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Abstract

The mild It6 formula proposed in Theorem 1 in [Da Prato, G., Jentzen, A.,
& Rockner, M., A mild It6 formula for SPDEs, arXiv:1009.3526 (2012), To ap-
pear in the Trans. Amer. Math. Soc.] has turned out to be a useful instrument
to study solutions and numerical approximations of stochastic partial differen-
tial equations (SPDEs) which are formulated as stochastic evolution equations
(SEEs) on Hilbert spaces. In this article we generalize this mild It6 formula so
that it is applicable to solutions and numerical approximations of SPDEs which
are formulated as SEEs on UMD (unconditional martingale differences) Banach
spaces. This generalization is especially useful for proving essentially sharp weak
convergence rates for numerical approximations of SPDEs.
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1 Introduction

The standard Ito formula for finite dimensional [t6 processes has been generalized in
the literature to infinite dimensions so that it is applicable to Ito processes with values
in infinite dimensional Hilbert or Banach spaces; see Theorem 2.4 in Brzezniak, Van
Neerven, Veraar & Weiss [I]. This infinite dimensional generalization of the standard



[t6 formula is, however, typically not applicable to a solution (or a numerical approx-
imation) of a stochastic partial differential equation (SPDE) as solutions of SPDEs
are often only solutions in the mild or weak sense, which are not [t6 processes on the
considered state space of the SPDE. To overcome this lack of regularity of solutions of
SPDEs, Da Prato et al. proposed in Theorem 1 in [2] (see also [5], Section 5]) an alterna-
tive formula which Da Prato et al. refer to as a mild [t6 formula. The mild It6 formula
in Theorem 1 in [2] is (even in finite dimensions) different to the standard It6 formula
but it applies to the class of Hilbert space valued mild It6 processes which is a rather
general class of Hilbert space valued stochastic processes that includes standard Ito
processes as well as mild solutions and numerical approximations of semilinear SPDEs
as special cases. In this work we generalize the mild It6 formula so that it is applicable
to mild It6 processes which take values in UMD (unconditional martingale differences)
Banach spaces with type 2; see Definition in Subsection [3.2] see Theorem in
Subsection [3.4] and see Corollary in Subsection below. This generalization of
the mild Ito formula is especially useful for proving essentially sharp weak convergence
rates for numerical approximations of SPDEs. In Section [2| below we also briefly review
a few well-known results for Nemytskii and multiplication operators in Banach spaces
(see Proposition , Proposition , and Corollary in Section [2[ below) which
provide natural examples for the possibly nonlinear test function appearing in the mild
It6 formula in Corollary [3.8]in Subsection [3.4] below.

1.1 Notation

Throughout this article the following notation is frequently used. Let N ={1,2,3,...}
be the set of natural numbers. Let Ny = N U {0} be the union of {0} and the set of
natural numbers. For all sets A and B let M(A, B) be the set of all functions from A
to B. For all measurable spaces (21, F;) and (£22, F2) let M(F;, F2) be the set of all
F/Fo-measurable functions. For all separable R-Hilbert spaces (H, (-,-), ||| ;) and
(H, (g, |I-l7) let S(H, H) be the sigma algebra on L(H, H) given by S(H, H) =
iy (Uoerr Yaesm 1A € L(H,H): Av € A}) (see, e.g., [3, Section 1.2]). For every
d € N and every A € B(R?) let Aa: B(A) — [0, o0] be the Lebesgue-Borel measure on
A. For every set X let #x € Ny U {oo} be the number of elements of X. For every

measure space (2, F, v), every measurable space (5, S), every set R, and every function
[:Q — Rlet [f],s be the set given by [fl.s = {g € M(F,S): (A € F: v(A4) =
0 and {w € Q: f(w) # g(w)} C A)}.

2 Stochastic partial differential equations in Banach
spaces

In this section we recall a few well-known results for SPDEs on UMD Banach spaces. In
particular, Proposition below provides natural examples for the possibly nonlinear
test function appearing in the mild It6 formula in Corollary [3.8/in Subsection [3.4] below.

2.1 Preliminary results

The following lemma and its proof can, e.g., be found in Van Neerven [§] (cf. [8, Theo-
rem 6.2] and [§, Definition 3.7]).

Lemma 2.1 (An ideal property for y-radonifying operators). Let (U, (-, )u, ||-||;;) and
U, (-, )u, |ll,;) be R-Hilbert spaces, let (V. ||-||,) and (V,||||,,) be R-Banach spaces, and



let A€ L(V,V), Be~(U,V), C e LMU,U). Then it holds that ABC € v(U,V) and

IABC ey < Al [ Blywn 1€l ey (1)
The next result is an elementary extension of Brzezniak et al. [I, Lemma 2.3].

Lemma 2.2. Consider the notation in Subsection[1.1] let (U, (-,-)u, ||-|l;) be a separable
R-Hilbert space, let (V. ||||,,) and (V,]-]l,) be R-Banach spaces, and let 3 € L@ (V, V).
Then

(1) it holds for all Ay, As € v(U, V') and all orthonormal sets U C U of U that there
ezrists a unique v € V such that

inf sup |jv— > B(Aju, Au)|| =0, (2)
ICU, jcycu, ueJ )
#r<oo # 7<00
(i) it holds for all orthonormal bases Uy, Us C U of U that
> B(Avu, Ayu) = Y B(Aru, Ayu), (3)

uelU; u€Usz

(i1) it holds for all Ay, Ay € v(U, V) and all orthonormal sets U C U of U that

> B(Au, Ayu)

uelU

< 18llzer vl Ay | Azl @v), (4)
%

and

(iv) it holds for all orthonormal sets U C U of U that

(W(U, V) x (U, V) 3 (A, Ay) = Y B(Aju, Ayu) € V) € LO((U,V),V). (5)

uelU

2.2 Convergence properties of measurable functions

Lemma 2.3 (A characterization for convergence in measure). Let (2, F,v) be a fi-
nite measure space and let R,: Q@ — R, n € N = {1,2,...}, be F/B(R)-measurable
functions. Then the following two statements are equivalent:

(i) It holds that

n—o0

lim sup/ min{1, |R,|} dv =0. (6)
Q

(i1) For every strictly increasing function n: N — N there exists a strictly increasing
function m: N — N such that

y({w € Q: limsup \Rn(m(k))(w)\ > 0}) =0. (7)
k—o0

Lemma 2.4. Let (2, F,v) be a finite measure space, let (E,d) and (€,9) be separable

pseudometric spaces, let ¢: E — & be a continuous function, and let f,: Q@ — F,

n€{0,1,2,...}, be F/B(E)-measurable functions which satisfy

lim sup/ min{1,d(f,, fo)} dv =0. (8)
n—oo 0
Then
fimsup [ win{1,8(6 0 fu, 60 fo)} dv =0, (9)
n—oo Q
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Proof of Lemma[2.4 Observe that Lemma [2.3] and the assumption that

lim sup/gmin{l, d(fu, fo)}dv =0 (10)

n—oo

ensure that for every strictly increasing function n: N — N there exists a strictly
increasing function m: N — N such that

y({w € Q: lmsup d(fogma) (@), folw)) > 0}) ~0. (11)

k—o0

The assumption that ¢ is continuous hence shows that for every strictly increasing
function n: N — N there exists a strictly increasing function m: N — N such that

({9 timsup 86 ). o)) > 0} ) =o. (12)

k—o0

Combining this with Lemma [2.3] completes the proof of Lemma [2.4] O

Corollary 2.5. Let (2, F,v) be a finite measure space, let (E,d) and (E,0) be separa-
ble pseudometric spaces, let p,q € (0,00), let ¢p: E — & be a continuous and globally
bounded function, and let f,: Q — E, n € {0,1,2,...}, be F/B(E)-measurable func-
tions which satisfy limsup,,_, . [, |d(fa, fo)[P dv = 0. Then

limsup/Q |0(¢ o fn, 00 fo)|?dv = 0. (13)

n—o0

Proof of Corollary[2.5. Observe that the assumption that lim sup,,_, . fQ |d(fn, fo)|P dv =
0 and Hélder’s inequality ensure that limsup,,_,. [, [d(fa, fo)|™™ " dv = 0. Hence,
we obtain that

n—oo n—oo

lim sup/ min{1,d(f,, fo)} dv < lim sup/ | min{1, d(f,, fo) " ™P dv =0.  (14)
Q Q

This allows us to apply Lemma [2.4] to obtain that

limsup/ﬂmin{l,é(gzﬁofmqbo fo)}dv = 0. (15)

n—oo

The fact that the function [0,00) > z +— |z]? € [0,00) is continuous and again
Lemma [2.4] hence show that

limsup/Qmin{l7 10(¢ 0 fr, o fo)|?}dv =0. (16)

n—oo

Combining this and, e.g., Klenke [7, Corollary 6.26] with the fact that sup({|d((¢ o
fa)(w), (@o fo)w))P:we Q,neNPU{0}) < co ensures that

iimsup [ 16(6 0 f.00 fo)l?dy =0 (17)
n—00 Q
The proof of Corollary 2.5]it thus completed. O



