
Critical Points for Elliptic Equations with

Prescribed Boundary Conditions

G. S. Alberti and G. Bal and M. Di Cristo

Research Report No. 2016-50
November 2016

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

____________________________________________________________________________________________________



Critical Points for Elliptic Equations with

Prescribed Boundary Conditions∗

Giovanni S. Alberti † Guillaume Bal ‡ Michele Di Cristo §

November 21, 2016

Abstract

This paper concerns the existence of critical points for solutions to
second order elliptic equations of the form ∇ · σ(x)∇u = 0 posed on
a bounded domain X with prescribed boundary conditions. In spatial
dimension n = 2, it is known that the number of critical points (where
∇u = 0) is related to the number of oscillations of the boundary condition
independently of the (positive) coefficient σ. We show that the situation is
different in dimension n ≥ 3. More precisely, we obtain that for any fixed
(Dirichlet or Neumann) boundary condition for u on ∂X, there exists an
open set of smooth coefficients σ(x) such that ∇u vanishes at least at
one point in X. By using estimates related to the Laplacian with mixed
boundary conditions, the result is first obtained for a piecewise constant
conductivity with infinite contrast, a problem of independent interest. A
second step shows that the topology of the vector field ∇u on a subdomain
is not modified for appropriate bounded, sufficiently high-contrast, smooth
coefficients σ(x).

These results find applications in the class of hybrid inverse problems,
where optimal stability estimates for parameter reconstruction are ob-
tained in the absence of critical points. Our results show that for any
(finite number of) prescribed boundary conditions, there are coefficients
σ(x) for which the stability of the reconstructions will inevitably degrade.
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1 Introduction

Consider a bounded Lipschitz domain X ⊂ Rn and a prescribed boundary
condition g ∈ C0(∂X)∩H

1
2 (∂X). We want to assess the existence of coefficients

σ(x) (referred to as conductivities) so that the solution u of the following elliptic
problem

−∇ · σ∇u = 0 in X, u = g on ∂X (1)

admits at least one critical point x ∈ X, i.e. ∇u(x) = 0.
The analysis of this problem is markedly different in dimension n = 2 and

dimensions n ≥ 3. In the former case, it is indeed known that critical points
are isolated and their number is given by the number of oscillations of g minus
one, independently of the coefficient σ(x) (bounded above and below by positive
constants and of class C0,α); see [10, 7]. This no longer holds in dimension n ≥ 3,
where the set of critical points can be quite complicated [24, 31]. However, as
far as the authors are aware, it has not been known whether it is possible
to construct boundary values independently of σ so that the corresponding
solutions do not have critical points. The main contribution of this paper is a
negative answer to this question.

Theorem 1. Let X ⊂ R3 be a bounded Lipschitz domain. Take g ∈ C(∂X) ∩

H
1
2 (∂X). Then there exists a nonempty open set of conductivities σ ∈ C∞(X),

σ ≥ 1/2, such that the solution u ∈ H1(X) to

−∇ · σ∇u = 0 in X, u = g on ∂X

has a critical point in X, namely ∇u(x) = 0 for some x ∈ X (depending on σ).

We consider the case n = 3 for concreteness of notation, but our results may
be easily generalised to the case n ≥ 3. The above result may be extended to the
case of an arbitrary finite number of boundary conditions (Theorem 2), to the
case of an arbitrary finite number of critical points located in arbitrarily small
balls given a priori (Theorem 3), as well as to the case of Neumann boundary
conditions (Theorem 4).

The main idea of the construction is similar to the use of interlocked rings
to show that the determinant of n gradients ∇ui may change sign in dimension
n ≥ 3 [23], a result that cannot hold in dimension n = 2 [11, 22]. More precisely,
let x0 be a point in X and S the surface of a subdomain Z ⊂ X enclosing x0.
We separate S into two disjoint subsets S1∪S2 such that the harmonic solution
in Z equal to i on Si has a critical point in x0; see for instance Fig. 2 where S1

is the “circular” part of the boundary of a cylinder while S2 is the “flat” part
of that boundary. Note that at least one of the domains Si is not connected.
Consider the case when g takes at least two values, say, 1 and 2 after proper
rescaling. For i = 1, 2, let now Xi be two handles (open domains) joining Si to
points x(i) on ∂X where g(x(i)) = i. For appropriate choices of Si, the handles
Xi may be shown not to intersect in dimension n ≥ 3, whereas they clearly have
to intersect in dimension n = 2. Let us now assume that σ is set to +∞ in both
handles and equal to 1 otherwise. This forces the solution u to equal i on Si, to
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be harmonic in Z, and hence to have a critical point in x0. It remains to show
that the topology of the vector field∇u is not modified in the vicinity of x0 when
σ is replaced by a sufficiently high-contrast (and possibly smooth) conductivity.
This proves the existence of critical points for arbitrarily prescribed Dirichlet
conditions for some open set of conductivities.

Let us conclude this introductory section by mentioning applications of the
aforementioned results to hybrid inverse problems. The latter class of prob-
lems typically involves a two step inversion procedure. The first step provides
volumetric information about unknown coefficients of interest. The simplest
example of such information is the solution u itself in a problem of the form
∇ · σ(x)∇u = 0. The second step of the procedure then aims to reconstruct
the unknown coefficients from such information; in the considered example, the
conductivity σ(x). We refer the reader to [5, 12, 13, 14, 15, 16, 17, 19, 20, 21, 27,
35, 34, 38, 40, 42, 43] and their references for additional information on these
inverse problems.

It should be clear from the above example that the reconstruction of σ is
better behaved when ∇u does not vanish. In the aforementioned works, results
of the following form have been obtained: for each reasonable conductivity σ,
there is an open set of, say, Dirichlet boundary conditions such that |∇u| is
bounded from below by a positive constant. What our results show is that in
dimension n ≥ 3, there is no universal finite set of Dirichlet boundary conditions
for which |∇u| is bounded from below by a positive constant uniformly in σ,
which is the condition guaranteeing optimal stability estimates with respect to
measurement noise. In other words, optimal (in terms of stability) boundary
conditions, which may be designed by the practitioner, depend on the (unknown)
object we wish to reconstruct; see, e.g., [18] for such a possible construction. For
Helhmoltz-type problems, suitable boundary conditions may be constructed a
priori, i.e. independently of the parameters, at the price of taking measurements
at several frequencies [1, 2, 3, 4, 6].

Note that other, practically less optimal, stability results may be obtained
even in the presence of critical points [9] or nodal points [8]. Also, the presence
of critical points is not the only qualitative feature of interest in hybrid inverse
problems. A result similar to ours in the setting of the sign of the determinant of
solution gradients has been recently obtained in [5, 26]. However, this method
does not immediately extend to the case of critical points.

