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MULTI-LEVEL COMPRESSED SENSING PETROV-GALERKIN DISCRETIZATION

OF HIGH-DIMENSIONAL PARAMETRIC PDES

JEAN-LUC BOUCHOT, HOLGER RAUHUT, AND CHRISTOPH SCHWAB

Abstract. We analyze a novel multi-level version of a recently introduced compressed sensing (CS) Petrov-
Galerkin (PG) method from [H. Rauhut and Ch. Schwab: Compressive sensing Petrov-Galerkin approxima-
tion of high-dimensional parametric operator equations, Math. Comp. 304(2017) 661–700] for the solution
of many-parametric partial differential equations. We propose to use multi-level PG discretizations, based
on a hierarchy of nested finite dimensional subspaces, and to reconstruct parametric solutions at each level

from level-dependent random samples of the high-dimensional parameter space via CS methods such as
weighted ℓ1-minimization. For affine parametric, linear operator equations, we prove that our approach
allows to approximate the parametric solution with (almost) optimal convergence order as specified by

certain summability properties of the coefficient sequence in a general polynomial chaos expansion of the
parametric solution and by the convergence order of the PG discretization in the physical variables. The
computations of the parameter samples of the PDE solution is “embarrasingly parallel”, as in Monte-Carlo
Methods. Contrary to other recent approaches, and as already noted in [A. Doostan and H. Owhadi: A
non-adapted sparse approximation of PDEs with stochastic inputs. JCP 230(2011) 3015-3034] the optimal-
ity of the computed approximations does not require a-priori assumptions on ordering and structure of the
index sets of the largest gpc coefficients (such as the “downward closed” property). We prove that under
certain assumptions work versus accuracy of the new algorithms is asymptotically equal to that of one PG

solve for the corresponding nominal problem on the finest discretization level up to a constant.

1. Introduction

Motivated in particular by uncertainty quantification, the numerical solution of parametric operator
equations has gained significant attention in recent years. In many cases, the underlying parameter space
is high dimensional or even infinite dimensional so that standard approximation methods are subject to the
curse of dimensionality, see e.g. [17, 16]. Monte Carlo (MC ) sampling, however, may be used in the context
that the parametric model arises from a stochastic model and leads to a mean-square rate of m−1/2 in terms
of the number m of sample evaluations, with constants that are independent of the parameter dimension.
The (dimension-independent) rate 1/2 is not improvable in MC methods, in general, and the challenge
consists in developing methods that achieve a faster convergence rate and at the same time alleviate or even
overcome the curse of dimensionality.

A number of computational approaches have emerged in recent years towards this end. Among these are
adaptive stochastic Galerkin methods, as developed in [26, 25, 34], reduced basis approaches (see, eg., [6, 12]),
adaptive Smolyak discretizations [49, 50], adaptive interpolation methods [14] as well as sampling methods
[52]. Adaptive Galerkin methods [26, 25, 34] are intrusive in the sense that they cannot simply reuse a solver
developed for the corresponding problem with fixed parameter. In contrast, the other above mentioned
methods and algorithms are non-intrusive, but they rely on successive numerical solutions of the operator
equations for various parameter instances that are chosen based on suitable precomputations. In contrast,
(multilevel) Monte-Carlo (MLMC )[44], or Quasi-Monte Carlo approaches (QMC )[23] compute expectations
or statistical moments of the (random parametric) solution via solutions for parameter instances chosen at
random or “quasi-random”, which allows to compute the “parameter snapshot” solutions in parallel.
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In this article, we build on a compressed sensing approach for numerically computing parametric solu-
tions developed and analyzed in [46, 9] (see also [24, 45] for earlier work, and [15] for recent developments)
and combine it with ideas originating from MLMC methods, see e.g. [33, 4]. For Petrov-Galerkin (PG)
discretizations on a finite hierarchy of nested subspaces, ordered with respect to discretization levels, the
presently proposed method “samples”, in a judicious fashion, the parameter space and computes corre-
sponding PG approximations for random choices of the parameter vector. As in MLMC-PG approaches,
the number of such snapshot evaluations decreases with increasing discretization level (corresponding to
increasing refinement of the discretization). In contrast to (ML)MC sampling, we employ a CS technique
based on weighted ℓ1-minimization [47, 1] or Iterative Hard Thresholding Pursuit [40, 7] in order to re-
construct the coefficients of a generalized polynomial chaos expansion of the difference of the parametric
solution at two subsequent discretization levels. Finally, these differences are summed together to obtain
a PG approximation of the parametric solution at the finest level. One contribution of this paper is to
show that the generalized polynomial chaos (GPC) expansion of the differences of PG approximations of
the parametric solution is approximately sparse by estimating the weighted ℓp-norm for 0 < p < 1 of the
sequence of Chebyshev coefficients by a term that depends in a controlled way on the discretization level.
This fact makes the presently developed, multi-level version of the compressive sensing approach feasible.
We provide dimension-independent convergence rates which exceed 1/2 under certain sparsity assumptions
on the parametric solution family of the operator equation and estimate the computational complexity for
achieving such rates. Similar to MLMC methods, the workload for approximating the parametric solution is
asymptotically the same as the one for computing one snapshot solution at the finest level up to a constant
that depends only on smoothness parameters and p ∈ (0, 1). However, in contrast to multilevel Monte Carlo,
the convergence rates afforded by our scheme are practically independent of the dimension and only limited
by the solutions’ sparsity; in particular, they may significantly exceed O(m−1/2).

In mathematical terms, we consider linear, parametric operator equations of the generic form

A(y)u(y) = f. (1)

Here the parameter vector y ∈ U lies in a high-dimensional space U making it challenging to computationally
approximate the solution map y 7→ u(y), due to the mentioned curse of dimensionality, a notion going back
to R.E. Bellman [5], see [17, 16] for its relevance in the present context. Assuming that the parameter vector

y = (yj)
d
j=1 takes values in finite intervals, we can consider, without loss of generality, U = [−1, 1]d, where

the parameter set dimension d may be finite or infinite.
In our setting, the parametric family of operators A(y) : X → Y ′ maps from a reflexive Banach space

X to the topological dual of, potentially, another reflexive Banach space Y. A canonical example is the
affine-parametric diffusion equation considered in [18, 19] and in the single-level version of the present
work [46, 9]. For a bounded Lipschitz domain D ⊂ R

n (one should think of n = 1, 2, 3) and a parametric
diffusion coefficient a(·,y) ∈ L∞(D) that depends affinely on a parameter vector y, i.e.,

a(x,y) = ā(x) +
∑

j≥1

yjψj(x), x ∈ D, (2)

we consider the model parametric, second order divergence form elliptic Dirichlet problem

A(y)u := −∇ · (a(·,y)∇u) = f in D, u|∂D = 0. (3)

The weak formulation of (3) in the Sobolev space X = Y := H1
0 (D) reads: Given f ∈ Y ′, for every

y ∈ U := [−1, 1]N find u(y) ∈ X such that∫

D

a(x,y)∇u(x) · ∇v(x)dx =

∫

D

f(x)v(x)dx, for all v ∈ Y. (4)

Eq. (3) is a particular example of an affine-parametric operator equation of the form

A(y) := A0 +
∑

j≥1

yjAj , y = (yj)j≥1 ∈ U := [−1; 1]N, (5)

with Aj := −∇ · (ψj∇), A0 = −∇ · (ā∇). In (5), the operator A0 ∈ L(X ,Y ′) is traditionally referred
to as nominal operator or mean field while the operators Aj ∈ L(X ,Y ′), for j ≥ 1, are referred to as
fluctuations. For the parametric problem to be well-posed uniformly with respect to the parameter y ∈ U ,
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we assume that
∑

j≥1 ‖Aj‖L(X ,Y′) < ∞ in what follows. Further assumptions required for the convergence

and applicability of our approach will be specified ahead. Parametric expansions such as (5) can be obtained
e.g. by a Karhunen-Loève expansion of random input data for divergence-form partial differential equations,
as explained in [51, 19].

In order to ensure well-posedness of the parametric diffusion problem (3) as in [19] we require the uniform
ellipticity assumption: there exist constants 0 < r ≤ R <∞ such that

r ≤ a(x,y) ≤ R, for almost all x ∈ D, for all y ∈ U . (6)

The Lax-Milgram Lemma ensures that for every y ∈ U , the weak formulation (4) admits a unique solution
u(·,y) ∈ X which satisfies the uniform a priori estimate

sup
y∈U

‖u(y)‖X ≤ r−1‖f‖Y′ .

Here and throughout the remainder, the term “uniform” refers to uniform with respect to the parameter
sequence y ∈ U .

For the sake of simplicity we detail here only the approximation of functionals G ∈ X ′ of solutions to the
parametric operator equation (1), i.e., we are interested in the numerical approximation of

F (y) := G(u(y)), y ∈ U = [−1, 1]d,

pointwise with respect to y. We expect that our approach can be generalized to the recovery of the vector-
valued solution map y 7→ u(y), but we postpone this generalization to later contributions. We are aiming
at numerical schemes that are:

• Reliable: the convergence and accuracy should be verified and customizable;
• Parallelizable: parallel sampling as in Monte-Carlo methods should be allowed, with a convergence
rate in terms of the number of samples which (up to possibly logarithmic terms) equal the best
possible rate ensured by the compressibility of F (y), i.e., by weighted ℓp-estimates of the Chebyshev
coefficients of F ;

• Non-intrusive: the approximation should use existing numerical solvers of the problem with fixed
parameters, without any re-implementation of PDE solvers.

It is important to notice the difference to usual MC methods where the results obtained from random
sampling usually hold in expectation. In contrast, our approach provides approximations that hold pointwise
with respect to y. We estimate the coefficients of a tensorized Chebyshev expansion; whence only matrix-
vector multiplications are required in order to compute the solution F (y) = G(u(y)) for any given parameter
vector y = (yj)

d
j=1 up to a prescribed accuracy. The computation scheme analyzed here differs from the

single-level one introduced in [46] in the sense that computing the approximation is done in a more efficient
and computationally tractable manner. To this end, an unknown function u(y) is approximated by a

telescopic sequence of so-called “details” at successively finer spatial resolutions: u(y) ≈
∑L

l=1(u
l(y) −

ul−1(y)) where ul corresponds to a PG approximation on a discretization level l. This is analogous to
MLMC methods, but is achieved here by compressive sensing of the parameters with a level-dependent
number of parameter samples y(i) on each discretization level in the physical domain.

We outline key ideas of the compressive sensing approach. We assume at our disposal a countable
orthonormal basis (ϕν)ν∈Λ of L2(U, η) with η denoting a probability measure on the parameter set U to be

specified, and denote by L2(U, η;X ) the Bochner space of strongly measurable maps from U to the (separable
Hilbert) space X containing solution instances, which are square integrable w.r.t. η. We represent any
function u(y) with values in X as u(y) =

∑
ν∈Λ ανϕν(y), where α = (αν)j∈Λ denotes the unique sequence

of coefficients αν ∈ X . Hence, in order to compute an approximation of the parametric solution for any y it
suffices to calculate an approximation of the coefficients αν . For a new input parameter y, one evaluates the
basis functions ϕν at y and forms a linear combination to recover a direct estimation of the solution. Later
on, we analyze the use of tensorized Chebyshev polynomials as orthonormal basis. The approximation is
computed by evaluating the function at a few parameter points y(i), 1 ≤ i ≤ m, and solving the linear system
g = Φα, where g = (gi)

m
i=1 =

(
u(y(i))

)m
i=1

and where Φ corresponds to the sensing matrix Φ ∈ R
m×N with

entries Φi,ν = ϕν(y
(i)), where N corresponds to the number of basis functions taken for the approximation.

However at this stage the coefficients αν and the components gi are elements in X , and therefore, we first
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deal with the simpler case where a functional G (also known as the Quantity of Interest (QoI for short) in
the uncertainty quantification literature) is applied to the solution, resulting in

bi = G(gi) = G
(
u(y(i))

)
=
∑

ν∈Λ

zνϕν(y
(i)), i = 1, . . . ,m, zν = G(αν), ν ∈ Λ .

We are particularly interested in the situation that the number m of evaluations is smaller than the cardi-
nality of Λ, so that the linear system b = Φz is underdetermined. Approximate sparsity of the coefficient
sequence (αν), and of (zν), allows to apply techniques from compressive sensing such as (weighted) ℓ1-
minimization or iterative hard thresholding (pursuit) in order to recover z accurately. In fact, approximate
sparsity follows from the fact that (‖αν‖X ) and (zν) are contained in weighted ℓp(F)-spaces, as shown in
[3, 16, 18, 19, 46] and, for a related coefficient sequence, in this paper.