2.3 Regular test functions

Proposition 2.6. Consider the notation in Subsection letk,l,d,n € N, p € [l,00),
q € (np,00), let O € B(R?) be a bounded set, let f: R¥ — R! be an n-times continu-
ously differentiable function with globally bounded derivatives, and let F': LI(\o; RF) —
LP(\o; RY) be the function which satisfies for all v € LI \o; RF) that

F([v]xo.8@)) = {f(0(2))}ecolro.Br)) = [f © V]ro.BR1)- (18)
Then

(1) it holds that F is n-times continuously Fréchet differentiable with globally bounded
derivatives,

(ii) it holds for all m € {1,2,...,n}, v,uy,..., Uy € LY No;RF) that

F(m)([U]AO,B(Rk))([Ul]AO,B(Rk); o [tm]ro B®Y)) (19)
= [{f"™ (w(@)(wi(@),. .., wn(2))}scolro s
(1i1) it holds for allm € {1,2,...,n}, r € [mp,00) that
| F () (s, - - ) [ zrr0 21
sup sup
vELI(A0;R*) uq,...,um € LMax{ra} (Ao ;RF)\{0} HU1HLT()\0;R1“) BRI ||um||LT()\o;Rk) (20)
1_m
< | 502 110 oy | PO < o,
zeR

(iv) it holds for all m € {1,2,...,n}, r,s € (p,00), v,w € L™\ R*) with
< that

nwwm»—ﬂmwmwhmnmmmmw1

sup

1ot LT} (AR (0} lurllzsrommry - - - [l porome)

(m) ) — (m) m m
- 1F (@) = S ()i Mea(ONF ™7 H o — wl| e romiy,
x,y€RF, ”ZL’ a y”Rk
TH#Y
(21)

and

(v) it holds for allm € {1,2,...,n}, r € [(m + 1)p,00), v,w € L™} (\y; R¥) that

[(F™ () = FU™ (w)) (ug, - - thm) | Loroirr)

”UIHLT(AO;Rk) o lumll o e

sup
UL eyt €L} (X s RF)\ {0}

||f(m) (z) — f(m)(ZJ)HUm)(Rk,Rl)

<
z,y€R¥, ||ZL’ - yHRk
TFY

(22)

1_m+1

P\Rd(o)] P ]||U - w”LT(Ao;Rk)'

Proof of Proposition[2.6. Throughout this proof we assume w.l.o.g. that Aga(O) > 0.
We claim that for all m € {1,2,...,n} it holds

(a) that F'is m-times Fréchet differentiable and



(b) that for all v,uy, ..., u, € LI(\o;R¥) it holds that

F(m)([U])\O,B(Rk))([ul])\O,B(Rk)7 cee [Um]Ao,B(Rk))

= [{f"™(0(@)) (), .., tn(2)) }ocolro,Bem)-

We now prove item (fa) and item (b)) by induction on m € {1,2,...,n}. For the base
case m = 1 we note that Minkowski’s integral inequality and Holder’s inequality show
that for all v, h € LI(\o; R¥), e € (0,00) it holds that

£ o(w+h) = Fou—(f o 0)hllcoom

/ 1f" o 0+ h) = 1 0 ulhll o ronsy 2

(23)

< / [f"o(v+rh)— fo U||gp<1+1/s)(AO;L(Rk,RZ)) dr ||h||£P(1+5)()\o;Rk)'
0

Next observe that Corollary (with (Q,F,v) = (0,B(0), o), E = RF & =
LRFRY, p=p(l+e), q=p(1+Ye), o= [, fo=v, fj =v+rhjforr€0,1],j €N,
v € LI No;R¥), (h))jen € {(uj)jen C LPOF) ()\ Rk) Hmsup; o [[ull coave roire) =
0}, € € (0,00) in the notation of Corollary [2.5)), the fact that sup,cgs ||f/(2)|| Lrrrry <
oo, and the fact that f’ is continuous ensure that for all » € [0,1], v € Lq(Ao,Rk)
€ (0,00), (hj)jen C LPYT)(A\o; RY) with limsup; ., [|h;]| ra+o (apmry = 0 it holds

that
limsup || /"o (v + rh;) — "o vl| soae) rosr e rry) = 0- (25)

j—o0
This, the fact that sup,cge ||f'(7)|| ,(re rty < 00, and Lebesgue’s theorem of dominated
convergence prove that for all v € LI(\p;RF), £ € (0,00), (h;)jen C LPAFE)(\p; RF)
with lim sup; . [l ceai+e) (Ao vy = 0 it holds that

1

fim sup (/ 1 o (v +rhy) = f" 0 vl otisve) (s ) dr) - (26)

j—o0 0

This together with Holder’s inequality and implies that for all v € LI(\o;RF),
€ (O,q/p — 1), (hj>j€N g £p(l+a)(/\O;Rk) with hmsupj_mo ||hj||£p(1+€)()\O;Rk) = 0 and

Vi eN: ||hj||£p(1+s)()\O;Rk) > 0 it holds that

(Hf o(v+h;)— fov—(fo U>th£P(>\o;Rl)>

||hj ||Lp<1+s>(Ao;Rk)

1
< lim sup (/ I/ o (v +rh;) — fo V| rare) (s 1)) dr) = 0.
0

Jj—o0

lim sup
Jj—o0

(27)

Holder’s inequality hence shows that for all v € LIY(\o;R*), & € (0,9p — 1), (h;)jen C
LPIE) (Xp; RF) with limsup,_ Al cipomey = 0 and Vj € Nt [[h)]l coromey > 0 it
holds that

(28)

lim sup
Jj—o0

(Hf o (v+hy) = fou—(f Ov)hjllcp<xo;Rl>> 0
||th£‘1(>\o;R’“)

This demonstrates that F is Fréchet differentiable and that for all v, h € LI(\o; R¥) it
holds that

F/([U],\O,B(Rk))[h]AoBRk [{f( (z))h (x)}me(’)]/\o,B(Rl)- (29)

This proves item @ and item (]ED in the base case m = 1. For the induction step NN
[0,n—1] 2 m — m+1 € {1,2,...,n} assume that there exists a natural number m € NN
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[0,n—1] such that item (@) and item (b)) hold for m = m. Next observe that Minkowski’s
integral inequality and Holder’s inequality show that for all v, b, uy . . ., u,, € LI(No; RF),
e € (0, oy 1) it holds that

I o (v +h) = (F™ o v)](ur, - ) = (FTV 0 0) (B, )| corom)

1
< / HF D o (vt rh) = F™ D 0 w](hyun, . )| erromey dr
0

1
= / LF D 0 (v 4 rh) — fHD o V[l goa+12) (rs Lm0 (mE 1) AT
0

AIBl goararasm o mry | ] il crasorasm omey.
i=1

Moreover, note that Corollary (with (Q,F,v) = (O,B(0), o), E = RF £ =
L+ D(RFERY p=p(l+e)(1+m), g =p(1+1e), ¢ = fD fo=v, fj =v+rh;
for r € [0,1], 5 € N, v € LINo;R¥), (h))jen € {(uj)jen € LPAFDIFM (N RF):

limsup;_, o, [|u;l| goa+eraem)(rome) = 0}, € € (0,00) in the notation of Corollary , the
fact that sup,cge ||/ (@) Lontn e gy < 00, and the fact that f"+V is continuous
ensure that for all r € [0, 1], v € LI(A\o; R¥), € € (0,00), (hj)jen C LPEFIAEMI () RF)
with lim sup; _, o ||| cea+o)a+m) (o irey = 0 it holds that

lim sup Hf(m+1) o(v+ rhj) — f(m+1) o UHz:p<1+1/f>(AO;L<m+1>(Rk,Rl)) = 0. (31)
j—o00
This, the fact that sup,cgs || f ()] Lenv e gy < 00, and Lebesgue’s theorem of

dominated convergence prove that for all v € LY(Ao;R*), ¢ € (0,00), (hj)jen C
,Cp(lJrE)(ler)()\@; Rk) with lim supj_wo ||h/j||£p(1+5)(1+m)()\o;Rk) = 0 it holds that

1
hm sup (/ ”f(m+1) e} (/U + Th]) — f(m+1) o U] HCP<1+1/5)(AO;L(m+1)(Rk,RZ)) dT') =0. (32)
j—ro0 0

The fact that Ve € (0, 7t — 1): L£raFe)+m) (), RF) C LI(A\o; RF) and hence
imply that for all v € LI(\p;RF), ¢ € (0, m — 1), (hj)jen C LPAFIAFMI() 5 RF)
with limsupjﬁoo ||h/]'||£p(1+s)(1+7n)()\o;Rk) = 0 and \V/j € N: ||h/j||£p(1+5)(1+7n)()\o;Rk) > 0 it
holds that

