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EXPONENTIAL CONVERGENCE OF hp-FEM FOR ELLIPTIC

PROBLEMS IN POLYHEDRA: MIXED BOUNDARY

CONDITIONS AND ANISOTROPIC POLYNOMIAL DEGREES

DOMINIK SCHÖTZAU AND CHRISTOPH SCHWAB

Abstract. We prove exponential rates of convergence of hp-version finite el-
ement methods on geometric meshes consisting of hexahedral elements for
linear, second-order elliptic boundary-value problems in axiparallel polyhedral
domains. We extend and generalize our earlier work for homogeneous Dirich-
let boundary conditions and uniform isotropic polynomial degrees to mixed
Dirichlet-Neumann boundary conditions and to anisotropic, linearly increasing
polynomial degree distributions. In particular, we construct H1-conforming
quasi-interpolation projectors with exponential consistency bounds on count-
ably normed classes of piecewise analytic functions with singularities at edges,
vertices and interfaces of boundary conditions, based on scales of weighted
Sobolev norms with non-homogeneous weights in the vicinity of Neumann
edges.

1. Introduction

We prove exponential converge estimates for conforming hp-version finite element
methods (FEMs) for the following elliptic boundary-value problem in an open and
bounded polyhedron Ω ⊂ R3 with mixed boundary conditions:

−∇ · (A∇)u = f in Ω ⊂ R3, (1.1)

γ0(u) = 0 on Γι ⊂ ∂Ω, ι ∈ JD, (1.2)

γ1(u) = 0 on Γι ⊂ ∂Ω, ι ∈ JN . (1.3)

The Lipschitz boundary Γ = ∂Ω is assumed to consist of a finite union of plane
axiparallel faces Γι indexed by ι ∈ J . The faces Γι are bounded, plane polygons
whose sides form the (open) edges of Ω. The set {Γι}ι∈J is partitioned into a
subset of Dirichlet faces {Γι}ι∈JD

and a subset of Neumann faces {Γι}ι∈JN
, with

corresponding (disjoint) index sets JD and JN , respectively (i.e., J = JD

.∪ JN ).
The diffusion coefficient matrix A is assumed to be constant and and symmetric,
positive definite. The function f is a given forcing term, and the operators γ0
and γ1 denote the trace and (co)normal derivative operators, respectively.

Upon introducing the Sobolev space V := {v ∈ H1(Ω) : v|Γι
= 0, ι ∈ JD}, the

weak formulation of problem (1.1)–(1.3) is to find u ∈ V such that

a(u, v) :=

∫

Ω

A∇u · ∇v dx =

∫

Ω

fv dx ∀v ∈ V, (1.4)
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where we understand the integral on the right-hand side in (1.4) as the duality
pairing in V ⋆ × V , with V ⋆ denoting the dual space of V . For every f ∈ V ⋆,
problem (1.4) admits a weak solution u ∈ V . The solution is unique if JD 6= ∅,
and unique in the factor space V/R if JD = ∅ (in which case we also require the
compatibility condition

∫
Ω f dx = 0).

The hp-version of the finite element method for elliptic problems was proposed
by Babuška and his coworkers, inspired by exponential convergence results in free-
knot, variable order spline interpolation. We refer to [6, 17] and the references
therein for these approximation theoretic estimates. The hp-version FEM unified
the hitherto largely separate developments of fixed-order “h-version FEM”, which
achieve convergence through reduction of the mesh size h, and the so-called “spectral
(or p-version) FEM”, which achieve convergence through increasing the polynomial
order p on a fixed mesh. Apart from unifying the existing approaches, hp-FEMs
were shown to achieve exponential convergence rates for solutions with singularities
in terms of the number N of degrees of freedom, in function spaces where the
differential equation is well-posed.

In [9], the exponential convergence rate C exp(−b
√
N) was shown for univari-

ate hp-FEM for the model singular solution solution u(x) = xα − x ∈ H1
0 (Ω) in

Ω = (0, 1), with α > 1/2 not an integer, with constants b, C > 0 independent of N .
This result required σ-geometric mesh refinement towards x = 0 with a fixed sub-
division ratio σ ∈ (0, 1) (in particular, σ = 1/2 yields geometric bisection meshes).
The constant b in the convergence estimate strongly depends on the singularity ex-
ponent α as well as on σ: among all σ ∈ (0, 1), the optimal value for σ was proved

in [9, Theorem 3.2] to be σopt = (
√
2 − 1)2 ≈ 0.17, provided that geometric mesh

refinement be combined with nonuniform polynomial degrees pi ≥ 1 in element Ωi

which are s-linearly increasing away from x = 0, i.e., pi ≃ si, with the optimal
slope s being sopt = 2(α− 1/2). In this case, b = 1.76 . . .×

√
(α− 1/2).

In two dimensions, exponential convergence bounds of the form C exp(−b 3
√
N)

for the errors of the hp-version FEM in polygons Ω were proved by Babuška and
Guo in [1, 2, 11, 12] and the references therein. Key ingredients in their proof were
again geometric mesh refinement towards the singular support S (being a finite set
of vertices of the polygon Ω) of the solution and nonuniform elemental polynomial
degrees which increase s-linearly with the elements’ distance from S. In addition
to the approximation results, their papers also provide elliptic regularity results
in countably normed weighted spaces of the solutions. This constituted an essential
advance with respect to the earlier works in [6, 9, 17], where only particular singular
solutions had been considered.

Steps to extend the analytic regularity and the hp-convergence analysis in [1, 2,
11, 12] to three dimensions were undertaken in [3, 10, 13, 15] and the references
therein. In [5], Costabel, Dauge and Nicaise established an analytic regularity
shift in scales of anisotropically and non-homogeneously weighted spaces for varia-
tional solutions for a class of of second-order elliptic boundary-value problems with
constant coefficients. Their regularity result will be the basis of our exponential
convergence proof.

The present paper builds on and extends our recent work [18] on exponential con-
vergence for hp-version finite element methods in polyhedral domains. It also builds
on our earlier work [22, 23, 24] on hp-version discontinuous Galerkin (DG) methods
for second-order elliptic boundary-value problems in polyhedra. Specifically, in [18],
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we considered the boundary-value problem (1.1) with the homogeneous Dirichlet
boundary conditions in (1.2) imposed on the entire boundary ∂Ω. For axiparallel
configurations, we then used the non-conforming hp-version interpolation operators
constructed in [23] in conjunction with suitable polynomial jump liftings to prove
exponential rates of convergence in terms of the number of degrees of freedom for
conforming hp-FEM discretizations on appropriate combinations of geometrically
and anisotropically refined meshes and for the uniform and isotropic polynomial
degree p ≥ 1.

The principal contribution of the present work is the construction of exponen-
tially convergent conforming hp-FE quasi-interpolation projectors on axiparallel,
σ-geometric mesh patches with variable and anisotropic polynomial degree distribu-
tions for the mixed second-order problem (1.1)–(1.3) (and generalizations thereof).

Our main result shows the H1-norm convergence rate estimate C exp(−b 5
√
N),

where N is the number of degrees of freedom of the conforming hp-FE space, and
where b, C > 0 are independent of N . While asymptotically of the same form as
the rate in [18], the univariate hp-approximation results [9, 17] suggest that the use
of subdivision ratios σ < 1/2 and of variable and, in particular, anisotropic polyno-
mial degree distributions will significantly reduce the number of degrees of freedom
required to reach a prescribed accuracy of approximation. This is corroborated
in preliminary numerical results in three space dimensions. Loosely speaking, our
construction and convergence proof combine the arguments in [22, 23, 24] to define
non-conforming base projectors with exponential convergence in broken norms with
the constructions of polynomially stable polynomial trace jump liftings in [18]. How-
ever, the lower regularity of the solutions and the more general hp-finite element
spaces under consideration entail several new technical difficulties addressed in this
work. We discuss them in detail.

First, the mixed boundary conditions in (1.2), (1.3) are considerably more in-
volved than the pure Dirichlet conditions analyzed in [18]. Indeed, with the regu-
larity theory from [5], solutions of problem (1.1)–(1.3) with piecewise analytic data
belong to countably normed Sobolev spaces Nm

β (Ω) with non-homogeneous weights.

In [24], the non-homogeneous structure of the weights was dealt with by splitting
the errors in edge-perpendicular and edge-parallel contributions and by bounding
these two contributions separately. The crucial stability with respect to element
anisotropy of the error splitting was ensured in [24] by the use of L2-projections
in edge-parallel directions, up to algebraic losses in the polynomial degrees. While
this was sufficient for proving exponential convergence of discontinuous Galerkin
discretizations, finding stable liftings of the polynomial jumps introduced by the L2-
projections in edge-parallel direction over edge-perpendicular faces between highly
anisotropic elements along the same edge seems an open problem.

To overcome this difficulty, the first principal contribution of the paper is a
novel construction of non-conforming hp-version base projectors. It employs L2-
projections in edge-perpendicular directions and nodally exact H1-projections in
edge-parallel direction along anisotropic elements appearing in edge- and in corner-
edge neighborhoods. The nodal exactness property in parallel direction then re-
moves the need for liftings over the critical faces mentioned above, while still allow-
ing to split the errors in edge-perpendicular and edge-parallel contributions in the
spirit of [24]. The non-conforming hp-base projectors constructed in the present
paper are well-defined on H1(Ω), in contrast to those used in [18]. As the proof
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of exponential convergence in broken norms for the base projectors thus obtained
follows along the lines of [24], with only a few modifications, we outline it for
completeness in Appendix A. In addition, we provide an analogous exponential
L2-norm consistency bound for L2-projections under the weak N1

β(Ω)-regularity.
This may be of independent interest for approximations of the pressure in mixed
hp-version discretizations of the (Navier-)Stokes equations in polyhedra as consid-
ered in [20, 21, 27].

Second, we consider in this paper the s-linear polynomial degree distributions
introduced [22], which increase linearly and anisotropically away from edges and
corners with a slope parameter s > 0. While such degree distributions can be rela-
tively easily accommodated by the discontinuous Galerkin approaches in [22, 23, 24],
enforcing conformity for variable polynomial degrees and irregular mesh refinement
is not straightforward. To deal with this, we propose a minimum rule approach
for edge and face polynomial degrees in the spirit of [7], by introducing suitable
hp-version elemental basis functions with respect to nodal, edge, faces and interior
degrees of freedom. The second principal contribution of this paper then is the
construction of conforming approximations in the presence of s-linear polynomial
degree distributions and irregular meshes. Starting from the non-conforming hp
base projectors, we adopt an averaging approach from [28] to assign unique nodal,
edge and face values while keeping exponential convergence. This yields interme-
diate approximations which are continuous across all regularly matching faces and
which satisfy homogeneous boundary conditions on Dirichlet boundary faces, while
retaining the exponential convergence estimates. Finally, we introduce polynomial
edge and face jump liftings along the lines of our previous work [18] to remove dis-
continuities over all irregular faces. Our liftings admit bounds with are independent
of element aspect ratios, with algebraic growth in the elemental polynomial degree,
thereby preserving the exponential convergence estimates of the hp-version base
projectors. We note that the present analysis is in particular applicable to the pure
Dirichlet problem, i.e., when JN = ∅. Hence, the analysis here extends and gener-
alizes the results in [18] to s-linear and anisotropic polynomial degree distributions.
Our exponential convergence proofs apply directly to hp-FEMs for more general and
vector-valued second-order elliptic boundary-value problems which admit analytic
regularity shifts in the function classes of [5].

The outline of the remainder of the article is as follows: In Section 2, we recapit-
ulate analytic regularity results for solutions to (1.1)–(1.3) from [5]. In Section 3,
we introduce hp-version finite element spaces on σ-geometric meshes of hexahe-
dral axiparallel elements with s-linear polynomial degree distributions, specify the
continuous Galerkin methods to be analyzed, and state and discuss our main expo-
nential exponential convergence result (Theorem 3.4), with an outline of the proof
provided in Section 3.4. Base projectors with partial conformity and exponential
convergence estimates are introduced in Section 4. Details of the convergence es-
timates can be found in Appendix A. Finally, in Sections 5 and 6, we complete
the constructions of conforming approximations by averaging and lifting operators,
respectively, which are of independent interest.

Our notation employed throughout the paper is kept consistent with [22, 23, 24].
We shall use the notations ”.” or ”≃” to denote an inequality or an equivalence
containing generic positive multiplicative constants which are independent of the
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discretization and regularity parameters, as well as of the geometric refinement
level, but which may depend on the parameters σ and s.

2. Regularity

In this section, we review the regularity for weak solutions of (1.1)–(1.3). The
weighted spaces and the analytic regularity shifts are due to [5].

2.1. Subdomains and weights. We denote by C the finite set of corners c, and
by E the finite set of (open) edges e of Ω. The singular set of Ω is then given by

S := C .∪ E =
( ⋃

c∈C

c
)

.∪
( ⋃

e∈E

e
)
⊂ Γ . (2.1)

For c ∈ C, e ∈ E , and x ∈ Ω, we define the following distance functions:

rc(x) = |x− c|, re(x) = inf
y∈e

|x− y|, ρce(x) = re(x)/rc(x). (2.2)

For each corner c ∈ C, we denote by Ec := {e ∈ E : c ∩ e 6= ∅ } the set of all edges
of Ω which meet at c. Similarly, for any e ∈ E , the set of corners of e is given by
Ce := { c ∈ C : c ∩ e 6= ∅ }. Then, for ε > 0, c ∈ C, e ∈ E respectively e ∈ Ec, we
define the neighborhoods

ωc = {x ∈ Ω : rc(x) < ε ∧ ρce(x) > ε ∀ e ∈ Ec },
ωe = {x ∈ Ω : re(x) < ε ∧ rc(x) > ε ∀ c ∈ Ce },
ωce = {x ∈ Ω : rc(x) < ε ∧ ρce(x) < ε }.

(2.3)

Without loss of generality as in [22], the domain Ω can be partitioned into four dis-

joint subdomains, Ω = ΩC
.∪ ΩE

.∪ ΩCE
.∪ Ω0, referred to as corner, edge and corner-

edge and interior neighborhoods of Ω, respectively, where Ω0 := Ω \ΩC ∪ ΩE ∪ ΩCE

and
ΩC =

⋃

c∈C

ωc, ΩE =
⋃

e∈E

ωe, ΩCE =
⋃

c∈C

⋃

e∈Ec

ωce . (2.4)

We distinguish Dirichlet and Neumann edges by setting

ED :=
{
e ∈ E : ∃ι ∈ JD with e ∩ Γι 6= ∅

}
, EN := E \ ED. (2.5)

Edges in ED abut at at least one Dirichlet face Γι for ι ∈ JD. Note that we possibly
have EN = ∅.
2.2. Weighted Sobolev spaces. To each c ∈ C and e ∈ E we associate a corner
and an edge exponent βc, βe ∈ R, respectively. We collect these quantities in the
weight exponent vector β = {βc : c ∈ C} ∪ {βe : e ∈ E} ∈ R|C|+|E|. Inequalities
of the form β < 1 and expressions like β ± s, where s ∈ R, are to be understood
componentwise. We shall often use the notation

bc := −1− βc, c ∈ C , be := −1− βe, e ∈ E . (2.6)

To review the analytic regularity results of [5], we choose local coordinate systems
in ωe and ωce, for c ∈ C and e ∈ Ec, such that the edge e corresponds to the
direction (0, 0, 1). Then, we indicate quantities transversal to e by (·)⊥, and quan-
tities parallel to e by (·)‖. In particular, if α = (α1, α2, α3) ∈ N3

0 is a multi-index
of order |α| = α1 + α2 + α3, then we write α = (α⊥, α‖) with α⊥ = (α1, α2)

and α‖ = α3, and denote the partial derivative operator Dα by Dα = Dα⊥

⊥ Dα‖

‖ ,

where Dα⊥

⊥ and Dα‖

‖ signify derivatives in edge-perpendicular and edge-parallel
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directions, respectively. We further denote by D⊥ the gradient operator in edge-
perpendicular direction, and set D‖ = D1

‖.

The solution u of problem (1.1)–(1.3) belongs to a scale of countably normed
spaces; cf. [5]. For sets ∅ ⊆ C′ ⊆ C and ∅ ⊆ E ′ ⊆ E , we introduce the following
semi-norm of order k ≥ 0:

|u|2
Nk

β
(Ω;C′,E′) :=

∑

|α|=k

{
‖Dαu‖2L2(Ω0)

+
∑

c∈C′

∥∥rβc+|α|
c Dαu

∥∥2
L2(ωc)

+
∑

c∈C\C′

∥∥rmax{βc+|α|,0}
c Dαu

∥∥2
L2(ωc)

+
∑

e∈E′

∥∥rβe+|α⊥|
e Dαu

∥∥2

L2(ωe)
+

∑

e∈E\E′

∥∥rmax{βe+|α⊥|,0}
e Dαu

∥∥2
L2(ωe)

+
∑

c∈C′

∑

e∈Ec∩E′

∥∥rβc+|α|
c ρ

βe+|α⊥|
ce Dαu

∥∥2
L2(ωce)

+
∑

c∈C′

∑

e∈Ec∩(E\E′)

∥∥rβc+|α|
c ρ

max{βe+|α⊥|,0}
ce Dαu

∥∥2
L2(ωce)

+
∑

c∈C\C′

∑

e∈Ec∩E′

∥∥rmax{βc+|α|,0}
c ρ

βe+|α⊥|
ce Dαu

∥∥2
L2(ωce)

+
∑

c∈C\C′

∑

e∈Ec∩(E\E′)

∥∥rmax{βc+|α|,0}
c ρ

max{βe+|α⊥|,0}
ce Dαu

∥∥2

L2(ωce)

}
.

(2.7)

For m > kβ, with

kβ := −min{min
c∈C

βc,min
e∈E

βe}, (2.8)

we write Nm
β (Ω; C′, E ′) for the space of functions u such that ‖u‖Nm

β
(Ω;C′,E′) < ∞,

with the norm ‖u‖2Nm
β

(Ω;C′,E′) :=
∑m

k=0 |u|
2
Nk

β
(Ω;C′,E′). For subdomains K ⊆ Ω we

shall denote by | · |Nk
β
(K;C′,E′) the semi-norm (2.7) with all domains of integration

replaced by their intersections with K ⊆ Ω, and likewise we shall use the norm
‖ · ‖Nm

β
(K;C′,E′). We note that we have Mm

β (Ω) := Nm
β (Ω; C, E), where Mm

β (Ω) is

the weighted Sobolev space considered in [18] for the pure Dirichlet problem.

2.3. Analytic regularity. We adopt the analytic function classes of [5].

Definition 2.1. The class Bβ(Ω
′; C′, E ′) consists of all functions u such that u ∈

Nm
β (Ω′; C′, E ′) for m > kβ, with kβ as in (2.8), and such that there exists a constant

Cu > 0 such that |u|Nk
β
(Ω′;C′,E′) ≤ Ck+1

u Γ(k + 1) for all k > kβ.

We have the following regularity result from [5, Theorem 7.3] for variational
solutions of problem (1.1)–(1.3) (with constant coefficients).

Proposition 2.2. Let ∅ ⊂ ED ⊂ E. Then there are bounds bE , bC > 0 (depend-
ing on Ω, the coefficient matrix A and the set ED) such that for weight exponent
vectors b with

0 < bc < bC, 0 < be < bE , c ∈ C, e ∈ E , (2.9)



hp-FEM FOR ELLIPTIC PROBLEMS IN POLYHEDRA 7

the weak solution u ∈ V defined (1.4) of problem (1.1)–(1.3) satisfies:

f ∈ B1−b(Ω; C, ED) =⇒ u ∈ B−1−b(Ω; C, ED) . (2.10)

Remark 2.3. For pure Dirichlet and Neumann problems, we have corresponding
analytic regularity shifts:

ED = E : f ∈ B1−b(Ω; C, E) =⇒ u ∈ B−1−b(Ω; C, E) , (2.11)

ED = ∅ : f ∈ B1−b(Ω; ∅, ∅) =⇒ u ∈ B−1−b(Ω; ∅, ∅) ; (2.12)

cf. [5, Corollary 7.1 and Theorem 7.4]. Due to the inclusions B−1−b(Ω; C, E) ⊂
B−1−b(Ω; C, ED) ⊂ B−1−b(Ω; ∅, ∅), we shall focus on proving exponential approxi-
mation properties for the maximal space B−1−b(Ω; ∅, ∅).
Remark 2.4. As in [24, Remark 2.5], we assume that in (2.9) there holds

0 < bc < 1, 0 < be < 1, c ∈ C, e ∈ E . (2.13)

With (2.6), we then have κβ ∈ (1, 2) in (2.8). Hence, the regularity property
in Definition 2.1 holds for k ≥ 2. In addition, we shall assume that, for any
polyhedron Ω and right-hand side f in the class of problems considered here, there
exists some θ ∈ (0, 1) such that the weak solution u ∈ V belongs to H1+θ(Ω).
For weight exponents bc ∈ (1/2, 1), be ∈ (0, 1), this follows from [5, Remark 6.2(ii)]
and [14, Theorem 3.5]. We also refer to the discussion in [24, Remark 2.5].