We expect that an approximation of the full solution u(y), y ∈ U , taking values in the function space X ,
can be computed by a variant of our compressive sensing scheme. One may use ideas from joint/block sparsity
in order to recover the sequence (αν) with αν ∈ X via mixed ℓ1/ℓ2-minimization, see e.g. [27, 28, 30] (at least
in the case that X and Y are Hilbert spaces). However, we postpone a detailed analysis to a later contribution
and restrict ourselves here to the simpler case of recovering the real-valued function y 7→ G(u(y)).

The multi-level approximation scheme uses discretization levels l = 1, . . . , L, where the meshwidth at
discretization level l is 2−lh0, so that the finest discretization is hL = 2−Lh0. With n being the dimension
of the domain D, we assume that the number of degrees of freedom at level l scales like O(2nl), and we
further assume available linear complexity, multilevel solvers for the approximate solution of the discretized
linear system of equations (uniformly with respect to the parameter y) resulting in computational costs
per PG solution ul(y(i)) that scales linearly in the number of degrees of freedom: O(2nl).

The presently proposed multi-level extension of the CS PG approach from [46] proceeds analogous to

MLMC (see, e.g., [39] or [33] and the references therein): for parameter choices {y(i)
l }i=1,...,ml

on discretiza-

tion level l, compute PG solutions ul(y
(i)
l ), ul−1(y

(i)
l ) at two consecutive discretization levels l and l − 1

(setting u0 ≡ 0). From the differences dul(y
(i)
l ) = ul(y

(i)
l ) − ul−1(y

(i)
l ), we compute an approximation

dũl(y) via the single level compressive sensing approach of [46] for each l = 1, . . . , L. Finally, we combine

the approximations at all levels similarly as in MLMC methods, i.e., ũ(y) =
∑L

l=1 dũ
l(y), to obtain an

approximation of the full parametric solution. The main result of this paper consists of an analysis of this
method and provides, in its proof, a strategy on how to choose the number ml of parameter points at each
level l. Its precise statement, Theorem 9, is postponed to later in the exposition. To illustrate the type of
results obtained here, we state now a version of Theorem 9 in the particular case of a linear, divergence form
diffusion operator with affine dependence on the parameters (see Eqs. (2) and (3)). Ahead, we say that the
weight sequence v is constant, if it is of the form vj = β for j = 1, . . . , d for some β > 1 and vj = ∞ for
j > d, which corresponds to the case that the expansion (2) is finite (with d terms). We say that v has
polynomial growth if vj = cjα, j ∈ N, for some c > 1, α > 0. We refer to Section 5.3 for details on the
weight sequences.

Theorem 1. Let L ∈ N and γ ∈ (0, 1). Consider the diffusion equation (3) with affine parametric co-

efficient (2), forcing term f ∈ H−1+t(D) and functional G ∈ H−1+t′(D), with the respective smoothness
parameters t, t′ ≥ 0. Assume that in (2) holds ā ∈ W t,∞(D) and that the fluctuations fulfill the weighted
p-summability1 ∑

j≥1

‖ψj‖pW t,∞(D)v
2−p
j <∞,

for a sequence v = (vj)j≥1 of weights as well as the following stronger, weighted version of the Uniform
Ellipticity Assumption (6): there exists 0 < r ≤ R <∞ such that

∑

j≥1

v
(2−p)/p
j |ψj(x)| ≤ min{ā(x)− r,R− ā(x)}, for all x ∈ D. (7)

1To ease the presentation, here and throughout the paper, we have not highlighted the dependence of the summability
parameter p on the regularity t of the right-hand-side f . It should be noted that the compressibility of the gpc expansion, the
choice of the weight sequence, the number of samples per level all depend on the regularity of the data ā, ψj , D and f .
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With probability at least 1− γ, the function F (y) := G(u(y)), y ∈ U , can be approximated by L (weigthed)
compressed sensing approximations based on a sequence of Galerkin projections into spaces of piecewise
polynomials on regular, simplicial triangulations of meshwidth hℓ = 2−ℓh0 from

ml & max{sl log3(sl) log(Nl), log(L/γ)}

solution evaluations at discretization level l for l = 1, . . . , L, where sl ≍ 2(L−l)(t+t′)p/(1−p), and Nl is the
size of the (level-dependent) active set of tensorized Chebyshev polynomials. The resulting approximation
F# satisfies

‖F − F#‖∞ ≤ Cp‖f‖H−1+t(D)‖G‖H−1+t′ (D)L2
−(t+t′)Lht+t′

0

‖F − F#‖2 ≤ C ′
p‖f‖H−1+t(D)‖G‖H−1+t′ (D)2

−(t+t′)Lht+t′

0

Under the assumption that the computational cost of a single solve at level l scales linearly with respect to
the number of degrees of freedom, i.e., is O(2nl) (for an n-dimensional domain D), this result is achieved

with a total work for the computation of snapshot solutions that scales as O
(
max

{
2nL, Lβ2L(t+t′)p/(1−p)

})
,

where β = 4 for constant weights v and β = 5 for polynomially growing weights. The constant hidden in the
O-notation includes a factor of log(d) in the case of constant weights.

We note in passing that in what follows, the estimates of the overall computational work do not account
for the numerical solution of the convex programs required for the compressed sensing approximation of the
mapping F . We justify this convention by the observation that the computational cost of ℓ1-minimization
is often of lower order compared to the total cost of evaluating the PDE samples.

Our theorem shows that in the case of sufficiently strong summability, i.e., (t+t′)p
1−p < n, at a total

cost that scales as a constant times a single PDE solve at the finest discretization level L, the multilevel
CSPG (MLCSPG) strategy can approximate a fixed function F for any parameter vector y ∈ U . This is
analogous to what is afforded by MLMC methods, but the present MLCSPG strategy allows to achieve any
convergence rate afforded by the gpc summability, and allows to approximate the full parametric dependence,
while MLMC only yields expectations (or moments). Moreover, in our case the computational work scales
favorably with decreasing p, which corresponds to better sparse approximation rates implied by the weighted
p-summability of (norms of) polynomial chaos coefficients of the parametric solution. To be more precise,

in the case of higher smoothness t+ t′ > 0, we obtain an approximation error that scales with ht+t′

L . With
a small enough value of p, we may exploit smoothness in the physical domain (allowing t + t′ such that
(t+t′)p
1−p < n) and balance approximation error for the PDE solves. In contrast, the computational work

required by MLMC to achieve an expected approximation error scaling as htL grows proportionally to 22tL

when 2t ≥ n (where t corresponds to the smoothness of the solution in the physical domain), see [4, Theorem
5.7], and there is no parameter p in MLMC whose tuning allows to avoid such growth.

Nevertheless, we note that t and p may not be tuned independently: in many instances increased smooth-
ness t leads to a larger value of the summability parameter p.

We emphasize that the tools and results developed here do not require a particular structure on the
support set of the best approximation. It is often the case (see e.g. [14, 43]), that proofs and/or methods
require the sets of active indices in N -term gpc approximations be downward closed, their approximation
properties then being, in particular, independent of the polynomial system adopted for implementation. In
constrast, the presently proposed, compressed sensing based approach can recover (with high probability)
any support set of active multi-degrees of tensorized Chebyshev polynomial approximations (only assuming
very rough knowledge of its location as provided by weighted ℓp-estimates of polynomial chaos coefficients),
yet still providing quasi-optimal rates of convergence. Moreover, apart from the ℓ1-minimization part of the
algorithm, all function evaluations can be done in parallel.

Theorem 1 is a particular case of our main Theorem 9 which we prove in Section 4 after recalling some
basics about Petrov-Galerkin approximations in Section 2 combined with compressed sensing techniques in
Section 3. Section 5 deals with pratical aspects such as truncating the dimension of the parameter space.
The paper is finally concluded by numerical experiments to illustrate the theory in Section 6.
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2. Petrov-Galerkin approximations

We deal with the pointwise numerical approximations of the countably-parametric operator equation
Eq. (1). Numerically accessing the parametric solution map U ∋ y 7→ u(y) at a fixed parameter instance
y ∈ U requires discretization of Eq. (1) also in “physical space”. To this end, we introduce two dense,
one-parameter families of discretization spaces {X h}h>0 ⊂ X and {Yh}h>0 ⊂ Y of equal finite dimensions
Nh := dim(X h) = dim(Yh) and assume that the parametric operator A(y) fulfills the discrete and uniform
inf − sup conditions: there exists a µ > 0 such that for any h > 0 and y ∈ U





inf0 6=vh∈Xh sup0 6=wh∈Yh
〈A(y)vh,wh〉
‖vh‖X ‖wh‖Y

≥ µ > 0

inf0 6=wh∈Yh sup0 6=vh∈Xh
〈A(y)vh,wh〉
‖vh‖X ‖wh‖Y

≥ µ > 0 .
(8)

The PG projections are defined as the solution to the following weak variational problems:

Find uh(y) := Gh(y)(u(y)), such that 〈A(y)uh(y), vh〉 = 〈f, vh〉 for all vh ∈ Yh . (9)

We recall the following classical result (see for example [8, Chapter 6]).

Proposition 1. Let X h and Yh be discretization spaces for the PG method, such that the uniform discrete
inf − sup conditions (8) are fulfilled and assume that the bilinear operator X × Y ∋ (u,w) 7→ 〈A(y)u,w〉 is
continuous, uniformly with respect to y ∈ U .

Then the PG projections Gh(y) : X → X h are well-defined linear operators, whose norms are uniformly
bounded with respect to the parameters y and h, i.e.,

sup
y∈U

sup
h>0

‖uh(y)‖X ≤ 1

µ
‖f‖Y′ , (10)

sup
y∈U

sup
h>0

‖Gh(y)‖L(X ) ≤
C

µ
(11)

The Galerkin projections are uniformly quasi-optimal: for every y ∈ U we have the a-priori error bound

‖u(y)− uh(y)‖X ≤
(
1 +

C

µ

)
infvh∈Xh ‖u(y)− vh‖X . (12)

As is classical in the theory of polynomial approximation (see, e.g. [20, 48]), we use a holomorphic
extension of the parametric operator family A(y) to complex parameter sequences z ∈ O ⊃ U , where O is
some suitable subset of the complex plane. Here, when dealing with extensions of operators and solutions
to parameters taking values in the complex domain, we identify the function spaces X and Y with their
complexifications X ⊗ {1, i} and Y ⊗ {1, i} for the sake of simplicity. We require the parametric operator
O ∋ z 7→ A(z) to be holormorphic with respect to any finite set of variables and to be boundedly invertible.
Hereby, a Banach-space valued mapping z 7→ R(z) ∈ E of a single complex variable is said to be holomorphic
(in some open domain O) if

lim
h→0

R(z0 + h)−R(z0)

h
exists in E for any z0 ∈ O, with h → 0 understood in C. Note that our assumption on A requires it to
be holomorphic with respect to any component zj of z independently. Joint holomorphy with respect to
an arbitrary, finite subset of variables z′ = (zj)j∈Λ with |Λ| < ∞ of z then follows from Hartogs’ theorem.
In the sequel, we will often assume that the open set O, on which z 7→ A(z) is holomorphic, contains
the product of Bernstein ellipses Eρ =

⊗
j≥1 Eρj

with Eσ := {(z + z−1)/2, z ∈ C : |z| = σ}. In the case

of complex-parametric operators, the bounded invertibility of A(z) is equivalent to the complex discrete
inf − sup conditions: there exists a constant µC > 0 such that for any h > 0 and z ∈ O





inf0 6=vh∈Xh sup0 6=wh∈Yh Re 〈A(z)vh,wh〉
‖vh‖X ‖wh‖Y

≥ µC > 0,

inf0 6=wh∈Yh sup0 6=vh∈Xh Re 〈A(z)vh,wh〉
‖vh‖X ‖wh‖Y

≥ µC > 0.
(13)

Approximation results on discretization spaces are usually combined with prior knowledge of the regularity
of the data. For this, we assume that there exists a 0 < t ≤ t such that the parametric family A(y) ∈ L(X ,Y ′)
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is regular in given smoothness scales {Xt}t≥0, resp. {Yt}t≥0, satisfying:

X = X0 ⊃ X1 ⊃ ... ⊃ Xt , Y = Y0 ⊃ Y1 ⊃ ... ⊃ Yt . (14)

Here, the smoothness index t ≥ 0 denotes, for example, a differentiation order in a scale of Sobolev or
Besov spaces. These spaces are defined by interpolation for non integer indices. We shall also require a
corresponding scale on the dual side, with X ′

t := (X ′)t, and Y ′
t := (Y ′)t:

X ′ = X ′
0 ⊃ X ′

1 ⊃ ... ⊃ X ′
t , Y ′ = Y ′

0 ⊃ Y ′
1 ⊃ ... ⊃ Y ′

t . (15)

Note carefully that with this notation, (Xt)
′ generally differs from X ′

t . For example, in the case of the
diffusion equation (3), one may choose X = H1

0 (D) and Xt = H1+t
0 (D). In this case, X ′ = H−1(D) =

(H1
0 (D))′ and (Xt)