The rest of the paper is structured as follows. After revisiting the Zaremba
problem in section 2, which concerns the analysis of harmonic functions with
mixed boundary values, in section 3 we generalize the high-contrast results of
[25] to the case of inclusions possibly touching the boundary (to address the
case of the aforementioned handles). The latter result, obtained for Dirichlet
boundary conditions in §3.1, is modified in §3.2 to treat the case of Neumann
boundary conditions. Our main results on the existence of critical points for
well-chosen conductivities are presented in section 4, first for Dirichlet boundary
conditions in §4.1 and then for Neumann boundary conditions in §4.2.
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2 The Zaremba Problem

The two handles Xi mentioned in the introduction are two disjoint subdomains
of X whose boundaries are allowed to meet on a small set (of 2−Haussdorf
measure zero). Moreover, Dirichlet conditions are imposed on their part of
the boundary that coincides with that of X, whereas Neumann conditions are
imposed on the rest of their boundaries. The Laplace equation with such mixed
boundary conditions is referred to as the Zaremba problem. Following [39], we
present here the results we need in the sequel.

We consider the following mixed boundary value problem for the Laplacian.
Let Ω ⊆ R3 be a bounded and Lipschitz domain, such that each connected
component of Ω has a connected boundary. Let D,N ⊆ ∂Ω be disjoint, open,
such that D 6= ∅, D ∩N = ∂D = ∂N and D ∪N = ∂Ω. We consider







∆u = 0 in Ω,
u = g on D,
∂νu = f on N ,

(2)

and are interested in stability estimates of the form

‖u‖Hs(Ω) ≤ C(‖g‖
Hs− 1

2 (D)
+ ‖f‖

Hs− 3
2 (N)

),

for s ∈ [1 − δ, 1 + δ]. This problem was studied in [39] in the case N 6= ∅ and
previously in [32] in the case N = ∅, and we report here the main results of
interest in this paper.

We assume D and N to be admissible patches as in [39]: this essentially
means that the interface between D and N is Lipschitz continuous. For the
sake of completeness, we now provide a precise definition. For each point x =
(x1, x2, x3) in R3, we set x′ = (x1, x2).

Definition 1. Let Ω ⊂ R3 be a bounded Lipschitz domain. An open set Σ ⊂ ∂Ω
is called an admissible patch if for every x0 ∈ ∂Σ there exists a new system of
orthogonal axes such that x0 is the origin and the following holds. There exists
a cube Q = Q1×Q2×Q3 ⊂ R×R×R centered at 0 and two Lipschitz functions

ϕ : Q′ = Q1 ×Q2 −→ Q3, ϕ(0) = 0

ψ : Q2 −→ Q1, ψ(0) = 0,

satisfying

Σ ∩Q = {(x′, ϕ(x′)) : x′ ∈ Q′ and ψ(x2) < x1},

(∂Ω \ Σ) ∩Q = {(x′, ϕ(x′)) : x′ ∈ Q′ and ψ(x2) > x1},

∂Σ ∩Q = {(ψ(x2), x2, ϕ(ψ(x2), x2)) : x2 ∈ Q2}.

We also assume that Ω, with the decomposition of the boundary given by D
and N , is a creased domain. In essence, this means that D and N are separated
by a Lipschitz interface and the angle between D and N is smaller than π.
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Definition 2. Let Ω be a Lipschitz domain in R3 and suppose that D,N ⊂ ∂Ω
are two non-empty, disjoint admissible patches satisfying D ∩ N = ∂D = ∂N
and D ∪ N = ∂Ω. The domain Ω is called special creased provided that the
following conditions hold.

(i) There exists a Lipschitz function φ : R2 → R with the property that
Ω = {(x′, x3) ∈ R3 : x3 > φ(x′)}.

(ii) There exists a Lipschitz function ψ : R → R such that

N = {(x1, x2, x3) ∈ R3 : x1 > ψ(x2)} ∩ ∂Ω

and
D = {(x1, x2, x3) ∈ R3 : x1 < ψ(x2)} ∩ ∂Ω.

(iii) There exist δD, δN ≥ 0 with δD + δN > 0 such that

∂φ

∂x1
≥ δN almost everywhere on {(x1, x2, x3) ∈ R3 : x1 > ψ(x2)}

and

∂φ

∂x1
≤ −δD almost everywhere on {(x1, x2, x3) ∈ R3 : x1 < ψ(x2)}.

Definition 3. Let Ω be a bounded Lipschitz domain in R3 with connected
boundary and supposeD,N ⊂ ∂Ω are two non-empty disjoint admissible patches
satisfying D∩N = ∂D = ∂N and D∪N = ∂Ω. The domain Ω is called creased
provided that the following conditions hold.

(i) There exist Pi ∈ ∂Ω, i = 1, . . . ,M and r > 0 such that ∂Ω ⊂ ∪M
i=1B(Pi, r).

(ii) For each i = 1, . . . ,M there exist a coordinate system {x1, x2, x3} in R3

with origin at Pi and a Lipschitz function φi : R2 → R such that the
set Ωi = {(x′, x3) ∈ R3 : x3 > φi(x

′)}, with boundary decomposition
∂Ωi = Ni ∪ Di, is a special creased domain in the sense of Definition 2
and

Ω ∩B(Pi, 2r) = Ωi ∩B(Pi, 2r),
D ∩B(Pi, 2r) = Di ∩B(Pi, 2r),
N ∩B(Pi, 2r) = Ni ∩B(Pi, 2r).

We have the following result on traces. While the results in [39] are expressed
in terms of general Besov spaces, here we only need the simpler case of Sobolev
spaces using the identification B2,2

s = Hs [30, Exercise 6.5.2].

Lemma 1 ([33, 39]). Let Ω ⊆ R3 be a bounded Lipschitz domain with connected
boundary, and Σ ⊆ ∂Ω be an admissible patch. Take s ∈ ( 12 ,

3
2 ).

1. The trace operator Tr: Hs(Ω) → Hs− 1
2 (∂Ω) is bounded.
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2. There exists a bounded extension operator Ext∂Ω : Hs− 1
2 (∂Ω) → Hs(Ω)

such that Tr ◦ Ext∂Ω = Id.

3. There exists a bounded extension operator ExtΣ : Hs− 1
2 (Σ) → Hs− 1

2 (∂Ω)
such that RΣ ◦ ExtΣ = Id, where RΣu = u|Σ.

4. The trace operator

Trν : {u ∈ Hs(Ω) : ∆u = 0 in Ω} −→ Hs− 3
2 (Σ), u 7→ ∂νu|Σ

is bounded.

The main well-posedness result for the Zaremba problem then reads as fol-
lows.

Proposition 1 ([32, 39]). Under the above assumptions, there exists δ ∈ (0, 12 )
depending only on Ω, D and N such that for every s ∈ [1 − δ, 1 + δ], problem

(2) is well-posed and for every g ∈ Hs− 1
2 (D) and f ∈ Hs− 3

2 (N), we have

‖u‖Hs(Ω) ≤ C(‖g‖
Hs− 1

2 (D)
+ ‖f‖

Hs− 3
2 (N)

)

for some C > 0 independent of f and g. When N = ∅, we may choose δ = 1
4 .

We conclude this section with a technical lemma on the Sobolev regularity
of functions separately defined on subsets.