“[(f(m)O(v+hj))_(f(m)ov)](ul7---7um)_(f<m+1)o'u)(hj7u17---=um)H£P(>\(’);Rl)

lim sup sup
J—o0 u1,....;um €L (Ao RF),
m
| ”u‘iHﬁp(1+€)(1+m>()\o;]Rk)>0

1
< lim sup (/ 1F7 Y 0 (v +rhy) — f D o Vll o roizmen g 1Y) dr) =0.
0

j—0o0

1751l £p1+)m) (3 sy TTim1 10l ooy 14m) (3 5 by

(33)

Holder’s inequality therefore shows that for all v € L%(Ap;RF) and all (hj)jeny C
L:q()\o;Rk) with liIIlSllpj_mo ||hj”£q()\o;[@k) =0 and \V/] e N: ||thLq()\o;Rk) > ( it holds
that

N(F 0 (v4hs)) = (™ ov)] (ut eyt ) — (f D ov) (hy 7U17---7um)”£p(/\o;[kl) )

lim su su i
p P ||hj||511(>\o;R’“)Hi:1 ||uiH£q(>\O;Rk)

J700  ug,.um Eﬁq()\o;Rk),
H?;1 ||ui||gq(,\o;nqzk)>0

= 0. (34)



The induction hypothesis hence implies that £ is Fréchet differentiable and that for
all v, h,uy, ..., Uy € LI(No; RF) it holds that

F(m+1)([U]A@,B(Rk))([h]AO,B(R’“)7 [UI]AO,B(Rk)a cee [um]Ao,B(Rk))
= {7V (0(2)) (h(x), ur (), - .t (2)) Yaco)ro s -

This establishes item and item @ in the case m + 1. Induction thus completes the
proof of item (&) and item (b))

In the next step we observe that Holder’s inequality ensures that for all m €
{1,2,...,n}, v,w € LY N\o;R¥), r,s € (p,o0), w1, ..., up € LS Ao; RF) with £ + 2 < %
it holds that

(35)

IIF™ 0w — f™ o w](us, ..., um)llrromn
11 my om m e (36)
[)\Rd(O)] r s f( ) ov — f( ) O wH[:T()\o;L(m)(Rk,RZ)) H Huz'H[:s()\O;Rk).

i=1

This implies that for all m € {1,2,...,n}, v,w € LI No;R¥), r,s € (p,oc0) with
% + 2 < % it holds that

(H[f(m) oU— f(m) owl(uy, . .. aum)‘yﬁp()\(a%Rl))
)

[ |

coorr) - umllzsome)

(37)

H;{il Hui”ﬁso\ ]Rk)>0
l_l_i m
= [ARd(O” ' ]Hf ov— f"o W[ r(rosLm) (RE RYY) -

Corollary. with (Q, F,v) = (0,B(0),\o), E =R, € = LW(RF RY), p = q, q=r,
o= f" fi = v for r € (0,00), j € Ny in the notation of Corollary [2.5) and the
fact that SuprRk 1 F " ()] pow (g g1y < 00 hence show that for all (v;)jen, C Eq()\@, RF),
r,s € (p,00) with limsup; , . [|v;]lzerorry = 0 and L +2 < % it holds that

. H[ ) o v; — f(”) o vg(uq, ... aun)Hﬁ’(Ao;R’)
lim sup sup
J=00 g, un €L (AosRF), ”u1| Ls(Ao;RF) T - Hu" L5 (Ao;RF)
TI s il o gy >0 (38)

< PDaa(O))r 7% [hm sup || f™ o v; — f™ o UO||£T(>\@;L(7L)(R’C,RZ)):| = 0.
J]—00

This establishes that F( is continuous. Combining this with item @ and item (]ED

proves item and item . Next note that Holder’s inequality shows that for all

m € {1,2,...,n}, 7 € [mp,00), v € LINo;R¥), uy, ..., up € L7 (N\p; RF) it holds

that

H(f(m) o U)(ula cee ’um)Hﬁp(Ao ;RY)
m -2 = (39)
< [ 508 17 @)oo | P O] Qe
z€R i=1

This and item imply that for all m € {1,2,...,n}, r € [mp,00), v € LI(\p; RF) it
holds that

Sup
e U €LPTAY (A0 RF),
Hlll HuiHﬁr(AO;Rk)>0

sup |/ (x)HUm)(Rk,Rl)} Dpa(O)] 5%

xERF

(”F(m)([U]/\O,B(Rk))([ul]AO,B(Rk)a L [um]xo,B(Rk))HL?(Ao;Rl)>
)

[urllerposmey - - - lumllcrromey

(40)



Hence, we obtain that for all m € {1,2,...,n}, r € [mp, o) it holds that

( IF (0) (ug, - . ) || Lo rer izt )
sup sup
(41)

VELI(AO;RR) ug ... um € LMax{Ta} (A ;R\ {0} HUIHLT(/\o;Rk) et Hum”LT(Ao;R’“)

m

< [sup|waw<x>HUmeaRg][ARd«9>NPr]<:oo-

zC€RF

This proves item . In the next step we observe that assures that for all m €
1,2,...,n}, 1,5 € (p,00), v,w € L2 (\p: R*) with 1 + ™ < L it holds that
T s p

L5 Ao;RF) * e v e ||Um| L3 (Ao;RE)

. (m%mov—ﬂmowxmwnmmmﬂmw>
[

ut,.um €L (Ao;R¥),
m
Hi:l ||ui||£5(AO;Rk)>0

(42)
Hf(m)(x) — f(m) (y)HL<m) RE R! 1_1_m
< | sup E N D077 o — wl| 2 rorm)-
z,y€RF, Iz = ylle
Ty

This and item establish that for all m € {1,2,...,n}, r,s € (p,o0), v,w €
LAt (\p; RF) with 4+ 2 < 1 it holds that

sup
U yeee U € LMX{5:0} (Ao RF)\ {0}

< | sup ||f(m)(1')_f(m)(ZJ)HUm)(Rk,Rl)

z,y€R¥, ||ZL’ - yHRk
THY

(HF(m) (0) (s - -, ) — FO (w) (uy, . .. ,um)ummwv

||U1

LS(Ao;Rk) L ||Um LS()\o;]Rk)

1_1_m
Pra(O)]F 7 5o — wl| prrpmi)-

(43)
This proves item . [tem is an immediate consequence of item . The proof of
Proposition [2.6[is thus completed. [

2.4 Regular diffusion coefficients

Lemma 2.7. Consider the notation in Subsection[I.1] let p € [2,00), r € (1/1,00), let
(Hv <" '>H7 HHH) = (LQ()‘(O,l);R)v <'> '>L2(>‘(0,1)2R)7 H'”L?(,\(OJ);R)% and let A: D(A) CH—
H be the Laplacian with Dirichlet boundary conditions on H. Then

(i) it holds for all v € H that (—A)™"v € LP(A1); R),
(ii) it holds that (H 3 v+ (—A) v € LP(\g1);R)) € v(H, L?(\01); R)), and
(#i) it holds that

||H S0V (—A)_TU S LP(A(OJ); R)”'y(H,LP(/\(o,l);R))

‘lp 2 1/;7 o 1 1/2 (44)
< {/}R\/—Tﬂe_ /de} {an} < 00.

n=1

Proof of Lemmal[2.7 Throughout this proof let (2, F,P) be a probability space, let
Yn: 2 = R, n € N, be independent standard normal random variables, let f,,: (0,1) —
R, n € N, satisfy for all n € N, z € (0,1) that f,(z) = v/2sin(n7x), let (pn)neny € R
satisfy for all n € N that p, = 72n?, and let e, € H, n € N, satisfy for all n € N that
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en = [fnl \o.1.B(®)- Note that item is an immediate consequence from the Sobolev
embedding theorem. It thus remains to prove item and . For this observe that
Jensen’s inequality ensures that for all M, N € N with M < N it holds that

2

E =K

N N
E 7n<_A>_r€n Z Vn(pn)_ren
n=M n=M

| ]
LP(A(O,I)?R)

Lp()‘(o,l)ﬂR)

?/p (45)
N P
< (E > nlpn) e ])
n=M LP(Xo,1)sR)
This implies that for all M, N € N with M < N it holds that
N 2
|| £ e,
n=M LP(A(0,1):R)

r 1 N p 2/p

<| [ g & o) |ad]
- 1 N 29 |7/2 2/p

= IE[ ZM’Vn(pn)frfn(x) } E“'ylm dx} (46)

p/2

2/;0
E“%]”} dm}

n=M
The Minkowski inequality hence shows that for all M, N € N with M < N it holds
that

N 2 N
Elll 22 m(=4) e, ] < ||71||3:p(IP;]R) > () | fal?
n=M LP(X(0,1)iR) n=M LP/2(P;R) (47)
N
< Pl ( (00> 1ollen )

