
Convergence rate analysis of MCMC-FEM

for Bayesian inversion of log-normal

diffusion problems

V.H. Hoang and Ch. Schwab

Research Report No. 2016-19
March 2016

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

____________________________________________________________________________________________________



CONVERGENCE RATE ANALYSIS OF MCMC-FEM FOR

BAYESIAN INVERSION OF LOG-NORMAL DIFFUSION

PROBLEMS

13 MARCH 2016

VIET HA HOANG1 AND CHRISTOPH SCHWAB2

Abstract. Markov Chain Monte Carlo (MCMC) methods for the numerical
solution of Bayesian Inverse Problems for linear second order, divergence form
elliptic partial differential equations (PDEs) with lognormal random field coef-
ficients are analyzed. The analysis of the MCMC Finite Element discretization
for uniformly elliptic, random diffusion problems of [14] is extended. The com-
plexity of MCMC sampling for the uncertain input fields from the posterior
density, as well as the MCMC error due to discretization of the PDE of inter-
est in the forward response map, are analyzed in the abstract framework of
MCMC methods of Meyn and Tweedie [16]. Particular attention is given to
bounds on the overall work required by the MCMC algorithms for achieving a
prescribed error level ε > 0. We prove convergence rate estimates and bound
the computational complexity of straightforward combinations of MCMC sam-
pling strategies with Finite Element approximation of solution of the forward
PDE. Due to the non-uniform ellipticity, the computational complexity anal-
ysis of the MCMC-FEM is probabilistic.

1. Introduction

We consider the inverse problem of Bayesian inference for a quantity of interest
(QoI) from a linear, second order elliptic diffusion problem with unknown, lognor-
mal random field K ie. logK is a gaussian random field in a Banach space X which
we assume parametrized by a sequence of parameters u from a measurable space
(U,Θ). We assume finite dimensional, noisy observation data to be given by

(1.1) δ = G(u) + ϑ ∈ R
k .

Here U ∋ u 7→ G(u) is the forward functional (or the system response) which
is assumed to be well-defined for each instance of the unknown datum u in the
set U of admissible parameters. In writing (1.1), we suppose that the additive
observation noise ϑ is a centred Gaussian random variable N(0,Σ) with known,
positive (co)variance Σ ∈ R

k×k
sym> 0.

Assuming a Gaussian prior measure γ on a measurable space U of admissible
inputs, the posterior probability γδ given the data δ, ie. the conditional probability
of the uncertain input u ∈ U subject to given observation data δ ∈ R

k, is determined
according to Bayes’ theorem as (see, eg., [20])

(1.2)
dγδ

dγ
∝ exp(−Φ(u; δ)),

1
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where the Bayesian potential (or “misfit functional”) is given by

(1.3) Φ(u; δ) =
1

2
|δ − G(u)|2Σ =

1

2
(δ − G(u))⊤Σ−1(δ − G(u)) .

We consider the problem where G(u) is a linear functional of the solution of a so-
called “forward” linear, elliptic diffusion problem with unknown diffusion coefficient
K. Generalizing our previous analysis in [14], and in line with modelling practice
in the computational geosciences, we consider in the present paper the unknown
diffusion coefficient K to be a lognormal random field in the physical domain D, ie.,
logK is a Gaussian random field in a bounded Lipschitz domain D ⊂ R

d. Gaussian
random fields are determined by their mean and covariance (see, eg., [1, Sec. 3.3]).
Determining the Gaussian random field logK taking values in a separable Banach
space X of functions in D, given noisy observation data δ ∈ R

k is, therefore, equiv-
alent to determining the mean and covariance through the sequence u of normally
distributed, random coordinates in a basis expansion, such as the Karhúnen-Loève
expansion (in the sequel, we consider the inverse problem of predicting a Quantity
of Interest (QoI) as mathematical expectation over all possible realizations of the
uncertain input u, conditional on noisy measurements). As these coordinates enter,
in turn, the forward problems as parameters, the key technical issue in the present
paper, as compared to [14], is the analysis of Bayesian estimation in the presence
of parametric forward PDE problems and their discretizations on unbounded pa-
rameter domains.

Recently there have been several attempts to numerically sample posterior prob-
ability measures of Bayesian inverse problems for inferring log-normal random fields
by MCMC methods (e.g., [3, 6] and the survey [4]). However, rigorous analysis of
the mathematical properties and of the combined effect of the statistical error of
the MCMC approximation, and of the discretization and modelling errors of the
forward problem, on the numerically realized approximations of the Bayesian pos-
terior measure, does not seem to be available. The case of bounded coefficients was
studied in detail in [14]. In this paper we develop a complete analysis on the math-
ematical properties, and of the discretization and statistical errors as well as the
computational complexity of the MCMC process for the case of unbounded coeffi-
cients, in particular for Bayesian inference of log-normal random fields. As in [14],
our analysis requires some notation for the probability of the Markov chains for sam-
pling the exact and the approximated posterior probability measures which, in turn,
depends on the discretization parameters: the truncation order J of the Karhúnen-
Loève expansion and the level l of mesh refinement of the FE discretization. We
denote by Pu(0) the probability measure on the probability space generated by the
MCMC processes starting at the initial point u(0) with the acceptance probability
for the Metropolis-Hastings Markov chain defined as α in (2.1). Correspondingly,

we denote by PJ,l
u(0) the probability measure on the probability space generated by

the MCMC process starting at u(0) with the acceptance probability αJ,l in (4.22)
for the approximated problem with a J-term truncation of the Karhúnen-Loève ex-
pansion and with l denoting the mesh level of the finite element discretization. We

denote by Eu(0) and EJ,l

u(0) the mathematical expectations with respect to the prob-

ability measures Pu(0) and PJ,l

u(0) . When the initial state u(0) of the Markov chain is
distributed according to a probability measure µ on U , we denote the expectation
accordingly as Eµ and Eµ,J,l.
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The outline of this paper is as follows: in Section 2, we present a general frame-
work of Bayesian inverse problems in function spaces, following [20], [16] with par-
ticular emphasis on technical aspects arising in the lognormal setting. In Section 3,
we present a concrete class of elliptic PDEs where the coefficient K is an unknown
lognormal stochastic diffusion coefficient. Section 4 is devoted to the convergence
and complexity analysis of the MCMC for this class of problems. Appendices A and
B contain the proof of Proposition 4.7 and the derivation of several estimates used
in the paper. Throughout this paper, by c, C and Λ we denote various constants
which do not depend on the discretization parameters, whose values can vary from
one line to the next.

2. Bayesian inverse problems in measure spaces for unbounded

functionals

We consider abstract Bayesian inverse problems set on a measurable space (U,Θ)
where Θ is a σ-algebra such as the Borel σ-algebra on U . Let the system response
for given input u ∈ U , G : (U,Θ) → (Rk,Bk), be strongly measurable. We assume
available observation data δ of G which is subject to an unbiased, additive Gaussian
observation noise ϑ ∈ R

k:

δ = G(u) + ϑ .

The noise ϑ is assumed centred Gaussian with law N(0,Σ) where Σ ∈ R
k×k
sym is pos-

itive definite. Assuming given a prior probability measure γ on (U,Θ), our purpose
is to numerically sample from the conditional probability γδ = γ(u|δ) on (U,Θ).
As each draw involves solving the partial differential equation, one purpose is to
assess the impact of Finite Element (FE) discretization of the data-to-observation
map G(·) on the accuracy of the samples generated by the MCMC approach, and on
the overall convergence of the MCMC-FE approximation. Numerical approxima-
tions for the MCMC approach to sample the posterior measure γδ of this problem
have been analyzed in [14] in the particular case where the forward functional G(u)
is essentially bounded (with respect to the measure γ) for u ∈ U . In the present
work we consider the case where the observation G(u) is possibly unbounded, as
a function of the parameter sequence u. This is the case, for example, when G is
a linear functional of the solution of an elliptic partial differential equation with
a log-normal isotropic random field. The existence of the posterior distribution is
proved in [3]; and the well-posedness of the posterior distribution of these problems
is proved in [13] and [14], generalizing the arguments of [3]. The next result was
shown in Cotter et al. [3, Theorem 2.1].

Proposition 2.1. Assume that G : U → R
k is measurable. The posterior measure

γδ(du) = γ(du|δ) given data δ is absolutely continuous with respect to the prior
measure γ(du) and has the Radon-Nikodym derivative (1.2) with Φ given by (1.3).

For the well-posedness of the posterior measures, we show that the Hellinger
distance of the posterior measure corresponding to data δ is locally Lipschitz con-
tinuous with respect to δ. In order for this to hold, we need assumptions on the
boundedness of the potential function Φ(u; δ) and its Lipschitz dependence on the
data δ.

Assumption 2.2. Let γ be a probability measure on the measurable space (U,Θ).
The potential Φ : U × R

k → R satisfies:
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(i) For each λ > 0, there is a constant Λ(λ) > 0 such that if |δ| < λ,
∫

U

Φ(u; δ)dγ(u) < Λ(λ) .

Here, and throughout the following, | ◦ | denotes the euclidean norm on R
k.

(ii) There exists a mapping G : R>0 × U 7→ R such that for each λ > 0,
G(λ, ·) ∈ L2(U, γ) and for each δ, δ′ ∈ R

k with |δ|, |δ′| ≤ λ holds

|Φ(u; δ)− Φ(u; δ′)| ≤ G(λ, u)|δ − δ′| .
Under Assumption 2.2, the posterior measure as defined in (1.2) depends con-

tinuously on the data δ.

Proposition 2.3. Under Assumption 2.2, the measure γδ depends locally Lipschitz
continuously on the data δ with respect to the Hellinger distance: for each positive
constant λ there is a positive constant C(λ) such that if |δ|, |δ′| ≤ λ, then

dHell(γ
δ, γδ

′

) ≤ C(λ)|δ − δ′| .
Proposition 2.3 is obtained from Assumption 2.2 by a similar argument as for

the results in [13, Theorem 2.4] and of [14, Proposition 25], using the uniform
positiveness of the normalizing constant in (1.2) which is shown in the proof of
Proposition 4.6 below.

To sample from the posterior measure γδ, we employ a Metropolis-Hastings
MCMC method designed to be reversible and ergodic with respect to the posterior
measure γδ: to this end, given data δ, we define for any u, v ∈ U

(2.1) α(u, v) = 1 ∧ exp
(

Φ(u; δ)− Φ(v; δ)
)

.

The Markov chain {u(k)}∞k=1 ⊂ U is then constructed as follows: given the current

state u(k), we draw a proposal v(k) independently of u(k) from the prior measure γ
appearing in (1.2). Let {w(k)}k≥1 denote an i.i.d sequence with w(1) ∼ U [0, 1] and
with w(k) independent of both u(k) and v(k). We then determine the next state
u(k+1) via the formula

(2.2) u(k+1) = 1
(

α(u(k), v(k)) ≥ w(k)
)

v(k) +
(

1− 1
(

α(u(k), v(k)) ≥ w(k)
)

)

u(k) .

Thus we choose to move from u(k) to v(k) with probability α(u(k), v(k)), and to re-
main at u(k) with probability 1−α(u(k), v(k)). We claim that (2.2) defines a Markov
chain {u(k)}∞k=0 which is reversible with respect to γδ. To see this let ν(du, dv) de-
note the product measure γδ(du) ⊗ γ(dv) and define ν†(du, dv) = ν(dv, du). Note
that ν describes the probability distribution of the pair (u(k), v(k)) on U ×U when
u(k) is drawn from γδ, and ν† designates the same measure with the roles of u and
v reversed. These two measures are equivalent (as measures on (U × U,Θ ⊗ Θ);
in case Θ is the Borel σ-algebra in a topological space U , the product σ-algebra
becomes B(U × U)) if γδ and γ are equivalent. Then

(2.3)
dν†

dν
(u, v) = exp

(

Φ(u; δ)− Φ(v; δ)
)

, (u, v) ∈ U × U .

From Proposition 1 and Theorem 2 in [22] we deduce that (2.2) is a Metropolis-
Hastings Markov chain which is γδ reversible, since α(u, v) given by (2.1) is equal to

min{1, dν†

dν (u, v)}. Since v(k) is chosen independently of the current state u(k), the
Markov chain is, in fact, an independence sampler. In [14], we studied ergodicity of
this chain under the stronger condition that, for given data δ, the function Φ(u; δ)
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is uniformly bounded from above with respect to u ∈ U . When the forward map
U ∋ u 7→ G(u) is not uniformly bounded with respect to the parameter sequence u
(as will be the case in the presently considered applications with unknown lognormal
random field inputs), this does not hold and results of [14] do not apply directly. We
therefore develop generalizations of [14] to the case where G(u) may be unbounded.

Theorem 2.4. Let Assumption 2.2 hold. Let further V(u) ≥ 1 be a function in
L2(U, γ). 1 Then γδ is equivalent to γ. In particular, the Markov chain (2.2) is
well-defined and reversible with respect to γδ.

Let p(u, ·) denote the transition kernel for the Markov chain, and pn(u, ·) its nth

iterate. Then there are constants r > 1 and R > 0 so that for all u ∈ U holds
geometric ergodicity

(2.4)

∞
∑

n=1

rn‖pn(u, ·)− γδ‖V ≤ RV(u) .

For g : U → R such that (g(u))2 ≤ V(u) for all u ∈ U , and Pu(0) almost surely,

(2.5)
1

M

M
∑

k=1

g(u(k)) = E
γδ

[g(u)] + cξMM
− 1

2

where ξM is a sequence of random variables which converges weakly as M → ∞ to
ξ ∼ N(0, 1) and where c is a positive constant which depends only on R, r and on
V(·). Furthermore, when |g(u)| ≤ V(u) for all u ∈ U , there holds the mean square
error bound

(2.6)
(

Eγδ
[∣

∣

∣E
γδ

[g(u)]− 1

M

M
∑

k=1

g(u(k))
∣

∣

∣

2])1/2

≤ CM−1/2 .