′
= H−1−t(D) 6= H−1+t(D) = (X ′)t =: X ′

t .
A first statement of solution regularity in the scales (14), (15) takes the form of uniform bounded invert-

ibility of the family of parametric operators A(y):

A(y) ∈ L (Xt,Y ′
t) , for all y ∈ U, and sup

y∈U
‖A(y)−1‖L(Y′

t,Xt) <∞. (16)

For the PG discretization, we assume at hand two one-parameter families {X h}h>0 and {Yh}h>0 of X and
of Y, respectively, with finite, equal dimension: Nh = dim(X h) = dim(Yh) < ∞. We assume furthermore
that {X h}h>0 and {Yh}h>0 are dense in X and in Y, respectively. Here the discretization parameter
h > 0 usually stands for the meshwidth in finite element discretizations of fixed polynomial degree, on a
quasiuniform triangulation of the physical bounded, polyhedral domain D. We assume that these spaces
admit approximation properties in the smoothness scales (14), (15),

infwh∈Xh ‖w − wh‖X ≤ Cth
t‖w‖Xt

, for all w ∈ Xt,

infvh∈Yh ‖v − vh‖Y ≤ Ct′h
t′‖v‖Yt′

, for all v ∈ Yt′ .
(17)

Together with the bounded invertibility of the family of operators A(y), it holds:

‖u(y)− uh(y)‖X
Eq. (12)

≤ C inf
vh∈Xh

‖u(y)− vh‖X
Eq. (17)

≤ cth
t‖u(y)‖Xt

Eq. (16)
≤ Cth

t‖f‖Y′
t
. (18)

Here, the constant Ct depends on a uniform bound on the inverse of the parametric operator in the ap-
propriate smoothness space: sup

y∈U ‖A(y)−1‖L(Y′
t,Xt), and on the smoothness parameter t, but not on the

discretization parameter h.
Moreover, as we confine the exposition to functionals of solutions F (y) = G(u(y)) for some G(·) ∈ X ′, we

assume adjoint regularity, i.e., there exists t′ ≥ 0, such that G ∈ X ′
t′ , and such that the parametric adjoint

solution wG(y) ∈ Y ′ of the problem
A(y)∗wG(y) = G (19)

satisfies wG(y) ∈ Y ′
t′ uniformly with respect to y:

sup
y∈U

‖wG(y)‖Y′ ≤ C‖G‖X ′

t′
. (20)

Under the adjoint regularity (20), the uniform parametric discrete inf-sup condition (8) and the approxima-
tion property (17), an Aubin-Nitsche duality argument as, e.g., in [41], implies superconvergence: for any
y ∈ U , with Fh the functional applied to the parametric PG solution uh(y) defined in (9) on discretization
spaces of parameter h,

|F (y)− Fh(y)| ≤ Ct+t′h
t+t′‖f‖Y′

t
‖G‖X ′

t′
. (21)

3. Single-Level Compressed Sensing Petrov-Galerkin approximations

The multi-level compressed sensing PG (MLCSPG) discretization is a generalization of the single-level
algorithms and results developed in [46]. Analogous to MLMC path simulations (see e.g. [33] and the
references there) or MLMC Finite Element discretizations (see e.g. [4]) the MLCSPG method described here
considers a sampling scheme from [46] with a number of sampling points depending on the discretization
level.

Such compressed sensing reconstruction techniques have already shown promise in the context of numer-
ical solutions of PDEs on high-dimensional parameter spaces: we refer, for example, to [55, 24, 45, 46, 9].
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The key idea in these works is to decompose the solution of Eq. (1) via its (tensorized Chebyshev or Le-
gendre) polynomial chaos expansion with respect to the parameter vector y. A strongly measurable mapping
u : U → X : y 7→ u(y) which is square (Bochner-) integrable with respect to the Chebyshev measure dη
over U can be represented as a gpc expansion, i.e.,

u(y) =
∑

ν∈F
uνTν(y), (22)

where in this case the coefficients in this expansion are functions uν ∈ X . Here F := {ν ∈ N
N
0 : | supp(ν)| <

∞} is the set of multi-indices with finite support. The tensorized Chebyshev polynomials are defined as

Tν(y) =

∞∏

j=1

Tνj
(yj) =

∏

j∈supp(ν)

Tνj
(yj), y ∈ U, ν ∈ F , (23)

with the univariate Chebyshev polynomials defined by

Tj(t) =
√
2 cos (j arccos(t)) , and T0(t) ≡ 1 . (24)

Defining the probability measure σ on [−1; 1] as dσ(t) := dt
π
√
1−t2

, the univariate Chebyshev polynomials Tj

defined in (24) form an orthonormal system in L2([−1, 1];σ) in the sense that
∫ 1

−1

Tk(t)Tl(t)dσ(t) = δk,l, k, l ∈ N0 .

Similarly, with the product measure

dη(y) :=
⊗

j≥1

dσ(yj) =
⊗

j≥1

dyj

π
√

1− y2j

,

the tensorized Chebyshev polynomials (23) are orthonormal with respect to η in the sense that
∫

y∈U

Tµ(y)Tν(y)dη(y) = δµ,ν , µ, ν ∈ F .

A result proven in [37] ensures the ℓp summability, for some 0 < p ≤ 1, of the polynomial chaos expansion (22)
for the diffusion case, Eq. (3): ∥∥(‖uν‖X )ν∈F

∥∥p
p
=
∑

ν∈F
‖uν‖pX <∞

under the uniform ellipticity assumption (6) and the condition that the sequence of infinity norms of the ψj

is itself ℓp summable: ∥∥∥(‖ψj‖∞)j≥1

∥∥∥
p

p
=
∑

j≥1

‖ψj‖p∞ <∞.

Recent results by [3] show that these conditions can be improved by considering pointwise convergence of the
series

∑
j≥1 |ψj | instead of infinity norms in the whole domain D. This takes advantage of the local structure

of the basis elements ψj , e.g. when only few of them are overlapping, as is the case for wavelets. In particular,
ℓp summability of Legendre coefficients can be obtained when (‖ψj‖∞)j ∈ ℓq for q := 2p/(2 − p) provided

that the interiors of the supports of the ψj do not overlap. The summability results from [37] concerning
Chebyshev expansions were extended to weighted ℓp estimates for the general parametric operator problem
(1) with affine dependence as in (5), in [46] under slightly stronger assumptions. This result is particularly
important for us as it ensures the recovery of the coefficients uν (or any functional thereof) via CS methods.

The results on the approximation via an MLCSPG framework rely on the single-level results developed
in [47, 46], where functions are approximated via a weighted-sparse expansion in an appropriate basis. We
review here the main ideas. Given a (finite) orthonormal system (φν)ν∈Λ, with |Λ| = N < ∞ for L2(U, η)
where η is a probability measure, for any fixed function f : U → R, there exists a unique sequence of
coefficients f = (fν)ν∈Λ such that

f(y) =
∑

ν∈Λ

fνφν(y), ∀y ∈ U . (25)
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We define an ℓp norm associated with this expansion as |||f |||p := ‖f‖p.
In particular, a function f is said to be sparse (or compressible) if its sequence of coefficients in expan-

sion (25) is sparse (or compressible) itself. Our goal is to recover this said sequence from seemingly few
evaluations of the function f at certain (here random) sample points y(i), for 1 ≤ i ≤ m. This can be done
by CS methods: after introducing the sensing matrix Φ as Φi,j := φj(y

(i)) and letting gi := f(y(i)), it holds

g = Φf .

Hence, assuming that the expansion is sparse, and the number of samples rather small, we are dealing with
the by-now classical problem of recovering a sparse vector from few linear measurements, by solving, for
instance, the convex program

min
z∈RN

‖z‖1, subject to Φz = g. (26)

In our context, it is beneficial to use a weighted framework which has been developed recently in [47].
Introducing a sequence of positive weights (ων)ν∈Λ with |ων | ≥ 1 for all ν, a weighted ℓp (quasi-)norm
(henceforth indexed ℓω,p when appropriate) can be defined as

‖f‖pω,p :=
∑

ν∈Λ

ω2−p
ν |fν |p, 0 < p ≤ 2.

In particular, it holds ‖f‖ω,2 = ‖f‖2 and ‖f‖ω,1 = ‖f ⊙ ω‖1, where ⊙ defines the pointwise multiplication.
Moreover, choosing the constant weight ων = 1 yields the original definitions of ℓp norms. Formally letting
p ↓ 0 motivates the introduction of the weighted sparsity measure

‖f‖ω,0 :=
∑

ν∈Λ,fν 6=0

ω2
ν .

A vector x is therefore called weighted s-sparse (with respect to a weight sequence ω) if ‖x‖ω,0 ≤ s. We
may therefore define the error of best weighted s-term approximation as

σω,s(f) = σω,s(f) := inf
z:‖z‖ω,0≤s

‖f − z‖ω,p.

With these weighted error measures at hand, the Basis Pursuit problem (26) can be generalized to include
a-priori information encoded in the sequences ω of weights, as

min
z∈RN

‖z‖ω,1, subject to Φz = g. (27)

More details on such weighted spaces and weighted sparse approximations can be found in [47] where the
following fundamental result is also proved.

Theorem 2. Suppose (φν)ν∈Λ is a finite orthonormal system with |Λ| = N < ∞ and that weights ων ≥
‖φν‖∞ are given. For a (weighted) sparsity s ≥ 2‖ω‖2∞, draw

m ≥ Cs log3(s) log(N) (28)

sample points y(i) at random, 1 ≤ i ≤ m, according to the orthonomalization measure η. The constant
C > 0 in (28) is universal, i.e., independent of all other quantities including s, m and N .

Then, with probability at least 1−N− log(s)3 , any function f =
∑
fνφν can be approximated by the function

f̂ :=
∑
f̂νφν , where f̂ is the solution to the weighted basis pursuit problem (27). The approximation holds

in the following sense:

‖f − f̂‖∞ ≤
∣∣∣
∣∣∣
∣∣∣f − f̂

∣∣∣
∣∣∣
∣∣∣
ω,1

≤ c1σs(f)ω,1, and ‖f − f̂‖2 ≤ d1σs(f)ω,1/
√
s .

In particular, using the weighted Stechkin inequality from [47]

σs(f)ω,q ≤
(
s− ‖ω‖2∞

)1/q−1/p ‖f‖ω,p, p < q ≤ 2, ‖ω‖2∞ < s , (29)

we obtain the estimates, for p < 1, in terms of the sparsity

‖f − f̂‖∞ ≤ cs1−1/p‖f‖ω,p, ‖f − f̂‖2 ≤ ds1/2−1/p‖f‖ω,p. (30)
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Choosing m ≍ s ln3(s) log(N) relates the reconstruction error and the number m of samples as

‖f − f̂‖∞ ≤ c

(
log3(m) log(N)

m

)1/p−1

‖f‖ω,p, ‖f − f̂‖2 ≤ d

(
log3(m) log(N)

m

)1/p−1/2

‖f‖ω,p.

Remark 1. Recent works [11, 38] on restricted isometry constants for subsampled Fourier matrices suggest
that the factor log3(s) in (28) can be reduced to log2(s), but details remain to be worked out.

4. Multi-level Compressed Sensing Petrov-Galerkin approximations

4.1. A multi-level framework. We extend the foregoing CS methods to sweeping the parameter domain
to multi-level (“ML” for short) discretizations of the parametric problems, in the spirit of the ML MC
methods for numerical treatment of operator equations with random inputs as developed in [39, 33, 4].
There, the solution of the parametric operator equation (1) is approximated on a sequence of partitions of
the physical domain D of widths {hl}Ll=1 for a prescribed, maximal refinement level L ∈ N. To simplify
the exposition, we assume dyadic refinement, i.e. hl+1 = hl/2 = 2−lh0 for a given, small enough, initial
resolution h0 > 0.

For a given parameter sequence y, we may write the Galerkin projection uL(y) ∈ X hL of u(y) as

uL(y) =

L∑

l=1

ul(y)− ul−1(y), (31)

where we define u0(y) ≡ 0 (note that we will equivalently parametrize the approximations and spaces by l
or hl). The idea behind our MLCSPG approach is to estimate every difference between consecutive levels
of approximation (the details) via a single level CSPG as presented above. For the remaining, we let

dul(y) := ul(y)− ul−1(y), 1 ≤ l ≤ L, (32)

denote the difference between two scales of approximation.