This proves that for all M, N € N with M < N it holds that
2

N 1/2
< umnmm[ 2M<pn>—2r||fn|r%p(m]

n=

N
> wm(=A) e,
n=M L2(P;LP (X (0,1);R))

N /2 N 12
< ||71||£P(]P’;R) |:2 ZM(pn)2T:| = ||’}/1||LP(IP’;R)7F—\/2§|: ZMn4r:| (48)

N 2 |z|P 2 Yor N 1/2
= H%HM(P;R){ 2 n‘”} - [fR f_ﬂ e "l dx} [ > n4’} < o0.
n=M n=M

This and, e.g, [8, Theorem 3.20] completes the proof of Lemma . O

Lemma 2.8. Consider the notation in Subsection letd e N, pe (2,00), f €
(—OO, _zip]’ let (Hv <'7 '>H7 ”HH) = (L2()‘(0,1)d;R)a <" '>L2()\(0,1)d§R)7 ||'||L2()\(071)d;]R))7 let A: D(A) -
H — H be the Laplacian with Dirichlet boundary conditions on H, and let (H,, (-, ), |||l 5 ),
r € R, be a family of interpolation spaces associated to —A. Then

(i) there erists a unique bounded linear operator B € L(LP(Xq1)a;R), L(H, Hg))
which satisfies for all v € L™>P4 (X, 1y4;R), u € LY (Ag1ya; R) that

(Bv)u=v-u (49)

and
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(i) it holds that

[[wl] —2 :
2p/(p )(’\(0,1)d’R)

B P(A . < sup < Q. 50
I ||L(L (Ao,1yaiR),L(H,Hp)) we s\ (0} lwlla_ g (50)

Proof of Lemma[2.8 Throughout this proof let
M L0 (N g a; R) = L(L* (Ao 1ya; R), H) (51)

be the function which satisfies for all v € Lmax{p’4}(A(071)d;R), u € L4(A(071)d;R) that
M(v)u = v - u. Observe that for all v € L™ (X 1ya;R), u € L*(A(g1); R) it holds
that

w,(—A)P (vu
I, = o+l = -4 o)l = sup [l
weH\{0} (52)

= sup .
weH\{0} {H(—A)_B(—A)BUJHH

Holder’s inequality hence ensures that for all v € L™ (X 1143 R), u € L*(A(g )4 R)
it holds that

M))ul|lg, = sup {M}
IOr)ul, = sop [z

Hw”Ll/(l/Zfl/p)(A(O’l)d;R)”v”LP(X(O’l)d;R)”u”H
(53)

< sup —
wert D o) [ T=A)Polu

{ ||w”L2p/(p_2)u(o,l)‘“m

sup — =P v \ wllulls-
wer_p\oy 1A eln }” 2203 pasm 1l

Combining this and the Sobolev embedding theorem with the fact that
(=28) = 0=-26>2=d[; - [5 - 3] = d[3 — mrro=)] (54)

proves that for all v € L™>P4 (X, 43 R) it holds that

lwll; 2p/(p—2) :
|<M(v>>uHﬁ] { L22/ =2 (x| i®)
sup — | < sSup — APl HUHL”(/\ iR)-
ueL4(A(o,1)d;R>\{0}[ Jull werm_\oy V] o0t (55)
<o

This implies that there exists a unique function M : Lmax{p’4}(/\(071)d; R) — L(H, Hp)
which satisfies for all v € Lmax{pA}(A(O,l)d; R), u € L4<)\(071)d; R) that

(M(@))u = (M(v))(u) =v-u (56)
and ol
Wilp2p/(p—2) (A iR
”M(U)”L(H,HB) < sup H(_A)fﬂw(\f;d ‘|UHLP()\(071)d§R) < 0. (57)

weH_5\{0}

This, in turn, assures that there exists a unique bounded linear operator
B € L(LP(No:R). L(H. Hy)) (59)
which satisfies for all v € L4 () | )4; R) that
B(v) = M(v) (59)
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and

IIwHL2p/(p72)(>\ 4R
BllLr(rg 1 R).LHH,)) < SUp — () < 00. 60
1B Lizr(r o ®). L. 15)) wvenr Doy | A Pl (60)
Combining (56)), (59)), and completes the proof of Lemma . ]

Lemma 2.9. Let Ao 1y: B((0,1)) — [0, 00] be the Lebesgue-Borel measure on (0,1), let

p e [27 OO>7 €¢c [07 00)7 p e <_007 _1/4_8)7 (H7 <'7 '>H7 ||HH> = (LQ(A(OJ);R)7 <'7 '>L2(>\(0,1)§R)7
||'||L2()\(0,1);]R))7 Vol lly) = (L7(Ao); R), ||'||LP(A(0,1>;R))7 let A: D(A) C H — H be the
Laplacian with Dirichlet boundary conditions on H, let (H,, (-, ") n,, ||'llz,), 7 € R, be a
family of interpolation spaces associated to —A, let A: D(A) CV — V be the Lapla-
cian with Dirichlet boundary conditions on V', and let (V. |||\, ), 7 € R, be a family of
interpolation spaces associated to —A. Then

(i) there exists a unique continuous function v: H_. — Vjz which satisfies for allv € V
that 1(v) = v,

(i1) it holds that v € v(H_.,V3), and
(111) it holds that

1/2

1/p 00
T —a? <
mwmwﬁL/%G”MJ[ZMW> <o, (61)
R n=1

Proof of Lemma[2.9. Throughout this proof let ¢ € L(H_., H) be the unique bounded
linear operator which satisfies for all v € H that

pv) = (=A)v (62)

and let ¢ € L(V,Vj3) be the unique bounded linear operator which satisfies for all
v € V_g that
¢(v) = (—A) . (63)

Observe that Lemma and the assumption that § + ¢ < —1/4 prove
(a) that Vv € H: (—A)*v eV,

(b) that (H > v+ (—A)***v € V) € y(H,V), and

(c) that
V2r o 1/2
300 (AP0 Vi < | [ BreRas] | £ i) <00 6
R n=1

Note that item @ assures that there exist functions ®: H — V and v: H_, — V3
which satisfy for all v € H that

D(v) = (—A)* v (65)

and

L=¢odoop. (66)
Observe that item (b)) and item (d) establish that ® € y(H,V) and

1/2 00 1/2
ol < | [ e e | £wo) <o (67)
R n=1
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Combining this, the fact that ¢ € L(H_., H), and the fact that ¢ € L(V,Vj3) with
Lemma [2.1] ensures that ¢ € v(H_., V3) and

Nellycrevy < NN evwm | @l 1ol e a
1/2 - o0

xr 712 e

~ ol < | [ e an] [ S wo
n=1

Next note that the fact that Vv € V,t € [0,00): etv = e, e.g., [4, item (ii) of
Theorem 1.10 in Chapter II] and, e.g., [4, Definition 5.25 in Chapter II] ensure that for
all v € V' it holds that

/2 68
< Q. ( )

(—A)Pv = (—A)Pv. (69)
Hence, we obtain for all v € V' that

L(v) = (P(2(v))) = S((—A) (= A)"v) = 6((—A) )

70
= ¢((—A)v) = (—A) P (—A)’v = 0. (70)
This and complete the proof of Lemma . O

Proposition 2.10. Consider the notation in Subsection letn €N, 5 € (—o0,—1/4),
pe ﬁnaX{m’ 2n},00), (H, () -l g) = (L2 (Ao R), (-, '>L2(A(o,1);R)y ||'||L2(/\(o,1);R))’
Vo) = (LP(Aoq); R), H-HLP(A(OJ);R)), let b: R — R be an n-times continuously dif-
ferentiable function with globally bounded derivatives, let A: D(A) C H — H be the
Laplacian with Dirichlet boundary conditions on H, let (H,, (-, ")n,, |||z, ), 7 € R, be a
family of interpolation spaces associated to —A, let A: D(A) CV — V be the Lapla-
cian with Dirichlet boundary conditions on V', and let (V. |||\, ), 7 € R, be a family of
interpolation spaces associated to —A. Then

(i) there exists a unique continuous function B: V — ~v(L*(Xo1); R), V3) which sat-
isfies for all u,v € L (X1);R) that

B([tha ) [l 0 = [00() - ) hocon] gy (71

(11) it holds that B is n-times continuously Fréchet differentiable with globally bounded
derivatives,

(111) it holds for all § € (}D max{m, 2n}, 1) that

+ i [4B+7/e0) < o, (72)
=1

sup

HwHLQpé/(p,;_gn) (A(O,l)?R)
’LUGHn/(gp(g) \{0}

lelHn/<2p6)

