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PLASMONIC INTERACTION BETWEEN NANOSPHERES

SANGHYEON YU* AND HABIB AMMARI

Abstract. When metallic nanospheres are nearly touching, strong nanofocusing of light can

occur due to highly localized surface plasmons. It has potential applications in the design of
nanophotonic devices, biosensing, and spectroscopy. Due to the singular behavior of electromag-

netic fields in the narrow gap regions, its theoretical investigation is quite challenging in both
analytical and numerical aspects. There are two approaches for studying the interaction between
metallic spheres: transformation optics and the method of image charges. Here we clarify the
connection between them. Based on the connection formula, we reveal the singular nature of
plasmonic interaction between nanospheres in a completely analytical way. We also develop a
hybrid numerical scheme for accurately and efficiently computing the field distribution produced
by an arbitrary number of nearly touching plasmonic spheres.

Confining light at the nanoscale is challenging due to the diffraction limit. Strongly localized
surface plasmon modes in singular metallic structures, such as two nearly toucing surfaces, offer
a promising route to overcome this difficulty.1–6 Recently, Transformation Optics (TO) has been
applied to analyze various structural singularities and then provides novel physical insights for
a broadband nanofocusing of light.7–9 In particular, TO gives exact analytical solutions for 2D
systems. However, there still remain several theoretical challenges for 3D case. Among 3D singular
structures, the system of nearly touching spheres is of fundamental importance. Pendry et al.10

applied a TO inversion mapping to transform two spheres into a concentric shell and then provided
a quasi-analytical solution which is an efficient numerical scheme. However, for a deeper theoret-
ical understanding and practical purposes, a fully analytical description is still needed. Roughly
speaking, the difficulty comes from the inhomogeneous material parameters in the transformed
space.

Beside analytical obstacles, there are also numerical challenges. When the spheres are nearly
touching, it requires a high computational cost to calculate the field enhancement accurately. The
multipole expansion method requires a large number of moments and finite element method (or
boundary element method) requires very fine mesh in the gap. Although the TO approach is
efficient, it cannot be applied when the number of spheres is greater than two. So it is difficult to
numerically investigate the collective resonant behavior such as Fano resonances.11

In this article, we solve all these analytical and numerical challenges related to the singular
nature of the plasmonic interaction between nearly touching spheres. The key of our approach is
to clarify the connection between TO and the method of image charges. The principle of image
method is to find fictitious sources which generate the desired reaction field. We derive a new
explicit formula which can converts the image sources to TO-type solutions. Our second key
ingredient is the image series solution for two dielectric spheres derived by Poladian.12–14 Since
the image series is not convergent when the permittivity is negative, hence it cannot describe
the plasmonic interaction. Our approach is to convert Poladian’s solution into a TO-type series
by using the connection formula, resulting in a fully analytical approximate solution valid for
two plasmonic spheres. Our formula is highly accurate for a broad range of frequencies and gap
distances.

For a cluster with an arbitrary number of spheres, Cheng and Greengard15,16 developed a hybrid
numerical scheme by combining the method of images and the multipole expansion method. Their
scheme is extremely efficient and accurate even if the spheres are nearly touching. However, due to
the non-convergence of the image series, their scheme needs to be modified for plasmonic spheres
clusters. Again, by using the connection between TO and image sources, we develop a modified
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Figure 1. Two spheres and the bispherical coordinates. a, Two identical
spheres, each of radius R and the permittivity ✏, are separated by a distance δ.
The distance between their centers is 2d. The background permittivity is ✏0 = 1.
b, Coordinate level curves for the bispherical coordinate system with ↵ = 1. The
solid lines (resp. the dashed lines) represent ⇠ (resp. ⌘) coordinate curves.

hybrid scheme for an arbitrary configuration of plasmonic spheres clusters. We also show its
extreme efficiency and accuracy by presenting several numerical examples. Our proposed scheme
is a result of the interplay between three analytical approaches: TO, the image method, and the
multipole expansion.

1. Transformation optics and the image method

We consider the two metallic spheres described in Fig. 1a. The permittivity ✏ of each individual
sphere is modeled as ✏ = 1− !2

p/(!(! + iγ)) where ! is the operating frequency, !p is the plasma
frequency and γ is the damping parameter. We fit Palik’s data for silver by adding a few Lorentz
terms.17 We shall assume that the plasmonic spheres are small compared to optical wavelengths
so that the quasi-static approximation can be adopted.

Let us briefly review the TO approach by Pendry et al.10 To transform two spheres into a
concentric shell, Pendry et al. introduced the inversion transformation Φ defined as

r0 = Φ(r) = R2
T (r−R0)/|r−R0|2 +R0

0 (1)

where R0,R
0
0 and RT are given parameters. This inversion mapping induces the inhomogeneous

permittivity ✏0(r0) = R2
T |r0 − R0

0|✏ in the transformed space. Then, by taking advantage of the

symmetry of the shell, they represented the electric potential using |r0−R0
0|(r0)±(n+ 1

2
)− 1

2Y m
n (✓0, φ0)

as basis functions. Here, {Y m
n } are the spherical harmonics.

The above TO description can be rewritten using the bispherical coordinates, (⇠, ✓, '), as

eξ−iη = (z + i⇢+ ↵)/(z + i⇢− ↵) (2)

with ⇢ =
p
x2 + y2 and ' being the azimuthal angle.18,19 By letting r0 = eξ(sin ⌘ cos', sin ⌘ sin', cos ⌘),

R0
0 = (0, 0, 1), R0 = (0, 0, ↵) and R2

T = 2↵, we can see that the bispherical transformation is iden-
tical to the inversion mapping in the TO approach. In Fig. 1b, the geometry of the bispherical
coordinates is described.

Any solution to the Laplace’s equation can be represented as a sum of the following bispherical
harmonics Mm

n,±(r):

Mm
n,±(r) =

p
2
p
cosh ⇠ − cos ⌘ e±(n+ 1

2
)ξY m

n (⌘, ') (3)

We will call Mm
n,± as TO basis since they are the same.
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Figure 2. Image charges for two spheres. Red and green circles represent
image charges placed along the z-axis.

Let us assume that two plasmonic spheres B+ [ B− are placed in a uniform incident field
(0, 0, E0Re{eiωt}). Then the quasi-static electric potential V outside the two spheres can be rep-
resented in the following form:

V (r) = −E0z +

1X

n=0

An

(
M0

n,+(r)−M0
n,−(r)

)
(4)

Here, the coefficients An satisfy some recurrence relations.20 The TO approach also yields a similar
tridiagonal system for An.

10 Unfortunately, both of them cannot be solved analytically. The first
goal in this article is to derive an approximate analytical expression for An by establishing the
explicit connection between the method of images and TO.

Now we discuss the method of images. Since the imaging rule for a pair of cylinders is simple, an
exact image series solution and its properties can be easily derived.21–25 However, for two dielectric
spheres, an exact solution cannot be obtained due to the appearance of a continuous line image
source.26–28 Poladian observed that the continuous source can be well approximated by a point
charge and then derived an approximate but analytic image series solution.12–14 Let us briefly
review Poladian’s solution for two dielectric spheres. Let ⌧ = (✏− 1)/(✏+ 1), s = cosh−1(d/R)
and ↵ = R sinh s. Suppose that two point charges of strength ±1 are located at (0, 0,±z0) 2 B±,
respectively. By Poladian’s imaging rule, they produce an infinite series of image charges of strength
±uk at (0, 0,±zk) for k = 0, 1, 2, ..., where zk and uk are given by

zk = ↵ coth(ks+ s+ t0), uk = ⌧k
sinh(s+ t0)

sinh(ks+ s+ t0)
(5)

Here, the parameter t0 is such that z0 = ↵ coth(s+ t0). See Fig. 2. The potential U(r) generated
by all the above image charges is given by

U(r) =

1X

k=0

uk(G(r− zk)−G(r+ zk)) (6)

where zk = (0, 0, zk) and G(r) = 1/(4⇡|r|).
Let us consider the potential V outside the two spheres when a uniform incident field (0, 0, E0Re{eiωt})

is applied. Let p0 be the induced polarizability when a single sphere is subjected to the uniform in-
cident field, that is, p0 = E0R

32⌧/(3− ⌧). Using the potential U(r), we can derive an approximate
solution for V (r). For |⌧ | ⇡ 1, we have

V (r) ⇡ −E0z + 4⇡p0
@(U(r))

@z0

∣∣∣
z0=d

+QU(r)|z0=d (7)

where Q is a constant chosen so that the right-hand side in equation (7) has no net flux on the
surface of each sphere; see Supplementary Information for the derivation. The accuracy of the
approximate formula, equation (7), improves as |✏| increases and it becomes exact when |✏| = 1.
Moreover, its accuracy is pretty good even if the value of |✏| is moderate.