3. Finite Element Discretization and Exponential Convergence

3.1. Geometric meshes. We review geometric mesh constructions from [22, 23].

3.1.1. Geometric mesh patches. We partition the domain Ω into a finite number P

of open, axiparallel and hexahedral patches {Qp }Pp=1 which constitute the patch

mesh M0. In the axiparallel setting, each Qp ∈ M0 is an affine-orthogonal image

Qp = Gp (Q̃) of the reference patch Q̃ = (−1, 1)3. We assume M0 to be regular,

i.e., the intersection Qp ∩Qp ′ of any two patches Qp , Qp ′ ∈ M0, p 6= p ′, is either
empty or a vertex, an entire edge, or an entire face of both patches. Without loss
of generality we assume that (the closure of) each patch intersects either with at
most one corner c ∈ C, and with either none, one or several edges e ∈ Ec meeting
in c. In addition, we shall always assume that boundary faces on the patch Qp

belong to exactly one boundary plane Γι.
With each patch Qp ∈ M0, we associate a geometric reference mesh patch

M̃p on Q̃. We recall from [22, Section 3.3] that the geometric patch meshes are
generated recursively by iterating four basic geometric refinement operations, the
so-called hp-extensions (Ex1)–(Ex4) on the initial mesh M0, resulting in four geo-

metric mesh patch types t ∈ {c, e, ce, int} on Q̃. That is, we take

M̃p ∈ R̃P := {M̃ℓ,c
σ ,M̃ℓ,e

σ ,M̃ℓ,ce
σ ,M̃ℓ,int

σ } = {M̃ℓ,t
σ }t∈{c,e,ce,int}. (3.1)

Whenever Qp abuts at the singular set S, we assign to M̃p (a suitably rotated
and oriented version) of the geometrically refined reference mesh patches shown

in Figure 1 and denoted by M̃ℓ,c
σ (corner patch), M̃ℓ,e

σ (edge patch), and M̃ℓ,ce
σ

(corner-edge patch), respectively. We implicitly allow for simultaneous geometric

refinements towards several edges in the corner-edge patch M̃ℓ,ce
σ , which corre-

sponds to an overlap of at most three rotated versions of the basic corner-edge
patch; see Figure 3 below. The geometric refinements in these reference patches
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Figure 1. Three geometric reference mesh patches on Q̃ with

σ = 0.5: corner patch M̃ℓ,c
σ (left), edge patch M̃ℓ,e

σ (center), and

corner-edge patch M̃ℓ,ce
σ (right).

are characterized by (i) a fixed parameter σ ∈ (0, 1) defining the subdivision ratio of
the geometric refinements and (ii) the index ℓ defining the number of refinements.
For interior patches Qp ∈ M0, which have empty intersection with S, we assign

to M̃p a geometric reference mesh patch M̃ℓ,int
σ on Q̃, which comprises only finitely

many regular refinements and does not introduce irregular faces in Q̃. In the refine-

ment process, the reference mesh M̃ℓ,int
σ is kept unchanged and is independent of the

refinement level ℓ. As different interior patches can be refined differently, without

loss of generality the notation M̃ℓ,int
σ is to be understood in a generic fashion.

The geometric reference mesh patch M̃p ∈ R̃P introduces the corresponding

patch partition Mp = Gp (M̃p ) := {K : K = Gp (K̃), K̃ ∈ M̃p } on Qp . Inter-
patch continuity of hp-approximations will be ensured by the following hypoth-
esis; cf. [18, Assumption 3.1]. Here and in the sequel, we denote by md(·) the
d-dimensional Lebesgue measure.

Assumption 3.1. For p 6= p ′, let Qp , Qp ′ ∈ M0 be two distinct patches with

Γp p ′ := Qp ∩ Qp ′ 6= ∅ and either m2(Γp p ′) > 0 or m2(Γp p ′) = 0, m1(Γp p ′) > 0.
Then the parametrizations induced by the patch maps on the patch interfaces Γp p ′

are assumed to coincide “from either side”: Gp ◦
(
G−1

p ′ |Γ
p p ′

)
= Gp ′ ◦

(
G−1

p |Γ
p p ′

)
.

In addition, the mesh patches Mp ,Mp ′ are assumed to coincide on Γp p ′ .

3.1.2. Geometric meshes. For fixed parameters σ ∈ (0, 1) and ℓ ∈ N, a σ-geometric
mesh on Ω is now given by the disjoint union

M = Mℓ
σ := ∪P

p=1Mp . (3.2)

If we denote by K̂ := (−1, 1)3 the reference cube, then each K ∈ M is the image

of K̂ under an element mapping ΦK : K̂ → K, given as the composition of the
corresponding patch map Gp with an anisotropic dilation-translation. To achieve
a proper geometric refinement towards corners and edges of Ω without violating
Assumption 3.1, the geometric refinements Mp in the patches Qp have to be
suitably selected and oriented. For a fixed subdivision ratio σ ∈ (0, 1), we call the
sequence Mσ = {Mℓ

σ}ℓ≥1 of geometric meshes a σ-geometric mesh family; see [22,
Definition 3.4]. As before, we shall refer to the index ℓ as refinement level.

Without loss of generality as in [23, Section 5.1.4], every element K ∈ M can be
assumed to be a Cartesian product of the form

K = K⊥ ×K‖ = (0, h⊥
K)2 × (0, h

‖
K), (3.3)
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with h⊥
K . h

‖
K . We call K isotropic if h⊥

K ≃ h
‖
K ≃ hK uniformly in ℓ; otherwise,

element K is anisotropic. Elements in corner and interior patches are isotropic,
whereas elements in edge and corner-edge patches may be anisotropic. We also

note that the elemental diameters h⊥
K and h

‖
K are related to the relative distances

to the edge e and corner c located nearest to K; cf. [23, Proposition 3.2].

3.1.3. Vertices, edges and faces. Let M = Mℓ
σ be a geometric mesh. For an axi-

parallel hexahedral element K ∈ M, we denote by N (K), E(K) and F(K) the sets
of its elemental vertices, its elemental edges and its elemental faces, respectively.
If E ∈ E(K) and F ∈ F(K), we write N (E) ⊂ N (K) for the two end points of E
and E(F ) ⊂ F(K) for the four elemental edges of F .

The set of all vertex nodes is defined by

N (M) :=
⋃

K∈M

N (K) . (3.4)

The subset ND(M) of all Dirichlet nodes consists of all N ∈ N (M) with N ∈ Γι

for some index ι ∈ JD. The node N is called regular if N ∈ N (K) for all K ∈ M
with N ∩K 6= ∅; otherwise it is called irregular.

The non-trivial one-dimensional intersection E = EK,K′ of the elemental edges
of two neighboring elements K,K ′ ∈ M is called an edge of M. The edge EK,K′

is called regular if E ∈ E(K) and E ∈ E(K ′); otherwise we call it irregular. Note
that EK,K′ can be located on a Dirichlet plane Γι for ι ∈ JD, in which case we
call it a Dirichlet boundary edge of M. Moreover, the non-trivial one-dimensional
intersection E = EK,e ∈ E(K) of an elemental edge of K with e ∈ ED is also called
a Dirichlet boundary edge. The set of all edges is denoted by E(M) and the set of
all Dirichlet boundary edges by ED(M).

Similarly, the non-trivial two-dimensional intersection F = FK,K′ of the elemen-
tal faces of two neighboring elements K,K ′ ∈ M is called an interior face of M.
For our class of geometric meshes, one can always assume that F = FK,K′ is an
elemental face of at least one element and a non-vanishing subset of an elemental
face of the other element. For example,

F ∈ F(K) and F ⊆ F ′ for F ′ ∈ F(K ′) with m2(F ∩ F ′) > 0. (3.5)

The face F is called regular if F ∈ F(K) and F ∈ F(K ′); otherwise it is said to be
irregular. Furthermore, the non-empty and two-dimensional intersection F = FK,Γι

of an elemental face of K ∈ M with a Dirichlet plane Γι for ι ∈ JD is a Dirichlet
boundary face of M. We always have FK,Γι

∈ F(K). Neumann boundary faces are
defined correspondingly. However, as Neumann boundary conditions are enforced
naturally, they will only play a minor role in our analysis. We write FI(M), FD(M)
and FN(M) for the sets of interior, Dirichlet and Neumann boundary faces of M,
respectively, and set FID(M) := FI(M) ∪ FD(M).

Remark 3.2. As in [18, Assumption 3.2] and under Assumption 3.1, for any distinct
axiparallel elements K,K ′ ∈ M which share a common edge EK,K′ or an interior
face FK,K′ , the traces of the elemental polynomial spaces on EK,K′ and FK,K′ in
local coordinates induced by the corresponding elemental maps coincide.

For a piecewise smooth function v, we define the jump of v over FK,K′ ∈ FI(M)
respectively over FK,Γι

∈ FD(M) by

[[v]]FK,K′ := v|K − v|K′ respectively by [[v]]FK,Γι
:= v|K . (3.6)
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For F ∈ F(K), we denote by h⊥
K,F the height of K in direction perpendicular to F .

We then introduce the trace mesh size function by

hF :=

{
min

{
h⊥
K,F , h

⊥
K′,F ′

}
, F = FK,K′ ∈ FI(M),

h⊥
K,F , F = FK,Γι

∈ FD(M),
(3.7)

with F ′ ∈ F(K ′) as in (3.5). The bounded variation property in [22, Section 3.3.2]
implies hF ≃ h⊥

K,F ≃ h⊥
K′,F ′ for interior faces FK,K′ ∈ FI(M).

3.2. Finite element spaces. We next introduce discontinuous and continuous
finite element spaces with anisotropic and s-linear degree distributions.

3.2.1. Local finite element spaces. Let M = Mℓ
σ be a geometric mesh. With

each K ∈ M and in accordance with (3.3), we assign an anisotropic polynomial de-

gree vector pK := (p⊥K , p
‖
K), with degrees p⊥K ≥ 1 and p

‖
K ≥ 1 in edge-perpendicular

and edge-parallel directions, respectively. We always will assume that p⊥K ≤ p
‖
K ;

cf. [23, Section 3]. For K ∈ M, the elemental tensor-product polynomial space is
defined by

QpK
(K) := { v ∈ L2(K) : v|K ◦ ΦK ∈ QpK

(K̂) }, (3.8)

where ΦK : K̂ → K is the element mapping and QpK
(K̂) the anisotropic tensor-

product polynomial space on K̂ = Î3 with Î = (−1, 1):

QpK
(K̂) := Qp⊥

K
(Î2)⊗ Pp⊥

K
(Î) = PpK

(Î)⊗ Pp⊥
K
(Î)⊗ P

p
‖
K

(Î), (3.9)

with Pp(I) denoting the univariate polynomials of degree less than or equal to p on

an interval I. The polynomial degree vector pK is called isotropic if p⊥K = p
‖
K = pK .

In this case, we write QpK
(K) in place of QpK

(K).
The elemental polynomial degree vectors pK are combined into the polynomial

degree distribution p := {pK : K ∈ M} on M. We set |p| := maxK∈M |pK |, with
|pK | := max{p⊥K , p

‖
K}. We then introduce the generic discontinuous space

V 0(M,p) :=
{
v ∈ L2(Ω) : v|K ∈ QpK

(K), K ∈ M
}
. (3.10)

The hp-extensions (Ex1)–(Ex4) introduced in [22] provide s-linear polynomial de-

gree distributions ps(M̃ℓ,t
σ ) on the geometric reference mesh patches M̃ℓ,t

σ for
t ∈ {c, e, ce, int}, which increase s-linearly and possibly anisotropically away from
singularities for a slope parameter s > 0; see [22, Section 3] for more details. By

construction, the patchwise distributions ps(M̃ℓ,t
σ ) induce a s-linear polynomial

degree distribution on a geometric mesh Mℓ
σ, which we denote by ps(Mℓ

σ).

3.2.2. Face and edge polynomial degrees. Let M = Mℓ
σ be a geometric mesh and p

a polynomial degree distribution on M. To define conforming spaces, we introduce
edge and face polynomial degrees in conjunction with a suitable minimum rule over
neighoring edges and faces; cf. [7].

Let K ∈ M and pK = (p⊥K , p
‖
K) the elemental degree vector. For E ∈ E(K) and

F ∈ F(K), we denote by pK,E ∈ N and pK,F = (p1K,F , p
2
K,F ) ∈ N2 the polynomial

degrees induced by pK on E and F in local coordinates, respectively. We further
introduce the sets

δK,E := {K ′ ∈ M : E ⊆ E′ ∈ E(K ′) with m1(E ∩ ∂F ′) > 0 }, (3.11)

δK,F := {K ′ ∈ M : F ⊆ F ′ for F ′ ∈ F(K ′) with m2(F ∩ F ′) > 0 }. (3.12)
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Notice that K ∈ δK,E and K ∈ δK,F and that the cardinalities of δK,E and δK,F

are uniformly bounded. For E ∈ E(K) and F ∈ F(K), the minimum edge and face
degrees are then defined by

pK,E := min
K′∈δK,E

pK′,E′ ∈ N, (3.13)

pK,F := min
K′∈δK,F

pK′,F ′ ∈ N2, (3.14)

where the sets E′ and F ′ are as in (3.11) and (3.12), respectively, and where the
minimun in (3.14) is understood componentwise. With Remark 3.2, we may denote
by PpK,E

(E) and QpK,F
(F ) the corresponding polynomial spaces on E ∈ E(K)

and F ∈ F(K), respectively.

3.2.3. Finite element spaces. On an axiparallel element K ∈ M, we consider poly-
nomial functions v|K ∈ QpK

(K) which can be expanded into basis functions as

v|K := v|nodK + v|edgeK + v|faceK + v|intK , (3.15)

where, with the minimum degrees pK,E in (3.13) and pK,F in (3.14),

v|nodK =
∑

N∈N (K)

cNKΦN
K ,

v|edgeK =
∑

E∈E(K)

pK,E−1∑

i=1

cE,i
K ΦE,i

K ,

v|faceK =
∑

F∈F(K)

p1
K,F−1∑

i=1

p2
K,F−1∑

j=1

cF,i,j
K ΦF,i,j

K ,

(3.16)

with coefficients cNK , cE,i
K and cF,i,j

K . Here, the function ΦN
K ∈ Q1(K) denotes

the trilinear nodal shape function on K with the property that ΦN
K (N ′) = δN ,N ′

for N ′ ∈ N (K). For E ∈ E(K) the edge shape functions {ΦE,i
K }pK,E−1

i=1 on K
are polynomials of degree pK,E along the edge E tensorized with linear blending
functions in the two directions perpendicular to F . Restricted to E, they span
the space PpK,E(E) ∩ H1

0 (E). They vanish on the other elemental edges E′ 6= E,
as well as on faces F ∈ F(K) with E 6∈ E(F ). Similarly, for F ∈ F(K) the face

shape functions {ΦF,i,j
K }i,j are anisotropic polynomials of vector degree pK,F on

the face F tensorized with linear blending functions in the direction perpendicular
to F . Restricted to F , they span the space QpK,F (F ) ∩ H1

0 (F ), and vanish on

the remaining elemental faces F ′ 6= F . Finally, the interior part v|intK in (3.15) is a
polynomial bubble function in QpK

(K)∩H1
0 (K); as it will be left unchanged in the

subsequent analysis, we will not further specify it. For empty ranges of the indices
in (3.16), the corresponding sums are understood as zero. We refer the reader to [7,
Section 2.3] for an explicit construction of shape functions as in (3.15), (3.16).

For K ∈ M, we collect the edge and face degrees in (3.13), (3.14) in the vec-
tor pK , and define the elemental polynomial space

SpK
(K) :=

{
v|K ∈ QpK

(K) : v|K is of the form (3.15), (3.16)
}
, (3.17)
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Thus, a polynomial v ∈ SpK
(K) satisfies

(
v|K)|E ∈ PpK,E

(E), E ∈ E(K), (3.18)
(
v|K)|F ∈ QpK,F

(F ), F ∈ F(K). (3.19)

We then introduce the minimum rule hp-finite element spaces

V
0
(M,p) :=

{
v ∈ L2(Ω) : v|K ∈ SpK

(K), K ∈ M
}
, (3.20)

V 1(M,p) :=
{
v ∈ V : v|K ∈ SpK

(K), K ∈ M
}
; (3.21)

cf. [7]. By construction, we have V
0
(M,p) ⊆ V 0(M,p).

3.3. Conforming hp-FEM and exponential convergence. For parameters σ ∈
(0, 1) and s > 0, let Mσ = {Mℓ

σ}ℓ≥1 be a σ-geometric mesh family on Ω and
{ps(Mℓ

σ)}ℓ≥1 the corresponding s-linear polynomial degree distributions. We con-
sider the sequence of conforming hp-version finite element spaces

V ℓ,1
σ,s := V 1(Mℓ

σ,ps(Mℓ
σ)), ℓ ≥ 1, (3.22)

and introduce its non-conforming counterparts by setting

V ℓ,0
σ,s := V 0(Mℓ

σ,ps(Mℓ
σ)), V

ℓ,0

σ,s := V
0
(Mℓ

σ,ps(Mℓ
σ)), ℓ ≥ 1. (3.23)

Remark 3.3. The fact that the conforming spaces V ℓ,1
σ,s define proper linear spaces

will follow from our construction of conforming approximations in Sections 5 and 6
ahead. In the pure Neumann case (where JD = ∅), we note that the constant

function belongs to V ℓ,1
σ,s , which will lead to well-defined factor spaces V ℓ,1

σ,s /R.

The hp-version Galerkin discretization of the variational formulation (1.4) reads

as usual: find uℓ ∈ V ℓ,1
σ,s such that

a(uℓ, v) =

∫

Ω

fvdx ∀v ∈ V ℓ,1
σ,s , (3.24)

where we implicitly use the corresponding factor spaces V ℓ,1
σ,s /R in the pure Neu-

mann case. For every ℓ ≥ 1, the discrete variational problem (3.24) admits a

unique solution uℓ ∈ V ℓ,1
σ,s which is quasi-optimal: there exists a constant C > 0

(only depending on Ω, the coefficient matrix A and the set ED) such that

‖u− uℓ‖H1(Ω) ≤ C inf
v∈V

ℓ,1
σ,s

‖u− v‖H1(Ω) . (3.25)

One first main result of this paper is the H1-norm exponential convergence of hp-
FE approximations (3.24) for problem (1.1)–(1.3) with data f ∈ B1−b(Ω; C′, E ′)
as in the regularity shifts in (2.10), (2.11) or (2.12). This follows from the quasi-
optimality (3.25) and the following approximation property of the hp-version finite

element spaces V ℓ,1
σ,s .

Theorem 3.4. Let b be a weight exponent vector satisfying (2.13). For parameters

σ ∈ (0, 1), s > 0, consider the sequence V ℓ,1
σ,s of H1-conforming hp-version finite

element spaces in (3.22). Then there exist quasi-interpolation projectors Πℓ,1
σ,s : V →

V ℓ,1
σ,s such that for functions u ∈ V with u ∈ B−1−b(Ω; ∅, ∅) ∩ H1+θ(Ω) for some

θ ∈ (0, 1) there holds

‖u−Πℓ,1
σ,su‖H1(Ω) ≤ C exp (−bℓ) , (3.26)
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with constants b, C > 0 independent of ℓ, but depending on the parameters σ, s,
the macro-mesh M0 with its associated patch maps, the minimum weight exponent
in (2.13), the exponent θ, and on u through the analytic regularity constant Cu in
Definition 2.1.

In particular, if the variational solution u ∈ V of problem (1.1)–(1.3) belongs
to B−1−b(Ω; ∅, ∅) ∩ H1+θ(Ω) for some θ ∈ (0, 1), cf. (2.10), (2.11), (2.12) and

Remark 2.4, then the conforming finite element approximations uℓ ∈ V ℓ,1
σ,s in (3.24)

converge exponentially:

‖u− uℓ‖H1(Ω) ≤ C exp
(
−b

5
√
N
)

, (3.27)

where the constants b, C > 0 are independent of N = dim(V ℓ,1
σ,s ), the number of

degrees of freedom of the hp-FE discretization.

Remark 3.5. The projectors Πℓ,1
σ,s in (3.26) constructed ahead are well-defined on

the space V ⊆ H1(Ω). This is in contrast to the projectors constructed in [18] for
homogeneous Dirichlet boundary conditions. They require H2-regularity in each
coordinate direction in the interior of Ω, and are set to zero on elements abutting
at corners and edges of Ω.

Remark 3.6. The global hp-version projectors Πℓ,1
σ,s in (3.26) are assembled from hp-

patch projectors Πℓ,1,p
σ,s . We write formally, with restrictions to patches p ∈ [1, ...,P ]

implied in Πℓ,1,p
σ,s ,

Πℓ,1
σ,s =

∑P

p=1
Πℓ,1,p

σ,s , (3.28)

where inter-patch continuity follows from Assumption 3.1. The hp-patch projec-

tors Πℓ,1,p
σ,s in (3.28), in turn, are obtained from four families {Π̃ℓ,1,t

σ,s }ℓ≥1 of hp-

reference patch projectors on the geometric reference mesh patches M̃ℓ,t
σ of type

t ∈ {c, e, ce, int} which are transported to the patches Qp ⊂ Ω via the patch
maps Gp . While no liftings are necessary for interior patches (i.e., for t = int), for
patches of type t ∈ {c, e, ce}, our construction yields jump liftings with stability
bounds in the H1(Qp )-norm which grow algebraically in |p|.

