, j = 1,..., L, satisfying
even if it is quite important to do so. But the solutions (at fixed frequency) can be
computed numerically in the same way as in the conductivity case.

We now consider the S-vanishing structure for all (low) frequencies. Let w be
fixed and we look for a structure (u,e) such that

(10.42) Wyl e,0w] =0 for all [n| < N and § < d

for some §g. Such a structure may not exist. Even numerically, it does not seem to
exist. So instead we look for a structure such that

(10.43) Whlp, €, 0w] = 0(6%Y) for all |n| < N and § — 0.

We call such a structure an S-vanishing structure of order N at low frequencies.
To investigate the behavior of W, [u, e, dw] as 6 — 0, we need the asymptotic
expansions of Bessel functions for small arguments. We have

VI2TW)

™

(10.44) HV(z) ~ — for fixed v and = — 0.
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For n € N, we also recall that, as x — 0,

" 1 ixz (ix2)2 (%I2)3

(1045)  Ju(w) = o7 (r( 1) TT(nt2)  AT(m+3) mtd) ) ’
Valr) = - @S L Ly 2y Ly
1=0 ’

Gt & (—32%)

(10.46) - S WI+1) +p(n+1+ 1))”( ik
=0

where ¢(1) = —v and

:—’y—l—z forn > 2

with v being the Euler constant.
Plugging formulas (10.45)) and (10.46) into (10.39), we obtain

0 0 ]
(0) _r -
P [5,#,5&1] ( \/7500 (H PJJTJ) [I%5+0(53) £571 +O(51H5)
2 7T]{3L J
. 2v-1 Y 571+ 0(61nd) 4 LI M+O(5’1)
x H TW;T; T \wpjary  wpiry ) 0
| ey 2
=1 |- - 3 —
=2 I we; (1 5 > §+0(5%) T 51+ 0(61In0) ]
(10.47)
0 0
— 571 2 ,LL] ’
7T/€L ]1_[ Hj—1

and, for n > 1,

0
P™ e, p,dw] = (— W sw) (HW‘J) Lnglzz:l)5”l+0(5") \/—7127;55?—#1)67”71

n TRy,

6] \/72nr(n+ 1) n—1 —-n \/jZHF(n) —-n —n+1

x ﬁ \/Z)”“ o) S 0
j=1 \/? (k TJ) 15n71 + O((Sn) (k TJ) 5" + O(5n+1)

pi2nT(n+1) 2"T(n+1)
;fﬂjffn 5" +0(6" ) —*/(;2?2() Sy 1 o)

2nT(n+1)

\/5]‘7_171(]4;]‘—17"]')”_1 el s 0@ €51 \/TZHF(H + 1)5—71,—1 +035™™)
Hj—1

pj—1 w(kjary)tt

0

+ O™
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and hence
1 0 0
PWe pbw] = = | nkP ' V=12"T(n+1) ., _
b ) L n n 6 n O 5 n
2 oty o0 Ty +oET)
(10.48)
L aj(b +1)4+0(1) c¢i(b; — )62 4 o(672™)
lei[l bJ §2n (52n) bji—i_l +0(1) )
- J
where

pior T wkakrm

S (’%‘1)" pooe M V2T 4 1)
J ’ J

with kj =W, /Ejlj.
From the above calculations of the leading order terms of P(™)[e, i, dw] and the

expansion formula of J, (t) and Y;,(¢), we see that pg{) and pgg) admit the following

expansions:

(10.49)
(N—n) L+1
pgrll)(,u757t):tn_1 fon /,L, + Z Zfl t2l lnt) +O(t2N Zn)
=1 j=0
and
(10.50)
(N—n) L+1
pg;)<u7€’t):t—n—l gén) e + Z Zg t21 lnt) +0(t2N Qn)
=1 j=0

for t = dw and some functions fén), gén), fl(,?)’ and 91(3‘) independent of ¢.

LEMMA 10.5. For any pair of (1, €), we have

(10.51) 95" (n.€) # 0.
ProoF. For n =0, it follows from (10.47) that

0 (,e) = — H L
0 TVELHL 5 Hj-1

Suppose n > 0. Assume that there exists a pair of (u, £) such that g(()") (u,e) = 0.
: : : (n) _ (n) _ :
Then the solution given by (10.35)) with a; ’ = 0 and by~ = 1 satisfies

1 —
V. ~Vu+ §*w?eu =0 in R?\ D,
1

(10.52) %’ =0(0"") ondD,
+

u(z) = Hﬁll)(ékor)e\/jng for || =7 > 2.
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Let v(x) := limgs_o 0"u(x). Then using ((10.44]) it follows that v satisfies

V-le:O in R\ D,
W

ov
(10.53) o, =0 ondD,
v/ —=12"T
v(x) = T (n)r_”e‘/jl"‘g for x| =7 > 2,
L)

which is impossible. Thus g(()n) (1, €) # 0, as desired and the proof is complete. O

Equations ((10.49)) and ((10.50|) together with the above lemma give us the fol-
lowing proposition.

ProPOSITION 10.6. For n > 1, let W,, be defined by (10.531]). We have
(N—n) M, , '
(10.54)  Wilw e t] =" [ Wllmel+ > > Whuet? (Int) | +o(t*N),
I=1 j=0
where t = dw, M; := (L + 1)l (L being the number of layers), and the coefficients
WO, €] and Wiilu, e] are independent of t.

To construct an S-vanishing structure of order N at low frequencies, we need
to have a pair (u,¢) of the form satisfying
(10.55)
WO n,e] =0, and Whi[pu,e] =0 for 0<n <N, 1<I<(N-—n), 1<j<M,.

As in the conductivity case, it should be emphasized that one does not know if
a solution exists for any order N. Nevertheless, numerical constructions of such
structures for small N are given in the last subsection.

10.3.3. Enhancement of Near-Cloaking. In this subsection we show that
the S-vanishing structures (after applying transformation optics) enhance the near-
cloaking.

Let (u,¢) be an S-vanishing structure of order N at low frequencies, i.e., (10.55)
holds, and it is of the form ((10.28). It follows from (2.213)), Theorem and
Proposition that

(10.56) Aol &,6w](0,60") = o(5*V)
uniformly in (4,0") if § < §y for some Jy.
Let
(10.57) Us(x) = %x, r€R?.
Then we have
(10.58) A [MO‘I/(;,EO\I/(;,W] = Alp, e, 0wl
To see this, let u be the solution to
V- mvwx) +w?(e 0 Ws)(x)u(z) =0 in R?\ By,
(10.59) 9u =0 ondBs,
ov

(u — U) satisfies the outgoing radiation condition,
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where U(z) = eV~ Tho(cos0sin0)=  Here Bs is the disk of radius & centered at 0.
Define for y = x/0

iy) =(uo w0 ") (y) =(uowy )(y) and T(y) =(Uowy)(y).

Then, we have

1
V. —V,u(y) + 6*we(y)u(y) =0 in R?,
) (y) (y)u(y)

(10.60) o _ 0 on 9B,
ov

(u— U) satisfies the outgoing radiation condition.

From the definition (2.229)) of the far-field pattern A, we get
»v=T ¢V~ Tkolz|
1 -

Vel

~ /=1 ev—lﬁkoly‘
4 —

(a_U)(y)N_V —le” \/m
where = |z|(cos#’,sin0"). So, we have (|10.58). It then follows from (10.56) that

(u—=U)(z) ~—v—1le~ Aso {/LO‘I/(;,Eo\IJls,w 0,0") as|z| — o0,
and

Aso[p, €, 6w](6,6") as [y| = 00,

(10.61) Ao |:MO‘I’5,€O\I/5,UJ:| 0,60 = o(5%N).
We also obtain from
(10.62) Q° [u oWs,e0 \I/(;,w} (0") = o(6*N).

It is worth emphasizing that (1o ¥s,e 0 Us) is a multi-coated structure of radius
26.

We now apply a transformation to the structure (uo Ws,e0 W) to blow up the
small disk of radius 4.

For a small number §, let Fs be the diffeomorphism defined by

. for |x| > 2,
3—46 1 z
2 for25 <zl <2
(2(1 =5 + 10 _6)|z|) 2] or 26 < |z] < 2,
(10.63) Fs(z):=9 ,1 1 T for 6§ < |z| < 26
(§+%|x|)m or 0 < laf < 2,
% for |z| < 6.

We then get from (10.61)), (10.62f), and Lemma|2.114] the main result of this section.

THEOREM 10.7. If (u, €) is an S-vanishing structure of order N at low frequen-
cies, then there exists &g such that

(10.64) Ao [ (F5)u(pr0 Ws), (Fs).( 0 5), 0] (6,8) = o(8*Y)
and
(10.65) Q* [(Fo)u (0 Ws), (Fy)a(e 0 Ws), | (8') = o(s*)

for all 5 < 6g, uniformly in 6 and 6'. Moreover, the cloaking enhancement, given

by (10.64) and , s achieved for all frequencies smaller than w.
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Since holds if we replace w by w’ < w, the cloaking enhancement is
achieved for all the frequencies smaller than w. Then it is worth comparing
with (10.56). In (10.56)), (1, €) is a multiply layered structure between radius 1 and
2 in which each layer is filled with an isotropic material, and enhanced near-cloaking
is achieved for low frequencies dw with § < dy3. On the other hand, in the
frequency w does not have to be small. In fact, says that for any frequency
w there is a radius ¢ which yields the enhanced near-cloaking up to o(62V).

10.4. Near-Cloaking for the Full Maxwell Equations

In this section, the scattering coefficients vanishing approach is used to con-
sider near-cloaking for the full Maxwell equations. As in the previous section, these
S-vanishing structures are, prior to using the transformation optics in Subsection
layered-structures designed so that their first scattering coefficients WIZ
and WM defined in Subsection vanish. We therefore construct multilay-
ered structures whose scattering coefficients vanish, which are called S-vanishing
structures for the full Maxwell equations.

10.4.1. Scattering Coefficients of Multilayered Structures. The scat-

TE,TE TETM TM,TE TM,TM .
Wm0y Winm) .2y Wingm) ) W(mm)(p,q)) are defined in

Subsection 2.14.6.2L namely, if E? given as in ([2.339)), the scattered field E — E* can

be expanded as (2.340) and (2.341)). The transmission condition on each interface
Y5 is given by ([2.347).
Assume that the core Ay is perfectly conducting, namely,

(1066) Exv=0 on EL+1 = 8AL+1.

tering coefficients (

In Subsection [2.14.6.2] using the symmetry of the layered radial structure, the
scattering coefficients are reduced to W,I'¥ and WIM | given by (2.356) and (2.361)).

The multi-layered structure is defined as follows: For positive numbers r1,...,7r541
with2=7r; >7r9 > -+ rpp1 =1, let

Aj::{x:rj+1§\x|<rj}, j:].,...,L,

AO = R3 \Ea
and
AL+1(: D) = {l‘ : |J?| < 1},
where Bs denotes the central ball of radius 2 and
Zj:{\sc|:rj}, j:L,L-i-l

Let (ij,€;) be the pair of permeability and permittivity parameters of A; for j =
1,...,L+1. Set yg =1 and ¢y = 1. Then define

L+1 L+1
(10.67) H= Z wix(A;) and e= Z eix(4;5),
§=0 =0

which are permeability and permittivity distributions of the layered structure.
To construct the S-vanishing structure at a fixed frequency w, one looks for
(14, €) such that

WEE[QM’W}:Q WEM[E,,U,,(U]:O, n=1,...,N,
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for some N. More ambitiously one may look for a structure (u, €) for a fixed w such
that

WTE [ e, 6w] =0, WIM[u € w] =0
forall 1 <n < N and 6 < §p for some dy. Such a structure may not exist. So
instead one looks for a structure such that

(10.68) WP e, 0] = o8N ), WMy, 0] = o8V ),

forall 1 < n < N and § < g for some dg. Such a structure is called an S-
vanishing structure of order N at low frequencies. In the following subsection,
the scattering coeflicients are expanded at low frequencies and conditions for the
magnetic permeability and the electric permittivity to be an S-vanishing structure
are derived.

Recall that from Lemma [2.119]it follows that there exists dy > 0 such that, for
all § < (50,

2n
(10.69) |WIP[e, p, dw]| < %52”“,

for all n € N\ {0}, where the constant C' depends on (e, u,w) but is independent
of 0. The same estimate holds for WM.

Suppose now that (u,€) is an S-vanishing structure of order N at low fre-
quencies. Let the incident wave E? be given by a plane wave eV—1kee with
k| = ko(= w\/eopo) and k - ¢ = 0. From , the corresponding scattering
amplitude, Al € 0w](c,k := k/|k|;& := x/|z|), is given by with the
following au, m, and By, m:

VD () T e, ),

n,m \/mn
ﬁn,m = - 47T(\/jl) ! (Un,m(f() . C)ngw [/1,, €, (50.)]

\/m V—=Twpuo

Applying (2.345) and (10.68]),
(10.70) A, €, 0w](c, k; &) = o(62N+1)

uniformly in (l;,;%) if § < dg. Thus using such a structure, the visibility of the
scattering amplitude is greatly reduced.

10.4.2. Asymptotic Expansion of the Scattering Coefficients. The spher-
ical Bessel functions of the first and second kinds have the series expansions

St (71)ltn+2l

) =
Jn(t) ;21”1X3X...x(2n—|—21+1)

and
(2n)! o (—1)fg-n—t
2nnl 20 (—2n+1)(—2n+3)...(—2n+2l— 1)

Yn (t) =

So, using the notation of double factorials, which is defined by
nx(n—2)x---x3x1 if n >0 is odd,
nll:=¢ nx(n—2)x---x4x2 if n > 0 is even,
1 if n=-1,0,
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one has
tn

10.71 in(t) = —(1 t fort < 1
(10.71) Jn(t) (2n+1)!!( +o(t)) fort<
and
(10.72) Yn(t) = —((2n — DMEH (1 4+ o(t)) for t < 1.

One now computes PTF[e, u,t] for small t. For n > 1,

L ZZ n n — —].Q(TL) —n—1
51 _EL gy o(ny Yy

PTEe pu,t] = (—v/—1t)* H,ufe;rj (2n + 1)!!0 () ZZHO

\/le(n)n t—n—1+0(t—n—1) \/7@( )t—n—l

—n—1
X ﬁ Mj(zg'rj)"+(1 | (z7j )”+1) +o(t™")
. —(1’L+1) Z‘T’nn n (Z’f‘ n n
= PRCTES AR @niont o)
(Z‘*Nd‘)n n n _\/7@< ) —n—1 —n—1
e G o L
( )(z-*lr‘)n n n \/762( ) —n—1 —n—1 ’
1(271]4' 1)J” # o+ olt") Nj—l(zj—lrj)n+lt +olt )
where z; = | /€115 and Q( ) = (2n — 1)!I. One then has
PTE (e ] = [(%"’Il) "t o(t") _‘/;?( n) - +o(t"1)] y
0 0
ﬁ e o I o) v - e (o)
] ;7,7 Z7L+1,r,2n+1 +1 i 2n L Q n ;H»l n ;
=1 | yT1 & H)”() )(1_4“71) (1 + o(1)) (Qnii)!!z;“( +1+u£1)(1+0(1))
Similarly, for the transverse magnetic case, one has
ATt = [Wtuo(t") e +o(t“>] )
0 0
2n+ijv!; ( )> (1 +on) (_m)zg(gg?r)ff“ <1 - %) T ott)

H ZT'L n+1 2n+1 n 1 € Q n n+1
=1 |/—1- ((2 +1)"()2 ( E—J> 2" (1 +0(1)) Q=T <n+1+

j—1 (2n + 1)!!2}@11

S ) (14 0(1)

€51
Using the behavior of spherical Bessel functions for small arguments, one can
see that pf’f and pgg admit the following expansions:

N—n
(10.73) PLE et =" (Z TE (0t + o<t2N-2">>
=0
and
N—n

(10.74) prblu,et] =" <Z g F (u, ) + 0(t2N—2")) :

=0
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Similarly, p?‘{[ and pfg/f have the following expansions:

N—n
(10.75) P [aye ] = o (Z M (1, )t + o<t2N-2”>>
1=0
and
N—n
(10.76) pr Y e t] = ¢ (Z g2 ()t + o(t2N2”)>
1=0

for t = 0w and some functions fIF gTE fTM and gI'M independent of ¢.

LEMMA 10.8. For any pair of (u,€), one has

(10.77) gm 6 (€) #0
and
(10.78) G (1, €) # 0.

PROOF. Assume that there exists a pair of (y,€) such that gl (u,e) = 0.
Since ng[u,e,éw} = 0o(67"71), the solution given by (2.349) with ap = 1 and
ag = 0 satisfies

V x <1v ><E> —0%w?eE=0 inR3\D,

K _
V-E=0 in R\ D,
(v x E)|+ = o(6~ (1) on 0D,
E(z) = M) (6ko|z|) Vi 0(2) for |z| > 2.
Let V(z) = lims_,0 6" E(x). Using (10.72)) one knows that the limit V satisfies
1 —
Vx(VxV)_O in R3\ D,
K _
V- V=0 in R\ D,
(vx V)|, =0 on dD,

V(z)=—((2n— 1))V, 0(2) for |x| > 2.

Since V(%) = O(|z|~1), one gets V(z) = 0 by Green’s formula, which is a
contradiction. Thus ggg(,u, €) # 0. In a similar way, (10.78) can be proved. g

From Lemma [10.8] one obtains the following result.

ProrosITION 10.9. One has

N—n
Wi Elps e, t] = 2740y D WP s ! + o(tVH)
=0

and

N—n
WM e, t] = 240 WM [, ™ + o2V,
=0

where t = dw and the coefficients WnT,F [, €] and WZ{VI (i, €] are independent of t.
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Hence, if one has (u, €) such that
(10.79)  WIPlu, el =W Ml =0, foralll<n< N, 0<1<(N—n),

n,l

(1, €) satisfies (10.68)); in other words, it is an S-vanishing structure of order N at
low frequencies. It is quite challenging to construct (u,e¢) analytically satisfying
(10.79). The next subsection presents some numerical examples of such structures.

10.4.3. Enhancement of Near Cloaking. In this section one constructs a
cloaking structure based on the following lemma.

LEMMA 10.10. Let F be an orientation-preserving diffeomorphism of R3 onto
R3 such that F(x) is identity for |z| large enough. If (E, H) is a solution to
V x E=+—-1wuH in R3,
(10.80) V x H=—/—1weE in R3,
(E — E', H — H") is radiating,
then (E,H) defined by (E(y), H(y)) =((DF)""E(F~(y)),(DF)""H(F(y)))
satisfies
VX E=+v-1w(F.u)H in R3,
V x H=—vV—-1w(F.e)E in R3,
(E — E', H — H) is radiating,
where (E*(y), H'(y)) =((DF)"TE(F~\(y)), (DF)"TH'(F~'(y))),

_ DF(x)u(x)DF” () _ DF(x)e(x)DF” ()
F)W) = ——4aor@y 0 4 FOW = —amra)y
with x = F~1(y) and DF is the Jacobian matriz of F.
Hence,

Alp, €, w] = A[Fyp, Fie,w].

To compute the scattering amplitude which corresponds to the material pa-
rameters before the transformation, one considers the following scaling function,
for small parameter 4,

1 3
Vi(z) = 55 2 e R°.

Then one has the following relation between the scattering amplitudes which cor-
respond to two sets of differently scaled material parameters and frequency:

(10.81) A [uo\IJ%,eo\II%,w} = Ao, €, 0w].
To see this, consider (F, H) which satisfies

(VxE)(m):lew(uo\P%)(x)H(x) for z € R3\ By,
(VxH)(x):f\/jlw(eolll%)(x)E(x) for € R3\ Bs,

Tx E(x)=0 on 0Bs,
(E — E', H — H) is radiating,
with the incident wave E'(z) = eV~ 1%7%¢ and H' = \/711 Vx E' withk-¢=0
—Lwpo

and k| = ko. Here Bj is the ball of radius 0 centered at the origin. Set y = $
and define

(Bw), Hw)) =((Eo v @), (Ho 7)) =((Eos)m), (H e ¥s)y))

5
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and
(B (), 7' () =( (B 0 W5) (v), (H' 0 W5) (1))-

Then, one has

Vy % H) (y) = —v/—Téwe(y)E(y) for y € R3\ By,
X E(y) = on 0By,

(E — E*, H — H') is radiating

Evy % E)(y) = V=Town(y)fly)  foryeR*\ By
(]

Remind that the scattered wave can be represented using the scattering amplitude
as follows:

. 6\/771]60‘:6‘ ~
(B = B)(a) ~ A ,uo\I/%,eo\I/%,w} (c,k; %) as |z| = oo,
0|T
and
I oV =Thodly| .
(E—E)(y) ~ WAOO [, e,w] (e, k; ) as |y| — oo.

Since the left-hand sides of the previous equations are coincident, one has (10.81)).
Suppose that (p, €) is an S-vanishing structure of order N at low frequencies as
in Section [10.4] From (10.70) and (10.81), one has

(10.82) A [uo\I!%,eo\I!%,w} (c,k; &) = (62N +1)
Then, one defines the diffeomorphism Fj as
x for |z| > 2,
3—45 1 T
for 26 < <2
(2(1_5) + 4(1_5)|m‘)|  for20slfs2,
falo) = (1+1||)x for 6 < |z| < 26
—+ — — T
2 25" ) |z] ore=# =2
x
1

for |x| < 0.

One then gets from (10.82)) and Lemma [10.10[ the main result of this chapter.

THEOREM 10.11. If (u,€) is an S-vanishing structure of order N at low fre-
quencies, then there exists dg such that

A |(E3)+(po W), (F5).(eo Wy),w| (e, ki) = o6+,
for all § < &, uniformly in (k, ).

Remark that the cloaking structure ((Fs)s(po W), (Fs)x(eo \Il%)) in Theorem
10.11| satisfies the perfect electric conductor boundary condition on |z| = 1.