(iv) it holds for all k € {1,...,n}, 6 € (£ max{m, 2n}, 1) that

p

YT oo 1/2
x|P —z2 n
sup || B® ()| oo (v ar.v)) < { /R L etz dm} {Zz‘wﬂ ﬂw)}

veV =1

[l 2 8/(ps—2n) .
| [ wp (A(O’U’m] {Suplb"”(x)i} < o0, (73)

wEHn/(2p5>\{O} ”w”Hn/(Qp‘s) x€eR

and
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v) it holds for all k € {1,...,n}, § € max s, 2n k1), 35 00) that
(v) EEYOE

ko
”B *) (U) — B (w)HUk)(w(H,vﬁ))]

sup
vwe L™} (A g 1)iR), [0 = wl[Lr(ro0ym)
vFwW
[ v s gy [ | (74)
< 2l e 2d:v] {ZWM@M]
- V2r
R =1
1wl 2ps/(p5—2n) . b(k) — b(k)
I e | N 1 e )
WE Hny(2p5)\{0} 0l 5p5) zgjigi, |z -yl

Proof of Proposition[2.10. Throughout this proof let § € ( maX{W 2n},1) and
let 1: V — L*/"(Xo.1); R) be the function which satisfies for all v € £P(A\1); R) that

¢([U]A(o,1),B(R)) = [{b( ( ))}xe 0 1)])\<0 1),BR) = [b ° U])\(o 1):B(R)- (75)

Note that item (fif) of Proposition (withk=1,l=1,d=1,n=n,p= p§’ q=Dp,
O =(0,1), f =b, F =1 in the notation of item (i o ) of Proposition establishes that

e Cy(V, L™ (Ao.); R)). (76)

Moreover, observe that item ({iiif) of Proposition (withk=1,1=1,d=1,n=n,
p:fjf,q_p,o (0,1), f_b F = w,m—k‘,r:pforke{1,...,n}inthe
notation of item of Proposition proves that for all k € {1,...,n} it holds that

SUP [ (U)”L(k)(V,Lp‘S/n()\(O’l);R)) < S‘;‘g 6 ()] < o0 (77)

In addition, we apply item (fiv)) of Proposition (withk=1,1=1,d=1,n=n,
p:f,q—p,(? (Ol)f—bF ¢m—k,r:r,s:p,v:v,w:wfor
v,w € LPArPH (N g1y R), 7 € [n 5,00), k€ {l,...,n} in the notation of item of
Proposition to obtain that for all k € {1,.. n} r € [-£=,00) it holds that

n— ké’
1" (v) — ¢(k)(w)HL(,Q)(V7Lp5/n(/\(0’1);R))
sup
v,wELmax{T’P}(A(()J);R), HU —w L (Ao,1):R)
vFW
[0 () = SO @] - 0 pomr
= sup sup ) (78)
e LIl (g 1 R), ULk EV\ {0} v —w|lronm - lotllv - floglv
vFW
bE) () — plk)
< [PO@ =100
z,yE€R |z =y
THY

Moreover, note that for all ¢ € [p,00), v € LI(A(g1); R) it holds that

/ |b(v(x))]|?de =

q
(rb |+ oz sup\b’<y>|) da
R

<ot / (1O + o) rsup 1) d

(|b )|+ sup |V (y) /]v ]qu)<oo
yeR

q

b(O)—l—/o V(rv(x))v(z)dr| dx




This proves that for all ¢ € [p,00), v € LY(A(p1); R) it holds that

Y(v) € LY (Ap1); R). (80)
In the next step we observe that Lemma (withd=1,p= %‘S, £ = —%, A=Ain

the notation of Lemma assures that there exists a unique
M € L(L™" (Mo R), L(H, Hor/zps))) (81)

which satisfies for all v € Lmax{"‘s/”’4}()\(071); R), u € L4()\(071); R) that

(Mv)u=wv-u (82)
and
HwHL2p6/(p5,2n)
(A iR)
M|, ;s < sup { CL— | < oo (83)
L(LP°/m(\ R),L(H,H_n —=
( (A 0,1);R), L(H,H _n/(2p5))) WEHn) 3y \ 0} Hw||Hn/(2p6)

Moreover, we note that Holder’s inequality shows that for all u,v € L*(A1);R) it
holds that
(Mv)u e V. (84)

Furthermore, we observe that Lemma (with p=p, e = %, =B, A=A A=A
in the notation of Lemma and the fact that

B+ mw = — 1B+ @y <~ (85)

yield that there exists a unique

v € Y(H-w/zps) V3) (86)
which satisfies for all v € V that
tv)=v (87)
and
|I,|p 712/2 1/17 oo A 1/2
|‘LH7(H_7L/(2p(s)7V/a) < [/R\/—Twe d:c} L;l (B+ /(2;:5))1 < 0. (88)

In addition, note that , , , , and demonstrate that for all u,v €
L% (Xo,1); R) it holds that

L(M<w([v]>\(o,1),3(R)>)[u])\(o,nﬁ(R)) = [{b(’l}(l‘)) ’ u(x)}IG(OJ)])\(O’I)VB(R)' (89)

Next observe that Lemma , , , , and establish that
(a) for all v € L*/"(X(g.1); R) it holds that ¢ o [M(v)] = ¢M(v) € v(H, Vp) and

[eM () lyr,vs) < Nl aps) Vo) IM ()| Lt 1y a05) < 00 (90)

and
(b) that

(L™ (A0, R) 3w — (M (w) € v(H,V3)) € L(L*"(Ao,1); R), v(H, V5)).  (91)
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Combining this with and the chain rule for differentiation implies that there exists
a unique function

B e Cp(V,y(H,Vp)) (92)
which satisfies for all v € V, v € H that
B(v)u = o(M(¢(v))u). (93)

This and prove items and . Next observe that and establish
item . It thus remains to prove items and . For this note that , , and

the chain rule for differentiation assure that for all k € {1,...,n}, v,v1,...,00 € V,
u € H it holds that
BO@) o, o)) = M@)o, o) (94)

Therefore, we obtain that for all k£ € {1,...,n}, v € V it holds that

IB® (0)(v1, .. ., k) |y (v)

1B® ()] Lo = sup
L) (Viy(H,Vp)) 1o ok €V {0} lorllv - - |Jokllv
i MO @)or, -, 00 sy
V1, ek VA {0} vallv - MJowlly (95)
< loM] ) sup W(k) (v)(v1, . .. 7Uk)HLp5/n()\(0,1);R)
-~ PO/n .
LR Qoo R EYE) | S0 [oallv - - Joellv

k
< HLM‘|L(LP‘S/n(,\(O,l);R),»Y(Hyﬂ))Hw( )(U)“L(k)(v,L”‘s/n()\(O,l);R))'
This and ensure that for all k£ € {1,...,n} it holds that
k k
sup 15 O ) waeevey < MM piprsmng mymEve) {ilelg v )(x)‘]' (56)
Combining this with , , and shows that for all £ € {1,...,n} it holds that
sup ||B(k)(v) HL(’C)(V,W(H,VH))
veV

k
<l L|’w(H_n/(zpa>,Va) | M|’L(L”‘s/n()\(ml);]R),L(H,H_n/@pa))) [sgg b ®) () \}

|$|p _12/2 1/p > 4(ﬁ+n/(2 5)) 1/2 (97)
S |: R\/—2—W€ dl‘:| |:lzzll P :|

lwll, 2p8/(p5 2

L pd—2n) () iR)

: sup Ta— [sup |b(k)(x)|} < 0.
wEHn/(Qp(;)\{O} "/(2p5) zeR

This proves item (iv]). Next note that demonstrates that for all & € {1,...,n},

re [nﬁ—‘;&, 00), v,w € L™ P (X 1);R), vy, ..., v, € V' \ {0} it holds that

H(B(k) (U) - B(k)(w))(vb s 7Uk)”7(H,VB)

[oallv - Jloellv
M ([ (0) = B (@) (w1, - ) v
] e Hkav(k) (k) (98)
< ||LM||L(Lp5/n(/\<O D (ELYe)) H W (U) wHU (w)](vl, C ,Uk) HLpé/n()\(oJ);R)
| v oy

k k
< ||LM‘|L(Lp‘s/n(k(o’l);IR{),ry(H,VE)) Hw( )(’U) - w( )(w>||L(k)(V,Lp6/n()\(0’1);R))‘
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This, (78)), and assure that for all k € {1,...,n}, r € [ ké, 00) it holds that

sup HB(k) (v) — B®) (w)HL(k)(V;y(H,VB))
v’weLmax{r,p} (>\(0,1)3R)’ ||U - wHLT(/\(O,l)?R)
vFEwW
[b®) (@) — bW (y)|
< ”LMHL(Lpé/n()\(o’l);R)q(H,VB)) Ls;le% iz — o] (99)
7Y -
[b®) (2) — bW (y)|
S HLH’Y —n/(2pd)> Vﬁ)“M”L LP5/7L()\(0 1 R),L(H,H_ n/(Qp(j))) [af;lel?& |./L' _ y|
T#Y
Combining with and establishes item . The proof of Proposition m
is thus completed. [

Corollary 2. 11 Consider the notation in Subsection[I.1], let n € N, 3 € (—o0, —1/4),
p € (max{55555 (= 1/4) ,2(n+1)}, 00), (Vo [IMly) = (LP(A); R), H'HLP()\((M);R))? leth: R = R
be an n-times continuously differentiable function with globally Lipschitz continuous and
globally bounded derivatives, let A: D(A) C V. — V be the Laplacian with Dirichlet
boundary conditions on'V, and let (V, |||y, ), r € R, be a family of interpolation spaces
associated to —A. Then

(i) there exists a unique continuous function B: V — ~v(L*(Xo1); R), V3) which sat-
isfies for all v,u € LP(N\oq); R) that

B([v]x .0 8@) [Ulr gy 8@ = [{blu(z ))'u(x>}16(0,1)])\(071)75(]1g) (100)

and

(1) it holds that B is n-times continuously Fréchet differentiable with globally Lipschitz
continuous and globally bounded derivatives.