As already outlined in the introduction, our method produces pointwise numerical approximations d̂ul(y)
of dul(y) via a (single level) CSPG method. For each level l, we choose a number ml of parameter vectors

y
(1)
l , . . . ,y

(ml)
l , compute the PG approximations ul(y

(i)
l ) and ul−1(y

(i)
l ) by solving the corresponding finite

dimensional linear systems, and form the samples dul(y
(i)
l ) = ul(y

(i)
l ) − ul−1(y

(i)
l ), i = 1, . . . ,ml. From

these samples, one approximates the coefficients in the tensorized Chebyshev expansion of dul via weighted

ℓ1-minimization (or any sparse recovery method). This yields approximations d̂ul(y), ℓ = 1, . . . , L, and

uLMLCS(y) :=

L∑

l=1

d̂ul(y)

then provides an approximation of the targeted parametric solution u = u(y). The convergence of our
MLCSPG framework can be estimated via the triangle inequality,

‖u(y)− uLMLCS(y)‖X ≤ ‖u(y)− uL(y)‖X +

L∑

l=1

∥∥∥dul(y)− d̂ul(y)
∥∥∥
X
. (33)

For simplicity, we constrain our considerations to a functional G ∈ X ′ applied to the solution, leading to
the real-valued QoI F (y) = G(u(y)) to be approximated. The above considerations apply verbatim when

replacing u(y) by F (y), and dul by dF l, the levelwise PG approximation, and d̂ul(y) by d̂F l(y). The
triangle inequality leads to the error estimate

∣∣F (y)− FL
MLCS(y)

∣∣ ≤ |F (y)− FL(y)|+
L∑

l=1

∣∣∣dF l(y)− d̂F l(y)
∣∣∣ . (34)

The first term on the right hand side of Eq. (33) can be estimated using the uniform parametric regularity
(16), the uniform parametric inf-sup condition (8) and the approximation property (17): for a regularity
parameter 0 < t ≤ t of the data f ,

‖u(y)− uL(y)‖X ≤ Cth
t
L‖f‖Y′

t
. (35)
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Passing to the functional G ∈ X ′
t′ , we obtain a superconvergence error bound for the Petrov-Galerkin-Finite

Element Method (PG-FEM) via a classical Aubin-Nitsche duality argument [41]:

|F (y)− FL(y)| ≤ Ct+t′h
t+t′

L ‖f‖Y′
t
‖G‖X ′

t′
.

Our goal is to verify that the single-level result, Theorem 2, applies to all levels l = 1, . . . L, and to obtain
error bounds similar to the one in Eq. (21). We consider the Chebyshev expansions of the differences,

dul(y) =
∑

ν∈F
dulνTν(y), (36)

dF l(y) =
∑

ν∈F
dF l

νTν(y). (37)

Assuming summability of the expansion in ℓω,p(F), we can apply Theorem 2 with a number of samples
ml & sl log(sl)

3 log(Nl), for suitable choices of s1, . . . , sL, and in particular we can use the error estimate
(30) in terms of the (weighted) sparsity sl for each level of approximation. This results in the bound

|dF l(y)− d̂F l(y)| ≤ C
∥∥(dF l

ν

)
ν

∥∥
ω,p

s
1−1/p
l , for all 1 ≤ l ≤ L, (38)

where C > 0 is a universal constant (independent of sl, y, l). Theorem 2 applies only to finite orthonormal
systems. Thus, for each l = 1, 2, ..., L, the countably infinite index set F has to be truncated to a finite,
but possibly large, subset Γl of Nl := |Γl| < ∞ many indices of the relevant (few) essential Chebyshev
coefficients in the parametric solution’s gpc expansion. We describe a strategy for selecting the index sets
Γl depending on sl in Section 5.1. A good choice for the sl turns out to be sl ≍ 2(L−l)(t+t′)p/(1−p), as will
be derived ahead.

Finally, summing up the contributions from all discretization levels and drawing

ml & 2(L−l)(t+t′)p/(1−p)(L− l)3 log(Nl)

sample points per level will imply the error bounds in Theorem 9. The choice of this number of sampling
points is justified in Section 4.3 and by the following result, whose proof is the purpose of the next section.

Theorem 3. Let {A(y) : y ∈ U} be a parametric family of operators as defined in (5). Assume that the
operator A0 is inf − sup stable. For Bj := A−1

0 Aj and for 0 ≤ t ≤ t̄, introduce the sequence

bt := (bt,j)j≥1 with bt,j := ‖Bj‖L(Xt) = ‖B∗
j ‖L(Yt). (39)

Let v := (vj)j≥1 be a sequence of weights with vj ≥ 1 such that, for some p < 1,
∑

j≥1

bt,jv
(2−p)/p
j ≤ κv,p < 1, and (40)

∑

j≥1

bpt,jv
2−p
j <∞. (41)

Let ρ be a δ-admissible sequence of polyradii, with δ = (1− κv,p)/2, i.e., such that
∑

j≥1

(ρj − 1)bt,j ≤ δ. (42)

Then the family of operators A(y) is uniformly inf − sup stable. Assume in addition that Aj ∈ L(Xt,Y ′
t),

j ≥ 0, are defined on the scale of smoothness spaces Xt and that the approximation property (17) holds.
Assume moreover that A0 : Xt → Y ′

t is boundedly invertible and that the sequence bt is small, and that the
polyradius ρ is bt admissible, i.e.

∑

j≥1

bt,j ≤ κt < 1, (43)

∑

j≥1

(ρj − 1)bt,j ≤ δt, (44)

for δt < 1− κt .
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Then the affine-parametric family of operators {A(y) : y ∈ U} is uniformly boundedly invertible in
L(Xt,Y ′

t), and there hold bounds on the Chebyshev gpc coefficients

‖dulν‖X ≤ Chtl‖f‖Y′
t
ρ−ν , and |dF l

ν | ≤ Cht+t′

l ‖G‖X ′

t′
‖f‖Y′

t
ρ−ν for all ν ∈ F . (45)

Moreover, for each ν ∈ F , there exists a δ-admissible sequence ρ = ρ(ν) satisfying (44) such that the sequence

with components ρ(ν)−ν =
∏

j≥1 ρ(ν)
−νj

j , ν ∈ F , satisfies (ρ(ν)−ν)ν∈F ∈ ℓω,p, where

ων := θ‖ν‖0vν = θ‖ν‖0

∏

j≥1

v
νj

j , ν ∈ F . (46)

We want to stress once again that the result presented above is written without the explicit dependence
of the weight sequence v on the regularity parameter t. Moreover, we note that the conditions (39) - (44)
are, for t > 0, strictly stronger than the summability conditions which were required in the single-level PG
analysis in [46].

4.2. Summability of the Chebyshev expansions. This section provides the proof of the core result of
the present paper, Theorem 3. We show that under general assumptions, the parametric solution’s sequence
of Chebyshev coefficients

(
dF l

ν

)
ν∈F ∈ ℓp,ω, and in particular that the following a priori estimate holds:

∥∥∥
(
dF l

ν

)
ν∈F

∥∥∥
ω,p

≤ Cht+t′

l ‖f‖Y′
t
‖G‖X ′

t′
‖(ρ(ν)−ν)ν∈F‖ω,p. (47)

The novel point of this estimate is the scaling of the right hand side with ht+t′

l . The proof of this assertion
is structured in three main steps, analogously to [19, 46]. First we show that the difference between levels is
holomorphic in polydiscs. Then, this holomorphy is used to bound the norm of any Chebyshev coefficient.
This norm depends on a sequence of radii of holomorphy ρ. Finally, we construct a sequence of radii and
weights such that the sequence of coefficients is ℓω,p summable.

4.2.1. Holomorphy. This first part shows that, under some uniform invertibility assumption of the family of
(complexified) operators A(z) (which are satisfied in particular for the affine-parametric family considered
here), the solutions are holomorphic with respect to any finite set of variables. This then allows to use
Cauchy’s integral formula to estimate the norm of the Chebyshev coefficients.

Theorem 4. For some O ⊂ C
N with O ⊃ U , assume that the complex inf − sup conditions (13) hold with

constant µC uniformly for z ∈ O. If the solution map O ∋ z → u(z) ∈ X is holomorphic with respect to
any finite set of parameters, then

(1) for any level l of PG discretization (corresponding to the discretization parameter hl = 2−lh0 for
a given h0 > 0 sufficiently small), the parametric Galerkin projections O ∋ z → ul(z) ∈ X l are
holomorphic with respect to any finite subset of the sequence z ∈ O, with domains of holomorphy
whose size is independent of l, i.e. of the discretization parameter hl,

(2) the Petrov-Galerkin projections are quasi-optimal, uniformly with respect to the level of approxima-
tion l and the vector of (complex) parameters z ∈ O:

‖u(z)− ul(z)‖X ≤
(
1 +

C

µC

)
inf

vl∈X l
‖u(z)− vl‖X .

Proof. The holomorphy follows from the linearity of the PG approximation as stated in Proposition 1. The
quasi optimality is obtained in the same way as in the real case. �

The next corollary which uses the notation (32) follows directly.

Corollary 1. Under the conditions above, if in addition the approximation property of the discretization
spaces holds for complex parameters z ∈ O, then for any two consecutive discretization levels l and l + 1,
l ≥ 0, the mappings O ∋ z 7→ dul(z) ∈ X are holomorphic with respect to any finite set of variables and
satisfy the uniform bound

sup
z∈O

‖dul(z)‖X ≤ C ′
t,µC

htl sup
z∈O

‖u(z)‖Xt
.
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Proof. The statement is a consequence of the previous results and the triangle inequality:

sup
z∈O

‖dul(z)‖X ≤
(
1 +

C

µC

)
sup
z∈O

(
inf

vl∈X l
‖u(z)− vl‖X + inf

vl−1∈X l−1
‖u(z)− vl−1‖X

)

≤
(
1 +

C

µC

)
sup
z∈O

Ct

(
htl‖u(z)‖Xt

+ htl−1‖u(z)‖Xt

)
= C ′

t,µC
htl sup

z∈O
‖u(z)‖Xt

.

�

4.2.2. Nominal inf-sup conditions imply uniform inf-sup conditions. The preceding result, Theorem 4, re-
quires the validity of a uniform discrete inf-sup condition for the PG discretization; here, uniformity is
understood with respect to the discretization parameter h > 0 and with respect to the parameter sequence
z ∈ O in Theorem 4 or with respect to y ∈ U in (8), respectively. In what follows, we assume that the two
one-parameter families of dense subspaces {X h}h>0 ⊂ X and {Yh}h>0 ⊂ Y are of equal, finite dimension
Nh = dim(X h) = dim(Yh) and are stable for the nominal operator A0 ∈ L(X ,Y ′) in (5), i.e., the discrete
inf-sup conditions hold

inf
0 6=wh∈Xh

sup
0 6=vh∈Yh

〈A0w
h, vh〉

‖wh‖X ‖vh‖Y
≥ µ0 > 0 , inf

0 6=vh∈Yh
sup

0 6=wh∈Xh

〈A0w
h, vh〉

‖wh‖X ‖vh‖Y
≥ µ0 > 0 . (48)

Theorem 5. Suppose that the parametric operators A(y), A(z) are affine-parametric, as in (5). Assume
further that for t ≥ 0 the sequences bt = (bt,j)j≥1 in (39) are small, in the sense that (43) holds. Then, (43)
with t = 0 implies that the discrete inf-sup conditions (8) hold uniformly with respect to y ∈ U .

Moreover, if the sequence of polyradii ρ = (ρj)j≥1 is admissible, in the sense that (42) holds for t = 0

and for some δ < 1−κ0, then the complex-parametric A(z) satisfies the uniform inf-sup conditions (13) for
z ∈ Dρ =

⊗
j≥1 Dρj

, where Dρj
:= {z ∈ C : |z| ≤ ρj}.

Similarly, A(z) is invertible in L(Xt,Y ′
t) uniformly for z ∈ Dρ if ρ is δ-admissible w.r.t. the sequence

bt = (bt,j)j≥1, where bt,j := ‖A−1
0 Aj‖L(Xt).

Proof. Let b0 be such that condition (43) holds with t = 0. Since A0 is assumed to be boundedly invertible,

we can write A(y) = A0

(
I +

∑
j≥1 yjA

−1
0 Aj

)
and estimate

∥∥∥∥∥∥
∑

j≥1

yjA
−1
0 Aj

∥∥∥∥∥∥
L(X )

≤
∑

j≥1

|yj |b0,j ≤
∑

j≥1

b0,j := κ0 < 1.

It follows from a perturbation (Neumann series) argument that the operator A(y) is uniformly boundedly
invertible. The discrete inf − sup conditions hold with µ ≤ µ0(1− κ0).

One may extend this argument to the complexified operator A(z) defined for z ∈ Dρ. This yields
∥∥∥∥∥∥
∑

j≥1

zjA
−1
0 Aj

∥∥∥∥∥∥
L(X )

≤
∑

j≥1

|zj |bj ≤
∑

j≥1

ρjbj := δ + κ0 < 1 .