Lemma 2. Let Ω ⊆ R3 be a bounded Lipschitz domain with connected boundary,
and Σ1,Σ2 ⊆ ∂Ω be two disjoint admissible patches (with possibly non-disjoint
boundaries). Take s ∈ (0, 12 ) and gi ∈ Hs(Σi) for i = 1, 2. Set Σ = (Σ1 ∪ Σ2)

◦

and define g on Σ by
g = χΣ1g1 + χΣ2g2,

where χS denotes the characteristic function of the set S. Then g ∈ Hs(Σ) and

‖g‖Hs(Σ) ≤ C(‖g1‖Hs(Σ1) + ‖g2‖Hs(Σ2))

for some C > 0 depending only on Σ1, Σ2 and s.

Proof. Note that g may be rewritten as

g = χΣ1
(ExtΣ1

g1) + χΣ2
(ExtΣ2

g2).

Thus, the result follows from part 3 of Lemma 1 and the well-known fact that
the characteristic function of the half space R2

+ is a multiplier for the space
Hs(R2) if and only if s < 1

2 [37, Corollary 3.5.1].
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3 The Conductivity Equation with High Con-

trast

We now consider the high-contrast problem with constant high conductivity
equal to η−1 in the handles Xi and unit conductivity in the rest of X. We
generalize the results of [25] to the case of two inclusions (handles) that touch the
boundary and are allowed to touch each other on a set of zero two-dimensional
measure. We study the Dirichlet case in section 3.1 and the Neumann case in
section 3.2.

Let X ⊂ R3 be a bounded and Lipschitz domain with boundary ∂X. Let
X1, X2 ⊂ X be two disjoint (possibly not connected) Lipschitz subdomains, and

we set Di = (∂Xi ∩ ∂X)◦, N i = ∂Xi \Di, X− = X1 ∪X2 and X+ = X \X−.
Assume that for i = 1, 2

Di 6= ∅, (3a)

H2(∂X
1 ∩ ∂X2) = 0, (3b)

Xi, with boundary decomposition given by Di and N i, is creased, (3c)

each connected component of Xi and X+ has a connected boundary, (3d)

where H2 denotes the two-dimensional Haussdorf measure. In addition to the
assumption that the inclusions actually touch the boundary, we are assuming
that the intersection of their boundaries is of measure zero with respect to the
boundary measure. (See Figure 1 for an example, and Figure 2 for a more
involved example where Xi = Xi

ρ.) In essence, condition (3c) means that the

angle between ∂Xi and ∂X is smaller than π. The unit normal ν is oriented
outward X on ∂X and outward Xi on ∂Xi, thereby pointing inward X+ on N i,
as in Figure 1.

For η ∈ (0, 1), define the conductivity ση ∈ L∞(X) by

ση =

{

1 in X+,

η−1 in X−.

3.1 Dirichlet Boundary Conditions

For g ∈ H
1
2 (∂X) let uη ∈ H1(X) be the unique solution to

−∇ · ση∇uη = 0 in X, uη = g on ∂X. (4)

We are interested in the limit of uη as η → 0, i.e., as the conductivity of the
inclusions tends to infinity. Let us denote the restriction of a function φ to Xi

(X+) by φ
i (φ+). Then we have:

Proposition 2. Under the above assumptions, there exist C, η0 > 0 and δ ∈
(0, 12 ) depending only on X, X1 and X2 such that for every η ∈ (0, η0] there
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❉
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◆
✶

❳
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❉
✷

◆
✷

Figure 1: A possible configuration of the domain X and the inclusions X
1 and X

2.
The shaded parts of the boundary represent D1 and D2, while the internal part of the
boundary of the inclusions is formed by N1 and N2.

holds

∥

∥uiη − ui0
∥

∥

H1−δ(Xi)
≤ C ‖g‖H1/2(∂X) η,

∥

∥u+η − u+0
∥

∥

H1−δ(X+)
≤ C ‖g‖H1/2(∂X) η,

where ui0 and u+0 are the unique solutions to the problems







∆ui0 = 0 in Xi,
ui0 = g on Di,
∂νu

i
0 = 0 on N i,







∆u+0 = 0 in X+,
u+0 = g on ∂X+ ∩ ∂X,
u+0 = ui0 on N i, i = 1, 2.

Remark 1. Note that we cannot take δ = 0, since for instance the boundary
condition for u+0 has jumps, and so u+0 /∈ H1(X+).

Remark 2. In view of the Hopf lemma, the limiting solution in Xi satisfies

inf
Di
g ≤ ui0 ≤ sup

Di

g.

This shows that the values of ui0 are controlled by the boundary conditions.

We now prove Proposition 2, following the argument given in [25], which we
refer to for additional details.

Proof. For i = 1, 2, let δi ∈ (0, 12 ) be given by Proposition 1 for the set Xi and
the decomposition of the boundary given byDi andN i (cfr. Figure 1). Similarly,
let δ3 ∈ (0, 12 ) be given by Proposition 1 for the set X+ and the decomposition
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of the boundary given by ∂X+ and ∅ (δ3 = 1
4 ). Set δ = min(δ1, δ2, δ3). For

simplicity of notation, we denote Γ = ∂X \ ∂X−. Several different constants
depending only on δ, X, X1 and X2 will be denoted by C.

Problem (4) is equivalent to






∆uiη = 0 in Xi,
uiη = g on Di,
∂νu

i
η = η∂νu

+
η on N i,







∆u+η = 0 in X+,
u+η = g on Γ,
u+η = uiη on N i, i = 1, 2.

We look for solutions given by the asymptotic expansions

u+η =
∞
∑

n=0

u+n η
n in X+, uiη =

∞
∑

n=0

uinη
n in Xi. (5)

The convergence of these series will be proved later. Inserting this ansatz into
the above systems and identifying the same powers of η we obtain






∆u+n = 0 in X+,
u+n = δ0(n) g on Γ,
u+n = uin on N i, i = 1, 2.







∆uin = 0 in Xi,
uin = δ0(n) g on Di,
∂νu

i
n = (1− δ0(n)) ∂νu

+
n−1 on N i,

with δ0(0) = 1 and δ0(n) = 0 for n ≥ 1. Note that, by (3b), the boundary

conditions set above follow from the identities ∂Xi = Di ∪ N i and ∂X+ =
Γ ∪N1 ∪N2.

By Proposition 1 (applied to X+ and the decomposition of the boundary
given by ∂X+ and ∅) and Lemma 2 we have that the problem for u+n is well-
posed and that for n ≥ 0 we have

∥

∥u+n
∥

∥

H1−δ(X+)
≤ C‖δ0(n)χΓg + χN1u1n + χN2u2n‖H1/2−δ(∂X+)

≤ C

(

δ0(n) ‖g‖H1/2(∂X) +

2
∑

i=1

∥

∥uin
∥

∥

H1/2−δ(Ni)

)

.