Proof of Corollary[2.11] First, note that for all £ € {1,2,...,n} it holds that

%max{mm 7y 2n} = 5 max{ sy T 2}

(101)
= st max{ syt 200 + 1)} < gy < 1
and .
Py -
= k(ffil) TR = T S P (102)

Items . . and of Proposition m (with n = n, B =06, p=p b=0>,
A=A k=n, (5 D +1), r = p in the notation of Proposition therefore establish

items ( . ) and ([iif). The proof of Corollary ‘ is thus completed n
3 Mild stochastic calculus in Banach spaces

In this section we generalize the machinery in [5 Section 5] from separable Hilbert
spaces to separable UMD Banach spaces with type 2.
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3.1 Setting

Throughout this section we frequently assume the following setting. Consider the nota-
tion in Subsection [L.1] let ¢, € [0, 00), T' € (tg,00), £ = {(t1,t2) € [to, T)?*: t1 < t2}, let
(€2, F,P) be a probability space with a normal filtration F = (F;)sefs,, 77, let (We) ey 1
be an Idy-cylindrical (Q, F, P, F)-Wiener process, let (V. |-lv), (V;[1v)s (V,1I-llp),
and (V,||-||;;) be separable UMD R-Banach spaces with type 2 which satisfy V C
V C V continuously and densely, let (U, (-, v+ -lly) be a separable R-Hilbert space,
let U C U be an orthonormal basis of U, and for every separable R-Banach space
(E,|llp) and every a,b € R, A € B(R), X € M(B(A) ® F,B(E)) with a < b,
(a,b) C A, and P(f;HXSHEdS < 00) = 1 let f;Xsds € L°(P;E) be given by

b b
Jo Xsds = [ 700 x,1 ducooy Xs 5] 5y

3.2 Mild Ito processes

Definition 3.1 (Mild It6 process). Consider the notation in Subsection 1.1} let (V, ||-]l¢),
(V |-[l1/), and V., |- |ly) be separable UMD R-Banach spaces with type 2 which satisfy
V C V C V continuously and densely, let (U, (-,-),,||l,) be a separable R-Hilbert
space, let ty € [0,00), T € (tg,0), let (2, F,P) be a probability space with a nor-
mal filtration F = (Fy)iep,,r, and let (Wy),c, 7y be an Idy-cylindrical (2, F, PP, F)-
Wiener process. Then we say that X is a mild Ito process on (Q, F,P,F, W, (V, ||-|y),
VAR (V, ||-l¢)) with evolution family S, mild drift ¥, and mild diffusion Z (we say
that X is a mild It6 process with evolution family S, mild drift Y, and mild diffusion
Z, we say that X is a mild It6 process) if and only if it holds

(i

) that X € M([to, T] x ©,V) is an F/B(V')-predictable stochastic process,

(ii) that Y € M([ty, T] x Q,V) is an F/B(V)-predictable stochastic process,

(iii) that Z € M([to, T] x €, v(U,V)) is an F/B(y(U, V))-predictable stochastic process,
)

(iV tha:c SVG M({(tl,tg) < [to,T]QI t < tg} R L(‘A/, ‘7)) is aB({(tl,tQ) S [to,T]QI t1 < tg})/
S(V, V)-measurable function which satisfies for all ¢1, to, t3 € [to, T] with t; <ty <
t3 that Stg,t:;Stl,tz = Stl,tgv

(v) that YVt € (to, T] ft 195, Y5l + 115,025 |2 ds < o0) =1, and

1(UV)

(vi) that for all ¢ € (¢y, 7] it holds that

t
+ / Sei 2 AW,

t
[Xt]]? BV |:Sto tXtO T / ]l{ftto 1Ss,t Ysllv ds<oo}S5,th9 d3:|
to P,B(V) to
(103)

Lemma 3.2 (Regularization of mild It6 processes). Assume the setting in Subsec-
twn and let X : [to, T] x Q@ — V' be a mild Ité process with evolution family S: £ —
LV, V), mild drift Y : [to,T] x Q@ — V, and mild diffusion Z: [t,T] x Q — ~(U, V).
Then there exists an up to indistinguishability unique stochastic process X : [to, T] < —
V with continuous sample paths which satisfies ¥Vt € [ty, T): IP’(X} = St,TXt) = 1.

Proof of Lemma([3.9 The assumption that X is a mild Itd process, in particular, en-
sures that IP’(ftZ || SsrYslly + HSs,TZsui(Uf/) ds < 0o) = 1. This implies that there exists
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a stochastic process X : [tg, T] x Q — V with continuous sample paths which satisfies
for all ¢ € [to, T] that

t

t
[X ]]P; B V) [St() T Xto]]P’ B(V) + / SS,T )/s dS + / SS,T Zs dWS (104)

to to

Next observe that Definition [3.1| ensures for all ¢ € (to,T") that

t t
[Sto,7 Xt lp,s07) + / SsrYsds + / S Zs AW,
. cT (105)

= Sir ([Sto,t Xto]p,zg(f/) + / Se Yyds + / St s dWs) = Sir [Xt]RB(V)

to to

Hence, we obtain for all ¢ € [tg,T) that

t t
[StO,T Xto]]P’,B(V) + / Ss,T 3/3 ds + / Ss,T Zs dWs = [St,T Xt]IP’,B(V)' (106)
to to

Combining this and (104)) shows that for all ¢ € [ty, T') it holds that

t

t
[(Xile vy = [Sto,r Xtolp 57y +/ SsrYsds +/ Ss1 Zs AWs =[Sy Xilp pvy.  (107)

to to

Moreover, observe that for all stochastic processes A, B: [0,T] x Q — V with con-
tinuous sample paths which satisfy Vit € [to,T): ]P’(At = Bt) = 1 it holds that
P(Vt € [to,T): A, = B;) = 1. Combining this with (L07) completes the proof of

Lemma 3.2 O

Lemma 3.3 (Regularization of mild It6 processes). Assume the setting in Subsec-
tion let X: [to,T] x Q — V be a mild Ité process with evolution family S: / —
L(V, V) mild drift Y [to, T] x Q = V., and mild diffusion Z: [to, T] x Q = (U, V),
and let X : [tg, T] x Q — V be a stochastic process with continuous sample paths which
satisfies V't € [to, T): IP’( StTXt) =1. Then

(i) it holds that X is F/B(V)-predictable,
(ii) it holds that P(Xr = X7) =1,
(iii) it holds that ([, |SezYally + [|SerZal% gy ds < 00) = 1, and

(iv) it holds that

t t
Vi € [to, T): [Xle s = [Stor Xeolp s + / SyrY,ds+ / Sor Zy dW,. (108)

to to

Proof of Lemma[3.3 The assumption that X has continuous sample paths, the fact
that X is F/B(V)-adapted, and the fact that V¢ € [to,T): P(X; = S;7X;) = 1 establish
item . Moreover, note that the assumption that X is a mild Ito process proves
item . In addition, observe that the assumption that V¢ € [to, T): IP’(Xt = St,TXt) =
1 implies that for all ¢ € [to,T') it holds that

t t
[Xt]IP’,B( = [SerXilp B(V) = [Sto.r XtoJp BV T / SsrYsds + / Ss1 ZsdW.  (109)
to to
Combining this with the assumption that X has continuous sample paths shows items
and . The proof of Lemma is thus completed. [
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3.3 Standard It6 formula

Theorem is an elementary extension of Theorem 2.4 in Brzezniak et al. [I] (cf.
Lemma [2.2| in Subsection 2.1 above).