We now explain the difficulty in applying the the image series solution, equation (7), to the case
of plasmonic spheres. In view of the expressions for uk, equation (5), we can see that equation (7)
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is not convergent when |⌧ | > es. For plasmonic materials such as gold and silver, the real part of
the permittivity ✏ is negative over the optical frequencies and then the corresponding parameter
|⌧ | can attain any value in the interval (es,1). Moreover, it turns out that all the plasmonic
resonant values for ⌧ are contained in the set {⌧ 2 C : |⌧ | > es}. So, equation (7) cannot describe
the plasmonic interaction between the spheres due to the non-convergence.

2. Connection formula from image charges to TO

So far we have reviewed TO approach and the image method and pointed out their difficulties
in solving the two plasmonic spheres problem. Now we clarify the connection between these two
methods. We derive an explicit formula which converts the image charges to TO-type solutions as
shown in the following lemma (see Supplementary Information for its proof).

Lemma 1. (Converting image charges to TO) The potential ukG(r⌥ zk) generated by the image
charge at ±zk can be rewritten using TO basis as follows: for r 2 R

3 \ (B+ [B−),

ukG(r⌥ zk) =
sinh(s+ t0)

4⇡↵

1X

n=0

⇥
⌧e−(2n+1)s

⇤k
e−(2n+1)(s+t0)M0

n,±(r) (8)

This identity plays a key role in our derivation of the approximate analytical solution. As
mentioned previously, the reason why the image charge series, equation (6), does not work for
plasmonic spheres is because the factor (⌧e−s)k may not converge to zero as k ! 1. But the
above connection formula helps us overcome this difficulty. If we sum up all the image charges
in equation (8), we can see that the summation over k can be evaluated analytically using the
following identity:

1X

k=0

⇥
⌧e−(2n+1)s

⇤k
=

e(2n+1)s

e(2n+1)s − ⌧
(9)

Therefore, from equation (6) and Lemma 1, we obtain the following result.

Theorem 2. (Converting image charge series to TO) Let U(r) be defined as in equation (6). Then
it can be rewritten using TO basis as follows: for r 2 R

3 \ (B+ [B−),

U(r) =
sinh(s+ t0)

4⇡↵

1X

n=0

e−(2n+1)t0

e(2n+1)s − ⌧

✓
M0

n,+(r)−M0
n,−(r)

◆
(10)

Clearly, the right-hand side of equation (10) does converge for any |⌧ | > es provided that
⌧ 6= e(2n+1)s.

3. Analytical solution for two plasmonic spheres

Let us turn to the problem of two plasmonic spheres in an uniform incident field (0, 0, E0Re{eiωt}).
To derive the approximate analytical solution valid for two plasmonic spheres, we convert the image
series solution, equation (7), into a TO-type solution by using the connection formula, equation
(10). The result is shown in the following theorem (see Supplementary Information for its proof).
We shall see that our analytical approximation completely captures the singular behavior of the
exact solution.

Theorem 3. If |⌧ | ⇡ 1, the following approximation for the electric potential V (r) holds: for
r 2 R

3 \ (B+ [B−),

V (r) ⇡ −E0z +

1X

n=0

eAn

⇣
M0

n,+(r)−M0
n,−(r)

⌘
(11)

where the coefficient eAn is given by

eAn = E0
2⌧↵

3− ⌧
· 2n+ 1− γ0

e(2n+1)s − ⌧

γ0 =

1X

n=0

2n+ 1

e(2n+1)s − ⌧

/ 1X

n=0

1

e(2n+1)s − ⌧

(12)
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Figure 3. Exact solution vs Analytic approximation. a, Field enhance-
ment plot as a function of frequency ! for various separation distances δ. The solid
lines represent the approximate analytical solution and the dashed lines represent
the exact solution. Two identical silver spheres of radius 30 nm are considered.
b, Same as a but for the absorption cross section.

As expected, the above approximate expression is valid even if |⌧ | > es. Therefore, it can
furnish useful information about the plasmonic interaction between the two spheres. As a first
demonstration, let us investigate the (approximate) resonance condition, that is, the condition for

⌧ at which the coefficients eAn diverge. One might conclude that the resonance condition is given

by ⌧ = e(2n+1)s. However, one can see that eAn has a removable singularity at each ⌧ = e(2n+1)s.
In fact, the (approximate) resonance condition turns out to be

1X

n=0

1

e(2n+1)s − ⌧
= 0 (13)

In other words, the plasmonic resonance does happen when ⌧ is one of zeros of equation (13). It
turns out that the zeros {⌧n}1n=0 lie on the positive real axis and satisfy, for n = 0, 1, 2, ...,

e(2n+1)s < ⌧n < e(2n+3)s (14)

The above estimate give us some insights into the asymptotic behavior of the resonance when two
spheres get closer. As the separation distance δ goes to zero, the parameter s also goes to zero (in
fact, s = O(δ1/2)). Then, in view of equation (14), ⌧n will converge to 1 and the corresponding
permittivity ✏n goes to infinity. This means that a red-shift of the (bright) resonance modes does
occur. Since the approximate analytical formula for V becomes more accurate as |✏| increases, we
can expect that accuracy improves as the separation distance goes to zero. It indicates that the
formula contains singular nature of the field distribution completely. Also, the difference between
⌧n and ⌧n+1 decreases, which means that the spectrum becomes a nearly continuous one.

It is worth mentioning that the resonance condition, equation (13), is also interesting from
a mathematical point of view. It is known that the plasmon resonance occurs when 1/(2⌧) is
close to one of the eigenvalues of the Neumann-Poincaré operator.29–33 So equation (13) gives the
approximate eigenvalues of the Neumann-Poincaré operator in the case of two spheres.

We now derive approximate formulas for the field at the gap and for the absorption cross section.
From Theorem 3, we obtain the following (see Supplementary Information for the details):

E(0, 0, 0) ⇡ E0 − E0
8⌧

3− ⌧

 1X

n=0

(2n+ 1)2

e(2n+1)s − ⌧
(−1)n

−γ0

1X

n=0

2n+ 1

e(2n+1)s − ⌧
(−1)n

] (15)

In the quasi-static approximation, the absorption cross section σa is defined by σa = !Im{p},
where p is the polarizability of the system of two spheres. From Theorem 3, σa is approximated
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Figure 4. Potential distributions for two identical silver spheres of ra-
dius 30 nm separated by δ = 0.25 nm. (a,b), Real and imaginary parts of
the exact solution. The uniform incident field (0, 0,Re{eiωt}) is applied at the
frequency ! = 3.0 eV in z-direction. (c,d), Same as (a,b) but for the analytical
approximate solution.

as follows (see again Supplementary Information):

σa ⇡ !E0
8⌧↵3

3− ⌧

 1X

n=0

(2n+ 1)2

e(2n+1)s − ⌧

−
✓ 1X

n=0

2n+ 1

e(2n+1)s − ⌧

◆2/ 1X

n=0

1

e(2n+1)s − ⌧

] (16)

We compare the above approximate formulas with the exact ones. Fig. 3 represents respectively
the field enhancement and the absorption cross section σa as functions of the frequency ! for various
distances ranging from 0.001 nm to 10 nm. The good accuracy of our approximate formulas over
broad ranges of frequencies and the gap distances is clearly shown. As mentioned previously,
the accuracy improves as the spheres get closer. It is also worth highlighting the red-shift of the
plasmon resonance modes as the separation distance δ goes to zero.3,34,35 In Fig. 4, we compare
the exact and approximate electric potential distributions. They are also in good agreement and
the field concentration in the gap region is observed.