Thus, Lemma 1, part 1, yields

∥

∥u+n
∥

∥

H1−δ(X+)
≤ C

(

δ0(n) ‖g‖H1/2(∂X) +

2
∑

i=1

∥

∥uin
∥

∥

H1−δ(Xi)

)

, n ≥ 0. (6)

Similarly, by Proposition 1 (applied to Xi and the decomposition of the
boundary given by Di and N i) and Lemma 1, part 4, we have
∥

∥ui0
∥

∥

H1−δ(Xi)
≤ C ‖g‖H1/2−δ(Di) ≤ C ‖g‖H1/2(∂X) ,

∥

∥uin
∥

∥

H1−δ(Xi)
≤ C

∥

∥∂νu
+
n−1

∥

∥

H−1/2−δ(Ni)
≤ C

∥

∥u+n−1

∥

∥

H1−δ(X+)
, n ≥ 1,

whence, by (6), we have

2
∑

i=1

∥

∥ui1
∥

∥

H1−δ(Xi)
≤ C

∥

∥u+0
∥

∥

H1−δ(X+)
≤ C ‖g‖H1/2(∂X)
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and
2
∑

i=1

∥

∥uin
∥

∥

H1−δ(Xi)
≤ C

2
∑

i=1

∥

∥uin−1

∥

∥

H1−δ(Xi)
, n ≥ 2.

Thus, using again (6) we obtain

2
∑

i=1

∥

∥uin+1

∥

∥

H1−δ(Xi)
≤ Cn

2
∑

i=1

∥

∥ui1
∥

∥

H1−δ(Xi)
≤ Cn+1 ‖g‖H1/2(∂X) ,

∥

∥u+n+1

∥

∥

H1−δ(X+)
≤ Cn+1

2
∑

i=1

∥

∥ui1
∥

∥

H1−δ(Xi)
≤ Cn+1 ‖g‖H1/2(∂X)

(7)

for every n ≥ 0.
Define now η0 = 1/(2C) and take η ∈ (0, η0]. The above estimates show that

u+η and uiη in (5) are well defined. By (5) we can write u+η −u
+
0 = η

∑∞
n=0 u

+
n+1η

n

and uiη − ui0 = η
∑∞

n=0 u
i
n+1η

n. Hence, by (7) we obtain

∥

∥u+η − u+0
∥

∥

H1−δ(X+)
≤ η

∞
∑

n=0

ηn
∥

∥u+n+1

∥

∥

H1−δ(X+)
≤ Cη ‖g‖H1/2(∂X)

∞
∑

n=0

(Cη)n,

∥

∥uiη − ui0
∥

∥

H1−δ(Xi)
≤ η

∞
∑

n=0

ηn
∥

∥uin+1

∥

∥

H1−δ(Xi)
≤ Cη ‖g‖H1/2(∂X)

∞
∑

n=0

(Cη)n.

For η ∈ (0, η0], this implies
∥

∥u+η − u+0
∥

∥

H1−δ(X+)
≤ 2Cη ‖g‖H1/2(∂X) ,

∥

∥uiη − ui0
∥

∥

H1−δ(Xi)
≤ 2Cη ‖g‖H1/2(∂X) ,

as desired.

3.2 Neumann Boundary Conditions

We adapt here the results of the previous subsection to the case of Neumann
boundary conditions. We make the same assumptions on X and Xi, and for
simplicity we assume in addition that X and Xi are connected for i = 1, 2. The
conductivity ση is defined as before, namely

ση =

{

1 in X+,

η−1 in X−.

Fix x1 ∈ D1. For g ∈ H−1/2(∂X) such that
∫

∂X
g ds = 0, let uη ∈ H1(X) be

the unique solution to

−∇ · ση∇uη = 0 in X, ση∂νuη = g on ∂X, uη(x1) = 0. (8)

The last condition is set to enforce uniqueness. We are interested in the limit
of uη as η → 0, i.e. as the conductivity of the inclusions tends to infinity.
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Proposition 3. Under the above assumptions, there exist C, η0 > 0 and δ ∈
(0, 12 ) depending only on X, X1 and X2 such that for every η ∈ (0, η0] there
holds

∥

∥uiη − βi
∥

∥

H1−δ(Xi)
≤ C ‖g‖H−1/2(∂X) η,

∥

∥u+η − u+0
∥

∥

H1−δ(X+)
≤ C ‖g‖H−1/2(∂X) η,

(9)

where

β1 = 0, β2 = −

(
∫

N2

∂νv ds

)−1(∫

D1

g ds+

∫

Γ

vg ds

)

and v and u+0 are the unique solutions to the problems















∆v = 0 in X+,
∂νv = 0 on ∂X+ ∩ ∂X,
v = 1 on N1,
v = 0 on N2,







∆u+0 = 0 in X+,
∂νu

+
0 = g on ∂X+ ∩ ∂X,

u+0 = βi on N i, i = 1, 2.

Proof. The proof is similar to that of Proposition 2, and so only a sketch will
be provided. In particular, precise references to the well-posedness results are
omitted.

Problem (8) is equivalent to







∆uiη = 0 in Xi,
∂νu

i
η = ηg on Di,

∂νu
i
η = η∂νu

+
η on N i,







∆u+η = 0 in X+,
∂νu

+
η = g on Γ,

u+η = uiη on N i, i = 1, 2,

together with the condition u1η(x1) = 0. We look for solutions given by the
asymptotic expansions

u+η =

∞
∑

n=0

u+n η
n in X+, uiη =

∞
∑

n=0

uinη
n in Xi. (10)

Inserting this ansatz into the above systems and identifying the same powers of
η yields







∆uin = 0 in Xi,
∂νu

i
n = δ1(n) g on Di,

∂νu
i
n = (1− δ0(n)) ∂νu

+
n−1 on N i,







∆u+n = 0 in X+,
∂νu

+
n = δ0(n) g on Γ,

u+n = uin on N i, i = 1, 2,

together with u1n(x1) = 0. These problems should be solved in order following
the sequence

ui0 → u+0 → ui1 → u+1 → · · · → uin → u+n → uin+1 → u+n+1 → . . .

Note that, given uin, the problem for u+n is well-posed and admits a unique
solution. Similarly, given u+n−1, the problem for u1n is uniquely solvable because
of the additional condition u1n(x1) = 0. On the other hand, u2n is determined

11



up to a constant. In other words, we can write u2n = ũ2n + an, where ũ
2
n is the

solution to the problem such that ũ2n(x2) = 0 for a fixed x2 ∈ D2 and an ∈ R.
This constant is uniquely determined by imposing that the Neumann boundary
conditions for uin+1 have zero mean. (Note that this is automatically satisfied
for ui0.) More precisely, we need to ensure that

δ0(n)

∫

D1

g ds+

∫

N1

∂νu
+
n ds = 0. (11)

Since g has zero mean on ∂X, it is enough to consider only this condition, which
implies the corresponding identity for i = 2. The Green’s identity yields (note
that the normal on N i is pointing inwards, yielding a sign change):

0 =

∫

∂X+

u+n ∂νv − v∂νu
+
n ds

= −

∫

N1

u1n∂νv ds−

∫

N2

ũ2n∂νv ds− anα+

∫

N1

∂νu
+
n ds− δ0(n)

∫

Γ

vg ds,

where α =
∫

N2 ∂νv ds. Therefore, (11) is equivalent to

δ0(n)

∫

D1

g ds+ δ0(n)

∫

Γ

vg ds+

∫

N1

u1n∂νv ds+

∫

N2

ũ2n∂νv ds+ anα = 0,

which shows that an is uniquely determined, since α 6= 0 by the Hopf lemma.
In particular, as u10 ≡ 0 and ũ20 ≡ 0, we have

u20 ≡ a0 = −α−1

(
∫

D1

g ds+

∫

Γ

vg ds

)

.