Theorem 3.4. Assume the setting in Subsection let o = (p(t,2))ejto,1),2ev €
CY2([te, T x V, V), £ € M(Fy,, B(V)), let Z: [to, T| xQ — (U, V) be an F/B(v(U,V))-
predictable stochastic process which satisfies P(ft:op HZt||§(U’V) dt < o00) =1, letY: [ty, T]x

Q — V be an F/B(V)-predictable stochastic process which satisfies IP’(ftf |Yi|lv dt <

o0) =1, and let X: [to,T] x Q@ — V be an F/B(V)-predictable stochastic process which
satisfies for all t € [to,T] that

t

[(Xilesovy = [§lpsv) + /ttsts +/t Zy dW. (110)
o o
Then

(i) it holds that P(f, [[(Z¢)(s, X)llvds < 00) =1,

(ii) it holds that P( [, [(Z¢)(s, X,)Ya|yds < 00) = 1,
(iii) it holds that P( [, ||(Z¢)(s, X.) Zs|% 1y ds < 00) = 1,

(iv) it holds for allw € Q, s € [to, T| that there exists a unique v € V such that

sup sup |jv— Z(aa—;go)(s,Xs(w))(Zs(w)u, Zs(w)u)|| =0, (111)
ICU, ICJCU, ueJ %
#r<oo #5<0
(v) it holds that
T 2
P / Z(%g@)(S,XS)(ZSU, Zu)|| ds<oo | =1, (112)
to uelU 1%

and

(vi) it holds for all t, € [to,T] that

[p(t, Xy,) — sﬂ(to,Xto)][P,B(V) = / 1 [(%@)(S:Xs) + (%80)(3’)(3)3@} ds

to

+1 z( ©) (s, )(ZuZu)ds+/1(a%90)(5,Xs)stWs-

to u€el to

3.4 Mild It6 formula for stopping times

Theorem 3.5 (Mild It6 formula). Assume the setting in Subsection[3.1], let X : [to, T %
Q — V be a mald Ito process with evolution family S: £ — L(V V) maild drift
Y [to, T) x Q= V, and mild diffusion Z: [to, T] x Q@ — 4(U, V), let X+ [tg, T] xQ — V
be a stochastic process with continuous sample paths which satisfies Vt € [to, T): P(X; =
SerXi) =1 (see Lemma, letr € [to, T), ¢ = (o(t, 7)) eprr,zev € CH2(I1, TIxV,V),
and let 7: Q — [r,T] be an F-stopping time. Then

(i) it holds that P(f7 ||(2¢)(s, SsrX,)SsaYsllvds < 00) =1,
(ii) it holds that P( [ |(Z¢)(s, SerXo)Sar Za|l? 1y ds < 00) =1,
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(iii) it holds that B(fT ||(2¢)(s, SsrX,)|vds < 00) = 1,
(iv) it holds that ]P’(f (& 290)(S,SS7TXS)HL<2)(V7V) HSS’TZS”i(U,V) ds < o00) =1,

(v) it holds for all w € Q, s € [r,T] that there exists a unique v € V such that

v— ) (38_12290) (s, SS,TXS(W))(SS,TZS(W)Uv SS7TZS(W)U)

ueJ

=0, (114)
%

sup sup
ICU, ICJCU,
#H1<00 # <00

(vi) it holds that

([

(vii) it holds that

Z (38_12290)<S7 SS,TXS)(SS,TZSUJ Ss,TZsU)

uelU

ds < oo) =1, (115)
v

and

[@(Ta XT)]P,B(V) = [(P(rv ST,TXT>]P,B(V) + /T(%SD)(S’ SS,TXS) SS,T Zs dWs
+/T [(20)(s, SorXy) + (2)(s5, SurXs) Sur Vi ds (116

Z( xz@)(s SerXs)(SsrZsu, SsrZsu) ds.

r uel

Proof of Theorem [3.5 Throughout this proof let @10: [, T] xV =V, @o1: [r,T] %
V — L(V,V), and @gs: [r,T] x V. — L®(V,V) be the functions which satisfy for
all t € [r,T], z,v1,v2 € V that ¢10(t,x) = (2¢)(t,2), por(t,z)v1 = (L)t z) v,
and @oo(t, z)(vy,v2) = (88—;2@) (t,x)(v1,v2). Note that Lemma ensures that X is an
F/B (V)—adapted stochastic process with continuous sample paths which satisfies for all
t € [to, T] that

t t
[X][P;B V) [StOTXtO]]PB(V) +/ SS7T}{9dS+/ SS,T ZS dWS (117)

to to

Moreover, the assumption that ¢ € CY2([r, T] x V, V), the assumption that X : [to, 7] x
2 — V has continuous sample paths, and the fact that Vt € [to, T]: P(fti |Ss.+Yslly +
||Ss,tZs||,2y(UV) ds < 00) = 1 imply that

T
P [ looals, X)Suaill + louns, XS ZilBum ds <o0) =1 (118)

and

T
P (s, Xl + lnato, KllsovmllSurZiE gy ds < 0) =1 (119

Combining this with, e.g., Lemma 3.1 in [6] proves items —. Then note that
Lemma [3.3] and Theorem [3.4] show

(a) that for all w € Q, s € [r, T] there exists a unique v € V such that

v =Y 02(s, Xo(w)) (Sar Zs(w)u, SorZs(w)u)

heJ

-0, (120
v

sup sup
ICU, ICJCU,
#1<OO # 7<00
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(b) that

Z 900,2(87 Xs)(SS,TZsua SS,TZSU)

uelU

(L

ds < oo) =1, (121)
1%

and

(c) that
[90(7_7 XT)]IP,B(V) = [QO(’T’, XT)]P,B(V) + / 30170(37 Xs) + @0,1(37 XS)SS,T}/:S ds
. ) ;" ) (122)
+ / ()00,1(57 XS)SS,TZS dWs + % / Z @0,2(57 Xs) (Ss,TZsu7 SS,TZSU’> ds.

" weu

Combining this with, e.g., Lemma 3.1 in [6], the fact that V¢ € [t,,T): P(X, =
St.r Xt) = 1, and the fact that V¢ € [to,T]: P(>_,cu ©02(8, Xs)(Ss1Zsu, SsrZu) =
Y wey Po,2(8, 857 X)) (SspZsu, SsrZsu)) = 1 shows that item holds, that item
holds, and that for all ¢ € [r,T] it holds that

t
[90(15, Xt)]IP’,B(V) = [‘P(ﬁ Sr,TXr)]P,B(V) + / 900,1(3, Ss,TXs) Ss,T ZsdWy
t
+ / ©1,0(8, Ss17Xs) + wo.1(8, Ss7Xs) Ss1 Ys ds (123)

t
+ % / Z 900,2(87 Ss,TXs) (SS,TZSUJ, SS’TZSUJ) ds.

T wel
This implies item . The proof of Theorem is thus completed. [

Definition 3.6 (Extended mild Kolmogorov operators). Assume the setting in Subsec-
tion (3.1} let S: £ — L(V,V) be a B(£)/S(V, V)-measurable function which satisfies for
all ti1,10,13 € [to,T] with t; <ty < i3 that Stg,t35t1,t2 = St17t3’ and let (thtg) € /. Then
we denote by £, C2(V,V) = C(V x V x~(U,V),V) the function which satisfies for
all p € C2(V,V),z€V,yeV, ze~(U,V) that

(‘Ci,hs&) (JZ, Y, Z) = ¢,(5t1,t2 I) St17t2 Y + % Z @ll(sh,tz m)(Sm,thu) St1,t2zu)' (124)

uelU

The next corollary of Theorem [3.5] specialises Theorem [3.5]to the case where r = t;
and where the test function (p(t, %)),c (s 11, ccv € C*([to, T] x V, V) depends on z € V/
only.

Corollary 3.7. Assume the setting in Subsectz’on let X: [to, T) x Q2 — V be a mild
Ité process with evolution family S: £/ — L(V, V), mild drift Y: [to, T] x Q — V, and
mild diffusion Z: [to, T] x Q@ — v(U, V), let X: [to, T] x Q@ = V be a stochastic process
with continuous sample paths which satisfies ¥Vt € [to, T): P(Xt = StTXt) =1 (see
Lemma , let o € C*(V,V), and let 7: Q — [to, T] be an F-stopping time. Then

(i) it holds that P(f,. ||(L5¢)(Xs,Ys, Zo)|lv ds < 00) = 1,

L T
(i) it holds that P(f, [|¢'(SsrXs)SsrZs|l2 1y ds < 00) =1, and
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(i1i) it holds that

() Tesw) = [0S0 Xio ) e / (£570) (X, Yo, Z,) ds

- (125)
+ / SOI(SS,TX3> Ss,T Zs dWS

to

The next result, Corollary 3.8 specializes Corollary to the case where Vw €

Q: 7(w) =T. Corollary is an immediate consequence of Corollary , Lemma ,
and Lemma [3.3

Corollary 3.8. Assume the setting in Subsectwnm let X: [to, T] xQ —V be a mild
Ité process with evolution family S: £ — L(V, V), mild drift Y: [to, T] x @ =V, and
mild diffusion Z: [ty, T] x Q — ~(U, V), and let ¢ € C*(V,V). Then

(i) it holds that P( ft (L35 70)(Xs, Ys, Zo) |y ds < o00) =1,
(ii) it holds that IP’(ftO ' (Ss17Xs)Ss 1 Zs ||7(UV ds < 00) =1,
(iii) it holds that P(Xp € V) =1, and
(iv) it holds that
T
[ (e = PSir X oo + [ (L70)(XaYer Z) ds

to

T (126)
+ / w/(SS,TXs>Ss7T Zs dWS

to

3.5 Mild Dynkin-type formula

Under suitable additional assumptions (see Corollary (3.9 below), the stochastic integral
in is integrable and centered. This is the subject of the following result.

