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Abstract—Wiatowski and Bölcskei, 2015, proved that deforma-
tion stability and vertical translation invariance of deep convolu-
tional neural network-based feature extractors are guaranteed by
the network structure per se rather than the specific convolution
kernels and non-linearities. While the translation invariance
result applies to square-integrable functions, the deformation
stability bound holds for band-limited functions only. Many
signals of practical relevance (such as natural images) exhibit,
however, sharp and curved discontinuities and are hence not
band-limited. The main contribution of this paper is a defor-
mation stability result that takes these structural properties into
account. Specifically, we establish deformation stability bounds
for the class of cartoon functions introduced by Donoho, 2001.

I. INTRODUCTION

Feature extractors based on so-called deep convolutional

neural networks have been applied with tremendous success

in a wide range of practical signal classification tasks [1]–

[3]. These networks are composed of multiple layers, each

of which computes convolutional transforms, followed by the

application of non-linearities and pooling operations.

The mathematical analysis of feature extractors generated by

deep convolutional neural networks was initiated in a seminal

paper by Mallat [4]. Specifically, Mallat analyzes so-called

scattering networks, where signals are propagated through

layers that compute semi-discrete wavelet transforms (i.e., con-

volutional transforms with pre-specified filters obtained from

a mother wavelet through scaling operations), followed by

modulus non-linearities. It was shown in [4] that the resulting

wavelet-modulus feature extractor is horizontally translation-

invariant [5] and deformation-stable, with the stability result

applying to a function space that depends on the underlying

mother wavelet.

Recently, Wiatowski and Bölcskei [5] extended Mallat’s

theory to incorporate convolutional transforms with filters

that are (i) pre-specified and potentially structured such as

Weyl-Heisenberg (Gabor) functions [6], wavelets [7], curvelets

[8], shearlets [9], and ridgelets [10], (ii) pre-specified and

unstructured such as random filters [11], and (iii) learned in a

supervised [12] or unsupervised [13] fashion. Furthermore, the

networks in [5] may employ general Lipschitz-continuous non-

linearities (e.g., rectified linear units, shifted logistic sigmoids,

hyperbolic tangents, and the modulus function) and pooling

through sub-sampling. The essence of the results in [5] is

that vertical translation invariance and deformation stability

are induced by the network structure per se rather than the

specific choice of filters and non-linearities. While the vertical

translation invariance result in [5] is general in the sense

of applying to the function space L2(Rd), the deformation

stability result in [5] pertains to square-integrable band-limited

functions. Moreover, the corresponding deformation stability

bound depends linearly on the bandwidth.

Many signals of practical relevance (such as natural ima-

ges) can be modeled as square-integrable functions that are,

however, not band-limited or have large bandwidth. Large

bandwidths render the deformation stability bound in [5] void

as a consequence of its linear dependence on bandwidth.

Contributions. The question considered in this paper is

whether taking structural properties of natural images into

account can lead to stronger deformation stability bounds.

We show that the answer is in the affirmative by analyzing

the class of cartoon functions introduced in [14]. Cartoon

functions satisfy mild decay properties and are piecewise

continuously differentiable apart from curved discontinuities

along Lipschitz-continuous hypersurfaces. Moreover, they pro-

vide a good model for natural images such as those in the

MNIST [15], Caltech-256 [16], and CIFAR-100 [17] datasets

as well as for images of geometric objects of different shapes,

sizes, and colors [18], [19]. The proof of our main result

is based on the decoupling technique introduced in [5]. The

essence of decoupling is that contractivity of the feature

extractor combined with deformation stability of the signal

class under consideration—under smoothness conditions on

the deformation—establishes deformation stability for the

feature extractor. Our main technical contribution here is to

prove deformation stability for the class of cartoon functions.

Moreover, we show that the decay rate of the resulting defor-

mation stability bound is best possible. The results we obtain

further underpin the observation made in [5] of deformation

stability and vertical translation invariance being induced by

the network structure per se.

Notation. We refer the reader to [5, Sec. 1] for the general

notation employed in this paper. In addition, we will need the

following notation. For x ∈ R
d, we set 〈x〉 := (1 + |x|2)1/2.