Furthermore, the exponential consistency in H1(Q̃) of Π̃ℓ,1,t
σ,s on the reference

patch Q̃ can be readily verified for solutions u ∈ V of (1.1)–(1.3) whose pullbacks

from the mesh patch Qp to Q̃ satisfy the analytic patch regularity

ũp := u|Qp
◦Gp ∈ Bt (Q̃), 1 ≤ p ≤ P , t ∈ {c, e, ce, int} , (3.29)

where Bt (Q̃) is an analytic regularity reference class on Q̃ with weighting towards

corners or edges of Q̃ depending on the refinement type t ∈ {c, e, ce, int}; see

also [18, Section 4.4] for analytic reference classes At (Õ) in the pure Dirichlet

case. For t ∈ {c, ce}, we additionally require in (3.29) that ũp ∈ H1+θ(Q̃); cf.
Remark 2.4. All exponential convergence rate estimates in the present paper apply
verbatim to any solution u ∈ H1(Ω) which, in local patch coordinates, exhibit the
above analytic patch regularity (3.29).

Remark 3.7. The results of Theorem 3.4 are valid in particular for the isotropic
finite element spaces

V 1(Mℓ
σ, pℓ) :=

{
v ∈ V : v|K ∈ Qpℓ

(K), K ∈ Mℓ
σ

}
, ℓ ≥ 1, (3.30)
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with uniform polynomial degree pℓ ≥ 1. For these spaces, the minimum rules
in Section 3.2.2 are trivially valid. The exponential convergence bounds (3.26)
and (3.27) follow in this case as well, provided that pℓ = max{1, ⌊sℓ⌋}, albeit with
a generally smaller constant b.

Remark 3.8. The bounds (3.26) and (3.27) hold true in the pure Neumann case.

This follows readily from Remark 3.3 and since Πℓ,1
σ,s reproduces constant functions.

Remark 3.9. The exponential convergence results in this paper apply verbatim to
conforming hp-FEMs for second-order and possibly vector-valued elliptic problems
which allow for analytic regularity shifts in the function classes in Definition 2.1.
In particular, they are valid for stress-strain formulations of the equations of linear
elasticity (with constant material parameters); [5, Section 7].

3.4. Outline of the proof. The proof of Theorem 3.4 follows along the lines
of [18, Section 3.4], but is significantly more involved due to the appearance of
the non-homogeneously weighted Sobolev spaces and the anisotropic and variable
polynomial degree distributions. In this section, we outline the key steps. From
now on we will frequently use the short-hand notation ”.p” for inequalities which
hold up to algebraic losses in |p|:

x .p y ⇔ x . |p|a y for some a ∈ N. (3.31)

3.4.1. Base projectors with partial conformity. We first introduce (non-conforming)
base projectors with partial conformity and exponential convergence estimates.

To discuss the conformity properties, let M = Mℓ
σ be a geometric mesh. For a

set F ′ ⊂ FID(M) of faces, we define

jmpF ′ [u]2 :=
∑

F∈F ′

h
−1
F ‖[[u]]‖2L2(F ). (3.32)

Then, to avoid the need for jump liftings over edge-perpendicular faces between
highly anisotropic elements, we construct base projectors which are conforming
across certain sets F⊥

ID(M) ⊂ FID(M) of edge-perpendicular faces, and generally

non-conforming edge-parallel faces F ∈ F‖
ID(M) := FID(M)\F⊥

ID(M), which can
be characterized by the property that

F ⊆ F ′ ∈ F(K) : hF ≃ h⊥
K,F ′ ≃ h⊥

K uniformly in ℓ. (3.33)

If we write K in the form (3.3), then (possibly after mapping) a face F satisfy-
ing (3.33) can be assumed to be of the form

F = (0, h⊥
K)× (0, h

‖
K) uniformly in ℓ . (3.34)

Note that faces with (3.33), (3.34) appear (i) between isotropic elements and (ii) in
edge-parallel direction between anisotropic elements in edge or corner-edge patches.

In the following, we shall also split F‖
ID(M) into interior and Dirichlet boundary

faces, i.e., F‖
ID(M) = F‖

I (M)
.∪ F

‖
D(M).

To state exponential convergence estimates in broken norms, we split the errors
into edge-perpendicular and edge-parallel contribution as in [24], except for the
(isotropic) corner elements. For c ∈ C, we set Tℓ

c := {K ∈ Mℓ
σ : K ∩ c 6= ∅ } and

define

Tℓ
C :=

⋃

c∈C

Tℓ
c, Mℓ

σ,C := Mℓ
σ \ Tℓ

C . (3.35)
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Here, we will always assume that the initial patch mesh M0 is sufficiently fine so
that Tℓ

c and Tℓ
c′ are disjoint for c 6= c′. For sets M′ ⊆ Mℓ

σ of axiparallel elements,
we introduce the broken H1-norms:

Υ⊥
M′ [u]2 :=

∑

K∈M′

N⊥
K [u]2, Υ

‖
M′ [u]

2 :=
∑

K∈M′

N
‖
K [u]2, (3.36)

with elemental norms defined by

N⊥
K [u]2 := (h⊥

K)−2‖u‖2L2(K) + ‖∇u‖2L2(K),

N
‖
K [u]2 := (h

‖
K)−2‖u‖2L2(K) + ‖∇u‖2L2(K).

(3.37)

Evidently, we have

N
‖
K [u]2 . N⊥

K [u]2, K ∈ M′, (3.38)

whereas N⊥
K [u] ≃ N

‖
K [u] for isotropic elements K.

Proposition 3.10. For all parameters σ ∈ (0, 1), s > 0 there are tensor projectors

πℓ
σ,s = πℓ,⊥

σ,s ⊗ π
ℓ,‖
σ,s : H

1(Ω) → V 0,ℓ
σ,s , (3.39)

which are conforming over sets F⊥
ID(Mℓ

σ) ⊂ FID(Mℓ
σ) of edge-perpendicular faces

and non-conforming over the complement sets F‖
ID(Mℓ

σ) = F‖
I (Mℓ

σ)
.∪ F‖

D(Mℓ
σ)

of edge-parallel faces F satisfying (3.33), (3.34).
Moreover, for functions u with u ∈ B−1−b(Ω; ∅, ∅)∩H1+θ(Ω) for some θ ∈ (0, 1)

as in Theorem 3.4 and for the error terms given by

ηℓσ,s := u− πℓ
σ,su, ηℓ,⊥σ,s := u− πℓ,⊥

σ,s u, η
ℓ,‖
σ,s := u− π

ℓ,‖
σ,su, (3.40)

we have the H1-norm bound

Υ
‖
Mℓ

σ
[ηℓσ,s]

2 +Υ⊥
Mℓ

σ,C
[ηℓ,⊥σ,s ]

2 +Υ
‖

Mℓ
σ,C

[η
ℓ,‖
σ,s]

2 ≤ C exp
(
− 2b

5
√
N
)
, (3.41)

as well as the jump bound

jmp
F

‖
ID

(Mℓ
σ)
[ηℓσ,s]

2 ≤ C exp
(
− 2b

5
√
N
)
, (3.42)

with constants b, C > 0 independent of N = dim(V ℓ,0
σ,s ), but depending σ and s.

We will show the estimate (3.41) for a more general class of quasi-interpolation
tensor projectors on H1(Ω) in Section 4, see Theorem 4.3, with most parts of the
proof relegated to Appendix A. The jump bound in (3.42) will be established for
the specifically chosen projectors in (3.39) under smoothness requirements which
are slightly stronger than u ∈ H1(Ω); in particular, u ∈ B−1−b(Ω; ∅, ∅) is sufficient.

3.4.2. Discontinuous hp-version base spaces. To exploit the approximation proper-
ties for the non-conforming base projectors πℓ

σ,su in Proposition 3.10 for the mini-

mum rule finite element spaces V
ℓ,0

σ,s in (3.23), we introduce discontinuous hp-base

spaces as follows. For K ∈ Mℓ
σ axiparallel, we introduce the subsets E⊥(K) and

E‖(K) of elemental edges of E(K), respectively F⊥(K) and F‖(K) of elemental
faces of F(K), which are perpendicular and parallel to the nearest singular edge.

For K ∈ F‖(K), we write pK,F = (p⊥K , p
‖
K) to distinguish the perpendicular and

parallel components pK,F .
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Lemma 3.11. Let ps(Mℓ
σ) be a s-linear degree distribution on Mℓ

σ. For K ∈
Mℓ

σ, let the face and edge degrees pK,E and pK,F be defined in (3.13) and (3.14),
respectively. Then there exists µ ∈ (0, 1] depending only on s > 0 such that

∀E ∈ E⊥(K) : µp⊥K ≤ pK,E ≤ p⊥K , (3.43)

∀E ∈ E‖(K) : µp
‖
K ≤ pK,E ≤ p

‖
K , (3.44)

∀K ∈ F⊥(K) : µp⊥K ≤ p1K,F ≤ p⊥K , µp⊥K ≤ p2K,F ≤ p⊥K , (3.45)

∀K ∈ F‖(K) : µp⊥K ≤ p⊥K,F ≤ p⊥K , µp
‖
K ≤ p

‖
K,F ≤ p

‖
K . (3.46)

Proof. These properties follow from the construction of the s-linear degree dis-
tributions and their properties of bounded variation; cf. [22, Section 3.2 and Re-
mark 3.9]. �

On K ∈ Mℓ
σ we then introduce the base degree vector p̌K = (p̌⊥K , p̌

‖
K) as

p̌⊥K := min
{

min
E∈E⊥(K)

pK,E , min
F∈F⊥(K)

p1K,F , min
F∈F⊥(K)

p2K,F

}
,

p̌
‖
K := min

{
min

E∈E‖(K)
pK,E , min

F∈F‖(K)
p
‖
K,F

}
.

(3.47)

Consequently, we have

Qp̌K
(K) ⊆ SpK

(K), K ∈ Mℓ
σ. (3.48)

From Lemma 3.11, we further have µp⊥K ≤ p̌⊥K and µp
‖
K ≤ p̌

‖
K . As a consequence,

the base degree vectors {p̌K}K∈Mℓ
σ
give rise to a š-linear polynomial degree dis-

tribution pš(Mℓ
σ), for a base slope parameter š with 0 < š ≤ s and only depending

on s. Hence, the discontinuous hp-base spaces V ℓ,0
σ,š thus constructed satisfy

V ℓ,0
σ,š ⊆ V

ℓ,0

σ,s. (3.49)

We point out that for the uniform and isotropic spaces in (3.30), the construction
of discontinuous hp-base spaces is not necessary and can be omitted.

3.4.3. Averaging over regular vertices, edges and faces. We denote by V
ℓ,0,⊥
σ,s the

subspace of functions in V
ℓ,0

σ,s which are conforming over F⊥
ID(Mℓ

σ) ⊂ FID(Mℓ
σ)

and possibly non-conforming over F‖
ID(Mℓ

σ). We then adopt the approach of [28]

to assign to v ∈ V
ℓ,0,⊥
σ,s vertex, edge and face values which are obtained by averaging

over regularly matching vertices, edges and faces.

Theorem 3.12. There are linear averaging operators Aℓ
σ,s : V

ℓ,0,⊥
σ,s → V

ℓ,0,⊥
σ,s such

that the following holds: (i) Aℓ
σ,s(v) is continuous over regular faces in the interior

of each mesh patch; (ii) Aℓ
σ,s(v) vanishes on all Dirichlet boundary faces; (iii)

Aℓ
σ,s(v) is continuous across adjacent mesh patches; (iv) Aℓ

σ,s(v) = v for v ∈ V ℓ,1
σ,s ;

(v) we have the stability bound

Υ⊥
Mℓ

σ
[v −Aℓ

σ,s(v)]
2 + jmp

F
‖
I
(Mℓ

σ)
[Aℓ

σ,s(v)]
2 .p jmp

F
‖
ID

(Mℓ
σ)
[v]2, (3.50)

for all v ∈ V
ℓ,0,⊥
σ,s .
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Remark 3.13. The construction of Aℓ
σ,s(v) in Theorem 3.12 is carried out on each

element K ∈ Mℓ
σ separately, by adding averaged values associated with elemental

vertices N ∈ N (K), elemental faces E ∈ E(K) and elemental faces F ∈ F(K). As
a consequence, Aℓ

σ,s can (in principle) be obtained from corresponding reference av-

eraging operators on Q̃ as in Remark 3.6, with inter-patch continuity being ensured
by Assumption 3.1.

Theorem 3.12 will be established in Section 5.

3.4.4. Polynomial jump liftings. The averaged approximations Aℓ
σ,s(v) in Theo-

rem 3.12 are non-conforming over irregular faces in the interior of mesh patches.
Our proof then proceeds as in [18] by introducing suitable polynomially stable
jump liftings on Mℓ

σ which preserve stability bounds as in (3.50). This leads to the
following result.

Theorem 3.14. Let Aℓ
σ,s be the averaging operator from Theorem 3.12. Then there

exist linear operators Lℓ
σ,s : range(Aℓ

σ,s) → V ℓ,1
σ,s such that the following holds: (i)

Lℓ
σ,s(v) = v for v ∈ V ℓ,1

σ,s ; (ii) we have the stability bound

Υ⊥
Mℓ

σ
[v − Lℓ

σ,s(v)] .p jmp
F

‖
I
(Mℓ

σ)
[v]2, (3.51)

for all v ∈ range(Aℓ
σ,s) ⊂ V

ℓ,0,⊥
σ,s .

Remark 3.15. Since functions in v ∈ range(Aℓ
σ,s) have non-vanishing jumps only

over irregular faces in the interior of mesh patches, upon mapping it is sufficient to

construct Lℓ
σ,s on the reference mesh patches M̃ℓ,t

σ of type t ∈ {c, e, ce, int}; inter-
patch continuity will again follow from Assumption 3.1; cf. [18]. This observation

along with Remark 3.15 allows us to assemble Πℓ,1
σ,s from reference patch projectors

as discussed in Remark 3.6.

The proof of Theorem 3.14 will be detailed in Section 6.

Remark 3.16. The bounds (3.50) and (3.51) involve relatively large algebraic losses
in the polynomial order |p|. As in [18], this is due to the use of polynomial trace
liftings which are linear in one or more directions and can possibly be improved by
employing polynomial liftings of higher order.

3.4.5. Proof of Theorem 3.4. To prove (3.26), consider u ∈ V . Let πℓ
σ,šu ∈ V ℓ,0

σ,š be

the base projection of u defined in (3.39) into the hp-base space V ℓ,0
σ,š constructed

in Section 3.4.2, for the base slope parameter š > 0. By Proposition 3.10 and

the inclusion (3.49), we have πℓ
σ,šu ∈ V

ℓ,0,⊥
σ,s . In addition, the broken H1-norms of

the interpolation errors ηℓ,⊥σ,š and η
ℓ,‖
σ,š in (3.40) converge exponentially for u as in

Proposition 3.10, albeit with respect to the base slope š. We then define

Πℓ,1
σ,s(u) :=

(
Lℓ
σ,s ◦ Aℓ

σ,s ◦ πℓ
σ,š)(u) ∈ V ℓ,1

σ,s , (3.52)

with the operators Aℓ
σ,s and Lℓ

σ,s from Theorems 3.12 and 3.14. Clearly, the quasi-

interpolation operator Πℓ,1
σ,s is well-defined. It is linear and can readily be seen to

be idempotent on a subspace on V ℓ,1
σ,s .
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We now set v = πℓ
σ,šu, v

f := Aℓ
σ,s(v), and vc := Lℓ

σ,s(v). With the triangle

inequality and property (3.38), we obtain

‖u−Πℓ,1
σ,su‖2H1(Ω) . Υ

‖
Mℓ

σ
[u− v]2 +Υ⊥

Mℓ
σ
[v − vf ]2 +Υ⊥

Mℓ
σ
[vf − vc]2.

The bounds (3.50) and (3.51) imply

Υ⊥
Mℓ

σ
[v − vf ]2 +Υ⊥

Mℓ
σ
[vf − vc]2 .p jmp

F
‖
ID

(Mℓ
σ)
[v]2.

With the error terms (3.40) for the base projector v = πℓ
σ,šu (noting that [[u]]F = 0),

we conclude that

‖u−Πℓ,1
σ,su‖2H1(Ω) .p Υ

‖
Mℓ

σ
[ηℓσ,š]

2 + jmp
F

‖
ID

(Mℓ
σ)
[ηℓσ,š]

2.

Referring to (3.41), (3.42) in Proposition 3.10 yields (3.26) for u piecewise analytic
as in Theorem 3.4.

4. Non-conforming Base Projectors

We introduce non-conforming and tensorized hp-base projectors, prove exponen-
tial convergence estimates in broken Sobolev norms, and establish Proposition 3.10.

4.1. Tensor projectors. We introduce a class of anisotropic tensor projectors on

the reference cube K̂.
To this end, let Î = (−1, 1) be the reference interval. For p ≥ 0, we denote

by π̂p,0 the univariate L2-projection onto Pp(Î). For p ≥ 1, we further introduce

the univariate H1-projector π̂p,1 : H1(Î) → Pp(Î) by

(π̂p,1û)(ξ) := û(−1) +

∫ ξ

−1

(π̂p−1,0û
′)(η)dη; (4.1)

cf. [25, Theorem 3.14]. The projector satisfies (π̂p,1û)
′ = π̂p−1,0(û

′) and

(π̂p,1û)(±1) = û(±1). (4.2)

Some hp-version approximation properties of π̂p,0 and π̂p,1 are collected in Sec-
tion A.1.1.

We next consider next the reference cube K̂ = Î3 with Î = (−1, 1). In analogy

to (3.3), we write K̂ = K̂⊥ × K̂‖ = Î2 × Î. Let p = (p⊥, p‖) be an anisotropic
polynomial degree vector, and r ∈ {0, 1} a conformity index in edge-parallel di-

rection. For a function û : K̂ → R, we define the tensor projector π̂p,r v̂ into

Qp(K̂) = Qp⊥(K̂⊥)⊗ Pp‖(K̂‖) by

π̂p,rû :=
(
π̂
(1)

p⊥,0
⊗ π̂

(2)

p⊥,0
⊗ π̂

(3)

p‖,r

)
û =

(
π̂⊥
p⊥,0 ⊗ π̂

‖

p‖,r

)
û, (4.3)

where the univariate projectors π̂
(i)
p,r act in directions x̂1, x̂2, and x̂3, respectively,

and where we write π̂⊥
p⊥,0 and π̂

‖

p‖,r
to denote the projectors in edge-perpendicular

and in edge-parallel direction, respectively. The projector π̂p,0 is the (tensor-

product) L2-projector which is well-defined for û ∈ L2(K̂), whereas π̂p,1 is an

anisotropic projector which is well-defined for û ∈ L2(K̂⊥) ⊗H1(K̂‖) and nodally

exact in edge-parallel direction; cf. property (4.2). Note that H1(K̂) ⊂ L2(K̂⊥)⊗
H1(K̂‖). In Section A.1.2 we derive approximation properties for π̂p,r in (4.3), with
the aid of tensor-product arguments and consistency bounds for the univariate pro-
jectors π̂p,0 and π̂p,1.
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4.2. Exponential convergence in broken norms. We next establish exponen-
tial convergence bounds in broken norms for families of tensor projectors obtained
from (4.3).

4.2.1. Families of projectors. Let M = Mℓ
σ be a geometric mesh and let ps(M) =

{pK}K∈M denote a σ-linear polynomial degree distribution on M. To each element
K ∈ M, we further assign an elemental conformity index rK ∈ {0, 1}. We then

consider the tensor projectors π : H1(Ω) → V ℓ,0
σ,s given by

πu|K := πpK ,rK (u|K), K ∈ M, (4.4)

where the elemental projectors πpK ,rK : H1(K) → QpK
(K) are defined by

πpK ,rK (u|K) := (π̂pK ,rK (u|K ◦ ΦK)) ◦ Φ−1
K , (4.5)

with π̂pK ,rK defined in (4.3) and ΦK : K̂ → K the element mapping. As the

projectors πpK ,rK tensorize into πpK ,rK = π⊥
p⊥
K
,0
⊗ π

‖

p
‖
K
,rK

on K = K⊥ ×K‖ and

L2-projections are used in perpendicular direction, we write

πu|K = π⊥
0 ⊗ π‖u|K . (4.6)

For u ∈ H1(Ω), we consider the error terms

η = u− πu, η⊥0 = u− π⊥
0 u, η‖ = u− π‖u, (4.7)

and note that

η = (u− π⊥
0 u) + π⊥

0 (u− π‖u) = η⊥0 + π⊥
0 η‖. (4.8)

In the notation in (4.4)–(4.8), we generally omit the dependence on rK in edge-
parallel direction. However, if rK = r ∈ {0, 1} for all K ∈ Mℓ

σ, we write πr =

π⊥
0 ⊗π

‖
r for the projectors resulting in (4.4), as well as ηr, η

‖
r for the errors in (4.7).

In particular, π0 = π⊥
0 ⊗ π

‖
0 : L2(Ω) → V ℓ,0

σ,s is the usual L2-projection. A specific
choice of conformity indices rK leading to πℓ

σ,s in Proposition 3.10 will be introduced
in Section 4.3 below.