10.4.4. Numerical Implementation. This section provides numerical ex-
amples of S-vanishing structures of order N at low frequencies based on .
As in previous sections, we use a gradient descent method for a suitable energy func-
tional. We symbolically compute the scattering coefficients. In the place of spherical
Bessel functions and spherical Hankel functions, we use their low-frequency expan-
sions and symbolically compute W,I'F and WM to obtain WnT E and Wg M We
use Code Near Cloaking for Maxwell’s Equations.


http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial11/11.1 Near Cloaking for Maxwell's Equations.zip
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The following example is an S-vanishing structure of order N' = 2 made of 6
multilayers. The radii of the concentric disks are r; = 2 — % forj =1,...,7.
From Proposition [10.9] the nonzero leading terms of W[y, e, t] and WM [u, €, ]
up to t° are
[t?,1°] terms in W{[p, e ], i.e., W], 0 o WIE ,

[t3,1%] terms in WM [u, e, t] i.e. Wl WM,
[t7] term in WF[p, e,t], i.e., Wi 0
[t°] term in WS M[u, e t], i.e., WEM 50

Consider the mapping

(10-83) (:U7 ) (Wlananlo aW11 7W20aW )7

where, p = (p1,...,16) and € = (€1,...,¢6). One looks for (u,e) which has the
right-hand side of as small as possible. Since is a nonlinear equation,
one solves it iteratively. Initially, one wets 1 = p(9) and € = €(®. One iteratively
modifies (p(*), e®)

(10.84) [+ DT — () ()T Ajb(”,
where AI is the pseudo-inverse of

a(WIOaWII 77Wg:év[)

Ai = ,
a(ﬂv ) (p,€)=(p(® ()

and
(i) — Wi
™
W20 (€)= ,e(D)

Example 1. Figure and Figure show computational results of 6-layers S-
vanishing structure of order N = 2. Onesets r = (2, 161, , )7 w® =(3,6,3,6,3,6)
and ¢©) = (3,6,3,6,3,6) and modify them following (10.84) with the constraints
that p and € belongs to the interval between 0.1 and 10. The obtained material
parameters are p = (0.1000,1.1113,0.2977,2.0436,0.1000, 1.8260) and

= (0.4356,1.1461, 0.2899, 1.8199,0.1000, 3.1233), respectively. Differently from
the no-layer structure with the perfect electric conductor condition at |z| = 1, the
obtained multilayer structure has the nearly zero coefficients of W [u, €,t] and
WIM[y e t] up to t°.

10.5. Near-Cloaking for the Elasticity System

As an application of the elastic scattering coefficients introduced in Subsection
2.15.17.2| we consider the elastic cloaking problem. The aim here is to construct
an effective near cloaking structure at a fixed frequency to make the objects inside
the unit disk invisible. We extend the approach of the previous sections. To this
end, we first design S-vanishing structures by canceling the first elastic scattering
coefficients in the next subsection.
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FicGure 10.1. This figure shows the graph of the material pa-
rameters and the corresponding coefficients in W[y, €, t] and
WIM[; € t] up to t°. The first row is of the no-layer case, and
the second row is of 6-layers S-vanishing structure of order N = 2
which is explained in Example 1. In the third column, the y-axis
shows (ng, WlTlE, WITéW, V[/lTlM7 WQT:(F, WQT(])W) from the left to the
right.

10.5.1. S-vanishing Structures. For positive numbers r; (j =1,2,...,L+
1) with 2 =71 > 79 > --» > rpy; = 1 we construct a multi-layered structure by
defining

Ag={zeR*: |z[>2}
AjZ:{.TERQI Tj+1§|fl?|<7”‘j}, jil,,L
AL+1 Z:{.’L' S R?: |.’17| < 1}

Let (Aj, s, pj) be the Lamé parameters and densities of A; for j = 0,...,L + 1.
In particular, \g, po and pg are the parameters of the background medium. In the
sequel, the piecewise constant parameters A, u and p are redefined as

L+1 L+1 L+1
(10.85) A=Y Ajx(A;), =Y p;x(A;), and p =Y p; x(4;),
7=0 7=0 7=0

in accordance with the aforementioned multi-layered structure. The scattering
coefficients W,?‘L:'ﬁ = Wﬁlfl()\, i, p,w) can be defined analogously to (2.498) and the
total field u = (uy, uz)? solves the equation

(10.86) Ly,u+pw?u=0 in R2
Since the multi-layered structure is circularly symmetric it is easy to check that
Wb = forall a,8€{P,S} and n#m.

Therefore, we have the following definition of the S-vanishing structures.
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FIGURE 10.2. This figure shows the graph of W1 ¥[u, e ¢] and
WIM[y € t] for various values of t. The first row is of the no-
layer case, and the second row if of 6-layers S-vanishing structure
of order N = 2 which is explained in Example 1. The values of
WTIE and W™ are much smaller in the S-vanishing structure than
in the no-layer structure.

DEFINITION 10.12 (S-vanishing Structure). The medium (A, u,p) defined by
is called an S-vanishing structure of order N at frequency w if Wﬁjf =0
forall|n] < N and o, B € {P,S}. Analogously, it is called an S-vanishing structure
for compressional (resp. shear) waves if W,F =0 (resp. WS =0) forall [n| < N
and o € {P, S}.

In the rest of this subsection we aim to construct an S-vanishing structure for
general elastic waves. To facilitate the later analysis we adopt the notation T} ,
for the surface traction operator 9/0v associated with elastic moduli A and p. In
order to design the envisioned structure it suffices to construct (A, u, p) such that
Wob = Wﬁ‘f =0forall 0 <n <N and o, € {P,S}. We assume that D is a
cavity, that is, the scattered field u satisfies the traction-free boundary condition
Trpir gt == 0u/Ov = 0 on |z| = 1. Note that the two-dimensional surface
traction admits the expression

Tauw =2u(v - Vwi,v-Vwe) + ANV - w + p T (owy — Oywe), W = (wy,ws),

in terms of the normal and tangent vectors N = (ny,n2) and T'= (—nq,n2) on the
surface respectively. Here and in the sequel we use the notation T} ,w to indicate
the dependance of 9w /Jv on the parameters A and p. We look for solutions u,, to
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(10.86)) of the form
w,(z) =ay PIP(x )+ay’ S35 (x )+a?’PHf(x)+a?’SHf(x), r€d;, j=0,...,L

)

with the unknown coefficients @;", ™" € C, to be determined later. Intuitively,
one should look for solutions u,, whose coefficients fulfill the relations

(10.87) aptap® 40 and af” =ap® =0 forall n=0,...,N.

Note that by (2.496|) and (2.497)), the scattering coefficients in this case turn out to
be

(10.88) =+/~14pocZay® =0 when ag P =1 and a3° =0,

. W;f’s V—T4pocZap® =0 whenag? =0 and a)° =1,

where cp and cg are the pressure and shear wave speeds, respectively. The solution
u,, satisfies the transmission conditions
(10.89)

U,ly =u,|- and Ty, , 4 Unly =Ty, 00| on |z|=7r;,Vji=1,..., L

Fairly easy calculations indicate that on |z| = r

0%v,(z,kp)
Or?
= 2uxp(HWMY (rip)eY 1% — AL HWY (rip)ey ~1n¢e

e [Tr, HE ()] = 21 + Ao, (z, kp)
1

=3 (—ZMTKP(HT(LI))/(THP) +(2un® — (A + ZM)TZKZ)H,SU(THPD eV Ines
1 —1n

= 74—2B5(7"/€p,)\,u)e\/i1 Pz

and

& - [T, HY ()] = u(

1 Ovy(x,Kp) n 1821)"(%/{13)
2 O, r Orop,

(2\/ 1un) ( W(rep) +rep(HDY (mp)) eV—lines
1 1

=: —QCf(ran\,u)e —ings

T

where

BE(t, A, 1) i= —2ut(HDY (£) + (2um® — (A + 20)*) H(2),

CP (1A, 1) = (2V/=Tpm) (—HD (1) + (HD)Y (1))

In the sequel, we use the shorthand notation Bfij = B (rjkp, A\j, ;) and Cf’j
CP(rjkp,\j, ;) for simplicity. It holds that
Ty, ., HE () = (BP P.(z)+ C,Izj S,(%)) onlz|=r;.
r}
Analogously, we obtain

1 . N
Ty,, #]HS( ) == (BS P,.(z) —|—C5,j Sn(x)) on |z| =rj,
J

72
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with
B3 :Bf(t)|tzws = (2v/—1pn) (Hu)(ws) +riks (H< )) (WS)) 7
Cr i =CR)] =y g = 20(riKs) (Hff))/ (rjks) + (—2un2 + 3M(TjHS)2H7(ll)(TjKS)) :

and 1
Ty d3@) = 5 (B2 Pu@) +CSu(@) . a=P.S,
J

where égj and égj are defined in the same way as B;; and C7; with HY
replaced by J,. Hence, the transmission conditions in (|10.89)) can be written as

~n,P ~n,S n,P n,S 1 ~n,P ~n,S n,P n,S\t
(10.90) 2 M, ;-1(a A5 150;70,057 9,057 ) —ﬁM ,j(aj A5 A5 50y )
Jj—1 J

forj=1,...,L,where M,, ;,j=0,...,L,n=0,...,N,is the 4 x 4 matrix defined
by

tipdy(tip)  V=Inda(tys) t;p(HD) (tp) V=—InHD(ts)

M, = |V —1nJu(tjp) —ti',sJ;z(tj,S) inHP(t;p)  —tjsHY (t.9) ’
’ BE i(t;.p) By i(tj.s) BE i(tj.p) By i(t).s)
CF(tip) Ci i(tip) Gy i(tis) Cyi(tis)

tja :i=Tjka-
The traction-free boundary condition on |z| = rp41 = 1 amounts to
(10.91) M, 1 (@, @} o a} %)t = (0,0,0,0)",
forn=0,...,N with
0 0 0 0
M _ 0 0 0 0
b B’rILDL BEL B7113,L BS,L
C’P CS ch, csy
Combining (10.90) and ((10.91) we obtain
QM (ag"” a5, ", g ®)" = (0,0,0,0),

2
n T
Q(n) = Q( )<A,/J/,[)OJ2) = (7;) Mn,L+1

0 0

L —1

* [Tjms M 3 Mo = ( () <n>> ,
21 22

where Q21 , (n) are 2 X 2 matrix functions of A, u and pw?.

Exactly hke the acoustic case in Section [10.3|one can show that the determinant
of Qg) is non-vanishing. Therefore, it suffices to look for the parameters A;, 115, p;
(j =1,2,...,L) from the nonlinear algebraic equations

Q)i kN gy pw?) =0, k=12 n=12....

We are interested in a nearly S-vanishing structure of order N at low frequencies,
that is, a structure (\, p, p) such that

WP\, pyw) = ow?N) forall «,B€{P,S}, [n|]<N, as w— 0.

(10.92)
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To this end, we need to study the asymptotic behavior of W A(\, i, p,w) as w
tends to zero. In view of (10.88) and (10.92) we find out that

(WP, Wes)t = /~1 4POC (ag”,ay®)
= —V~14pc (Q5) 7 QY @y ag St

where @’ P and ag’s are selected depending on (|10.88)).
Let W,, denote the 2 x 2 matrix

WP’P WS’P
Wy = <WP,S Ws,s) :

(10.93)

Then, the following result based on relation ([10.93)) elucidates the low frequency
asymptotic behavior of W,.

THEOREM 10.13. For all n € N, we have

(10.94)
N—n (L+1)l

WA p,w) =™ [ Vo mp) + Y > w (Inw)! V(A mp) | + Y
1=0 ;=0

as w — 0, where the matrices V,, o and V1 ; are defined by

P,P S,P PP S, P
v o Vn,O Vn70 d V - Vn RN Vn N
n,0 = vPs  ySs an n,l,j = v ySs
n,0 n,0 n,l,j n,l,5?

in terms of some V ”B and V, fj dependent on A\, u, p but independent of w. The
residual matric X, = (Y7,)i k=12 is such that |Y} | < Cw?N | for all i,k = 1,2,

where the constant C' € Ry is independent of w.

The analytic expressions of the quantities Vz:g and Vzlﬁ . in terms of Aj,
w; and p; are very complicated, but can be extracted by, for e7xample, using the
symbolic toolbox of MATLAB. Theorem follows from and the low-
frequency asymptotics of Qég)()\7 w, pw?) and ng)()\7 , pw?) as w — 0. The latter
can be derived based on the definition given in in combination with the
expansion formulas for Bessel and Neumann functions and their derivatives for small
arguments. For the sake of completeness below we sketch the proof of Theorem

M0.131

PrOOF OF THEOREM [10.13l Recall that for ¢t — 0

0= G + O™,
T) = g + (),
va(t) = - 21 o,
vin =20 o),

thJrl
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Hence, by the definition of B2(t, A, i), C(t, A, ), B(t, A\, 1) and C2(t, A, ),
have

V=Ip2" T (n + 1)

By (t, A 1) = =CR(t, A\ p) = — +o )

"
271D (n 4 1

Cr A = ~B A = - HETOED | oo
~ N v —1unt™
BEt ) =-CSt \p) = — s ¢t

(B ) = =C(t A ) 2,L_1F(7H1)Jr0( )
~ ~ 2tn

Pt = _BS(tAp)=-——1t"" 4ot
C’n( 7>\;,LL) 'IL( Y ?l‘l’) Qn_lr(n+ 1) +O( )?

as t — 0. Inserting the previous asymptotic behavior into the expression of M
we get

A Ap
10.95 M, =
( ) 7 (A21 A22>
where
A, = — n t;{;l v 71t?75 + O(wn)
11 2"F(’I’L+ 1) \/jltglp t;igl )

A12 =

un \/717%113 nt?s 1
A — 5 s o) n-+
2 2n1r(n+1)< : + 0",

271D (n + 1) (x/—lt;}i tis
App=———""—"— ’ ’

This implies that

(10.96) M, ; = (OO(“(’;)) OO(TW%)) L j=1,....L,
(10.97) M, 1= (O(?u") O(a?")) as w — 0.

Moreover, the inverse of M, ; can be expressed as
M-l (AT HATALB T ANAL —ARALBT!
J B 'Ay A B! '
where B is the Schur complement of Ag, that is,
B .= A22 — A21A;11A12.

Since

373

we

n,j

A =0w™™), AJAL=0wW™), AnA;'!=0w) and B~!'=0(w"),

it follows that
0] —n+1 O(w™"

O(w”“) O(w")) as w — 0.
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Inserting (10.96)), (10.97) and (10.98) into the expression (10.92) of Q™ and
then making use of the series expansions of J,, Y,,, J/ and Y, we find out that

N—n L+1

SO pw?) = w™ [ Do) + D S TN, p)w? (Inw) + o (wQ(N’”))
=1 5=0

N—n L+1
(n)(/\ ph pw?) = w ™" | Hyo(A, pt, p Z ZH(J) A, ity p)w? (Inw)? —|—0(w2(N’")) ,

=1 5=0

which together with (10.93) yields (10.94). Here, the remaining o(w?™=")) terms
are understood element-wisely for the matrices. O

In order to construct a nearly S-vanishing structure of order N at low frequen-
cies, thanks to Theorem we need to determine the parameters \;, p; and p;
from the equations

Vo s p) = Vi, (A s p) =0,
foral0 <n <N, 1<I<(N—-n),1<j<(L+1)land «, S € {P,S}. Numerically,
this can be achieved by applying, for example, the gradient descent method to the
minimization problem

N—n (L+1)l

mn Y S |ves] > Z v,

gk P a,BE{P,S}

10.5.2. Enhancement of Near Cloaking. The aim of this section is to show
that the nearly S-vanishing structures constructed in Subsection [10.5.1] can be used
to enhance the cloaking effect in elasticity. The enhancement of near cloaking
is based on the idea of transformation optics used in the previous sections. Let
(A, i, p) be a nearly S-vanishing structure of order N at low frequencies, taking the
form of . This implies that for some fixed w > 0 there exists ¢g > 0 such
that

{W‘“”B A, p,ew]| = o(e2Y), In| <N, €<e.

On the other hand, recall from the proof of Lemma that

2|n|—2
(10.99) [WPIN, 1, p, ew]| < ‘T;*l%e?w*?
02\?—2
(10.100) < ‘nr;lm N2 forall |n|> N, €< e.

Hence, by Theorem [2.146] the far-field elastic scattering amplitudes can be esti-
mated by

(10.101)  uS°[\, 1, p, ew](2,2') = 0(e2N72), a=P,S, as e¢—0

uniformly in all observation directions & and incident directions #’. Introduce the
transformation on R?:

1
U (z):= -z, =R
€

Then arguing as in the acoustic and electromagnetic case we have

2N72)

uXlAoVU,uoW,poV, wl=ull[\pu,p ew] =ole for all € <ep.
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Note that the medium (AoW,, poW¥,, poW,) is a homogeneous multi-coated structure
of radius 2e.

We now apply the transformation invariance of the Lamé system to the medium
AoW,uoT,, poW,). Recall that the elastic wave propagation in such a homoge-
neous isotropic medium can be restated as

V- (€:Vu)+w?(poP)u=0 in R?
where € = (Cijkl)%yk’lzl is the fourth-rank stiffness tensor defined by
(10.102)  Cyjra(x) = (Ao W) 6 j0k1 + (o We) (0i k01 + 6:10;k),

and the action of € on a matrix A = (a;;); j=1,2 is defined as

(10.103) C:A=(C:A)?

ij=1 — Z Cijkl Qg

k=12 i i=12

In the case of a generic anisotropic elastic material, the stiffness tensor satisfies the
following symmetries
(10.104)

major symmetry: Cijxi = Chuiyj, minor symmetries:  Cjjr = Cjint = Cijik,
for all i,7,k,1 = 1,2. Let & = (Z1,72) = Fi(x) : R?> — R? be a bi-Lipschitz and
orientation-preserving transformation such that F.({|z| < €}) = {|#] < 1} and the
region |z| > 2 remains invariant under the transformation. This implies that we
have blown up a small traction-free disk of radius € < 1 to the unit disk centered
at the origin. The push-forwards of € and p are defined respectively by

s (A 0\ 2 B 1 - 0y, 0T,
(Fe)*e =C = (Czqkp(ﬂ?)) m 220”“87187]- >

i,q,k,p=1 1j=1, e=F_1(&)

N p 0,
(Fe)sp =p = ( ) , M= ( ) :
det(M) ) | ,_ -1z O ) ; iz12

We need the following lemma (see, for instance, [266, [352]).

t,q,k,p=1,2

LEMMA 10.14. The function u is a solution to V- (€ : Vu) +w?pu = 0 in R? if
and only if 4 = uo (F.)~! satisfies V- (€ : V) +w?pu = 0 in R?, where V denotes
the gradient operator with respect to the transformed variable .

Applying the above lemma to the Lamé system (10.102) we obtain the following
result.

THEOREM 10.15. If (A, i, p) is a nearly S-vanishing structure of order N at
low frequencies, there exists €9 > 0 such that

UZO[(Fe)*Q (FE)*(p o \Ile)ﬂ w](a:, I/) = O(EQN_2)> a=P,S5,
for all € < €g, uniformly in all x and ©'. Here the stiffness tensor € is defined by

10.109). Moreover, an elastic medium ((Fe).«€, (Fo)«(po W) inl < |z| <2 s a
nearly cloaking device for the hidden region |z| < 1.

Theorem implies that for any frequency w and any integer number N
there exist eg = €g(w, N) > 0 and the elastic medium ((F,).€, (Fe)«(po ¥,)) with
€ < € such that the nearly cloaking enhancement can be achieved at the order
o(e*N=2). We finish this section with the following remarks.
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REMARK 10.16. Unlike the acoustic and electromagnetic case, the transformed
elastic tensor (F¢).€ is not anisotropic, since it possesses the major symmetry only.
Note that the transformed mass density (F,).(poW,.) is still isotropic. In fact, it has
been pointed out by Milton, Briane and Willis [352] that the invariance of the Lamé
system can be achieved only if one relaxes the assumption on the minor symmetry of
the transformed elastic tensor. This has led Norris and Shuvalov [372] and Parnell
[393] to explore the elastic cloaking by using Cosserat material or by employing
non-linear pre-stress in a neo-Hookean elastomeric material.

REMARK 10.17. We have designed an enhanced nearly cloaking device for gen-
eral incoming elastic plane waves. A device for cloaking only compressional or shear
waves can be analogously constructed by using the corresponding elastic scattering
coefficients.

10.6. Concluding Remarks

In this chapter, near-cloaking examples for electromagnetic and acoustic waves
have been shown. Based on the scattering coefficients vanishing approach, cloaking
devices that achieve an enhanced interior cloaking effect have been designed. Such
cloaking devices have been obtained via blow-up using the transformation optics of
multicoated domains. The cloaking devices have anisotropic material parameters.
Nevertheless, they can be approximated by concentric isotropic homogeneous coat-
ings [409]. For wave propagation problems, when considering near-cloaking for the
Helmholtz or Maxwell equations, it was proved in [38] that cloaking is increasingly
difficult as the cloaked object becomes bigger or the operating frequency becomes
higher. The difficulty scales proportionally to the object diameter of the frequency.
Another important observation made in [38] is that the reduction factor of the
scattering cross-section is higher in the backscattering region than in the forwarded
one. This is due to the creeping waves propagating in the shadow region. As a
consequence, the cloaking problem becomes easier if only scattered waves at cer-
tain angles are visible. The constructions proposed in this chapter can be extended
to the enhanced reshaping problem. In [38], it was also shown how to make any
target look like a disc with homogeneous physical parameters.



CHAPTER 11

Anomalous Resonance Cloaking and Shielding

11.1. Introduction

In this chapter, we consider the dielectric problem with a source term, which
models the quasi-static (zero-frequency) transverse magnetic regime. The cloaking
of the source is achieved in a region external to a plasmonic structure. The plas-
monic structure consists of a shell having relative permittivity —1 + /—1 with §
modeling losses.

The cloaking issue is directly linked to the existence of anomalous localized
resonance (ALR), which is tied to the fact that an elliptic system of equations
can exhibit localization effects near the boundary of ellipticity. The plasmonic
structure exhibits ALR if, as the loss parameter § goes to zero, the magnitude of
the quasi-static in-plane electric field diverges throughout a specific region (with
sharp boundary not defined by any discontinuities in the relative permittivity),
called the anomalous resonance region, but converges to a smooth field outside
that region. The anomalous feature of the resonance is that it is not associated to a
finite dimensional eigenvalue and a forcing term at or near the resonant frequency.
Instead, the resonance here is associated to an infinite dimensional kernel of the
limiting (non-elliptic) operator. The localized feature of the resonance refers to the
fact that the resonance is spatially localized.