4. Hybrid numerical scheme for many-spheres system

Now we consider a system of an arbitrary number of plasmonic spheres. If all the spheres are
well separated, then the multipole expansion method is efficient and accurate for computing the
field distribution (see Supplementary Information). But, when the spheres are close to each other,
the problem becomes very challenging since the charge densities on each sphere are nearly singular.
To overcome this difficulty, Cheng and Greengard developed a hybrid numerical scheme combining
the multipole expansion and the method of images.15,16 Their algorithm is extremely efficient
and highly accurate even if the distance between the spheres is extremely small. However, due to
non-convergence of the image series, their method cannot be applied to plasmonic spheres. The
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second goal of this work is to show that the hybrid method can be extended to the system of
plasmonic spheres by clarifying the connection between the method of images and TO.

The key ingredient in the hybrid method by Cheng and Greengard is the image source series
produced by a general multipole source. Roughly speaking, Cheng and Greengard modified the
multipole expansion method by replacing a multipole source with the image multipole potential.
Let Ylm(r) be a general multipole source, that is, Ylm(r) = Y m

l (✓,φ)/rl+1. Suppose that a multipole
source Ylm is located at the center of the sphere B+. Then the infinite sequence of the image sources
is produced by Poladian’s imaging rule. Let us denote the resulting potential by U+

lm. Similarly,

let U−
lm be the corresponding potential when the initial position is the center of B−. The detailed

image series representation for U±
lm can be found in Supplementary Information. Again, the series

are not convergent for |⌧ | > es. Therefore, for extending Cheng and Greengard’s method to the
plasmonic case, it is essential to establish an explicit connection between the image multipole
potential U±

lm and TO. We derive the following formula for this connection (see Supplementary
Information for its proof).

Theorem 4. (Converting image multipole series to TO) Assume that the integers l and m are
such that l ≥ 1 and −l  m  l. The potential U±

lm can be rewritten in terms of TO basis as
follows: for r 2 R

3 \ (B+ [B−),

U±
lm(r) =

1X

n=0

gmn D±
lm[λm

n ]

e2(2n+1)s − ⌧2
(e(2n+1)sMm

n,±(r)− ⌧Mm
n,⌥(r))

−δ0m

eQ±
l,1

2

1X

n=0

M0
n,+(r) + (−1)lM0

n,−(r)

e(2n+1)s + (−1)l⌧

⌥δ0m

eQ±
l,2

2

1X

n=0

M0
n,+(r)− (−1)lM0

n,−(r)

e(2n+1)s − (−1)l⌧

(17)

where gmn ,λm
n ,D±

lm and Q±
l are given by

gmn =
1

↵|m|+1

2|m|

p
(2|m|)!

s
(n+ |m|)!
(n− |m|)!

λm
n = [sinh(s+ t0)]

2|m|+1 e−(2n+1)t0

Nlm = (l − |m|)!
s✓

l + |m|
l +m

◆✓
l + |m|
|m|+m

◆

D±
lm[f ] =

(±1)l−|m|

Nlm

@l−|m|

@[z0(t0)]l−|m|
f

∣∣∣∣
z0=d

eQ±
l,i =

1X

n=0

(±1)lg0nD±
l0[λ

0
n]

e(2n+1)s − (−1)l+i⌧

,
1X

n=0

1

e(2n+1)s − (−1)l+i⌧

(18)

Here, δlm is the Kronecker delta.

Clearly, the above TO representation for U±
lm does converge for |⌧ | > es. Based on this, we

develop a modified hybrid numerical scheme for the plasmonic spheres system. For a detailed
description of the proposed scheme, we refer to Supplementary Information.

Next, we present numerical examples to illustrate the hybrid method. We consider two exam-
ples of the three-spheres configuration shown in Figs. 5a and 5d. We show comparison between
multipole expansion method and the hybrid method by plotting the field enhancement at the gap
center A. For the numerical implementation, only finite number of the multipoles Ylm or hybrid
multipoles U±

lm should be used. Let L be the truncation number for the order l. In Figs. 5b
and 5e, the field enhancement is computed using the standard multipole expansion method. The
computations give inaccurate results even if we include a large number of multipole sources with
L = 50. On the contrary, the hybrid method gives pretty accurate results even for small values of
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Figure 5. Multipole expansion method vs Hybrid scheme. a,d, Two
examples of three spheres configuration. b-c, The field enhancement at point A

as a function of frequency for the configuration a using the multipole expansion
method and the hybrid method, respectively. The parameters are given as R = 30
nm, δ = 0.25 nm and β = 80◦. e-f, Same as b-c but for the configuration d.

L such as L = 2 and 5 (Figs. 5c and 5f). Also, 99% accuracy can be achieved only with L = 20.
For each hybrid multipole U±

lm, the TO harmonics are included upto order n = 300 to ensure
convergence and it can be evaluated very efficiently.

To achieve 99.9% accuracy at the first resonant peak, it is required to set L = 150 in the
multipole expansion method and a 68, 400⇥68, 400 linear system needs to be solved. However, the
same accuracy can be achieved only with L = 23 in the hybrid method. The corresponding linear
system’s size is 1, 725 ⇥ 1, 725 and it can be solved 2, 000 times faster than that of the multipole
expansion method. The reason for the extreme efficiency and accuracy is that the singular nature
of the field distribution is already captured analytically in the hybrid multipole U±

lm. In Fig. 6,
we also show the field distribution for the three-spheres examples. The high field concentration in
the narrow gap regions between nanospheres is clearly shown.

5. Discussion

In this article we have fully characterized the singular behavior of nearly touching plasmonic
nanospheres in an analytical way. We have derived an approximate analytical formula for the
electric field for two plasmonic spheres. The formula is highly accurate for wide ranges of complex
permittities (or frequencies) and gap distances. Finally, we have extended Cheng and Greengard’s
hybrid numerical method to the case of plasmonic spheres. The extended scheme gives an extreme
efficiency and accuracy for compting the field generated by an arbitrary number of plasmonic
spheres. We have assumed that the spheres are identical only for simplicity. Our approach can
be directly extended to the case where the spheres are not equisized and have different material
parameters. A system of nanospheres on a plane (or a substrate) can also be considered. Moreover,
by coupling with the fast multipole method, we expect that the proposed scheme will give an
efficient numerical solver for a large scale problem.36,37 The nonlocal effect is an important issue
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Figure 6. Potential distributions for three spheres examples. a-b,
Real and imaginary parts of the potential for the configuration in Fig. 5a
with R = 30 nm, δ = 0.25 nm, and β = 80◦. The uniform incident field
(sin 15◦, 0, cos 15◦)Re{eiωt} is applied at ! = 3.0 eV. c-d, Same as a-b but for the
configuration in Fig. 5d.

when the spheres are extremely closely spaced.38,39 By adopting the shifting boundary method
developed by Luo et al.,38 this effect can be easily incorporated.
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SUPPLEMENTARY INFORMATION FOR ”PLASMONIC

INTERACTION BETWEEN NANOSPHERES”

SANGHYEON YU AND HABIB AMMARI

The Supplementary Information (SI) is organized as follows. In section 1, we
review the basics of the bispherical coordinates. In section 2, we collect various
definitions and some of the properties of spherical harmonics. In section 3, we review
Poladian’s method of images for two dielectric spheres. In section 4, we prove our
main result, which provides the connection between the Transformation Optics (TO)
and the method of images. We also derive an approximate analytic solution for two
plasmonic spheres in a uniform incident field. In section 5, we develop a hybrid
numerical scheme for a system of arbitrary number of nearly touching plasmonic
spheres. In section 6, we prove various useful formulas. For clarity and convenience,
some parts of SI overlap with the main text.