We have shown that all the above problems are well-posed and have unique
solutions. Arguing as in the proof of Proposition 2, we prove (9) and the con-
vergence of the expansions given in (10).

4 Existence of Critical Points

We now construct a geometry that guarantees the existence of critical points in
the infinite contrast setting. We then argue by continuity to obtain the existence
of critical points for finite but large contrasts. We first consider the setting with
prescribed Dirichlet boundary conditions.

4.1 Dirichlet Boundary Conditions

We first state the following technical lemma that allows us to control the har-
monic solutions in the handles Xi in the infinite contrast setting.

Lemma 3. Let X ⊂ R3 be a bounded Lipschitz domain. Take x0 ∈ ∂X and
g ∈ C(∂X) ∩H

1
2 (∂X). For ρ ∈ (0, 1) consider a family of subdomains Xρ ⊂ X

such that

12



1. ∂Xρ ∩ ∂X = B(x0, ρ) ∩ ∂X;

2. and Xρ are uniformly Lipschitz (according to [36, Definition 12.10]), with
constants independent of ρ.

Let uρ ∈ H1(Xρ) be the solution of







−∆uρ = 0 in Xρ,
uρ = g on ∂Xρ ∩ ∂X,
∂νuρ = 0 on ∂Xρ \ ∂X.

Then
lim
ρ→0

‖uρ − g(x0)‖
H

1
2 (∂Xρ)

= 0.

Proof. We denote several positive constants independent of ρ and g by C. Set
Dρ = (∂Xρ ∩ ∂X)◦ and Nρ = ∂Xρ \ ∂X. We first note that, by assumption 2,
the trace operator in Xρ is uniformly bounded, namely

‖u‖
H

1
2 (∂Xρ)

≤ C‖u‖H1(Xρ), u ∈ H1(Xρ), (12)

see [36, Exercise 15.25]. Similarly, thanks to assumption 1, by [41], we have

that the operator ExtDρ
: H

1
2 (Dρ) → H

1
2 (∂X) given by Lemma 1, part 3, is

uniformly bounded, namely:

‖ExtDρ‖H
1
2 (Dρ)→H

1
2 (∂X)

≤ C. (13)

The difference vρ = uρ − g(x0) ∈ H1(Xρ) solves







−∆vρ = 0 in Xρ,
vρ = g − g(x0) on Dρ,
∂νvρ = 0 on Nρ.

Integrating by parts yields

‖∇vρ‖
2
L2(Xρ)

=

∫

Xρ

|∇vρ|
2 dx =

∫

∂Xρ

vρ ∂νvρ ds =

∫

Dρ

(g − g(x0)) ∂νvρ ds.

Set wρ = Ext∂XExtDρ
(g − g(x0)) ∈ H1(X). Integrations by parts yield

‖∇vρ‖
2
L2(Xρ)

=

∫

∂Xρ

wρ ∂νvρ ds =

∫

Xρ

∇vρ·∇wρ dx ≤ ‖∇wρ‖L2(Xρ)‖∇vρ‖L2(Xρ),

which yields

‖∇vρ‖L2(Xρ) ≤ ‖∇wρ‖L2(X)

≤ ‖Ext∂X‖‖ExtDρ
‖‖g − g(x0)‖

H
1
2 (Dρ)

≤ C‖g − g(x0)‖
H

1
2 (Dρ)

,

13



where the last inequality follows from (13). Moreover, the Hopf lemma yields

‖vρ‖L2(Xρ) ≤ C‖vρ‖L∞(Xρ) ≤ C‖g − g(x0)‖L∞(Dρ).

Combining these two inequalities we obtain

‖vρ‖H1(Xρ) ≤ C
(

‖g − g(x0)‖
H

1
2 (Dρ)

+ ‖g − g(x0)‖L∞(Dρ)

)

.

As a consequence, by (12) we have

‖vρ‖H1/2(∂Xρ) ≤ C
(

‖g − g(x0)‖
H

1
2 (Dρ)

+ ‖g − g(x0)‖L∞(Dρ)

)

.

Finally, by continuity of g and assumption 1, ‖g − g(x0)‖L∞(∂Xρ∩∂X) → 0 as

ρ → 0. Moreover, by the fact that g ∈ H
1
2 (∂X) and assumption 1, ‖g −

g(x0)‖
H

1
2 (∂Xρ∩∂X)

→ 0 as ρ→ 0. This concludes the proof.

We are now ready to prove our main result.

Theorem 1. Let X ⊂ R3 be a bounded Lipschitz domain. Take g ∈ C(∂X) ∩

H
1
2 (∂X). Then there exists a nonempty open set of conductivities σ ∈ C∞(X),

σ ≥ 1/2, such that the solution u ∈ H1(X) to

−∇ · σ∇u = 0 in X, u = g on ∂X

has a critical point in X, namely ∇u(x) = 0 for some x ∈ X (depending on σ).

Remark 3. Note that such pathological conductivities σ will necessarily have
sufficiently high contrast. Indeed, take for example g(x) = x1: if σ is sufficiently
close to σ0 ≡ 1 in the C0,α norm, then standard Schauder estimates yield that
∇u ≈ (1, 0, 0) uniformly, and so critical points do not exist.

Proof. If g is constant, then the result is obvious. Thus, assume that there
exist x(1), x(2) ∈ ∂X such that g(x(1)) 6= g(x(2)). Without loss of generality,
we assume that g(x(i)) = i for i = 1, 2. Let us precisely discuss how to con-
struct the subdomains where the conductivity will have very large values. These
subdomains will depend on a small parameter ρ ∈ (0, ρ̃) to be fixed later.

Step 1: Construction of the subdomains. See Figure 2. Let Z be the cylinder
given by Z = {x ∈ R3 : x22 + x23 < 1, |x1| < 2}. Without loss of generality, we
assume that X is connected and that Z ⊂ X. The two lateral discs of the
cylinder Z are connected to x(1) with a Lipschitz subdomain X1

ρ satisfying the
assumptions of Lemma 3. Similarly, the lateral surface of Z is connected to
x(2) with a Lipschitz subdomain X2

ρ satisfying the assumptions of Lemma 3. In

particular, ∂Xi
ρ ∩ ∂X = B(x(i), ρ)∩ ∂X for i = 1, 2. Moreover, we choose Xi

ρ in

such a way that Xi
ρ, with respect to the decomposition of the boundary given

by (∂Xi
ρ ∩ ∂X)◦ and ∂Xi

ρ \ ∂X, is creased.
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O

X1
ρ

Z

X2
ρ

X

x(2)ρ

x(1)ρ

Figure 2: The subdomains Z and X
i
ρ.