To state the problem, let Q. be a bounded domain in R? and let ; be a domain
whose closure is contained in €2.. Throughout this chapter, we assume that €2, and
Q; are smooth. For a given loss parameter § > 0, the permittivity distribution in
R? is given by

1 in R?\ Q.,
(11.1) g5 =14 —14+v/=16 inQ\Q,

We may consider the configuration as a core with permittivity 1 coated by the shell

Qe \ Q; with permittivity —1 4+ /—1d. This structure is called a superlens. It is

inserted into a medium with permittivity 1. It turns out that quite interesting

behavior happens in the limit as 6 — 0. The superlens acts as an exterior cloaking

device for certain sources since the resonance cancels the effect of those sources.
For a given function f compactly supported in R? satisfying

(11.2) fdz =0
R2

(which physically is required by conservation of charge), we consider the following
dielectric problem:

(11.3) V-e5VVs=af inR?,

377
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with the decay condition Vs(x) — 0 as |z| — oc.
A fundamental problem is to identify those sources f such that when o = 1
then first

(11.4) E;s ::/ §|VVs|?de — 00 as§ —0.
Q\Qs

and second Vs remains bounded outside some radius a:

(11.5) |Vs(x)| < C, when |z| > a

for some constants C' and a independent of § (which requires that the ball Q, :=
{|z| < a} contains the entire region of anomalous localized resonance). The quantity
FEs is proportional to the electromagnetic power dissipated into heat by the time
harmonic electrical field averaged over time. Hence implies an infinite amount
of energy dissipated per unit time in the limit 6 — 0 which is unphysical. If instead
we choose o = 1/4/Fjs then the source o f will produce the same power independent
of § and the new associated solution Vy (which is the previous solution Vs multiplied
by «) will approach zero outside the radius a: cloaking due to anomalous localized
resonance (CALR) occurs. The conditions and are sufficient to ensure
CALR: a necessary and sufficient condition is that (with a = 1) Vs/\/E5s goes to
zero outside some radius as 6 — 0. We also consider a weaker blow-up of the energy
dissipation, namely,
(11.6) limsup Es = 0.

6—0
We say that weak CALR takes place if holds (in addition to (I1.F])). Then the
(renormalized) source f/+/Es will be essentially invisible for an infinite sequence of
small values of 0 tending to zero (but would be visible for values of ¢ interspersed
between this sequence if CALR does not additionaly hold).

The aim of this chapter is to review a general method based on the poten-
tial theory to study cloaking due to anomalous resonance. Using layer potential
techniques, we reduce the problem to a singularly perturbed system of integral
equations. The system is non-self-adjoint. A symmetrization technique can be ap-
plied in the general case. In the case of an annulus (€; is the disk of radius p; and
2. is the concentric disk of radius p.), it is known [353] that there exists a critical
radius (the cloaking radius)

(11.7) px =\ pipiTt.

such that any finite collection of dipole sources located at fixed positions within the
annulus €, \ Q. is cloaked. We show that if f is an integrable function supported
in E C Q,, \ Q. satisfying and the Newtonian potential of f does not extend
as a harmonic function in €, , then weak CALR takes place. Moreover, we show
that if the Fourier coefficients of the Newtonian potential of f satisfy a mild gap
condition, then CALR takes place. Conversely we show that if the source function
f is supported outside €2,, then does not happen and no cloaking occurs.
In this chapter, we also show that a cylindrical superlens can also act as a new
kind of electrostatic shielding device if the core is eccentric to the shell. Electrostatic
shielding is the phenomenon that is observed when a Faraday cage operates to block
the effects of an electric field. Such a cage can block the effects of an external field
on its internal contents, or the effects of an internal field on the outside environment.
While such a conventional device shields a region enclosed by the device, a superlens
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with an eccentric core can shield a non-coated region which is located outside the
device. Moreover, the size of the shielded region can be arbitrarily large while that
of the device is fixed. We call this phenomenon shielding at a distance. The key
element to study in the eccentric case is the Mobius transformation via which a
concentric annulus is transformed into an eccentric one. We also provide various
numerical examples to show the cloaking and shielding effects due to anomalous
resonance.

This chapter is organized as follows. In Section [11.2] we transform the problem
into a system of integral equations using layer potentials. In Section [11.3] we treat
the special case of an annulus. In Section[I1.4] we investigate the conditions required
for shielding at a distance and geometric features such as the location and size of
the shielded region. The results on cloaking are from [31] and those on shielding
at a distance are from [460]. As shown in this chapter, plasmonic resonance effects
have many applications in cloaking and shielding. This is one of the reasons why the
development of negative index metamaterials is another very much-studied research
area [141, 142} 325, 433].

11.2. Layer Potential Formulation

As in Chapter 2, for 0€2; or 0€2., we denote, respectively, the single and double
layer potentials of a function ¢ € L? as Sf [¢] and D¢, [¢]. We also introduce the
associated Neumann-Poincaré operators K¢, and K, .

Let F be the Newtonian potential of f, i.e.,

(11.8) F(z) = /]R? D(z,y)f(y)dy, =€ R>.

Then F satisfies AF = f in R?, and the solution Vj to (11.3) may be represented
as

(11.9) Vs(z) = F(a) + 85, [¢4](2) + Sg, [¢e] (x)

for some functions ¢; € L3(99Q;) and ¢, € L3(0€) (L2 is the collection of all square
integrable functions with the integral zero). The transmission conditions along the
interfaces 082, and 0%, satisfied by Vs read

| _ 2V

( 1 + vV — (5) (9V B on an ,
avs| — Vs
E N = (—1 =+ —16) 8V B on 896 .

Hence the pair of potentials (¢;, ¢.) is the solution to the following system of integral
equations:

O 0 .
( 1+\/75> SIVL¢] . _ asg;[¢z] . ( 2—}—\/75) [¢e] _ (2_ \/—71(” gf on 89“
(2_ \Eé asgy[QSZ] aSgy[(be] . ( 1_"_\/75) SQV[¢6] ) _ (—2+\/jlé) gf on 89@-

Note that we have used the notation v; and v, to indicate the outward normal on
0Q; and 0., respectively. Using the jump formula (2.8)) for the normal derivative
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of the single layer potentials, the above equations can be rewritten as

ot 2 gy [2
(11.10) 5 vi Lb} — | %
8Ve SSOI, 25-[ + (]C?ZF)* ¢ 81/5
on L3(09;) x L3(09.), where we set
V-16
11.11 = —
(1L.11) 2T 9@ - 1)

Note that the operator in (|11.10) can be viewed as a compact perturbation of the
operator

(11.12) R; := =l + (Kg,)" 0
' ' 0 2l + (K3,)* |
From Lemma it follows that the eigenvalues of (K§ )* and (K¢, )* lie in

the interval (—%,5]. Observe that zs — 0 as § — 0 and that there are sequences

of eigenvalues of (K¢, )* and (K{ )* approaching 0 since (K¢ )* and (K¢ )* are
compact. So 0 is the essential singularity of the operator valued meromorphic
function
AECH (M + (KH)")™ .

This causes a serious difficulty in dealing with . We emphasize that (K¢, )*
is not self-adjoint in general. In fact, (IC%P)* is self-adjoint only when 0. is a circle
(or a sphere in three dimensions). ‘

Let H = L?(9%;) x L*(09.). We write in a slightly different form. We
first apply the operator

{I O} ctH—-H

0 I
to (11.10f). Then the equation becomes

F
wl— (k0 —2se or
K 8V7; ¢ ¢z _ aVi
(11.13) 0 . 6ol = oF
—_ I * ¢ __
81/5 Sﬁl zsl + (K:QE) aye
Let the Neumann-Poincaré-type operator K* : H — H be defined by
N 0
_(’C?Zi) —58&
(11.14) K* := P ¢ ,
D sh, b
and let
OF
|9 _ | 0w
(11.15) d = Lﬁj , g:i= OF
v,

Then, (11.13]) can be rewritten in the form
(11.16) (zsl +K")[®] =g,
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)

11.3. Anomalous Resonance in an Annulus

where 1 is given by

In this section we consider the anomalous resonance when the domains 2. and
Q; are concentric disks. We calculate the explicit form of the limiting solution.
Throughout this section, we set . = {|z| < p.} and Q; = {|z| < p;}, where
Pe > Pi-

According to and (| m, if @ is given by

Fn@
v=3[]
n#0
then
(pi/pe)™ =1,

* _ 2 € V—1no
k(o] = 2, (ps/pe)?*t | € '

n#0 A
2 ?
Thus, if g is given by
_ FnG
=3 |%)c
n#0
the integral equations (|11.16]) are equivalent to
, [n]—1
ot + L g,
(11.17) n (pifp)™tt
250 + L g = g,

for every |n| > 1. It is readily seen that the solution ® = (¢, ¢e) to (11.17) is given
by

9 Z 22591 pl/pe)ln‘ 1 erng
4z§ — (pi/pe)?In!

B 22 22597 — pl/p )Inl+ign Nt
4z§ — (pi/pe)?In!

If the source is located outside the structure, i.e., f is supported in R? \ .,
then the Newtonian potential of f, F', is harmonic in €. and

(11.18) F(z)=c— Z e lr\nl v=inf
n7é0| ‘

for |z| < pe, where g is defined by (11.15)). Thus we have

(1119) gn = —gn(pl/pe)lnl_l

Here, g7 is the Fourier coefficient of 77 on I'., or in other words,
e

ay Z ge \/7n9
¢ n#0

(11.20)
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We then get

b

-1, n
_ 9 Z (225 +1 Pz/ﬂe)! Je oV —Ind
720 4z§ — (pi/pe)?Inl
o =2 Z (225 + (pi/pe)?™ g oV/"Tnb
o 425 = (pi/pe)*!

(11.21)

Therefore, from (2.37) we find that
(11.22)

2(p7" — 225 9% =ine
S%[¢i)(2)+S8 0] () = i VT g < =lal,
2;%| 01 (422 — (pi/pe)?2inl) 1™

and
(11.23)
g2
0 ) _ (22’ + 1) \/7”0 4 ,—
(11.24)
) 2[n|
Shlpel(x) = ‘gzi - (pz/p;)nl ) grrlPleV=1m0 < = 2| < pe.
nzo [nlpe " ((pifpe) 23)

We next obtain the following lemma which provides essential estimates for the
investigation of this section.

LEMMA 11.1. There exists g such that

dlge|?
(11.25) E;s ;:/ §|VVs|* ~ —
Q\0 ,%;0 In|(% + (pi/pe)?n)

uniformly in § < dg.

ProOF. Using (|11.18)), (11.23), and (11.24)), one can see that
g;le\/jlne

Inlpl™ (422 — (pi/pe)?ml)

2|n|
Vs(x) = c+ pe Z lp o (225 + 1) — (422 + 225)7"”']
n#0

Then straightforward computations yield that

2z5 + 1 2

lg2|?
| (A]z5]* = (pif)pe)? My -
B2+ (pijpoyen | (sl = i

Es~ 23 6(1 = (pi/pe)?™)

n#0

If 6 is sufficiently small, then one can also easily show that

n 62 n
[423 = (i) = 5+ (pif .

Therefore we get (11.25)) and the proof is complete. ([l
We next investigate the behavior of the series in the right-hand side of (11.25)).

Let

In(6/2)

(11.26) = Sto/nd
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If |n| < N, then (6/2) < (pi/pe)™, and hence

(11.27)

n‘2 n|2 |2

A
Z; Inl(pi/pe)?nl”

Y

d|ge d|ge 1
2 (5 + (pi/pe)?Inl) = 2 In| (32 + (pi/pe)2inl) ~ 2

n£0 0#|n|<Ns 0#]

Suppose that

(11.28) lim sup LQH =
|n|—oc0 In|(pi/pe)
Then there is a subsequence {ny} with |ni| < |na| < ... such that
5|2
(11.29) l9¢"]

koo |ng|(pi/pe)lmel

If we take § = 2(p;/pe)™!, then N5 = |ny| and
(11.30)

A gz ? Sl
(pz/pe)lnk‘ < > .
2 [nl(pi/pe)?!™ 2 nl(pi/pe)?™ " Ink|(pi/pe)lm!

n
0F#|n|<Ns 0F#|n|<|nk|

Thus we obtain from (11.25) that

(11.31) Jm B, p ikl = 00

We emphasize that (11.28)) is not enough to guarantee (11.4). We now impose
an additional condition for CALR to occur. We assume that {gI'} satisfies the
following gap property:

GP : There exists a sequence {ny} with |[n1| < |na| < ... such that
lger >
k| (pi/ pe )]

If GP holds, then we immediately see that (11.28]) holds, but the converse is not true.
If (11.28) holds, i.e., there is a subsequence {ng} with |n1| < |ns| < ... satisfying
([11.29

11.29) and the gap |ng41| — |ng| is bounded, then GP holds. In particular, if

Jim (pj /pe) 17
—00

g2 |

(11.32) Jim e S =

b

then GP holds.
Assume that {g7'} satisfies GP and {ny} is such a sequence. Let § = 2(p;/pe)®
for some « and let k(«) be the number such that

M) < a < gyl

Then, we have

(11.33)
olgr|? lg™|? g2
—= = (pi/pe)” —= > (pi/pe )‘”k(a>+1| k(o)
Oi;N Inl(os/ pe) ™! o;é%@' [(pi/pe)?nt = Mgy | (i) pe) (e
as o — Q.

We obtain the following lemma.
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LEmMA 11.2. If holds, then

(11.34) limsup Es =
6—0

If {g2} satisfies the condition GP, then

(11.35) lim Es = 0o
6—0

Suppose that the source function is supported inside the radius p, = 1/ p2p; L

Then its Newtonian potential cannot be extended harmonically in |z| < p, in
general. So, if F is given by

(11.36) F=c— Z anr‘"‘e\/jne, r < pe,
n#0
then the radius of convergence is less than p,. Thus we have
(11.37) lim sup |n||a,|?ps 2nl —
[n|—o0

i.e., (11.28) holds. The GP condition is equivalent to the existence of {n;} with
|ni| < |ns| < ... such that

(11.38) T (pi/pe) ™21 g, 227 = oo
— 00
The following is the main theorem of this section.

THEOREM 11.3. Let f be a source function supported in R? \ Q. and F be the
Newtonian potential of f.

(i) If F does not extend as a harmonic function in Q,, = {|z| < p.}, then
weak CALR occurs, i.e.,
(11.39) limsup E5 =
§—0

and holds with a = p?/p;.
(ii) If the Fourier coefficients of F' satisfy (11.538 , then CALR occurs, i.e.,

(11.40) lim E; =

and holds with a = p2/p;.
(iii) If F' extends as a harmonic function in a neighborhood of Q, , then CALR
does not occur, i.e.,

(11.41) Es<C
for some C independent of J.

Proor. If F' does not extend as a harmonic function in €, , then (11.28)
holds. Thus we have (11.39)). If (11.38) holds, then (11.40) holds by Lemma
Moreover, by (11.22)), we see that

Z 2(p2|"\ 2|"\) 25 Z (;p\nl
Vs < |F[+ — | <IFl+C
Zollnlol' M (422 — (pi/pe )2|n.) (5 A+ (pi/ pe)? Il
2\n|
p
<|F|+C <C, if r=|z|>==
la Z ,WI || Py

for some constants C which may differ at each occurrence.
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If F extends as a harmonic function in a neighborhood of €2, then the power
series of F', which is given by (|11.18)), converges for r < p, + 2¢ for some € > 0.
Therefore there exists a constant C' such that

gel o1
|n|p|”| 1 = (p*—|—6)|"‘
for all n. It then follows that
(11.42) 92| < C(p2(pi/pe) ™ + pe€)"2pl < ((pi/pe) ™" +€)7I"112
for all n. This tells us that

n|2

5|g@ |ge ]-
2 Tl + (o o) < 2 Tl p ) = 2 Tl T <l pe

This completes the proof. O

If f is a dipole in Q,, \ Qe, i.e., f(z) = a-Vi,(x) for a vector a and y € Q, \ Q.
where ¢, is the Dirac delta function at y, then F(z) = a- VI'(z,y). From the
following expansion of the fundamental solution of the Laplacian:

(=1)lel -1 |a|005|a|9 oS0 |a]6
(11.43) o 0T (z,0) = 2ol ol + by el |
we have
oo 9 x 9
(11.44) (2,y) = Z o [cosn ——2r™ cosnf + bm: yr"sian} +C.
™
n=1 y

Then we see that the Fourier coefficients of I have the growth rate r, ™ and satisfy
, and hence CALR takes place. Similarly CALR takes place for a sum of
dipole sources at different fixed positions in €2, \ Q.. We mention that this fact
was found in [353].
If f is a quadrapole, i.e.,
2

82
flz)=A:VVi,(z) = Z aijmdy(x)

ij=1
for a 2 x 2 matrix A = (a;;) and y € Q,, \ Qc. Then
2

0%1(z,y)
F(x) n Z_ @i 8@8333 '
i,j=1
Thus CALR takes place. This is in agreement with the numerical result in [370].
If f is supported in R? \Tm, then F' is harmonic in a neighborhood of va
and hence CALR does not occur by Theorem In fact, we can say more about
the behavior of the solution V3 as § — 0 which is related to the observation in
[369, 354] that in the limit § — 0 the annulus itself becomes invisible to sources
that are sufficiently far away.

THEOREM 11.4. If f is supported in R?\ Q,,, then (11.41) holds (with o =1
mn ) Moreover, we have

(11.45) sup |Vs(z) — F(z)] =0 as d—0.

|75‘ZP*
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PROOF. Since supp f C R?\ Q,, , the power series of F, which is given by

(11.18)), converges for r < p, + 2¢ for some € > 0.
According to (11.22)), if p. < r = |z|, then we have

2[n|

Vilo) = (o) = 3 - h P L v,
n#0 |n|pe ((pi/pe)zln‘ - 425) r

If |z| = p«, then the identity

2|n|
)

2|n 2|n n n n T
(o2 = p2")zs Ye _ (1= (pi/pe)*™)zs gepr!
nl ot (pifpe )2l —423) plT i/ pe) ™ = 423(pi/ pe) 1) [l
holds and

(1= (pi/pe)?™)2s ‘ < ! ‘
(il P =423 (osf p) )| = 1G5 (pipe)™ = 2api/pe) )
1

= J B —|n| 1 . [m| -
<’%m(%l(m/pe)"'—z(s(pi/,oe)—”l)‘ <4+52(p’/p€) +5(pl/pe)> :

It then follows from (|11.42f) that

-1 ) -1 Inl/2
Vi)~ F(@)| <230 (galoilod ™+ oulp ™) e (L)

= n|
and hence
|[Vs(z) — F(z)|] >0 asd—0.
Since Vs — F' is harmonic in |z| > p. and tends to 0 as |z| — oo, we obtain
by the maximum principle. This completes the proof. O
Theorem shows that any source supported outside ,, cannot make the
blow-up of the power dissipation happen and hence is not cloaked. In fact, it is
known that we can recover the source f from its Newtonian potential F' outside
Q,, since f is supported outside Q,, (see [270]). Therefore we infer from
that f may be recovered approximately by observing Vs outside €2,, .

11.4. Shielding at a Distance

The aim of this section is to investigate the conditions required for shielding
at a distance and geometric features such as the location and size of the shielded
region. The key element to study in the eccentric case is the M6bius transformation
via which a concentric annulus is transformed into an eccentric one. The electro-
static properties of the eccentric superlens can be derived in a straightforward way
from those of the concentric case since the Mobius transformation is a conformal
mapping.

We let 2; and €2, denote circular disks centered at the origin with the radii p;
and p., respectively. We assume that 0 < p; < p. < 1.

As in the previous section, the core (€;) and the background (R?\ Q.) are
assumed to be occupied by the isotropic material of permittivity 1 and the shell
(2 \ ©; by the plasmonic material of permittivity —1 4+ /—1J. The obtained
concentric superlens geometry is described in Figure [I1.1](a).

Identifying R? as C, Q; and Q. can be represented as

Q={2€C:lz|<p} and Q={z€C:|z[<pc}.
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We also assume the annulus structure to be small compared to the operating wave-
length so that it can adopt the quasi-static approximation. Then (the quasi-static)
electric potential Vy satisfies

(11.46) V-eVVs=f inC,

where f represents an electrical source. We assume that f is a point multipole
source of order n located at a location zg € R?\ Q.. Then the potential F' generated
by the source f can be represented as

F(z)= Z?R{ck(z —20)7%}, zec,

with complex coefficients c¢;’s. When n = 1, the source f (or the potential F)
means a point dipole source.

Then, from the previous section, the anomalous localized resonance can be
summarized as follows.

(i) the dissipation energy W; diverges as the loss parameter § goes to zero if
and only if a point source f is located inside the region Q. := {]z| < p.},

where p, := +/p2/p; and Wj is given by

(11.47) W;s = %/ 5| VVs|? do =6 |V V5|2
R? QD
Let us call 2, (or py) the critical region (or the critical radius), respectively.
(ii) the electric field —VVj stays bounded outside some circular region regard-
less of §. More precisely, we have

(11.48) |VVs(2)| < C, z€Qy:={|z| > p2/pi},

for some constant C' independent of . Here, the subscript ‘b’ in 2
indicates the boundedness of the electric field. Let us call ; the calm
regION.

11.4.1. Mobius Transformation. In this subsection, we show that the con-
centric annulus can be transformed into an eccentric one by applying the Mobius
transformation ® defined as
(11.49) C=d(2) := a2+1

z—1
with a given positive number a. We shall also discuss how the critical region is
transformed depending on the ciritical parameter p,.