The Minkowski sum of sets A,B ⊆ R
d is (A + B) :=

{a + b | a ∈ A, b ∈ B}. A Lipschitz domain D is a set

D ⊆ R
d whose boundary ∂D is “sufficiently regular” to be

thought of as locally being the graph of a Lipschitz-continuous

function, for a formal definition see [20, Def. 1.40]. The

indicator function of a set B ⊆ R
d is defined as 1B(x) := 1,
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Fig. 1: Network architecture underlying the feature extractor (2). The index λ
(k)
n corresponds to the k-th atom g

λ
(k)
n

of the

collection Ψn associated with the n-th network layer. The function χn is the output-generating atom of the n-th layer.

for x ∈ B, and 1B(x) := 0, for x ∈ R
d\B. For a measurable

set B ⊆ R
d, we let vold(B) :=

∫
Rd 1B(x)dx =

∫
B
1dx.

II. DEEP CONVOLUTIONAL NEURAL NETWORK-BASED

FEATURE EXTRACTORS

We set the stage by briefly reviewing the deep convolutional

feature extraction network presented in [5], the basis of which

is a sequence of triplets Ω :=
(
(Ψn,Mn, Rn)

)
n∈N

referred

to as module-sequence. The triplet (Ψn,Mn, Rn)—associated

with the n-th network layer—consists of (i) a collection Ψn :=
{gλn

}λn∈Λn
of so-called atoms gλn

∈ L1(Rd) ∩ L2(Rd),
indexed by a countable set Λn and satisfying the Bessel con-

dition
∑

λn∈Λn
‖f ∗gλn

‖2 ≤ Bn‖f‖22, for all f ∈ L2(Rd), for

some Bn > 0, (ii) an operator Mn : L2(Rd) → L2(Rd) satis-

fying the Lipschitz property ‖Mnf −Mnh‖2 ≤ Ln‖f − h‖2,

for all f, h ∈ L2(Rd), and Mnf = 0 for f = 0, and (iii) a

sub-sampling factor Rn ≥ 1. Associated with (Ψn,Mn, Rn),
we define the operator

Un[λn]f := Rd/2
n

(
Mn(f ∗ gλn

)
)
(Rn·), (1)

and extend it to paths on index sets q = (λ1, λ2, . . . , λn) ∈
Λ1 × Λ2 × · · · × Λn := Λn

1 , n ∈ N, according to

U [q]f =U [(λ1, λ2, . . . , λn)]f

:=Un[λn] · · ·U2[λ2]U1[λ1]f,

where for the empty path e := ∅ we set Λ0
1 := {e} and

U [e]f := f , for f ∈ L2(Rd).

Remark 1. The Bessel condition on the atoms gλn
is equi-

valent to
∑

λn∈Λn
|ĝλn

(ω)|2 ≤ Bn, for a.e. ω ∈ R
d (see [5,

Prop. 2]), and is hence easily satisfied even by learned filters

[5, Remark 2]. An overview of collections Ψn = {gλn
}λn∈Λn

of structured atoms gλn
(such as, e.g., Weyl-Heisenberg (Ga-

bor) functions, wavelets, curvelets, shearlets, and ridgelets)

and non-linearities Mn widely used in the deep learning

literature (e.g., hyperbolic tangent, shifted logistic sigmoid,

rectified linear unit, and modulus function) is provided in [5,

App. B-D].

For every n ∈ N, we designate one of the atoms

Ψn = {gλn
}λn∈Λn

as the output-generating atom χn−1 :=
gλ∗

n
, λ∗

n ∈ Λn, of the (n − 1)-th layer. The atoms

{gλn
}λn∈Λn\{λ∗

n
}∪{χn−1} are thus used across two consecu-

tive layers in the sense of χn−1 = gλ∗
n

generating the output in

the (n−1)-th layer, and the remaining atoms {gλn
}λn∈Λn\{λ∗

n
}

propagating signals to the n-th layer according to (1), see Fig.

1. From now on, with slight abuse of notation, we write Λn

for Λn\{λ∗
n} as well.