Step 2: The limiting case in Z as η → 0 and ρ → 0. Let u∗ ∈ H
3
4 (Z) be

the unique weak solution (existence and uniqueness follow from Lemma 2 and
Proposition 1) to







−∆u∗ = 0 in Z,
u∗ = 1 on ∂Z ∩ ∂X1

ρ ,
u∗ = 2 on ∂Z ∩ ∂X2

ρ .
(14)

This function can be explicitly computed, and it is easy to see that

ν · (R∇u∗) ≥ 8µ on ∂B(0, r) (15)

for some µ > 0 and r ∈ (0, 1), where R is the diagonal matrix given by R =
Diag(−1, 1, 1). We also verify that ∇u∗(O) = 0 at O = (0, 0, 0), the center of
the cylinder Z. See Figure 3.

Step 3: The limiting case as η → 0 for ρ small enough. Let uiρ ∈ H1(Xi
ρ) be

the unique weak solution (existence and uniqueness follow from Proposition 1)
to







−∆uiρ = 0 in Xi
ρ,

uiρ = g on ∂Xi
ρ ∩ ∂X,

∂νu
i
ρ = 0 on ∂Xi

ρ \ ∂X.

Since g(x(i)) = i, by Lemma 3, we have that

lim
ρ→0

‖uiρ − i‖
H

1
2 (∂Xi

ρ)
= 0, i = 1, 2. (16)
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x2 = 0

Figure 3: The fields ∇u
∗ and R∇u

∗ near the origin.

Let uZρ ∈ H
3
4 (Z) be defined by







−∆uZρ = 0 in Z,
uZρ = u1ρ on ∂Z ∩ ∂X1

ρ ,
uZρ = u2ρ on ∂Z ∩ ∂X2

ρ .

By Lemma 2 and Proposition 1 we have that

‖uZρ − u∗‖
H

3
4 (Z)

≤ C(‖u1ρ − 1‖
H

1
2 (∂Z∩∂X1

ρ)
+ ‖u2ρ − 2‖

H
1
2 (∂Z∩∂X2

ρ)
)

for an absolute constant C > 0. Therefore, elliptic regularity theory yields

‖uZρ − u∗‖
C1

(

B(0,r)
) ≤ C ′(‖u1ρ − 1‖

H
1
2 (∂Z∩∂X1

ρ)
+ ‖u2ρ − 2‖

H
1
2 (∂Z∩∂X2

ρ)
)

for some C ′ > 0 independent of ρ, and so by (16) we obtain

lim
ρ→0

‖uZρ − u∗‖
C1(B(0,r)) = 0.

As a consequence, in view of (15) we can choose ρ0 > 0 such that

ν · (R∇uZρ0
) ≥ 4µ on ∂B(0, r). (17)
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Step 4: Case with ρ and η small enough. For η ∈ (0, 1), define ση ∈ L∞(X)
by

ση =

{

η−1 in X1
ρ0

∪X2
ρ0
,

1 otherwise.

Let uη ∈ H1(X) be the unique solution to

−∇ · ση∇uη = 0 in X, uη = g on ∂X.

By Proposition 2 we have ‖uη − uZρ0
‖H1−δ(Z) → 0 as η → 0 for some δ ∈ (0, 12 ).

Arguing as in Step 3, by (17) we obtain

ν · (R∇uη0
) ≥ 2µ on ∂B(0, r) (18)

for some η0 > 0.

Step 5: The case of a smooth conductivity. Let σε
η0

∈ C∞(X) be the standard
mollified version of ση0

for ε ∈ (0, 1), namely σε
η0

= ση0
∗ ϕε, where

ϕε(x) = ε−3ϕ(x/ε), ϕ(x) =

{

c e1/(|x|
2−1) if |x| < 1,

0 if |x| ≥ 1,

and c is chosen in such a way that
∫

R3 ϕ(x) dx = 1. It is well known that
σε
η0

→ ση0
in L2(X). Let uε ∈ H1(X) be the unique solution to

−∇ · σε
η0
∇uε = 0 in X, uε = g on ∂X.

Observe now that vε = uε − uη0
∈ H1(X) is the unique weak solution of

−∇ · ση0
∇vε = ∇ · ((σε

η0
− ση0

)∇uε) in X, vε = 0 on ∂X. (19)

It is easy to see that vε → 0 in L2(X)1. Since ση0
is constant in Z, for ε small

enough we have that σε
η0
−ση0

≡ 0 in B(0, r). Thus, applying standard Schauder
estimates (see [29, Corollary 8.36]) to (19) in B(0, r) we obtain ‖vε‖

C1(B(0,r))
≤

C‖vε‖L2(X), which implies

lim
ε→0

‖uε − uη0
‖
C1

(

B(0,r)
) = 0.

1Since σε
η0

is uniformly bounded by below and above by positive constants independent of

ε, we have that uε is uniformly bounded in H1(X). In particular, vε is uniformly bounded in
H1

0 (X). Therefore, there exists v ∈ H1
0 (X) such that vε ⇀ v in H1

0 (X), up to a subsequence.
Thus, by the Rellich–Kondrachov theorem we have that vε → v in L2(X). It remains to show
that v = 0. Testing (19) against any w ∈ C∞(X) with compact support contained in X we
have ∫

X

ση0∇vε · ∇w dx =

∫
X

(σε
η0

− ση0 )∇uε · ∇w dx.

Since ∇vε ⇀ ∇v in L2(X), the left hand side of this equality converges to
∫
X

ση0∇v · ∇w dx

as ε → 0. On the other hand, we have

|

∫
(σε

η0
− ση0 )∇uε · ∇w dx| ≤ ‖σε

η0
− ση0‖L2(X)‖∇uε‖L2(X)‖∇w‖L∞(X) −→

ε→0
0.

As a consequence, we have that ∇ · ση0∇v = 0 in X, so that v = 0.
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As a consequence, in view of (18) we can choose ε0 > 0 such that

ν · (R∇uε0) ≥ µ on ∂B(0, r).

Consider now the set of pathological conductivities given by

P = {σ ∈ C∞(X) : σ > 1/2 in X, ν · (R∇uσ) > 0 on ∂B(0, r)},

where uσ ∈ H1(X) is the unique solution to

−∇ · σ∇uσ = 0 in X, uσ = g on ∂X.

We proved that σε0
η0

∈ P , so that P 6= ∅, and by construction P is open.

Step 6: The critical point. Finally, by the Brouwer fixed point theorem (see,
e.g., [28, Chapter 9.1]), for every σ ∈ P the field R∇uσ must vanish somewhere
in B(0, r). Thus, uσ has a critical point in B(0, r). This concludes the proof of
the theorem.

We generalize the preceding result to the case of a finite number of bound-
ary conditions. For any finite number of boundary conditions, we can find a
conductivity such that all the corresponding solutions have at least one critical
point in X. More precisely, we have the following result.

Theorem 2. Let X ⊂ R3 be a bounded Lipschitz domain. Take g1, . . . , gL ∈
C(∂X) ∩ H1/2(∂X). Then there exists a nonempty open set of conductivities
σ ∈ C∞(X), σ ≥ 1/2 such that for every l = 1, . . . , L, the solution ul ∈ H1(X)
to

−∇ · σ∇ul = 0 in X, ul = gl on ∂X

has at least one critical point in X, namely ∇ul(xl) = 0 for some xl ∈ X
(depending on σ).