Proof. For A ∈ Θ,

γδ(A) =
1

Z

∫

A

exp(−Φ(u; δ))dγ(u),

so if γ(A) = 0 then γδ(A) = 0. Now, we show that if γδ(A) = 0, then γ(A) = 0.
To this end, we assume the contrary, ie. that γδ(A) = 0 while γ(A) > 0. As
∫

A Φ(u; δ)dγ(u) < c we may fix a constant Λ such that γ ({u ∈ A : Φ(u; δ) > Λ}) <
c/Λ. Choosing Λ sufficiently large, we also have γ ({u ∈ A : Φ(u; δ) < Λ}) > γ(A)−
c/Λ > 0. From this, we deduce that there exists a constant c > 0 such that

γδ(A) = Z−1

∫

A

exp(−Φ(u; δ))dγ(u) > c(γ(A)− c/Λ) exp(−Λ) > 0 .

Thus γ(A) = 0. The measures γ and γδ are equivalent. We remark that instead
of the preceding argument, we may refer to Remark 1 at the bottom of page 3 in
the paper by Tierney [22]: his result requires the density functions of the target
measure with respect to a measure ν and of the proposal density both to be positive.
This holds in the presently considered case for the choice ν = γ with the positive
density in (1.2).

From (2.1) it also follows that the proposed random draw from γ has acceptance
probability at least exp(−Φ(v; δ)) and there holds the minorization condition

(2.7) ∀u ∈ U : p(u,A) ≥
∫

A

exp(−Φ(v; δ))dγ(v) .

1
V(u) corresponds to the comparison function V (x) in Sections 14 and 15 of [16].
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For V ∈ L2(U, γ) and V(u) ≥ 1 for all u ∈ Γ,

∫

U

p(u, dv)V(v) =

∫

U

α(u, v)V(v)dγ(v) + (1 −
∫

U

α(u, v)dγ(v))V(u)

≤
∫

U

V(v)dγ(v) + (1−
∫

U

exp(−Φ(v; δ))dγ(v))V(u) .

From Assumption 2.2, there exists a constant Λ > 0 so that

γ({v : Φ(v; δ) < Λ}) > 0 .

Thus there exists c0 > 0 so that

(2.8) 1 ≥
∫

U

exp(−Φ(v; δ))dγ(v) > c0 .

Therefore
∫

U

p(u, dv)V(v) ≤
∫

U

V(v)dγ(v) + (1 − c0)V(u).

Let β̂ >
∫

U V(v)dγ(v) and 0 < β̌ < c0. Then, the equation

△V(u) :=
∫

U

p(u, dv)V(v)− V(u) ≤ −β̌V(u) + β̂

is satisfied, where △V(u) denotes the drift operator of Meyn and Tweedie [16, Eqn.
(8.1)]. Therefore condition (iii) of Theorem 15.0.1 in [16] holds with the “petite”
set U and we obtain (2.4).

As g2 ≤ V , the second result follows from [16], Theorem 17.0.1. To see that the
constant c in (2.5) is bounded by a constant that depends only on r, R and V(u)
we note that it is given by

(2.9) c2 = Eγδ |ḡ(u(0))|2 + 2

∞
∑

n=1

Eγδ

[ḡ(u(0))ḡ(u(n))]

where the function ḡ is defined as ḡ = g − E
γδ

(g). Now

2

∞
∑

n=1

Eγδ

[ḡ(u(0))ḡ(u(n))] ≤ 2Eγδ

[

|ḡ(u(0))|
∞
∑

n=1

|Eu(0) [ḡ(u(n))]|
]

≤ 2Eγδ

[

|ḡ(u(0))|
∞
∑

n=1

|Eu(0) [g(u(n))]− E
γδ

[g]|
]

≤ 2REγδ
[

|ḡ(u(0))|V(u(0))
]

∞
∑

n=0

r−n .

As g2(u) ≤ V(u), and V(u) ≥ 1, we have that g(u) ≤ V(u). This expression is finite
as V ∈ L2(U, γ). For the mean square approximation, using the stationarity of the
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Markov chain conditioned to start in U ∋ u(0) ∼ γδ, we have

1

M
Eγδ
[∣

∣

∣

M
∑

k=1

ḡ(u(k))
∣

∣

∣

2]

= E
γδ

[ḡ(u(0))2] + 2
1

M

M
∑

k=1

M
∑

j=k+1

Eγδ

[ḡ(u(k))ḡ(u(j))]

= E
γδ

[ḡ(u(0))2] + 2
1

M

M−1
∑

k=0

M−k
∑

j=1

Eγδ

[ḡ(u(0))ḡ(u(j))]

= E
γδ

[ḡ(u(0))2] + 2
1

M

M−1
∑

k=0

M−k
∑

j=1

E
γδ

[ḡ(u(0))Eu(0) [ḡ(u(j))]]

≤ E
γδ

[ḡ(u(0))2]

+2
1

M

M−1
∑

k=0

M−k
∑

j=1

E
γδ

[|ḡ(u(0))||Eu(0) [g(u(j))]− E
γδ

[g]|]

≤ E
γδ

[ḡ(u(0))2] + 2R
1

M

M−1
∑

k=0

M−k
∑

j=1

r−j
E
γδ

[|ḡ(u(0))|V(u(0))]

≤ E
γδ

[ḡ(u(0))2] + 2R

∞
∑

j=1

r−j
E
γδ

[|ḡ(u(0))|V(u(0))],

which is clearly bounded uniformly with respect to M . Thus we have shown that
there exists C > 0 such that

Eγδ
[∣

∣

∣

1

M

M
∑

k=1

ḡ(u(k))
∣

∣

∣

2]

≤ C

M
.

�

Remark 2.5. The minorization condition (2.7) is essentially the condition that
w∗ < ∞ in Roberts and Rosenthal [18] resp. condition (19) of Mengersen and
Tweedie [15]. However, for independence samplers considered in this paper, Roberts
and Rosenthal [18] and Mengersen and Tweedie [15] only consider geometric ergod-
icity for the case where the function V in (2.4) equals 1. For the more general V
under consideration here, Mengersen and Tweedie [15] consider the case where the
transition kernel of the proposals is symmetric which is not our interest here.

Remark 2.6. From the case m = 1 in [16, Theorem 16.2.4], with the minorization
condition (2.7), we deduce that given data δ, there exists a constant 0 < ρ < 1 such
that, for every n,

(2.10) ∀u ∈ U : ‖pn(u, ·)− γδ‖TV ≤ 2ρn .

Using this, the convergence results in Theorem 2.4 will hold for bounded functions
g without using the geometric ergodicity property (2.4). The main purpose of this
paper is to prove convergence rates and accuracy versus work estimates for MCMC
sampling with Finite Element discretization, for the computation of the expectation
with respect to the posterior measure of linear functionals of the solution to partial
differential equations with log-normal coefficients, which are unbounded with respect
to the i.i.d. sequence of standard normal random variables u = (u1, u2, . . .) in the
expansion of the coefficient in (3.1) ahead, and to verify (2.4) with r > 1 and R > 0
independent of the discretization parameters.
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3. Elliptic equations with log-normal random coefficients

We present the countably-parametric, deterministic forward map G(·) and reca-
pitulate basic results on its measurability under the Gaussian prior γ.

3.1. Elliptic problems with log-normal coefficients. We present the setting
up of the problem with log-normal coefficients. Let D ⊂ R

d be an open domain.
In this section, by R

N we denote the set of all infinite sequences (u1, u2, . . .) of real
numbers. We consider the parametric, deterministic coefficient K : D × R

N → R

which is formally (ie., ignoring for now questions of convergence) given, for u =
(u1, u2, . . .) ∈ R

N, by

(3.1) K(·, u) = K∗(·) + exp



K̄(·) +
∞
∑

j=1

ψj(·)uj



 .

In (3.1), the sequence {ψj}j≥1 is assumed to be a Schauder basis of a suitable
separable (subspace of a) Banach space X⊂ L∞(D) of uncertain input data on the
domain D. Examples for the series expansions in (3.1) are furnished, in particular,
by Karhúnen-Loève expansions of gaussian random fields log(K(·, u)−K∗(·, u)) in
the bounded domain D. Any representation of (3.1) is ambiguous as long as no
assumption on the scaling of the ‖ψj‖X is specified. We model the uncertainty in
the coefficient K(·, u) by placing a Gaussian measure on X . To this end, we assume
the coordinates uj to be independently, identically standard normally distributed
random variables, i.e., uj ∼ N (0, 1). With γ1 denoting the standard Gaussian
measure in R

1, we define the product measure

(3.2) γ =

∞
⊗

j=1

γ1

as Gaussian prior probability measure on (RN,B(RN)). We shall work under the
following assumption on the coefficients K∗, K̄ and ψi.

Assumption 3.1. The functions K̄, K∗ and ψj in (3.1) are in L∞(D) and 0 ≤
essinfK∗(x) ≤ esssupK∗(x) <∞. Moreover, b := (‖ψj‖L∞(D))j≥1 ∈ ℓ1(N).

With bj := ‖ψj‖L∞(D), Assumption 3.1 implies b ∈ ℓ2(N). Then, the set

(3.3) Γb := {u ∈ R
N,

∞
∑

j=1

bj |uj | <∞} ∈ B(RN)

has full Gaussian measure, i.e. γ(Γb) = 1 (see, e.g., [24, p. 153] or [19, Lemma
2.28]).

Let Ab ⊂ B(RN) denote the sub σ-algebra which is obtained as restriction of
B(RN) to Γb ∈ B(RN), and let γb denote the restriction of the gaussian measure γ
to (Ab,Γb):

(3.4) γb := γ |(Ab,Γb) .

For proposals u ∈ Γb of the parameter sequence, we consider the parametric, de-
terministic PDE

(3.5) −∇ · (K(·, u)∇P (·, u)) = f in D , K(·, u)|∂D = 0 ,
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where P (·, u) ∈ V := H1
0 (D) and f ∈ V ∗. To address the well-posedness of (3.5),

we observe that for u ∈ Γb, the following quantities are (Γb,Ab) measurable:

(3.6) K̂(u) = esssupx∈DK∗(x) + exp(‖K̄‖L∞(D) +

∞
∑

j=1

‖ψj‖L∞(D)|uj |),

and

(3.7) Ǩ(u) = essinfx∈DK∗(x) + exp(essinfx∈D K̄(x) −
∞
∑

j=1

‖ψj‖L∞(D)|uj |) .

Assumption 3.1 implies
∑∞

j=1 ‖ψj‖L∞(D)|uj | <∞ for u ∈ Γb, so that

(3.8) Ǩ(u) > 0 for u ∈ Γb .

By the Lax-Milgram Lemma, then, for every u ∈ Γb exists a unique solution
P (·, u) ∈ V of (3.5) which satisfies the estimate

(3.9) ‖P (·, u)‖V ≤ 1

Ǩ(u)
‖f‖V ∗ , u ∈ Γb .

The apriori bound (3.9) is not uniform with respect to u ∈ Γb. Still, (3.9) and the
separability of V imply the following result on the strong measurability of P as a
map from (Γb,Ab) to (V,B(V )) (see also, for example, [8], [7, 2]).

Proposition 3.2. The solution map Γb ∋ u 7→ P (·, u) ∈ V of the parametric
problem (3.5) is a strongly measurable map from (Γb,Ab) to (V,B(V )).

We also remark that Ǩ, K̂ ∈ Lp(U ; γb) for every 0 < p <∞ [2, Prop.2.3].

3.2. Bayesian inverse problem. Following [14, 20], we assume that the data
vector δ ∈ R

k is generated by k ∈ N independent, continuous linear observation
functionals Oi ∈ V ∗ for i = 1, . . . , k. We denote the forward map G(u) : Γb → R

k

as

(3.10) G(u) = (O1(P (·, u)),O2(P (·, u)), . . . ,Ok(P (·, u))) .
Let ϑ ∼ N(0,Σ) denote the unbiased, Gaussian observation noise in (1.1) with
positive definite covariance Σ > 0. We consider the Bayesian inverse problem of
determining the conditional probability γδ on U = Γb with the Gaussian prior
measure γb. The conditional posterior measure γδ is determined by (1.2).

Proposition 3.3. Under Assumption 3.1, the posterior measure γδ(du) = γ(du|δ)
satisfies

(3.11)
dγδ

dγb
∝ exp(−Φ(u; δ)), u ∈ Γb

with the Bayesian potential Φ(u; δ) = 1
2 |G(u) − δ|2Σ as in (1.3). Moreover, there

holds continuous dependence on the data in the following sense: for δ, δ′ ∈ R
k such

that |δ|, |δ′| < λ,

dHell(γ
δ, γδ

′

) ≤ C(λ)|δ − δ′|
for a constant C(λ) depending only on λ.
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Proof. From Proposition 3.2, we deduce that RN ⊃ Γb ∋ u 7→ Oi(P (u)), viewed as
a map from U = Γb to R, is γb measurable. This implies the γb-measurability of
the forward map G(u). The γb-measurability of G(u) in turn implies (3.11).

To show the continuous dependence of γδ with respect to δ, we verify that the
conditions of Assumption 2.2 hold. To this end, we note that there exists c > 0
such that for all δ and for all u ∈ Γb

Φ(u; δ) ≤ c(|δ|+ |G(u)|)2 .

From (3.10), we find that |G(u)| ≤ c‖P (·, u)‖V for every u ∈ Γb, for some constant
c > 0 independent of u ∈ Γb (but depending on the observation functionals Oi(·)).
From (3.9), we deduce that for |δ| ≤ λ holds

∀u ∈ Γb : Φ(u; δ) ≤ c(λ +
1

Ǩ(u)
)2 .