1. Bispherical coordinates (TO inversion mapping)

Here we review the definition and the properties of the bispherical coordinates.
The bispherical coordinate system, (ξ, θ, ϕ), is defined by

eξ−iθ = (z + iρ+ α)/(z + iρ− α) (1)

where ρ =
p

x2 + y2, α is a positive constant and ϕ is the azimuthal angle measured
from x-axis in the xy-plane. The Cartesian coordinates can be written in terms of
the bispherical ones as follows:

x =
α sin η cosϕ

cosh ξ − cos η
, y =

α sin η sinϕ

cosh ξ − cos η
, z =

α sinh ξ

cosh ξ − cos η
(2)

Note that the origin (0, 0, 0) corresponds to ξ = 0, η = π, ϕ = 0. The point at infinity
corresponds to (ξ, η) ! (0, 0). On the other hand, it can be easily shown that the
coordinate surfaces {ξ = c} and {θ = c} for a nonzero c are respectively the zero level
set of

fξ(x, y, z) = (z − α coth c)
2
+ ρ2 − (α/sinh c)

2

fη(x, y, z) = (ρ− αcot c)2 + z2 − (α/sin c)
2 (3)

Note also that the ξ-coordinate surface is the sphere of radius α/ sinh c centered at
(0, 0, α coth c). Therefore, ξ = c (or ξ = −c) represents a sphere contained in the
region z > 0 (resp. z < 0). Moreover, |ξ| < c (resp. |ξ| > c) represents the region
outside (resp. inside) the two spheres.

Suppose that two spheres B+ and B− of the same radius R are centered at (0, 0,+d)
and (0, 0,−d), respectively. Let us parameterize the surfaces of these two spheres by
{ξ = ±s}. To do this, we set s and α by d = α coth s and R = α sinh s in view of
equation (3). Note that d = (α/sinh s) cosh s = R cosh s.

It is well-known that any solution to the Laplace equation can be represented as a
sum of the following bispherical harmonics Mm

n,±(r):

Mm
n,±(r) =

p
2
p
cosh ξ − cos η e±(n+ 1

2
)ξY m

n (η, ϕ) (4)

(S.Y. and H.A.) Department of Mathematics, ETH Zürich, Rämistrasse 101, CH-8092 Zürich,
Switzerland

1
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The scale factors for the bispherical coordinates are

σξ = ση =
α

cosh ξ − cos η
and σϕ =

α sin η

cosh ξ − cos η
(5)

so that the gradient for scalar valued function g can be written in the form

rg =
1

σξ

∂g

∂ξ
eξ +

1

ση

∂g

∂η
eη +

1

σϕ

∂g

∂ϕ
eϕ (6)

where {eξ, eη, eϕ} is the unit basis vectors in the bispherical coordinates. The normal
derivative on the surface {ξ = ±s} of the sphere B± is given by

∂

∂n

∣∣∣
∂B±

= ⌥eξ · r|∂B±
= ⌥cosh s− cos η

α

∂

∂ξ

∣∣∣
ξ=±s

(7)

where n denotes the outward unit normal vector.
If the function g is of the following form:

g(r) =

1X

n=0

nX

m=−n

cmn Mm
n,+(r) + dmn M0

m,−(r) (8)

then z-component of the gradient at the origin is given by

ez · rg(0, 0, 0) =
23/2

α

1X

n=0

(c0n − d0n)(n+ 1/2)(−1)n (9)

where ez = (0, 0, 1).

2. Some definitions and properties

• Let us define the spherical harmonics Y m
l by

Ylm(θ, φ) =

s
(l − |m|)!
(l + |m|)!P

|m|
l (cos θ)eimφ (10)

where Pm
l (x) is the associated Legendre polynomial given by

Pm
l (x) = (−1)m(1− x2)m/2 dm

dxm
Pl(x) (11)

Here, Pl(x) is the Legendre polynomial of degree l.
• The Legendre polynomial Pn(x) has the following generating function:

1p
1− 2xt+ t2

=

1X

n=0

tnPn(x) (12)

• The associated Legendre polynomial Pm
n (x) has the following generating func-

tion:

(−1)m(2m− 1)!!
(1− x2)m/2tm

[1− 2xt+ t2]m+1/2
=

1X

n=0

tnPm
n (x) (13)

• It holds that

Pn
n (x) = (−1)n(2n− 1)!!(1− x2)n/2 (14)

• Let us define the solid harmonics Ylm and Zlm by

Ylm(r) = r−(l+1)Ylm(θ, φ)

Zlm(r) = rl Ylm(θ, φ)
(15)

The function Ylm is also called the multipole source.
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• Let us introduce

wlm =

(

1, m ≥ 0

(−1)|m|, m < 0
(16)

• Let the constant Nlmab be given by

Nlmab = (−1)a+b

s

✓

l + a− b+m
l +m

◆✓

l + a+ b−m
a+ b

◆

(17)

3. Poaldian’s image method for two spheres (review)

Here, we present a review of Poladian’s image method for two dielectric spheres.
First, we explain the image method when only a single sphere is placed in the whole
space. Then we discuss an image series solution for two spheres in a uniform incident
field. Finally, we consider the generalized image method for the case of multipole
sources.

3.1. A single sphere. Suppose that a single sphere of radius R is centered at (0, 0, 0).
Let ✏ be the permittivity of the sphere. We also assume the background permittivity
is ✏0 = 1. Let ⌧ = (✏− 1)/(✏+ 1). When we locate a point charge Q at (0, 0, c) with
c > R, then it can be shown that the reaction potential is identical to the potential
generated by the following two image sources:1–3 (1) a point charge Q0 = −⌧(R/c)Q
at (0, 0, R2/c) and (2) a continuous line source along the line segment from (0, 0, 0)
to (0, 0, R2/c) with a density function Λ given by

Λ(t) =
⌧Q

R(✏+ 1)

⇣R2

ct

⌘
1
2
(τ+1)

, t ∈ (0, R2/c) (18)

Poladian observed that the continuous line source can be well approximated by a
point charge −Q0 at the center of the sphere (0, 0, 0) provided that |✏| is large. In
fact, this approximation becomes exact when |✏| = ∞.

Therefore, Poladian’s imaging rule for a single sphere can be summarized as follows:
if a sphere of radius R is centered at (0, 0, 0) and a point charge Q is located at (0, 0, c),
then the following two image charges are produced: (1) a point chargeQ0 = −⌧(R/c)Q
at (0, 0, R2/c) (2) a point charge −Q0 at the center of the sphere (0, 0, 0).1–3 Let us
call the latter image charge the neutralizing charge.

3.2. Two spheres in a uniform field. Let us now consider the two spheres B+

and B−. Suppose that we locate a point charge of the magnitude ±1 at the point
(0, 0,±z0) in the sphere B±, respectively. Due to the interaction between two spheres,
an infinite sequence of image charges is generated along z-axis by Poladian’s imaging
rule. But it is difficult to keep track of all the image charges at each step of the
recursive imaging process. Poladian found that it is much simpler to initially neglect
the neutralizing charges and later introduce an additional image sources.

By ignoring the neutralizing charge in Poladian’s imaging rule, we obtain an infinite
sequence of the image charges as follows: for m = 0, 1, 2, ..., m-th image charge ±um

is located at the point ±zm = (0, 0,±zm) in the sphere B±, respectively, where zm
and um satisfy the following recursive relations:

d− zk+1 =
R2

d+ zk
, uk+1 = ⌧

R

d+ zk
uk (19)

These recursive relations can be solved explicitly. To state the solutions for uk and
zk, we introduce a parameter t0 which satisfies

z0 = ↵ coth(s+ t0) (20)
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Note that if the initial position is equal to the center of each sphere (that is, z0 =
d = R cosh s), then it holds that t0 = 0. Using this representation for z0 and the
hyper-trigonometric identities, one can see that the solutions for zk and uk are given
as follows:

zk = α coth(ks+ s+ t0)

uk = τ
k sinh(s+ t0)

sinh(ks+ s+ t0)

(21)

Let G(r) = 1/(4π|r|) be the electric potential generated by a unit point charge. Then
the potential U(r) generated by all the above image charges is given by

U(r) =

1
X

k=0

uk(G(r− zk)−G(r+ zk)) (22)

where zk = (0, 0, zk).
Let us now consider the two spheres B+ ∪ B− placed in a uniform incident field.