Therefore, the complex inf − sup conditions (13) hold with constant µC ≤ µ0(δ + κ).
The proof of the uniform invertibility in L(Xt,Y ′

t) follows by the same Neumann series argument. �

4.2.3. Norm bounds on the Chebyshev gpc coefficients. We now estimate the magnitudes of the Chebyshev
coefficients. These estimates are used in the next section to show the ℓω,p summability of the sequence
of Chebyshev coefficients. We recall that Eρ =

⊗
j≥1 Eρj

is a product of Bernstein ellipses Eρj
:= {(z +

z−1)/2, z ∈ C : 1 ≤ |z| ≤ ρj}.

Theorem 6. Let ν ∈ F . Assume that the discretization spaces have the approximation property (17).
Additionaly, assume that there exists a sequence ρ = (ρj)j≥1, with ρj > 1 such that the complex extension

z 7→ dul(z) is holomorphic with respect to any finite set of variables on Eρ and with A(z) ∈ L(Xt,Y ′
t)
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being uniformly boundedly invertible for every z ∈ Eρ. Then the Chebyshev coefficients of the difference
dul = ul − ul−1 can be estimated as

‖dulν‖X ≤ Cht
′

l ‖f‖Y′
t
ρ−ν .

If in addition we assume smoothness for the functional, i.e. G ∈ X ′
t′ for some 0 < t′ ≤ t̄, then it holds

|dF l
ν | ≤ Cht+t′

l ‖f‖Y′
t
‖G‖X ′

t′
ρ−ν , (49)

where the constants depend on the smoothness parameters t and t′ but not on hl.

Proof. The proof is similar to the one in [46] with appropriate modifications due to the introduction of the
levels. The tensorized Chebyshev polynomials being orthogonal, it holds

dulν =

∫

U

dul(y)Tν(y)dη(y).

Consider the multi-index ν = ne1 = (n, 0, 0 · · · ) ∈ F and split the parameter space as U = [−1, 1] × U ′,
then any parameter sequence y can be written as y = (y1,y

′) with y1 ∈ [−1, 1]. Thus

dulne1
=

∫

U ′

+1∫

−1

Tn(t)du
l(t,y′)

dt

π
√
1− t2

dη(y′). (50)

With the change of variables t = cos(φ) we obtain

+1∫

−1

Tn(t)du
l(t,y′)

dt

π
√
1− t2

=

√
2

π

π∫

0

cos(nφ)dul(cos(φ),y′)dφ =
1√
2π

+π∫

−π

cos(nφ)dul(cos(φ),y′)dφ.

This gives

+1∫

−1

Tn(t)du
l(t,y′)

dt

π
√
1− t2

=
1√
2πi

∫

|z|=1

zn + z−n

2
dul
(
z + z−1

2
,y′
)

dz

z

=
1

2
√
2iπ

∫

|z|=1

zn−1
dul
(
z + z−1

2
,y′
)
dz +

1

2
√
2iπ

∫

|z|=1

z−n−1
dul
(
z + z−1

2
,y′
)
dz.

Due to the assumption that the extension z → dul(z) to Eρ is holomorphic, the mappings

z 7→ zn−1
dul
(
z + z−1

2
,y′
)
, and z 7→ z−n−1

dul
(
z + z−1

2
,y′
)

are analytic on Eρ1 . By Cauchy’s theorem it follows, for 1 < σ < ρ1, that

+1∫

−1

Tn(t)du
l(t,y′)

dt

π
√
1− t2

=
1

2
√
2iπ

∫

|z|=σ−1

zn−1
dul
(
z + z−1

2
,y′
)
dz

+
1

2
√
2iπ

∫

|z|=σ

z−n−1
dul
(
z + z−1

2
,y′
)
dz.

Now notice that z 7→ dul(z,y′) is bounded by C ′htl‖f‖Y′
t
(in X ) in a polydisc contained in Eρ. Indeed, the

approximation property of the discretization spaces, see Corollary 1, together with the bounded invertibility
in the smoothness spaces, ensures

sup
z∈Eρ

‖dul(z)‖X = sup
z∈Eρ

‖ul(z)− ul−1(z)‖X ≤ Chtl sup
z∈Eρ

‖u(z)‖Xt
≤ C ′htl‖f‖Y′

t
. (51)
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It follows that∥∥∥∥∥∥

+1∫

−1

Tn(t)du
l(t,y′)

dt

π
√
1− t2

∥∥∥∥∥∥
X

≤ 1

2
√
2π

∫

|z|=σ−1

|zn−1|
∥∥∥∥dul

(
z + z−1

2
,y′
)∥∥∥∥

X
dz

+
1

2
√
2π

∫

|z|=σ

|z−n−1|
∥∥∥∥dul

(
z + z−1

2
,y′
)∥∥∥∥

X
dz

≤ 1

2
√
2πσn−1

2πC ′htl‖f‖Y′
t
σ−1 +

1

2
√
2πσn+1

2πσC ′htl‖f‖Y′
t

=
√
2C ′htl‖f‖Y′

t
σ−n. (52)

This bound is valid for any σ < ρ1 and hence holds up to σ = ρ1.
Finally, inserting Eq. (52) back into Eq. (50) after integrating over y′ ∈ U ′ with respect to the probability

measure dη(y′) yields

‖dulne1
‖X ≤ C ′htl‖f‖Y′

t
ρ−n.

Similarly, given any ν ∈ F , it follows that

‖dulν‖X ≤ C ′htl‖f‖Y′
t
ρ−ν ,

by applying Cauchy’s integral formula in C with respect to each variable zj for j ∈ {j : νj 6= 0}.
The Chebyshev coefficients of the functional are estimated in a similar manner, using (21),

|dF l
ν | ≤ C ′ht+t′

l ‖f‖Y′
t
‖G‖X ′

t′
ρ−ν . (53)

�

4.2.4. Summability of the sequence of Chebyshev gpc coefficients. It remains to prove the existence of a δ-
admissible polyradii ρ (depending on ν) and to verify the ℓω,p-summability of the right hand side of (49)
with respect to ν ∈ F , i.e., of the sequence (ρ(ν)−ν)ν∈F . Hereby, we identify suitable weights ω = (ων)ν∈F
as well. In contrast to unweighted ℓp-summability [18, 19], weighted ℓω,p-summability – considered first
in [46] – requires stronger assumptions on the sequence (b0,j)j∈N

used as base for the δ-admissibility (42).

Namely, with v = (vj)j∈N
and vj ≥ 1, we ask for properties (40) and (41) to be valid.

Theorem 7. Let v be a sequence of weights fulfilling the summability conditions (40) and (41) and let
ων := θ‖ν‖0vν for any ν ∈ F and some θ ≥ 1. There exists a sequence of polyradii (ρ(ν))ν∈F such that

i) for each ν ∈ F , ρ = ρ(ν) is δ-admissible, with δ = (1− κv,p)/2, and

ii) ‖
(
ρ(ν)

−ν
)
ν∈F

‖ω,p ≤ Kθ,p <∞.

Proof. Full details of the argument can be found in [46]; here, we only indicate the main steps, in particular
the construction of a sequence of weights ω and an associated, admissible sequence of polyradii.

For the weights v and a constant θ ≥ 1, we define the sequence of weights

ων(θ) := θ‖ν‖0vν = θ‖ν‖0

∏

j:νj 6=0

v
νj

j , for all ν ∈ F .

Because of (40), there exists a finite set E ⊂ N such that, with F := N\E,

∑

j∈F

v
(2−p)/p
j b0,j ≤

δ

8θ(2−p)/p
.

For a given constant α > 1 with (α − 1)
∑

j∈E v
(2−p)/p
j b0,j < δ/2, we define the sequences of polyradii

(generally depending on ν) as

ρj(ν) =

{
αv

(2−p)/p
j , j ∈ E,

max
{
v
(2−p)/p
j ,

νj

2|νF |bj

}
, j ∈ F,

(54)
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where we used the notation |νF | :=
∑

j∈F νj . The δ-admissibility of this sequence, as well as its ℓω,p

summability, ensuring the summability of the Chebyshev expansion of the differences, have been proved
in [46, Theorem 4.2]. �

Combining the estimate (53) with the ℓω,p summability of the sequence ρ yields

‖dF l‖ω,p ≤ Cht+t′

l ‖f‖Y′
t
‖G‖X ′

t′
‖
(
ρ−ν

)
ν∈F ‖ω,p . (55)

Consequently, with Eq. (38) it follows

|dF l(y)− d̂F l(y)| ≤ Cs
1−1/p
l ht+t′

l ‖f‖Y′
t
‖G‖X ′

t′
‖
(
ρ(ν)−ν

)
ν∈F ‖ω,p .

Theorem 3 is a direct consequence of the results in this section. Indeed, the bounded invertibility in the
smoothness spaces of A0 ∈ L(Xt,Y ′

t) together with the summability (44) implies the uniform bounded
invertibility of the operator A(z) ∈ L(Xt,Y ′

t), via a perturbation argument as stated in Theorem 5. This
ensures the applicability of Theorem 6 (which itself depends on the two previous theorems). Theorem 7
finally proves the existence of both a positive weight sequence ω and a sequence of polyradii ρ as well as the
ℓω,p summability.

4.3. Rate of convergence of the MLCSPG method. To simplify the exposition, we only derive the
bounds for the approximation of a functional of the parametric solution. The results can be applied mutatis
mutandis to derive the convergence rates for the full solution u(y), – once the details of the (single level)
compressive sensing scheme for the approximation of the full solution are worked out. We continue the
estimate in (34) as follows:

|F (y)− FL
MLCS(y)| ≤ |F (y)− FL(y)|+

L∑

l=1

∣∣∣dF l(y)− d̂F l(y)
∣∣∣

≤ Cht+t′

L ‖f‖Y′
t
‖G‖X ′

t′
+

L∑

l=1

Cs
1−1/p
l

∣∣∣∣∣∣dF l
∣∣∣∣∣∣

ω,p

≤ C‖f‖Y′
t
‖G‖X ′

t′

(
ht+t′

L +

L∑

l=1

s
1−1/p
l ht+t′

l ‖
(
ρ(ν)−ν

)
ν∈F ‖ω,p

)
.

We absorb the norm ‖ (ρ(ν)−ν)ν∈F ‖ω,p into the constant C > 0, yielding

|F (y)− FL
MLCS(y)| ≤ C‖f‖Y′

t
‖G‖X ′

t′

(
ht+t′

L +

L∑

l=1

s
1−1/p
l ht+t′

l

)
.

Using that the levels are related via hl = hl−1/2 we obtain

|F (y)− FL
MLCS(y)| ≤ C‖f‖Y′

t
‖G‖X ′

t′
ht+t′

L

(
1 +

L∑

l=1

s
1−1/p
l 2(L−l)(t+t′)

)
.

We balance sampling and discretization errors on each mesh level l in this bound. Thus the choice

sl ≍ 2(L−l)(t+t′)p/(1−p) = 2(L−l)σp(t+t′), with σp(t) =
tp

1− p
, (56)

implies an overall error bound of

|F (y)− FL
MLCS(y)| ≤ C‖f‖Y′

t
‖G‖X ′

t′
(L+ 1)ht+t′

L = C‖f‖Y′
t
‖G‖X ′

t′
(| log(hL)|+ 1)ht+t′

L .

The choice of the sparsities (56) together with (28) yields a number of samples per level scaling as

ml ≍ sl log
3(sl) log(Nl) ≍ 2(L−l)σp(t+t′) (L− l)

3
log(Nl) . (57)
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Note that the size Nl of the initial index set Γl may depend on sl and on the choice of weights ω. More
details are given in the next section. The global error in L2 is bounded as in Eq. (34),

‖F − FL
MLCS‖2 ≤ ‖F − FL‖2 +

L∑

l=1

‖dF l − d̂F l‖2 . (58)

The first term is computed using the uniform bound (21) and the fact that η is a probability measure.

To compute the sum, it suffices to apply the ℓ2-error bound in (30) to the L details, ‖dF l − d̂F l‖2 ≤
Ds

1/2−1/p
l ‖dF l‖ω,p. Hence, applying (21) to the first term and combining the ℓ2 bound in (30) with the

prior estimate (47) and the number of samples (56) in the terms in the sum yields

‖F − FL
MLCS‖2 ≤ C‖f‖Y′

t
‖G‖X ′

t′
ht+t′

L

(
1 +

L∑

l=1

2(t+t′)(L−l) p−2
2(1−p) 2(L−l)(t+t′)

)
= C ′‖f‖Y′

t
‖G‖X ′

t′
ht+t′

L .

Alternatively, one can also balance the number of samples with the discretization error to reach a prescribed

L2 error of O(ht+t′

L ) by combining Eq. (58) with the compressed sensing approximation (30):

‖F − FL
MLCS‖2 ≤ Cht+t′

L ‖f‖Y′
t
‖G‖X ′

t′
+ C

L∑

l=1

s
1/2−1/p
l ht+t′

l ‖f‖Y′
t
‖G‖X ′

t′
‖
(
ρ(ν)−ν

)
ν∈F ‖ω,p

≤ C‖f‖Y′
t
‖G‖X ′

t′
ht+t′

L

(
1 +

L∑

l=1

s
1/2−1/p
l 2(L−l)(t+t′)

)
.