Thus
∫

U Φ(u; δ)dγ(u) ≤ Λ(λ) for some Λ(λ) > 0 depending only on λ.
To verify the local Lipschitz condition (ii) of Assumption 2.2, we note that for

every u ∈ Γb

|Φ(u; δ)− Φ(u; δ′)| ≤ 1

2
|〈Σ−1/2(δ + δ′ − 2G(u)),Σ−1/2(δ − δ′)〉|

≤ 1

2
‖Σ−1/2‖2L(Rk,Rk)(|δ|+ |δ′|+ 2|G(u)|)|δ − δ′| ≤ c(λ +

1

Ǩ(u)
)|δ − δ′| .

With the choice G(λ;u) = c(λ+ 1/Ǩ(u)) for u ∈ Γb, the assertion follows. �

4. MCMC Finite Element Method

4.1. Dimension truncation of the parametric forward problems. First we
consider the solution of problem (3.5) by truncating the Karhúnen-Loève expansion
of the coefficient K. Denoting the coordinate vector u ∈ Γb truncated to finite
dimension J ∈ N by uJ = (u1, u2, . . . , uJ , 0, 0, . . .). Let KJ(·, u) = K(·, uJ). For
u ∈ Γb, we consider the partial differential equation corresponding to the J-term
approximation of the coefficient K:

(4.1) −∇ · (KJ(·, u)∇P J(·, u)) = f in D , P J(·, u)|∂D = 0

where P J(·, u) ∈ V . For every u ∈ Γb the dimensionally truncated, parametric
deterministic problem (4.1) admits a unique solution P J(·, u) ∈ V and from (3.9)
we obtain the apriori bound

(4.2) ∀u ∈ Γb : ‖P J(·, u)‖V ≤ ‖f‖V ∗

Ǩ(uJ )
.

Remark 4.1. In (4.1), the parametric solution P J(·, u) depends on parameters
uJ ∈ R

J which is of full gaussian measure with respect to the product gaussian
measure γJ on R

J equipped with the σ-algebra of Borel sets.

To estimate the error incurred by the dimension truncation of the parametric
coefficient K(·, u) in (3.1), from (3.5) and (4.1) there holds for any u ∈ Γb

−∇ · (K(·, u)∇(P (·, u)− P J(·, u))) = −∇ · ((K(·, u)−KJ(·, u))∇P J (·, u)) .
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We therefore have for every u ∈ U = Γb the bound

‖P (·, u)− P J(·, u)‖V ≤ 1

Ǩ(u)
‖K(·, u)−KJ(·, u)‖L∞(D)‖P J(·, u)‖V

≤ 1

Ǩ(u)Ǩ(uJ)
‖K(·, u)−KJ(·, u)‖L∞(D)‖f‖V ∗ .

Using the elementary inequality |ex − ey| ≤ |x− y|(ex + ey) for x, y ∈ R, we infer

‖K(·, u)−KJ(·, u)‖L∞(D) ≤ 2 exp



b0 +

∞
∑

j=1

bj |uj |





∞
∑

j=J+1

bj |uj| .

This implies that there exists a constant C > 0 such that for every u ∈ U = Γb

(4.3) ‖P (·, u)− P J(·, u)‖V ≤ C exp



3

∞
∑

j=1

bj |uj|





(

∞
∑

j=J+1

bj |uj|
)

.

Remark 4.2. Approximating the posterior probability measure by truncating the
Karhúnen-Loève expansion is studied in Dashti and Stuart in [5]. However, the
assumption of Theorem 2.4 in [5] requires imposing a Gaussian prior on a Banach
space of functions that possess sufficient smoothness. Dashti and Stuart [5] ver-
ify that this assumption holds when the prior probability is defined on the Hölder
space Ct(D) for t > 0. In the present paper, we achieve a rate of convergence for
approximating the Bayesian posterior measure by truncating the Karhúnen-Loève
expansion of the random diffusion coefficient by assuming only a rate of decay for
the L∞(D) norm of the coefficients ψj in the expansion (3.1). Indeed, define the
observation functional for the dimensionally truncated forward model as

GJ(u) = (O1(P
J(u)), . . . ,Ok(P

J (u))) .

We define the approximated potential as

ΦJ(u; δ) =
1

2
|δ − GJ(u)|2Σ,

and the approximated posterior measure γJ,δ on (Γb,Ab) by

dγJ,δ

dγb
∝ exp(−ΦJ(u; δ)).

Then we obtain from the proof of Proposition 4.6 below the estimate

dHell(γ
δ, γJ,δ) ≤ c(δ)J−q.

Indeed, this is the result in Proposition 4.6 ahead upon formally letting the mesh-
width in the FE approximation in D tend to 0. The rate J−q due to dimensionally
truncating the uncertainty parametrization in the forward problem is therefore ob-
tained by solely imposing a decay rate for ‖ψj‖L∞(D).

In the same vein, for uncertain inputs KJ(·, u) in (4.1) with a given, fixed
number J parameters, and for circulant embedding, collocation based access of the
gaussian random field inputs in Finite Element discretizations, as described in Re-
mark 4.15 ahead, no dimension truncation error needs to be accounted for. The
geometric ergodicity result and all FE error bounds which follow remain valid ver-
batim in this case, by formally dropping the terms J−q from the error bounds.
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4.2. Finite Element discretization of the forward problem. We now approx-
imate the truncated, parametric problem (4.1) by discretizing it with continuous,
piecewise linear Finite Elements in D. As D is a bounded polyhedron with plane
sides, we consider in D a nested sequence {T l}∞l=1 of regular, simplicial triangula-
tions of D which are defined inductively in the usual way: {T l} is obtained from
{T l−1} by dividing each simplex in {T l−1} into 2d subsimplices. On the sequence
{T l}l≥1 of regular, simplicial triangulations of D thus obtained, we define a nested
sequence {V l}l≥1 of spaces of continuous, piecewise linear functions on T l as

V l = {w ∈ V : w|T ∈ P1(T ) ∀T ∈ T l},

where P1(T ) is the set of linear polynomials in the simplex T . Let hl = O(2−l)
denote the maximum diameter of the simplices in T l. Then, for 0 < t ≤ 1 and for
P ∈ H1+t(D) ∩H1

0 (D), there holds the approximation property

(4.4) inf
Q∈V l

‖P −Q‖V ≤ Chtl‖P‖H1+t(D) .

If, in particular, P ∈W := H2(D) ∩H1
0 (D), there holds

(4.5) inf
Q∈V l

‖P −Q‖V ≤ Chl‖P‖H2(D) .

Here, the constant C > 0 is independent of l and of P , and depends only on the
shape of T 0.

We consider the finite element approximation of the dimensionally truncated,
parametric deterministic problem (4.1) as: given u ∈ Γb, find P J,l(u) ∈ V l such
that for every φ ∈ V l

(4.6)

∫

D

KJ(x, u)∇P J,l(x, u) · ∇φ(x)dx =

∫

D

f(x)φ(x)dx .

From Cea’s lemma, we deduce that for every u ∈ Γb

(4.7) ‖P J(·, u)− P J,l(·, u)‖V ≤ K̂(uJ)

Ǩ(uJ)
inf

Q∈V l
‖P J(·, u)−Q‖V .

In this section, we analyze how the convergence rate of the Finite Element approx-
imation (4.6) influences the convergence rate of the MCMC algorithm to sample
the posterior measure. For simplicity, we consider the case where P ∈ W almost
surely. We therefore impose sufficient conditions to ensure that the solution P J(·, u)
of (4.1) belongs to W for γb-almost all u ∈ Γb.

Assumption 4.3. The domain D ⊂ R
d is convex, f ∈ L2(D) and the functions

K∗, K̄ and ψj in the expansion (3.1) of the parametric coefficient K(·, u) belong to
W 1,∞(D), and b̄ := (‖ψj‖W 1,∞(D))j≥1 ∈ ℓ1(N).

With Assumption 4.3, we define the set

(4.8) Γb̄ = {u ∈ R
N :

∞
∑

j=1

|uj|b̄j <∞} .

Assumption 4.3 implies that b̄ ∈ ℓ2(N). Then, as the set Γb in (3.3), also the set
Γb̄ in (4.8) has Gaussian measure one. For finite J , for each u ∈ R

N, ∇KJ(·, u) ∈
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L∞(D)d is well defined and admits the explicit representation (with convergence in
L∞(D)d as J → ∞ for u ∈ Γb̄ in (4.8))

∇KJ(·, u) = ∇K∗(·) + exp



K̄(·) +
J
∑

j=1

ψj(x)uj







∇K̄(·) +
J
∑

j=1

∇ψj(·)uj



 .

Moreover, there exists C > 0 such that for all J and for every u ∈ Γb holds

‖∇KJ(·, u)‖L∞(D) ≤ C



1 + exp





∞
∑

j=1

bj|uj |



 (1 +
J
∑

j=1

b̄j |uj|)



 .

From (4.1), for every u ∈ Γb holds

−∆P J(·, u) = 1

KJ(·, u) (∇K
J(·, u) · ∇P J (·, u) + f) in L2(D) .

Under Assumption 4.3, the classicalH2(D) regularity result for the Dirichlet Lapla-
cian in convex domains D implies the (uniform w.r. to J for every u ∈ Γb) bound

‖P J(·, u)‖H2(D) ≤ c
1

Ǩ(uJ)
(‖∇KJ(·, u)‖L∞(D)‖P J(·, u)‖V + ‖f‖L2(D))

≤ c
1

Ǩ(uJ)
(‖∇KJ(·, u)‖L∞(D)

‖f‖V ∗

Ǩ(uJ)
+ ‖f‖L2(D))

≤ C exp



3

∞
∑

j=1

bj|uj |







1 +

J
∑

j=1

b̄j|uj |



 .(4.9)

Here, the constant C > 0 is independent of J ∈ N and of u ∈ Γb in (4.8), but
depends on ‖f‖L2(D). From this and from equation (4.7) and (4.3), we obtain

Lemma 4.4. Under Assumption 4.3, for every proposal u ∈ Γb, the solution
P J(·, u) of the dimensionally truncated, parametric problem (4.1) and its Finite
Element approximation P J,l(·, u) in (4.6) satisfy the a-priori estimate

(4.10) ‖P J(·, u)− P J,l(·, u)‖V ≤ C exp



5

∞
∑

j=1

bj|uj |







1 +

J
∑

j=1

b̄j|uj |



 2−l

for some constant C > 0 which is independent of J and l, and of u ∈ Γb.
For every proposal u ∈ Γb and for every J, l ∈ N, the solutions P (·, u) of (3.5)

and P J,l(·, u) of (4.6) satisfy the error bound
(4.11)

‖P (·, u)−P J,l(·, u)‖V ≤ C exp



5
∞
∑

j=1

bj |uj |







2−l(1 +
J
∑

j=1

b̄j|uj |) +
∞
∑

j=J+1

bj|uj |





where, again, the constant C > 0 is independent of u ∈ Γb, and of J, l ∈ N.

4.3. Finite element approximation of the posterior probability measure.

For u ∈ Γb, we consider the vector of observables with dimension truncation and
finite element approximation, defined by

GJ,l(u) = (O1(P
J,l(u)), . . . ,Ok(P

J,l(u))) : Γb 7→ R
k .
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We define the corresponding approximate potential function

(4.12) ΦJ,l(u; δ) =
1

2
|δ − GJ,l(u)|2Σ , u ∈ Γb .

We denote the corresponding approximate posterior measure by γJ,l,δ. It is defined
as

(4.13)
dγJ,l,δ

dγb
(u) ∝ exp(−ΦJ,l(u; δ)) , u ∈ Γb .

As we justify below, the positive normalizing constant in (4.13) is uniformly (w.r. to
J, l ∈ N) bounded from below away from 0. Therefore, γJ,l,δ is indeed the Bayesian
posterior probability measure for the inverse problem with the approximated obser-
vation functional GJ,l. With respect to the Hellinger distance, the measure γJ,l,δ is
an approximation of the ‘true’ (i.e., not involving J-term dimension-truncation of
(3.1) or Galerkin FE approximation (4.6)) Bayesian posterior γδ. To prove a rate
of convergence estimate for approximation (4.3), we impose an assumption on the
decay rate of ‖ψj‖L∞(D).

Assumption 4.5. There exist constants c > 0 and s > 1 such that for every j ≥ 1
holds ‖ψj‖L∞(D) ≤ c/js.

Evidently, Assumption 4.5 implies b ∈ ℓ1(N). We define

(4.14) q = s− 1 > 0 .

Proposition 4.6. Under Assumptions 4.3 and 4.5, there exists a positive constant
c (depending only on the data δ) such that, with q as defined in (4.14) holds

∀J, l ∈ N : dHell(γ
δ, γJ,l,δ) ≤ c(δ)(J−q + 2−l) .

Proof The proof of this proposition is an extension of the argument in [14] to the
case where the forward functional G(u) and its dimension truncated Finite Element
discretization GJ,l(u) may not be uniformly bounded with respect to u ∈ Γb. We
denote the exact and approximate normalizing constants, respectively, as

Z(δ) =

∫

Γb

exp(−Φ(u; δ))dγb(u), ZJ,l(δ) =

∫

Γb

exp(−ΦJ,l(u; δ))dγb(u) .

From (3.9), we have that Γb ∋ u 7→ ‖P (·, u)‖V ∈ L1(Γb, γ). Therefore, there exists
c > 0 such that, for each positive constant Λ, γb ({u ∈ Γb : ‖P (·, u)‖V > Λ}) < c/Λ.
Thus, for Λ > 0 sufficiently large, the measure of the set of all u ∈ Γb such that
‖P (·, u)‖V ≤ Λ is larger than 1− c/Λ. There exists a constant c > 1 such that for
λ > 0 given by |δ|2Σ = δ⊤Σδ < λ2 holds the bound

∀u ∈ Γb : Φ(u; δ) ≤ |δ|2Σ + |G(u)|2Σ ≤ c(λ+ Λ)2 .

Thus we obtain that

(4.15) Z(δ) > (1− c/Λ) exp(−c(λ+ Λ))2 =: c(λ) > 0 .