We assume the uniform field (0, 0, E0)Re{e
iωt} is applied where ω is the operating

frequency. Let p0 be the induced polarizability when a single sphere is subjected to the
uniform incident field, that is, p0 = E0R

32τ/(3− τ). We also let D(r) = ez · r̂/(|r|
2)

be the potential generated by a point dipole source with a unit moment ez, where
r̂ = r/|r|. The uniform incident field is first imaged in each sphere, inducing an image
point dipole source with the polarizability p0 at the center of each sphere. Then
these initial point dipoles produce an infinite sequence of image sources. The point
dipole p0 can be considered as the limit of two initial charges ±4πp0/2h at the points
z0 = (0, 0, d± h) as h → 0. It is equivalent to taking derivative 4πp0∂/∂z0 at z0 = d.
So we get the following expression for the image potential generated by the point
dipole p0:

1–3

V1(r) := 4πp0
∂(U(r))

∂z0

∣

∣

∣

z0=d
(23)

Using the following identity:

∂

∂z0

∣

∣

∣

z0=d
= −

sinh2 s

α

∂

∂t0

∣

∣

∣

t0=0
(24)

we can represent V1 more explicitly in the form

V1(r) =

1
X

m=0

pmD(r− rm)− qmG(r− rm)

+

1
X

m=0

pmD(r+ rm) + qmG(r+ rm)

(25)

where rm, pm and qm are given by

rm = zm|t0=0 = (0, 0,α coth(m+ 1)s)

pm = τ
mp0

⇣ sinh s

sinh(m+ 1)s

⌘3

, qm = τ
m p0
R

sinh s sinhms

sinh2(m+ 1)s

(26)

Note that ±r0 is the center of the sphere B±, respectively.
As pointed out by Poladian,1 the potential V1 is unphysical because the total

charge on each sphere is non-zero. It originates from the fact that we have ignored
the neutralizing image charges. Now we explain Poladian’s strategy for neutralizing
the total charge.1 We introduce an additional potential by locating a point charge ±Q
at the center of the sphere B±, respectively. Then the corresponding image potential
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is given by
V2(r) := QU(r)|z0=d

= Q

1
X

m=0

u0
m(G(r− rm)−G(r+ rm))

(27)

where u0
k is defined by

u0
k = uk|t0=0 = τk

sinh s

sinh(k + 1)s
(28)

Now we choose the constant Q so that the potential V1 + V2 has no net flux on each
sphere. Then Q becomes

Q =
1
X

j=0

qj

.

1
X

j=0

u0
m (29)

Finally, we get the approximation for the potential V (r) by superposing the uniform
incident field and the aformentioned potentials:

V (r) ⇡ −E0z + V1(r) + V2(r) (30)

3.3. Image method for general multipole sources. We now consider the case
when an initial image source is a multipole source Ylm. Note that, since the point
charge potential G and the dipole potential D satisfy G(r) = 1

4πY00 and D(r) =
Y10(r), the image potentials, equations (22) and (23), can be seen as the special cases
of potentials generated by the image multipole sources.

Before considering a general multipole source Ylm, let us first consider a sectoral
multipole Y|m|,m. If an initial sectoral multipole Y|m|,m is located at (0, 0, z0), the

image sequence is produced by Poladian’s rule1–3 as follows: u
(2k)
m Y|m|,m at (0, 0, z2k)

and −u
(2k+1)
m Y|m|,m at (0, 0,−z2k+1) for k = 0, 1, 2, .... Similarly, if an initial lo-

cation is (0, 0,−z0), then the following image sequence is produced: u
(2k)
m Y|m|,m at

(0, 0,−z2k) and −u
(2k+1)
m Y|m|,m at (0, 0,+z2k+1) for k = 0, 1, 2, .... Here, u

(k)
m satisfies

a recursive relation

u(k+1)
m = τ

⇣ R

d+ zk

⌘2|m|+1

u(k)
m , k = 0, 1, 2, ... (31)

It can be explicitly solved as follows:

u(k)
m = τk

⇣ sinh(s+ t0)

sinh(ks+ s+ t0)

⌘2|m|+1

(32)

Let U±
m be the potential generated by the above image sequence when the initial

sectoral multipole is located at (0, 0,±z0), respectively. Then the potential U±
m is

given by

U±
m(r) =

1
X

k=0

u(2k)
m Y|m|,m(r⌥ z2k)− u(2k+1)

m Y|m|,m(r± z2k+1) (33)

Let us turn to the case of a general multipole source Ylm(r). Let U±
lm be the po-

tential due to the image sequence produced by an initial multipole source Ylm located
at the center of the sphere B±, respectively. It was shown that a general multipole
source Ylm can be represented as a derivative of a sectoral multipole Y|m|,m:1–3

Ylm(r⌥ r0) = D±
lm

⇥

Y|m|,m(r⌥ z0)
⇤

(34)

where the differential operator D±
lm is defined by

D±
lm[f ] =

(±1)l−|m|

(l − |m|)!Nl,m,|m|,m

∂l−|m|

∂z
l−|m|
0

f

∣

∣

∣

∣

z0=d

(35)
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Therefore, the image potential U±
lm is also represented as a derivative of U±

m as follows:

U±
lm(r) = D±

lm

⇥

U±
m(r)

⇤

(36)

Actually, this is not the end. We need to be careful when we consider the case
when m = 0. In this case, the total charges on each sphere B± may be non-zero.
Since this is unphysical, we have to neutralize them again. We modify the potential
U+
lm by adding an image potential produced by the following initial charges: a point

charge −Q+
l,1 (and −Q+

l,2) at the center of the sphere B+ (and B−), respectively. We

also modify the potential U−
lm in a similar way with the intial charges −Q−

l,i, i = 1, 2.

Here, the constants Q±
l,i are chosen so that the total flux on each surface ∂B± is zero.

Specifically, the potential U±
l,m is modified as follows:

U±
lm(r) = D±

lm

⇥

U±
m(r)

⇤

− δ0mQ±
l,1U

+
0 (r)|z0=d − δ0mQ±

l,2U
−
0 (r)|z0=d (37)

where δlm is the Kronecker delta.

4. Proofs: Connection between TO and the image method &
Analytical solution for two plasmonic spheres

Here, we present the proofs of our main results. First, we prove an explicit formula
which connects the image method to TO. Then, using the connection formula, we
derive an approximate analytic solution for two plasmonic spheres. We also discuss
analytic expressions for the electric field at the gap center and the absorption cross
section. Finally, we generalize the connection formula to the case of multipole sources.

4.1. Connection between image charges and TO. We prove the following con-
nection formula which converts an image charge to a TO-type solution.

Lemma 1. (Connection formula for image charges) The potential ukG(r⌥ zk) gen-
erated by the image charge can be rewritten using TO basis as follows: for r 2
R

3 \ (B+ [B−),

ukG(r⌥ zk) =
sinh(s+ t0)

4πα

1
X

n=0

⇥

τe−(2n+1)s
⇤k

⇥e−(2n+1)(s+t0)M0
n,±(r)

(38)

Proof. We have from equation (1) that

z + iρ =
2α

eξ−iη − 1
+ α (39)

We also have the following identity:

coth t =
sinh 2t

cosh 2t− 1
=

2

e2t − 1
+ 1 (40)

Hence, by letting z(t) = (0, 0,α coth t), it follows that

1

|r− z(t)|
=

∣

∣z + iρ− α coth t
∣

∣

−1

=
1

2α

∣

∣

∣

∣

1

eξ−iη − 1
−

1

e2t − 1

∣

∣

∣

∣

−1

=
1

2α

∣

∣

∣

∣

(e2t − 1)(eξ−iθ − 1)

e2t(eξ−2t−iθ − 1)

∣

∣

∣

∣

=
sinh |t|

α

p
cosh ξ − cos η

p

cosh(ξ − 2t)− cos η

(41)
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From equation (12), it is easy to check that we have

1
p

cosh(ξ − 2t)− cos η
=

p
2

1X

n=0

e−(n+
1
2 )|ξ−2t|Pn(cos θ) (42)

Then, from equation (41), we get

α

sinh |t|
1

|r⌥ z(t)| =
p
2
p

cosh ξ − cos θ

⇥
1X

n=0

e−(2n+1)te±(n+ 1
2
)ξPn(cos θ)

(43)

Therefore, from the fact that zk = z(ks + s + t0) and the definitions of uk, G and
Mm

n,±, the conclusion follows. ⇤

As explained in the main text, by applying the above lemma to equation (22) and
using the identity

1X

k=0

⇥

τe−(2n+1)s
⇤k

=
e(2n+1)s

e(2n+1)s − τ
(44)

we obtain the following connection formula which converts the image charge series U
into a TO-type solution.