Proof. Step 1: Construction of the subdomains. Without loss of generality,
assume that X is connected and that gl is not constant for every l. Consider
the set

A = {(x1(1), x
1
(2), . . . , x

L
(1), x

L
(2)) ∈ (∂X)2L : gl(x

l
(1)) 6= gl(x

l
(2)), l = 1, . . . L}.

Note that A is non-empty (since gl is not constant) and relatively open in (∂X)2L

(since gl is continuous). Thus, we can choose (xl(i))
l=1,...,L
i=1,2 ∈ A such that all the

points considered are distinct, namely

#{xl(i) : i = 1, 2, l = 1, . . . , L} = 2L.

Without loss of generality, assume that gl(x
l
(i)) = i for every l. Since the points

are all distinct and we are in three dimensions, we can construct L smooth open
tubes T1, . . . , TL ⊂ R3 such that:

• the tubes are pairwise disjoint, namely Tl ∩ Tl′ = ∅ if l 6= l′;
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• and xl(i) ∈ Tl for every l = 1, . . . , L and i = 1, 2.

In other words, the tube Tl connects the two points xl(1) and x
l
(2).

We now construct suitable inclusions for each l = 1, . . . , L. For ρ ∈ (0, ρ̃) let
Zl and X1,l

ρ , X2,l
ρ be as in the proof of Theorem 1, corresponding to the points

xl(1) and x
l
(2), constructed in such a way that X1,l

ρ , X2,l
ρ , Zl ⊂ Tl. More precisely,

Zl is obtained by translating, rotating and scaling Z, namely Zl = alZ + zl,
where al > 0 and zl ∈ Tl is the center of Z

l. The subdomains X1,l
ρ and X2,l

ρ are
obtained via smooth deformations of X1

ρ and X2
ρ , and connect the boundary of

Zl to xl(1) and x
l
(2). Set

Z̃ =

L
⋃

l=1

Zl, X̃i
ρ =

L
⋃

l=1

Xi,l
ρ .

The rest of the proof is similar to that of Theorem 1.
Step 2: The limiting case in Z̃ as η → 0 and ρ → 0. Let ũ∗ ∈ H

3
4 (Z̃) be

the unique weak solution (existence and uniqueness follow from Lemma 2 and
Proposition 1) to







−∆ũ∗ = 0 in Z̃,

ũ∗ = 1 on ∂Z̃ ∩ ∂X̃1
ρ ,

ũ∗ = 2 on ∂Z̃ ∩ ∂X̃2
ρ .

Note that the identity Zl = alZ + zl and (14) imply ũ∗(x) = u∗
(

a−1
l (x − zl)

)

for x ∈ Zl. Thus, by (15) we have

ν · (R∇ũ∗) ≥ 8µ on ∂B(zl, rl), l = 1, . . . , L (20)

for some µ > 0 and rl ∈ (0, al), where R =
[

−1
1
1

]

.

Step 3: The limiting case as η → 0 for ρ small enough. Let ui,lρ ∈ H1(X̃i
ρ) be

the unique weak solution (existence and uniqueness follow from Proposition 1)
to







−∆ui,lρ = 0 in X̃i
ρ,

ui,lρ = gl on ∂X̃i
ρ ∩ ∂X,

∂νu
i,l
ρ = 0 on ∂X̃i

ρ \ ∂X.

Applying Lemma 3 to the above problem restricted to Xi,l
ρ , since gl(x

l
(i)) = i,

we have that

lim
ρ→0

‖ui,lρ − i‖H1/2(∂Xi,l
ρ ) = 0, i = 1, 2, l = 1, . . . L. (21)

Let uZ,l
ρ ∈ H

3
4 (Z̃) be defined by







−∆uZ,l
ρ = 0 in Z̃,

uZ,l
ρ = u1,lρ on ∂Z̃ ∩ ∂X̃1

ρ ,

uZ,l
ρ = u2,lρ on ∂Z̃ ∩ ∂X̃2

ρ .
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By Lemma 2 and Proposition 1 (applied to the above problem restricted to Zl)
we have that for every l = 1, . . . , L

‖uZ,l
ρ − ũ∗‖

H
3
4 (Zl)

≤ C(‖u1,lρ − 1‖
H

1
2 (∂Zl∩∂X1,l

ρ )
+ ‖u2,lρ − 2‖

H
1
2 (∂Zl∩∂X2,l

ρ )
).

Therefore, elliptic regularity theory yields for every l = 1, . . . , L

‖uZ,l
ρ − ũ∗‖

C1(B(zl,rl))
≤ C(‖u1,lρ − 1‖

H
1
2 (∂Zl∩∂X1,l

ρ )
+ ‖u2,lρ − 2‖

H
1
2 (∂Zl∩∂X2,l

ρ )
).

Then, by (21) we obtain

lim
ρ→0

‖uZ,l
ρ − ũ∗‖

C1(B(zl,rl))
= 0, l = 1, . . . , L.

As a consequence, in view of (20) we can choose ρ0 > 0 such that

ν · (R∇uZ,l
ρ0

) ≥ 4µ on ∂B(zl, rl), l = 1, . . . , L. (22)

Step 4: The case with ρ and η small enough. For η ∈ (0, 1) define ση ∈
L∞(X) by

ση =

{

1/η in X̃1
ρ0

∪ X̃2
ρ0
,

1 otherwise.

Let ulη ∈ H1(X) be the unique solution to

−∇ · ση∇u
l
η = 0 in X, ulη = gl on ∂X.

By Proposition 2 (applied with Xi = X̃i
ρ0
), there exists δ ∈ (0, 12 ) such that

‖uη − uZ,l
ρ0

‖H1−δ(Zl) → 0 as η → 0 for every l = 1, . . . , L. Arguing as in Step 3,
by (22) we obtain

ν · (R∇ulη0
) ≥ 2µ on ∂B(zl, rl), l = 1, . . . , L (23)

for some η0 > 0.
Step 5: The smooth conductivity. Consider the set of conductivities given

by

P ={σ ∈ C∞(X) : σ > 1/2 in X, ν ·(R∇ulσ) > 0 on ∂B(zl, rl), l = 1, . . . , L},

where ulσ ∈ H1(X) is the unique solution to

−∇ · σ∇ulσ = 0 in X, ulσ = gl on ∂X.

Arguing as in Step 5 of the proof of Theorem 1, by (23) it is easy to see that
P 6= ∅. Moreover, by construction P is open.

Step 6: The critical points. Finally, by the Brouwer fixed point theorem, for
every σ ∈ P , ulσ has a critical point in B(zl, rl) for every l. This concludes the
proof.
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Before considering the case of Neumann boundary conditions, we consider
another generalization of Theorem 1: it is possible to construct conductivities
yielding an arbitrary finite number of critical points located in arbitrarily small
balls given a priori.

Theorem 3. Let X ⊂ R3 be a bounded Lipschitz domain and let B1, . . . , BM ⊆
X be pairwise disjoint open balls. Take g ∈ C(∂X) ∩ H

1
2 (∂X). Then there

exists a nonempty open set of conductivities σ ∈ C∞(X), σ ≥ 1/2, such that
the solution u ∈ H1(X) to

−∇ · σ∇u = 0 in X, u = g on ∂X

has a critical point in Bm for every m = 1, . . . ,M , namely ∇u(xm) = 0 for
some xm ∈ X (depending on σ).