We then estimate

dHell(γ
δ, γJ,l,δ)2

=
1

2

∫

Γb

(

Z(δ)−1/2 exp
(

− 1

2
Φ(u; δ)

)

− (ZJ,l(δ))−1/2 exp
(

− 1

2
ΦJ,l(u; δ)

))2

dγb(u)

≤ I1 + I2,



MCMC-FEM FOR LOGNORMAL DIFFUSION 15

where I1 and I2 are given by

I1 :=
1

Z(δ)

∫

Γb

(

exp
(

− 1

2
Φ(u; δ)

)

− exp
(

− 1

2
ΦJ,l(u; δ)

))2

dγb(u),

I2 := |Z(δ)−1/2 − ZJ,l(δ)−1/2|2
∫

Γb

exp(−ΦJ,l(u; δ))dγb(u) .

To bound I1, we estimate for u ∈ Γb,
∣

∣

∣ exp
(

− 1

2
Φ(u; δ)

)

− exp
(

− 1

2
ΦJ,l(u; δ)

)∣

∣

∣ ≤ 1

2
|Φ(u; δ)− ΦJ,l(u; δ)|

≤ c(|δ|+ |G(u)|+ |GJ,l(u)|)|G(u)− GJ,l(u)| .(4.16)

Under Assumption 4.3, there exists a constant C > 0 independent of J and of l
such that for each u ∈ Γb holds

|G(u)− GJ,l(u)| ≤ Cmax{‖Oi‖V ∗}‖P (·, u)− P J,l(·, u)‖V

≤ C exp



5

∞
∑

j=1

bj|uj |





(

2−l(1 +

J
∑

j=1

b̄j |uj|) +
∞
∑

j=J+1

bj |uj|
)

.

There exists a constant C > 0 such that, for each u ∈ Γb, holds the bound

|G(u)| ≤ C‖P (·, u)‖V ≤ C
1

Ǩ(u)
≤ C exp





∞
∑

j=1

bj|uj |



 .

From (4.6), we deduce that for every u ∈ Γb holds

(4.17) ‖P J,l(·, u)‖V ≤ ‖f‖V ∗

Ǩ(uJ)
≤ C exp





∞
∑

j=1

bj |uj|





so that, for u ∈ Γb, there holds the bound

(4.18) |GJ,l(u)| ≤ C exp





∞
∑

j=1

bj |uj|



 .

Therefore, with |δ| < λ, there exists a constant c(λ) > 0 (cf. (4.15)) that depends
only on λ so that for every u ∈ Γb holds

∣

∣

∣ exp
(

− 1

2
Φ(u; δ)

)

− exp
(

− 1

2
ΦJ,l(u; δ)

)∣

∣

∣

≤ c(λ) exp



6
∞
∑

j=1

bj |uj|





(

2−l(1 +
J
∑

j=1

b̄j|uj |) +
∞
∑

j=J+1

bj |uj |
)

.

As Γb̄, Γb ∈ B(RN) are sets of full measure under the gaussian prior γ in (3.2), we
have

I1 ≤ c(λ)

(

2−2l

∫

Γb

exp
(

12

∞
∑

j=1

bj|uj |
)

(1 +

J
∑

j=1

b̄j |uj |)2dγb

+

∫

Γb

exp
(

12

∞
∑

j=1

bj |uj|
)

( ∞
∑

j=J+1

bj|uj |
)2

dγb

)

.
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We note that

∫

Γb

exp
(

12

∞
∑

j=1

bj|uj |
)

(1 +

J
∑

j=1

b̄j|uj |)2dγb ≤
∫

Γb

exp





∞
∑

j=1

12bj|uj|+
J
∑

j=1

2b̄j |uj|



 dγb

≤
∞
∏

j=1

∫

R

exp
(

(12bj + 2b̄j)|uj|
)

dγ1(uj) .

Employing the inequality

(4.19)

∫ ∞

−∞

exp(−z2/2 + |z|t) dz√
2π

≤ exp(t2/2 + t
√

2/π),

which we prove in Appendix B, we deduce that,

∫

Γb

exp
(

12

∞
∑

j=1

bj |uj|
)

(1 +

J
∑

j=1

b̄j|uj |)2dγb

≤ exp





∞
∑

j=1

(12bj + 2b̄j)
2/2 +

∞
∑

j=1

(12bj + 2b̄j)
√

2/π



 <∞

due to our assumption that the sequences b = (bj)j≥1, b̄ := (b̄j)j≥1 ∈ ℓ1(N). We
now estimate

∫

Γb

exp
(

12

∞
∑

j=1

bj |uj |
)

( ∞
∑

j=J+1

bj |uj|
)2

dγb

=

∫

Γb

exp
(

12

∞
∑

j=1

bj |uj |
)

( ∞
∑

i,j=J+1

bibj|ui||uj |
)

dγb

≤
∞
∑

i=J+1

b2i

∫ ∞

−∞

exp(12bi|ui|)u2i dγ1(ui)
∞
∏

k=1
k 6=i

∫ ∞

−∞

exp(12bk|uk|)dγ1(uk)

+

∞
∑

i,j=J+1
i6=j

bibj

∫ ∞

−∞

exp(12bi|ui|)|ui|dγ1(ui) ·
∫ ∞

−∞

exp(12bj|uj |)|uj |dγ1(uj)

·
∞
∏

k=1
k 6=i,j

∫ ∞

−∞

exp(12bk|uk|)dγ1(uk) .

In Appendix B we show that there exists c > 0 (independent of bj) such that

(4.20)

∫ ∞

−∞

z2 exp(−z2/2 + |z|t) dz√
2π

≤ c exp(t2/2)(1 + t2),

and

(4.21)

∫ ∞

−∞

|z| exp(−z2/2 + |z|t) dz√
2π

≤ c exp(t2/2)(1 + t) .
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We deduce that there exists C > 0 such that for all J ≥ 1
∫

Γb

exp
(

12

∞
∑

j=1

bj|uj |
)

( ∞
∑

j=J+1

bj |uj |
)2

dγb

≤ C
∞
∑

i=J+1

b2i (1 + b2i ) exp

(

∞
∑

k=1

122b2k/2 + 12bk
√

2/π

)

+C

∞
∑

i,j=J+1
i6=j

bibj(1 + bi)(1 + bj) exp

(

∞
∑

k=1

122b2k/2 + 12bk
√

2/π

)

≤ C





∞
∑

j=J+1

bi





2

≤ CJ−2q

by (4.14) and Assumption 4.5.
Hence, there exists a constant C > 0 which is independent of l, J ∈ N such that

I1 ≤ C(2−2l + (

∞
∑

j=J+1

bj)
2) ≤ C(2−2l + J−2q) .

To estimate term I2, we observe that there exists a positive constant c > 0 such
that for every J, l ∈ N holds

|Z(δ)−1/2 − ZJ,l(δ)−1/2|2 ≤ c(Z(δ)−3 ∨ ZJ,l(δ)−3)|Z(δ)− ZJ,l(δ)|2 .
We note that

|Z(δ)− ZJ,l(δ)| ≤
∫

Γb

| exp(−Φ(u; δ))− exp(−ΦJ,l(u; δ))|dγb(u)

≤
∫

Γb

|Φ(u; δ)− ΦJ,l(u; δ)|dγb(u)

≤
(

∫

Γb

|Φ(u; δ)− ΦJ,l(u; δ)|2dγb(u)
)1/2

.

The proof for the uniform boundedness of ZJ,l(δ) from below is similar to that for
Z(δ), using (4.17). Therefore, as Z(δ) and ZJ,l(δ) are uniformly (with respect to
J, l ∈ N) bounded away from zero for all observation data δ, an analysis similar to
that for I1 shows that

I2 ≤ c(2−2l + J−2q) .

Thus, there exists a constant c(δ) > 0 which is independent of J and l such that

dHell(γ
δ, γJ,l,δ) ≤ c(δ)(2−l + J−q)

which completes the proof of Proposition 4.6. �

4.4. Convergence of the MCMC-FE algorithm. For computational approxi-
mation of integrals of functions g : Γb → R with respect to the posterior measure
γδ, we perform the Markov-Chain Monte-Carlo method (2.2) with the acceptance
probability α(u, v) in (2.1) replaced by

(4.22) αJ,l(u, v) = 1 ∧ exp(ΦJ,l(u; δ)− ΦJ,l(v; δ)) , (u, v) ∈ Γb × Γb .

The integral of g over Γb with respect to γJ,l,δ is then approximated by

(4.23) EγJ,l,δ

M [g] :=
1

M

M
∑

k=1

g(u(k)).
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To estimate the MCMC sampling error incurred by Finite Element approximation,

(4.24) E
γδ

[g]− EγJ,l,δ

M [g] ,

we develop an asymptotic, probabilistic error bound for PJ,l

u(0) -a.e. realization of the
Markov chain and a mean square bound when M → ∞.

By pJ,l(u, ·) we denote the transition kernel of the Markov chain generated by
the MCMC process with acceptance probability αJ,l defined in (4.22). Then we
have

Proposition 4.7. For sufficiently large constants a > 0 and B > 0, there exist
J0 ∈ N, l0 ∈ N, r > 1 and R > 0 (generally depending on a, B and on δ) such that
for every J > J0 and every l > l0, the function V : U → R defined by
(4.25)

V(u) =







exp
(

a
∑∞

j=1(bj + b̄j)|uj |+ 1
ε

∑

j>J bj|uj |
)

if u ∈ Γb̄

exp
(

(a
∑∞

j=1 bj + a
∑J

j=1 b̄j)|uj |+ 1
ε

∑

j>J bj|uj |
)

if u ∈ Γb \ Γb̄,

with ε = B
∑

j>J bj satisfies, for every n ∈ N and for every u ∈ U = Γb,

‖(pJ,l)n(u, ·)− γJ,l,δ‖V ≤ Rr−nV(u) .

We prove this proposition in Appendix A.

Remark 4.8. From Proposition 4.7 and the proof of Theorem 2.4, the Markov
chain generated by the MCMC process on the approximate forward problem (4.6)
with acceptance probability (4.22) satisfies (2.5) and (2.6), with the probability mea-

sure γJ,l,δ. The constants c in (2.5) and C in (2.6) depend on r, R and E
γJ,l,δ

[V(u)2]
in Proposition 4.7. From Lemma 6.2, ‖V‖L2(U,γb) is uniformly bounded above with
respect to J and l. As shown in the proof of Proposition 4.6, the normalizing con-
stant ZJ,l in (4.13) is bounded below from 0 uniformly with respect to J and l. Thus

E
γJ,l,δ

[V(u)2] is uniformly bounded with respect to J and l. Therefore, the constants
c and C in (2.5) and (2.6) for the Markov chain generated by the MCMC process
with the acceptance probability (4.22) are bounded above uniformly with respect to
J and l.

From (4.18), we deduce that there are positive constants c1 and c2 (depending
only on r) so that, for |δ| < r and for every J, l ∈ N holds

(4.26) ∀u ∈ Γb : |ΦJ,l(u; δ)| ≤ c1 + c2 exp
(

2

∞
∑

j=1

bj |uj|
)

.

To estimate effect of discretization and dimension truncation in the forward map
on the Bayesian estimate, we require the following result.

Lemma 4.9. For U = Γb, the integral

κ =

∫

U

exp



−c2 exp(2
∞
∑

j=1

bj |uj |)



 dγb(u)

is finite and strictly positive. Here, c2 is as in (4.26).
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Proof First we note from Appendix B that

∫

RN

exp(2

∞
∑

j=1

bj|uj |)dγ(u) = lim
J→∞

J
∏

j=1

∫ ∞

−∞

exp(2bj |uj| − u2j/2)
duj√
2π

≤
∞
∏

j=1

exp(2b2j + 2bj
√

2/π) = exp(2

∞
∑

j=1

b2j + 2
√

2/π

∞
∑

j=1

bj)) <∞.

For every fixed c > 0 there exists a constant Λ > 0 so that

γb











u ∈ Γb : exp(2

∞
∑

j=1

bj|uj |) ≥ Λ









 < c/Λ < 1 ,

and we obtain

γb











u ∈ Γb : exp(2

∞
∑

j=1

bj |uj|) < Λ









 > 1− c/Λ > 0 .

Thus

κ > exp(−c2Λ)(1− c/Λ) > 0 .

The lemma is thus proved. �
Using Lemma 4.9, we may introduce a probability measure γ̄ on Γb ⊂ U via

(4.27) dγ̄(u) =
1

κ
exp(−c2 exp(2

∞
∑

j=1

bj|uj |))dγb(u) .

Let V : U → R be the function defined in (4.25). Then, there holds

Proposition 4.10. Let g : Γb → R be a function such that |g(u)|2 ≤ V(u) for

u ∈ Γb. Then, for every initial condition u(0) and for PJ,l
u(0) -almost every realization

of the Markov chain holds the error bound

(4.28)
∣

∣

∣E
γδ

[g(u)]− EγJ,l,δ

M [g(u)]
∣

∣

∣ ≤ C1M
− 1

2 + C2

(

J−q + 2−l
)

where C1 is a random variable which satisfies a.s. C1 ≤ c3|ξM | for random variables
ξM on the probability space generating the randomness in the Markov chain which
converge weakly as M → ∞ to ξ ∼ N(0, 1). In (4.28), C2 is a constant which is
independent of M,J and l.

Moreover, there exists a constant c4 > 0 (which depends only on the data δ, and
which is, in particular, independent of J ,l and M) such that

(4.29)
(

E γ̄,J,l
[ ∣

∣

∣E
γδ

[g]− EγJ,l,δ

M [g]
∣

∣

∣

2 ])1/2

≤ c4(M
−1/2 + J−q + 2−l) .

Here, the constant q > 0 is defined in (4.14).