Theorem 2. (Converting the image charge series to TO) Let U(r) be defined as
in equation (22). Then U(r) can be rewritten using TO basis as follows: for r 2
R

3 \ (B+ [B−),

U(r) =
sinh(s+ t0)

4πα

1X

n=0

e−(2n+1)t0

e(2n+1)s − τ

✓
M0

n,+(r)−M0
n,−(r)

◆
(45)

4.2. Analytical solution for two plasmonic spheres. We consider the two plas-
monic spheres in a uniform incident field (0, 0, E0Re{eiωt}). We derive an approximate
analytical solution for the quasi-static electic potential V in the following theorem.

Theorem 3. If |τ | ⇡ 1, the following approximation for the electric potential V (r)
holds: for r 2 R

3 \ (B+ [B−),

V (r) ⇡ −E0z +

1X

n=0

eAn

(
M0

n,+(r)−M0
n,−(r)

)
(46)

where the coefficient eAn is given by

eAn = E0
2τα

3− τ
⇥ 2n+ 1− γ0

e(2n+1)s − τ

γ0 =

1X

n=0

2n+ 1

e(2n+1)s − τ

/ 1X

n=0

1

e(2n+1)s − τ

(47)

Proof. We shall prove the result by applying our connection formula to Poladian’s
image series solution. From Theorem 2 and the following identity:

∂

∂z0

∣∣∣
z0=d

= − sinh2 s

α

∂

∂t0

∣∣∣
t0=0

(48)

we get
V1(r) = 4πp0∂z0

∣∣
z0=d

U(r)

= E0
2τα

3− τ

1X

n=0

2n+ 1− coth s

e(2n+1)s − τ
(M0

n,+(r)−M0
n,−(r))

(49)
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Similarly, we have

V2(r) = QU(r)|z0=d = Q

1
X

n=0

M0
n,+(r)−M0

n,−(r)

e(2n+1)s − τ
(50)

Now let us consider the constant Q. The expression for Q in equation (29) does
not converge when |τ | > es. So, here we derive the constant Q in a slightly different
way. We impose the following condition:

Z

∂B+

∂V1

∂n
dS +

Z

∂B+

∂V2

∂n
dS = 0 (51)

Then, by using Theorem 9, we obtain

E0
2τα

3− τ

1X

n=0

2n+ 1− coth s

e(2n+1)s − τ
+Q

1X

n=0

1

e(2n+1)s − τ
= 0 (52)

Hence, we see that

Q = −γ0 + E0
2τα

3− τ
coth s (53)

Therefore, from equations (30), (49) and (50), the conclusion follows. ⇤

4.3. Electric field at the origin and the polarizability. From equation (9), we
can see that the magnitude of the electric field at the gap is given by

E = −(rV · ez)(0, 0, 0) = E0 −
23/2

α

1X

n=0

An(2n+ 1)(−1)n (54)

As mentioned in the main text, the absorption cross section σa is given by σa =
ωIm{p} where p is the polarizability. It was shown that the polarizability p is given
by4

p =
p
2α2

1X

n=0

(2n+ 1)An (55)

Therefore, by replacing An by eAn, we can derive approximate analytical expressions
for E and σa.

4.4. Connection formula for general multipole sources. Here we generalize our
connection formula to the case of general multipole sources Ylm(r). As mentioned in
the main text, it is essentially used to develop a hybrid numerical scheme for plasmonic
spheres clusters.

We first consider the sectoral multipole Y|m|,m. We can represent the potential

u
(k)
m Y|m|,m(r⌥ zk) using TO basis as follows.

Lemma 4. (Converting image sectoral multipole to TO) For r 2 R
3 \ (B+ [B−), we

have

u(k)
m Y|m|,m(r⌥ zk) =

1X

n=|m|

gmn λm
n

⇥
τe−(2n+1)s

⇤k

⇥e−(2n+1)sMm
n,±(r)

(56)

where λm
n and gmn are given by

λm
n = [sinh(s+ t0)]

2|m|+1e−(2n+1)t0

gmn =
1

α|m|+1

2|m|

p
(2|m|)!

s
(n+ |m|)!
(n− |m|)!

(57)
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Proof. For simplicity, we consider only u
(k)
m Y|m|,m(r− zk). From equation (14) and

the fact that ρ = |r− zk| sin θk, we have

Y|m|,m(r− zk) =
1

p

(2|m|)!
P

|m|
|m| (cos θk)e

imφk

|r− zk||m|+1

= ωm
[sin θk]

|m|

|r− zk||m|+1
eimφk

= ωm
ρ|m|

|r− zk|2|m|+1
eimφk

(58)

where the constant ωm is defined by

ωm =
(−1)|m|(2|m| − 1)!!

p

(2|m|)!
(59)

From equation (41) and the fact that zk = z(ks+ s+ t0), we see that

1

|r⌥ zk|
=

sin(ks+ s+ t0)
p
cosh ξ − cos η

α
p

cosh(ξ ⌥ 2(ks+ s+ t0))− cos η
(60)

We also have from equation (2) that ρ = α sin η/(cosh ξ − cos η). By substituting
these expressions for 1/|r− zk| and ρ into equation (58), we get

u(k)
m Y|m|,m(r− zk) = τk

sinh2|m|+1(s+ t0)
p

(2|m|)!α|m|+1

p

cosh ξ − cos η

⇥ 2|m|+1/2(−1)|m|(2|m| − 1)!![sin η]|m|

[2(cosh(ξ − 2(ks+ s+ t0))− cos η)]|m|+1/2

(61)

By letting t = e−|ζ| and x = cos η in equation (13), it is easy to check that

(−1)m(2m− 1)!![sin η]m

[2(cosh ζ − cos η)]m+1/2
=

1X

n=m

e−(n+ 1
2
)|ζ|Pm

n (cos η) (62)

By applying this identity to equation (61), we immediately obtain that

u(k)
m Y|m|,m(r− zk) = τk2|m| sinh

2|m|+1(s+ t0)
p

(2|m|)!α|m|+1

⇥
p
2
p

cosh ξ − cos η

⇥
1X

n=|m|

e−(2n+1)(ks+s+t0)e(n+
1
2
)ξP |m|

n (cos η)

(63)

for |ξ| < s. Then, from the definition of Mm
n,+, the conclusion follows. ⇤
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Now we prove the generalized connection formula which converts the image multi-
pole series U±

lm to a TO-type solution.