The extracted features ΦΩ(f) of a signal f ∈ L2(Rd) are

defined as [5, Def. 3]

ΦΩ(f) :=

∞⋃

n=0

{(U [q]f) ∗ χn}q∈Λn

1
, (2)

where (U [q]f) ∗ χn, q ∈ Λn
1 , is a feature generated in the

n-th layer of the network, see Fig. 1. It is shown in [5,

Thm. 2] that for all f ∈ L2(Rd) the feature extractor ΦΩ is

vertically translation-invariant in the sense of the layer depth

n determining the extent to which the features (U [q]f) ∗ χn,

q ∈ Λn
1 , are translation-invariant. Furthermore, under the

condition

max
n∈N

max{Bn, BnL
2
n} ≤ 1, (3)

referred to as weak admissibility condition in [5, Def. 4] and

satisfied by a wide variety of module sequences Ω (see [5,

Sec. 3]), the following result is established in [5, Thm. 1]:

The feature extractor ΦΩ is stable on the space of R-band-

limited functions L2
R(R

d) w.r.t. deformations (Fτf)(x) :=
f(x − τ(x)), i.e., there exists a universal constant C > 0
(that does not depend on Ω) such that for all f ∈ L2

R(R
d) and

all (possibly non-linear) τ ∈ C1(Rd,Rd) with ‖Dτ‖∞ ≤ 1
2d ,

it holds that

|||ΦΩ(Fτf)− ΦΩ(f)||| ≤ CR‖τ‖∞‖f‖2. (4)

Here, the feature space norm is defined as

|||ΦΩ(f)|||2 :=
∑∞

n=0

∑
q∈Λn

1
‖(U [q]f) ∗ χn‖22.



Fig. 2: Left: A natural image (image credit: [21]) is typically

governed by areas of little variation, with the individual areas

separated by edges that can be modeled as curved singularities.

Right: An image of a handwritten digit.

For practical classification tasks, we can think of the defor-

mation Fτ as follows. Let f be a representative of a certain

signal class, e.g., f is an image of the handwritten digit

“8” (see Fig. 2, right). Then, {Fτf | ‖Dτ‖∞ < 1
2d} is a

collection of images of the handwritten digit “8”, where each

Fτf may be generated, e.g., based on a different handwriting

style. The bound ‖Dτ‖∞ < 1
2d on the Jacobian matrix of τ

imposes a quantitative limit on the amount of deformation

tolerated, rendering the bound (4) to implicitly depend on

Dτ . The stability bound (4) now guarantees that the features

corresponding to the images in the set {Fτf | ‖Dτ‖∞ < 1
2d}

do not differ too much.

III. CARTOON FUNCTIONS

The bound in (4) applies to the space of square-integrable

R-band-limited functions. Many signals of practical signifi-

cance (e.g., natural images) are, however, not band-limited

(due to the presence of sharp and possibly curved edges, see

Fig. 2) or exhibit large bandwidths. In the latter case, the

deformation stability bound (4) becomes void as it depends

linearly on R.

The goal of this paper is to take structural properties of

natural images into account by considering the class of cartoon

functions introduced in [14]. These functions satisfy mild

decay properties and are piecewise continuously differentiable

apart from curved discontinuities along Lipschitz-continuous

hypersurfaces. Cartoon functions provide a good model for

natural images (see Fig. 2, left) such as those in the Caltech-

256 [16] and CIFAR-100 [17] data sets, for images of hand-

written digits [15] (see Fig. 2, right), and for images of

geometric objects of different shapes, sizes, and colors [18],

[19].

We proceed to the formal definition of cartoon functions.

Definition 1. The function f : Rd → C is referred to as a

cartoon function if it can be written as f = f1+1Bf2, where

B ⊆ R
d is a compact Lipschitz domain with boundary of finite

length, i.e., vold−1(∂B) < ∞, and fi ∈ L2(Rd)∩C1(Rd,C),
i = 1, 2, satisfies the decay condition

|∇fi(x)| ≤ C〈x〉−d, i = 1, 2, (5)

for some C > 0 (that does not depend on f1,f2). Furthermore,

we denote by

CK
CART := {f1 + 1Bf2 | fi ∈ L2(Rd) ∩ C1(Rd,C), i = 1, 2,

|∇fi(x)| ≤ K〈x〉−d, vold−1(∂B) ≤ K, ‖f2‖∞ ≤ K}
the class of cartoon functions of maximal size K > 0.

We chose the term size to indicate the length vold−1(∂B)
of the boundary ∂B of the Lipschitz domain B. Furthermore,

CK
CART ⊆ L2(Rd), for all K > 0; this simply follows from

the triangle inequality according to ‖f1 + 1Bf2‖2 ≤ ‖f1‖2 +
‖1Bf2‖2 ≤ ‖f1‖2 + ‖f2‖2 < ∞, where in the last step we

used f1, f2 ∈ L2(Rd). Finally, we note that our main results—

presented in the next section—can easily be generalized to

finite linear combinations of cartoon functions, but this is not

done here for simplicity of exposition.