Proof We observe that |g(u)|2 < V(u) for u ∈ Γb implies that g ∈ L2(Γb, γb)
and g ∈ L2(Γb, γ

δ). We have from Proposition 4.6 and properties of the Hellinger
metric (specifically, from (2.7) in [3])

(4.30) |Eγδ

[g]− E
γJ,l,δ

[g]| ≤ c̄(g)dHell(γ
δ, γJ,l,δ) ≤ c̄(g)c(δ)(J−q + 2−l) .
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Here, c(δ) is as in Proposition 4.6 and c̄(g) depends on ‖g‖L2(Γb,γ), but is indepen-
dent of J, l ∈ N. From Theorem 17.0.1 of [16] we deduce the existence of a constant
C > 0, such that

|EγJ,l,δ

[g]− 1

M

M
∑

k=1

g(u(k))| ≤ C|ξM |M−1/2

where the sequence ξM of random variables converges weakly as M → ∞ to ξ ∼
N(0, 1). The constant C is determined by

C2 = EγJ,l,δ

[ḡ(u(0))]2 + 2
∞
∑

n=1

EγJ,l,δ

[ḡ(u(0))ḡ(u(n))]

where ḡ(u) = g(u) − E
γJ,l,δ

[g]. As the normalizing constant ZJ,l is uniformly
bounded away from zero for sufficiently large J and l (cp. the proof of Proposition
4.6), there exists a constant c > 0 such that for all J, l ∈ N

|EγJ,l,δ

[g]| ≤ cEγ [|g|] ≤ cEγ [V ] .

Thus we have the uniform w.r. to J and l bound

EγJ,l,δ

[ḡ(u(0))]2 ≤ cEγ(V)2 .

We also have

∞
∑

n=1

EγJ,l,δ

[ḡ(u(0))ḡ(u(n))] ≤ E
γJ,l,δ

[

|ḡ(u(0))|
∞
∑

n=1

|EJ,l
u(0) [ḡ(u

(n))]|
]

≤ E
γJ,l,δ

[

|ḡ(u(0))|
∞
∑

n=1

|EJ,l
u(0) [g(u

(n))]− E
γJ,l,δ

[g]|
]

≤ E
γJ,l,δ

[|ḡ(u)|V(u)]
∞
∑

n=1

Rr−n

which is uniformly bounded above for all J and l. Combining this with (4.30)
shows the first assertion.
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We now prove the mean square bound (4.29). Due to the invariance of the
stationary measures γJ,l,δ, we may write

1

M
EγJ,l,δ,J,l

[∣

∣

∣

M
∑

k=1

ḡ(u(k))
∣

∣

∣

2]

= E
γJ,l,δ

[ḡ(u(0))2] + 2
1

M

M
∑

k=1

M
∑

j=k+1

EγJ,l,δ,J,l[ḡ(u(k))ḡ(uj)]

= E
γJ,l,δ

[ḡ(u(0))2] + 2
1

M

M−1
∑

k=0

M−k
∑

j=1

EγJ,l,δ,J,l[ḡ(u(0))ḡ(u(j))]

= E
γJ,l,δ

[ḡ(u(0))2] + 2
1

M

M−1
∑

k=0

M−k
∑

j=1

E
γJ,l,δ

[ḡ(u(0))EJ,l
u(0) [ḡ(u

(j))]]

≤ E
γJ,l,δ

[ḡ(u(0))2]

+2
1

M

M−1
∑

k=0

M−k
∑

j=1

E
γJ,l,δ

[|ḡ(u(0))||EJ,l
u(0)g(u

(j))− E
γJ,l,δ

[g]|]

≤ E
γJ,l,δ

[ḡ(u(0))2] + 2R
1

M

M−1
∑

k=0

M−k
∑

j=1

r−j
E
γJ,l,δ

[|ḡ(u(0))|V(u(0))|],

where, as in Proposition 4.7 the constant r > 1 is independent of the parameters

J and l. Since supJ,l E
γJ,l,δ

[ḡ(u(0))2] is bounded independently of J and of l, we
deduce that

sup
J,l,M∈N

M EγJ,l,δ,J,l
[∣

∣

∣

1

M

M
∑

k=1

ḡ(u(k))
∣

∣

∣

2]

<∞ .

We now show that this estimate also holds for the expectation with respect to the
Markov chain where the initial state u(0) is distributed according to γ̄ defined in
(4.27). We have

E γ̄,J,l
[∣

∣

∣

M
∑

k=1

ḡ(u(k))
∣

∣

∣

2]

=

∫

Γb

EJ,l
u(0)

[∣

∣

∣

M
∑

k=1

ḡ(u(k))
∣

∣

∣

2]

dγ̄(u(0))

=

∫

Γb

EJ,l

u(0)

[∣

∣

∣

M
∑

k=1

ḡ(u(k))
∣

∣

∣

2] dγ̄

dγb
(u(0))

dγb
γJ,l,δ

(u(0))dγJ,l,δ(u(0))

=

∫

Γb

EJ,l
u(0)

[∣

∣

∣

M
∑

k=1

ḡ(u(k))
∣

∣

∣

2] 1

κ
exp



−c2 exp(2
∞
∑

j=1

bj |uj|)



ZJ,l(δ) exp(ΦJ,l(u; δ))dγJ,l,δ(u(0)) .

From (4.26), we deduce that

sup
J,l,M

ME γ̄,J,l
[∣

∣

∣

1

M

M
∑

k=1

ḡ(u(k))
∣

∣

∣

2]

<∞ .

�
For u ∈ Γb and for ℓ ∈ V ∗, define g(u) := ℓ(P (·, u)) and, for J, l ∈ N,

gJ,l(u) := ℓ(P J,l(·, u)). From (3.11) and (4.11), there exists a constant c > 0
which is independent of J, l ∈ N such that

E
γδ

[|g(·)− gJ,l(·)|] ≤ c(J−q + 2−l) .

We estimate E
γδ

[gJ,l(·)] by performing the MCMC-FE algorithm with the accep-
tance probability (4.22). Then, Proposition 4.10 holds for gJ,l since there exists
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c > 0 such that |gJ,l(u)| ≤ cK̂(u)/Ǩ(u) for every u ∈ Γb. Thus, the function V(u)
can be chosen so as to majorize c(K̂(u)/Ǩ(u))2 which is in L2(U, γb).

Proposition 4.11. For u ∈ Γb and for ℓ ∈ V ∗, define g(u) := ℓ(P (·, u)). Then,

for every initial condition u(0) and for PJ,l
u(0) -almost every realization of the Markov

chain, there holds the error bound

(4.31)
∣

∣

∣
E
γδ

g(·)− EγJ,l,δ

M [gJ,l(·)]
∣

∣

∣
≤ c1M

− 1
2 + c2

(

J−q + 2−l
)

.

There also holds the mean square error bound

(4.32)
(

E γ̄,J,l
[ ∣

∣

∣E
γδ

[g(·)]− EγJ,l,δ

M [gJ,l(·)]
∣

∣

∣

2 ])1/2

≤ c4(M
−1/2 + J−q + 2−l) .

Here, the constants ci are as in Proposition 4.10.

4.5. Complexity analysis for the MCMC FEM. In the previous section, we
assumed that the exact solution P J to the dimensionally truncated problem (4.1)
belongs toH2(D), which implied the FE convergence rate (4.5). For this to hold, we
imposed Assumption 4.3 and required that the domain D is convex and f ∈ L2(D).
However, Assumption 4.3 may be violated: for general exponential covariances or in
nonconvex, polyhedral domains it does not hold. Instead, the coefficient functions
of the Karhúnen-Loève expansion of the random coefficient K only belong to some
Hölder classes. The solution P J of (4.1) is thus at best in H1+t(D) for some
0 < t < 1. This is also the case where the domain D is a non-convex polygon or if
the function f does not belong to L2(D). For these cases, the convergence rate of
the FE approximation reduces to O(ht) = O(N−t/d) where N= dim(V l) denotes
the number of degrees of freedom and h denotes the meshwidth, cp. (4.4). Then,
the error bound on the Hellinger distance in Proposition 4.6 becomes

(4.33) dHell(γ
δ, γJ,l,δ) ≤ c(J−q + 2−tl) .

Therefore, for this general case, in Proposition 4.10, the error estimates (4.28) and

(4.29) become the PJ,l
u(0) -almost sure bound

(4.34)
∣

∣

∣E
γδ

[ℓ(P (·, u))]− EγJ,l,δ

M [ℓ(P J,l(·, u))]
∣

∣

∣ ≤ c1M
−1/2 + c2(J

−q + 2−tl)

where c1 ≤ c3|ξM | with an asymptotically N(0, 1) random variable ξM , and the
mean square bound
(4.35)
(

E γ̄,J,l
[∣

∣

∣E
γδ

[ℓ(P (·, u))]− EγJ,l,δ

M [ℓ(P J,l(·, u))]
∣

∣

∣

2])1/2

≤ c4(M
−1/2 + J−q + 2−tl),

respectively.
We next develop a complexity analysis for the MCMC FE procedure proposed

above for estimating the expectation with respect to the posterior probability mea-
sure of a function Γb ∋ u 7→ g(u) = ℓ(P (u)) for ℓ ∈ V ∗, ie. for a bounded linear
functional of the parametric solution. As the present, lognormal parametric depen-
dence (3.1) does not allow for uniform (w.r. to u ∈ Γb) work bounds, we opt for
error vs. work bounds that are probabilistic, unlike the results in [14]. To this end,
we address the cost for the numerical solution of the FE equations (4.6), which
amounts to generating, for each instance of u ∈ Γb proposed by the Markov Chain,
the “stiffness matrix”

(4.36) AJ,l(u) =

(∫

D

KJ(x, u)∇wl
k(x) · ∇wl

k′ (x)dx : k, k′ ∈ I l
)

, u ∈ Γb .
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From (3.8), AJ,l is a symmetric positive definite matrix, for all u ∈ Γb, J and l in
N. In each numerical realization of (4.6), for each proposal u ∈ U of the sampler,
one realization of the “stiffness” matrix AJ,l(u) must be computed and inverted.
Assuming exact evaluation of matrix entries (see, however, Remark 4.15), the linear
system with matrixAJ,l(u) will not be inverted exactly, but rather solved iteratively
except in space dimension d = 1 (when AJ,l(u) is tridiagonal, symmetric and, for
every realization u ∈ Γb, positive definite). The iteration is stopped when the
iteration error will match the discretization errors. Under Assumption 3.1 we have
(3.8), i.e. AJ,l(u) is symmetric, positive definite for all u ∈ Γb. We opt for iterative
solution by preconditioned conjugate gradient (CG) iteration. For preconditioning
and in order to relate euclidean norm of the residual vector in the iteration to the
V -norm of the corresponding Finite Element error, we assume available a Riesz
basis for V = H1

0 (D) spanning the finite element spaces V l.

Assumption 4.12. (Riesz Basis Property in V ) For each L ∈ N0 there exists a
set of indices IL ⊂ N

d of cardinality NL = O(2Ld) and a hierarchic family of basis
functions wL

k ∈ H1
0 (D) indexed by a multi-index k ∈ IL such that V L = span{wL

k :
k ∈ IL}. The collection

⋃

l≥0{wl
k : k ∈ Il} constitutes a Riesz-basis for L2(D)

which, when rescaled according to {2lwl
k : k ∈ J l := Il \Il−1}l≥0, becomes a Riesz-

basis for the space V , i.e. there exist constants 0 < čRiesz ≤ ĉRiesz <∞ which are
independent of L ∈ N such that

(4.37) čRiesz

∑

k∈IL

|cLk |2 ≤ ‖wL‖2L2(D) ≤ ĉRiesz

∑

k∈IL

|cLk |2 ,

and

(4.38) čRiesz

L
∑

l=0

22l
∑

k∈J l

|clk|2 ≤ ‖wL‖2V ≤ ĉRiesz

L
∑

l=0

22l
∑

k∈J l

|clk|2 .

Concrete constructions of such bases, in polygonal and polyhedral domains D
can be found in [17] and [23] and the references there. To bound the number of
nonzero entries in the stiffness matrix (and thus the number of float point operations
necessary for one matrix-vector multiplication), we impose further assumptions on
the overlap of the support of the basis functions.

Assumption 4.13. (Support overlap) For all l ∈ N0 and for every k ∈ I l, for

every l′ ∈ N0 the support intersection supp(wl
k) ∩ supp(wl′

k′ ) has positive measure

for at most O(max(1, 2l
′−l)) values of k′.

We emphasize that the support overlap and the Riesz basis assumptions 4.12 and
4.13 hold independently of the realization of u ∈ Γb. In the ensuing discussion of the
complexity of the MCMC-FEM, we denote by Ndof = #(I l) = O(h−d) the number
of degrees of freedom (or the number of unknowns) which are to be determined in
the Galerkin approximation (4.6). Assumption 4.13 implies that a) the number of
nonvanishing entries of the matrix A(u) in (4.36) is of O(Ndof logNdof), for any
J ∈ N and for any u ∈ Γb, and b) the number of float point operations of a matrix
vector multiplication is likewise bounded by O(Ndof logNdof) operations, with the
constant implied in O(·) being independent of u ∈ Γb. Denote by x ∈ R

Ndof

the solution vector corresponding to the FE equation (4.6), ie. the solution of
AJ,l(u)x = f for some proposal u ∈ Γb of the Markov chain and for the load
vector f = {(f, wl

k) : k ∈ I l}. Due to the Riesz basis property (4.37), we may
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insert a diagonal preconditioner D and apply the CG algorithm [9, Alg. 10.2.1] to
the diagonally preconditioned linear system D−1/2AJ,l(u)D−1/2D1/2

x = D−1/2f .
For every u ∈ Γb, CG iterations for this linear system generate, starting from an
arbitrary initial choice x0 ∈ R

Ndof , a sequence {xj}j≥0 which converges to x. For
every u ∈ Γb, there holds (see, eg. [9, Thm. 10.2.6]) for iteration error at step j,
ej := x− xj ∈ R

Ndof ,

(4.39) ‖ej‖AJ,l(u) ≤ 2

(

√

κ(u)− 1
√

κ(u) + 1

)j

‖e0‖AJ,l(u) , j = 1, 2, ... .