4.2.2. Error bounds. We show that the full errors η can be bounded in terms of the
errors η⊥ and η‖ in edge-perpendicular and in edge-parallel directions, in appropri-
ate norms. We first establish the following stability result.

Lemma 4.1. Let K = K⊥ ×K‖ ∈ Mℓ
σ be of the form (3.3) and p⊥K ≥ 1. Then

‖D⊥(π
⊥
p⊥
K
,0u)‖2L2(K⊥) . (p⊥K)4‖D⊥u‖2L2(K⊥), u ∈ H1(K⊥). (4.9)

Furthermore, for the element errors in (4.7) and any rK ∈ {0, 1}, we have

‖η‖2L2(K) . ‖η⊥0 ‖2L2(K) + ‖η‖‖2L2(K),

‖D⊥η‖2L2(K) . ‖D⊥η
⊥
0 ‖2L2(K) + (p⊥K)4‖D⊥η

‖‖2L2(K),

‖D‖η‖2L2(K) . ‖D‖η
⊥
0 ‖2L2(K) + ‖D‖η

‖‖2L2(K).

(4.10)

Proof. Since both sides of the inequalities in (4.9) and (4.10) scale in the same way,

it is sufficient to prove the results for the reference element K̂ = K̂⊥ × K̂‖.

We prove (4.9) on K̂⊥. To do so, note that

D̂⊥(π̂
⊥
p⊥
K
,0û) = D̂⊥(π̂

⊥
p⊥
K
,0û− π̂⊥

0,0û) = D̂⊥(π̂
⊥
p⊥
K
,0(û − π̂⊥

0,0û)). (4.11)
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The inverse inequalities in [25, Theorem 3.91], the L2-stability of π̂⊥
p⊥
K
,0
and standard

approximation properties for π̂⊥
0,0 yield

‖D̂⊥(π̂
⊥
p⊥
K
,0û)‖2L2(K̂⊥)

. (p⊥K)4‖π̂⊥
p⊥
K
,0(û − π̂⊥

0,0û)‖2L2(K̂⊥)

. (p⊥K)4‖û− π̂⊥
0,0û‖2L2(K̂⊥)

. (p⊥K)4‖D̂⊥û‖2L2(K̂⊥)
.

This yields (4.9).
Then, the L2-norm bound in (4.10) follows from the splitting (4.8) with the

aid of the triangle inequality and the L2-stability of the L2-projection π̂⊥
p⊥
K
,0
. The

second estimate in (4.10) is a consequence of (4.8), the triangle inequality and
the p-dependent stability bound (4.9) in perpendicular direction. The third esti-
mate in (4.10) is again obtained from (4.8), by employing the commutativity of D‖

and π̂⊥
p⊥
K
,0
, as well as the L2-stability of π̂⊥

p⊥
K
,0
. �

In addition to the broken H1-norms in (3.36), we introduce

‖u‖2L2(M′) :=
∑

K∈M′

‖u‖2L2(K), M′ ⊆ Mℓ
σ. (4.12)

The next lemma ensures the stable splitting of the errors into edge-perpendicular
and edge-parallel contributions.

Lemma 4.2. Let u ∈ H1(Ω) and let πu = π⊥
0 ⊗π‖u be the base interpolant in (4.4)

for any conformity indices rK ∈ {0, 1}. For the error terms in (4.7), we have

Υ
‖
Mℓ

σ
[η]2 .p Υ⊥

Mℓ
σ,C

[η⊥0 ]
2 +Υ

‖

Mℓ
σ,C

[η‖]2 +Υ
‖

Tℓ
C

[η]2. (4.13)

Moreover, let u ∈ L2(Ω) and let π0u = π⊥
0 ⊗ π

‖
0u be the L2-projection obtained

in (4.4) by taking rK = 0 for all K ∈ Mℓ
σ. Then we have

‖η0‖2L2(Mℓ
σ)

. ‖η⊥0 ‖2L2(Mℓ
σ,C)

+ ‖η‖0‖2L2(Mℓ
σ,C)

+ ‖η0‖2L2(Tℓ
C)
. (4.14)

Proof. These bounds follow from Lemma 4.1 and the inequality (3.38). �

4.2.3. Exponential convergence. We now state exponential convergence results in
broken norms. Note that the results do not provide jump estimates as in (3.42).

Theorem 4.3. Let b be a weight exponent vector satisfying (2.13). For parame-

ters σ ∈ (0, 1) and s > 0, consider the sequence V ℓ,0
σ,s of discontinuous finite element

spaces (3.23) with elemental polynomial degrees p⊥K ≥ 1, p
‖
K ≥ 1.

Let u ∈ B−1−b(Ω; ∅, ∅) ∩ H1+θ(Ω) for some θ ∈ (0, 1), cf. Remark 2.4, and let

πu = π⊥
0 ⊗ π‖u : H1(Ω) → V ℓ,0

σ,s be the non-conforming family of tensor projectors
introduced in (4.4), for any elemental conformity indices rK ∈ {0, 1}. For the
errors η, η⊥0 and η‖ in (4.7), we have

Υ
‖
Mℓ

σ
[η]2 +Υ⊥

Mℓ
σ,C

[η⊥0 ]
2 +Υ

‖

Mℓ
σ,C

[η‖]2 ≤ C exp
(
−2b

5
√
N
)
, (4.15)

with constants b, C > 0 independent of N = dim(V ℓ,0
σ,s ).

In addition, let u ∈ B−b(Ω; ∅, ∅) ∩ Hθ(Ω) for some θ ∈ (0, 1), and let π0u =

π⊥
0 ⊗ π

‖
0u be the L2-projection obtained in (4.4) by taking rK = 0 for all K ∈ Mℓ

σ.

For the errors η0, η
⊥
0 and η

‖
0 , we have

‖η0‖2L2(Mℓ
σ)

+ ‖η⊥0 ‖2L2(Mℓ
σ,C)

+ ‖η‖0‖2L2(Mℓ
σ,C)

≤ C exp
(
−2b

5
√
N
)
, (4.16)
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with constants b, C > 0 independent of N .

Remark 4.4. For the sake of simplicity, our proof of Theorem 4.3 is based on uni-
variate hp-approximation bounds for π̂p,0 and π̂p,1 in (4.1) which require p ≥ 1;
cf. (A.1) and (A.3). Alternatively, the proof of the L2-bound (4.16) could be solely
based on the L2-norm estimates for the L2-projection in [25, Theorem 3.11], thereby

allowing elemental polynomial degrees p⊥K ≥ 0, p
‖
K ≥ 0 for the bound (4.16).

Remark 4.5. If u ∈ H1(Ω)/R in (4.15) (as is relevant in the pure Neumann problem)
respectively u ∈ L2(Ω)/R in (4.16), the bounds (4.15) respectively (4.16) remain

true over the factor space V ℓ,0
σ,s /R. This follows from the fact that the elemental

interpolants πpK ,rK (u|K) in (4.4) reproduce functions which are constant in Ω.

Remark 4.6. The L2-norm bound (4.16) is of independent interest in the context of
mixed hp-approximations for the (Navier-)Stokes equations or for linear elasticity in
mixed form under B−b(Ω; ∅, ∅)-regularity assumptions on the multipliers (although
corresponding regularity shifts do not seem to be available in the literature). We
refer to [20, 21], where the inf-sup stability of mixed hp-discontinuous Galerkin
methods is established on anisotropic geometric meshes. Based on these results,
an exponential convergence proof of mixed hp-discontinuous Galerkin methods for
mixed formulations with solutions in A−1−b(Ω)

3 × A−b(Ω) was given in [27], for
the homogeneous space Aβ(Ω) = Bβ(Ω; C, E).

As in [24, Section 7], by superposition and due to the structure of the patch
mappings, it is sufficient to provide the the proof of the exponential convergence

bounds in Theorem 4.3 to a reference corner-edge configuration on Q̃ as shown in
Figure 1, which involves a single corner c ∈ C and a single Neumann edge e ∈ Ec
emanating from it. The case of a Dirichlet edge is analogous; cf. [24, Section 7.3].
Interior reference mesh patches can be treated similarly to [23, Section 5.2.1]),

and the reference meshes M̃ℓ,c
σ and M̃ℓ,e

σ can be viewed as collections of certain

elements of M̃ℓ,ce
σ and can be treated as particular cases thereof; cf. [24, Section 7.1].

In a reference corner-edge patch setting, the proof of the bound (4.15) follows
along the lines of [23, Section 7.2], albeit with some modifications. For the sake
of completeness, we review the major steps and detail the relevant modifications
of [23, Section 7.2] in Appendix A. The proof of the L2-norm bound (4.16) follows
similarly and will be outlined simultaneously.

4.3. The base projectors πℓ
σ,s with partial conformity. By selecting specific

values of the conformity indices rK ∈ {0, 1}, we now introduce and analyze partic-
ular tensor product projectors of the form (4.4), which lead to the projectors πℓ

σ,s

and the sets F⊥
ID(Mℓ

σ), F‖
ID(Mℓ

σ) in Proposition 3.10.

4.3.1. Base projectors for corner, edge and interior patches. We define reference

base projectors π̃t on each reference mesh M̃ℓ,t
σ for t ∈ {c, e, ce, int} with respect

to the linear polynomial degree distribution ps(M̃ℓ,t
σ ). Recall that the elemental

polynomial degree vectors pK are isotropic for t ∈ {c, int} and generally anisotropic

for t ∈ {e, ce}. For reference patches M̃ℓ,t
σ of type t ∈ {c, e, int}, we take the

reference base projectors π̃t as

π̃t (u|K) :=

{
πpK ,0(u|K), K ∈ M̃ℓ,t

σ , t ∈ {c, int},
πpK ,1(u|K), K ∈ M̃ℓ,e

σ ,
(4.17)
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where the nodally exact univariate projectors in (4.1) are applied in edge-parallel
direction.

4.3.2. Base projectors for corner-edge patches with refinement along one edge. We

next consider the corner-edge reference mesh patch M̃ℓ,ce
σ with refinement along

one edge e. Following [18], we partition M̃ℓ,ce
σ as

M̃ℓ,ce
σ := M̃ℓ,ce,⊥

σ

.∪ M̃ℓ,ce,‖
σ , ℓ ≥ 2 , (4.18)

where the mesh M̃ℓ,ce,⊥
σ is a corner-patch type mesh of elements which are isotrop-

ically refined into the corner c. The mesh M̃ℓ,ce,‖
σ consists of a sequence of ℓ − 1

geometrically scaled edge-patch meshes, translated along the edge e:

M̃ℓ,ce,‖
σ =

ℓ⋃

ℓ′=2

Ψ̃ℓ′,ce(M̃ℓ′,e
σ ), ℓ ≥ 2 , (4.19)

where we denote by Ψ̃ℓ′,ce the operation of translation with respect to the edge-
parallel variable x‖ combined with a dilation by a factor only depending on σ, ℓ, ℓ′,

and where the mesh M̃ℓ′,e
σ is a reference edge mesh patch on Q̃ with ℓ′ + 1

mesh layers. In Figure 2 (left), a schematic illustration of the patch decompo-
sition (4.18), (4.19) is provided in which the scaled edge-patch blocks are high-
lighted in boldface. In Figure 2 (right), we show two adjacent edge-patch meshes
as in (4.19) along the edge e.

A particular role will be played by the subset D̃ℓ,ce
σ ⊂ M̃ℓ,ce,‖

σ of the elements in
the outermost layer of each scaled mesh-patch block. It also consists of ℓ−1 layers:

D̃ℓ,ce
σ :=

ℓ⋃

ℓ′=2

D̃ℓ′,ce
σ , ℓ ≥ 2. (4.20)

Elements in D̃ℓ,ce
σ are referred to as diagonal elements of M̃ℓ,ce,‖

σ ; cf. [18]. They are

isotropic and illustrated in Figure 2. The isotropic mesh M̃ℓ,ce,⊥
σ is decomposed

into

M̃ℓ,ce,⊥
σ := T̃ℓ,c

σ

.∪ Õℓ,ce,⊥
σ , (4.21)

where T̃ℓ,c
σ is given by the eight elements nearest to c, and where the remaining

elements are collected in the mesh Õℓ,ce,⊥
σ . We then choose the reference base

projector on the reference corner-edge mesh as

π̃ce(u|K) :=

{
πpK ,0(u|K), K ∈ T̃ℓ,c

σ

.∪ Õℓ,ce,⊥
σ

.∪ D̃ℓ,ce
σ ,

πpK ,1(u|K), K ∈ M̃ℓ,ce,‖
σ \ D̃ℓ,ce

σ ,
(4.22)

where in the definition of πpK ,1 the nodally exact projectors in (A.1) are applied
in edge-parallel direction of edge e.

4.3.3. Base projectors for corner-edge patches with refinements along two or three

edges. We next consider a corner-edge patch M̃ℓ,ce
σ with anisotropic refinement

along two edges e1, e2 meeting at a common vertex c and isotropic refinement in
perpendicular direction as illustrated in Figure 3 (left). In this case, we write

M̃ℓ,ce
σ := M̃ℓ,ce,⊥

σ

.∪
(
M̃ℓ,ce1,‖

σ ∪ M̃ℓ,ce2,‖
σ

)
, ℓ ≥ 2, (4.23)
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′

T̃ℓ,c
σ

Õℓ,ce,⊥
σ

K1 K2

K4

K5

K6

K
′
1 K

′
2

K
′
4

K
′
5

K
′
6

K
′′
4

K
′′
6

Figure 2. Left: Patch decomposition (4.18)–(4.21) for σ = 0.5
and ℓ = 5. The diagonal elements are shaded. Right: The scaled

edge-patch blocks Ψ̃ℓ′,ce(M̃ℓ′,e
σ ) and Ψ̃ℓ′−1,ce(M̃ℓ′−1,e

σ ) for σ = 0.5
and ℓ′ = 5. The diagonal elements K4,K6 and K ′

4,K
′
6 belong to

D̃ℓ′,ce
σ and D̃ℓ′−1,ce

σ , respectively.

with two sequences of ℓ− 1 scaled edge-patch meshes as in (4.19) and an isotropic

corner-type mesh M̃ℓ,ce,⊥
σ perpendicular to e1, e2. The latter mesh is again decom-

posed as

M̃ℓ,ce,⊥
σ := T̃ℓ,c

σ

.∪ Õℓ,ce,⊥
σ , (4.24)

where T̃ℓ,c
σ is the same set of corner elements as in (4.21) and Õℓ,ce,⊥

σ the set of

all remaining elements. We denote by D̃ℓ,cei
σ ⊂ M̃ℓ,cei,‖

σ the diagonal elements

of M̃ℓ,cei,‖
σ defined as above; cf. Figure 3 (left). We then set

π̃ce(u|K) :=

{
πpK ,0(u|K), K ∈ T̃ℓ,c

σ

.∪ Õℓ,ce,⊥
σ

.∪
(
D̃ℓ,ce1

σ ∪ D̃ℓ,ce2
σ

)
,

πpK ,1(u|K), K ∈ M̃ℓ,cei,‖
σ \ D̃ℓ,cei

σ , i = 1, 2,
(4.25)

with the understanding that the univariate nodally exact projectors in (4.1) are
applied in the direction of edge ei for i = 1, 2.

Remark 4.7. The diagonal elements in D̃ℓ,cei
σ act as isotropic buffer zones and

allow us to unambiguously assign different directions in the submeshes M̃ℓ,ce1,‖
σ

and M̃ℓ,ce2,‖
σ .

Finally, if M̃ℓ,ce
σ is refined along three edges e1, e2, e3 meeting at a common

vertex c, as depicted in Figure 3 (right), we analogously write

M̃ℓ,ce
σ := T̃ℓ,c

σ

.∪
(
M̃ℓ,ce1,‖

σ ∪ M̃ℓ,ce2,‖
σ ∪ M̃ℓ,ce3,‖

σ

)
, (4.26)

each now with three sequences of ℓ − 1 scaled edge-patch blocks. As before, the

set D̃ℓ,cei
σ ⊂ M̃ℓ,cei,‖

σ denotes the diagonal elements of M̃ℓ,cei,‖
σ . With (4.26), we

define

π̃ce(u|K) :=

{
πpK ,0(u|K), K ∈ T̃ℓ,c

σ

.∪
(
∪3
i=1 D̃ℓ,cei

σ

)
,

πpK ,1(u|K), K ∈ M̃ℓ,cei,‖
σ \ D̃ℓ,cei

σ , 1 ≤ i ≤ 3,
(4.27)
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again with the univariate nodally exact projectors applied in the direction of edge ei.

K1 K2

K4

K6

K
′
1 K

′
2

K
′
4

K
′
6

K
′′
1

K
′′
4

K
′′
6

K
′′′
6

K1

K4

K6

K
′
1

K
′
4

K
′
6

K
′′
1

K
′′
4

K
′′
6

K
′′′
1

K
′′′
4

K
′′′
6

Figure 3. Scaled edge-patch blocks for σ = 0 and ℓ′ = 5. Left:
Refinement along two edges with diagonal elementsK1,K4,K6 and
K ′

1,K
′
4,K

′
6. Right: Refinement along three edges with diagonal

elements K1,K4,K6 and K ′
1,K

′
4,K

′
6.

4.3.4. The base projectors πℓ
σ,s. The reference base projectors π̃t in (4.17), (4.22),

as well as the variants in (4.25) and (4.27), give rise to the (non-conforming) base

tensor projectors πℓ
σ,s = πℓ,⊥

σ,s ⊗π
ℓ,‖
σ,s : H

1(Ω) → V ℓ,0
σ,s in (3.39); cf. (4.4). Theorem 4.3

then implies the bound (3.41) of Proposition 3.10. The sets F⊥
ID(Mℓ

σ), F‖
ID(Mℓ

σ)
and the jump bound (3.42) will be discussed next.

4.3.5. Partial conformity. We consider edge-perpendicular patch interfaces Γp p ′

between two mesh patches Mp , Mp ′ containing anisotropic elements along a com-
mon edge e and coinciding on the interface due to Assumption 3.1. The inter-
face Γp p ′ consists of ℓ + 1 mesh layers of elements; cf. [22, Section 3.2]. The
definition of πℓ

σ,s and the nodal exactness property (4.2) imply the following re-
sults.

Lemma 4.8. There holds: (i) if Mp ,Mp ′ are two adjacent edge mesh patches
along the same edge, then πℓ

σ,su is continuous across all layers of the interface Γp p ′ ;
(ii) if Mp is an edge mesh patch and Mp ′ an adjacent corner-edge patch along the
same edge, then πℓ

σ,su is continuous across the inner layers of the interface Γp p ′ ,
but is generally discontinuous across the outermost layer of Γp p ′ .

Remark 4.9. Conformity properties analogous to those in Lemma 4.8 hold on edge-
perpendicular boundaries of elements in edge or corner-edge mesh patches which
are situated on a Dirichlet boundary face Γι for ι ∈ JD. On the corresponding ele-
mental boundaries, the projection πℓ

σ,su satisfies homogeneous Dirichlet boundary
conditions.

Next, we analyze the continuity within M̃ℓ,ce,‖
σ = ∪ℓ

ℓ′=2Ψ̃
ℓ′,ce(M̃ℓ′,e

σ ) in (4.19)
and as appearing in the representations (4.18), (4.23) and (4.26). The analog of
Lemma 4.8 is as follows.
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Lemma 4.10. For 3 ≤ ℓ′ ≤ ℓ, let Ψ̃ℓ′−1,ce(M̃ℓ′−1,e
σ ) and Ψ̃ℓ′,ce(M̃ℓ′,e

σ ) be two
adjacent edge-patch blocks along the same edge. Then πℓ

σ,su is continuous across

perpendicular faces on the interface between Ψ̃ℓ′−1,ce(M̃ℓ′−1,e
σ ) and Ψ̃ℓ′,ce(M̃ℓ′,e

σ ),

except for the faces between the diagonal elements in D̃ℓ′−1,ce
σ and the corresponding

elements in Ψ̃ℓ′,ce(M̃ℓ′,e
σ ).

As an illustration of Lemma 4.10, we note that πℓ
σ,su is generally non-conforming

across the isotropic faces FK′
4
,K′′

4
, FK′

6
,K′′

6
in Figure 2, and across the isotropic faces

FK′
1
,K′′

1
, FK′

4
,K′′

4
, FK′

6
,K′′

6
, FK′

6
,K′′′

6
in Figure 3 (left).

The conformity properties in Lemma 4.8, Remark 4.9 and Lemma 4.10 imme-

diately allow us to identify sets F⊥
ID(Mℓ

σ) and F‖
ID(Mℓ

σ) = F‖
I (Mℓ

σ) ∪ F‖
D(Mℓ

σ),
over which πℓ

σ,su is conforming and non-conforming, respectively. By construction,

faces F ∈ F‖
ID(Mℓ

σ) satisfy (3.33), (3.34), as claimed in Proposition 3.10.

4.3.6. Polynomial face jump bounds. Next, we bound the face jumps of πℓ
σ,su over

the faces F ∈ F‖
ID(M) for a geometric mesh M = Mℓ

σ. To this end, we first recall
the anisotropic trace inequality from [22, Lemma 4.2] (with t = 2).