In this case, choosing

sl ≍ 2
(L−l)(t+t′)2p

2−p (59)

ensures the L2 error bound

‖F − FL
MLCS‖2 ≤ Cht+t′

L (1 + | log hL|)‖f‖Y′
t
‖G‖X ′

t′
. (60)

5. Implementation Aspects

This section describes several aspects that are relevant for the numerical applicability of the theoretical
approach introduced above. In particular, we investigate the truncation of the (potentially infinite) sequence
of parameters to a finite subset, and specify initial choices of finite index sets Λ ⊂ F that are guaranteed
to contain the support of the best (weighted) s-term approximation of the solution and can be used within
weighted ℓ1-minimization or other CS algorithms.

5.1. Dimension truncation. So far, we have worked on a purely theoretical level, where the parameter
vector is potentially infinite (but countable). To ensure the applicability of the results, we have to verify
that truncating the parameter vector to a finite dimensional space (yet allowing this truncation to be rather
large) still allows for reliable approximations.

We consider the weak solutions of the truncated version of Eq. (1):

Find u(B) ∈ X , such that 〈A(B)(y)u(B), v〉 = 〈f, v〉 for all v ∈ Y, (61)

where the operator A(B)(y) is defined, for a finite B ∈ N, as A(y1, y2, · · · , yB , 0, 0, · · · ).
In particular, we assume some decay of the energy of the operator A(y) (i.e. assuming a certain order on

the parameters) such that for any ε > 0, there exists B := B(ε,A) with

‖A(y)−A(B)(y)‖L(X ,Y′) ≤ εµ, ∀y ∈ U, (62)

where µ is the constant appearing in the inf − sup conditions (8).
In this case, the following generalization of results in [22] holds.
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Proposition 2. Assume the operator A satisfies the (continuous) inf − sup conditions (8) and the decay
property (62). Then for any accuracy parameter ε, there exists a truncation parameter B ∈ N such that
the solutions to the truncated problem (61) and to the original problem (1) are close to each other in the
following sense

‖u(B)(y)− u(y)‖X ≤ Cε

µ
‖f‖Y′ , (63)

where u(B)(y) is the solution of the truncated problem (61).

Proof. The weak solutions are characterized by

Find u(y) such that 〈A(y)u(y), v〉 = 〈f, v〉 for all v ∈ Y,
Find u(B)(y) such that 〈A(B)(y)u(B)(y), v〉 = 〈f, v〉 for all v ∈ Y.

Since these equalities hold for all v, they imply the orthogonality conditions

〈A(y)u(y)−A(B)(y)u(B)(y), v〉 = 0 for all v ∈ Y.
Rearranging the terms yields 〈A(y)

(
u(y)− u(B)(y)

)
, v〉 = −〈

(
A(y)−A(B)(y)

)
u(B)(y), v〉 for all v ∈ Y.

This means that u(y) − u(B)(y) is the weak solution to the operator equation (1) with forcing term(
A(y)−A(B)(y)

)
u(B)(y). Consequently, using the inf − sup conditions twice and the decay property (62),

we obtain

‖u(y)− u(B)(y)‖X ≤ C

µ

∥∥∥A(y)−A(B)(y)
∥∥∥
L(X ,Y′)

‖u(B)(y)‖X ≤ εC

µ
‖f‖Y′ ,

which concludes the proof. �

Consequently, it is sufficient to draw the ml samples per level at random according to the truncated
distribution. As a concrete example let us consider the case of linear dependence on the parameters as
described in [46] and in Eq. (5). Assuming that A0 : X → Y ′ is invertible (which was required in Theorem 3)
and that (b0,j)j ∈ ℓ1 (which is weaker than the conditions in the previous section) the fluctuations Aj , j ≥ 1
are arranged in nonincreasing order, i.e., such that b0,j ≥ b0,k for 1 ≤ j ≤ k, then the operator (5) satisfies
the following dimension truncation error bound

‖A(y)−A(B)(y)‖L(X ,Y′) = ‖
∑

j>B

yjAj‖L(X ,Y′) = ‖A0

∑

j>B

yjBj‖L(X ,Y′) ≤ ‖A0‖L(X ,Y′)

∑

j>B

b0,j ,

for any y ∈ U . Moreover (see [46, Thm 2.9],[41, Thm 5.1]), the tail can be estimated by

∑

j>B

b0,j ≤ min

{
1

1/p− 1
, 1

}
‖(b0,j)j‖pB−(1/p−1)

for some p < 1. Consequently, choosing B ≥ h
−(t+t′)p/(1−p)
L yields a global approximation (accounting for

the truncation error, the PG approximation error, and the CS error) in O(ht+t′

L ).

5.2. Initial set of candidate vectors. As detailed in the discussion before Theorem 3, the results are,
so far, developed for an infinite Chebyshev expansion. To render the problem computationally feasible, we
truncate to a finite-dimensional, parametric expansion, where the truncation dimension is at our disposal
and therefore can be considered a discretization parameter. Let the sums (36) and (37) be truncated to a
finite set Γl ⊂ F . Some strategies for selecting such a set Γl were already described in [46], which was based
on the work in [47]. We have the following analog to Theorem 2 (proven in [47]) in the case of expansions
in terms of a countable sequence of parameters.

Theorem 8. Let γ ∈ (0, 1). Let F (y) =
∑

ν∈F FνTν(y) be a function with ‖F‖ω,p = ‖(Fν)ν‖ω,p < ∞ for

some p < 1 and some weights ων ≥ ‖Tν‖∞ for all ν ∈ F . For a given sparsity sl ≥ 1, define the initial set
of indices as

Γl := {ν ∈ F : ω2
ν ≤ sl/2}. (64)

Furthermore, assume that Nl := |Γl| is finite and draw

ml ≥ c0sl max{log3(sl) log(Nl), log(1/γ)} (65)
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sampling points y(i) independently and identically distributed according to the orthogonalization measure η.

Let F̂ be the solution of

min ‖H‖ω,1 subject to ‖AH− b‖2 ≤ 21−pτ
√
mls

1/2−1/p
l ‖F‖ω,p,

for some τ ≥ 1 and set F̂ =
∑

ν∈Γl
F̂νTν . Then, with probability at least 1− γ

‖F − F̂‖∞ ≤ ‖F− F̂‖ω,1 ≤ cτs
1−1/p
l ‖F‖ω,p,

‖F − F̂‖2 = ‖F− F̂‖2 ≤ dτs
1/2−1/p
l ‖F‖ω,p .

A drawback of the recovery based on an optimization problem is that it requires the knowledge (or an
approximation) of the norm of the unknown vector F. This can be overcome in practical applications by
applying the recovery to various estimations (similar to a cross validation in the machine learning litera-
ture [53]) or by using greedy methods, e.g. [13, 29].

The cardinality Nl of the set

Γl = {ν ∈ F : ω2
ν ≤ sl/2} = {ν ∈ F : ‖ν‖0 log(θ) +

∑

j∈supp ν

2 log(vj)νj ≤ log(sl/2)},

where the weights ων are chosen as in (46), influences the number ml of samples in (65) (and the computa-
tional complexity of the weighted ℓ1-minimization problem). Obviously, Nl depends on sl as well as on the
weight sequence (vj) used in the definition (46) of (ων). We recall the following estimates from [46].

Proposition 3. Let ων = θ‖ν‖vν , ν ∈ F , for a sequence v = (vj)j≥1 specified below and assume sl ≥ 1.

(1) For vj = β for 1 ≤ j ≤ d and vj = ∞ for j > d (i.e., we consider constant weights for the first d
dimensions and ignore the remaining ones), we have

Nl = |Γl| ≤
{ ((

1 + 1
log2(β

2)

)
ed
)log2β2 (sl/2)

, sl < 2d+1β2d,

(logβ2(β2sl/2))
d, sl ≥ 2d+1β2d .

(2) For polynomially growing weights vj = cjα with c > 1 and α > 0, there holds subexponential growth

Nl ≤ Cα,cs
γα,c log(sl)
l

for some constants Cα,c > 0 and γα,c > 0 depending only on c and α.

Inserting these bounds into Condition (65) on the number of required samples (assuming that the log(1/γ)-
term does not exceed the other logarithmic terms) shows that the following choices of ml are valid:

• For constant weights vj = β for 1 ≤ j ≤ d and vj = ∞ for j > d, we can chose

ml ≍
{

log(d)sl log
4(sl), sl < 2d+1β2d,

dsl log
3(sl) log(log(sl)), sl ≥ 2d+1β2d.

(66)

• For polynomially growing weights vj = cjα with c > 1 and α > 0, we can chose

ml ≍ sl log
5(sl) . (67)

The case of exponentially growing weights has been analyzed in [46] and yields situations where Nl ≤ ml.
In this situation, compressed sensing techniques should not be used, as least-squares methods are expected
to perform better [43].

We note that in the case of constant weights, the first case in (66) is the most relevant. In fact,

with the choice of sl as in (56), i.e., sl = C2(L−l)(t+t′)p/(1−p) for some proportionality constant C > 0,

if c := d+1+2d log2(β)
(t+t′)p (1 − p) − log2(C)(1−p)

(t+t′)p is large enough (for instance c ≥ L, which is true whenever

C ≤ sd+1β2d/2L(t+t′)p/(1−p)) then only the first case of (66) will occur for all l = 1, . . . , L. In particular,
with all the parameters (β, t, t′, and p) fixed, a larger number d of active variables will lead to a larger c.
It is therefore reasonable to assume that this corresponds to the main regime.
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5.3. Computational Cost. In the ensuing work bounds, we assume at our disposal multilevel solvers as
described, e.g. in [35, 54]. These solvers compute approximate solutions of the Galerkin equations at cost
scaling linearly in the number of unknowns of the mesh. This gives rise to the following complexity estimates,
where we treat the case of constant and polynomially growing weights.

Proposition 4. Under the assumptions (64), (65) as well as (40), (41) for some 0 < p < 1 and smoothness

parameters t, t′, the function y 7→ G(u(y)) can be approximated in L2(U, η) to accuracy O(ht+t′

L ) via a
MLCSPG discretization with L levels and with total work WT

L scaling as

WT
L .





log(d)σp(τ)
4L42Lσp(τ)

σp(τ)− n
, σp(τ) > n, (vj) constant

log(d)σp(τ)
4L52nL, σp(τ) = n, (vj) constant

log(d)σp(τ)
4(2nL − 2σp(τ)L)

(n− σp(τ))
4 , σp(τ) < n, (vj) constant

σp(τ)
5L52Lσp(τ)

σp(τ)− n
, σp(τ) > n, (vj) polynomial

σp(τ)
5L62nL, σp(τ) = n, (vj) polynomial

σp(τ)
5(2nL − 2σp(τ)L)

(n− σp(τ))5
, σp(τ) < n, (vj) polynomial

(68)

where σp(τ) = τp/(1− p) with τ = t+ t′ and where n denotes the spatial dimension.

Proof. Multigrid solvers have a computational complexity scaling linearly with the number wl ≍ 2nl of
unknowns at level l which implies that the work at level l is on the order of Wl = ml · wl, 1 ≤ l ≤ L.

Assuming we are given constant weights vj = β, for 1 ≤ j ≤ d, and sl < 2d+1β2d, and that d is sufficiently
large, we can chose ml as in the first row of Eq. (66). Thus, omitting constants,

WT
L =

L∑

l=1

Wl .

L∑

l=1

log(d)sl log
4(sl)2

nl .

L∑

l=1

log(d)2(L−l)σp(τ) log4
(
2(L−l)σp(τ)

)
2nl

. log(d)σp(τ)
42nL

L∑

l=1

(L− l)42(L−l)(σp(τ)−n) = log(d)σp(τ)
42nL

L−1∑

j=1

j42j(σp(τ)−n). (69)

We can bound S :=
∑L−1

j=1 j
42j(σp(τ)−n) ≤

∫ L

0
2x(σp(τ)−n)x4dx. If σp(τ) = n, it follows that S ≤ L5/5.