In (4.39), we denote for a SPD matrix B, the “energy” norm ‖x‖B :=
√
x⊤Bx

and, for u ∈ Γb, κ = κ(u) ≥ 1 denotes the condition number of the matrix
D−1/2AJ,l(u)D−1/2 arising in (4.6). This condition number is independent of J
and of l by the Riesz basis assumption (4.38), but depends on the realization u ∈ Γb

of the uncertain input. Specifically, denote by D the block diagonal matrix with
entries 2l on diagonal elements with indices k ∈ J l. Then, under Assumption 4.12,
there exists a constant C > 0 such that for all J, l ∈ N and for all u ∈ Γb holds

κ(u) = cond2(D
−1/2AJ,l(u)D−1/2) =

λmax(D
−1/2AJ,l(u)D−1/2)

λmin(D−1/2AJ,l(u)D−1/2)
≤ C

K̂(u)

Ǩ(u)
.

This means that with diagonal preconditioning, starting from any initial vector
x0 the CG iteration produces a sequence {xj}j≥0 which converges in the norm
‖ ◦ ‖2 to the solution x of the linear system, at a rate which is independent of
the discretization level but which will in general depend on the proposal of the
chain. This is different from the situation encountered in [14] and will only allow
probabilistic work estimates for the MCMC-FEM.

We equilibrate the terms in the error bounds (4.34) and (4.35), to obtain for
a FE discretization at level l of mesh refinement, with spatial solution regularity
H1+t(D) in (4.4). This leads to the choices

(4.40) J = O(2tl/q) , M = O(22tl) , l ∈ N .

Starting the CG iteration with x0 = 0, and denoting by P J,l
j (u) ∈ V l the FE

solution corresponding to iteration vector xj , from (4.38) follows for any fixed
u ∈ Γb

‖P J,l(u)− P J,l
j (u)‖2V ≃ ‖ej‖2AJ,l(u)

.

(

√

κ(u)− 1
√

κ(u) + 1

)2j

‖e0‖2AJ,l(u)

≃
(

√

κ(u)− 1
√

κ(u) + 1

)2j

‖P J,l(u)‖2V

.

(

√

κ(u)− 1
√

κ(u) + 1

)2j
1

Ǩ(u)2
‖f‖2L2(D) .

Here, the constants implied in ≃ and . are independent of J , l and of u ∈ Γb. To
ensure that the error due to stopping the preconditioned conjugate gradient itera-
tion after j∗ many steps be smaller than the error (4.35), we find that a sufficient
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condition (based on the bound (4.39)) is

(4.41) j∗(u) ≥ C(| log h|+ | log Ǩ(u)|)
√

K̂(u)

Ǩ(u)
, for given u ∈ Γb .

Here C > 0 is independent of h, l and of u ∈ Γb (but depends on t, čRiesz and

ĉRiesz in (4.37). Since K̂, Ǩ−1 ∈ Lp(U ; γb) for every 0 < p < ∞ [2, Prop.2.3], the
lower bound in (4.41) is strongly γb-measurable.

We estimate the expected (under the gaussian measure γ) work involved in
performing j∗ steps of the CG iteration. For any u ∈ Γb, the stiffness matrix
AJ,l(u) in (4.36) has O(ld−12dl) non zero entries (with O(·) uniform w.r. to u).
Assuming a fixed number of quadrature points per matrix entry, the computation
of each of these entries requires O(J) many floating point operations, due to the
necessary evaluation of the J-term truncation of the parametric coefficient K(u).
Therefore the number of floating point operations for forming the stiffness matrix
AJ,l(u) is bounded by O(Jld−12dl), with O(·) uniform w.r. to u ∈ Γb. Then, the
number of floating point operations at each CG step is bounded by O(ld−12dl).
This leads to a bound for the total work for the approximate solution of the linear
system corresponding to the Galerkin equation (4.6), for any single, given proposal
v ∈ Γb of the Markov chain (with the constants implied in . being independent of
J, l ∈ N and of v ∈ Γb)
(4.42)

WPCG(v) ∼ Jld−12dl + (K̂(v))1/2(Ǩ(v))−1/2(l + | log Ǩ(v)|)ld−12dl

. Jld−12dl + (K̂(v))1/2(Ǩ(v))−1/2(1 + | log Ǩ(v)|)ld2dl
∼ ld−12tl/q+ld + (K̂(v))1/2(Ǩ(v))−1/2(1 + | log Ǩ(v)|)ld2ld .

Multiplying this with the (deterministic) bound (4.40) on the number M of steps
in the chain that is sufficient in order for the chain to attain (in mean square)
the FE discretization error, we find bounds on the expectation (with respect to
the probability space generating the randomness of the samples v(k) which are
distributed independently, identically according to the Gaussian prior γ) of the
total work required for running the chain to convergence in mean square.

Solving approximately the Galerkin discretized forward equation for each pro-
posal u ∈ Γb produced by the chain with j∗(u) CG iterations as in (4.41), we realize

numerically the approximate posterior measure γJ,l,δ∗ defined by

dγJ,l,δ∗

dγ
∝ exp(−ΦJ,l

∗ (u; δ)) where ΦJ,l
∗ (u; δ) =

1

2
|δ − GJ,l

∗ (u; δ)|

and

GJ,l
∗ (u; δ) = (O1(P

J,l
j∗(u)(·, u)), . . . ,Ok(P

J,l
j∗(u)(·, u))) .

Arguing as in the proof of Proposition 4.6, we obtain a bound on the Hellinger
distance between the true posterior γδ and the approximate posterior measure

γJ,l,δ∗ obtained numerically by dimension truncation, Galerkin-discretization and
incomplete iterative solution of the linear systems,

dHell(γ
δ, γJ,l,δ∗ ) ≤ c(J−q + 2−tl) .

We therefore deduce that for ℓ ∈ V ∗

|Eγδ

[ℓ(P (·, u))]− E
γJ,l,δ
∗ [ℓ(P J,l

j∗(u)(·, u))]| ≤ c(J−q + 2−tl) .
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Therefore if for each proposal v(k) ∈ Γb of the MCMC process, j∗(v(k)) steps
where j∗() is assumed to be the lower bound in (4.41) of the CG iteration are

performed, we get (4.34) and (4.35) with EγJ,l,δ

M [ℓ(P J,l(·, u))] being replaced by

E
γJ,l,δ
∗

M [ℓ(P J,l
j∗(u)(·, u))]. This, in turn, leads to a bound for the expected (over all

proposals u ∈ Γb and with respect to the Bayesian prior γb in (3.4)) work for
performing one step of the MCMC FE process given by

Eγb
[WPCG(·)] ≤ Cld−122tl+dl+tl/q .

As the proposals are chosen independently, the expected work under the probability
measure of the space of sequences of M independently generated proposals {v(k)}
for performing M steps of the MCMC process on the discretized forward problem
is bounded by CMld−122tl+dl+tl/q. For the probabilistic convergence estimate of
(4.34), we balance the error contributions in (4.28), and choose J = ⌈2tl/q⌉ and

M = ⌈s2N2t/d
dof ⌉ where s = c3|ξM |. To attain the mean square convergence estimate

(4.29), we choose J = ⌈2tl/q⌉ and M = ⌈22tl⌉. With these choices, the expected
number of floating point operations under the gaussian prior γb on (Γb,B(Γb)) is
bounded by Cs2ld−12tl+dl+tl/q to attain the almost sure convergence bound (4.34)
and by Cld−12tl+dl+tl/q to attain the mean square convergence bound (4.35).

Theorem 4.14. Under Assumptions 4.12 and 4.13, for g(u) = ℓ(P (u)) where
ℓ ∈ V ∗, given data δ ∈ R

k, for any s > 0 with probability pNdof
(s), the conditional

expectation E
γδ

[g(u)] can be approximated by solving discretized forward problems

(4.6) with Ndof degrees of freedom per step of the MCMC algorithm, with s2N
2t/d
dof

MCMC steps (with a total of s2N
1+2t/d
dof degrees of freedom), incurring an error of

O(N
−t/d
dof ) and the expectation of the total number of floating point operations with

respect to the sequence of independent proposals v(k) is not larger than

cs2(logNdof)
d−1N

1+t(2+1/q)/d
dof ,

where

lim
Ndof→∞

pNdof
(s) →

∫ c′s

−c′s

1√
2π

exp(−x2/2)dx,

for a positive constant c′ independent of Ndof and of s.

In the mean square with respect to the measure P γ̄,J,l, E
γδ

[g(u)] can be ap-

proximated with an error O(N
−t/d
dof ), using not more than O(N

1+2t/d
dof ) number of

degrees of freedom in total, and the expectation of the total number of floating
point operations with respect to the sequence of random proposals v(k) is bounded

by O((logNdof)
d−1N

1+t(2+1/q)/d
dof ).

Remark 4.15. The preceding error vs. work analysis was performed under the
assumption of exact numerical integration, with O(1) cost per integral. In practice,

however, the entries AJ,l
ij (u) of the stiffness matrix in (4.36) can not be evaluated

exactly and numerical integration is used. Under Assumption 4.3, the parametric
coefficient KJ(·, u) is, for J ∈ N ∪ {∞} and for every proposal u ∈ Γb̄, Lipschitz

w.r. to x ∈ D. The matrix entries AJ,l
ij (u) in (4.36) may be replaced by numerically

integrated approximations ÃJ,l
ij (u) which are obtained, for example, by the midpoint

rule (the d+1 point quadrature rule averaging the values of KJ(·, u) at the vertices
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of T ∈ T l results in the same error bound). Denoting by T ⊂ D a simplex in T l,
we set

(4.43) ÃJ,l
ij (u) :=

∑

|T∩S(i,j)|>0

|T ∩ S(i, j)|KJ(u, xT )∇wl
i|T · ∇wl

j |T ,

where S(i, j) denotes the intersection of the supports of the one-scale basis functions
wl

i and w
l
j and xT = |T |−1

∫

T x denotes the barycenter of T . Note that the gradients

∇wl
i|T and ∇wl

j |T are constant in T . With approximation (4.43), we estimate for
every u ∈ Γb̄ its impact on the parametric FE approximation for proposal u by the
Strang Lemma. To this end, we denote by P J,l ∈ V l the H1

0 (D)-projection of P J

onto V l and define gJ(x, u) := log(KJ(x, u)−K∗(x, u)). By a(u; ·, ·) we denote the
parametric bilinear form corresponding to (3.5) with exact coefficient K in (3.1),
and with aJ(u; ·, ·) its approximation with coefficient KJ in (4.1), and aJ,l(u; ·, ·)
its approximation with coefficient KJ(·, u) approximated by the stepfunction of its
values KJ(u, xT ) in the barycenter xT for T ∈ T l. Then, for abitrary wl ∈ V l, we
estimate

∣

∣aJ(u;P J,l, wl)− aJ,l(u;P J,l, wl)
∣

∣

≤
∑

T∈T l

∣

∣

∣

∣

∫

T

(exp(gJ (x;u))− exp(gJ(xT ;u)))∇P J,l · ∇wldx

∣

∣

∣

∣

.
∑

T∈T l

‖ exp(gJ (·;u))− exp(gJ (xT ;u))‖L∞(T )

∣

∣

∣

∣

∫

T

∇P J,l · ∇wldx

∣

∣

∣

∣

.

Here, and in the remainder of this remark, the constant implied in . is independent
of J , L and of u ∈ Γb. For every u ∈ Γb̄ and for every J ∈ N ∪ {∞} the Lipschitz
regularity of x 7→ gJ(x;u) implies for every T ∈ T l

‖ exp(gJ (·;u))− exp(gJ(xT ;u))‖L∞(T ) . hT ‖ exp(gJ (·;u))‖L∞(T )‖∇gJ(·;u)‖L∞(T ) .

The shape regularity of T l implies that max{hT : T ∈ T l} . 2−l, with the con-
stant implied in . depending only on the shape regularity parameter of the family
{T l}l≥0. We estimate for every T ∈ T l and for every u ∈ Γb̄

‖ exp(gJ(·;u))− exp(gJ(xT ;u))‖L∞(D)

= max
T∈T l

‖ exp(gJ(·;u))− exp(gJ(xT ;u))‖L∞(T )

. 2−l exp





J
∑

j=1

uj(bj + b̄j)



 .

Inserting into the above bound, and using Cauchy-Schwarz, we obtain for every
u ∈ Γb̄ and for every J ∈ N ∪ {∞} the Strang type consistency error bound
(4.44)

sup
06=wl∈V l

∣

∣aJ(u;P J,l, wl)− aJ,l(u;P J,l, wl)
∣

∣

‖wl‖V
. 2−l exp





J
∑

j=1

uj(bj + b̄j)



 ‖P J,l(·, u)‖V .

The projection P J,l(·, u) also satisfies the a-priori bound (4.2) with Ǩ(u) as in (3.7).
The consistency bound (4.44) is of the same type as the FE error bounds in Section
4.2, indicating that the present convergence analysis remains valid under the same
hypotheses also in the presence of the one-point quadrature approximation (4.43).
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5. Concluding Remarks

We close the paper by a summary of the principal conclusions, and we indicate
straightforward corollaries from the present results.

We presented a convergence and complexity analysis of Finite Element Markov
Chain Monte Carlo methods for Bayesian inversion of second order, elliptic diffusion
problems with isotropic, log-normal gaussian models for the uncertain diffusion
coefficient in a bounded domain D ⊂ R

d. We considered continuous, piecewise
linear Finite Elements for the primal discretization of the forward map (relating
realizations of the random diffusion coefficient to functionals of the solution), and
we assumed finite-dimensional, additive centered gaussian observation noise and
gaussian prior γ. The present analysis extends directly to (frequently employed in
practice) mixed FE discretizations of the forward problem.

We approximated the log-normal diffusion coefficient logK in (3.1) by its J-
term truncated Karhúnen-Loève expansion logKJ in (4.1). We proved geometric
ergodicity of the Markov chains running on the Finite Element discretization of the
dimension truncated forward problem (4.6).