The function ® is a conformal mapping from C\ {1} to C\ {a}. It maps the
point z = 1 to infinity, infinity to ( = a, and z = 0 to ( = —a. It maps a circle
centered at the origin, say S, := {2z € C: |z| = p}, to the circle given by

P2 +1 2a
———andr=——.
p?—1 lp—p~
So the concentric circles S,’s with p # 1 are transformed to eccentric ones in (-
plane; see Figure [11.2

Let us discuss how the concentric superlens described in Section [11.3] is geo-
metrically transformed by the mapping ®. Note that for 0 < p < 1, the trans-
formed circle ®(S,) always lies in the left half-plane of C. Since we assume that
0 < p; < pe < 1, the concentric annulus in z-plane is changed to an eccentric one

(11.50) @(S,) ={z€C:|z—¢/=r}, wherec=a
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“._point source

Q,
electric field = 0

Ficure 11.1. Cloaking due to the anomalous localized resonance:
(a) shows the structure of the superlens with concentric core; (b)
illustrates the cloaking effect.

original space, z-plane transformed space, ( - plane

1 p:1
1

0

FIGURE 11.2. The Mobius transformation ® defined in
maps 0, oo, 1 to —a, +a, oo, respectively. The left figure shows
radial coordinate curves {|z| = p}, p > 0, and the right figure their
images transformed by ® with a = 1. Concentric circles satisfying
p # 1 are transformed into eccentric ones.

contained in the left half (-plane. We let Q; (or ﬁe) denote the transformed disk
of ©; (or €.), respectively.

Now we consider the critical region Q. = {|z| < p.} and the calm region
Q. Let us denote the transformed critical region (or calm region) by €2, (or ),
respectively. The shape of Q. can be very different depending on the value of p,.
Suppose 0 < p, < 1 for a moment. Then the region ﬁ* is a circular disk contained
in the left half (-plane. Next, assume that p, > 1. In this case, Q. becomes the
region outside a disk which is disjoint from the eccentric annulus. Contrary to the
case when p, < 1, the region Q. is now unbounded. Similarly, the shape of Q
depends on the parameter p, := p2/p;. If 0 < p, < 1, Qyisa region outside a circle.
But, if pp > 1, Qs becomes a bounded circular region which does not intersect with
the eccentric superlens. This unbounded (or bounded) feature of the shape of €,
(or ©3) will be essentially used to design a new shielding device.
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11.4.2. Potential in the Transformed Space. Here, we will transform the
potential Vs via the Mobius map ® and then show that the resulting potential
describes the physics of the eccentric superlens. Let us define the transformed
potential Vs by Vs(¢) := Vs o ®1(¢).  Since the Mobius transformation ® is
a conformal mapping, it preserves the harmonicity of the potential and interface
conditions. It can be easily shown that the transformed potential Vs satisfies

(11.51) V-&VVs=f inC,

where f(¢) = \@1'|2 (f o ®@71)(¢) and the permittivity €; is given by

1 in Q,
(11.52) &) =3 -14+v=15  inQ.\Q,
1 in the background.

Therefore, the transformed potential IN/(; represents the quasi-static electrical po-
tential of the eccentric superlens induced by the source f(¢).

Now we consider some physical properties in the transformed space. The dissi-
pation energy /V[75 in the transformed space turns out to be the same as the original
one Wy as follows:

~ Vs ~ 1 9V

11.53 Ws =6 Vs dl =6 L OVs
e 2B:\R) IR a@ae) P In

|O'| dl = W.

In the derivation we have used the Green’s identity and the harmonicity of the
potentials Vs and V.

The point source f is transformed into another point source at a different
location. To see this, we recall that the source f is located at z = zg in the original
space. It generates the potential F(z) = > ;_, R{ck(z — 20)"¥}. By the map @,
the potential F' becomes F := F o ®~! which is of the following form:

(11.54) F(Q) =Y R{du(¢— )"},
k=1

where dj’s are complex constants and (y := ®(zp). So the transformed source fis
a point multipole source of order n located at { = (y. It is also worth remarking
that, if the point source f is located at zg = 1 in the original space, then fbecomes
a multipole source at infinity in the transformed space. In fact, its corresponding
potential F is of the following form:

F(¢) = > R {enct}
k=1

for some complex constants e;. For example, if n = 1, then the source f (or
potential F) represents a uniform incident field.

11.4.3. Shielding at a Distance Due to Anomalous Resonance. In this
subsection, we analyze the anomalous resonance in the eccentric annulus and ex-
plain how a new kind of shielding effect can arise. In view of the previous subsection,
the mathematical description of anomalous resonance in the eccentric case can be
directly obtained from that in the concentric case as follows:
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point source
°

&%

€=1 critical region Q.

FI1GURE 11.3. Shielding at a distance due to the anomalous local-
ized resonance: (left) shows the structure of the superlens with the
eccentric core; (right) illustrates shielding at a distance.

(i) the dissipation energy Wg diverges as the loss parameter § goes to zero if
and only if a point source f is located inside the region 2.

(ii) the electric field —VVj stays bounded in the calm region €2, regardless of
d, i.e.,

(11.55) V(O <C, ¢ ey,

for some constant C' independent of §.

Now we discuss a new shielding effect. Suppose the parameters p; and p.
satisfy p. = +/p2/p; > 1. Then, as explained in Subsection m the calm
region Q) becomes a bounded circular region which does not intersect with the
eccentric structure. If a point source is located within the critical region (NE*, then the
anomalous resonance occurs and the normalized electric field —VVj/ VEy is nearly
zero inside the calm region Q. So the bounded circular region Q is not affected
by any surrounding point source located in Q.. In other words, the shielding
effect does occur in ()b, but there is a significant difference in this shielding effect
compared to the standard one. There is no additional material enclosing the region
ﬁb; the eccentric structure is located disjointly. So we call this effect ‘shielding at
a distance’ and €2, ‘the shielding region’. The condition for its occurrence can be
summarized as follows: shielding at a distance happens in Qp if and only if the
critical parameter p, and the source location (, satisfy

(11.56) pe >1and ¢ € Q,.

The shielding effect occurs for not only a point source but also an external
field like a uniform incident field F({) = —R{Eo(} for a complex constant Ey. As
mentioned previously, an external field of the form R{>";'_, ex(*} can be considered
as a point source at { = co. Since the critical region Q. contains the point at infinity
when p, > 1, the anomalous resonance will happen and then the circular bounded
region ﬁb will be shielded. It is worth remarking that, unlike in the eccentric
case, the anomalous resonance cannot result from any external field with source at
infinity for the concentric case.

11.4.4. Numerical Illustration. In this subsection we illustrate shielding at
a distance by showing several examples of the field distribution generated by an
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eccentric annulus and a point source. To compute the field distribution, we use an
analytic solution derived by applying a separation of variables method in the polar
coordinates to the concentric case and then using the Mobius transformation ®.
We use Code |Anomalous Resonance - Cloaking and Shielding,

For all the examples below, we fix p. = 0.7 for the concentric shell and a = 1
for the Mobius transformation. We also fix the loss parameter as § = 107'2.

Example 1 (Cloaking of a dipole source) We first present an eccentric
annulus which acts as a cloaking device (Figure . Since we want to make a
‘cloaking’ device, we need p;, to satisfy the condition p, < 1. Setting p; = 0.55 for
this example, we have p, = p?/p; = 0.89 < 1 (p. = (p2/p:)'/? = 0.79).Then by
applying the Mobius transformation @, the concentric annulus is transformed to
the following eccentric structure from : the outer region Q. = ®(€.) is the
circular disk of radius 2.75 centered at (—2.92,0) and the core €; = ®(€;) is of
radius 1.58 centered at (—1.87,0). The boundaries of the physical regions 8§~2i and
6@6 are plotted as solid white curves in Figure On the other hand, the critical
region’s boundary 8(2*, which is not a material interface, and is the circle of radius
4.08 centered at (—4.55,0), is plotted as a dashed white circle. We refrain from
plotting the calm region’s boundary O, in the figure for the sake of the simplicity;
it is relatively close to 0f2.. Note that the calm region €2, is an unbounded region
whose boundary is slightly outside of 9€2,.

In Figure a), we assume that a dipole source F(¢) = R{b(C — (o)}
is located at ¢, = (—3.4,8.5) with the dipole moment b = (3,—3). The point
source is plotted as a small solid disk (in white). It is clearly seen that the field
distribution is smooth over the entire region except at the dipole source. That
is, the anomalous resonance does not occur. We can detect the dipole source by
measuring the perturbation of the electric field.

In Figure [I1.4[b), we change the location of the source to (o = (—3.4,3.5) so
that the source’s location belongs to the critical region Q.. Then the anomalous
resonance does occur, as shown in the figure. As a result, the potential outside the
white dashed circle becomes nearly constant. In other words, the dipole source is
almost cloaked.

Example 2 (Shielding at a distance for a dipole source) Next we show
that changing the size of the core allows for shielding at a distance to happen for a
dipole source (Figure [TL.5)).

In Figure a), we let p; = 0.55 as in Example 1. We also assume that a
dipole source F(¢) = R{b(C—(o) '} is located at ¢y = (5,5) with the dipole moment
b = (3,3). Since the source is located outside the critical region, the anomalous
resonance does not happen.

Now let us change the size of the core. To make the shielding at distance
occur, the critical radius p, satisfies the condition p. > 1. We set p; = 0.2 so that
px = \/p2/pi = 1.31 > 1. Then, the core §; = ®(;) becomes the circular disk of

radius 0.42 centered at (—1.08,0). The critical region €, becomes the region outside
the circle of radius 3.53 centered at (4.06,0). The resulting eccentric annulus and
the critical region are illustrated in Figure b). Note that the source is contained
in the new critical region Q, and px > 1. In other words, the condition
for shielding at a distance is satisfied. Indeed, inside the white dashed circle, the
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FiGUurE 11.4. Cloaking for a dipole source. We set p; = 0.55,
pe = 0.7 and a = 1. The dipole source is located at (y = (—3.4,8.5)
in the left figure and at ¢y = (—3.4,3.5) in the right figure. (left)
A dipole source (small solid disk in white) is located outside the
critical region ), (white dashed circle). The field outside €, is
significantly perturbed by the source. (right) A dipole source is
located inside the critical region (NZ* The anomalous resonance
happens near the superlens but the field outside Q. becomes nearly

zero. The source becomes almost cloaked. The plot range is from
—10 (blue) to 10 (red).

potential becomes nearly constant while there is an anomalous resonance outside.
Thus, the shielding at a distance occurs.

Example 3 (Shielding at a distance for a uniform field) Finally, we
consider shielding at a distance for a uniform field (Figure . We keep the
parameters a, p; and p. as in the previous example but change the dipole source
to a uniform field F(¢) = —R{Ep(} with Fy = 1. As mentioned previously, an
external field can be considered as a point source located at infinity.

In the left figure, the critical region does not contain infinity. So the anomalous
resonance does not happen. The uniform field can be easily detected. In the right
figure, we change the core as in the previous example. Now the critical region (the
region outside the white dashed circle) does contain infinity. So the anomalous
resonance does happen. Again, the potential becomes nearly constant in the region
inside the dashed circle. This means there is shielding at a distance for a uniform
field.

11.5. Concluding Remarks

The convergence to a smooth field outside the region was shown in [369], where
the first numerical evidence for ALR was also presented. A proof of ALR for a
dipolar source outside a plasmonic annulus was given in [354]. The condition for
CALR in the annulus case was also derived in [3I]. A necessary and sufficient
condition on the source term to be cloaked in the general case was derived in
[31]. Tt is based on a symmetrization principle for the associated boundary integral
formulation. It is worth mentioning that if the real part of the permittivity of the
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FI1GURE 11.5. Shielding at a distance for a dipole source. We set
pe = 0.7, a=1and (s = (5,5). We also set p; = 0.55 in the left
figure and p; = 0.2 in the right figure. (left) The critical region Q.
(white dashed line) contains the eccentric superlens (white solid
lines). The field outside the white dashed circle is significantly
perturbed by the source. (right) The critical region is now the
region outside the white dashed circle which does not contain the
superlens any longer. The field inside the white dashed circle is
nearly zero and so the shielding occurs. The plot range is from
—10 (blue) to 10 (red).

FicUre 11.6. Shielding at a distance for a uniform field. We set
pe = 0.7 and a = 1. We also set p; = 0.55 in the left figure and
pi = 0.2 in the right figure. (left) The critical region Q. (white
dashed line) contains the eccentric superlens (white solid lines).
The uniform incident field is nearly unperturbed outside the white
dashed circle. (right) The critical region 2, is the region outside
the white dashed circle which does not contain the superlens any
longer. The field inside the white dashed circle is nearly zero and
so the shielding occurs. The plot range is from —15 (blue) to 15
(red).

393
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shell is different from —1, then CALR does not occur [32]. On the other hand, if
the cylindrical structure has an eccentric core, then a new kind of shielding effect
can happen [460]. Using the Mobius transformation, the shielding at distance has
been investigated both analytically and numerically. In contrast with conventional
shielding, the anomalous resonance shielding effect does not require any material
which encloses the region to be shielded.

The results of this chapter on anomalous resonance cloaking were extended in
[297] to the case when the core D is not radial by a different method based on a
variational approach. In [347], the cloaking due to anomalous localized resonance
in the quasistatic regime in the case when a general charge density distribution is
brought near a slab superlens is analyzed.

On the other hand, it was shown in [32] that in three dimensions CALR does
not occur. The occurrence of CALR is in fact determined by the eigenvalue distri-
bution of the Neumann-Poincaré-type operator associated with the structure [32].
However, using a shell with a specially designed anisotropic dielectric constant, it
is possible to make CALR occur in three dimensions [33].

In [148], various examples including an elliptical core in an elliptical shell are
considered via numerical simulation. The results are similar to those of the radial
case considered here; in particular, the structure seemed to cloak a polarizable
dipole placed sufficiently near the shell. When the core and the shell are confocal
ellipses, the critical elliptic radius such that, for any source inside it, CALR takes
place and, for any source outside it, CALR does not take place was computed in
[175] by again using the spectral properties of the Neumann-Poincaré-type operator
associated with the two elliptic interfaces.

Using the spectral properties of the Neumann-Poincaré operator for the Lamé
system of elasto-statics (see Subsection [2.15.8)), it was shown in [85] that CALR
takes place at accumulation points of eigenvalues of the Neumann-Poincaré operator
for the elasto-static system. In [87], the anomalous localized resonance on the
circular coated structure and cloaking related to it in the context of elasto-static
systems are investigated. The structure consists of the circular core with constant
Lamé parameters and the circular shell of negative Lamé parameters proportional
to those of the core. As in this chapter, it is shown that cloaking by anomalous
localized resonance takes place if and only if the dipole type source lies inside
critical radii determined by the radii of the core and the shell. This result has been
obtained in [326] using a variational approach similar to that in [297].

In [294], it is shown that anomalous localized resonance may appear only for
bodies so small such that the quasi-static approximation is realistic. This gives
limits for size of the objects for which CALR may be used. Such limits may also
apply for shielding at a distance for the full Maxwell equations.



CHAPTER 12

Plasmonic Metasurfaces

12.1. Introduction

A metasurface is a composite material layer, designed and optimized in order
to control and transform electromagnetic fields. The layer thickness is negligible
with respect to the wavelength in the surrounding space. The composite structure
forming the metasurface is assumed to behave as a material in the electromagnetic
sense, meaning that it can be homogenized on the wavelength scale, and the meta-
surface can be adequately characterized by its effective, surface-averaged properties
[444).

In this chapter, we consider the scattering by a thin layer of periodic plasmonic
nanoparticles mounted on a perfectly conducting sheet. We design the thin layer
to have anomalous reflection properties and therefore to be viewed as a metasur-
face. As the thickness of the layer, which is of the same order as the diameter of the
individual nanoparticles, is negligible compared to the wavelength, it can be approx-
imated by an impedance boundary condition. Our main result is to show that at
some resonant frequencies the impedance blows up, allowing for a significant reduc-
tion of the scattering from the plate. Using the spectral properties of the periodic
Neumann-Poincaré operator defined in , we investigate the dependency of the
impedance with respect to changes in the nanoparticle geometry and configuration.
We fully characterize the resonant frequencies in terms of the periodicity, the shape
and the material parameters of the nanoparticles. As the period of the array is much
smaller than the wavelength, the resonant frequencies of the array of nanoparticles
differ significantly from those of single nanoparticles. As shown in this chapter,
they are associated with eigenvalues of a periodic Neumann-Poincaré type opera-
tor. In contrast with quasi-static plasmonic resonances of single nanoparticles, they
depend on the particle size. For simplicity, only one-dimensional arrays embedded
in R? are considered in this chapter. The extension to the two-dimensional case is
straightforward and the dependence of the plasmonic resonances on the parameters
of the lattice is easy to derive.

We present numerical results to illustrate our main results in this chapter, which
open a door for a mathematical and numerical framework for realizing full control of
waves using metasurfaces [15), 359, [444]. Our approach applies to any example of
periodic distributions of resonators having (subwavelength) resonances in the quasi-
static regime. It provides a framework for explaining the observed extraordinary
or meta-properties of such structures and for optimizing these properties.

The chapter is organized as follows. We first formulate the problem of approx-
imating the effect of a thin layer with impedance boundary conditions. Then using
the results of Subsection [2.6.1] on the one-dimensional periodic Green’s function
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and layer potentials, we derive an explicit formula for the equivalent boundary con-
dition in terms of the eigenvalues and eigenvectors of the one-dimensional periodic
Neumann-Poincaré operator defined by , and give the shape derivative of
the impedance parameter. Finally, we illustrate with a few numerical experiments
the anomalous change in the equivalent impedance boundary condition due to the
plasmonic resonances of the periodic array of nanoparticles. For simplicity, we only
consider the scalar wave equation and use a two-dimensional setup. The results of
this chapter can be readily generalized to higher dimensions as well as to the full
Maxwell equations. Our results in this chapter are from [73].

12.2. Setting of the Problem

We use the Helmholtz equation to model the propagation of light. As said
before, this approximation can be viewed as a special case of Maxwell’s equations,
when the incident wave u® is transverse magnetic or transverse electric polarized.

Consider a particle occupying a bounded domain D € R? of class C'" for
some 71 > 0 and with size of order § <« 1. The particle is characterized by electric
permittivity €. and magnetic permeability p., both of which may depend on the
frequency of the incident wave. Assume that Sme. > 0, Re p. < 0,Im p. > 0 and
define

km = Wy Emtm, ke = Wy/Ecllc,

where &, and ., are the permittivity and permeability of free space, respectively,
and w is the frequency. Throughout this chapter, we assume that ¢, and p,, are
real and positive and k,, is of order 1.

We consider the configuration shown in Figure [I2.I] where a particle D is
repeated periodically in the xzi-axis with period d, and is of a distance of order §
from the boundary zo = 0 of the half-space R% := {(z1,22) € R?, 25 > 0}. We
denote by D this collection of periodically arranged particles and €2 := ]R?Ir \D.

Ems Um

5 Diéestie

..00060d0000--
SSSSSSSS S SSSSSSS SS SS SS SS

FiGUuRE 12.1. Thin layer of nanoparticles in the half-space.
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Let u’(z) = eV~ ¥md@ be the incident wave. Here, d is the unit incidence
direction. The scattering problem is modeled as follows:

1
V- —Vu+w?epu=0 in Ri \ 9D,

120
Uy —u— =0 on dD,
(12.1) Loul 0w oo
P OV + e OV | _

uw —u’ satisfies an outgoing radiation condition at infinity,
u=0 ondRL = {(z1,0), z; € R},

where

ED = ng(Q> + ECX(D)a UD = EmX(Q) + ECX(D)v

and 9/0v denotes the outward normal derivative on 9D.

Following [2], under the assumption that the wavelength of the incident wave
is much larger than the size of the nanoparticle, a certain homogenization occurs,
and we can construct z € C such that the solution to

Atgpp + k;z%uapp =0 in }Rﬁ_,
Oua
(12.2) Uapp + 5;};7;“ =0 ondR?,
Uapp — U' satisfies outgoing radiation condition at infinity,

gives the leading order approximation for u. We refer to uapp + 020Uapp/Ox2 = 0
as the equivalent impedance boundary condition for problem ([12.1)).

12.3. Boundary-Layer Corrector and Effective Impedance

In order to compute z, we introduce the following asymptotic expansion [2], 4]:
0 1
(12.3) w=u® + 09 + 5 +u)y ...,
where the leading-order term u(?) is solution to

Au©® 4 12u@ =0 inRZ,
w® =0 on BR?H
u® — u' satisfies an outgoing radiation condition at infinity.

The boundary-layer correctors ug)L and ug)L have to be exponentially decaying in

the zy-direction. Note that, according to [2, 4], usgo)L is introduced in order to
correct (up to the first order in ) the transmission condition on the boundary
of the nanoparticles, which is not satisfied by the leading-order term «(®) in the
asymptotic expansion of u, while ug)L is a higher-order correction term and does

not contribute to the first-order equivalent boundary condition in ((12.2)).
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We next construct the corrector u%)I)J. We first introduce a function « and a
complex constant a, such that they satisfy the rescaled problem

Aa=0 in (Ri\g> uUB,
aly —al- =0 on dB,
(12.4) 1 8o 102 (i _ L)VQ on 9B,
P OV | pe OV Npe  fim
a=0 on BR?H
 — Qs 1s exponentially decaying as o — +00.

Here, v = (v1,12) and B = D/§ is repeated periodically in the zq-axis with period
1 and B is the collection of these periodically arranged particles.
Then u%))L is defined by

Au® T
ufsh () 1= 67— (21,0) (a(5) ~ o).

The corrector u()) can be found to be the solution to
1 2 (1 .2
Au! )+kmu( ) =0 in RY,
u® = ay ag‘;z) on OR?Z,
uM) satisfies an outgoing radiation condition at infinity.

By writing
(12.5) Uapp = 0O + ul9) 4+ 5u®),

we arrive at (12.2]) with z = —a, up to a second-order term in §. We summarize
the above results in the following theorem.

THEOREM 12.1. The solution uapp to with z = —a, approximates point-
wisely (for xo > 0) the exact solution u to as § = 0, up to a second-order

term in §.