Theorem 5. (Converting image multipole series to TO) Assume l and m are integers
such that l ≥ 1 and −l  m  l. Then the potential U±

lm can be rewritten in terms of
TO basis as follows: for r 2 R

3 \ (B+ [B−),

U±
lm(r) =

1X

n=|m|

gmn D±
lm[λm

n ]

e2(2n+1)s − τ2
(e(2n+1)sMm

n,±(r)− τMm
n,⌥(r))

−δ0m

eQ±
l,1

2

1X

n=0

M0
n,+(r) + (−1)lM0

n,−(r)

e(2n+1)s + (−1)lτ

⌥δ0m

eQ±
l,2

2

1X

n=0

M0
n,+(r)− (−1)lM0

n,−(r)

e(2n+1)s − (−1)lτ

(64)

where the constants eQ±
l,i are given by

eQ±
l,i =

1X

n=0

(±1)lg0nD±
l0[λ

0
n]

e(2n+1)s − (−1)l+iτ

,
1X

n=0

1

e(2n+1)s − (−1)l+iτ
(65)

Proof. By applying Lemma 4 to equation (33) and then using the following identity:

1X

k=0

⇥
τe−(2n+1)s

⇤2k
=

e2(2n+1)s

e2(2n+1)s − τ2
(66)

we obtain

U±
m(r) =

1X

n=|m|

gmn λm
n

e(2n+1)sMm
n,±(r)− τMm

n,⌥(r)

e2(2n+1)s − τ2
(67)

Then, by using equation (37), we get

U±
l,m(r) =

1X

n=|m|

gmn D±
lm[λm

n ]

e2(2n+1)s − τ2
(e(2n+1)sMm

n,±(r)− τMm
n,⌥(r))

−δ0mQ±
l,1

sinh s

α

1X

n=0

e(2n+1)sM0
n,+(r)− τM0

n,−(r)

e2(2n+1)s − τ2

−δ0mQ±
l,2

sinh s

α

1X

n=0

(−τ)M0
n,+(r) + e(2n+1)sM0

n,−(r)

e2(2n+1)s − τ2

(68)

Now we consider the following flux conditions:

Z

∂B+

∂(U±
l,m)

∂n
dS = 0,

Z

∂B−

∂(U±
l,m)

∂n
dS = 0 (69)

Then, by applying Theorem 9 to the above conditions with equation (68), we obtain

Q±
l,1

sinh s

α
=

eQ±
l,1 ± eQ±

l,2

2
, Q±

l,2

sinh s

α
= (−1)l

eQ±
l,1 ⌥

eQ±
l,2

2
(70)

By rearranging the terms, the conclusion follows. ⇤

It is worth to remark that we can evaluate the derivatives D±
lm[λm

n ] analytically
by using the Faá di Bruno’s formula (we omit the details). Moreover, its numerical
computation can be done efficiently using a recursive relation for Bell polynomials.
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5. Hybrid numerical scheme for many plasmonic spheres

As mentioned in the main text, the numerical computation of the field generated
by a system of spheres becomes quite challenging when the spheres are nearly touch-
ing. To overcome the difficulty, Cheng and Greengard developed a hybrid numerical
scheme combining the multipole expansion and the method of images.5,6 But their
scheme cannot be used when the spheres are plasmonic due to the non-convergence
of the image series. Here, we present a brief reviw of the multipole expansion method
and the hybrid numerical scheme developed by Cheng and Greengard5,6 and then
explain their difficulties. Finally, we show that the Cheng and Greengard’s hybrid
method can be extended to the case of plasmonic spheres by using the connection
between TO and the image method.

5.1. Multipole expansion. Suppose that the spheres Bj , j = 1, 2, ..., J of radius R
are located disjointly in R

3 and let cj be the center of the sphere Bj . We also suppose
that all the spheres have the same permittivity ✏ and the background permittivity is
given as ✏0 = 1. The classical way to solve the many-spheres problem is Rayleigh’s
multipole expansion method. Here, we briefly review this method. Recall that the
solid harmonics Ylm and Zlm are defined by

Ylm(r) =
Y m
l (θ,φ)

rl+1
, Zlm(r) = rlY m

l (✓,φ) (71)

Any solution to Laplace’s equation can be represented as a sum of Ylm and Zlm.
The potential V (r) can be represented as the following multipole expansion: for r

belonging to the region outside the spheres, we have

V (r) = −E0z +

JX

j=1

1X

l=1

lX

m=−l

Cj,lmYlm(r− cj) (72)

where the coefficients Cj,lm are unknown constants. For the inner region of Bj , we
can easily extend the above representation by imposing the continuity of the potential
on the surface @Bj . For r 2 Bj , we have

V (r) =

1X

l=0

lX

m=−l

Cj,lm
Zlm(r− cj)

R2l+1
(73)

Then, by using the addition formula for solid harmonics (see equation (85)) and the
flux boundary conditions, rV · n|ext = ✏rV · n|int on the surface @Bj , the infinite
dimensional linear system for unknowns Cj,lm can be derived. If all the spheres are
well-separated, good accuracy can be achieved by truncating the linear system by a
small order. But, if some of the spheres are close to touching, the charge densities
on their surfaces become nearly singular. So more harmonics are required to describe
them accurately.

5.2. Cheng and Greengard’s hybrid method. To illustrate th hybrid method by
Cheng and Greengard,5,6 let us consider an example of three spheres (that is, J = 3).
Suppose that the spheres B1 and B2 are closely located but well-separated from
B3. Then the charge density on @B3 can be well represented by a low-order spherical
harmonics expansion. But the charge densities both on @B1 and @B2 may be singular,
so it is better to use the image method to describe their associated potentials. In view
of this observation, Cheng and Greengard introduced the modified representation as
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follows: for r belongs to the region outside the spheres,

V (r) = −E0z +

2X

j=1

1X

l=1

lX

m=−l

C12,lmU12,lm(r)

+

1X

l=1

lX

m=−l

C3,lmYlm(r− c3)

(74)

where U12,lm is the image series solution which includes all the image sources induced
from the multipoles Cj,lmYlm(r−cj), j = 1, 2, by the interaction between two spheres
B1 and B2.

5,6 This representation for V (r) can be directly generalized to a system
of an arbitrary number of spheres. The resulting scheme is extremely efficient and
accurate even if the spheres are nearly touching. This is because the close-to-touching
interaction is already captured in the image multipole series. However, the image
method cannot be applied for plasmonic spheres due to the non-convergence. So,
our strategy for extending the hybrid method to the case of plasmonic spheres is to
convert the image multipole series to a TO-type solution.

5.3. Outline of the modified algorithm. Using the connection between TO and
the image multipole potential U±

lm (Theorem 5), we develop the modified hybrid
numerical scheme for a system of plasmonic spheres. Here, we present the outline of
the algorithm of our proposed scheme.

1 Write down the potential V (r) in the multipole expansion form as in equation
(72).

2 If a pair of spheres, say Bj and Bk, are closely located (if the separation
distance is smaller than a given number, for example, the radius R), then we
rotate the xyz-axis for both r − cj and r − ck so that the +z-axis is in the
direction of the axis of the pair of spheres, that is, cj − ck.

3 We also transform the multipole expansion for Bj into the rotated frame using
equation (86). Let us denote the coefficients in the rotated frame by C 0

j,lm.

4 By using the connection formula for general multipoles (Theorem 5), we mod-
ify the multipole expansion in the rotated frame by replacing C 0

j,lmYlm(r) with

the hybrid TO multipole C 0

j,lmU+
lm(r).

5 Do the same as in step 4 for Bk with U−

lm(r) instead of U+
lm(r).

6 We convert the TO-type expansion for Bj and Bk into the form of multipole
expansion using Theorem 8.

7 Rotate the axis of the coordinate system and transform the multipole expan-
sions into the original frame.

8 Perform steps 2-7 for all the pairs of closely spaced spheres.
9 We extend the resulting multipole expansion to the inner regions of Bj for
j = 1, 2, ..., J using Theorem 7.

10 By applying the addition formula, equation (85), for Ylm and Zlm with the
flux boundary conditions, we construct the infinite dimensional linear system
for unknowns Cj,lm.

11 We solve the linear system after a truncation.

6. Useful formulas

Here we collect many useful formulas and give their proofs.