IV. MAIN RESULTS

We start by reviewing the decoupling technique introduced

in [5] to prove deformation stability bounds for band-limited

functions. The proof of the deformation stability bound (4) for

band-limited functions in [5] is based on two key ingredients.

The first one is a contractivity property of ΦΩ (see [5,

Prop. 4]), namely |||ΦΩ(f) − ΦΩ(h)||| ≤ ‖f − h‖2, for

all f, h ∈ L2(Rd). Contractivity guarantees that pairwise

distances of input signals do not increase through feature

extraction. The second ingredient is an upper bound on the

deformation error ‖f−Fτf‖2 (see [5, Prop. 5]), specific to the

signal class considered in [5], namely band-limited functions.

Recognizing that the combination of these two ingredients

yields a simple proof of deformation stability is interesting as

it shows that whenever a signal class exhibits inherent stability

w.r.t. deformations of the form (Fτf)(x) = f(x − τ(x)),
we automatically obtain deformation stability for the feature

extractor ΦΩ. The present paper employs this decoupling

technique and establishes deformation stability for the class

of cartoon functions by deriving an upper bound on the

deformation error ‖f − Fτf‖2 for f ∈ CK
CART.

Proposition 1. For every K > 0 there exists a constant CK >
0 such that for all f ∈ CK

CART and all (possibly non-linear)

τ : Rd → R
d with ‖τ‖∞ < 1

2 , it holds that

‖f − Fτf‖2 ≤ CK‖τ‖1/2∞ . (6)

Proof. see Appendix A.

The Lipschitz exponent α = 1
2 on the right-hand side (RHS)

of (6) determines the decay rate of the deformation error

‖f − Fτf‖2 as ‖τ‖∞ → 0. Clearly, larger α > 0 results

in the deformation error decaying faster as the deformation

becomes smaller. The following simple example shows that

the Lipschitz exponent α = 1
2 in (6) is best possible, i.e., it

can not be larger. Consider d = 1 and τs(x) = s, for a fixed

s satisfying 0 < s < 1
2 ; the corresponding deformation Fτs

amounts to a simple translation by s with ‖τs‖∞ = s < 1
2 .

Let f = 1[−1,1]. Then f ∈ CK
CART for some K > 0 and

‖f − Fτsf‖2 =
√
2s =

√
2‖τ‖1/2∞ .



Remark 2. It is interesting to note that in order to obtain

bounds of the form ‖f − Fτf‖2 ≤ C‖τ‖α∞, for f ∈ C ⊆
L2(Rd), for some C > 0 (that does not depend on f , τ ) and

some α > 0, we need to impose non-trivial constraints on the

set C ⊆ L2(Rd). Indeed, consider, again, d = 1 and τs(x) = s,

for small s > 0. Let fs ∈ L2(Rd) be a function that has its

energy ‖fs‖2 = 1 concentrated in a small interval according

to supp(fs) ⊆ [−s/2, s/2]. Then, fs and Fτsfs have disjoint

support sets and hence ‖fs − Fτsfs‖2 =
√
2, which does not

decay with ‖τ‖α∞ = sα for any α > 0. More generally, the

amount of deformation induced by a given function τ depends

strongly on the signal (class) it is applied to. Concretely, the

deformation Fτ with τ(x) = e−x2

, x ∈ R, will lead to a

small bump around the origin only when applied to a low-

pass function, whereas the function fs above will experience

a significant deformation.

We are now ready to state our main result.

Theorem 1. Let Ω =
(
(Ψn,Mn, Rn)

)
n∈N

be a module-

sequence satisfying the weak admissibility condition (3). For

every size K > 0, the feature extractor ΦΩ is stable on

the space of cartoon functions CK
CART w.r.t. deformations

(Fτf)(x) = f(x− τ(x)), i.e., for every K > 0 there exists a

constant CK > 0 (that does not depend on Ω) such that for

all f ∈ CK
CART, and all (possibly non-linear) τ ∈ C1(Rd,Rd)

with ‖τ‖∞ < 1
2 and ‖Dτ‖∞ ≤ 1

2d , it holds that

|||ΦΩ(Fτf)− ΦΩ(f)||| ≤ CK‖τ‖1/2∞ . (7)

Proof. Applying the contractivity property |||ΦΩ(g) −
ΦΩ(h)||| ≤ ‖g − h‖2 with g = Fτf and h = f , and using

(6) yields (7) upon invoking the same arguments as in [5, Eq.