We assumed γ-a.s. W 1,∞(D) regularity of the uncertain diffusion coefficient.
This assumption was made only to avoid unnecessary technicalities. ThisW 1,∞(D)
regularity is necessary to achieve full, first order convergence of the Finite Element
discretization. It could be weakened, leading to corresponding reduced rates of
convergence. If higher regularity were available γ-a.s. (e.g. for gaussian fields
logK with smooth covariance), higher order Finite Element discretizations would
allow for an analogous convergence analysis, with improved convergence rates.

The FE discretized forward problems were solved iteratively, by multi level pre-
conditioning (using a wavelet Finite Element basis). Due to the unbounded pa-
rameter ranges which occur in the gaussian proposals, complexity estimates for
discretization and iterative solution are proposal-dependent, mandating a prob-
abilistic complexity analysis of the Finite Element solver which we provided in
Section 4.5. Analogous probabilistic complexity analyses will apply also to other
numerical methods for the solution of lognormal diffusion problems, such as multi-
level Monte-Carlo and Quasi Monte-Carlo methods developed in [21], [11] and the
references there. Error bounds in mean square and a.s. with respect to the probabil-
ity of the space that describes the randomness of the Markov chain were obtained.
All constants implied in our error and complexity bounds are independent of the
discretization parameters in the forward models and of the proposals u(k) ∈ Γb

generated by the chain. They depend, however, implicitly on the observation noise
covariance Σ > 0 in (1.3) and in general degenerate for Σ → 0. The presently con-
sidered approximation error bounds accounted for a J-term truncation KJ(x, u) of
the Karhúnen-Loève expansion (3.1) of the gaussian random field log(K −K∗)(u).
On uniform regular simplicial partitions of axiparallel rectangular domains D into
simplices, and with numerical quadrature (4.43), circulant embedding methods can
be used to sample the random coefficient K(·, u) in each element barycenter xT ,
T ∈ T l, without dimensionally truncating the Karhúnen-Loève representation and
at cost proportional to O(l2ld), ie. log-linear in #(T l), see [10, Sec. 5.1,5.2] and the
references there for details. The quadrature error analysis in Remark 4.15 indicates
that the preceding error bounds also hold for the resulting “circulant embedding”
MCMC method. As is readily seen, for the “circulant embedding” MCMC, all er-
ror versus work bounds in Section 4.5 remain valid, however with q formally set
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to infinity: the present analysis also applies to this case, giving the same bounds,
without the dimension truncation term J−q.

Isotropy of the uncertain coefficient K in (3.1) and convexity of the physical
domain D are not essential in our MCMC convergence analysis: analogous results
hold true for second order, divergence form problems with matrix coefficient K,
and for nonconvex domains, provided that elliptic regularity is quantified in terms
of weighted Sobolev spaces in D, and that Finite Element discretizations with local
mesh refinements are used to resolve corner and edge singularities.

The present paper did not include numerical experiments. Such experiments, as
well as an extension of the present approach to a multi-level MCMC setting will be
presented in [12].

6. Appendix A

We prove Proposition 4.7 in this appendix.

Lemma 6.1. Let U = Γb. For each n ∈ N, there is a constant c(n) such that for
all functions g ∈ L2(U ; γb), g ≥ 0,

(6.1) |pn(u, ·)(g)| ≤ c(n)

∫

U

g(v)dγb(v) + (1− c0)
ng(u)

where c0 is the constant in the proof of Theorem 2.4 .

Proof We prove this Lemma by induction. When n = 1:

|p(u, ·)(g)| =
∫

U

α(u, v)g(v)dγb(v) + (1−
∫

U

α(u, v)dγb(v))g(u)

≤
∫

U

g(v)dγb(v) + (1− c0)g(u) .

Assuming that (6.1) holds for n− 1, then

|pn(u, ·)(g)| =
∫

U

α(u, v)pn−1(v, ·)(g)dγb(v) + (1 −
∫

U

α(u, v)dγb(v))p
n−1(u, ·)(g)

≤
∫

U

(

c(n− 1)

∫

U

g(w)dγb(w) + (1− c0)
n−1g(v)

)

dγb(v)

+(1− c0)
(

c(n− 1)

∫

U

g(v)dγb(v) + (1 − c0)
n−1g(u)

)

≤ c(n)

∫

U

g(v)dγb(v) + (1− c0)
ng(u)

where c(n) = c(n − 1) + (1 − c0)
n−1 + (1 − c0)c(n− 1) which is independent of g.

This proves (6.1). �

In the remainder of the paper, c(n) is as in (6.1).
Let a > 0 be an arbitrary constant, to be fixed in the proof of Lemma 6.6 ahead.

Define the function V0 : Γb → R by

(6.2) V0(u) =







exp
(

a
∑∞

j=1(bj + b̄j)|uj |
)

if u ∈ Γb̄

exp
(

a
∑∞

j=1 bj |uj|
)

if u ∈ Γb \ Γb̄,
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and, for J fixed independent of u ∈ Γb, and for ε = B
∑

j>J bj with a constant
B > 1 to be selected the function
(6.3)

V(u) =







exp
(

a
∑∞

j=1(bj + b̄j)|uj |+ 1
ε

∑

j>J bj |uj|
)

if u ∈ Γ
b̄

exp
(

(a
∑∞

j=1 bj + a
∑J

j=1 b̄j)|uj |+ 1
ε

∑

j>J bj |uj|
)

if u ∈ Γb \ Γb̄,
.

We have

Lemma 6.2. For every B > 1, the function V(u) defined in (6.3) satisfies ‖V‖L2(U,γb) <
C(a) where C(a) is a constant that only depends on a.

Proof From (4.19), with J as in (6.3),
∫

U

V(u)2dγb(u) ≤
J
∏

j=1

∫

R

exp((2abj + 2ab̄j)|uj |)dγ1
∏

j>J

∫

R

exp((2abj + 2ab̄j + 2bj/ε)|uj|)dγ1

≤ exp





J
∑

j=1

(2abj + 2ab̄j)
2/2 + (2abj + 2ab̄j)

√

2/π





× exp





∑

j>J

(2abj + 2ab̄j + 2bj/ε)
2/2 + (2abj + 2ab̄j + 2bj/ε)

√

2/π





≤ exp



6

∞
∑

j=1

a2(b2j + b̄2j) + 6
∑

j>J

b2j/ε
2 + 2a

√

2/π

∞
∑

j=1

(bj + b̄j) + 2
√

2/π
∑

j>J

bj/ε



 .

As b ∈ ℓ1, for ε = B
∑

j>J bj with B > 1 to be fixed ahead, there holds

(6.4)
∑

j>J

b2j/ε
2 <

∑

j>J

bj/ε < 1 .

Thus ‖V‖L2(U ;γb) < C(a) where C(a) depends only on a. �

Lemma 6.3. There are constants 0 < τ ′ < 1 and n1 = n1(τ
′) ∈ N such that for

all n ≥ n1 there is a constant B1(n, a) > 1 such that for B > B1(n, a) there holds

(6.5) ‖pn(u, ·)− γδ‖V ≤ τ ′V(u) ∀u ∈ Γb,

where p is the transition density of the Markov chain obtained from the MCMC
procedure with the acceptance probability α in (2.1).

Proof From the geometric ergodicity property (2.4) of the Markov chain with
the transition kernel p, with respect to the function V0, we have

lim
n→∞

sup
u∈Γb

‖pn(u, ·)− γδ‖V0/V0(u) = 0 .

Thus for every 0 < τ < 1 there exists n0(τ) ∈ N so that

(6.6) sup
u∈Γb

‖pn(u, ·)− γδ‖V0

V0(u)
≤ τ < 1 ∀n > n0(τ) .

Since V0 is independent of J and l, the constants τ and n0 can be chosen indepen-
dent of J and l. As γ(Γb̄) = 1, we note that
∫

U

(V(v)−V0(v))dγb(v) =

∫

Γ
b̄

(V(v)−V0(v))dγb(v) ≤
∫

Γ
b̄

V(v)(1−exp(−1

ε

∑

j>J

(bj |vj |)))dγb(v) .
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Using 1− exp(−x/ε) ≤ x/ε for all x > 0 and ε > 0, we have
∫

U

(V(v)− V0(v))dγb(v) ≤
1

ε

∫

Γ
b̄

V(v)
(

∑

j>J

bj|vj |
)

dγb(v)

≤ 1

ε

∑

j>J

bj

J
∏

k=1

∫

R

exp(a(bk + b̄k)|vk|)dγ1(vk)

×
∏

k>J,k 6=j

∫

R

exp((a(bk + b̄k) +
1

ε
bk)|vk|)dγ1(vk)

×
∫

R

|vj | exp((a(bj + b̄j) +
1

ε
bj)|vj |)dγ1(vj) .

Using (4.19) and (4.21), to estimate the last expression, we get (with the absolute
constant c > 0 of (4.21) and with B > 1 in (6.3))

∫

U

(V(v) − V0(v))dγb(v)

≤ c

ε

∑

j>J

bj exp
(

((a+ 1/ε)bj + ab̄j)
2/2
)

(1 + (a+ 1/ε)bj + ab̄j)

×
J
∏

k=1

exp
(

(abk + ab̄k)
2/2 + (abk + ab̄k)

√

2/π
)

×
∏

k>J

k 6=j

exp
(

((a+ 1/ε)bk + ab̄k)
2/2 + ((a+ 1/ε)bk + ab̄k)

√

2/π
)

≤ c

ε
exp

(

c1(a)
∞
∑

k=1

(bk + b2k + b̄k + b̄2k) + c1(a)
∑

k>J

(
bk
ε

+
b2k
ε2

)

)

∑

j>J

bj

≤ c2(a)

ε

∑

j>J

bj =
c2(a)

B

with the constant B > 1 as in (6.3), and with constants c1(a) and c2(a) depending
only on a. With the constant c(n) in Lemma 6.1, for every u ∈ Γb

(6.7) pn(u, ·)(V(·)− V0(·)) ≤ c(n)
c2(a)

B
+ (1− c0)

n(V(u)− V0(u)) .

Let g : U → R be a function such that |g(u)| ≤ V(u) ∀u ∈ Γb. Define further q

g0(u) =

{

g(u) exp(− 1
ε

∑

j>J bj|uj |) if u ∈ Γb̄

g(u) exp(− 1
ε

∑

j>J bj|uj | − a
∑J

j=1 b̄j|uj |) if u ∈ Γb \ Γb̄ .

Then |g0(u)| ≤ V0(u) for all u ∈ Γb. We also have that

|g(u)− g0(u)| = |g(u)|



1− exp(−1

ε

∑

j>J

bj|uj |)





when u ∈ Γb̄, and

|g(u)− g0(u)| = |g(u)|



1− exp(−1

ε

∑

j>J

bj|uj | − a

J
∑

j=1

b̄j |uj|)




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when u ∈ Γb \ Γb̄. Thus |g(u)− g0(u)| ≤ V(u)− V0(u) for all u ∈ Γb. From (6.6),
we have for every u ∈ Γb and every n > n0(τ)

|pn(u, ·)(g)− γδ(g)| ≤ |pn(u, ·)(g − g0)|+ |pn(u, ·)(g0)− γδ(g0)|+ |γδ(g − g0)|
≤ |pn(u, ·)(V − V0)|+ |γδ(V − V0)|+ τV0(u) .

Since

γδ(V − V0) ≤ cγb(V − V0),

where c depends only on the normalizing constant in the Radon-Nikodym derivative
of γδ with respect to γb, we have from (6.7) with the constant c0 ∈]0, 1[ in (2.8)

|pn(u, ·)(g)− γδ(g)| ≤ c(n)
c2(a)

B
+ (1 − c0)

n(V(u)− V0(u)) + c
c2(a)

B
+ τV0(u)

≤ c(n)
c2(a)

B
+ (1− c0)

nV(u) + τV(u) + cc2(a)

B

for every u ∈ Γb and for every n ≥ n0(τ) as in (6.6).
Fixing τ ′ < 1 such that τ ′ > τ , we can choose N ∋ n1 > n0 (depending on c0, τ

and τ ′) such that

(6.8) (1− c0)
n <

1

2
(τ ′ − τ), ∀n > n1 .

For every n > n1(c0, τ, τ
′), there exists a constant B1(n, a) so that

(6.9) (c(n) + c)
c2(a)

B
<

1

2
(τ ′ − τ) ∀B > B1(n, a) .

Thus, for every n > n1 and for B > B1(n, a) in (6.3), we have

|pn(u, ·)(g)− γδ(g)| ≤ τ ′V(u) ∀u ∈ Γb .

This is (6.5). �

We next bound the error incurred in the acceptance function α(u, v) in (2.1) due
to dimension truncation and Galerkin discretization.