In order to compute ay., we derive an integral representation for the solution
a to ([12.4). We make use of the periodic Green function Gy defined by (2.106). Let

G;(%Z/) = Gu((afl —Y1,T2 — yz)) - Gﬁ((u’cl — Y1, —T2 — y2))7

which is the periodic Green’s function in the upper half-space with Dirichlet bound-
ary conditions, and define

S}, H2(0B) — Hp(R?),H*(0B)

o Spilela) = aBGJ(ﬂc,y)w(y)dU(y)

for z € R%,z € 9B and
(Kg)™ : H"3(dB) — H™%(0B)

oG (x,
o — (Kb ) lel(@) = /8 ) M

(126) o(y)do(y)

for x € 0B.
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It is clear that the results of Lemma hold true for S, and (Kp,)*. More-
over, for any ¢ € H~s (0B), we have
Sg’u[ap](x) =0 forx € IR,
Now, we can readily see that o can be represented as a = Szgﬁ[go], where
¢ € H 2 (OB) satisfies

1 05},
Hm, ov

= (i — i)yg on JB.

L0l
He  Hm

+ He ov

Using the jump formula from Lemma [2.37] we arrive at

(Al = (Kiy) ")) = v2,
where
He + fim
2(pe — pm)”
Therefore, using item (v) in Lemma on the characterization of the spectrum

of K%y and the fact that the spectra of (leg;ﬁ)"r and K7, are the same, we obtain
that

uw=

a =85, (M~ (Kiy)*) [va].

LEMMA 12.2. Let x = (x1,22). Then, for zo — 400, the following asymptotic
expansion holds:

a = as +0(e™2),
with
oo = — /3 (T~ (K)o ().

PrOOF. The result follows from an asymptotic analysis of G;r (z,y). Indeed,
suppose that xo — +00, we have

G;r(x,y) = ﬁ In (sinhz(ﬂ'(xg — 1)) + sin®(7(z; — yl)))
—ﬁ In (sinh2(7r(m2 +42)) + sin® (7 (x; — yl)))
- i In (sinhz(ﬂ'(xg — yg)))

—i In (sinhz(ﬂ(l‘Q + 212)))

1
In{l+ —7——
+O( . < + sinhz(xg)) )
1(111 (eﬂ(rz—yz) _ e—w(m2+yz))

o 2

w(x2+y2) _ ,—7(x2—y2)
o (T ))+otm(1+e))
= —ys + O(e—wz)’

which yields the desired result. [
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Finally, it is important to note that a,, depends on the geometry and size of
the particle B.

As (Kpy)* : HE — Mg is a compact self-adjoint operator, where 5 is defined
as in Lemma 2237 we can write

o = — /6 12 (Ol — (i) H) ™ o) () do(y),

- Z %,Vz My Pi y)
J=

C)O]al/2 7‘[0 50]7y2>

11
— 2°2

A )

j=1

where A1, A\g,... are the eigenvalues of ( *Bjj)+ and ¢, @s,... is a corresponding
orthornormal basis of eigenvectors.
On the other hand, by integrating by parts we get

1

(Piny2) 3.3 = T (@i vl
2 J

This, together with the fact that Sm A, < 0 (by the Drude model (7.4)), yields the
following lemma.

LEMMA 12.3. We have Sm as, > 0.
Finally, we give a formula for the shape derivative of a,. This formula can
be used to optimize |a| , for a given frequency w, in terms of the shape B of the

nanoparticle. Let B, be an n-perturbation of B; i.e., let h € CY(dB) and 0B, be
given by

0B, = {x +ph(z)(z),z € 8B}.

Following Subsection [7.2.1.1] we can prove that

- Hm
aw(Bn) = OO(B)+77(M )

te Ov, Ow
X-/@B b”’_ -+ me|_m_]d0

where /0T is the tangential derivative on 0B, v and w periodic with respect to
x1 of period 1 and satisfy

Av=0 in (Ri\E)UB,
vly —v|- =0 on JB,

v i OV
ol pe Ov|_
v—x2 — 0 as xy — 400,

=0 on dB,
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and
Aw=0 in (R2\B)UB,
im

wly —w|- =0 on 9B,

ow _@

E+ ov

w—2x9 — 0 asxzo — +o00,

=0 onJB,

respectively. Therefore, the following proposition holds.

PROPOSITION 12.4. The shape derivative dgas(B) of aso is given by

[0 Ow e 0v ) Ow
dsaoo(B)i(,uc 1){8u|—8y|—+um 8T|—8T|— '

If we aim to maximize the functional J := %|ozoo|2 over B, then it can be easily
seen that J is Fréchet differentiable and its Fréchet derivative is given by

Re ds oo (B)aso (B).

In order to include cases where topology changes and multiple components are
allowed, a level-set version of the optimization procedure described below can be
developed (see Appendix .

12.4. Numerical Illustrations

We now demonstrate the dependence of the equivalent boundary condition
parameter oo, on the incident wavelength for various nanoparticle configurations.
We use the Drude model for the permeability of background material, which is
water, and the nanoparticles which are gold. The Drude model for the permeability
u is given by

—
pw) = w2 +/—Irw
In particular, to model gold nanoparticles we choose the plasma frequency w, to be

0.03 % 2 % 1.6 x 10719
N NS TR
and the damping coefficient 7 to be
1.6 x 10719
7 =0.053 x 27 X W

The discretization of the boundary of the nanoparticle, along with the computation
of the Neumann-Poincaré operator ( *Bﬁ)+, where B is a disk, is performed in the
same fashion as in Section 2.4.5] We then calculate

oo = — / 12 (Ol — (K H) ™ o) () do(y),
OB

and plot its modulus |a| for a range of wavelengths in the interval [150x 1079, 350 x
1079].

We use Code Plasmonic Metasurfaces. In Figure we place the row of
nanoparticles a distance of 0.5 from the surface 9R? and vary the radii from 0.1 to
0.4. In Figure [I2:3] we set the nanoparticle radius to be 0.2 and observe the change
in |aeo| when we first position the nanoparticles a distance of 0.25 from the surface,
and then a distance of 0.75.


http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial10/10.1 Plasmonic Metasurfaces.zip
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In Figures [12.4] and [[2.5] we demonstrate that in the case of a single row of
nanoparticles we have a distinct resonance peak, whereas in in the case of three
well-separated nanoparticles (all in the unit cell) we have delocalized resonances.
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FIGURE 12.2. |as| as a function of wavelength for a set of radii
varying from 0.1 to 0.4.
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FIGURE 12.3. |ax| as a function of wavelength for a set of radii
for a disk of radius 0.2 as for distances of 0.25 and 0.45 from the
boundary at x5 = 0.

12.5. Concluding Remarks

In this chapter, we have considered the scattering by an array of plasmonic
nanoparticles mounted on a perfectly conducting plate and showed both analyti-
cally and numerically the significant change in the boundary condition induced by
the nanoparticles at their periodic plasmonic frequencies. We have also proposed
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FIGURE 12.4. We observe a strong localized resonant peak in the
case of a single row of nanoparticles.
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FIGURE 12.5. When we have three nanoparticles in each cell of
the array we observe delocalized resonance.

an optimization approach to maximize this change in terms of the shape of the
nanoparticles. Our results in this chapter can be generalized in many directions.
Different boundary conditions on the plate as well as curved plates can be consid-
ered. Our approach can be easily extended to two-dimensional arrays embedded in
R3 and the lattice effect can be included by using the Green’s function for a general
lattice (as in ) Full Maxwell’s equations to model the light propagation can
be used. The observed extraordinary or meta-properties of periodic distributions
of subwavelength resonators can be explained by the approach proposed in this
chapter.
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CHAPTER 13

Helmholtz Resonator

13.1. Introduction

The Helmholtz resonator is an acoustic device which has many important ap-
plications in phononics. It consists of a closed cavity connected to the exterior
domain by an opening hole.

In this section we study perturbations of scattering frequencies of Helmholtz
resonators with small openings. We provide on the one hand results on the existence
and localization of the scattering frequencies and on the other hand the leading-
order terms in their asymptotic expansions in terms of the characteristic width of
the openings.

We show that the spectrum of the Helmholtz resonator essentially coincides
with the spectrum of the Laplacian with Neumann boundary condition in the closed
cavity, but there is an additional resonant frequency which is a sub-wavelength
resonance. Its associated eigenfunction is essentially constant in the cavity and it
essentially vanishes in the exterior domain. It is the key to super-resolution and
super-focusing for acoustic waves in systems of Helmholtz resonators.

As in the previous chapters, we transform the problem of finding the scattering
frequencies into that of the determination of the characteristic values of certain
integral operator-valued functions in the complex plane. The generalization of
the Steinberg theorem given in Theorem yields the discreteness of the set
of resonant frequencies. The generalized Rouché theorem shows the existence of
resonant frequencies close to the eigenfrequencies of the unperturbed resonator.
In principle, the general form of the argument principle in Theorem can be
applied to derive full asymptotic expansions for the scattering frequencies. As will
be shown in this chapter, the leading-order terms can be obtained by a simpler
method based on pole-pencil decomposition of integral operator-valued functions
and the use of the Hilbert transform.

13.2. Hilbert Transform

In order to study resonance frequencies of Helmholtz resonators, the Hilbert
transform will be needed.
Let the set X€, for small € > 0, be defined by

(13.1) Xe = {gp : / Ve — 22 |p(z)? dx < +oo},

Equipped with the norm

€ 1/2
ol = ( [ ve=a |w<x>2dx) ,

407
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X¢€ is a Hilbert space. Introduce
(13.2) Ve = {z/JECO([—QE]):zb/EXe}
where 1)’ is the distribution derivative of ). The set )¢ is a Hilbert space with the
norm
1/2
It = (I )
Let L. : X — Y° be defined by

(13.3) L@ = [ “nfz— gl oly) dy.

—€

e |

We establish two results concerning the integral operator L.. These results are
proved in [417].

LEMMA 13.1. For all0 < € < 2, the integral operator L. : X — V¢ is invertible.

Let ¢ be a function of X¢. The function

¥(x) =/ In |z =yl ¢(y) dy
is differentiable and its derivative on (—¢,¢€) is given by (see for instance [364, p.
30])

(13.4) U(x) = Helel(x),

where H. denotes the finite Hilbert transform (or Tricomi’s operator)

(13.5) He[ol(z) = / ;O(yll dy for x € (—e,e).
The following explicit expressions hold. For any x € (—e¢, €), we have
1
(13.6) He|—=—=](x) =0,
ey
(13.7) He[V e —y?](x) = ma,
and
(13.8) H L (z) = —.

The main difficulty in studying the finite Hilbert transform #. on Holder con-
tinuous functions (with requirements at the endpoints) is that it has no smoothness
preserving property, as shown by the following formulas:

€e+x
€E—x

He[l](z) =1In

e (=) , 9
’ pL—€ ple ’
Helol(x) — vz Te—an + Hel¢'](@).
The development of such a theory is a rather long and complicated process. See
for instance [376].

Here the weighted space X€ is introduced to make the theory relatively simple
and yet general enough for applications. The following mapping properties of the
finite Hilbert transform hold. See [417] for a proof.
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LEMMA 13.2 (Finite Hilbert transform). The operator H. : X — X€ satisfies
dimKer(H.) =1 and Im H, = X*.

As shown by formula 1' Ker(H,) is spanned by 1/1/€? — y2. We refer the
reader to [93), [203] for the mapping properties of the finite Hilbert transform in

more general weighted spaces. We will need the following Holder estimate [364)

(13.9) H/_ll f(y)y dy

for p € CO"([—1,1]) with n > 0.
We now solve explicitly the integral equation

(13.10) Le[pl(x) = (), Vae (—€6),

where v is a given function in Y° and ¢ is the unknown function. Differentiating
13.10) with respect to the x-variable, we obtain the singular integral equation
13.4)). The general solution of equation (13.4) is given by the Hilbert inversion
formula (see for instance [364]):
(13.11) () L CVEYY) g A

. ANT) = — )

¥ m2:/€2 — 2 e T —y Yy ez — 2

where A is a complex constant. Therefore, the solution ¢ in X of (13.10)) is neces-
sarily one of the ¢, given by ({13.11]), where X is chosen appropriately. Denote by
A1) the appropriate choice of A and consider

(13.12) a(¥) = ¥(x) = Le[pr=o](z).

We first observe that the quantity a(¢) is a constant, since its derivative with
respect to x is identically equal to zero on (—¢,€). Now, substitute ¢y, into

(13.10f) to get

< Cllellcon(-1,1
Lo ([—1,1])

1
AwmePHQQ]—aw.
e -y
But, a straightforward calculation shows that

1
22] (z) :ﬂlng for all x € (—e,€),
e -y

L. [y+—>

and therefore,

Thus,
(13.13)
-1 _ 1 Ve -y (y) a(y)
LIW@) = —— s dy+ 7
m2Ve?2 —x? J_¢ -y (rln(e/2)) V2 — a2

where a(v) is given by (13.12). This calculation has been done by Carleman in
[166].

Note that for € = 2, £, has a nontrivial kernel. However, for 0 < ¢ < 2, the

solution to ([13.10)) is clearly unique. In fact, by (13.11)) and (13.12]), it follows that
if v = 0, then £LZ1[¢)] = 0.

We will also need the following lemma.
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LEMMA 13.3. Let R be the integral operator defined from X€ into Y by
Relel(z) = / R(z,y) ¢(y) dy,

with R(x,y) of class C1'" in x and y, for n > 0. There exists a positive constant C,
independent of €, such that

C

[Ine|’

(13.14) 1L Relloqe,ae) <

where

1L Rellciae, ey = sup LT Re[e]llx
PeX< ||l xe=1

PROOF. Let ¢ € X¢. By the Hilbert inversion formula (13.11]), we have

(13.15) LI'Rgl(x) = —Wg\/ei_j - m Ly +i/(%
s= Iilpl(e) + Lle](2),
where
AR ) = SR,

We estimate ||I£[y]]

xe and || I5[p]||xe separately.

For ||I{[¢]|| ye, we have
ﬁ N
TAGIe / D ) de
—e VE )
— D g,
€ Lo ([—e¢,€])
1 _
dy
Lee([-1,1])

We then have from the Holder estimate (13.9) for the Hilbert transform

H/ 1=y v g SOH\/l—yQ(R ol) (ey)

Le([-1,1])

com([~1,1))

< Cl(ReleD) () llgo.n (-1,
< CIReleD) Wllco.n((-e.a)

< C/Z le(y)

since the kernel R is of class C1". Thus, we obtain

(13.16) 1111

v < Ce
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To estimate || I§[¢]||x<, we first observe that

1/2
Vsl = (/ NEErelae de)

a(Rely]) ‘

= VTIARJe))| = Valn(e/2)|

At this point, let us recall that

a(Relp]) = Relp] — Le [

/\/j Re| )dy]

W
Once again, from the smoothness of the kernel R in x and y, we have
(13.17) Sgp [Rele)(@)] < C [l x-.
—€ 31' €
On the other hand, we get from (13.7) that
ve -y y?
/ ) (y) dy
—y?
/ VE g+ [ Y (Rl () — (Relel) (0] dy

/_ \/j 1) (y) — (Relee])' ()] dy.

Put

I(t) == [ ~————[(Rele) (v) — (Relee])' ()] dy.

—€ t— Y
Then, we have

L(1)] < Ce+nsup | B [@D’(f;)_—t('jfe [e])' (1) ‘

€
< C [ p(y)ldy < Ce' | xe

—€

Therefore, it follows that

L. \/%ﬁ \/: ) (y) dy}
e [EH e

< Celnelflepf| xe,

< (suplmt(Rofo )] + sup 1.(0)])

which, combined with (13.17)), gives

[l

. C
(13.18) 123[e]l[ e < w”%”xeo

Combining (13.16)) and ([13.18]) yields the desired estimate ((13.14]). O
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13.3. Perturbations of Scattering Frequencies of a Helmholtz Resonator

Let © C R? be a bounded simply connected domain with boundary 92 of class
C?. Let po be a simple eigenvalues of —A in 2 with Neumann conditions, namely, a
simple eigenvalue of and let V' be a neighborhood of g in the complex plane
such that pg is the only eigenvalue of in V.

The acoustic Helmholtz resonator we consider is a surface 9Q, = 90\ X,
where 0f). is obtained from 02 by making a small opening > in the boundary
with diameter tending to zero as e — 0. This opening connects the interior and the
exterior parts of the resonator. If ug is an eigenvalue of , the corresponding
scattering problem is to find p€ (with Sm u® > 0) close to pg such that there exists
a nontrivial solution to

(A+pSuc =0 in QUR?\Q),

(13.19) E
pr V-1pcu| = 0™ asr = |z| = +oo.
,

As in the previous chapters, we reduce the scattering problem to the
study of characteristic values of a certain operator-valued function, and by means
of the generalized Rouché theorem we prove the existence of a scattering frequency
1€ with small imaginary part which converges to pug as € — 0. We then construct
the leading-order term in its asymptotic expansion.

To simplify the exposition, we shall assume that 0 is the center to which the
opening can be contracted and the opening X, is flat: ¥, = (—¢, €). It can be shown
that the curvature of the opening does not influence the leading-order term in the
asymptotic expansion of the scattering frequencies [224]. Following the arguments
presented in the previous section, we only outline the derivation of an asymptotic
expansion of u¢, leaving the details to the reader.

13.3.1. Problem Formulation. We say that ;4 € C (with Smp > 0) is a
scattering pole if there exists a nontrivial solution to the exterior problem

(A+pv=0 inR2\Q,
ov

/ [v|? < 4o0.
B2\

Introduce the exterior Neumann function Nﬂgﬁ, that is, the unique solution
to

(Ay + H)Nﬂgﬁ(l«, ) = -6, in R2\ 0,
VE

WRZ\Q’ =0 on 0f)

(13.21) 3 laa )
N/

‘ R2\Q N\/ﬁ

o —1p p\a| = O(r™Y) asr=|z| = +oc.
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Set ¢ to be the normal derivative of u on the opening >.:
€

Y= 5, °° e

By Green’s formula, ¢ satisfies the integral equation
(13.22) / (N@z + Nﬁ) (x,y) ¢ (y)dy =0 on X,
e

where the interior Neumann function N, ﬁ is defined by (2.179)) and the exterior
Neumann function Nﬂg/z% is defined by (13.21)).

Define the operator-valued function p — A () by
Adplile) = [ (W + N8 Yo et

—€

By virtue of (13.22)), the problem of finding the scattering frequencies can be
reduced to that of finding the characteristic values of A.(p).

13.3.2. Asymptotic Formula for Perturbations in Scattering Frequen-
cies. Let ug be a simple eigenvalue of associated with the normalized eigen-
function u;, and let V' be a complex neighborhood of 19 such that (i) o is the only
eigenvalue of in V and (ii) there is no scattering pole of in V.

Writing

NVE

1
Rz\ﬁ('xaz) = —%IDLE - Z| + T(SC,Z,,[L),

where r(z, z, 1) is holomorphic with respect to p in V' and smooth in z and z, we

obtain the following pole-pencil decomposition of A, in V.

LEMMA 13.4. The following pole-pencil decomposition of Ac(u) @ X¢ — Y©
holds for any p € V\ {uo}:
Ke
Ho — H

(13.23) Adp) = —% Lot +Re(p),

where
L.lg)(x) = / In |z — y| () dy,

K. is the one-dimensional operator given by

Kelel(x) = (o, uzo) L2(5,) Wjo>

and
Re(w)lgl(x) = / R(u,z,9) o(y) dy,

—€

with (u, z,y) — R(w,x,y) holomorphic in p and smooth in x and y.
We now prove that the set of characteristic values of A, is discrete.
LEMMA 13.5. The set of characteristic values of pu— Ac(p) is discrete.

PRrROOF. We only give a proof for the discreteness of the set of characteristic
values of A. in V. The same arguments apply in neighborhoods V; of p;,7 > 1,
and in C\ J; V;. Recall that L. : X — V¢ is invertible and 1L " Rell p(ve, ey —
0 as € — 0. Therefore, —(1/(7)) Lc + Re : X — )¢ is invertible for e small
enough. It then follows from the pole-pencil decomposition that A, is
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finitely meromorphic and of Fredholm type in V. Moreover, since K. is of finite-
dimension, there exists pu* € V such that A.(u*) is invertible. Therefore, the
generalization of the Steinberg theorem (Theorem gives the discreteness of
the set of characteristic values of A, in V. O

Next, we prove that there exists exactly one characteristic value of A, located
in the neighborhood V' of py and compute its asymptotic expansion as € goes to
zero. The method is based on the pole-pencil decomposition of the operator-
valued function A, followed by an application of the generalized Rouché theorem.

LEMMA 13.6. The operator-valued function Ac(u) has exactly one characteristic
value in V.

ProoF. We first study the principal part of A, that is, the integral operator-
valued function defined by

1 K
Netpor Ne(p) = ——Le+ ——,
™ Ho — K
and show that its multiplicity in V is equal to zero. Let us find the characteristic
values of AV in V, that is, the complex numbers /i, such that there exists ¢ % 0

satisfying NV (1)[¢] = 0 on (—¢, €). Equivalently, we have

L, (@u)
—L. ] + 0L g = 0.
. (] [ — o o
Since the operator L. is invertible, it follows that
1 ~ <¢, Uj > —1
13.24 — Q4 L5 LT u,,] = 0,
(13.24) o L

and, by multiplying (13.24) by u;,, we find
. 1 <£71[U’jo] ujo> )
S Uy — e L) =,
(8 so) (77 ft — po
Hence,
(13.25) fr = po —m(L uge)s o),
since by (13.24)), (¢, uj,) = 0 would imply that ¢ = 0.
Moreover, from

‘<£;1[ujo]vujo>| — 0 ase—0,
it follows that
| — ol — 0 ase— 0.
If the normalization condition (@, u;,) = 1 is chosen, then (13.24) and (13.25]) show
that the root function associated to this characteristic value f is given by
‘Ce_l[ujo]
—1 M
<‘C€ [uj0]7ujo>
The last point to investigate is the multiplicity of i as a characteristic value of
N, that is, the order of i as a pole of N."1. A straightforward calculation shows
that M (u)[p] = f is equivalent to
1 0, o ) L uj _
- < ]0> € [ JO] =L 1[f]

P = L
™ Ho — |
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But .
_ 1 + <‘C’e_ [ujo]’uj0>
Mo — p

\
|
=
o
AN
==
g
-
o

<507 uj0>
which yields
m(o — 1) | oy
P ujo) = — (L[], ugo),
< J0> pw—fi < [ ] ]0>
and therefore,
(13.26)
2 E_l .
Nlel = f ifandonly it o = —r £+ e Ubn) o
=
which justifies that /i is a characteristic value of order one of .. Therefore, N, has
exactly one pole pp and one characteristic value i in V| each of order one, and its
full multiplicity is equal to zero.