58] and [5, Lemma 2] to conclude that f ∈ L2(Rd) implies

Fτf ∈ L2(Rd) thanks to ‖Dτ‖∞ ≤ 1
2d .

The strength of the deformation stability result in Theorem

1 derives itself from the fact that the only condition we

need to impose on the underlying module-sequence Ω is

weak admissibility according to (3), which as argued in [5,

Sec. 3], can easily be met by normalizing the elements in

Ψn, for all n ∈ N, appropriately. We emphasize that this

normalization does not have an impact on the constant CK

in (7), which is shown in Appendix A to be independent of

Ω. The dependence of CK on K does, however, reflect the

intuition that the deformation stability bound should depend

on the signal class description complexity. For band-limited

signals, this dependence is exhibited by the RHS in (4)

being linear in the bandwidth R. Finally, we note that the

vertical translation invariance result [5, Thm. 2] applies to all

f ∈ L2(Rd), and, thanks to CK
CART ⊆ L2(Rd), for all K > 0,

carries over to cartoon functions.

Remark 3. We note that thanks to the decoupling technique

underlying our arguments, the deformation stability bounds

(4) and (7) are very general in the sense of applying to every

contractive (linear or non-linear) mapping Φ. Specifically, the

identity mapping Φ(f) = f also leads to deformation stability

on the class of cartoon functions (and the class of band-limited

functions). This is interesting as it was recently demonstrated

that employing the identity mapping as a so-called shortcut-

connection in a subset of layers of a very deep convolutional

neural network yields state-of-the-art classification perfor-

mance on the ImageNet dataset [22]. Our deformation stability

result is hence general in the sense of applying to a broad class

of network architectures used in practice.

For functions that do not exhibit discontinuities along

Lipschitz-continuous hypersurfaces, but otherwise satisfy the

decay condition (5), we can improve the decay rate of the

deformation error from α = 1
2 to α = 1.

Corollary 1. Let Ω =
(
(Ψn,Mn, Rn)

)
n∈N

be a module-

sequence satisfying the weak admissibility condition (3). For

every size K > 0, the feature extractor ΦΩ is stable on

the space HK := {f ∈ L2(Rd) ∩ C1(Rd,C) | |∇f(x)| ≤
K〈x〉−d} w.r.t. deformations (Fτf)(x) = f(x−τ(x)), i.e., for

every K > 0 there exists a constant CK > 0 (that does not

depend on Ω) such that for all f ∈ HK , and all (possibly non-

linear) τ ∈ C1(Rd,Rd) with ‖τ‖∞ < 1
2 and ‖Dτ‖∞ ≤ 1

2d ,

it holds that

|||ΦΩ(Fτf)− ΦΩ(f)||| ≤ CK‖τ‖∞.

Proof. The proof follows that of Theorem 1 apart from em-

ploying (12) instead of (6).

APPENDIX A

PROOF OF PROPOSITION 1

The proof of (6) is based on judiciously combining defor-

mation stability bounds for the components f1, f2 in (f1 +
1Bf2) ∈ CK

CART and for the indicator function 1B . The first

bound, stated in Lemma 1 below, reads

‖f − Fτf‖2 ≤ CD‖τ‖∞, (8)

and applies to functions f satisfying the decay condition (11),

with the constant D > 0 not depending on f and τ (see (14)).

The bound in (8) needs the assumption ‖τ‖∞ < 1
2 . The second

bound, stated in Lemma 2 below, is

‖1B − Fτ1B‖2 ≤
(
2 vold−1(∂B)

)1/2‖τ‖1/2∞ . (9)

We now show how (8) and (9) can be combined to establish

(6). For f = (f1 + 1Bf2) ∈ CK
CART, we have

‖f − Fτf‖2 ≤ ‖f1 − Fτf1‖2
+ ‖1B(f2 − Fτf2)‖2 + ‖(1B − Fτ1B)(Fτf2)‖2 (10)

≤‖f1 − Fτf1‖2+ ‖f2 − Fτf2‖2+ ‖1B − Fτ1B‖2‖Fτf2‖∞,

where in (10) we used Fτ (1Bf2)(x) = (1Bf2)(x − τ(x)) =
1B(x − τ(x))f2((x − τ(x))) = (Fτ1B)(x)(Fτf2)(x). With

the upper bounds (8) and (9), invoking properties of the class

of cartoon functions CK
CART (namely, (i) vold−1(∂B) ≤ K,

(ii) f1,f2 satisfy (11) and thus (8) with C = K, and (iii)



‖Fτf2‖∞ = supx∈Rd |f2(x − τ(x))| ≤ supy∈Rd |f2(y)| =
‖f2‖∞ ≤ K), this yields

‖f − Fτf‖2 ≤ 2KD ‖τ‖∞ +
√
2K3/2‖τ‖1/2∞

≤ 2max{2KD,
√
2K3/2}︸ ︷︷ ︸

=:CK

‖τ‖1/2∞ ,

which completes the proof of (6).