Lemma 4.11. For F ∈ F‖
ID(M) with F ⊆ F ′ ∈ F(K) and u ∈ H1(K), there

holds
h
−1
F ‖u‖2L2(F ) . (h⊥

K)−2‖u‖2L2(K) + ‖D⊥u‖2L2(K) . N⊥
K [u]2. (4.28)

Next, we establish the following variant of the jump estimate of [24, Section 5.5],
which is essential for controlling jumps of πℓ

σ,su over anisotropic faces of M. Due to

the appearance of H1-projectors in edge-parallel direction, we require in this bound
a local smoothness assumption which is slightly stronger than H1-regularity.

Lemma 4.12. Consider an edge-parallel face F = FK1,K2
∈ F‖

I (M) shared by

two axiparallel elements K1 = K⊥
1 × K‖ and K2 = K⊥

2 × K‖ as in (3.3), with
K‖ = (0, h‖) in parallel direction and with K⊥

1 and K⊥
2 two shape-regular and

possibly non-matching rectangles of diameters h⊥
K1

≃ h⊥
K2

≃ h⊥ in perpendicular

direction, for parameters h⊥ . h‖. Let the elemental polynomial degrees be given by

pKi
= (p⊥i , p

‖). Let u ∈ H1((K
⊥
1 ∪K

⊥
2 )

◦)⊗H1(K‖) and π1u|Ki
= π⊥

0 ⊗ π
‖
1u|Ki

=
πpKi

,1(u|Ki
) for i = 1, 2. For the error terms η1 = u − π1u, η

⊥
0 = u − π⊥

0 u and

η
‖
1 = u− π

‖
1u as in (4.7), we have the bound

h
−1
F ‖[[πu]]F ‖2L2(F ) .p

2∑

i=1

(
‖D⊥η

⊥
0 ‖2L2(Ki)

+ ‖D⊥η
‖
1‖2L2(Ki)

)
. (4.29)

Similarly, let F = FK,Γι
∈ F‖

D(M), ι ∈ JD, be a Dirichlet face of K = K⊥×K‖,

with K‖ = (0, h‖) and K⊥ a shape-regular rectangle of diameter h⊥, for h⊥ . h‖.
Let the elemental polynomial degrees be given by pK = (p⊥, p‖). Let u ∈ H1(K⊥)⊗
H1(K‖) with u|F = 0 and π1u|K = π⊥

0 ⊗ π
‖
1u|K = πpK ,1(u|K). Then we have the

bound

h
−1
F ‖[[πu]]F ‖2L2(F ) .p ‖D⊥η

⊥
0 ‖2L2(K) + ‖D⊥η

‖
1‖2L2(K). (4.30)

Proof. Note that the setting is such that property (3.33) is fulfilled. On element
Ki, i = 1, 2, we have

η⊥0 − π⊥
0 η

⊥
0 = (u − π⊥

0 u)− π⊥
0 (u− π⊥

0 u) = u− π⊥
0 u = η⊥0 . (4.31)
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Then, we note that π
‖
1u|Ki

∈ H1(K⊥
i ) ⊗ Pp‖(K‖) ⊂ H1(K) for i = 1, 2 and(

π
‖
1u|K1

)
|F =

(
π
‖
1u|K2

)
|F in L2(F ). With the latter identity and since π⊥

0 and

π
‖
1 commute, we conclude that

‖[[πu]]F ‖2L2(F ) = ‖π1u|K1
− π1u|K2

‖2L2(F )

.

2∑

i=1

‖π⊥
0 ⊗ π

‖
1u|Ki

− π
‖
1u|Ki

‖2L2(F ) =

2∑

i=1

‖π‖
1η

⊥
0 |Ki

‖2L2(F ).

We then consider element Ki for i = 1, 2. With the trace inequality (4.28), we have

h
−1
F ‖π‖

1η
⊥
0 |Ki

‖2L2(F ) . (h⊥
Ki

)−2‖π‖
1η

⊥
0 ‖2L2(Ki)

+ ‖D⊥(π
‖
1η

⊥
0 )‖2L2(Ki)

.

Property (4.31) and standard h-version approximation results for π⊥
0 in perpendic-

ular direction yield

‖π‖
1η

⊥
0 ‖2L2(Ki)

= ‖(π‖
1η

⊥
0 )− π⊥

0 (π
‖
1η

⊥
0 )‖2L2(Ki)

. (h⊥
Ki

)2‖D⊥(π
‖
1η

⊥
0 )‖2L2(Ki)

.

Therefore,

h
−1
F ‖π‖

1η
⊥
0 |Ki

‖2L2(F ) . ‖D⊥(π
‖
1η

⊥
0 )‖2L2(Ki)

. ‖D⊥((π
‖
1 − π

‖
0)η

⊥
0 )‖2L2(Ki)

+ ‖D⊥(π
‖
0η

⊥
0 )‖2L2(Ki)

. (4.32)

We next bound the two terms in (4.32). We write the first term as

(π
‖
1 − π

‖
0)η

⊥
0 = (π

‖
1 − π

‖
0)u− π⊥

0 (π
‖
1 − π

‖
0)u

= π
‖
0(π

‖
1u− u)− π⊥

0

(
π
‖
0(π

‖
1u− u)

)
.

With the stability bound (4.9) for π⊥
0 in edge-perpendicular direction, we find that

‖D⊥

(
(π

‖
1 − π

‖
0)η

⊥
0

)
‖2L2(Ki)

. (p⊥i )
4‖D⊥

(
π
‖
0(π

‖
1u− u)

)
‖2L2(Ki)

.

Then, since Dα⊥

⊥ and π
‖

p‖,0
commute, the L2-stability of the L2-projection π

‖
0 implies

‖D⊥

(
(π

‖
1 − π

‖
0)η

⊥
0

)
‖2L2(Ki)

. (p⊥i )
4‖D⊥η

‖
1‖2L2(Ki)

.

To estimate the second term in (4.32), we again invoke the L2-stability of π
‖
0 as

before to obtain
‖D⊥(π

‖
0η

⊥
0 )‖2L2(K1)

. ‖D⊥η
⊥
0 ‖2L2(K1)

.

Combining these arguments yields (4.29).
The proof of (4.30) for a Dirichlet boundary face F is obtained by proceeding

analogously, noting that
(
π1u|K

)
|F = 0 in L2(F ). �

Lemma 4.13. Under the assumptions in Proposition 3.10, let πℓ
σ,su be the hp-base

projectors introduced in Section 4.3.4. With the error terms in (3.40), we have the
bound

jmp
F

‖
ID

(Mℓ
σ)
[ηℓσ,s]

2 .p Υ⊥
Mℓ

σ,C
[ηℓ,⊥σ,s ]

2 +Υ
‖

Mℓ
σ,C

[η
ℓ,‖
σ,s]

2 +Υ
‖

Tℓ
C

[ηℓσ,s]
2. (4.33)

Proof. Anisotropic faces F in F‖
ID(Mℓ)

σ ) arise in mapped edge patches M̃ℓ,e
σ and in

mapped submeshes M̃ℓ,ce,‖
σ \ D̃ℓ,ce

σ ; see (4.19), (4.20). For faces F in the interior of
these subsets or on Dirichlet boundaries away from corners, the jumps of πℓ

σ,su can
be bounded by the estimates in Lemma 4.12, upon noting that the same elemental

polynomial degrees p
‖
K are employed in edge-parallel directions and that, for u ∈
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B−1−b(Ω; ∅, ∅), the smoothness assumptions in Lemma 4.12 are satisfied, also for

Dirichlet boundary faces away from corners. The remaining faces in F‖
ID(Mℓ

σ) are
isotropic and the jumps over them can by bounded by isotropic versions of the trace
inequality (4.28), along with the stability bounds in Lemma 4.1. �

Lemma 4.13 along with estimate (3.41) then establishes the bound (3.42) for
jmp

F
‖
ID

(Mℓ
σ)
[ηℓσ,s], which completes the proof of Proposition 3.10.

5. Averaging Operators

We prove Theorem 3.12 and construct the averaging operators Aℓ
σ,s over the

geometric mesh M = Mℓ
σ. Throughout this section, let v ∈ V

ℓ,0,⊥
σ,s be fixed.

5.1. Sets of adjacent elements. Let K ∈ M. For N ∈ N (K), E ∈ E(K) and
F ∈ F(K), we introduce the following sets of elements which regularly share N , E
and F , respectively:

∆K,N := {K ′ ∈ M : N ∈ N (K ′) }, (5.1)

∆K,E := {K ′ ∈ M : E ∈ E(K ′) }, (5.2)

∆K,F := {K ′ ∈ M : F ∈ F(K ′) }. (5.3)

Clearly, we have K ∈ ∆K,N , K ∈ ∆K,E ⊆ δK,E and K ∈ ∆K,F ⊆ δK,F , with δK,E

and δK,F introduced in (3.11) and (3.12), respectively. Then, card(∆K,N ) ≥ 1,
card(∆K,E) ≥ 1, and card(∆K,F ) ∈ {1, 2}. It can be seen that

N ∈ N (E) : ∆K,E ⊆ ∆K,N and E ∈ E(F ) : ∆K,F ⊆ ∆K,E . (5.4)

Moreover, the sets defined in (5.1)–(5.3) have the property that

∆K,N = ∆K′,N , K ′ ∈ ∆K,N , (5.5)

∆K,E = ∆K′,E, K ′ ∈ ∆K,E , (5.6)

∆K,F = ∆K′,F , K ′ ∈ ∆K,F . (5.7)

For N ∈ N (M) \ ND(M) respectively N ∈ ND(M), we require the sets

F‖
I (∆K,N ) := {F = FK,K′ ∈ F‖

I (M) : K ′ ∈ ∆K,N \ {K} },
F‖

D(∆K,N ) := {F = FK′,Γι
∈ F‖

D(M) : K ′ ∈ ∆K,N and ι ∈ JD }.
(5.8)

Similarly, for E ∈ E(M) \ ED(M) respectively E ∈ ED(M), we set

F‖
I (∆K,E) := {F = FK,K′ ∈ F‖

I (M) : K ′ ∈ ∆K,E \ {K} },
F‖

D(∆K,E) := {F = FK′,Γι
∈ F‖

D(M) : K ′ ∈ ∆K,E and ι ∈ JD }.
(5.9)

We further define

F‖
ID(∆K,N ) := F‖

I (∆K,N ) ∪ F‖
D(∆K,N ), (5.10)

F‖
ID(∆K,E) := F‖

I (∆K,E) ∪ F‖
D(∆K,E). (5.11)

Notice that any of these sets could be empty.
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5.2. Averaging over ∆K,N . We construct an approximation vn ∈ V
ℓ,0

σ,s by modi-
fying the base projection v at possibly all elemental vertices.

For K ∈ M and N ∈ N (K), we define the averaged vertex value AK,N (v) by
averaging v over all elements in ∆K,N in (5.1):

AK,N (v) :=





1

card(∆K,N )

∑

K′∈∆K,N

v|K′(N), if N ∈ N (M) \ ND(M),

0, if N ∈ ND(M).

(5.12)
The averaged value AK,N (v) in (5.12) is well-defined irrespective of whether N ∈
N (K) gives rise to a regular or irregular node in N (M). With (5.5), we have

AK,N (v) = AK′,N (v), K ′ ∈ ∆K,N . (5.13)

Hence, the values AK,N assign a unique vertex value over the elements in ∆K,N

which match regularly with the vertex N .
For K ∈ M and N ∈ N (K), we denote by LK,N (v) ∈ Q1(K) the polynomial

vertex lifting with the property that, for N ′ ∈ N (K),

LK,N (v)(N ′) =

{
v|K(N) −AK,N (v) N ′ = N ,

0 N ′ 6= N .
(5.14)

Lemma 5.1. For K ∈ M and N ∈ N (K), let the vertex lifting LK,N (v) be defined
by (5.14) with the averages AK,N (v) in (5.12). Then there holds

N⊥
K [LK,N (v)]2 . |pK |8jmp

F
‖
ID

(∆K,N )
[v]2, (5.15)

with F‖
ID(∆K,N ) in (5.10). If F‖

ID(∆K,N ) = ∅, the sum on the right-hand side is
understood as zero.

Proof. From the definition (5.12) with anisotropic scaling, we readily find that

‖LK,N (v)‖2L2(K) . (h⊥
K)2h

‖
K

∣∣v|K(N)−AK,N (v)
∣∣2. (5.16)

The univariate inverse estimate (see, e.g., [25, Theorem 3.91]) combined with aniso-

tropic scaling and employing that h⊥
K . h

‖
K and p⊥K ≤ p

‖
K yields the anisotropic

inverse inequality

‖∇v‖2L2(K) . (p
‖
K)4(h⊥

K)−2‖v‖2L2(K), v ∈ QpK
(K) . (5.17)

Therefore,

N⊥
K [LK,N (v)]2 . |pK |4h‖

K

∣∣v|K(N)−AK,N (v)
∣∣2. (5.18)

We proceed to estimate |v|K(N)−AK,N (v)
∣∣ in (5.18). We consider first the case

where the elemental node N ∈ N (K) gives rise to a node ofN (M)\ND(M). Then,
if card(∆K,N ) ≥ 2, with (5.12), the triangle inequality, the fact that card(∆K,N )−1

is bounded uniformly in ℓ, and the partial conformity properties of v discussed in
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Section 4.3.5, we conclude that

∣∣v|K(N) −AK,N (v)
∣∣2 .

1

card(∆K,N )2

∑

K′∈∆K,N\{K}

∣∣v|K(N)− v|K′(N)
∣∣2

.
∑

K′∈∆K,N\{K}

|[[v]]FK,K′ (N)|2

≤
∑

K′∈∆K,N\{K}

‖[[v]]FK,K′ ‖2L∞(FK,K′ )

=
∑

F∈F
‖
I
(∆K,N )

‖[[v]]F ‖2L∞(F ).

(5.19)

If card(∆K,N ) = 1, we have AK,N (v) = v|K(N) and F‖
I (∆K,N ) = ∅. As a conse-

quence, LK,N (v) = 0 in (5.14). Hence, inequality (5.19) above holds true trivially

if the sum over F‖
I (∆K,N ) is understood as zero.

Second, let N ∈ N (K) give rise to a Dirichlet node in ND(M). Consider a
Dirichlet boundary face F = FK′,Γι

with N ∈ F , K ′ ∈ ∆K,N and ι ∈ JD. We

may assume that F ∈ F‖
D(∆K,N ), otherwise we have LK,N (v) = 0 by Remark 4.9

and since AK,N (v) = 0 by (5.12). We thus conclude that
∣∣v|K(N) −AK,N (v)

∣∣2 = |[[v]]F (N)|2

≤ ‖[[v]]F ‖2L∞(F ) ≤
∑

F∈F
‖
D
(∆K,N )

‖[[v]]F ‖2L∞(F ).
(5.20)

Combining (5.18), (5.19) and (5.20) gives

N⊥
K [LK,N (v)]2 . |pK |4h‖

K

∑

F∈F
‖
ID

(∆K,N )

‖[[v]]F ‖2L∞(F ). (5.21)

To bound the L∞-norms of the jumps of v in (5.21), we recall from [25, Theo-
rems 3.92] the following univariate inverse inequality: let I = (a, b) be an interval
of size h = b− a. Then

|q(a)|2 + |q(b)|2 ≤ ‖q‖2L∞(I) . p2h−1‖q‖2L2(I) , q ∈ Pp(I). (5.22)

for all polynomials q ∈ Pp(I). A face F ∈ F‖
ID(∆K,N ) can be written in the

form (3.34). Applying (5.22) in the two directions on F and the definition of the
face polynomial degrees pK,F in (3.14) yield

‖[[v]]F ‖2L∞(F ) . |pK |4(h⊥
K)−1(h

‖
K)−1‖[[v]]F ‖2L2(F ). (5.23)

The bound (5.15) follows from (5.21) and (5.23). �

For K ∈ M, we introduce the full vertex lifting

Ln
K(v) :=

∑

N∈N (K)

LK,N (v) ∈ Q1(K). (5.24)

We further define the approximation vn ∈ V
ℓ,0

σ,s as

vn|K := v|K − Ln
K(v) ∈ SpK

(K), K ∈ M. (5.25)
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The function vn|K has assigned vertex values at all elemental vertex nodes:

vn|K(N) = AK,N (v), N ∈ N (K). (5.26)

Note also that, in the expansion (3.15), (3.16), only the nodal part of vn|K differs
from the nodal part of v|K , while the edge, face and interior parts of vn|K and v|K
coincide.

Proposition 5.2. Let vn|K be defined in (5.25) for K ∈ M. Then the function vn

is conforming over faces F ∈ FID(M) \ F‖
ID(M) and there holds

Υ⊥
M[v − vn]2 + jmp

F
‖
ID

(M)
[vn]2 . |p|8 jmp

F
‖
ID

(M)
[v]2. (5.27)

Proof. As outlined in Section 4.3.5, the base interpolant v is continuous over edge-

perpendicular faces F ∈ FID(M) \ F‖
ID(M) between anisotropic elements across

which the nodally exact interpolants (A.1) are used in edge-parallel direction. Then,
the definition (5.14) and property (5.13) imply that the liftings LK,N (v) yield
conforming approximations over the same faces. Since vn|K = v|K − Ln

K(v), the
approximation vn is continuous over these faces as well, and thus generally non-

conforming over faces in F‖
ID(M).

The bound for Υ⊥
M[v − vn]2 in (5.27) follows immediately by summing (5.15)

over all elements K ∈ M and N ∈ N (K). To bound the L2-norms of the jumps

of vn, consider an interior face F = FK,K′ ∈ F‖
ID(M). The definition (5.25), the

triangle inequality and the trace inequality (4.28) yield

h
−1
F ‖[[vn]]F ‖2L2(F ) . h

−1
F ‖[[v]]F ‖2L2(F ) +N⊥

K [Ln
K(v)]2 +N⊥

K′ [Ln
K(v)]2.

A corresponding bound holds for Dirichlet faces F ∈ F‖
D(M). Summing these

estimates over all F ∈ F‖
ID(M) and applying (5.15) gives the desired bound for

jmp
F

‖
ID

(M)
[vn]2 in (5.27). �

5.3. Averaging over ∆K,E. With (3.18), the approximation vn ∈ V
ℓ,0

σ,s from Sec-
tion 5.2 satisfies

(vn|K)|E ∈ PpK,E
(E), K ∈ M, E ∈ E(K), (5.28)

with the minimum edge degree pK,E in (3.13). For K ∈ M and E ∈ E(K), we next
average vn over the set ∆K,E in (5.2) and define:

AK,E(v
n) :=





1

card(∆K,E)

∑

K′∈∆K,E

(
vn|K′

)
|E , if E ∈ E(M) \ ED(M),

0, if E ∈ ED(M).

(5.29)

By (5.28), the function AK,E(v
n) is a polynomial in PpK,E

(E).

Lemma 5.3. Let K ∈ M and E ∈ E(K). Then, AK,E(v
n) = AK′,E(v

n) for
K ′ ∈ ∆K,E. Moreover, if N ∈ N (E) is an end point of E, we have AK,E(v

n)(N) =
vn|K(N).

Proof. The first assertion follows with (5.6). Furthermore, we note that with prop-
erties (5.4) and (5.13), there holds AK′,N (v) = AK,N (v) for K ′ ∈ ∆K,E . This
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property in combination with definition (5.29) and property (5.26) yields

AK,E(v
n)(N) =

1

card(∆K,E)

∑

K′∈∆K,E

vn|K′(N)

=
1

card(∆K,E)

∑

K′∈∆K,E

AK′,N (v)

=
1

card(∆K,E)

∑

K′∈∆K,E

AK,N (v) = AK,N (v) = vn|K(N).

The second assertion follows. �

For K ∈ M and E ∈ E(K), we denote by LK,E(v
n) ∈ SpK

(K) the polynomial
lifting which satisfies

LK,E(v
n)|E = (vn|K)|E −AK,E(v

n) ∈ PpK,E
(E) on E, (5.30)

and which is given by linear blending functions in the two directions orthogonal
to E. With Lemma 5.3, there holds

LK,E(v
n)(N) = 0, N ∈ N (E). (5.31)

The lifting LK,E(v) vanishes on the remaining elemental edges E′ 6= E, as well as
on faces F ∈ F(K) with E 6∈ E(F ).

Lemma 5.4. For K ∈ M and E ∈ E(K), let the edge lifting LK,E(v
n) be defined

by (5.30) with the averages AK,E(v
n) in (5.29). Then there holds

N⊥
K [LK,E(v

n)]2 . |pK |6jmp
F

‖
ID

(∆K,E)
[vn]2, (5.32)

with F‖
ID(∆K,E) in (5.11). If F‖

ID(∆K,E) = ∅, the sum on the right-hand side is
understood as zero.

Proof. We denote by hE the length of E ∈ E(K). Then, either hE ≃ h⊥
K or

hE ≃ h
‖
K . From the definition of (5.30) and anisotropic scaling, we readily see that

‖LK,E(v
n)‖2L2(K) .

{
h⊥
Kh

‖
K‖vn|K −AK,E(v

n)‖2L2(E), if hE ≃ h⊥
K ,

(h⊥
K)2‖vn|K −AK,E(v

n)‖2L2(E), if hE ≃ h
‖
K .

(5.33)

Hence, with (5.17), we conclude that

N⊥
K [LK,E(v

n)]2

. |pK |4
{

(h⊥
K)−1h

‖
K‖vn|K −AK,E(v

n)‖2
L2(E), if hE ≃ h⊥

K ,

‖vn|K −AK,E(v
n)‖2

L2(E), if hE ≃ h⊥
K .