Now we estimate the multiplicity of A, in V. The function pu — N (p) is clearly
finitely meromorphic and of Fredholm type at p = pg. For all p € V \ {uo, i1},
N, is invertible. Thus, A, is normal in V. Moreover, A.(1) — Ne() = Re(p) is
analytic in V' and, by (13.26)), it satisfies

lim V7 () Re(p)l| e vy = 0, ¥ € OV.

e_l[ujo]’

Consequently, the integral operator-valued function u — A.(p) has, by the gen-
eralized Rouché theorem, the same full multiplicity as N, in V. Since it already
admits p as a pole, it admits in this neighborhood exactly one characteristic value
ue. (]

Now in view of Lemmas [13.4] and we obtain the following theorem.

THEOREM 13.7. The operator-valued function Ac(u) has exactly one charac-
teristic value pu¢ in V. Moreover, the following asymptotic expansion of u¢ holds:

(13'27) Me ~ Ho — 7T<£;1[Uj0], uj0> + 7T2<£;1R€(:U'0)£;1[ujo]’ujo>a

which yields
. 7r
He A o = o ().

PROOF. Recall that if u€ is the eigenvalue of (13.19)) in V, then it is the char-
acteristic value of Ac in V. Let ¢ be an associated root function to pu€. Since
I + LZ'R. is invertible for ¢ small enough, one can see as in the proof of Lemma
that (¢, u;,) # 0, and hence we can choose ¢ such that (¢, u;,) = 1. With
this choice, we have

1 (L7 ug], wj,)
13.28 — e b ol (p R (1) [ef], ui ) = 0
(13.28) g+ Tl (LR (1) ) =0,
from which it follows by using (13.14]) that
pe = po — 27T<£;1[ujo]’ujo> +O(] ln€|72)'
But,
1 L ug,]
_7I+»C;1Re € €l 4+ € Jol _
— (1Pl + 2L
and thus,
906 ~ ‘Ce_l[ujo] ]
<‘C;1[ujo}7 U’jo>
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Inserting the above approximation of ¢ into (13.28) yields (13.27)), as desired. [

Theorem shows in particular the existence of a sub-wavelength resonance
for the Helmholtz resonator €2, and lets us determine its asymptotic expansion in
terms of the size € of the opening. Choose o = 0 (with the associated eigenfunction
=1/4/]Q] in Q). Tt follows that there exists a unique characteristic value ;¢ of A,
in a small neighborhood of 0. Moreover,

(13.29) [~ _Iﬂl%e'
In the three-dimensional case, we can prove that [82]
(13.30) TN ﬁecap(i)),
where
(13.31) cap(E) := —(Ly 1], 1) 2z

is the capacity of ¥ := X, in the rescaled opening (of arbitrary smooth shape) and
L4 is the three-dimensional analog to £, defined by (13.3) with ¢ = 1:

1 —
Li:p— f/ #(y) dy, =€ R3)\X.
T Js |z =y

We refer to formulas and as the frequency formula for respec-
tively the two and three-dimensional Helmholtz resonator. Formulas ([13.29) and
indicate that it is possible to construct acoustic resonant structures that
are much smaller than the wavelength of the corresponding acoustic wave. Fur-
thermore, the frequency formulas can be generalized to a system of L disjoint
Helmholtz resonators separated by a distance of the order of their characteristic
size. It was shown in [82] that L (counting multiplicity) sub-wavelength resonances
do exist and their asymptotic expansions as the characteristic size of the openings
goes to zero were derived. Note that the term “sub-wavelength resonator” is as-
sociated with scattering in the quasi-stationary regime. In fact, in the case of the
Helmholtz resonator, it is in that regime that the free space wavelength is signifi-
cantly greater than the size of the resonator. We also remark that the resonance in
the quasi-stationary regime results from the perturbations of the zero-eigenvalue of
the Neumann problem in the closed resonator that are due to small openings. In
the next subsection, we briefly outline the frequency formula and its consequence
on super-resolution.

13.4. Resonances of a System of Helmholtz Resonators and
Super-Resolution

Let the single three-dimensional Helmholtz resonator {2 be such that Q =
S(0,1) x [—h,0], where S(0,1) = {(z1,22) : ¥ + 23 < 1} and h is the height
of Q, which is of order one. Let ¥ C S(0,1) C R? be a simply connected smooth
domain which is of size one and let € > 0 be a small number. We assume that 0 € X
without loss of generality.

Consider a system of such resonators in three dimensions which consists of L
disjoint Q;’s (1 < j < L), where Q; = Q + 20 and 20 = (2§7)7zéj)70) is the
center of the opening for jth resonator. We denote by Q" = U§:1 Q;, Q° =
{(x1,22,23) € R3: 23 > 0} and Q. = Q" Q% |J 2. with X, = Ule DI
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We first introduce two auxiliary Green’s functions. Let N°* be the Green
function for the following exterior scattering problem:

(A + W?)NE (2, y) = dy(x), xe€Q,
08 (2,y) = 0, x€oQe,

NZ* satisfies the Sommerfeld radiation condition,

and N!™ be the Green function for the following interior problem:

(A+w)NT(ey) = b,), e,
ag; (z,y) = 0, zedq.

Throughout this section, we denote by

1
W:{WGC:|W|S§\/‘LTQ}’

where ps is the first nonzero eigenvalue of the Neumann problem in © (p; = 0).
We have the following result.

LEMMA 13.8. Lety € {x3 =0} and w € W. Then,

1
exr _ exr exr
(1332) Nw (xay) - 27T|SC _ y| +R (l’,y,W), T e Q ’
(13.33) N (z,y) Sr P + R"™(z,y,w), z€Q,
where ¥ = x(Q) and
1 1
() = Yo [T,
2T 0

1
R™(z,y,w) = w/ sin v —1lw|x — yltdt + r(z,y,w)
0
for some function r which is analytic in W with respect to w and is smooth in a
neighborhood of 3 in the plane {x3 = 0} with respect to both the variables x and y.
We denote by
R(z,y,w) = R*(z,y,w) + R™ (2,y,w),

and
OR

(13.34) ag = R(0,0,0), o5 = —w(0,0,0).
It is clear that

OR* 1
13.35 R, Sa; =5——(0,0,0) = —.
( ) ap € K, S \Saw(77) 7

We now introduce the matrices T = (T};)xr and S = (S;;)Lx 1 with
= 1 i i -
(13.36) T, = 52 2] for i # j, and T3 =0,
Si‘ = % + 51']'%061.

Observe that T is symmetric, thus T has L real eigenvalues, which are denoted
by b1, B2, - .., Br. For the ease of exposition, we assume that 31, ..., 8 are mutually distinct.
This is the generic case among all the possible arrangements of the resonators. The
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corresponding normalized eigenvectors are denoted by Y7,Ys, ..., Yy, respectively.
Then Y1,Y5,...,Y, form a normal basis for RY. We also denote by Y the matrix

Y:(}/laYQa"'aYL)'

For convenience, we write

(13.37) N(z,w) = (Nf,x(x, z(l)), N (z, z(z)), ooy NS¥ (2, z(L)))t
with the subscript ¢ denoting the transpose. For each 1 < j < L, we denote by
(13.38) G, 2o, w) = N (2,w)" ;Y] N (20, w).

It is clear that (; = {;(z, zo,w) is analytic in w for fixed  and .
The following result on the resonances of the above scattering problem was
proved in [82].

PROPOSITION 13.9. There exist exactly 2L resonances of order one in the do-
main W for the system of resonators, given by

(13.39) Wo,e,j,1 = 7'16% + 7'37]‘6% + 7'47]'62 + 0(63),
(13.40) Wo,e,j2 = —7'16% — 7'3)]‘6% + 7'47]‘772 + O(E%),
where
cap(¥)
(13.41) n = :
1€

1 cap(X) H
(1342) 7'37]' = —5(0(0 + BJ) |Q| cap(E),
and

1 cap(¥)?

(1343) T4,5 = —5 |Q| )/] S}/j

with cap(X) being the capacity of the set ¥ defined by (13.31)).

From Chapter [9] the super-resolution relies in analysis of the following Green
function in the frequency domain
(A + w?) N (2, 20,w) = 04y (7), € Qe,
88115 (z,zo,w) =0, x € I,

N satisfies the Sommerfeld radiation condition.

The following result on N, in . holds. We refer to [82] for its proof.

THEOREM 13.10. Assume that w € R(O\W. Then for e sufficiently small. Then
NE® has the following asymptotic expansion

N (z,xo,w) = NS¥(x,20) — €cap(X) Z N (20D g, k)NE® (z, 219))
1<5<L
1 1 Y)e)?
_Z < _ ) (cap( )E)ZN(JJ,w)tY}}/th(l‘o,W)
o \W T W2 W W v/ |D|

N ( o) . 0@ )w(gz).
L

1S5 W= Woe 2 W Wl

IA
IA
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As a consequence of Theorem [[3.10] we can establish the following result
on super-resolution (or super-focusing), which shows that super-resolution can be
achieved with a single specific frequency.

THEOREM 13.11. Let 71 be given by (13.41]), where cap(X) is the capacity of
the set ¥ defined by (15.531). For w = T1+/€, the resolution function SINE* has the
following estimate:

. s L
sinT el —xo|  cap(X)? 1 Q74,5
1 E : i\ 70 @ )

2|z — xo| * |Q|z ‘ 7 G (@70,0) +O(e)

j=1 '3

where (;(z,x0,0) is given by and 73; and T4 ; are defined by and
, respectively.

SN (z, o, w) =

13.5. Concluding Remarks

In this chapter, we have derived asymptotic expansions of perturbations of
scattering frequencies of sub-wavelength acoustic resonators. As in the previous
chapters, we have transformed the problem of finding the scattering frequencies into
the determination of the characteristic values of certain integral operator-valued
functions in the complex plane. Our method in this chapter is based on pole-pencil
type decomposition, followed by an application of the generalized Rouché theorem.
The techniques developed in this chapter can be extended to electromagnetic and
elastic analogues of the Helmholtz resonator [226], 229), [373), [212].






CHAPTER 14

Minnaert Resonances for Bubbles

14.1. Introduction

In this chapter, we consider acoustic wave propagation in bubbly media. At
particular low frequencies known as Minnaert resonances [355], bubbles behave as
strong sound scatterers. Using layer potential techniques and Gohberg-Sigal theory,
we derive a formula for the Minnaert resonances of bubbles of arbitrary shapes. Our
formula is expressed in terms of the capacity and the volume of the bubble, which
is a sub-wavelength acoustic resonator.

The Minnaert resonance is a low frequency resonance in which the wavelength
is much larger than the size of the bubble. At the Minnaert resonance it is possible
to achieve superfocusing of acoustic waves or imaging of passive sources with a
resolution beyond the Rayleigh diffraction limit. The results of this section are
from [35].

14.2. Derivation of Minnaert Resonance Formula

We consider the scattering of acoustic waves in a homogeneous three-dimensional
acoustic medium by a bubble embedded inside. Assume that the bubble occupies
a bounded and simply connected domain D with 0D € C'7 for some 1 > 0. We
denote by pp and kp the density and the bulk modulus of the air inside the bubble,
respectively. p and k are the corresponding parameters for the background media
R3\D.

Let u! be an incident plane wave. The scattering problem can be modeled by
the following equations:

2
V- lvu+Cu—0 mrA\D,
p K
2
V~iVu+w—u=0 in D,
Pb

Kb
(14.1) uy —u_ =0 on dD,
10 10
e R on 9D,
pov|, ppOv
u® = u —u' satisfies the Sommerfeld radiation condition.

We introduce four auxiliary parameters to facilitate our analysis:

(14.2) v:\/;, vb:,/@, k =wv, ky = wup.
KR Rp

We also introduce two dimensionless contrast parameters:

(14.3) 5:""’,721‘%:%:\/%7.
p k v PKb

421
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By choosing appropriate physical units, we may assume that the size of the
bubble is of order one and that the wave speeds outside and inside the bubble are
both of order one. Thus the contrast between the wave speeds is not significant. We
assume, however, that there is a large contrast in the bulk modulii. In summary,
we assume that § < 1 and 7 = O(1).

Then the solution « can be written as
u(z) = { u™ +SE[y],  xeR3\D,

(144) Sp ), z €D,

for some surface potentials 1,1, € L?(9D). Using the jump relations for the single
layer potentials, it is easy to derive that ¢ and ) satisfy the following system of
boundary integral equations:

(14.5) Alw,8)[0] = F,

where

Lo i) o-(2) 7 ()

A=y T sarie) = (0) r= (e )

One can show that the scattering problem is equivalent to the boundary
integral equations .

It is clear that A(w,d) is a bounded linear operator from H :== L?*(dD) x
L?(0D) to Hy := HY(OD) x L*(dD), i.e., A(w,d) € L(H,H1).

The resonance of the bubble in the scattering problem can be defined as
all the complex numbers w with positive imaginary part such that there exists a
nontrivial solution to the following equation:

(14.6) Alw, 8)[¥] = 0.

These can be viewed as the characteristic values of the operator-valued analytic
function (with respect to w) A(w, §). We are interested in the quasi-static resonance
of the bubble, or the resonance frequency at which the size of the bubble is much
smaller than the wavelength of the incident wave outside the bubble. In some
physics literature, this resonance is called the Minnaert resonance. Due to our
assumptions on the bubble being of size order one, and the wave speed outside of
the bubble also being of order one, this resonance should lie in a small neighborhood
of the origin in the complex plane. In what follows, we apply the Gohberg-Sigal
theory to find this resonance.
We first look at the limiting case when § = w = 0. It is clear that

(14.7) Ag = A(o,o):( 1 S 0 \x S%),
*§I+ (ICD) 0

where §% and (K%)* are respectively the single layer potential and the Neumann-

Poincaré operator on 0D associated with the Laplacian.
Let A be the adjoint of A.

LEMMA 14.1. We have
(i) Ker(Ag) = Im{¥o} where Im{¥y} denotes the space spanned by Vo and

\I/O = Qp (zjg)

with 1o = (S%)71[1] and the constant ag being chosen such that || = 1;
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(i) Ker(A§) = Im{®o} where

Do = Bo <£0>

with ¢o = 1 on OD and the constant By being chosen such that | Po|| = 1.

The above lemma shows that w = 0 is a characteristic value for the operator-
valued analytic function A(w,d). By the Gohberg-Sigal theory, we can conclude
the following result about the existence of the quasi-static resonance.

LEMMA 14.2. For any 9§, sufficiently small, there exists a characteristic value
wo = wp(d) to the operator-valued analytic function A(w,d) such that wp(0) = 0
and wg depends on § continuously. This characteristic value is also the quasi-static
resonance (or Minnaert resonance).

We next perform asymptotic analysis on the operator A(w,d). With the same
notation as in Subsection [2.8:3.1] the following result holds.

LEMMA 14.3. In the space L(H,H1), we have

A(w, ) := Ag+B(w, ) = Agt+wA; o+w? Ag g+w Az 0+ Ag 1 +ow? Az 1 +0(w)+0(6w?),

where

Ay o= TvSp,1 —vSp.a Ao — 7'21)28,372 —UQSDQ M — TS’USSD,g
MO0 0 )70 72 Kps 0 ) 7T \#Kp s

Ao1 = (O —(%I-I- (’COD)*)) , Ao = (0 —UQICD,2> .

We define a projection Py : H — H1 by
Po[¥] := (¥, Wo)3 Do,
and denote by
Ao = Ao + Po.
The following results hold.

LEMMA 14.4. We have
(i) The operator Aq is a bijective operator in L(H1,H). Moreover, Ag[¥o] =

(I)O;
(ii) The adjoint of .;l?), %*, is a bijective operator in L(H,H1). Moreover,
Ao [®o] = Y.

PROOF. By construction, and the fact that S% is bijective from L2?(9D) to
—~ —~ %
H'Y(dD), we can show that A is a bijective. So too is Ag . We only need to show

that E)*[<I>0] = Uy. Indeed, we can check that Pg[0] = (8, Po)Po. Thus, it follows
that

Ao [®0] = P5 [®0] = (@0, Bo)¥o = o,
which completes the proof. O

The following theorem characterizes the Minnaert frequencies in terms of the
shape of the bubbles.

—’038D73
0

).
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THEOREM 14.5. In the quasi-static regime, there exists two resonances for a
single bubble:

B cap(0D) s cap(dD)? 3
wo,0(0) = T202|D| 0 187TTQ’U|D| 04+0(0%),

_ |eap(@D) 1 — cap(0D)? 3
wo1(9) = 7202|D| 0 18777'21)|D\6+O(§ )

where |D| is the volume of D and
cap(dD) = — (o, 1) 2(op) = —((Sp) (1], 1) 12(o)
1s the capacity of D. The first resonance wo o is called the Minnaert resonance.

PRrROOF. Step 1. We find the resonance by solving the following equation

(14.8) A(w, 8)[Ps] = 0.

Since A(0,0)[¥o] = 0, we may view Uy as a perturbation of ¥y and write it as
Us = Uy + Uy, In order to uniquely determine ¥q, we assume that

(14.9) (Uq,Tp) =0.

Note that we let the coefficient of W, be one for the purpose of normalization. Since
W5 is defined up to multiplicative constant, (14.9) holds without loss of generality
by changing Wo + Uy to Wo + (¥q — (¥o, U1)Wo) /(1 + (o, ¥q)).
Step 2. Since Ag = Ag + Po, || is equivalent to the following
(Ao — Po + B)[¥o + ;] = 0.

Observe that as the operator :4V0 + B is invertible for sufficiently small § and w, we
can apply (Ao + B)~! to both sides of the above equation to deduce that

(14.10) Uy = (Ao + B) "' Po[To] — Tg = (Ao + B) @] — L.

Step 3. Using the orthogonality condition (14.9), we arrive at the following
equation:

(14.11) Aw,d) = <(Zo + B)*l[@o],%> 1=0

Step 4. We calculate A(w,d). Using the identity

-1

— . ~—1 N1 — —~—1 ~—1 ~-1 —
(Ao + B) :(I+A0 B) Ao z(I—AO B+ A, BA B+...)A0 ,
and the fact that )

Ao [®o] = Ty,
we obtain
Aw,d) = —w{A;0[¥o],Po) — w? (As,0[Wo], Do) — w? (A3,0[Wo], Po) — & (Ao1[Wo], Do)
~—1 —~—1 —~—1
+w? <u41,o«40 At1,0[%o), ‘I’0> +w? <A1,0Ao Az 0[¥o), ‘I’0> +w? <A2,0Ao A1,0[¥ol, ‘I’o>

—~—1 —~—1
+wd <.A170.A0 Aoﬁl[\Ilo], (I)o> + wd <A0,1A0 ‘14170[\110}7 <1>0>

o (AroAe Avody o[l @0) +O(w?) + 0(5?),
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It is clear that A7 5[®o] = 0. Consequently, we get
Aw,8) = —w?(As0[¥o], ®o) — w® (A3 0[Wo], Po) — & (Ao,1[To], o)
—~—1 —~—1
+w3 <A2_’0.AO .Al’o[\:[fo], (I)0> + wd <.A()71.A0 Al,O[\IJO]; (I)0> + O(UJ4) + 0(52)

In the next four steps, we calculate the terms (As o[Uo], @), (As,0[¥o], Do),
—~—1 —~——1
(Ao,1[Wo], Do), <A2,0Ao A170[‘I’0]a‘1’0> and <«40,1«40 ALO[‘I’O],%>-
Step 5. We have

(A20[Wo],®0) = aoBom*v” (Kp2[to], o) = aoBor’v? (Yo, K] o[da])
= —aofr®* [ do(a)(S) 1)) [ Tolo—u)dy
= —apByT0? xr — 0y—1 x)do(x
= —aofr®* [ dy [ Tolo—0)(Sh) 1)) dota)
= —apByrv?
= 050 /Ddy

= —aoﬁ07202|D|.

Here, Ty is the fundamental solution of the Laplacian in R3, defined by (2.2).
Step 6. On the other hand, we have

(As,0[Vo], ®o)

aoBomv® (Y0, KD 3[¢0]) = aofor’v? (1?0,

= 040507'31}3|D|§ <(S%)_1[1}, 1> = —a06073v3|D\gcap(8D).

S

Step 7. It is easy to see that
(Ao, [To), ®o) = —(tho, ¢o) = —aoBo ((SH) '[1],1) = apBocap(dD).
Step 8. We now calculate the term <A0,1%_1A170[\I/0], <I>0>. We have

Avoe] = ((T 1)0691),1[%]) _ ((r— 1)0{16?cap(ap)> 7

0 0 0
s [® = = = — .
At = (ki) = (c60) =~ (1)
‘We need to calculate
At <(1)) .
Assume that

(Ao +Po) (yyb) = <(—§%L%C§))yj)[yb]) * (@, %0) + (0 %0)) <<1?0> B <é)

By solving the above equations directly, we obtain that y, = %wo,y = —%wo.

Therefore,
1 (1) _ ( 3o
At (o) = (440):

Y Leap(@D) . ) = (1=}

It follows that

v—1
< cap(9D)%aofo.

— 1
<«40,1A0 Ai,0[Pol, <1)0> = (r—1)v
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—~1
Step 9. We calculate the term <A2’0A0 Aj o[Po], <I>0>. Using the results in
Step 8, we obtain

<«42,0«1071A1,0[‘I/0]7‘1)0> = <;4v071«41,0[‘1’0]w4§,o[‘1>0]>

—1(1 —1)7203
_ wcap(fﬂ?)aoﬁo (0, K [60])

V=I(1 — 7)r2
= DT p(@D) Do,

Step 10. Considering the above results, we can derive

) 3
Aw,d) = apfo <7’21/2|D|w2 + Ir(r + 1;11 |D\cap(8D)w3 — cap(0D)é
T
V(- 1)vcap(8D)2w5>
8T

FO(wh) + 0(8?).

We now solve A(w,d) = 0. It is clear that § = O(w?), and thus we(8) = O(V/9).
Write

wo(8) = a10% + azd + O(62).
We get

2 n V—=172(1 + 1)v3| D|cap(dD)
ks

(6% + 426+ 0(5%)) 6+ 0(5%) = 0.