Corollary 3.9 (Mild Dynkin-type formula). Assume the setting in Subsection m let
X: [to, T] x Q@ =V be a mild Ité process with evolution family S: £ — L(V V), mild
drift Y : [to, T] x Q — V, and mild diffusion Z: [to, T] x Q — 4(U, V), let X : [to, T] x
Q — V be a stochastic process with continuous sample paths which satisfies Yt €
to, T): P(X; = SirX;) =1 (see Lemma et o € C2(V, V), and let 7: Q — [to, T)
be an F-stopping time which satisfies that ]E[]ftz | (Ss17Xs) Ssr Zs HW(UV) ds|'/?] +
min{E[[[[p(Sto X o) + S (£500) (X, Yo, Z2) dslu], E[lo(X)lIv]} < oo. Then

(i) it holds that E[[lo(X:) |v] +E [l [o(SwrXio)esm) + f; (L3r0) (X, Vs, Zo) ds|lv] <

oo and

(11) it holds that
E[o(X.)] = E[le(SurXulam + [ (E5r) (X0 Yo Z)ds). (127

Proof of Corollary[3.9. First, note that item of Corollary proves that
[o(X)]eBv) = [0St Xi10)]E.B00)

/ (,CSTQO)(XS,Y;,Z )dS+/ (pl(Ss,TXs) SS,T Zs dWs

to to

(128)
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min{¢,7}

Moreover, the fact that f O (S50 Xs)SswZs AW, t € [to, T, is alocal F-martingale,
the assumption that B[] fto 16" (S50 Xs) S50 Zs |12 ) ds|'/?] < oo, and, e.g., the Burkholder-
Davis-Gundy type inequality in Van Neerven et al. [9, Theorem 4.7] ensure that

min{¢,7}
/ 90,<Ss,TXs)Ss,TZs dWS, t e [to, T], (129)
to
is an F-martingale. This, the fact that

mln{]E[H [QD(StO,TXto)]P,B(V) + ftz (‘CE,TQO)(XS: Y:% ZS) dS”V} ) E[HQD(XT)”V} } < 00, (130)

and ((128) prove that item ({ij) holds and that

Elp(Xr)] = E | [¢(Sio.rXt0)le.50) / (Lo79) (X, Ve, Z,) ds (131)
to
The proof of Corollary [3.9is thus completed. O

3.6 Weak estimates for terminal values of mild It6 processes

Proposition 3.10. Assume the setting in Subsection v let X: [tog,T] x Q — V
be a mild Ité process with evolution family S: £ — L(V, V), mild drift Y : [to, T] x
Q — V, and mild diffusion Z: [ty,T] x Q — ~(U,V), let ¢ € C2(V,V), and assume
that {||<,p [Sto.r Xiolp,e7) + ft SsrYsds + ftz Ss1 Zs dWy)||v: F-stopping time 7: Q —
[to, T } 1s uniformly P- mtegmble Then

(i) it holds that P(Xp € V) =1,
(ii) it holds that E[||90(XT]1{XTGV})HV + le(StyrXey) v] < 00, and
(#i) it holds that

HE[ XTIL{XTGV} ]Hv ”E[ Sto X4 ]Hv + fE[H( TSO)(XLS‘?YS’Z >||V] ds.
(132)

Proof of Proposition[3.10. Throughout this proof let 7,,: @ — [to,T], n € N, be the
functions which satisfy for all n € N that

t
T, = inf ({T} U {t € [to, T): [ |l¢'(Ss1Xs) Ss.r Zs||3(U7V) ds > n}) (133)
to

and let X : [to, T] x Q — V be a stochastic process with continuous sample paths which
satisfies B
Vi€ [to,T): P(X; = SirXy) =1 (134)

(cf. Lemma [3.2). Note that item of Corollary establishes item (). More-
over, observe that the assumption that the set {|/o([St, 1 Xto)p 57y + ftT SsrYsds +

ftz Ss1 Zs dWy)|ly: F- stoppmg tlme 7:Q — [to, T } is uniformly P-integrable proves
item . Next note that item of Corollary n 3.7| shows that

T
]P(/ HQDI(SS,TX5> Ss,T ZSH?}/(U7V) ds < OO) =1. (135)

to
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This establishes that
IP’( lim 7, = T) ~ 1. (136)

n—oo
In addition, note that Lemma and the assumption that the set { || ([Si,,r Xio]p 5+
f SsrYsds + ft Ss Zs dAW5)||v: F-stopping time 7: Q — [to, T } is uniformly P-

1ntegrable ensure that the set {||¢(X,,)||y: n € N} is uniformly P-integrable. Equa-
tion ({133]) hence shows that for all n € N it holds that

E[|lo( Tn>||v}+E[ / ||so'<ss,TXs>ss,Tzs>||§(U,V)ds] < oo (137)

The fact that for all n € N it holds that 7, is an F-stopping time thus allows us to
apply Corollary [3.9 to obtain that for all n € N it holds that

E[o(X,,)] - E [wsthoﬂp,gm s [Nz as ]

= Elp(Sio,rXio)] +E[/T (L3 70)(Xs,Ys, Zs) ds } "

to

The triangle inequality hence proves that

hmsupHE[ Tn”|v HE[ StoTXto)}HV—{—fto [H( T@O)(X&Y;WZ)”V} ds. (139)

This together with ( -, item ED of Lemma , and the uniform P-integrability of
{lle(X:)lv: n € N} assures (132). The proof of Proposition is thus completed. [

Proposition 3.11 (Test functions with at most polynomial growth). Assume the set-
ting in Subsectzonm 3.1, let X : [to, T|xQ =V be a mild Ito process with evolution family
S: £ — L(V,V), mild drift Y : [to, T] x @ — V', and mild diffusion Z: [to, T] x Q —

YU, V), gnd let p € [0,00), ¢ € C*(V,V) satisfy SUDep [l(@) (1 + Jlz][7) '] < oo
and EULO ||SS’TZS||'2y(U,V) d3|p/2 + ||St0,TXt0||$/ + |j;0 ||SS7TY5||{/ ds|p] < 00. Then

(i) it holds that P(X; € V) = 1,
(ii) it holds that E[|lo(Xr1 x,cvy)lv + 0(StrXeo)llv] < 00, and
(#i) it holds that

HE[ XTIL{XTGV} }Hv HE[ Sto X4 ]Hv+ IE[”( TSO)(X&YS’Z )HV]dS
(140)

Proof of Proposition[3.11. Throughout this proof let X : [ty, T]xQ — V be a stochastic
process with continuous sample paths which satisfies Vt € [t, T): IP’(X} = St,TXt) =1
(cf. Lemma and let Z: [ty, T] x Q — V be a stochastic process with continuous
sample paths which satisfies for all t € [ty, T'| that

t
[Z]p,5v) Z/ SsrZs dWis. (141)

to

Observe that Lemma 3.3 implies that for all ¢ € [ty, T] it holds P-a.s. that

lo(Xlly < [sup le@ly |y 4 yz,pm)
g MH%)-

zev (1 [l]17)

(142)
. 3p[8up le@)ly

T
[ 8.l ds

to

rev (1 [12]17)

<1 + HStO,TXtoul\Dv/ +
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Moreover, e.g., the Burkholder-Davis-Gundy type inequality in Van Neerven et al. [9]
Theorem 4.7] shows that there exists a real number C' € [1, 00) such that

T p/2
| 182 2R gy ds (143)

to

E{ sup ||Zt||"’/} <CE

te(to,T)

Combining (142)) and (143)) yields that there exists a real number C' € [1,00) such that

)

The assumption that E[|| S, x X, [[?, + 1) [1SsrYallp dsl? + 1 [,y 1550262 g1y ds[P'2] <
oo hence ensures that

E[ sup ||90(Xt)||v} < C(l + E[[[Sho.1 Xio[7]

telto, T
€[to,T] (144)

p

+E +E

T
2
/n&jamﬁm@

to

T
\ [ Isiavalas
to

| sup (Xl <o (145)

tE[t(LT]

Lemma therefore proves that

t
E| sup gp(S,X +/SS7 Y.1,r ) ds—l—Z) ]<oo. 146
Lo (St [ 8.a¥it g mia a2 (140
Combining this with Proposition completes the proof of Proposition [3.11] O
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