Otherwise, with K = (σp(τ)− n) ln(2), an integration by part yields

S ≤ L4eLK

K
− 4

K

∫ L

0

x3exKdx. (70)

If K > 0, i.e. σp(τ) > n, the remaining integral is positive and thus S ≤ L4eLK

K = L42L(σp(τ)−n)

ln(2)(σp(τ)−n) . If K < 0,

repeated integration by parts leads to

S ≤ L4eLK

K
− 4L3eLK

K2
+

12L2eLK

K3
− 24LeLK

K4
+

24

K4

∫ L

0

exKdx. (71)

Noticing that L4eLK

K − 4L3eLK

K2 + 12L2eLK

K3 − 24LeLK

K4 < 0, it follows that

S ≤ 24

K4

∫ L

0

exKdx = 24
eLK − 1

K5
=

24(1− 2(σp(τ)−n)L)

(n− σp(τ))5 ln(2)5
. (72)

The result for polynomially growing weight sequences (vj) is shown in a similar fashion (with appropriate
changes in exponents). �

Remark 2. Recalling that the workload for the computation of one solution at the finest discretization level
L is wL ≍ 2nL, the previous result means that for σp(t+ t

′) < n, the total work is bounded only by a multiple
of the cost of one PDE solve at the finest level, where the multiplicative constant involves a factor of log(d)
in the case of constant weights and in addition only depends on n, p, t, t′.
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Combining Theorem 3 together with Proposition 4 about the computation costs and Proposition 2 re-
garding the truncation of the operator, we are finally able to state our main theorem. To this end we first
summarize the assumptions on the parametric operator A(y) = A0 +

∑
j≥1 yjAj .

• The nominal operator A0 is inf-sup stable, i.e.,

inf
0 6=wh∈Xh

sup
0 6=vh∈Yh

〈A0w
h, vh〉

‖wh‖X ‖vh‖Y
≥ µ0 > 0, inf

0 6=vh∈Yh
sup

0 6=wh∈Xh

〈A0w
h, vh〉

‖wh‖X ‖vh‖Y
≥ µ0 > 0.

• For some 0 < p < 1 and some weight sequence v = (vj)j∈N with vj ≥ 1, the sequence b0 with

components b0,j = ‖A−1
0 Aj‖L(X ), j ≥ 1, satisfies

κv,p :=
∑

j≥1

b0,jv
(2−p)/p
j < 1 and

∑

j≥1

bp0,jv
2−p
j <∞.

• For some t ∈ (0, t̄), the operators Aj , j ≥ 0, are defined as operators from Xt into Y ′
t the sequence

bt with components bt,j = ‖A−1
0 Aj‖L(Xt) satisfies

κt :=
∑

j≥1

bt,j ≤ 1 , bt ∈ ℓpt .

Theorem 9. Let γ ∈ (0, 1) and L ∈ N be a number of discretization levels. Let A(y) be an affine-parametric
operator and let v = (vj)j≥N be a sequence of weights with vj ≥ 1. Assume that A0 ∈ L(Xt,Y ′

t) is boundedly
invertible and that the sequence bt = (bt,j)j≥1 are such that the summability conditions (43) and (41) hold
true for some 0 < p < 1. Then, for any discretization level 1 ≤ l ≤ L, the sequence of Chebyshev coefficients
of dul with respect to the parameter vector (36) is (weighted) compressible, i.e., for a sequence of weights
ω = (ων)ν∈F with ων = θ‖ν‖0vν there holds

∑
ν∈F ω

2−p‖dulν‖pX <∞.
Moreover, if we are interested in a functional of the solution F (y) = G(u(y)) and if the operators A(y) ∈

L(Xt,Y ′
t) are boundedly invertible in the smoothness scales (Xt,Yt) in (14), (15) and if G ∈ X ′

t′ , then the

function F (y) =
∑

ν∈F FνTν(y) can be approximated by FL
MLCS

(y) :=
∑L

l=1 d̂F
l(y) where d̂F l(y) is a

single-level CSPG approximation from ml ≍ sl max{log3(sl) log(Nl), log(L/γ)} sampling points with sl ≍
2(L−l)(t+t′)p/(1−p), where Nl = |Γl| for Γl = {ν ∈ F : ω2

ν ≤ sl/2}.
Then, with probability at least 1− γ, this approximation fulfills the bounds

‖F − FL
MLCS‖∞ ≤ Cht+t′

L ‖f‖Y′
t
‖G‖X ′

t′
(L+ 1), (73)

‖F − FL
MLCS‖2 ≤ C ′ht+t′

L ‖f‖Y′
t
‖G‖X ′

t′
(74)

and can be computed in a total work that scales as

WT
L .





2nL, σp(τ) < n,
Lγ+12nL, σp(τ) = n,
Lγ2Lσp(τ), σp(τ) > n,

(75)

where γ = 4 or 5 for constant or polynomially growing weights v, respectively.

Proof. This theorem comes by applying L times Theorem 8 with probability γ/L at each level. The
bound (73) follows from Theorem 3 and using the calculations from Section 4.3. �

6. Numerical results

We illustrate our theoretical findings with some numerical examples. We consider the diffusion problem
from Eq. (3) and apply the QoI F (y) =

∫
x∈D

u(x,y)dx. We first introduce the problem of piecewise constant

diffusion in n = 1 and n = 2 spatial dimensions, and then look into a trigonometric expansion of the diffusion
coefficient. As a numerical solver, we have used the tools developed via the FEniCS project [2, 42].2 Before
introducing our results, we want to stress out that the dimension truncation introduced in Section 5.1 is
irrelevant here as we consider only finite dimensional expansions of the diffusion coefficient.

2Note that all the code for reproducible research and further use is available from one of the authors’ github page: https:
//github.com/jlbouchot/CSPDEs

https://github.com/jlbouchot/CSPDEs
https://github.com/jlbouchot/CSPDEs
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Table 1. Number of sampling points and cardinality of active set for continuous, piecewise
linear FE approximation of the diffusion problem in one spatial dimension with uniform
weights vj = 1.05, 1 ≤ j ≤ d = 6.

L− l = 0 1 2

Nl 637 3619 17066
ml 259 659 1560
sl 20 40 80

6.1. Error incurred by compressed sensing approximation. The first example illustrates that the
error incurred by the multiple CS approximations is controlled. We consider both cases n = 1 and n = 2
(corresponding to one and two spatial dimensions), and present results for the piecewise constant diffusion
coefficient case. We further consider a constant forcing term f and use a basis of degree two polynomials for
the finite element method, which computes an exact solution (for every fixed y). In particular, the error in
Eq. (34) is only generated by the compressed sensing components of the algorithm. Note that within this
component, are included 1) the truncation of the operator (presented in Section 5.1), 2) the truncation of the
(level-dependent) polynomial space to Γl, and 3) the compressed sensing approximation. active parameters,
the two other ones are unavoidable. We prevent error 1) from occurring by considering a finite dimensional
expansion (avoiding truncation). However, errors 2) and 3) and unavoidable when using the compressed
sensing framework

6.1.1. One spatial dimension. We consider the bounded interval D = (0, 1) with equispaced partition

D =
⋃d

i=1Di into subintervals Di = (xi−1, xi) where xi = i/d, for some d ∈ N. We let a(x,y) =

ā +
∑d

j=1 yjcjχDj
(x) with ā being a constant independent of x, {cj}dj=1 a predefined (fixed) sequence

such that the (weighted) uniform ellipticity assumption (6) holds, and χDj
the indicator function of the

set Dj . Fig. 1 is spltted into four main quadrants, each divided in two graphs. The upper graph of each
quadrant shows the pointwise estimation of the functions t 7→ FL

MLCS(tek), for −1 ≤ t ≤ 1, and k = 1 (upper
left quadrant), k = 2 (upper right), k = 3 (lower left), and k = 4 (lower right), and for L = 1, 2, 3 (green,
red, and light blue curves respectively). The bottom graph shows the pointwise error FL

MLCS(tek)− F (tek)
for the various k. To generate these plots,

we selected the parameters to be d = 6 and picked uniform (small) local variations as cj = 1/6, for
1 ≤ j ≤ d. The uniform weights vj are selected as vj = 1.05 for all j. The sparse approximation was
done via a weighted version of the Hard Thresholding Pursuit algorithm [31], picked for its proven fast
convergence [10]. We also set the forcing term f ≡ 1 to be constant. Then, for any y ∈ U the solution to
the diffusion equation is continuous and piecewise quadratic. The (level dependent) number of samples and
sparsities have been chosen as

ml = 2 · sl log(Nl), (76)

sl = 20 · 2L−l . (77)

The choice of ml differs slightly from the theoretically justified choice in Eq. (57). The selection (76) refers
to the usual rule of thumb in compressed sensing which is justified by non-uniform recovery results with
random matrices, see [32, Ch.9.2] for details. While the choice (76) of CS sample numbers ml is below what
is sufficient by our theoretical results, we shall see in the numerical examples ahead that even this optimistic
selection of sample number is more than sufficient for our problems. The choice (77) of sl corresponds to
Eq. (56) where the proportionality constant is chosen as 20 and the regularity assumption of the solution is
taken as σp(t+ t′) = (t+ t′)p/(1− p) = 1 to simplify the exposition.

The initial mesh size was set to h0 = 5 ·10−4 but further numerical tests – not included in this paper, but
available online – have shown that this parameter has, in this case, little to no influcence over the results
(since the numerical solver is exact).
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Figure 1. Convergence of the MLCSPG method for the piecewise constant diffusion prob-
lem, cj = 1/d, 1 ≤ j ≤ d = 6. The graphs show t 7→ FL

MLCS(tej) (upper graphs) and
t 7→ FL

MLCS(tej) − F (tej) (lower graphs), for j = 1 (upper left quadrant), j = 2 (upper
right quadrant), j = 3 (bottom left quadrant) and j = 4 (bottom right quadrant), and
−1 ≤ t ≤ 1. See text for more details.
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Figure 2. Convergence of the MLCSPG method for the piecewise constant diffusion prob-
lem, cj = 2, 1 ≤ j ≤ d = 6. Each quadrant is divided into two graphs. The top one
corresponds to the pointwise estimation t 7→ FL

MLCS(tej), with −1 ≤ t ≤ 1, for j = 1 (upper
left quadrant), j = 2 (upper right), j = 3 (bottom left) and j = 4 (bottom right). The
lower graph in each quadrant corresponds to the pointwise error t 7→ FL

MLCS(tej)− F (tej).
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The value of the local fluctuations can be increased without violating the Uniform Ellipticity Assumption
(thanks to the non-overlapping support of the ψj). This is shown for instance in Fig. 2, where the cj are
chosen uniformly as cj = 2. A similar behavior as in the previous scenario is noticed, showing that the
methods is robust, even when the local variations are large compared to the mean field.

Table 1 shows the number of sampling points and the size of the active set Nl = |Γl|. This set has been
computed according to (64). In particular, one can see that considering relatively small sparsities yields a
fairly large starting set (which likely contains the support of the best weighted s-sparse approximation) and
keeps the number of sampling points (i.e., PDE solves) low.

We compare the convergence of our algorithms with other methods: Monte-Carlo sampling and least
squares (ℓ2 recovery) [43]. These results were obtained using the piecewise constant linear diffusion problem
above, with small variations (cj = 1/6 uniformly). We have however slightly increased the values of the
constant weights vj = 1.07 for these experiments. The estimation of the Chebyshev coefficients are displayed
in Fig. 3, where the magnitudes of the Chebyshev coefficients of the (functional of the) parametric solution
are displayed on a logarithmic (base 10) scale. The x-axes corresponds to an enumeration of the multi-index
of the Chebyshev coefficient, whereby the larger ones (in magnitude, according to the ℓ2 recovery) are first.
The least squares solution is obtained as follows. We first build the active set of candidates for the truncated
polynomial space as predicted by Theorem 8, i.e. Γ = ∪3

l=1Γl. This set has total dimension N = 12171.
Note that this value is smaller than the one in the previous experiment due to the increase of the weigths
vj . Then m = 24342 sampling points y(i) are chosen at random, and the values bi = F (y(i)) are computed
and stacked into a vector y = (bi)i. Finally, the coefficients (F ℓ2

ν )ν∈Γ are computed as the minimizer of the
least squares problem

min
F

‖b−AF‖2,

where Ai,ν = Tν(y
(i)), with 1 ≤ i ≤ m and ν ∈ Γ. To display our results on Fig. 3, we have an (implicit)

enumeration π : {1, . . . , 12171} → Γ such that |F ℓ2
π(1)| ≥ |F ℓ2

π(2)| ≥ · · · ≥ |F ℓ2
π(12171)|. For this experiment, we

computed the solutions to the weighted ℓ1-minimization problems using the SCP optimization procedure
from the CVXPY package [21] with accuracy for the numerical optimization set to 10−6. The downward
triangles are the results using our suggested MLCSPG method with the multiplicative constant in Eq. (77)
equal to 5 (red curve) and 15 (blue curve). The selection of the constant equal to 15 corresponds tom1 = 2258
solves at the coarsest level, m2 = 968 at the second, and to m3 = 394 solves at the finest discretization
level L = 3. m1 = 576, m2 = 228, and m3 = 73 samples, for the red curve. The crosses correspond to the
MC simulations, where we have used m = 2.5 · 107 (red curve) and m = 2.5 · 109 (blue curve) samples for
the estimation of the Chebyshev coefficients. Noting that the y values of the graphs corresponding to the
log10 of the magnitude of the coefficients, we see that the accuracy of the MC estimations is limited by the
mean square convergence rate m−1/2. The purple circles correspond to the ℓ2 estimation described above
(this corresponds to an oversampling ratio of 2, which is far below theoretical results). In this example,
our approach (as illustrated by the downward triangle curves in Fig. 3) produces reliable approximations
of gpc coefficients which are large in magnitude with a number of samples orders of magnitudes smaller
than both the ℓ2 and the MC approaches. The limitation of the MC method to a square root convergence
rate requires a prohibitive number of samples for more complicated PDEs. It is important to note also that
the accuracy of the recovered coefficients via our MLCSPG method are constrained by the accuracy of the
numerical solver for the weighted ℓ1 minimization. Finally, the yellow curve corresponds to the (negative, for
illustrative purposes) total degree of the multi-index of the associated Chebyshev coefficient while the black
curve corresponds to the (negative of the) maximum degree in the tensor product (23). It is interesting to
notice that the magnitude seems to be smaller as the degree of the multi-index increases.