7202 |D)| (al(s% +asd + 0(5%))

5_ V—1(1 — 1)vcap(dD)?
8T

(ala% + asd + 0(5%))3

—cap(0D)

From the coefficients of the § and §% terms, we obtain
720%|D|a? — cap(dD) = 0,
V—=17%(1 + 1)v3|D|cap(0D) 5 /—1(1 — 1)vcap(dD)?

272v%|Dlayas + o aj — - ay =0,

which yields

o = cap(0D)
T202|D|’
w = V=1(7 + 1)vcap(dD) 24 V—=1(1 — 1)cap(dD)?
2T 167 ! 167720|D|
_ V/=1(r 4+ 1)cap(dD)* /=1(7 — 1)cap(0D)?
a 16772v|D)| 16772v|D)|
—/—1cap(dD)?
8nr2v|D|

This completes the proof of the theorem.

A few remarks are in order.
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REMARK 14.6. In [35], the following properties for the operator Ay in the two-
dimensional case were derived. Let 1o be ( the real-valued function) defined by
(KD)* o] = 5%0 and ||YollL2op) = 1. Let the constant v := Sp[tho]| 5, With the
same notation as in Subsection we have

(i) Ker(Ag) = Im {¥o} where

o = a0 (ad$0>

with
% 7’f Yo = 0,
a = T
Yo + <'¢}Oa ¢0>nkb ’Lf Y 7& 0’

Yo + (Yo, Po) Nk

and the constant oy being chosen such that | Uyl = 1;
(i) Ker(A§) = Im {®o} where

Py = Bo <(;30>

with ¢o = 1 on 0D and the constant By being chosen such that | Po|| = 1.

Using the method developed above, we can derive the Minnaert resonance for a
single bubble in two dimensions. We can prove that there exist two Minnaert res-
onances for a single bubble and their leading order terms are given by the roots of
the following equation:

Yo 2 1 ad o

w =0,
<'¢)03 1> 4|D| bl
where the constants by, c1 are defined in Subsection |2.8.5.2

(14.12) w?lnw + (1nvb+1+%)_
1

REMARK 14.7. Using the method developed above, we can also obtain the full
asymptotic expansion for the resonance with respect to the small parameter §.

REMARK 14.8. In the case of a collection of L identical bubbles, with separation
distance much larger than their characteristic sizes, the Minnaert resonance for a
single bubble will be split into L resonances. The splitting will be related to the
eigenvalues of a L-by-L matriz which encodes information on the configuration of
the L bubbles. This can be proved by the same argument as the one for systems of
Helmholtz resonators in Section |13.4)

REMARK 14.9. Taking into consideration the above theorem, we can deduce
that if the bubble is represented by D = tB for some small positive number t and a
normalized domain B with size of order one, then the Minnaert resonance for D is
given by the following formula

wo,o((S) = 1 [ Mé‘% - \/jlcap(ﬁB)2

2 54+ 0(5%)]
t 7202|B| 8n72v|B| +00?)
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REMARK 14.10. In the special case when D is the unit sphere, we have cap(0D) =
4m, |D| = 2E. Consequently,

cap(OD) \/gi

202|D| Up
cap(0D)* 3
8rr2v|D| 2720’

Therefore, the Minnaert resonance is given by
3

woo(d) = f 5* F2 (62),

3Hb ]. Iib“ 2

REMARK 14.11. As in Chapter using the sub—wavelength resonance of the
bubble, one can design bubble metascreens. An acoustic meta-screen is a thin sheet
with patterned subwavelength structures, which nevertheless has a macroscopic effect
on the acoustic wave propagation. In [36)], periodic sub-wavelength bubbles mounted
on a reflective surface (with Dirichlet boundary condition) were considered. It was
shown that the structure behaves as an equivalent surface with Neumann boundary
condition at the Minnaert resonant frequency which corresponds to a wavelength
much greater than the size of the bubbles. An analytical formula for this resonance
was deriwed and numerically confirmed. The super-absorption behavior of the met-
screen observed in [322] was explained.

e

[N

14.3. Effective Medium Theory for a System of Bubbles and
Super-Resolution

In this section, we derive an effective medium theory for acoustic wave prop-
agation in bubbly fluid near the Minnaert resonant frequency. We start with a
multiple scattering formulation of the scattering problem of an incident wave by a
large number of identical small bubbles in a homogeneous fluid. Under certain con-
ditions on the configuration of the bubbles, we establish an effective medium theory
for the bubbly fluid as the number of bubbles tends to infinity. As a consequence, we
show that near and below the Minnaert resonant frequency, the obtained effective
media can have a high refractive index, which is the reason for the super-focusing
experiment observed in [311].

14.3.1. Problem Formulation. Consider the scattering of acoustic waves
by N identical bubbles distributed in a homogeneous fluid in R3. The bubbles are
represented by

DN .= UlngNDévy
where DJN = yjN + sB for 1 < 57 < N with ij being the location, s being the
characteristic size and B being the normalized bubble which is a smooth and simply
connected domain with size of order one. We denote by p, and x; the density and
the bulk modulus of the air inside the bubble respectively, which are different from
the corresponding p and & in the background medium R3\ DY,

We assume that 0 < s < 1, N > 1 and that {y]N} C Q. Let u’ be the incident
wave which we assume to be a plane wave for simplicity. The scattering can be
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modeled by the following system of equations:

VoiveN 42N =0 in R¥N\DY,
V~iVuN+ﬁ—:‘uN =0 in DV,
(1413) ulf ¥ =0 "on 0D,
1 9ulY 1 ouN | _ N
» gy - I gu =0 ondD 5
u —u' satisfies the Sommerfeld radiation condition,

where uV is the total field and w is the frequency.

As in the previous section, we introduce the four auxiliary parameters v, vy, k,
and kp, and the two dimensionless contrast parameters § and 7 to facilitate our
analysis. By choosing proper physical units, we may again assume that both the
frequency w and the wave speed outside the bubbles are of order one. As a result,
the wavenumber k outside the bubbles is also of order one. We assume that there
is a large contrast between both the densities and bulk modulii inside and outside
the bubbles. However, the contrast between the wave speeds are small. Thus, both
the wave speed and wavenumber k;, inside the bubbles are of order one. To sum
up, we assume that § < 1, 7 = O(1). We also assume that the domain of interest
Q has size of order one.

Using layer potentials, the solution uY

can be written as

v ){ w4+ 8k [wN],  xeR3N\DV,

(14.14) =
S]E)b[wév]v xEDN,

for some surface potentials v, vy, € L?(0DY). Here, we have used the notations

L*(ODN) = L20DYN) x L*(0DY) x --- x L*(dDY),
SpalpN] = Y SEJNMV],

1<j<N
Sply] = ) Sfa;v[wéﬁ]-

1<j<N

Using the jump relations for the single layer potentials, it is easy to derive that
1 and 1y, satisfy the following system of boundary integral equations:

(14.15) AN (w, 0)[@N] = FV,

where

Ny §) = Sp ~Sh ) N _ (w{f) N _ ( u'™ )

) = (L e i) ¥ = () P = (o)l

One can easily show that the scattering problem is equivalent to the
boundary integral equations and there exists a unique solution to the scat-
tering problem , or equivalently to the system .

Let #H = L?(0D™) x L?(0DN) and H1 = HY(OD™) x L*>(0DY). 1t is clear that
AN (w,d) is a bounded linear operator from H to Hi, i.e., AN (w,d) € L(H,H1).
We also use the following convention: let ay and by be two real numbers which
may depend on N, then

an S by

means that ay < C - by for some constant C' which is independent of ay, by and
N.
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We are interested in the case when there is a large number of small identical
bubbles distributed in a bounded domain and the incident wave has a frequency
near the Minnaert resonant frequency for an individual bubble. We recall that for
the bubble given by Dj»v = y]N +sB, its corresponding Minnaert resonant frequency
wpr is
1 [cap(0B)d

“M = T202|B|

We assume that the following assumption holds:

ASSUMPTION 14.12. The frequency w = O(1) and is independent of N. More-
over,

(14.16) 1— (%)2 — Bys©

for some fizred 0 < €1 < 1 and constant Py.

There are two cases depending on whether w > wjys or w < wys. In the former
case, we have By > 0, while in the latter case we have 8y < 0. We shall see later
on that acoustic wave propagation is quite different in these two cases. In fact,
the wave field may be dissipative in the former case while highly oscillatory and
propagating in the latter case. We also assume the following.

ASsUMPTION 14.13. The following identity holds
(14.17) sTTULN = A,
where A is a constant independent of N. Moreover, we will assume that A is large.

Therefore, we have

_ 2.2 € m20%| B|
(14.18) 0 =ws"(1—s%) cap(0B)"

We note that we have rescaled the original physical problem by imposing the
condition that wy; is of order one. Consequently, the physical parameters s and
associated with the size and contrast of the bubbles both depend on N. Equation
(14.17)) gives the volume fraction while Equation controls the deviation of
frequency from the Minnaert resonant frequency. In the limiting process when
N — o0, we have s = 0, § — 0.

We assume that the size of each bubble is much smaller than the typical distance
between neighboring bubbles so that we may simplify the system using the point
scatterer approximation. More precisely, we make the following assumption.

ASSUMPTION 14.14. The following conditions hold:

miniz; |y —yN| > 7w,
s TN,

where rn = nN_% for some constant 1 independent of N. Here, rn can be viewed
as the minimum separation distance between neighboring bubbles.

Following [391], we assume that there exists V € L>(£2) such that

(14.19) oN(4) —>/ V(z)dr, as N — oo,
A
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for any measurable subset A C R?, where OV (A) is defined by
1
oN(A) = ~ X {number of points yjN in A C R3}.

In addition, we assume that the following condition on the regularity of the
“sampling” points {yN } holds.

ASSUMPTION 14.15. There exists 0 < €9 < 1 such that for all h > 2ry:

1 1
(14.20) N Z T E < R, wniformly for all x € Q,
lz—yN|>h
(14.21) 1 Z 1 < |h],  uniformly for all x € Q

27‘N§|w—y§\]|§3h

REMARK 14.16. Note that one can choose €y to be a small number in As-

sumption |14.15 One can show that equations (14.20) and (14.21) are respectively

equivalent to the following ones

1 1
(1422) InaX{f Z W} 5 hieo;
[y =y [>h
(14.23) ax{ ! > L ——1 < h
. max{— < h.
! N |yl - y] |

2ry<|y —y |<3h

Indeed, these estimates follow from the fact that for each x € Q there exists a finite

number of points yﬁ, yﬁ,. . yﬁ in the neighborhood of x with L independent of
N such that
1 1 1 1
TTES L < 2
_ ., N2 — N _ ., N|2’ N
o=y 1 T 2 s — v e A R ij1 vyl

for all ij such that |z — yJN| > h.
Following [384], we also assume the following.

ASSUMPTION 14.17. For any f € C%*(Q) with 0 < a < 1,
(14.24)

max 155 ST~ 0070 - [ DY V00wl S g W v

REMARK 14.18. By decomposing Ty (x — y) into the singular part, To(z — y),
and a smooth part, one can show that Assumption is equivalent to

1
(1425) o 162) = [ = V@Il £ 55l e
v ; Iyz vyl ly - yJNI N3
For 1 < j < N, denote by
i,N i
i#j
s,N
u; Sf);y WJN]
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It is clear that u;N is the total incident field which impinges on the bubble DJN
and uj’N is the corresponding scattered field. In the next section, we shall jus-
tify the point interaction approximation. For this purpose, we need an additional
assumption.

3€e1
1—61 :

ASSUMPTION 14.19. ¢ <

REMARK 14.20. Assumptions|14.19 and|14.19 are important in our justifica-
tion of the point interaction approximation, see Proposition . The assumption
that €1 > 0 is critical here. For the case e = 0, the frequency is away from the
Minnaert resonant frequency. The scattering coefficient g has magnitude of order
s. The fluctuation in the scattered field from all the other bubbles may generate
multipole modes which are comparable with the monopole mode and hence invali-
date the monopole point interaction approrimation. We leave this case as an open
question for future investigation.

REMARK 14.21. Assumptions [14.19 and [14.15 are important in our effective
medium theory. The parameter €1 in Assumption [I{.13 controls the deviation of
the frequency from the Minnaert resonant frequency, which further controls the
amplitude of the scattering strength of each bubble. This parameter, together with
A, also controls the volume fraction of the bubbles through Assumption[T{.13 In an
informal way, if the bubble volume fraction is below the level as set by Assumption
say s'7 - N = O(1) for some €3 < €1, then the effect of the bubbles is
negligible and the effective medium would be the same as if there are no bubbles in
the limit as N — oco. On the other hand, if s'= - N = O(1) for some e3 > €1, then
the bubbles interact strongly with each other and eventually behave as a medium
with infinite effective refractive index. Only at the appropriate volume fraction as
in Assumption[I].13, do we have an effective medium theory with finite refractive
index. The larger A is, the higher the effective refractive index is. These statements
can be justified by the method developed in the paper.

REMARK 14.22. One can easily check that Assumptions[1].1]],[14.15 and[14.17
hold for periodically distributed ij ’s.

14.3.2. Point Interaction Approximation. In this subsection, we justify
the point interaction approximation under the assumptions we made in the previous
subsection. Our main result is the following.

PROPOSITION 14.23. Under Assumptions [14.12, [14.14} [1{.18] and [1{.19, the

following relation between uj’N and u;’N holds for all x such that |z — ij\ > s:

s,N N, N oG S iWN;, N
) —Tu(x — .q- ) / OIN73 ~1=¢ —° 1 m ) / .
U () KT =) -9 <uj (y;) + Ol L |z —yJN|] 1§la§)§v|u7 (3 >|>

_ N
Moreover, for x = y;',

i, N i N i i, N
udN () = () )+ s (ij)Zuz(ij)Jng(ui (yfV)erfV)Fk(ij—yfv%
i i%i
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where

g = glwdDY)=— _(iif’)’(iB%%HmsHow)),

(1 4+ Dveap(0B)sw (1 — 1)cap(0B)?5§

T 8m ~ 87720|Blws

are the scattering and damping coefficients near the Minnaert resonant frequency
respectively, and pY satisfies
o e

— 3T 1-e
[p| = max ™ ()] - OV v)-

PRroOF. First, by Taylor series expansion of I'y(z — y) with respect to y around
y]N , we have
(14.26)

uiN(z) = Ti(z — )¢y (y)do(y)
oDN

Ty(z —y) <<x<aD§V>,w§V>L2 + o<|x_—sw|> s |¢§V|L2> .
J

On the other hand, one can obtain

iN _ g 1 .
v =" WSy KDL o py + 5 Ol opy). - in 120D,
where
Fial) = ui™ () — N () = 3 (Sha[eM)() — Sha[e(w))
i)

By Lemma [T4:24] we get

1
HS’BJJ_V(WV)(Z/) - Slf;y(iﬁfv)(y;v)ﬂm(any) S e -s? ||¢ZNHL2(8D_;V)-
J
Thus,
12l opyy S Z N = LT max [ lL2@pm)-

i#]
Therefore, it follows that

195 sz 05 WHIS3L @D Mlhscony | oy + 3

S ma x |l Iz2aD¥)-

Note that HSlev [x(@DjV)]||L2(6D§V) = 0O(1) and

€0 €1
E . ~€og . T
| _N|2 sSry©s-NSN T,
i#] u

where we have used Assumption [[4.12] in the last inequality. We can therefore
conclude that

< NNy L9
(14.27) max (1972 opy) S max fuj™ (57")] Gap(oDM) "
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Consequently, by (14.26)),

s S
uj’N(x) = Tz —1yo) <<X(3D§V),¢§V>L2+O(M)'S'|¢JI‘V|L2>
J
_ _ NY VY o O LN (VY
= Tz —1yo) <<X(5Dg ) )L +O(| py—— |)1ISI;3SXN|UJ (y;)] |9|>-
Since
AODN), pNY . = oDN), uiN (yN)Sok (DY) —L O(IF; 2|l i1 (o~
(x(0D;"), ;") L <X( ) ui ™ (y;) D! [x(0D;")] cap(9DY) L2+ (152l 2 op))
= uyNyN)g+0(s N3 T max 72 opy)
— N/ N . iQ_liilsl . N . L
= u;i" (y; )9+ O(s- N3 ) IE;EE(NW (y] ) |cap(6D§V)|

- g(u;‘-W(y;V)w(NSm)- max i’ <y§V>|),

1<I<N
we arrive at
. f0_ _°€1 S i
3N (2) = Tu(z — o)y (u;w ) FOINF T ] max Juj ™ (y >l> :

|z — yj—VI] 1IN

Finally, note that
6, N i 5, N
uy™ (x) = (@) + Y u (@)
i#]j
By taking x = x and using the assumption that

|‘,I:'fv _'Tj[vl Z N,

we obtain .
S S €1 1 0 __€“1
R — - 8 . NS < N 3 1—ep |
Je =y | SN ~
The second part of the proposmon follows immediately. ([

LEMMA 14.24. The following estimate holds:

1
(14.28) ||SIEJ§V(7/J£V)(?J)*SIBJN(WV)(U;V)||H1(6[)§V) S W'52'Hwi\]”L2(DD§V)'
i J

PROOF. By Taylor series expansion of I'y(y — z) with respect to y around y]N
and z around y¥, we have

Shp()0) = ShrI0)) = [ (Ouly=2) = Tute =) v Gl

lal+1Blg
Sy Y [ T 0 Rl o)

|| >1 |B]>0

Using the estimate

glel+18l 1 1
|7(y » Yi ,k)|§max{ }v
Qyzf T 9 =y |yl — Y[l e
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we obtain
1
|3§>,N(¢1N)( ) — Sﬁw(w )(Z/g )= W'SQ : ||¢zN||L27
J ly; Y; |
1
IVSEn ()W) S g -5 19V lees
’ ly; —Y; |

whence estimate (|14.28]) follows. This completes the proof.

Let us denote xév = u;N(y;V), bﬁ»v = Ul(ij)a ™ = (Tijg\‘f)lﬁi,jSN with TiJJ\’[ =

grk(y'fv - y]]V)7 and
@ =gty — v )l
i)
We obtain the following system of equations for Vv = (xj»v)lgjgN:

(14.29) eV —TNgN =N 4 ¢V

14.3.3. Derivation of the Effective medium theory of Bubbly Media.
In this section we derive an effective medium theory for the acoustic wave propa-
gation in the bubbly fluid considered in Subsection We first establish the
well-posedness, including existence, uniqueness and stability, and the limiting be-
havior of the solution to the system of equations , which is resulted from
the point interaction approximation, in Subsection We then construct
wave field from the solution to and show the convergence of the constructed
micro-field to a macro-effective field, in Subsection

14.3.3.1. Well-posedness and limiting behaviour of the point interaction system.
We start from the summation -, ; gk (N =y ) f(y). 1t is clear that

N —cap(0B) N N N
;grk(yj R N;ﬁosfl +v/=1-0O(w-s) (s-N)-Ty;" =y )f(y3)-
Denote by
iy = P00 (11 0(s), p=—2OE)

Bo+vV—1-O(w-ste1) Bo

Note that 2 and B are independent of N. By Assumption [[4.13] we have the
following identity:

> alely) =y ) NZBN A-Trlyy =y ) f i)
i#] i#]
Let
(14.30) V(z)=8-A-V(z).

We note that there are two cases depending on whether w > wps or w < wyy.
In the former case, By > 0, thus 5 > 0 which leads to V' (z) > 0, while in the latter
case we have fy < 0 and thus § < 0 which leads to V(x) < 0.

We now present a result on the approximation of the summation ), oy gl'x (y]N -

yM)f(yYY) by using volume integrals.
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LEMMA 14.25. For any f € C%*(Q) with 0 < a <1,

ma FZﬁN ATl = o) = [ T~ V) ) S 5 lev o

1<j<N

PROOF. By Assumption [14.17] we have

1
max NZB AT =76 — [ Tu — )V S )] S e o

Q

On the other hand, note that

1
By =Bl S5 S
Thus,
1 N N\p N 1
S8 Nz(ﬁ Bn) - A-Tlyy —w )W)l = A Z |||f||c0a(9)
i#£] i#£j Yi
1
,S N”fHCOva(Q) < WH]"HCO,Q(Q).

The lemma then follows immediately.
|

Let X = C%*(Q) for some 0 < a < 1 (later on we will take a = 15%). Define
T by

Tf(x) = /Q Tu(z — )V () f(y)dy.

T can be viewed as the continuum limit of 7%V in some sense. One can show that
T : X — X is a compact linear operator. Moreover, the following properties hold.

LEMMA 14.26. (i) The operator T is bounded from C°(Q) to C%(2) for
any 0 < o < 1.

(ii) The operator T is bounded from C%(2) to C1*(Q) for any 0 < o < 1.

(iii) In the case when w < wyr, the operator I — T has a bounded inverse on
the Banach space X. More precisely, for each b € X, there exists a unique
feX suchthat f —Tf=0band | fllx <C|fllx, where C is a positive
constant independent of b.

(iv) In the case when w > wyyr, the same conclusion as in Assertion (i) holds,
provided that V (z) > k* almost everywhere in (.

PROOF. Assertions (i) and (ii) follow from the general theory on integral oper-
ators. We now show Assertion (iii). Let b € X and consider the following integral
equation

x—Tz =0
Applying the operator A + k2 to both sides of the above equation, we obtain
(A +EHz — Vo= (A+EHb in Q.

In the case when w < wyy, we have V(x) < 0. Thus the above equation yields
a Lippmann-Schwinger equation with potential k2> — V, for which the solution is
known to be unique. This proves that the operator I — 7 has a trivial kernel.
The rest of statements of Assertion (iii) follow from standard Fredholm theory
for compact operators. Similarly, for Assertion (iv), we note that the operator
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A + k%2 — V is elliptic, then the statement follows from the standard theory of
elliptic equations. ([

REMARK 14.27. In the case when w > wpr, one has V(x) > 0. The integral
equation x — Tx = b leads to the following partial differential operator /\+ (k? —V)
where k> —V may change sign in the domain Q depending on the values of V (x).
In fact, in some physical situations, 1% may be zero or negligible near 02 while
of order one inside . When 8- A > 1, we see that k> —V < 0 in the inner
region of ). As a consequence, the wave field is attenuating therein, which implies
that the effective medium is dissipative. On the other hand, the wave field is still
propagating near 02 where k* — V(x) is positive. One may also see a transition
layer from propagating region to dissipative region near the place when k* —V (x) is
close to 0. It is not clear whether the operator /\ + (k* — V) with k> —V changing
sign is uniquely solvable or not.