(5.34)

We continue by bounding ‖vn|K − ve|K‖L2(E). First, we consider the case E ∈
E(M) \ ED(M). If card(∆K,E) ≥ 2, we employ the definition (5.29), the triangle
inequality, and the uniform boundedness of card(∆K,E)

−2, and observe that vn

has the same continuity properties as those of v established in Section 4.3.5; cf.
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Proposition 5.2. We obtain

‖vn|K −AK,E(v
n)‖2L2(E) .

1

card(∆K,E)2

∑

K′∈∆K,E\{K}

‖vn|K − vn|K′‖2L2(E)

.
∑

K′∈∆K,E\{K}

‖[[vn]]FK,K′ ‖2L2(E) (5.35)

.
∑

F∈F
‖
I
(∆K,E)

‖[[vn]]F ‖2L2(E).

If card(∆K,E) = 1, then F‖
I (∆K,E) = ∅ and LK,E(v

n) = 0. In this case, the
inequality (5.35) holds trivially if we understand the sum above as zero.

Second, let E ∈ ED(M) be a Dirichlet boundary edge. Then, consider a Dirichlet
boundary face F = FK′,Γι

with E ⊂ F , K ′ ∈ ∆K,E and ι ∈ JD. As before, we may

assume F ∈ F‖
D(∆K,E), otherwise LK,E(v

n) = 0; cf. Remark 4.9, Proposition 5.2
and (5.29). We find that

‖vn|K −AK,E(v
n)‖2L2(E) . ‖vn|K‖2L2(E)

. ‖[[vn]]F ‖2L2(E) .
∑

F∈F
‖
D
(∆K,E)

‖[[vn]]F ‖2L2(E). (5.36)

For F ∈ F‖
ID(∆K,E) written in the form (3.34), the inequality (5.22) applied on

E ⊂ F in direction perpendicular to E implies

‖[[vn]]F ‖2L2(E) .

{
|pK |2(h‖

K)−1‖[[vn]]F ‖2L2(F ) if hE ≃ h⊥
K ,

|pK |2(h⊥
K)−1‖[[vn]]F ‖2L2(F ) if hE ≃ h

‖
K .

(5.37)

Therefore, combining the inequalities in(5.34), (5.35), (5.36) and (5.37) gives the
desired bound (5.32). �

We define the full edge lifting

Le
K(vn) :=

∑

E∈E(K)

LK,E(v
n) ∈ SpK

(K), K ∈ M, (5.38)

and introduce the approximation ve ∈ V
ℓ,0

σ,s by

ve|K := vn|K − Le
K(vn) ∈ SpK

(K), K ∈ M. (5.39)

The definition (5.39) only affects the edge parts of vn|K in (3.15), (3.16), while
nodal, face and interior parts of vn|K are not modified. By construction and
Lemma 5.3, there holds

(
ve|K

)
|E = AK,E(v

n), E ∈ E(K), (5.40)

ve|K(N) = vn|K(N), N ∈ N (K). (5.41)

The analog of Proposition 5.2 reads as follows.

Proposition 5.5. Let ve|K be defined in (5.39) for K ∈ M. Then the function ve

is conforming over faces F ∈ FID(M) \ F‖
ID(M) and there holds

Υ⊥
M[v − ve]2 + jmp

F
‖
ID

(M)
[ve]2 . |p|14 jmp

F
‖
ID

(M)
[v]2. (5.42)
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Proof. By proceeding as in the proof of Proposition 5.2, the estimate (5.32) yields

Υ⊥
M[vn − ve]2 + jmp

F
‖
ID

(M)
[ve]2 . |p|6 jmp

F
‖
ID

(M)
[vn]2.

The triangle inequality and the bound (5.27) now yield (5.42). �

5.4. Averaging over ∆K,F . With (3.19), the approximation ve ∈ V
ℓ,0

σ,s satisfies:

(ve|K)|F ∈ QpK,F
(F ), K ∈ M, F ∈ F(K), (5.43)

with the minimum face degree pK,F in (3.14). We then average ve over ∆K,F

in (5.3):

AK,F (v
e) :=





1

card(∆K,F )

∑

K′∈∆K,F

(ve|K′)|F , if F ∈ FI(M) ∪ FN(M),

0, if F ∈ FD(M).

(5.44)

By (5.43), the function AK,F (v
e) is a polynomial in QpK,F

(F ). For F ∈ FN (M),

we have card(∆K,F ) = 1 and AK,F (v
e) = (ve|K)|F .

Lemma 5.6. Let K ∈ M and F ∈ F(K). Then, AK,F (v
e) = AK′,F (v

e) for K ′ ∈
∆K,F . Moreover, if E ∈ E(F ) is an edge of F , we have AK,F (v

e)|E = (ve|K)|E.
Proof. The first property follows with (5.7). To show the second one, consider
x ∈ E ∈ E(K). With (5.4) and Lemma 5.3, there holds AK′,E(v

n) = AK,E(v
n) for

K ′ ∈ ∆K,F . Employing (5.44) and (5.40), (5.41) (see also Lemma 5.3) then yields

AK,F (v
e)(x) =

1

card(∆K,F )

∑

K′∈∆K,F

ve|K′(x)

=
1

card(∆K,F )

∑

K′∈∆K,F

AK′,E(v
n)(x)

=
1

card(∆K,F )

∑

K′∈∆K,F

AK,E(v
n)(x) = AK,E(v

n)(x) = ve|K(x),

which completes the proof. �

For K ∈ M and F ∈ F(K), we denote by LK,F (v
e) ∈ SpK

(K) the polynomial
lifting which is given by

LK,F (v
e)|F := (ve|K)|F −AK,F (v

e) ∈ QpK,F
(F ) on F , (5.45)

and by a linear blending function in direction orthogonal to F . With Lemma 5.6,
there holds

LK,F (v
e)|E = 0, E ∈ E(F ). (5.46)

Therefore, the lifting LK,F (v
e) vanishes on all other elemental faces F ′ ∈ F(K)

with F ′ 6= F .

Remark 5.7. If card(∆K,F ) = 1 and F 6∈ FD(M), we have LK,F (v
e) = 0, which

is a consequence of definitions (5.44) and (5.45). In particular, this holds true for
Neumann boundary faces F ∈ FN(M). Similarly, we have LK,F (v

e) = 0 if ve is
conforming over the face F . In view of the partial continuity properties of ve in
Proposition 5.5, in the subsequent lemma it is therefore sufficient to focus on faces

F ∈ F‖
ID(M).
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Lemma 5.8. Let F ∈ F(K) give rise to a face in F‖
ID(M). Let the face lift-

ing LK,F (v
e) be defined by (5.45) with the averages AK,F (v

e) in (5.44). Then there
holds

N⊥
K [LK,F (v

e)]2 . |pK |4h−1
F ‖[[ve]]F ‖2L2(F ). (5.47)

Proof. With properties (3.33), (3.34) and anisotropic scaling combined with the
inverse inequality (5.17), we see that

N⊥
K [LK,F (v

e)]2 . |pK |4(h⊥
K)−1‖ve|K − AK,F (v

e)‖2L2(F ). (5.48)

If F = FK,K′ ∈ F‖
I (M), then we obtain

‖ve|K − AK,F (v
e)‖2L2(F ) . ‖[[ve]]F ‖2L2(F ). (5.49)

Furthermore, for F ∈ F‖
D(M), we have AK,F (v

e) = 0 and thus

‖ve|K − AK,F (v
e)‖2L2(F ) = ‖[[ve]]F ‖2L2(F ). (5.50)

The bounds (5.48), (5.49) and (5.50) imply (5.47). �

For K ∈ M, we define the polynomial face jump lifting at regular faces

Lf
K(ve) :=

∑

F∈F(K)

LK,F (v
e) ∈ SpK

(K), (5.51)

and introduce vf ∈ V
ℓ,0

σ,s by setting

vf |K := ve|K − Lf
K(ve) ∈ SpK

(K), K ∈ M. (5.52)

The definition (5.52) only affects the face parts of ve|K in (3.15), (3.16), while the
other parts of ve|K are left unchanged. In particular, the interior part of vf |K
is equal to that of v|K . By construction, the function vf is conforming over all

faces F ∈ F⊥
ID(Mℓ

σ) ∪ F‖
D(Mℓ

σ) and over all regularly matching interior faces F ∈
F‖

I (Mℓ
σ). With Lemmas 5.3 and 5.6, there holds

(
vf |K

)
|F = AK,F (v

e), F ∈ F(K), (5.53)
(
vf |K

)
|E = (ve|K)|E , E ∈ E(K), (5.54)

vf |K(N) = vn|K(N), N ∈ N (K). (5.55)

We are now ready to establish Theorem 3.12 in Section 3.4.

Proof of Theorem 3.12. Given v ∈ V
ℓ,0,⊥
σ,s , we define Aℓ

σ,s(v) := vf with vf ∈ V
ℓ,0,⊥
σ,s

as introduced above. Clearly, Aℓ
σ,s is linear. By construction, the function vf is

conforming over all faces F ∈ F⊥
ID(M) ∪ F‖

D(M) and over all regularly matching

interior faces F ∈ F‖
I (M). With Assumption 3.1, this implies items (i), (ii), (iii)

in Theorem 3.12. In addition, if v ∈ V ℓ,1
σ,s , all liftings constructed in this section are

zero, which implies item (iv). Similarly to the proofs of Propositions 5.2 and 5.5,
it follows from (5.47) that

Υ⊥
M[ve − vf ]2 + jmp

F
‖
I
(M)

[vf ]2 . |p|4 jmp
F

‖
ID

(M)
[ve]2.

Hence, the triangle inequality and the bounds (5.27), (5.42) yield (3.50) in Theo-
rem 3.12. �
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6. Polynomial Jump Lifting Operators

We construct the operators Lℓ
σ,s and prove Theorem 3.14. Throughout this

section, we fix vf = Aℓ
σ,s(v) for v ∈ V

ℓ,0,⊥
σ,s . While conforming across regular faces

and over different mesh patches, the approximations vf are generally discontinuous
over irregular faces between different mesh layers in the interior of mesh patches.
By construction of our meshes, it is sufficient to consider three types of irregular
mesh configurations in the context of reference mesh patches.

6.1. Anisotropic faces. Anisotropic irregular faces arise in the generic geometric
situation illustrated in Figure 4 along an edge (i.e., in direction of x‖). The figure

x
‖

x
⊥
1

x
⊥
2 h

‖

a
⊥
1

b
⊥
1

a
⊥
2

K

K1 K2

F1 F2

E
⊥
1

E
⊥
2

E
‖
1

E
‖
2

Figure 4. Interface between K and K1,K2 for σ = 0.5 and
lenght h‖. The anisotropic irregular faces F1, F2 and the elemental

edges E⊥
1 , E

‖
1 , E

⊥
2 , E

‖
2 of K are illustrated. The highlighted nodes

are regular vertex nodes.

displays the elemental face F ∈ F(K) of the outer element K, which is subdivided
into two irregular faces F1 := FK1,K ∈ F(K1) and F2 := FK2,K ∈ F(K2), for two
refined elements K1,K2 in the inner layer. All elements belong to the same mesh
patch of the underlying geometric mesh. The elements {K,K1,K2} and the faces
{F, F1, F2} are possibly anisotropic; their edge-parallel lengths are thus denoted by
the generic parameter h‖. The edge-perpendicular diameters of the elements in-
volved are shape-regular and of size h⊥

K ≃ h⊥
Ki

≃ h⊥ for i = 1, 2, with h⊥ . h‖. The
precise locations of the elements in edge-perpendicular direction are determined by
the parameters a⊥1 , a

⊥
2 , b

⊥
1 , b

⊥
2 , whose values only depend on σ. The setting is such

that the irregular faces F, Fj satisfy (3.33), (3.34). The configuration shown in Fig-

ure 4 is prototypical as it appears along edges in reference edge mesh patches M̃ℓ,e
σ

or in the scaled edge-patch blocks M̃ℓ,ce,‖
σ introduced in (4.18), (4.19) for reference

corner-edge mesh patches M̃ℓ,ce
σ . We note that two rotated and superimposed con-

figurations of this type can overlap over one of the smaller elements K1 or K2; cf.
Figure 1 and [18, Figure 2].

On the face F , we introduce the parallel elemental edges E
‖
1 , E

‖
2 ∈ E(K) along

x⊥
1 = 0 and x⊥

1 = a⊥2 ; cf. Figure 4. In the reference mesh patches these edges
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always appear as regular edges. With (5.4), the nodes highlighted in Figure 4 are
then regular vertex nodes. We further denote by E⊥

1 , E⊥
2 ∈ E(K) the perpendicular

elemental edges of K on x‖ = 0 and x‖ = h‖, respectively. Accordingly, we have

E
⊥
i = E

⊥
i1 ∪ E

⊥
i2 for i = 1, 2, with E⊥

ij ∈ E(Kj) irregular in E(M). Upon writing

pK,F = (p⊥K,F , p
‖
K,F ) and pKj,Fj

= (p⊥Kj ,Fj
, p

‖
Kj ,Fj

) as before, the definitions (3.13)

and (3.14) imply

pK,E⊥
i
≤ pKj,E

⊥
ij
, p⊥K,F ≤ p⊥Kj ,Fj

, p
‖
K,F ≤ p

‖
Kj,Fj

, 1 ≤ i, j ≤ 2. (6.1)

Hence, with properties (3.18), (3.19),

(vf |K)|E⊥
ij
∈ Pp

Kj,E
⊥
ij

(E⊥
ij ), (vf |K)|Fj

∈ QpKj,Fj
(Fj), 1 ≤ i, j ≤ 2. (6.2)

The face approximation vf is generally discontinuous across the irregular face Fj .
From (6.2), it further follows that

(
[[vf ]]Fj

)
|E⊥

ij
∈ Pp

Kj,E⊥
ij

(E⊥
ij ), [[vf ]]Fj

∈ QpKj,Fj
(Fj). (6.3)

We next define the jump [[vf ]]F over F piecewise as
(
[[vf ]]F )|Fj

:= [[vf ]]Fj
, j = 1, 2. (6.4)

Lemma 6.1. In the configuration of Figure 4, we have [[vf ]]F ∈ C0(F ), as well as

[[vf ]]F = 0 on E
‖
1 and on E

‖
2.

Proof. By Theorem 3.12, the approximation vf is continuous across the regular

face fK1,K2
, which implies [[vf ]]F ∈ C0(F ). Since E

‖
1 and E

‖
2 are regular edges, the

second assertion follows with (5.54), (5.55). �

To remove non-vanishing jumps of vf over the perpendicular elemental edge E⊥
1

of K, we introduce the polynomial edge jump lifting LF,E⊥
1

e (vf) by

LF,E⊥
1

e (vf) :=

{
−[[vf ]]F (x

⊥
1 , 0, 0)(1− x⊥

2 /b
⊥
1 )(1− x‖/h‖), on K1,K2,

0, on K.
(6.5)

Due to Lemma 6.1 and (6.3), LF,E⊥
1

e (vf) ∈ C0(K1 ∪ K2) and LF,E⊥
1

e (vf)|Kj
∈

SpKj
(Kj) for j = 1, 2. The lifting reproduces −[[vf ]]F on E⊥

1 and vanishes on

the planes x⊥
2 = b⊥1 , x

‖ = h‖, as well as on the edges E
‖
1 , E

‖
2 . Moreover, it is

zero if E⊥
1 is a Dirichlet boundary edge. A corresponding lifting LF,E⊥

2
e (vf) can be

constructed for the edge E⊥
2 . In the geometry of Figure 4, we then introduce the

full edge lifting

LF,E
e (vf) :=

2∑

i=1

LF,E⊥
i

e (vf). (6.6)

Lemma 6.2. For j = 1, 2, there holds

N⊥
Kj

[LF,E
e (vf)]2 . |p|6h−1

Fj
‖[[vf ]]Fj

‖2L2(Fj)
. (6.7)

Proof. The proof follows along the lines of Lemma 5.4 by noting that hE⊥
ij
≃ h⊥

Kj
≃

h⊥ for 1 ≤ i, j ≤ 2. Indeed, the definition (6.5) yields

‖LF,E⊥
i

e (vf)‖2L2(Kj)
. h⊥h‖‖[[vf ]]Fj

‖2
L2(E⊥

ij
). (6.8)
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Then, the inequality (5.22) applied on E
⊥
ij ⊂ F j in parallel direction implies

‖[[vf ]]Fj
‖2
L2(E⊥

ij
) . |p|2(h‖)−1‖[[vf ]]Fj

‖2L2(Fj)
. (6.9)

Combining these estimates, applying the inverse estimate (5.17) and employing that
h⊥ ≃ hFj

give

N⊥
Kj

[LF,E⊥
i

e (vf)]2 . |p|6h−1
Fj

‖[[vf ]]Fj
‖2L2(Fj)

. (6.10)

This implies (6.7). �

Next, we introduce the auxiliary function

vf,F,E :=

{
vf − LF,E

e (vf), on K1,K2,

vf , on K.
(6.11)

Then, vf,F,E ∈ C0(K1 ∪ K2) and vf,F,E|Kj
∈ SpKj

(Kj). With (6.1) and as in

Lemma 6.1, we have [[vf,F,E]]Fj
∈ QpKj,Fj

(Fj) and [[vf,F,E]]F ∈ C0(F ). Moreover,

there holds

[[vf,F,E]]F = 0 on E⊥
i , [[vf,F,E]]F = 0 on E

‖
i , i = 1, 2. (6.12)

Remark 6.3. The lifting LF,E
e (vf) does not generally vanish on x‖ = 0 and x‖ =

h‖. However, with Assumption 3.1 the constructions of corresponding liftings in
adjacent elements will lead to conformity of vf,F,E across x‖ = 0 and x‖ = h‖ in
edge-perpendicular direction. This will be detailed in Section 6.3.

Following [18, Section 5.2.1], we introduce the lifting associated with the face F
by

LF
e (v

f) :=

{
−[[vf,F,E]]F (x

⊥
1 , 0, x

‖)(1 − x⊥
2 /b

⊥
1 ), on K1,K2,

0, on K,
(6.13)

with vf,F,E in (6.11). Clearly, LF
e (v

f) ∈ C0(K1 ∪K2), LF
e (v

f)|Kj
∈ SpKj

(Kj) for

j = 1, 2, and LF
e (v

f)|F = −[[vf,F,E]]F . Morever, the lifting LF
e (v

f) vanishes on the
planes x⊥

2 = b⊥1 , x
⊥
1 = 0, x⊥

1 = a⊥2 , and x‖ = 0, x‖ = h‖.

Lemma 6.4. For j = 1, 2, there holds

N⊥
Kj

[LF
e (v

f)]2 . |p|10h−1
Fj

‖[[vf ]]Fj
‖2L2(Fj)

. (6.14)

Proof. As in (5.47), we have

N⊥
Kj

[LF
e (v

f)]2 . |p|4h−1
Fj

‖[[vf,F,E]]Fj
‖2L2(Fj)

. (6.15)

Then, applying the trace inequality (4.28) yields

h
−1
Fj

‖[[vf,F,E]]Fj
‖2L2(Fj)

. h
−1
Fj

‖[[vf ]]Fj
‖2L2(Fj)

+N⊥
Kj

[LF,E
e (vf)]2.

Referring to (6.7) completes the proof. �

To analyze the lifting (6.13), we introduce the piecewise polynomial function

vf,F :=

{
vf − LF,E

e (vf)− LF
e (v

f), on K1,K2,

vf , on K,
(6.16)

We have vf,F ∈ C0(K1 ∪K2) and vf,F |Kj
∈ SpKj

(Kj) for j = 1, 2.

Lemma 6.5. The function vf,F in (6.16) is continuous across F .
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Proof. Consider x ∈ Fj for j = 1, 2. Then, with the definitions in (6.6), (6.13),

[[vf,F ]]FKj,K
(x) = vf |Kj

(x)− vf |K(x) + LF,E
e (vf)|Kj

(x)− [[vf,F,E]]F (x),

with vf,F,E in (6.11). Since [[vf,F,E]]F (x) = [[vf ]]FKj,K
(x)+LF,E

e (vf)|Kj
(x), it follows

that [[vf,F ]]F (x) = [[vf,F ]]FKj,K
(x) = 0. �

6.2. Isotropic faces. Isotropic irregular faces appear by subdivision of elemental
facesa into four or two isotropic faces.