Proof. This result follows applying the same argument used in the proof of
Theorem 1, the only difference lies in the construction of the inclusions where
the conductivity takes large values.

If g is constant, the result is obvious. Otherwise, for i = 1, 2 take x(i) ∈ ∂X
such that g(x(i)) = i. For every m = 1, . . . ,M , let Zm be obtained by scaling
and translating Z in such a way that Zm ⊂ Bm. The 2M lateral discs of the
cylinders Zm are connected to x(1) with a connected Lipschitz subdomain X1

ρ

satisfying the assumptions of Lemma 3. Similarly, the M lateral surfaces of
Zm are connected to x(2) with a connected Lipschitz subdomain X2

ρ satisfying

the assumptions of Lemma 3. In particular, ∂Xi
ρ ∩ ∂X = B(x(i), ρ) ∩ ∂X for

i = 1, 2. Moreover, we choose Xi
ρ in such a way that Xi

ρ, with respect to the

decomposition of the boundary given by (∂Xi
ρ∩∂X)◦ and ∂Xi

ρ \∂X, is creased.
Proceeding as in the proofs of Theorems 1 and 2, we obtain that for ρ and

η small enough, the corresponding solution will have at least one critical point
in each Zm ⊂ Bm. Further, the topology of the gradient field is preserved by
suitable smooth deformations of the conductivity, and the result is proved.

4.2 Neumann Boundary Conditions

We conclude this paper by a construction of critical points when the prescribed
boundary conditions are of Neumann type. We consider only the case of a
single boundary condition and of a single critical point, although the result also
extends to a finite number of boundary conditions and critical points, as in the
setting of Dirichlet boundary conditions.

Theorem 4. Let X ⊂ R3 be a connected bounded Lipschitz domain. Take
g ∈ C(∂X) such that

∫

∂X
g ds = 0. Then there exists a nonempty open set of

conductivities σ ∈ C∞(X), σ ≥ 1/2 such that the solution u ∈ H1(X)/R to

−∇ · σ∇u = 0 in X, σ∂νu = g on ∂X

has a critical point in X, namely ∇u(x) = 0 for some x ∈ X (depending on σ).
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Proof. The proof follows the same structure of the proof of Theorem 1, and so
only the most relevant differences will be pointed out. Without loss of generality,
assume that g 6≡ 0.

The construction of the subdomains Xi and Z is very similar to the one
presented above, with the only difference lying in the contact surfaces Di =
∂Xi ∩ ∂X. Making the surfaces Di very small is not necessary in this context.
On the other hand, we observe from our results obtained in Proposition 3 and
the estimates in (9) that the only requirement we need to verify is

∫

D1

g ds+

∫

Γ

vg ds 6= 0, (24)

where v is the unique solution to

∆v = 0 in X+, ∂νv = 0 on Γ, v = 1 on N1, v = 0 on N2,

N i = ∂Xi \ Di and X+ = X \ (X1 ∪X2). Since 0 ≤ v ≤ 1 in X+ by the
Hopf lemma, (24) can be satisfied choosing D1 ( {x ∈ Ω : g(x) > 0} and
D2 = {x ∈ Ω : g(x) < 0}, which imply g ≥ 0 on Γ.

In view of (24), with the notation of Proposition 3, we have β1 6= β2. Thus,
by Proposition 3 the limit solution u∗ as η → 0 in the cylinder Z will have two
different constant boundary values on the two discs and on the lateral surface.
The rest of the proof follows exactly as in the proof of Theorem 1.
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J. Éc. polytech. Math., 2:171–178, 2015.

[27] Y. Capdeboscq, J. Fehrenbach, F. de Gournay, and O. Kavian. Imag-
ing by modification: numerical reconstruction of local conductivities from
corresponding power density measurements. SIAM J. Imaging Sciences,
2:1003–1030, 2009.

[28] L. C. Evans. Partial differential equations, volume 19 of Graduate Studies
in Mathematics. American Mathematical Society, Providence, RI, 1998.

[29] D. Gilbarg and N. S. Trudinger. Elliptic partial differential equations of sec-
ond order. Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint
of the 1998 edition.

[30] L. Grafakos. Modern Fourier analysis, volume 250 of Graduate Texts in
Mathematics. Springer, New York, third edition, 2014.

[31] R. Hardt, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and N. Nadi-
rashvili. Critical sets of solutions to elliptic equations. J. Differential
Geom., 51:359–373, 1999.

[32] D. Jerison and C. E. Kenig. The inhomogeneous Dirichlet problem in
Lipschitz domains. J. Funct. Anal., 130(1):161–219, 1995.

[33] A. Jonsson and H. Wallin. Function spaces on subsets of Rn. Math. Rep.,
2(1):xiv+221, 1984.

[34] P. Kuchment. Mathematics of hybrid imaging: a brief review. In The
mathematical legacy of Leon Ehrenpreis, volume 16 of Springer Proc. Math.,
pages 183–208. Springer, Milan, 2012.

24



[35] P. Kuchment and D. Steinhauer. Stabilizing inverse problems by internal
data. Inverse Problems, 28(8):084007, 2012.

[36] G. Leoni. A first course in Sobolev spaces, volume 105 of Graduate Studies
in Mathematics. American Mathematical Society, Providence, RI, 2009.

[37] V. G. Maz’ya and T. O. Shaposhnikova. Theory of Sobolev multipliers, vol-
ume 337 ofGrundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2009. With
applications to differential and integral operators.

[38] J. R. McLaughlin, N. Zhang, and A. Manduca. Calculating tissue shear
modulus and pressure by 2D log-elastographic methods. Inverse Problems,
26(8):085007, 25, 2010.

[39] I. Mitrea and M. Mitrea. The Poisson problem with mixed boundary con-
ditions in Sobolev and Besov spaces in non-smooth domains. Trans. Amer.
Math. Soc., 359(9):4143–4182 (electronic), 2007.

[40] A. Nachman, A. Tamasan, and A. Timonov. Current density impedance
imaging. Tomography and Inverse Transport Theory. Contemporary Math-
ematics (G. Bal, D. Finch, P. Kuchment, P. Stefanov, G. Uhlmann, Edi-
tors), 559, 2011.

[41] V. S. Rychkov. On restrictions and extensions of the besov and triebel–
lizorkin spaces with respect to lipschitz domains. Journal of the London
Mathematical Society, 60(1):237–257, 1999.

[42] O. Scherzer. Handbook of Mathematical Methods in Imaging. Springer
Verlag, New York, 2011.

[43] T. Widlak and O. Scherzer. Hybrid tomography for conductivity imaging.
Inverse Problems, 28(8):084008, 28, 2012.

25


	Introduction
	The Zaremba Problem
	The Conductivity Equation with High Contrast
	Dirichlet Boundary Conditions
	Neumann Boundary Conditions

	Existence of Critical Points
	Dirichlet Boundary Conditions
	Neumann Boundary Conditions