Lemma 6.4. We have the estimate

(6.10) |α(u, v)− αJ,l(u, v)| ≤ |Φ(u; δ)− ΦJ,l(u, δ)|+ |Φ(v; δ)− ΦJ,l(v; δ)| .
Proof We first consider the case where α(u, v) ≥ αJ,l(u, v). If Φ(u; δ)−Φ(v; δ) ≥

0 then α(u, v) = 1. If αJ,l(u, v) = 1 the conclusion then follows. If αJ,l(u, v) < 1
we have ΦJ,l(u; δ)− ΦJ,l(v; δ) < 0. Using 1− exp(−x) < x for x ≥ 0, we have

α(u, v)− αJ,l(u, v) ≤ −(ΦJ,l(u; δ)− ΦJ,l(v; δ))

≤ (Φ(u; δ)− Φ(v; δ)) − (ΦJ,l(u; δ)− ΦJ,l(v; δ))

≤ |Φ(u; δ)− ΦJ,l(u; δ)|+ |Φ(v; δ)− ΦJ,l(v; δ)| .
If Φ(u; δ) − Φ(v; δ) < 0 then ΦJ,l(u; δ) − ΦJ,l(v; δ) < 0. Using the inequality
| exp(−x)− exp(−y)| ≤ |x− y| for all x, y > 0, we have

α(u, v)− αJ,l(u, v) = exp(Φ(u; δ)− Φ(v; δ))− exp(ΦJ,l(u; δ)− ΦJ,l(v; δ)

≤ |Φ(u; δ)− ΦJ,l(u; δ)|+ |Φ(v; δ)− ΦJ,l(v; δ)| .
The proof for the case α(u, v) < αJ,l(u, v) is similar. �

Using Lemma 6.4, we obtain a bound on the error in the transition kernel, due
to the dimension truncation and discretization error in the forward model.
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Lemma 6.5. For each n ∈ N, there is a constant d(n, a) which depends on V0 such
that for every B > 1 in (6.3)

‖(pJ,l)n(u, ·)− pn(u, ·)‖V ≤ d(n, a)
(

|Φ(u; δ)− ΦJ,l(u; δ)|+ 2−l + J−q
)

+nmin
(

|Φ(u; δ)− ΦJ,l(u; δ)|+ c(2−l + J−q), (1− c0)
n
)

V(u)(6.11)

where c is a constant independent of J, l and n.

Proof We show (6.11) by induction with respect to n.
n = 1: for a function g : Γb → R such that ∀u ∈ Γb : |g(u)| ≤ V(u)

|pJ,l(u, ·)(g)− p(u, ·)(g)|

≤
∫

U

|αJ,l(u, v)− α(u, v)|V(v)dγb(v) +
∣

∣

∣

∫

U

αJ,l(u, v)dγb(v)−
∫

U

α(u, v)dγb(v)
∣

∣

∣V(u) .

For v ∈ Γb, we have

|Φ(v; δ)− ΦJ,l(v; δ)| ≤ c(|δ|+ |G(v)|+ |GJ,l(v)|)|G(v) − GJ,l(v)|
≤ c(δ)(1 + ‖P (v)‖V + ‖P J,l(v)‖V )‖P (v)− P J,l(v)‖V

≤ c exp(7
∞
∑

j=1

bj |vj |)
(

2−l(1 +
J
∑

j=1

b̄j |vj |) +
∑

j>J

bj|vj |
)

≤ c exp(7

∞
∑

j=1

bj |vj |+
J
∑

j=1

b̄j|vj |)
(

2−l +
∑

j>J

bj |vj |
)

.(6.12)

Arguing as in the proof of Proposition 4.6, using (4.19) and (4.21), we deduce that

(6.13)

∫

U

|Φ(v; δ)−ΦJ,l(v; δ)|V(v)dγb(v) ≤ c(a)(2−l +
∑

j>J

bj) ≤ c(a)(2−l + J−q),

when B > 1. From Lemma 6.4,
∫

U

|αJ,l(u, v)−α(u, v)|V(v)dγb(v) ≤ |Φ(u; δ)−ΦJ,l(u; δ)|
∫

U

V(v)dγb(v)+c(a)(2−l+J−q) .

From (6.12), (4.19) and (4.21), we also have
∫

U

|Φ(v; δ)− ΦJ,l(v; δ)|dγb(v) ≤ c(2−l + J−q) .

Therefore

(6.14)

∫

U

|αJ,l(u, v)− α(u, v))|dγb(v) ≤ |Φ(u; δ)− ΦJ,l(u; δ)|+ c(2−l + J−q) .

We note that
∫

U

αJ,l(u, v)dγb(v) ≥
∫

U

exp(−ΦJ,l(v; δ))dγb(v) .

From (4.26), we can choose Λ > 0 (depending on c1, c2, b) so that

γb({v : ΦJ,l(v, δ) < Λ})
is uniformly bounded away from zero for J and l sufficiently large. Therefore, there
exists 0 < c0 < 1 such that for J and l sufficiently large

∫

U

exp(−ΦJ,l(v; δ))dγb(v) > c0 > 0 .
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We choose c0 as in (2.8). Then, for J and l sufficiently large,

∀u ∈ Γb :
∣

∣

∣

∫

U

(αJ,l(u, v)− α(u, v))dγb(v)
∣

∣

∣ ≤ 1− c0 .

We therefore deduce that for every u ∈ Γb holds

|pJ,l(u, ·)(g)− p(u, ·)(g)| ≤ d(1, a)(|Φ(u; δ)− ΦJ,l(u; δ)|+ 2−l + J−q)

+min
(

|Φ(u; δ)− ΦJ,l(u; δ)|+ c(2−l + J−q), 1− c0

)

V(u) .

This proves the assertion for n = 1.
Assume now that (6.11) holds for n− 1 for some n > 1. Then

|((pJ,l)n(u, ·)− pn(u, ·))(g)| ≤ |pJ,l(u, ·)((pJ,l)n−1 − pn−1)(g)|+ |(pJ,l − p)(u, ·)pn−1(g)| .
We also have from (6.1) that

|(pJ,l − p)(u, ·)(pn−1(·, ·)(g))|

≤
∫

U

|αJ,l(u, v)− α(u, v)|
(

c(n− 1)

∫

U

V(w)dγb(w) + (1 − c0)
n−1V(v)

)

dγb(v)

+
∣

∣

∣

∫

U

(α(u, v)− αJ,l(u, v))dγb(v)
∣

∣

∣

(

c(n− 1)

∫

U

V(v)dγb(v) + (1 − c0)
n−1V(u)

)

.

From (6.10), (6.12), (6.13) and (6.14) we deduce that there exists a constant d′(n, a)
such that for every u ∈ Γb holds

|(pJ,l − p)(u, ·)(pn−1(u, ·)(g))| ≤ d′(n, a)(|Φ(u; δ)− ΦJ,l(u; δ)|+ 2−l + J−q)

+min
(

|Φ(u; δ)− ΦJ,l(u; δ)|+ c(2−l + J−q), (1 − c0)
n
)

V(u) .

We have further that for every u ∈ Γb

|pJ,l(u, dv)((pJ,l)n−1 − pn−1)(v, ·)(g)|

≤
∫

U

|(pJ,l)n−1 − pn−1)(v, ·)(g)|dγb(v) + (1− c0)|(pJ,l)n−1 − pn−1)(u, ·)(g)|

≤
∫

U

(

d(n− 1, a)(|Φ(v; δ) − ΦJ,l(v; δ)|+ 2−l + J−q)

+(n− 1)(|Φ(v; δ)− ΦJ,l(v; δ)| + c(2−l + J−q))V(v)
)

dγb(v)

+(1− c0)d(n− 1, a)(|Φ(u; δ)− ΦJ,l(u; δ)|+ 2−l + J−q)

+(1− c0)(n− 1)min
(

|Φ(u; δ)− ΦJ,l(u; δ)|+ c(2−l + J−q)), (1− c0)
n−1
)

V(u)

≤ d′′(n, a)(|Φ(u; δ)− ΦJ,l(u; δ)|+ 2−l + J−q)

+(n− 1)min
(

|Φ(u; δ)− ΦJ,l(u; δ)|+ c(2−l + J−q)), (1 − c0)
n
)

V(u) .

From these bounds, we obtain (6.11) for n > 1 and complete the proof. �
We then have the following result.

Lemma 6.6. Given data δ, there exists a constant M <∞ so that for every B > 1
in (6.3) and for every J, l ∈ N holds

(6.15) sup
u∈Γb

‖pJ,l(u, ·)− γJ,l,δ‖V
V(u) ≤M .
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Assume that a is sufficiently large. Then, there are constants n ∈ N, B1(n, a) ∈ N,
J0 ∈ N, l0 ∈ N, 0 < τ ′′ < 1 so that for every B > B1(n, a), for every J > J0 and
every l > l0 holds

(6.16) sup
u∈Γb

‖(pJ,l)n(u, ·)− γJ,l,δ‖V
V(u) ≤ τ ′′ < 1 .

Proof From Proposition 4.6, γJ,l,δ(V) is uniformly bounded. Further,

pJ,l(u, ·)(V) =
∫

U

αJ,l(u, v)V(v)dγb(v) + (1 −
∫

U

αJ,l(u, v)dγb(v))V(u) ≤ c+ V(u) .

As the normalizing constant in (4.13) is bounded away from 0 uniformly with
respect to J and l,

∫

Γb

V(u)dγJ,l,δ(u) is uniformly bounded for every J and l. Thus

we can choose M > 0 such that (6.15) holds uniformly with respect to J and l.
Using the bound x ≤ ε exp(x/ε), for every x, ε > 0, from (6.12) we deduce that

for arbitrary, fixed a ≥ 7,

|Φ(u; δ)− ΦJ,l(u; δ)| ≤ c exp



7

∞
∑

j=1

bj |uj|+
J
∑

j=1

b̄j|uj |





×
(

(2−l + ε exp(
1

ε

∑

j>J

bj |uj |)
)

≤ c(2−l + ε)V(u) .
From Lemma 6.5, for |g| ≤ V , for all n ∈ N, and for every J, l ∈ N and every u ∈ Γb

|(pJ,l)n(u, ·)(g)− pn(u, ·)(g)| ≤
(

cd(n, a)(2−l + ε+ J−q) + n(1− c0)
n
)

V(u) .

For n > n1(τ
′) and the constant B > 1 in (6.3) such that B > B1(n, a) where n1

and B1(n, a) are the constants in Lemma 6.3, we obtain

|(pJ,l)n(u, )̇(g)− γJ,l,δ(g)|
≤ |(pJ,l)n(u, ·)(g)− pn(u, ·)(g)|+ |pn(u, ·)(g)− γδ(g)|+ |γδ(g)− γJ,l,δ(g)|
≤
(

cd(n, a)(2−l + ε+ J−q) + n(1− c0)
n + τ ′

)

V(u) + c(2−l + J−q)‖V‖L2(U,γb)

for all J, l ∈ N and all u ∈ Γb where τ ′ is the constant in Lemma 6.3. Let τ ′′ < 1 be
such that τ ′′ > τ ′. We choose n > n1 so that n(1−c0)n < (τ ′′−τ ′)/4. From Lemma
6.2, ‖V‖L2(U,γb) < C(a) where the bound C(a) only depends on a. We recall that
we work under Assumption 4.5. We therefore can choose J0 = J0(n, a,B) so that
with ε = B

∑

j>J bj≤ cBJ−q

∀J > J0(n, a,B) : cd(n, a)(ε+ J−q) + cC(a)J−q =
1

4
(τ ′′ − τ ′) .

There exists l0(n, a) ∈ N such that for every l > l0 holds

cd(n, a)2−l + cC(a)2−l <
1

4
(τ ′′ − τ ′) .

Thus, for every l > l0 and for every J > J0 if |g(u)| ≤ V(u) for all u ∈ Γb, there
holds

∀u ∈ Γb : |(pJ,l)n(u, ·)(g)− γJ,l,δ(g)| ≤ τ ′′V(u) .
This is (6.16) and completes the proof of Lemma 6.6. �



36 V.H. HOANG AND CH. SCHWAB

Proof of Proposition 4.7 From the proof of Proposition 16.1.3 of Meyn and
Tweedie [16], using Lemma 6.6, we find for fixed n ∈ N, u ∈ Γb, and for J > J0,
l > l0 as in Lemma 6.6, that there holds

∀m ∈ N : sup
u∈Γb

‖(pJ,l)m(u, ·)− γJ,l,δ‖V
V(u) ≤ Mn

τ ′′
((τ ′′)1/n)m.

This implies Proposition 4.7.

7. Appendix B: Proof of (4.19) - (4.21)

To prove estimate (4.19) we observe that for any t > 0

∫ ∞

−∞

exp(−z2/2 + |z|t) dz√
2π

= exp(t2/2)

∫ ∞

−∞

exp(−(|z| − t)2/2)
dz√
2π

= exp(t2/2)

(
∫ 0

−∞

exp(−(z + t)2/2)
dz√
2π

+

∫ ∞

0

exp(−(z − t)2/2)
dz√
2π

)

= exp(t2/2)

(
∫ t

−∞

exp(−z2/2) dz√
2π

+

∫ ∞

−t

exp(−z2/2) dz√
2π

)

= exp(t2/2)

(

1 +

∫ t

−t

exp(−z2/2) dz√
2π

)

≤ exp(t2/2)(1 + t
√

2/π) ≤ exp(t2/2) exp(t
√

2/π) .

For inequality (4.20), we have

∫ ∞

−∞

z2 exp(−z2/2 + |z|t) dz√
2π

= exp(t2/2)
(

∫ 0

−∞

z2 exp(−(z + t)2/2)
dz√
2π

+

∫ ∞

0

z2 exp(−(z − t)2/2)
dz√
2π

)

= exp(t2/2)
(

∫ t

−∞

(z − t)2 exp(−z2/2) dz√
2π

+

∫ ∞

−t

(z + t)2 exp(−z2/2) dz√
2π

)

≤ 2 exp(t2/2)
(

∫ t

−∞

(z2 + t2) exp(−z2/2) dz√
2π

+

∫ ∞

−t

(z2 + t2) exp(−z2/2) dz√
2π

)

= 4 exp(t2/2)

∫ ∞

−∞

(z2 + t2) exp(−z2/2) dz√
2π

≤ c exp(t2/2)(1 + t2) .
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Similarly, for inequality (4.21), we have
∫ ∞

−∞

|z| exp(−z2/2 + |z|t) dz√
2π

= exp(t2/2)

(∫ 0

−∞

|z| exp(−(z + t)2/2)
dz√
2π

+

∫ ∞

0

|z| exp(−(z − t)2/2)
dz√
2π

)

= exp(t2/2)
(

∫ t

−∞

|z − t| exp(−z2/2) dz√
2π

+

∫ ∞

−t

|z + t| exp(−z2/2) dz√
2π

)

≤ 2 exp(t2/2)

∫ ∞

−∞

(|z|+ t) exp(−z2/2) dz√
2π

≤ c exp(t2/2)(1 + t) .
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