6.2.1. Refinement of one elemental face into four faces. First, we consider the
generic configuration in Figure 5 where the elemental face F ∈ F(K) of the outer
element K is subdivided into four irregular faces Fj = FKj ,K ∈ F(Kj), 1 ≤ j ≤ 4,
with four elements K1,K2,K3,K4 in the inner layer. All elements and faces in-
volved are in the same mesh patch and are isotropic of mesh size h. The faces F
and Fj satisfy (3.33), (3.34). As before, the parameters a1, a2, b1 and c1, c2 only
depend on σ. We further denote by E1, E2, E3, E4 the elemental edges of K on
x2 = 0; cf. Figure 5. The elemental vertices of K on x2 = 0 always appear as
regular vertex nodes in N (M). This configuration arises in reference corner mesh

x1

x2

x3

a1

b1

c1

a2

c2

K

K1 K2

K3K4

F1
F2

F3

E1

E2

Figure 5. Interface between K and K1,K2,K3,K4 for σ = 0.5.
The isotropic irregular faces F1, F2, F3 and the elemental edges
E1, E2 ofK are indicated. The highlighted nodes are regular vertex
nodes.

patches M̃ℓ,c
σ or in corner-type sub-meshes M̃ℓ,ce,⊥

σ of reference corner-edge mesh

patches M̃ℓ,ce
σ with refinement along one or two edges; cf. Figure 1 and [18, Fig-

ures 4, 8 and 10]. Again, two rotated and superimposed configurations of this type
can overlap over two of the elements in {K1,K2,K3,K4}; cf. Figure 1 and [18,
Figure 4].
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From (3.14), we see that

p1K,F ≤ p1Kj ,Fj
, p2K,F ≤ p2Kj ,Fj

, 1 ≤ j ≤ 4. (6.17)

Therefore, we have

(vf |K)|Fj
∈ QpKj,Fj

(Fj), [[vf ]]Fj
∈ QpKj,Fj

(Fj), 1 ≤ j ≤ 4. (6.18)

As in Section 6.1, we define the jump [[vf ]]F piecewise as
(
[[vf ]]F )|Fj

:= [[vf ]]Fj
, 1 ≤ j ≤ 4. (6.19)

Lemma 6.6. In the configuration of Figure 5, there holds: (i) [[vf ]]F ∈ C0(F );
(ii) [[vf ]]F (Ni) = 0 at the four elemental vertices N1 = (0, 0, 0), N2 = (a2, 0, 0),
N3 = (a2, 0, c2), and N4 = (0, 0, c2).

Proof. By Theorem 3.12, the approximation vf in (5.52) is continuous over the
regular faces FK1,K2

, FK2,K3
, FK3,K4

and FK1,K4
. As a consequence, we have

[[vf ]]F ∈ C0(F ). Since the elemental vertices Ni ∈ N (K) are regular mesh nodes,
the second assertion follows from the construction of vf and property (5.55). �

We introduce edge liftings associated with the elemental edges E1, E2, E3, E4

of K. We focus in detail on edge E1 on x2 = 0 and x3 = 0 intersecting with F1, F2

and K1,K2. By writing E1 = E11 ∪ E12 with E1j ∈ E(Kj), j = 1, 2, it follows
from (3.13) that pK,E1

≤ pKj ,E
⊥
1j
. Therefore,

(vf |K)|E1j
∈ PpKj,E1j

(E1j),
(
[[vf ]]Fj

)
|E1j

∈ PpKj,E1j
(E1j), j = 1, 2. (6.20)

We then introduce the polynomial edge jump lifting associated with E1 by

LF,E1

c (vf) :=

{
−[[vf ]]F (x1, 0, 0)(1− x2/b1)(1 − x3/c1), on K1,K2,

0, on K3,K4.
(6.21)

From Lemma 6.6 and (6.18), (6.20), LF,E1
c (vf) ∈ C0(∪4

j=1Kj) and LF,E1
c (vf)|Kj

∈
SpKj

(Kj) for 1 ≤ j ≤ 4. The lifting reproduces −[[vf ]]F on E1 and vanishes on the

other edges E2, E3, E4; cf. Lemma 6.6. It also vanishes on x2 = b1 and x3 = c1.
It vanishes identically if E1 is a Dirichlet boundary edge. Corresponding liftings
{LF,Ei

c (vf)}4i=2 can again be constructed for the other edges E2, E3, E4. The full
edge lifting is thus defined as

LF,E
c (vf) :=

4∑

i=1

LF,Ei
c (vf). (6.22)

Remark 6.7. As will be discussed in Section 6.3, the conformity of LF,E
c (vf) across

outer boundaries of {K1,K2,K3,K4} will follow from the constructions of corre-
sponding liftings in adjacent layers of elements; cf. Remark 6.3.

Proceeding as in Lemma 6.2 (with isotropic scaling) immediately yields the sta-
bility bound

N⊥
Kj

[LF,E
c (vf)]2 . |p|6h−1

Fj
‖[[vf ]]Fj

‖2L2(Fj)
, 1 ≤ j ≤ 4. (6.23)

We next consider the piecewise polynomial function

vf,F,E :=

{
vf − LF,E

c (vf), on K1,K2,K3,K4,

vf , on K.
(6.24)
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Then, vf,F,E ∈ C0(∪4
j=1Kj) and vf,F,E|Kj

∈ SpKj
(Kj). With (6.17), (6.18) and

similarly to Lemma 6.6, we have [[vf,F,E]]F ∈ C0(F ) and [[vf,F,E]]Fj
∈ QpKj,Fj

(Fj).

Moreover, the analog of property (6.12) holds:

[[vf,F,E]]F = 0 on Ei, 1 ≤ i ≤ 4. (6.25)

As in [18, Section 5.3.1], we then introduce the lifting over the face F by

LF
c (v

f) :=

{
−[[vf,F,E]]F (x1, 0, x3)(1− x2/b1), on K1,K2,K3,K4,

0, on K,
(6.26)

with vf,F,E in (6.24). Then, LF
c (v

f) ∈ C0(∪4
j=1Kj) and LF

c (v
f)|Kj

∈ SpKj
(Kj),

1 ≤ j ≤ 4. By (6.25), the lifting LF
c (v

f) vanishes on x2 = b1 and over the sets
Ei × (0, c1), 1 ≤ i ≤ 4. Proceeding as in the proof of (6.14) in combination with
isotropic scaling, we obtain

N⊥
Kj

[LF
c (v

f)]2 . |p|10h−1
Fj

‖[[vf ]]Fj
‖2L2(Fj)

, 1 ≤ j ≤ 4. (6.27)

Analogously to (6.16), we introduce

vf,F :=

{
vf − LF,E

c (vf)− LF
c (v

f), on K1,K2,K3,K4,

vf , on K,
(6.28)

We have vf,F ∈ C0(∪4
j=1Kj) and vf,F |Kj

∈ SpKj
(Kj) for 1 ≤ j ≤ 4.

The following variant of Lemma 6.5 holds true.

Lemma 6.8. The approximation vf,F in (6.28) is continuous across F .

6.2.2. Refinement of two elemental faces into two faces. Second, we consider the
isotropic configuration in Figure 6. It involves an element K where two adjacent
elemental faces F, F ′ ∈ F(K) are subdivided by using isotropic versions of the
irregular refinement in Figure 4, thereby yielding the elements K1,K2 and K ′

1,K
′
2.

As in Section 6.1, we then introduce the irregular faces Fj := FKj ,K ∈ F(Kj) and

F ′
j := FK′

j
,K ∈ F(K ′

j) for j = 1, 2. Then, F = F 1 ∪ F 2 and F
′
= F

′
1 ∪ F

′
2. In

Figure 6, we further illustrate the elements KD
1 ,KD

2 and we consider the elemental
edge E ∈ E(K) given by

E := { (x1, 0, 0) : 0 < x1 < a1 }. (6.29)

All elements are situated in the same mesh patch. This geometry only arises in
diagonal elements of corner-edge mesh patches with simultaneous refinement along
two or three edges ei, with K, KD

1 and KD
2 corresponding to diagonal elements; cf.

Figure 3.
With (6.4) and the properties of vf , we have [[vf ]]F = [[vf ]]F ′ on E. However, the

edge liftings LF,E
e (vf) over dFe := {K,K1,K2} associated with F as in (6.5) and

LF ′,E
e (vf) over dF

′

e =: {K,K ′
1,K

′
2} associated with F ′ are not necessarily continuous

across the regular faces FKj ,K
D
j

and FK′
j
,KD

j
for j = 1, 2. To correct for this, we

introduce on {KD
1 ,KD

2 } the diagonal edge lifting

LD(vf) := −[[vf ]]F (x1, 0, 0)(1− x2/b1)(1 − x3/c1), on KD
1 ,KD

2 . (6.30)

Since [[vf ]]F (N) = 0 for N = (0, 0, 0) and N = (a1, 0, 0), see Lemma 6.1, this
lifting vanishes on ∂KD

1 ∩ {x1 = 0} and ∂KD
2 ∩ {x1 = a1}, implying that it does

not affect values ofvf outside the configuration in Figure 6. We also have LD(vf) ∈
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E
x1

x2

x3

a1

b1

c1

K

K1 K2

K
D
1 K

D
2

K
′
1 K

′
2

F2

F
′
2

Figure 6. Two elemental faces F, F ′ ∈ F(K) are irregularly sub-
divided as in Figure 4. The elements K1,K2,K

′
1,K

′
2,K

D
1 ,KD

2 , the
irregular faces F2, F

′
2 and the elemental edge E ∈ E(K) are illus-

trated. The highlighted nodes are regular vertex nodes.

C0(K
D

1 ,K
D

2 ) and LD(vf)|KD
j
∈ Sp

KD
j

(KD
j ) for j = 1, 2. As in (6.23), the following

stability bound holds:

N⊥
KD

j
[LD(vf)]2 . |p|6hFj

‖[[vf ]]‖2L2(Fj)
, j = 1, 2. (6.31)

Similarly to (6.11) and in the geometry of Figure 6, we then introduce the aux-
iliary function

vf,D :=





vf − LF,E
e (vf), on K1,K2,

vf − LF ′,E
e (vf), on K ′

1,K
′
2,

vf − LD(vf), on KD
1 ,KD

2 ,

vf , on K.

(6.32)

We have vf,D|K ∈ SpK
(K) for K ∈ {K1,K2,K

′
1,K

′
2,K

D
1 ,KD

2 }. Then, since the

faces FKi,K
D
i

and FK′
i
,KD

i
are regularly matching for i = 1, 2, the function vf is

conforming over these two faces due to Theorem 3.12. Moreover, from the definition
of the liftings it follows that

vf,D ∈ C0(K1 ∪K2 ∪K
′
1 ∪K

′
2 ∪K

D

1 ∪K
D

2 ). (6.33)

6.3. Superposition. In this section, we superimpose the constructions in Sec-
tions 6.1 and 6.2. Upon mapping employing the patch maps Gp , it is sufficient

to consider the geometric reference mesh patches. For M̃ ∈ {M̃ℓ,t
σ }t∈{c,e,ce,int},

we denote by Fe(M̃) and Fc(M̃) the sets of all macro-faces F appearing as in
Figures 4 and 5, respectively. We denote by dFe = {K,K1,K2} respectively dFc =
{K,K1, . . . ,K4} the sets of elements associated with these configurations. The ge-
ometry in Figure 6 involves two isotropic versions of the configuration shown in
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Figure 4. We then denote by D(M̃) the set of all pairs D = {KD
1 ,KD

2 } of elements
appearing on the diagonal as in Figure 6.

Let Mp = Gp (M̃) be a mesh patch and let M̃ ∈ {M̃ℓ,t
σ }t∈{c,e,ce,int} be the cor-

responding geometric reference mesh patch. The averaged approximations vf |Mp

in Theorem 3.12 restricted to the patch Mp can be pulled back to the reference

patch M̃ and will be denoted by ṽf |
M̃
. We define ṽc|

M̃
as:

ṽc|
M̃

:= ṽf |
M̃

−
∑

F∈Fe(M̃)

(
LF,E
e (ṽf) + LF

e (ṽ
f)
)

−
∑

F∈Fc(M̃)

(
LF,E
c (ṽf) + LF

c (ṽ
f)
)
−

∑

D∈D(M̃)

LD(ṽf).
(6.34)

Here, LF,E
e (ṽf) and LF

e (ṽ
f) are the liftings in (6.5), (6.6) and (6.13) associated with

the face F and the elements in dFe . The liftings LF,E
c (ṽf) and LF

c (ṽ
f) are given

in (6.21), (6.22) and (6.26) with respect to the set dFc . Finally, LD(ṽf) are liftings
as in (6.30) over the elements D = {KD

1 ,KD
2 } in Figure 6.

Remark 6.9. The liftings LF
e (ṽ

f), LF
c (ṽ

f) and LD(ṽf) in (6.34) are locally supported

and vanish at the patch interfaces of M̃. Hence, they are not relevant for inter-patch
continuity.

For each patch Mp , we then set vc|Mp
= ṽc|

M̃
◦ G−1

p |Qp
, which gives rise to

a finite element function vc ∈ V
ℓ,0

σ,s. The approximation vc belongs in fact to the

conforming space V ℓ,1
σ,s , as we show in two steps.

Lemma 6.10. The approximation vc is continuous over regular faces in the interior
of each mesh patch, vanishes on all Dirichlet boundary faces, and is continuous
across adjacent mesh patches.

Proof. If F = FK,K is a regular interior face within a mesh patch, then vf is
conforming across F by Theorem 3.12. As definition (6.34) (and mapping) does not
alter vf onK,K ′, then vc is also continuous over F . Since ṽf and the liftings in (6.34)
vanish on faces corresponding to Dirichlet boundary faces, it also follows that vc

vanishes on Dirichlet boundary faces. The approximation vf is conforming across
adjacent mesh patches; see Theorem 3.12. It follows similarly from Assumption 3.1
and the properties of vf that mapped versions of the the edge liftings LF,E

e (ṽf) and
LF,E
c (ṽf) in (6.34) yield conforming approximations over the corresponding mesh

layers across two matching irregular configurations of different mesh patches. With
Remark 6.9, this implies inter-patch continuity. �

We next establish the inner-patch continuity of vc over irregular faces mesh
patches.

Lemma 6.11. On each mesh patch Mp , the approximation vc|Mp
is continuous

across irregular faces within Mp .

Proof. Since Mp = Gp (M̃) for M̃ ∈ {M̃ℓ,t
σ }t∈{c,e,ce,int}, upon mapping it is

sufficient to verify separately the continuity of ṽc in (6.34) for each reference mesh
patch type.

Interior patches: For M̃ = M̃ℓ,int
σ , we have Fe(M̃) = Fc(M̃) = D(M̃) = ∅

in (6.34). Hence, ṽc|
M̃

= ṽf |
M̃

and the inner-patch continuity follows immediately
from Theorem 3.12.
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Edge patches: For M̃ = M̃ℓ,e
σ , we have Fc(M̃) = D(M̃) = ∅, and the defini-

tion (6.34) involves two rotated and overlapping versions of the anisotropic con-
figurations in Figure 4 in each mesh layer, cf. [18, Figure 2]. This corresponds to
(a slight modification of) the construction in [18, Section 5.2.1]. Let then F be
an irregular face F in the patch. By the properties of the liftings LF,E

e (ṽf) and
LF
e (ṽ

f), the jump [[ṽc]]F coincides with [[ṽf,F ]]F , where ṽf,F is defined in (6.16) over
the elements dFe associated with F . Then Lemma 6.5 ensures the conformity across
the irregular face F .

Corner patches: For M̃ = M̃ℓ,c
σ , we have Fe(M̃) = D(M̃) = ∅ in (6.34). The

definition (6.34) yields three rotated and superimposed versions of the geometry in
Figure 5 in each mesh layer, exactly as in [18, Section 5.3.1 and Figure 4]. If F is an
irregular face in the patch, then [[ṽc]]F is equal to [[ṽf,F ]]F , where ṽ

f,F is now defined
in (6.28) in terms of liftings LF,E

c (ṽf) and LF
c (ṽ

f) over the elements dFc associated
with F . Lemma 6.8 yields conformity across F .

Corner-edge patches with refinement along one edge: Note that D(M̃) = ∅
in (6.34). We then use the representation (4.18)–(4.21) in Figure 2. In each

edge-patch block Ψ̃ℓ′,ce(M̃ℓ′,e
σ ), the definition (6.34) activates the edge-patch lift-

ings LF,E
e (ṽf) and LF

e (ṽ
f) as above; thereby ensuring conformity across irregular

faces F within each of these blocks due to Lemma 6.5. In edge-perpendicular

direction, the isotropic mesh Õℓ,ce,⊥
σ

.∪ D̃ℓ,ce
σ consists of two sequences of ℓ − 1

irregular and overlapping configurations as in Figure 5, with the smallest config-

uration extending into the corner mesh T̃ℓ,c
σ ; see Figure 2. The approximation ṽc

in (6.34) then involves the corner-patch liftings LF,E
c (ṽf) and LF

c (ṽ
f), which enforce

the continuity across irregular faces in Õℓ,ce,⊥
σ

.∪ D̃ce
σ and from Õℓ,ce,⊥

σ into T̃ℓ,c
σ ;

cf. Lemma 6.8. The edge-jump liftings LF,E
e (ṽf) and LF,E

c (ṽf) give conforming
approximations across faces of diagonal elements into the corresponding elements

of M̃ℓ,ce,‖
σ (e.g., across the regular faces fK′

4
,K′′

4
and fK′

6
,K′′

6
in Figure 2 (right)).

Similarly, they yield continuous approximations from corner elements in T̃ℓ,c
σ into

elements in Ψ2,ce(M̃2,e
σ ).

Corner-edge patches with refinement along two edges: We now have D(M̃) 6= ∅,
as the refinements towards two edges introduces the geometric situation analyzed

in Figure 6 over the diagonal elements in D̃ℓ,ce1
σ ∩ D̃ℓ,ce2

σ (e.g., over K6,K
′
6 in Fig-

ure 3 (left)). We use the decomposition (4.23), (4.24). In the submeshes M̃ℓ,ce1,‖
σ

and M̃ℓ,ce2,‖
σ , again the liftings LF,E

e (ṽf) and LF
e (ṽ

f) are activated and ensure
the continuity over edge-parallel anisotropic faces. Similarly, the liftings LF,E

c (ṽf)

and LF
c (ṽ

f) yield continuity across the irregular faces in Õℓ,ce,⊥
σ

.∪ (D̃ℓ,ce1
σ ∪ D̃ℓ,ce2

σ )

in perpendicular direction and from Õℓ,ce,⊥
σ into the corner elements in T̃ℓ,c

σ . In
addition to LF,E

e (ṽf), the liftings LD(ṽf) in (6.30) are invoked in (6.34), as, e.g.,
from K6 into D = {K ′

3,K
′
6} in Figure 3 (left). In the configuration nearest to c,

these liftings extend into two corner elements of T̃ℓ,c
σ . With (6.33), this procedure

ensures continuity over diagonal elements along the edges. In perpendicular direc-
tion, the edge-jump liftings LF,E

e (ṽf) and LF,E
c (ṽf) give conforming approximations

across faces of diagonal elements into the corresponding elements in the edge-patch
blocks (e.g., across the regular faces FK′

1
,K′′

1
or FK′

4
,K′′

4
in Figure 3 (left)), as well

as from T̃ℓ,c
σ into elements in Ψ2,cei(M̃2,ei

σ ) for i = 1, 2.
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Corner-edge patches with refinement along three edges: Clearly, D(M̃) 6= ∅, and
with (4.26), the geometric situation in Figure 6 now appears along three edges

situated on the diagonal elements in D̃ℓ,ce1
σ ∩ D̃ℓ,ce2

σ , D̃ℓ,ce2
σ ∩ D̃ℓ,ce3

σ , and D̃ℓ,ce1
σ ∩

D̃ℓ,ce3
σ (e.g., over K1,K

′
1, K4,K

′
4 and K6,K

′
6 in Figure 3 (right)). Irregular faces

as in Figure 5 are not present in this case (i.e., Fc(M̃) = ∅). Hence, in (6.34)
the liftings LF,E

e (ṽf), LF
e (ṽ

f) and LD(ṽf) in (6.30) are activated. As before, the

liftings LD(ṽf) extend into the corner elements in T̃ℓ,c
σ in the geometry closest to c.

Property (6.33) then ensures the continuity over diagonal elements and into T̃ℓ,c
σ .
�

We now complete the proof of Theorem 3.14 in Section 3.4.

Proof of Theorem 3.14. We set Lℓ
σ,s(v

f) := vc. By construction, Lℓ
σ,s is linear and

reproduces functions in V ℓ,1
σ,s . Lemmas 6.11 and 6.10 imply vc ∈ V ℓ,1

σ,s . From (6.34)
and the properties of the liftings, we further find that

Υ⊥
M̃
[ṽf − ṽc]2 .

∑

F∈Fe(M̃)

(
Υ⊥

dF
e
[LE,F

e (ṽf)]2 +Υ⊥
dF
e
[LF

e ṽ
f)]2

)

+
∑

F∈Fc(M̃)

(
Υ⊥

dF
c
[LE,F

c (ṽf)]2 +Υ⊥
dF
c
[LF

c (ṽ
f)]2

)
+

∑

D∈D(M̃)

Υ⊥
D[LD(ṽf)]2,

for any geometric reference mesh patch M̃. The stability estimates (6.7), (6.14) for
LE,F
e (ṽf) and LF

e (ṽ
f), the estimates (6.23), (6.27) for LF,E

c (ṽf) and LF
c (ṽ

f), and the
bound (6.31) for LD(ṽf) yield

Υ⊥
M̃
[ṽf − ṽc]2 . |p|10jmp

F
‖
I
(M̃)

[ṽf ]2, (6.35)

where F‖
I (M̃) denotes the interior faces on M̃ which satisfy (3.33), (3.34). After

mapping to the physical patches and summing over all patches, this implies the
bound (3.51). �

7. Conclusions

We established the H1-norm exponential convergence rate exp(−b 5
√
N) of con-

forming hp-FEMs in axiparallel polyhedral domains Ω ⊂ R3. The FE spaces are
based on σ-geometric mesh families Mσ of hexahedral elements containing, in gen-
eral, irregular faces and edges. Geometric meshes M ∈ Mσ are obtained as finite
unions of four types t ∈ {c, e, ce, int} of σ-geometric reference geometric patch

meshes M̃ℓ,t
σ . On the geometric reference mesh patches M̃ℓ,t

σ on Q̃, the hp-version
FE spaces allow for anisotropic elemental polynomial degree distributions with s-
linear growth in terms of the logarithmic element distance to the singularity set S of

Q̃ (for patch types t ∈ {c, e, ce}). General subdivision ratios 0 < σ < 1 and slope
parameters s > 0 are admitted (the analysis extends in a straightforward fashion
also to directional slope parameters s‖ and s⊥). Inter-patch mesh compatibility
is ensured by a compatibility requirement on the patch maps, and inter-element
continuity is ensured by a minimum degree rule on the local polynomial spaces.