6.1. Potential inside two spheres. The following theorems are useful for finding
a potential inside the two spheres when we have an explicit representation of the
potential in the outside region.
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Theorem 6. Suppose that V satisfies the Laplace equation inside and outside the
two spheres B+ and B−. We also assume that the potential V is continuous on each
surface ∂B±. We also assume that, outside the spheres, the potential V is given by

V (r) =

1X

n=0

nX

m=−n

amn,+M
m
n,+(r) + amn,−M

m
n,−(r) (75)

for r 2 R
3 \ (B+ ∪ B−) and some coefficients amn,±. Then, inside the spheres, the

potential V (r) for r 2 B± is given by

V (r) =

1X

n=0

nX

m=−n

(amn,±e
(2n+1)s + amn,⌥)M

m
n,⌥(r) (76)

Proof. It is obvious that the series on the right-hand side satisfies the Laplace
equation. Since ∂B± = {ξ = ±s}, we have the following identity:

Mm
n,+(r)|∂B±

=
p
2
p

cosh ξ − cos ηe±(n+1/2)sY m
n (η,ϕ)

= e±(2n+1)sMm
n,−(r)|∂B±

(77)

Then one can easily check that the potential V is continuous on each surface ∂B± =
{ξ = ±s}. Therefore, the proof is completed. ⇤

Theorem 7. Suppose that V satisfies the Laplace equation inside and outside the
two spheres B+ and B−. We also assume that the potential V is continuous on each
surface ∂B±. Furthermore, we assume that, outside the spheres, the potential V is
given by

V (r) =

1
X

l=0

l
X

m=−l

f+
lmYlm(r− r0) + f−

lmYlm(r+ r0) (78)

for r 2 R
3 \ (B+ ∪ B−) and some coefficients c±l,m. Then, inside the spheres, the

potential V (r) for r 2 B± is given by

V (r) =

1
X

l=0

l
X

m=−l

f+
lm

R2l+1
Zlm(r− r0) +

f−
lm

R2l+1
Zlm(r+ r0) (79)

Proof. The conclusion immediately follows from the definition of the solid harmonics
Ylm and Zlm. ⇤

6.2. From TO to multipole expansion. When we apply the hybrid numerical
scheme, we need to convert a TO solution into a multipole expansion.

Let us consider the following general potential W± in the form of TO solution:

W±(r) =

1
X

n=0

n
X

m=−n

amn,±M
m
n,±(r) (80)

for some coefficients amn,±. We want to convert the potential W± into a multipole
expansion form as follows:

W±(r) =

8

>

>

>

>

<

>

>

>

>

:

1
X

l=0

n
X

m=−n

c±lmYl,m(r⌥ r0), r 2 R
3 \B±

1
X

l=0

n
X

m=−n

d±lmZl,m(r⌥ r0), r 2 B±

(81)

where coefficients c±lm and d±lm are to be determined.

We derive explicit formulas for c±l,m and d±l,m in the following theorem. Its proof is
given at the end of this section.
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Theorem 8. (Conversion of TO solution into multipole expansion) The multipole
coefficients c±l,m are represented in terms of TO coefficients amn,± as follows:

8
>>>><
>>>>:

c±lm = 2αR2l+1
1X

n=|m|

amn,±g
m
n D±

lm[λm
n ]

d±lm = 2α

1X

n=|m|

amn,⌥e
−(2n+1)sgmn D±

lm[λm
n ]

(82)

In view of equation (81), the total flux on the surface ∂B± is given as

Z

∂B±

∂W±

∂n
dS = 4πc±0,0,

Z

∂B±

∂W⌥

∂n
dS = 0 (83)

So, we have the following flux formula from the above theorem.

Theorem 9. (Total flux formula) Let W± be the potential given as equation (80).
Then the total flux on the surface ∂B± is

Z

∂B±

∂W±

∂n
dS = 8πα

1X

n=0

a0n,±,

Z

∂B±

∂W⌥

∂n
dS = 0 (84)

6.3. Coordinate transformation for multipole expansion: translation and

rotation. To apply the multipole expansion method, we need to represent a multipole
source in a translated or rotated coordinate. It was shown that the following identities
hold.1

Translation:
We have

Ylm(r− r0) =

1X

a=0

aX

b=−a

wmwbwm−b

×Nlmab(−1)l+aZab(r<)Yl+a,m−b(r>)

(85)

where r< is the smaller (in magnitude) of r and r0 and r> is the larger.

Rotation:
Suppose that the coordinate axes are rotated through Euler angle α,β, γ. The point

(θ,φ) becomes (eθ, eφ). The following result holds:

Ylm(θ,φ) =

lX

M=−l

wmwMD
(l)
mM (α,β, γ)YlM (eθ, eφ) (86)

where

D
(l)
mM (α,β, γ) = e−iα+MγdlmM (β) (87)

and

dlmM (β) = cos(β/2)2l+m−M sin(β/2)M−m

×
X

t

s✓
l +m

t

◆✓
l −M

t

◆✓
l +M

l +m− t

◆✓
l −m

l −M − t

◆

×(−1)t tan(β/2)2t

(88)

The summation in t is carried over max(0,m−M) ≤ t ≤ min(l +m, l −M).
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6.4. Proof of Theorem 8. Let σ± be the charge density on the surface ∂B±, respec-
tively. Now let us decompose σ± using the spherical harmonics Y m

l (θ±,φ±), where
(r±, θ,±,φ±) are the spherical coordinates for r ⌥ r0, respectively. Let us write σ±

as

σ± =

1X

l=0

lX

m=−l

σ±
lmYlm(θ±,φ±) (89)

Here, σ±
lm can be determined using the orthogonality of the spherical harmonics as

follows:

σ±
lm =

2l + 1

4⇡

1

R2

Z

∂B±

σ±Ylm(θ±,φ±) dS (90)

To calculate the right-hand side of (90), we need to express σ± and Ylm(θ±,φ±) in
terms of TO harmonics Y m

n (⌘,').
First, let us consider σ±. Let ’ext’(or ’int’) denote the limit from the outside (or

inside) the sphere, respectively. It is well-known that the electric field E = −rW
satisfies the following boundary condition on ∂B±:

E · n|ext −E · n|int = σ±, on ∂B± (91)

where n is the outward unit normal vector to ∂B±. To use the above condition, we
need an explicit expression for W± in the region inside the spheres B±, respectively.
From Theorem 6, we have, for r 2 B±,

W±(r) =

1X

n=0

nX

m=−n

amn,±e
(2n+1)sMm

n,⌥(r) (92)

respectively. So, by using equation (7), we obtain

σ± = −
∂W

∂n

∣

∣

∣

ext

∂B+

+
∂W

∂n

∣

∣

∣

int

∂B+

= (2α)1/2[J(η)]−3/2

⇥
X

n,m

amn,±(2n+ 1)e(n+
1
2
)sY m

n (η,ϕ)

(93)

where J(η) is defined by

J(η) =
α

cosh s− cos η
(94)

Next, let us consider Y m
n (θ±,φ±). From equation (34) and Lemma 4, we have for

r 2 ∂B+,

Y m
l (θ±,ϕ±) = Rl+1Yl,m(r⌥ r0)

= Rl+1D±
lm[Y|m|,m(r⌥ z0)]

= Rl+1(2α)1/2[J(η)]−1/2

⇥

1
X

n=0

gmn D±
lm[λm

n ]e−(n+1/2)sY m
n (η,ϕ)

(95)

Now, we are ready to compute σ+
lm. By substituting equations (93) and (95) into

equation (90), we obtain

σ±
lm =

2l + 1

4⇡

1

R2

Z 2π

0

Z

π

0

σ±Ylm[J(η)]2 sin η dη dϕ

= (2l + 1)2αRl−1
1
X

n=|m|

amn,±g
m
n D±

lm[λm
n ]

(96)
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It is easy to check that the potential generated by the charge densities σ± =P
σ±
lmYlm is given as follows: for r 2 R

3 \ (B+ ∪B−),

W±(r) =
X

l,m

σ±
lm

Rl+2

2l + 1
Ylm(r⌥ r0) (97)

By comparing the above expression and equation (81), we immediately arrive at

c±lm = σ±
lm

Rl+2

2l + 1
(98)

Then, the formula for c±lm follows from equation (96). For the case of d±lm, it can be
proved in a similar way. ⇤
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