In view of Remark we shall restrict our investigation to the case when
w < wys from now on. However, we remark that if we assume that kernel of the
operator I — 7T is trivial in the case when w > wys, then all the arguments and
results which hold for the case w < wjs also hold for w > wj,.

Note that u' € X. Let v be the unique solution satisfying

(14.31) Y — T =u'.
It is clear that
(AN + Kk —Vip =0 in R3,
We shall show that v is the limit of the solution =% to (14.29)) in a sense which

will be made clear later on. We first present the following result concerning the
well-posedness of the discrete system ((14.29)).

PROPOSITION 14.28. Let X = C%*(Q) for a = 15 and assume that w < wyy.
Then under Assumptions|14.14},[14.15 and|14.17, there exists Ny > 0 such that for
all N > Ny and b € X, there is a unique solution to the equation

with b;-v = b(ij) Moreover,

N
A <
1m£ja>§v|zj | < Ch|bllx,

for some constant positive Cy independent of N and b.

The proof of this proposition is technical and is given in [84]. As a corollary
of the proposition, we can prove our main result on the limiting behavior of the

solution to the system (14.29)).

THEOREM 14.29. Let X = C%*(Q) for a = 152 and assume that w < wyy.
Then under Assumptions[14.19,[14.13,[14.14),[14.15,[14.17 and[14.19, there exists
Ny > 0 such that for all N > Ny,

N _ (M) < N—2
1r§r§a§Xle] Py )l S 5,

where =™V and 1) are the solutions to (14.29) and (14.31]), respectively.
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PROOF. Step 1. We have

1
w) = D B ATy — el = oY+
%

v) = [ T Vs = 8.

N _ N N
Let 73" = 23" —1(y;"). Then

PN N Z N N
where
1
e = 5 50 B A Tu — ) = [ Tl =)V oty
i#]
Step 2. Let Gy (z,y) be given by

1

G () = § yony !
~(z,y) {W|x—y| if 0 < |z —y| <rn,

TN

if |x —y| >rn,

and define

GN(mvya k) = GN<x7y) + (Fk(x - y) - Fo(ﬂ? - y)) = GNJ(J"vya k) + GN,Q(xvya k)
Denote by
M) = 9Gn vy kY =@ (v) + @& (),
oy
where
QW)=Y 9Gna(wu B, @ W)=Y 9Gna( Y k)py .

i#£j i#£j
One can prove that ¥ € X; see [84]. Moreover,

N < N < Ty N

0 llx S max [pi| S OV V) max .

Since G 2(x,y, k) is smooth in | —y| and is bounded, a straightforward calculation
shows that @’ € X as well and

N < %0_1?5 . N
162" [[x < O(N 1) max .

Thus, we have ¢V € X and

PNlx < N < o(NFT). N
17 1x < max |pi"[ S O P) - max .

On the other hand, one can prove that there exists é¥ € X such that éN(y]N) =

el and [eV]|x < N_k%||ui\\x; see [84]. Therefore,

- - _1—e ; c0__€1
1M x + 13 x S N7 lulllx + O(NT T - max |2,

1<i<N
It then follows from Proposition that,
(14.32) max [N S N uf | x + O(N T ) - max [al].

1<j<N 1<i<N
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Step 3. Note that maxi<j<n |1/)(yJN )| is bounded independently of N. We can
derive from that max;<;<n |x§v | is also bounded independently of N, which
further implies that

l—eg €o 1y

max |r§v|§N_mm{ 6 B T Tmea ),
1<<N

This completes the proof of the theorem.
O

As a consequence of the above result and ((14.28)), we have the following corol-
lary.
COROLLARY 14.30. The following estimate holds:

751.|

max \|¢§V||L2(6D§V) Ss |u’]| x -

1<j<N

14.3.3.2. Convergence of Micro-Field to the Effective One. Let us consider the
total field uY = u™ + do1<i<N 8P [N outside the bubbles. Define
- J

(14.33)

_ ; . 1
N (z) = ui(x) + Z ng(x—y;»V)xj-V:u(x)—&—N Z BN-A-Fk(x—yév)xéV,
1<5<N 1<5EN

and denote by

N . N .
Yo, ={z:lz-y'| = forall 1 < j < N}

1
N1—€2
for some fixed constant ez € (0,%). The reason for introducing the set Y. is
that the convergence of the micro-field to the effective field does not hold near the
bubbles because of the singularity of the Green function near the source point.

However, it holds in the region away from the bubbles, which is characterized by

LEMMA 14.31. The following estimate holds uniformly for all x € YEJQV
@ (x) — uN (@) S NF T
PROOF. For each z € Y7, it is clear that

uN (x) = u'(x) + Z u;N(x)

1<j<N
By Proposition [14.23] we have
: i e A,
@) = @+ Y gt ) () O 4N
1<j<N T
_ N N et N/ N
= a¥(@)+ Y gkl —y) OIN="Ta] max |uf" ()|
1<j<N ==
- o e i
= @(@)+ Y glu(@—y)-O[NT =a] |u||x
1<G<N

~ f0_ _°€1
= V@) + Z gTi(z —yN) - OIN® 7],
1<<N

1)
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On the other hand,

1
S Tk —y = & D 8wl A Tu -y
1<j<N 1<j<N
S L L
N 1<<N |x_yj‘
1 1 1 1
< — max + Z
~ _ N —
N 1SN [z —yjt | St 7 o=y~
Therefore,

This completes the proof of the Lemma.

O
Define
wl@) = u'(@)+ [ Tula =)V el
We have the following two results.
LEMMA 14.32. For all x € YN the followmg estimate holds uniformly:
@ (@) - wiz)| N7 S S o)
PROOF. For each z € Y2, choose y}" € {yj H<j<n such that
o=yl = min |o -y
We have
@) —wle) = A Tula =)l + 5 3 ATt —))a) = [ Tt - i)V vy
il

S B S O T B R Y
J#l Q

+= ZﬂN k(e =) = Tu(yY — M)W Y)

Hﬁl
N Z/ [Cr(z —y) — Tyl — IV (y)0(y)dy
J#l
+NzﬂN A -Ty(z =y ) (] _w(ij))-l-%ﬁzv ATz —yM)a
J#l

=: e;+ex+e3+eq+es.

Let us now estimate e;, j = 1,...,5 one by one.
First, by Assumption

e SNTF - wllx S

Second, we can show that

lea S la =y [ - Jllx S N7




14.3. EFFECTIVE MEDIUM THEORY 441

Third, by Lemma [14:26]

_ 71762
leal Sz =y ' - [0llx S N™75 [[9]lx.
Fourth, note that

1 1

<7§: A - N _ M| ———

el =5 = Onl Al g by =Wl
J

By Assumption [14.15] and Theorem [14.29] we have
< N Ny < N minl
leal S max |25 — Py )| SN

€1
1—e€q

o0 _
3

Finally, one can check that
1
< . Nl NI < N7ee.
les] S & Jnax o]
Therefore,

l—eg l—eg €0 €1
6 3 23 T 1-¢q )

i () — w(z) = O(N ™
This complete the proof of the Lemma.

The following lemma holds.
LEMMA 14.33. We have w = .

PROOF. It is clear that w satisfies the equation
(A +E)w = (A +E)u' + Vi = V.
Recall that .
(A+ K —Vip = (A +E*)u' = 0.
Therefore, we have
(A +E2)(w—9) =0.

On the other hand, it is easy to see the w — ) satisfies the radiation condition. The
conclusion w = 1 follows immediately. O

As a consequence of the above two lemmas, we obtain the following theorem.

THEOREM 14.34. Let w < wpy and let V' be defined by (14.30). Then under
Assumptions the solution to the scattering problem converges

to the solution to the wave equation
(A+E2 =V =0
together with the radiation condition imposed on v —u® at infinity, in the sense that

forzxz e Yév, the following estimate holds uniformly:

¥ (@) = ()| § NS o)
The above theorem shows that under certain conditions, we can treat the bub-
bly fluid as an effective medium for acoustic wave propagation. Note that
1 _
A—ch—V:A—HcQ(l—ﬁﬂA-V).
Thus, the effective medium can be characterized by the refractive index 1— k%ﬂA-f/.
By our assumption, k = O(1) and V = O(1). When 8- A > 1, we see that we
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have an effective high refractive index medium. As a consequence, this together
with the main result in Chapter [J] gives a rigorous mathematical theory for the
super-focusing experiment in [311].

Similarly, we have the following result for the case w > wyy;.

THEOREM 14.35. Let w > wyy and assume that V(z) > k? almost everywhere
in . Then under Assumptions the solution to the scattering problem
converges to the solution to the following dissipative equation
(A+E2=V)p=0

together with the radiation condition imposed on ¥ —u’ at infinity, in the sense that
forz e Yeév, the following estimate holds uniformly:

l—eg l—eg o €1
s 3 €23 }

[u (@) = (o)) S N7 =k,
Finally, we conclude this section with the following three important remarks.

REMARK 14.36. At the resonant frequency w = wyy, the scattering coefficient
g is of order one. Thus each bubble scatter is a point source with magnitude one.
As a consequence, the addition or removal of one bubble from the fluid affects the
total field by a magnitude of the same order as the incident field. Therefore, we
cannot expect any effective medium theory for the bubbly medium at this resonant
frequency.

REMARK 14.37. The super-focusing (or equivalently super-resolution) theory,
developed in this paper for bubbly fluid seems to be different from the one developed
for Helmholtz resonators and plasmonic nanoparticles. However, they are closely
related. In C’hapters@ and it is shown that super-focusing (or super-resolution)
is due to sub-wavelength propagating resonant modes which are generated by the
sub-wavelength resonators embedded in the background homogeneous medium. In
those two cases, the region with subwavelength resonators has size smaller or much
smaller than the incident wavelength, and the number of sub-wavelength resonators
s not very large, and hence neither is the number of sub-wavelength resonant modes.
As a result, an effective medium theory is not necessary or even true. However,
in the case of bubbles in a fluid as considered in this paper, the region with bubbles
has size comparable to or greater than the incident wavelength. This together with
the fact that the ratio between the size of the individual bubble and the incident
wavelength near the Minnaert resonant frequency is extremely small, indicates that
the number of bubbles can be very large as is in the experiment in [311], even though
they are dilute. This large number of bubbles generates a large number of resonant
modes which eventually yield a continuum limit in the form of an effective medium
with high refractive index. In fact, these resonant modes can be obtained from the
point interaction system . On the other hand, it is shown in C’hapterlg that
super-focusing (or super-resolution) is possible in high refractive index media. In
this regard, the effective medium theory developed in this chapter can be viewed as a
bridge between the super-focusing (or super-resolution) theories in Chapters @ and

REMARK 14.38. In this section, we derived an effective medium theory for the
case w < wpr and a special case of w > wyy with some additional assumptions. How-
ever, our results still hold for the case w > wyy without any additional assumption,
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if we assume that the limiting system I — T has a trivial kernel. This assumption
implies that the limiting system is well-posed.

14.4. Numerical Illustrations

In this section we present some numerical examples to illustrate our main find-
ings in this chapter. Using Code 12.1 Bubble Resonance we obtain the numerical
results in Table and Figure [14.1

1) We wy Relative error
1072 0.075146 — 0.0239764/—1 0.074681 — 0.023687/—1 0.6727 %
1073 0.021001 — 0.004513y/—1 0.020987 — 0.004508+/—1 0.0652%
10=%  0.005950 — 0.000959+/—1  0.005949 — 0.000959/—1 0.0062%
10=® 0.001714 — 0.000221v/—1 0.001714 — 0.000221+/—1 0.0030%

TABLE 14.1. A comparison between the characteristic value w,
of A(w,d) and the root of the two dimensional resonance formula
with positive real part wy, over several values of ¢.

Relative error of 0 [%]

le-1 le-2 le-3 le—4 le-5
]

FIGURE 14.1. The relative error of the Minnaert resonance w,
obtained by the two dimensional formula becomes negligible when
we are in the appropriate high contrast regime.

14.5. Concluding Remarks

In this chapter, we have investigated the acoustic wave propagation problem
in bubbly media and rigorously derived the low-frequency Minnaert resonances.
We have also derived an effective medium theory for acoustic wave propagation
in bubbly fluid near Minnaert resonant frequency. We have shown that on the
one hand, near and below the Minnaert resonant frequency, the obtained effective
media can have a high refractive index, and on the other hand, the obtained effective


http://www.sam.math.ethz.ch/~grsam/HS16/MCMP/Code/Tutorial12/12.1 Bubble Resonance.zip
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1072
1073
104
107°

g

=

—_—
1 1 1 1 1 1 1 1
0.07 0.08

0.01 0.02 0.03 0.04 0.05 0.06
Re(w)

F1GURE 14.2. The Minnaert resonance for a single bubble of ra-
dius 1 in an infinite extent of liquid for contrast § €

{1072,1073,1074,10-5}.

medium can be dissipative above the Minnaert resonant frequency. Our results in
this chapter shed light on the mechanism of the extraordinary wave properties of

bubbly fluids near sub-wavelength resonant frequencies.



APPENDICES A

Spectrum of Self-Adjoint Operators

Given a linear self-adjoint operator L in the Hilbert space H with domain
D(L),D(L) = H, we define the resolvent set as

p(L) :={z€C: (2f — L) 'exists as a bounded operator from H to D(L)}.

Its complement o(L) = C\ p(L) is the spectrum of L.
Since L is self-adjoint, 2z € p(L) if and only if there exists a constant C(z) such

121 = L)ullg = C(2)||ulla

for all w € D(L). Moreover, o(L) # () and o(L) C R and the following Weyl’s
criterion holds for characterizing o(1): z € o(L) if and only if there exists u,, € D(L)
such that

lim ||(zI — L)uy||z = 0.

n—-+4oo
We define the point spectrum o, (L) of L as the set of eigenvalues of L:
op(L) :={z € o(L): (2I — L)""does not exist or equivalently Ker(zI — L) # 0}.

The complement o (L) \ 0,(L) is the continuous spectrum o.(L). If z € o.(L), then

(21 — L)™' does exist but is not bounded. The discrete spectrum o,4(L) is defined

by
o4(L) :={z € 0p(L) : dimKer(zI — L) < o0 and z is isolated in o(L)}.

The set 0ess(L) := (L) \ 04(L) is called the essential spectrum of L. Since L is

self-adjoint, we have

Oess(L) = 0.(L)U { eigenvalues of infinite multiplicity and their accumulation points }

U{ accumulation points of o4(L)}.

A family of operators {€(¢)};-°° . is called a spectral family (or a resolution of

identity) if the following conditions are satisfied:

(i) £(t) is a projector for all ¢t € R;
(il) £(t) < E&(s) for all t < s;
(iii) {€(¢)} is right continuous with respect to the strong topology, i.e.,

i €(s)u— Ol =0
for all u € H.
(iv) {&(t)} is normalized as follows:
Jim_[E(t)u — ully =0
for all uw € H.

445
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We recall that for fixed u,v € H, ((t)u,v) g is a function of bounded variation
with respect to t. Moreover, the self-adjoint operator L has a unique spectral
representation, i.e., there is a unique spectral family £(¢) such that

+oo
Lu= / td&(t)u

— 00

for all uw € D(L). By the spectral theorem, we have

(A1) (zI—L)_1:/+OO ! de(t)

oo A1
for all z € p(L). Furthermore,
(i) z € op(L) if and only if £(z) — E(z — 0) # 0;
(ii) z € 0.(L) if and only if £(z) — E(z — 0) = 0.
Here £(z — 0) := lim._,0+ £(z — €) in the sense of strong operator topology.
Let C(o(L)) be the set of continuous functions on o(L). We define

f(L):= lm Pu(L)

with {P,,} being a sequence of polynomials converging uniformly to f as n — +o0.
Since for any v € H the function

[ (u, f(L)u) e
is a positive linear function on C(o (L)), there exists a unique Radon measure p(u)
on o(L) (called the spectral measure associated to u and L) such that

/ f dpu() = {u, F(L)u) i
o(L)

for all f € C(o(L)). In particular, we have u(u)(o(L)) = ||ul|%, so p(u) is a finite
measure. Moreover, the measure p(u) is invariant under linear transformations and
can be decomposed into three parts:

ﬂ(u) = Hac + Hsc + Hpp,

where p,,, is pure point measure, p,. is absolutely continuous, and . is singular
both with respect to the Lebesgue measure. Let

Hpp == {u € H : p(u) is pure point },

Hge := {u € H : p(u) is absolutely continuous },

H,. := {u € H : p(u) is singulary continuous }.
We have H = Hp, ® H,. ® H,., where each subspace is invariant under L. Fur-
thermore,

0(L) =Tpp(L) Uoae(L) Uose(L),
where
opp(L) = 0(Lln,,),0ac(L) = 0(L|n,.), andos(L)=0o(L|n,.),

and the union may not be disjoint.
In terms of the spectral measure, (A.1]) can be rewritten as

(u,(z—L)—lu)HZAW,

which shows that du(u)(t) = (d€(t)u,u)y for all t € R.
Now, suppose that the self-adjoint operator L is compact. Then
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L has a sequence of eigenvalues \; # 0,7 € N, which can be enumerated
in such a way that

ol > (A > = A >0y

If there are infinitely many eigenvalues then lim;_, ., A; = 0 and 0 is the
only accumulation point of {A;}en;

The multiplicity of A; is finite;

If ; is the normalized eigenvector for \;, then {¢; ]108 is an orthonormal
basis on R(L) and the spectral theorem reduces to

400
Lu= Z)\j<u,<pj>g<pj, ue H.
§=0

(L) = {0,X0,A1,...,Aj,...} while 0 is not necessarily an eigenvalue of
L.






APPENDICES B

Optimal Control and Level Set Representation

In this appendix we describe the optimal control approach and the level set
representation used for solving optimal design problems in photonics and phononics.

B.1. Optimal Control Scheme

Let H be a Banach space. In photonics and phononics, H stands for either
for a set of admissible electromagnetic or elastic material properties or for a set of
geometric shapes. Consider a discrepancy functional J(u(h)) depending on h € H
via the solution u(h) to a system where h acts as a parameter, say: A(h)u(h) = g.
Here, g represents the data. In order to minimize J we need to compute its Fréchet
derivative

oJ ou
%(U(h))% )

which is not explicit in h. The introduction of the adjoint system
. aJ

(B.1) A(h)*p(h) = 5~ (u(h)),

where A(h)* denotes the adjoint of A(h) makes this explicit. Multiplying (B.1) by
%(ﬂz we obtain

aJ ou 0A
5 W) 550 = —p(h) -0hu(h) .

and therefore, the Fréchet derivative of J is given by

—pl)

h).

B.2. Level Set Method

Let H be a set of geometric shapes and consider the minimization over H of a
discrepancy functional J. The main idea of the level set approach is to represent
the domain D as the zero level set of a continuous function ¢, i.e.,

D{x:¢(x)<0},

to work with function ¢ instead of D, and to derive an evolution equation for ¢ to
solve the minimization problem. In fact, by allowing additional time-dependence
of ¢, we can compute the geometric motion of D in time by evolving the level set
function ¢. A geometric motion with normal velocity V' = V(z,t) can be realized
by solving the Hamilton-Jacobi equation

¢

(B.2) 5 TVIVel=0.

449
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Minimization within the level set framework consists of choosing a velocity V' driv-
ing the evolution towards a minimum (or at least increasing the discrepancy func-
tional we want to minimize).

Consider the geometry of the zero level set

o0 —{a:0t2) =0},

under a variation of ¢. Suppose that ¢(x) is perturbed by a small variation d¢(z).
Let dx be the resulting variation of the point z. By taking the variation of the
equation ¢(x) = 0, we find

(B.3) d0p=—-Vo-ox.
Observe that the unit outward normal at x is given by
Vo(x)
vixr) = .
= Vo)

Now, if ¢ represents time, then the function ¢ depends on both x and ¢t. We use
the notation

aD(t) = {m L (a,t) = 0}.

Assume that each point 2 € dD(t) moves perpendicular to the curve. That is, the
variation dx satisfies
Vo(z,t)

oz = V(z,t)m .

Suppose that J := [|A(f) — ¢||? and the minimization is performed over piece-
wise functions f = fyx(R?\ D)+ f_x(D) with fi being given constants. The
minimal requirement for the variations of ¢(x,t) is that J be a decreasing function
of t. The directional derivative of the function J in the direction § f is given by

5I(f) = J'(f)5f = 2R’ (g - A(f)>5f,

where J' is the Fréchet derivative of J and R} is the Fréchet derivative of A(f).
Since df is a measure on 9D given by

5F = (f+ — f-)oa - v(a),

we have

Vo(x)
BA4 Of = — f_ .6
(B.4) f=~ f)|V¢(x)| " on
Hence,

0J(f) = (f+ = [T (NHV,

and therefore, in order to make §.J(f) negative, we can choose

(B.5) V(ed) = (fy — [R] (g - A(f)) .

As is only valid for z € 0D, a velocity extension to the entire domain should
be performed. This leads to the Hamilton-Jacobi equation for ¢(x,t) with
the initial condition ¢(z,0) = ¢g(x), and thus the problem of maximizing J(f) is
converted into a level set form.
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B.3. Shape Derivatives

The shape derivative measures the sensitivity of boundary perturbations. It is
defined as follows. Let § € W1°°(R?)? be such that ||0]|y1. < 1, where W is
defined by (2.1]). Consider the perturbation under the map 6:

Dy =(I1+0)D,
where I is the identity map. In other words, the set Dy is defined as
(B.6) Dgz{m—l—@(m):xeD}.

The shape derivative of an objective shape functional J : R2 — R at D is
defined as the Fréchet differential of 6 — J(Dy) at 0. The vector 6 can be viewed
as a vector field advecting the reference domain D. The shape derivative dsJ
depends only on 6 - v on the boundary 0D because the shape of D does not change
at all if @ is lying on the tangential direction of the domain D.
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