6.1.2. Behavior in two spatial dimensions. We consider now the two dimensional domain D = (0, 1)2 which

we split into a uniform 4× 4 grid with cells Dij = ( i−1√
d
, i√

d
)× ( j−1√

d
, j√

d
), for 1 ≤ i, j ≤

√
d, and d = 42. We

assume the coefficient diffusion to be locally constant on each cell, with local variations ci = 2, where the
numbering used is shown in Table 2. The nominal (constant) field is considered to be ā = 5 as before.
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Figure 3. Estimations of the 120 largest coefficients (in magnitude) of the gpc of the
piecewise constant diffusion problem (see text for details on the parameters) reordered by
decreasing magnitude, according to their estimations via a least squares method. The least
squares estimation computed 12171 coefficients from 24342 random samples; the downward
blue triangles corresponds to a constant 15 in Eq. (77), while the downward red triangles
correspond to the constant 5. The MC 25 curve corresponds to Monte Carlo estimations
with 2.5 · 107 samples while the MC 2500 curve is based on 2.5 · 109 samples.

Table 2. Numbering of the parameters for the 2 dimensional problem

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

Table 3. Number of sampling points and cardinality of active set for continuous, piece-
wise linear FE approximation of the diffusion problem in two spatial dimensions. Uniform
constant weights vj = 1.07, d = 16.

L− l = 0 1 2

Nl 1977 18073 136373
ml 304 785 1892
sl 20 40 80

To compensate for the increase in parametric dimensionality, we now set the constant weights associated
with the local variations to vi = 1.1, for all 1 ≤ i ≤ d. The multiplicative constant in (77) is set to 20. Fig. 4
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Figure 4. Convergence of the MLCSPG method in two spatial dimensions for the piecewise
constant diffusion problem, cj = 2, 1 ≤ j ≤ d = 16. Each quadrant contains both the
estimation t 7→ FL

MLCS(tej) (top graphs) and the pointwise errors t 7→ FL
MLCS(tej)−F (tej)

(lower graphs), for −1 ≤ t ≤ 1. We considered j = 1 (upper left quadrant), j = 6 (upper
right), j = 11 (lower left), and j = 16 (lower right).

shows the pointwise convergence of the function t 7→ F (tek) for k corresponding to the local variations along
the diagonal cells of the 4× 4 grid, where the parameters have been numbered according to Table 2.

6.2. Behavior in higher prametric dimensions. Next, we investigate the applicability of the proposed
framework in the presence of high-dimensional expansions. We want to illustrate that 1) it is indeed possible
to deal with fairly large dimensional problems and that 2) the global error scales as expected by Theorem 9.
To this end, for an even number of parameters d, let us consider again a diffusion process similar to Eq. (3)
where the ψj are chosen to be trigonometric polynomials:

a(x,y) := ā+

d/2∑

j=1

y2j−1
cos(jπx)

jα
+ y2j

sin(jπx)

jα
. (78)

Fig. 5 shows the pointwise convergence of the first 4 cosine fluctuations when dealing with d = 20
parameters (i.e. 10 cosine and 10 sine components). To generate this figure, the mean field was taken
constant in the spatial domain ā = 4.3 and the decay of the fluctuations is set to α = 2. Once again we
have chosen uniform weights vj = 1.1 for all j (an example of polynomially growing weights is given in
the next section). As in the previous scenario, the pointwise approximations as well as the pointwise errors
are computed. The original discretization mesh width was set to h0 = 5 · 10−4, and as we can see on the
graphs, the final error is in the order of 10−3 (this error is larger than the estimated order of hL due to the
multiplicative constants entering in the calculations). In contrast to the previous case, as the number of
levels increases, the pointwise error is steadily decreasing. This behavior is also noticeable when increasing
the number of parameters to d = 30 (15 sines and 15 cosines in the expansion), as depicted in Fig.6.

6.3. High-dimensions, polynomial weights, and target accuracy. In the last subsection concerning
numerical results, we look once again at the diffusion problem (3) with trigonometric expansions (78). The
parameters related to the expansion are kept the same (ā = 4.3, α = 2), and the weighted ℓ1-minimization is
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Figure 5. Estimations t 7→ FL
MLCS(tej),−1 ≤ t ≤ 1, for j ∈ {1, 3, 5, 7} (i.e. corresponding

to the first four cosine components, displayed repectively in the upper left, upper right,
bottom left, and bottom right quadrants) via the MLCSPG method in moderately high
dimensions, d = 20 parameters.

0.1935
0.1940
0.1945
0.1950
0.1955
0.1960
0.1965
0.1970
0.1975

y1

−1.0 −0.5 0.0 0.5 1.0
−2.5
−2.0
−1.5
−1.0
−0.5
0.0
0.5 1e−4

0.186
0.188
0.190
0.192
0.194
0.196
0.198
0.200
0.202

y3

−1.0 −0.5 0.0 0.5 1.0
−3.5
−3.0
−2.5
−2.0
−1.5
−1.0
−0.5
0.0
0.5
1.0 1e−4

0.5

1.0

1.5

2.0

2.5 1e−4+1.937e−1 y5

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5
1e−4

0.1932
0.1934
0.1936
0.1938
0.1940
0.1942
0.1944

y7

−1.0 −0.5 0.0 0.5 1.0
−1.5

−1.0

−0.5

0.0

0.5

1.0 1e−4

Truth L=1 L=2 L=3

Figure 6. Estimations t 7→ FL
MLCS(tej),−1 ≤ t ≤ 1, and pointwise errors t 7→ for j ∈

{1, 3, 5, 7} (i.e. corresponding to the first four cosine components, displayed repectively in
the upper left, upper right, bottom left, and bottom right quadrants) via the MLCSPG
method in moderately high dimensions, d = 30 parameters.
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Table 4. Approximation error of the MLCSPG method for the approximation of a diffusion
problem with trigonometric expansion of the diffusion coefficients. See text for details on
the parameters.

L = 1 2 3 4

L1
E 1.836 · 10−3 2.923 · 10−4 4.192 · 10−4 3.252 · 10−5

L2
E 2.361 · 10−3 3.700 · 10−4 1.305 · 10−4 4.192 · 10−5

L∞
E 9.707 · 10−3 1.523 · 10−3 6.647 · 10−4 2.995 · 10−4

L− l = 0 1 2 3

Nl 211 802 2200 6200
ml 172 428 986 2236
sl 16 32 64 128

computed via CVXPY.We consider d = 40 parameters (20 sines and 20 cosines) and consider a multiplication
constant c = 1.02. Finally, in Table 4 we report on the empirical errors obtained by testing the MLCSPG
model against Ntest = 10000 i.i.d. samples of the parameter vector y, as well as the numbers of samples
per level, and the sizes of the active sets Γl. Note that the mutiplicative constant for the value of sl (see
Eq. (77)) is set to 16.3 It is important to notice that the total number of solves remains much smaller than
the size of the active set, and yet the approach yields very accurate results. In this series of tests, the final
target accuracy is hL = 5 · 10−5 and we let the number of coarser levels vary from 1 to 4. The empirical
errors are calculated as

L1
E :=

1

Ntest

∑

1≤j≤Ntest

|F (y(j))− FCSPG(y(j))| ,

L2
E :=

√
1

Ntest

∑

1≤j≤Ntest

|F (y(j))− FCSPG(y(j))|2 ,

L∞
E := max

1≤j≤Ntest

|F (y(j))− FCSPG(y(j))| .

It is interesting to point out that, even though the same goal accuracy has been provided in all the cases,
adding the contribution from coarser levels helps in reducing the overall error.

The pointwise convergence for the levels L = 2, 3, 4 are plotted in Fig. 7. In opposition to the graphs in
the previous sections, this one shows the result for a prescribed target accuracy hL = 5 · 10−4 and not for
a fixed starting discretization level. Here again, we can see that increasing the number of levels actually
improves the accuracy. This is partially due to the fact that the multi-level approach allows to adjust CS
estimations of coefficients that may have been inaccurately estimated at a coarser level.

7. Conclusions

For a class of abstract, affine-parametric, linear operator equations depending on sequences y of param-
eters, we have introduced a multi-level generalization of the CS approach from [46] to efficiently scan the
high-dimensional parameter space. For the approximate solution of (instances of) the parametric operator
equations, we stipulated available inf-sup stable, Petrov-Galerkin (“PG” for short) discretizations of the
“nominal” operator A0 = A(0); in particular, (48) holds. The small perturbation hypothesis (43) at t = 0
implies uniform (w.r.t. y ∈ U) inf-sup stability (8) of the PG discretization (Thm. 5). Admissible PG dis-
cretizations comprise, in particular, all classical primal or mixed Finite Element Methods (FEM for short),
as well as spectral and collocation methods for elliptic and certain linear, parabolic evolution equations.
Throughout, we used multi-level Finite Element Galerkin discretizations in D ⊂ R

n with isotropic mesh
refinements, responsible for the O(2nl) scaling in the proof of Proposition 4. Anisotropic, “sparse-grid”

3For the sake of compactness, we have chosen not to insist on this multiplicative constant. The numerical results seem to
be reliable and stable within a range between 10 and 30.
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Figure 7. Estimations of t 7→ FL
MLCS(tej),−1 ≤ t ≤ 1 (upper graph) and the errors

t 7→ FL
MLCS(tej) − F (tej), for j ∈ {1, 3, 5, 7} (i.e. corresponding to the first four cosine

components) via the MLCSPG method in moderately high dimensions, d = 40 parameters,
using polynomial weights.

discretizations of the parametric problems in D would result, with analogous analysis, in so-called “multi-
index” compressed sensing PG methods, analogous to multi-index MC in [36], with O(ln−12l) in place of
O(2nl). We analyzed error vs. work of the multi-level extension of the combined, CS-PG algorithm and
showed that it affords improved, as compared to the single-level variant from [46, 9], error vs. work bounds
with convergence rates that are independent of the dimension of the space parameters which are active in
the approximation, while being “nonintrusive”, i.e. accessing an available solver at each discretization level.
This is analogous to what is known from multi-level Monte-Carlo (“MLMC” for short) sampling methods, as
surveyed e.g. in [33]. Contrary to MLMC methods whose convergence rate is limited by the (mean-square)
rate 1/2 afforded by MC methods, and the recently proposed sparse-grid methods in [14] which rely on a
particular (“downward closed”) structure of the sets of active polynomials, however, the presently proposed
approach yields dimension-independent convergence rates (potentially far beyond 1/2) in the sup-norm with
respect to the parameters, exploiting any sparsity in the gpc coefficient sequence of the parametric solutions,
without strong, a-priori structural assumptions on the active polynomial degrees. At the same time, the
MLCSPG approach is nonintrusive and intrinsically parallel as MLMC methods. If a-priori information on
the structure of sets of active indices (such as “downward closedness”) is available, corresponding accelera-
tions of the SLCS approach have recently been investigated in [15]. This is afforded by adopting Chebyshev
gpc expansions which are orthonormal with respect to a probability measure which underlies the CS method,
whereas sparse-grid methods as in [14] afford greater flexibiliy as regards the choice of gpc system.

We remark that although here only affine-parametric operator equations were considered, the key results
of the present paper require merely sparsity of Chebyshev gpc expansions (as expressed, e.g., in summability
of sequences of Xt-norms of gpc expansion coefficients in the conditions (40) - (42), rather than the weaker
summability of X -norms in the SLCSPG considered in [46]) of the parametric solutions, and some (possibly
crude) bounds of these coefficients which enter the weight sequence ω, and a family of uniformly inf-sup
stable PG discretization methods. Such results are available for rather general, holomorphic-parametric,
nonlinear operator equations in [16]. In case that the ψj in (2), (3) have supports which are localized to
subdomains of D with controlled overlap, higher summability for the Chebyshev gpc expansion coefficients
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holds; we refer to [3] for details. The presently proposed MLCSPG algorithms are able to exploit better
summability of Chebyshev gpc expansion coefficients without any modification in the algorithm.
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