It remains to show (8) and (9).

Lemma 1. Let f ∈ L2(Rd) ∩ C1(Rd,C) be such that

|∇f(x)| ≤ C〈x〉−d, (11)

for some constant C > 0, and let ‖τ‖∞ < 1
2 . Then,

‖f − Fτf‖2 ≤ CD‖τ‖∞, (12)

for a constant D > 0 that does not depend on f and τ .

Proof. We first upper-bound the integrand in ‖f − Fτf‖22 =∫
Rd |f(x)−f(x−τ(x))|2dx. Owing to the mean value theorem

[23, Thm. 3.7.5], we have

|f(x)− f(x− τ(x))| ≤ ‖τ‖∞ sup
y∈B‖τ‖∞ (x)

|∇f(y)|

≤ C‖τ‖∞ sup
y∈B‖τ‖∞ (x)

〈y〉−d

︸ ︷︷ ︸
=:h(x)

,

where the last inequality follows by assumption. The idea is

now to split the integral
∫
Rd |h(x)|2dx into integrals over the

sets B1(0) and R
d\B1(0). For x ∈ B1(0), the monotonicity

of the function x 7→ 〈x〉−d implies h(x) ≤ C‖τ‖∞〈0〉−d =
C‖τ‖∞, and for x ∈ R

d\B1(0), we have (1 − ‖τ‖∞) ≤
(1 − ‖τ‖∞

|x| ), which together with the monotonicity of x 7→
〈x〉−d yields h(x) ≤ C‖τ‖∞〈(1− ‖τ‖∞

|x| )x〉−d ≤ C‖τ‖∞〈(1−
‖τ‖∞)x〉−d. Putting things together, we hence get

‖f − Fτf‖22 ≤ C2‖τ‖2∞
(

vold
(
B1(0)

)

+ 2d
∫

Rd

〈u〉−2ddu
)

(13)

≤ C2‖τ‖2∞
(

vold
(
B1(0)

)
+ 2d‖〈·〉−d‖22

)

︸ ︷︷ ︸
=:D2

, (14)

where in (13) we used the change of variables u = (1 −
‖τ‖∞)x, together with

du

dx
= (1− ‖τ‖∞)d ≥ 2−d. (15)

The inequality in (15) follows from ‖τ‖∞ < 1
2 , which is by

assumption. Since ‖〈·〉−d‖2 < ∞, for d ∈ N (see, e.g., [24,

Sec. 1]), and, obviously, vold
(
B1(0)

)
< ∞, it follows that

D2 < ∞, which completes the proof.

We continue with a deformation stability result for indicator

functions 1B .

Lemma 2. Let B ⊆ R
d be a compact Lipschitz domain with

boundary of finite length, i.e., vold−1(∂B) < ∞. Then,

‖1B − Fτ1B‖2 ≤ (2 vold−1(∂B))1/2‖τ‖1/2∞ .

Proof. In order to upper-bound ‖1B − Fτ1B‖22 =∫
Rd |1B(x)−1B(x−τ(x))|2dx, we first note that the integrand

h(x) := |1B(x)− 1B(x− τ(x))|2 satisfies h(x) = 1, for x ∈
S, where S := {x ∈ R

d |x ∈ B and x− τ(x) /∈ B} ∪ {x ∈
R

d |x /∈ B and x−τ(x) ∈ B}, and h(x) = 0, for x ∈ R
d\S.

Since S ⊆
(
∂B + B‖τ‖∞

(0)
)
, where (∂B + B‖τ‖∞

(0)) is a

tubular neighborhood of width ‖τ‖∞ around the boundary ∂B
of B, we have ‖1B − Fτ1B‖22 =

∫
Rd |h(x)|2dx =

∫
S
1dx ≤∫

∂B+B‖τ‖∞ (0)
1dx ≤ 2 vold−1(∂B)‖τ‖∞, which completes

the proof.
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