Our principal technical contribution are the constructions of hp-version quasi-
interpolation projectors. The projectors can be assembled from four types of ref-

erence patch projectors Π̃ℓ,1,t
σ,s which are well-defined on H1(Q̃) and exponentially

consistent in the H1-norm for functions ũ belonging to an analytic reference class
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Bt (Q̃), with weighting towards corners and edges of Q̃ according to the patch type
t ∈ {c, e, ce, int}. Analogous L2-norm error bounds for L2-projections for the
approximation of solutions in B−b(Ω; ∅, ∅) are also obtained.

We considered the particular, second-order model elliptic problem (1.1)–(1.3) for
which analytic regularity was established in [5]. The presently proved exponential
convergence rate estimates are, however, independent of the particular PDE and
apply to any elliptic problem which admits an analytic regularity shift in the classes
B−1−b(Ω; C′, E ′) in Definition 2.1. The present results extend trivially also to hp-
FE spaces which enforce conformity by the maximum degree rule. The present
results also imply exponential convergence bounds for hp FE spaces on regular,
geometric mesh families consisting of shape-regular tetrahedra as well as anisotropic
prisms in edge- and edge-vertex patches. They also imply exponential bounds
dN (K,X ) . exp(−b 5

√
N) on the Kolmogoroff N -widths dN (K,X ) of the analytic

classes K = B−1−b(Ω; ∅, ∅) ∩ H1+θ(Ω) which are compact subsets of the Hilbert
space X = H1(Ω). This bound is implied by the present results and is of interest
in connection with reduced basis approximations generated by greedy algorithms
in X . We refer to [4] for theory, and to [16] for recent developments for elliptic
problems.

Appendix A. Proof of Theorem 4.3

We outline the major steps of the proof of Theorem 4.3.

A.1. Approximation results. We first establish some auxiliary approximation
results.

A.1.1. Univariate approximation properties. We begin by reviewing the the follow-
ing consistency bound from [25, Corollary 3.15] for the H1-projector π̂p,1 in (4.1)

on Î = (−1, 1).

Lemma A.1. Let p ≥ 1, û ∈ Hs+1(Î) and 0 ≤ s ≤ p. Then there holds

‖û− π̂p,1û‖2H1(Î)
. Ψp,s‖û(s+1)‖2

L2(Î)
. (A.1)

Here,

Ψq,r :=
Γ(q + 1− r)

Γ(q + 1 + r)
, 0 ≤ r ≤ q, (A.2)

where Γ is the Gamma function satisfying Γ(m+ 1) = m! for any m ∈ N0.

We establish an analogous H1-norm error bound for the L2-projection π̂p,0;
see [24, Lemma 5.2]. We also refer to [25, Theorem 3.11] for optimal L2-norm
hp-version consistency estimates.

Lemma A.2. Let p ≥ 1, û ∈ Hs+1(Î) and 0 ≤ s ≤ p. Then there holds

‖û− π̂p,0û‖2H1(Î)
. p4Ψp,s‖û(s+1)‖2

L2(Î)
. (A.3)

Proof. We first recall from [24, Lemma 5.1] the p-dependent stability bound

‖(π̂p,0û)
(s)‖

L2(Î) . max{1, p}2s‖û(s)‖
L2(Î), p ≥ 0, s ≥ 0; (A.4)

see also property (4.9).
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Then, from the triangle inequality, the fact that π̂p,0 reproduces polynomials and
the estimate (A.4) for s = 0, 1, we conclude that, for p ≥ 1,

‖û− π̂p,0û‖H1(Î) ≤ ‖û− π̂p,1û‖H1(Î) + ‖π̂p,0(û− π̂p,1û)‖H1(Î)

. p2‖û− π̂p,1û‖H1(Î).

Referring to (A.1) yields (A.4). �

A.1.2. Approximation properties of π̂p,r. Based on the univariate results above, we
now derive approximation results for the tensor projectors in (4.3). To this end, on

the reference element K̂ = Î3 we introduce the tensor-product space

H1
mix(K̂) := H1

mix(K̂
⊥)⊗H1(K̂‖) := H1(Î)⊗H1(Î)⊗H1(Î). (A.5)

endowed with the standard (tensor-product) norm ‖ · ‖
H1

mix
(K̂). Note that we have

the continuous embedding H3(K̂) →֒ H1
mix(K̂).

Let K = K⊥⊗K⊥ be an axiparallel element, pK = (p⊥K , p
‖
K) an elemental degree

vector and rK ∈ {0, 1} an elemental conformity index in edge-parallel direction. For

u : K → R, we denote by û := u ◦ ΦK the pull-back to the reference element K̂.

In this setting, the tensor projection π̂pK ,rK û = π̂⊥
p⊥
K
,0
⊗ π̂

‖

p
‖
K
,rK

û defined in (4.3)

satisfies the subsequent bounds.

Proposition A.3. The error η̂⊥0 = û− π̂⊥
p⊥
K
,0
û in edge-perpendicular satisfies

‖η̂⊥0 ‖2H1
mix

(K̂)
. (p⊥K)8Ψp⊥

K
,s⊥

K
E⊥

s⊥
K

(K;u), (A.6)

for any 0 ≤ s⊥K ≤ p⊥K , with

E⊥
s (K;u) :=

s+2∑

|α⊥|=s+1

∑

α‖=0,1

(h⊥
K)2|α

⊥|−2(h
‖
K)2α

‖−1‖Dα⊥

⊥ Dα‖

‖ u‖2L2(K) . (A.7)

The error η̂‖ = û− π̂
p
‖
K
,rK

û in edge-parallel direction satisfies

‖D̂α⊥

⊥ D̂α‖

‖ η̂‖‖2
L2(K̂)

. (p
‖
K)4(1−rK)Ψ

p
‖
K
,s

‖
K

(h⊥
K)2|α

⊥|−2(h
‖
K)2s

‖
K
+1‖Dα⊥

⊥ D
s
‖
K
+1

‖ u‖2L2(K),
(A.8)

for any |α⊥| ≥ 0, α‖ = 0, 1, and 0 ≤ s
‖
K ≤ p

‖
K .

Proof. We have

η̂⊥0 = û− π̂
(1)

p⊥
K
,0
⊗ π̂

(2)

p⊥
K
,0
û = (û − π̂

(1)

p⊥
K
,0
û) + π̂

(1)

p⊥
K
,0

(
û− π̂

(2)

p⊥
K
,0
û
)

.

Hence, by the triangle inequality and the stability property (A.4) of the univariate

L2-projector π̂
(1)

p⊥
K
,0
, we find that

‖η̂⊥0 ‖2H1
mix

(K̂)
. (p⊥K)4

( 2∑

i=1

‖û− π̂
(i)

p⊥
K
,0
û‖2

H1
mix

(K̂)

)
.
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The univariate approximation properties (A.3) in Lemma A.2 now imply

‖η̂⊥0 ‖2H1
mix

(K̂)
. (p⊥K)8Ψp⊥

K
,s⊥

K

( ∑

0≤α⊥
2
,α‖≤1

‖D̂(s⊥K+1,α⊥
2 ,α‖)û‖2

L2(K̂)

+
∑

0≤α⊥
1
,α‖≤1

‖D̂(α⊥
1 ,s⊥K+1,α‖)û‖2

L2(K̂)

)
,

for any 0 ≤ s⊥K ≤ p⊥K . This bound and a scaling argument as in [23, Section 5.1.4]
yield the desired bound (A.6) for η̂⊥0 .

The bound for η̂‖ is an immediate consequence of the consistency bounds (A.1)
(rK = 1) and (A.3) (rK = 0) applied in edge-parallel direction, combined again
with a scaling argument as in [23, Section 5.1.4]. �

A.1.3. Edge-parallel interpolation. We construct univariate hp-projectors and es-
tablish exponential convergence bounds for univariate geometric refinements on
the interval ω = (0, 1) towards x = 0. These results will be used for the hp-
approximations along edges e ∈ Ec towards corners c ∈ C.

In ω and for σ ∈ (0, 1), we introduce geometric meshes T ℓ
σ = {Ij}ℓ+1

j=1 with

elements given by I1 = (0, σℓ) and Ij = (σℓ+2−j , σℓ+1−j) for 2 ≤ j ≤ ℓ + 1,
respectively. We introduce the local mesh sizes h1 := σℓ and

hj := σℓ+1−j(1− σ), 2 ≤ j ≤ ℓ+ 1 . (A.9)

Then, there is a constant κ > 0 solely depending on σ ∈ (0, 1) with

κ−1hj ≤ |x| ≤ κhj , x ∈ Ij , 2 ≤ j ≤ ℓ+ 1 . (A.10)

On the geometric mesh T ℓ
σ , let p

‖ = (p
‖
1, . . . , p

‖
ℓ+1) be an (edge-parallel) polynomial

degree vector and r = (r1, . . . , rℓ+1) ∈ {0, 1}ℓ+1 a conformity index vector. As

elemental polynomial degrees, we take p
‖
j = max{1, ⌊sj⌋}, for a slope parameter

s > 0 as in Section 3.2.1. We also set |p‖| = maxℓ+1
j=1 p

‖
j . We then consider the

univariate hp-version finite element spaces

V r(T ℓ
σ ,p

‖) :=
{
v ∈ Hr(ω) : v|Ij ∈ P

p
‖
j

(Ij), j = 1, . . . , ℓ+ 1
}
, r = 0, 1. (A.11)

We denote by π the projection onto the space V 0(T ℓ
σ ,p

‖), defined on each inter-
val Ij as the (scaled) univariate projector π

p
‖
j
,rj

: Hrj (Ij) → P
p
‖
j

(Ij) introduced

in Section 4.1. If rj = 0 for all 1 ≤ j ≤ ℓ + 1, then π : L2(ω) → V 0(T ℓ
σ ,p

‖) is
the L2-projection. In addition, if rj = 1 for all 1 ≤ j ≤ ℓ + 1, then the nodal

exactness property (4.2) ensures that the projector π : H1(ω) → V 1(T ℓ
σ ,p

‖) is
H1(ω)-conforming.

For u ∈ H1(ω), we define the approximation errors η := u − πu, and introduce
the elemental error quantity

Tj[η]
2 := h−2

j ‖η‖2L2(Ij)
+ ‖η′‖2L2(Ij)

. (A.12)

Lemma A.4. For a weight exponent β > 0, let u ∈ H1(ω) be such that

‖|x|−1−β+su(s)‖L2(ω) ≤ Cs+1
u Γ(s+ 1), s ≥ 2. (A.13)

Then, for any conformity indices rj ∈ {0, 1}, there exist b, C > 0 independent of

ℓ ≥ 1 such that
∑ℓ+1

j=2 Tj [η]
2 ≤ C exp(−2bℓ).
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Proof. Fix Ij ∈ T ℓ
σ for 2 ≤ j ≤ ℓ + 1. A straightforward scaling argument yields

Tj[η]
2 ≃ (hj/2)−1 ‖η̂‖2

H1(Î)
, where as usual we denote by η̂ the pull-back of η|Ij

to the reference interval Î = (−1, 1). The one-dimensional approximation bounds
in (A.1) and (A.3) imply that

Tj[η] . |p‖|4
(
hj/2

)−1
Ψ

p
‖
j
,s

‖
j

‖û(s
‖
j
+1)‖2

L2(Î)
,

for any 1 ≤ s
‖
j ≤ p

‖
j , where we exclude s

‖
j = 0 in (A.1), (A.3) to ensure that s ≥ 2

in (A.13). Scaling the right-hand side above back to element Ij results in

Tj[η]
2 . |p‖|4 (hj/2)

2s
‖
j Ψ

p
‖
j
,s

‖
j

‖u(s
‖
j
+1)‖2L2(Ij)

. (A.14)

Moreover, by the equivalence (A.10),

‖u(s
‖
j
+1)‖2L2(Ij)

≃ h
2+2β−2(s

‖
j
+1)

j ‖|x|−1−β+(s
‖
j
+1)u(s

‖
j
+1)‖2L2(Ij)

. (A.15)

By combining (A.14), (A.15) with (A.13), we find that

Tj [η]
2 . |p‖|4h2β

j 2−2s
‖
jΨ

p
‖
j
,s

‖
j

‖|x|−1−β+(s
‖
j
+1)u(s

‖
j
+1)‖2L2(Ij)

. |p‖|4h2β
j (Cu/2)

2s
‖
j Ψ

p
‖
j
,s

‖
j

Γ(s
‖
j + 2)2 ,

(A.16)

for 1 ≤ s
‖
j ≤ p

‖
j . An interpolation argument as in [23, Lemma 5.8] shows that the

bound (A.16) holds for any real s
‖
j ∈ [1, p

‖
j ].

Next, we sum the bound (A.16) over all intervals 2 ≤ j ≤ ℓ+1. In view of (A.9),
we obtain

ℓ+1∑

j=2

Tj [η]
2 . |p‖|4

( ℓ+1∑

j=2

σ2(ℓ+1−j)β min
s
‖
j
∈[1,p

‖
j
]

[
C2s

‖
j Ψ

p
‖
j
,s

‖
j

Γ(sj + 2)2
] )

.

By [23, Lemma 5.12], the bracket on the right-hand side above is exponentially
small. Adjusting the constants to absorb |p‖|4 finishes the proof. �

Similarly, we obtain the following result.

Lemma A.5. For a weight exponent β > 0, let u ∈ L2(ω) be such that

‖|x|−β+su(s)‖L2(ω) ≤ Cs+2
u Γ(s+ 2), s ≥ 1 . (A.17)

For any conformity indices rj ∈ {0, 1}, there exist b, C > 0 independent of ℓ ≥ 1

such that
∑ℓ+1

j=2 ‖η‖2L2(Ij)
≤ C exp(−2bℓ).

Proof. This follows as in Lemma A.4 or [24, Proposition 5.5]. �

A.1.4. Estimates in two-dimensional weighted spaces. In edge-perpendicular direc-
tion, we shall make use of estimates in two-dimensional weighted spaces analogous
to the results in [11, Section 3]. To state them, let K be an axiparallel and shape-
regular rectangle of diameter hK which is affinely equivalent to the reference square

K̂ = Î2. Let c be a corner of K and set r(x) = |x − c|. For a weight exponent
β ∈ [0, 1), we denote by L2

β(K) the weighted L2-space endowed with the weighted

norm ‖u‖L2
β
(K) := ‖rβu‖L2(K). Form = 1, 2, the weighted spaceHm,m

β (K) is defined

as the completion of all C∞(K)-functions with respect to the norm ‖u‖2
H

m,m

β
(K)

:=
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‖u‖2
Hm−1(K) + |u|2

H
m,m

β
(K), where |u|2

H
m,m

β
(K) :=

∑
|α|=m ‖rβDαu‖2

L2(K). We denote

by π2
p,0 the L2-projection onto the tensor-product polynomial space Qp(K) obtained

by mapping π̂2
p,0 on K̂.

Lemma A.6. Let β ∈ [0, 1) be a weight exponent. For u ∈ H1,1
β (K) and p ≥ 0,

there holds

‖u− π2
p,0u‖2L2(K) . h2−2β

K |u|2
H

1,1

β
(K)

. (A.18)

Similarly, for u ∈ H2,2
β (K) and p ≥ 1, there holds

‖u− π2
p,0u‖2L2(K) + h2

K‖∇(u− π2
p,0u)‖2L2(K) . p4h4−2β

K |u|2
H

2,2

β
(K)

. (A.19)

The implied constants depend on the aspect ratio of K.

Proof. To prove (A.18), we apply the triangle inequality and the stability of the
L2-projection π2

p,0 to obtain

‖u− π2
p,0u‖L2(K) . ‖u− π2

0,0u‖L2(K) + ‖π2
p,0(u − π2

0,0u)‖L2(K) . ‖u− π2
0,0u‖L2(K).

The proof of the bound (A.18) for p = 0 can then be found in [19, Proposition 27]
or [26, Corollary A.2.11].

To show (A.19), we proceed as in [11, Section 3] and first consider the reference

square K̂ = (−1, 1)2. With the stability bound (4.9) applied on K̂, it follows that

‖û− π̂2
p,0û‖2H1(K̂)

. ‖û− π̂2
1,0‖2H1(K̂)

+ ‖π̂2
p,0(û− π̂2

1,0û)‖2H1(K̂)

. p4‖û− π̂2
1,0û‖2H1(K̂)

. p4‖û− π̂2
1,0û‖2H1(K̂)

.

Hence, up to the factor p4 in (A.19), we need to consider the case p = 1. To that

end, we denote by p̂21,0 the L2-projection onto the linear polynomial space P1(K̂).

For û : K̂ → R, we then claim that there is a constant Ĉ > 0 independent of û such
that

‖û‖
H

2,2

β
(K̂) ≤ Ĉ

(
|û|

H
2,2

β
(K̂) + ‖p̂21,0û‖L2(K̂)

)
. (A.20)

To prove (A.20), we apply the Peetre-Tartar lemma in the spirit of [11, Lemma 3.5]
and introduce the operator

A : H2,2
β (K̂) → L2

β(K̂)
2×2 × (P1(K̂), ‖ · ‖L2(K̂)), û 7→

(
{D̂αû}|α|=2, p̂

2
1,0û

)
.

It is linear and bounded (by employing the L2-stability of the projection p̂21,0).

Moreover, A is injective. Indeed, if Aû = 0, then D̂αû = 0 for all |α| = 2. Hence, û
is a linear function. The condition p̂21,0û = 0 then implies that û ≡ 0. In addition,

let T : H2,2
β (K̂) → H1(K̂) be the injection operator. By [11, Lemma 3.4], it is

compact and we trivially have

û ∈ H2,2
β (K̂) : ‖û‖

H
2,2

β
(K̂) ≤ |û|2

H
2,2

β
(K̂)

+ ‖p̂21,0û‖L2(K̂) + ‖T û‖
H1(K̂).

The inequality (A.20) then follows from [8, Lemma A.38].
We proceed by invoking (A.20) for û − p̂21,0û. Since |p̂21,0û|H2,2

β
(K) = 0 and

p̂21,0(û− p̂21,0û) = 0, this results in

‖û− p̂21,0û‖H2,2

β
(K̂) ≤ Ĉ|û|

H
2,2

β
(K̂), (A.21)
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With (A.21) we then claim that

‖û− π̂2
1,0û‖H2,2

β
(K̂) . ‖û− p̂21,0û‖H2,2

β
(K̂) ≤ Ĉ|û|

H
2,2

β
(K̂), (A.22)

which implies the desired estimate (A.19) on the reference square K̂. Indeed, by

the triangle inequality and since π̂2
1,0 reproduces polynomials in Q1(K̂), we have

‖û− π̂2
1,0û‖H2,2

β
(K̂) . ‖û− p̂21,0û‖H2,2

β
(K̂) + ‖π̂2

1,0(û− p̂21,0û)‖H2,2

β
(K̂).

To further estimate the second term on the right-hand side above, we employ the
equivalence of all norms on finite dimensional spaces and the L2-stability of π̂2

1,0.
This results in

‖π̂2
1,0(û − p̂21,0û)‖H2,2

β
(K̂) . ‖π̂2

1,0(û − p̂21,0û)‖2L2(K̂)

≤ ‖û− p̂21,0û‖L2(K̂) ≤ ‖û− p̂21,0û‖H2,2

β
(K̂),

which yields (A.22).
From (A.22), a scaling argument readily yields the desired estimates in (A.19)

for a generic axiparallel and shape-regular rectangle K of diameter hK. This finishes
the proof. �

A.2. Reference corner-edge mesh. We consider the reference corner-edge mesh

patch M̃ℓ,ce
σ on Q̃ for c ∈ C and e ∈ Ec; cf. Figure 1 (right). As in [24, Section 7], it

is sufficient to focus on the elements in M̃ℓ,ce
σ near the corner-edge pair c ∈ C and

e ∈ Ec. That is, we introduce the reference corner-edge submesh K̃ℓ,ce
σ ⊂ M̃ℓ,ce

σ

on Q̃ given by

K̃ℓ,ce
σ =

ℓ+1⋃

j=1

j⋃

i=1

L̃ij
ce, (A.23)

where the sets L̃ij
ce stand for layers of elements with identical scaling properties

with respect to c and e; cf. [23, Section 5.2.4]. As in the one-dimensional setting
in Section A.1.3 the index j indicates the number of the geometric mesh layers in
edge-parallel direction along the edge e, whereas the index i indicates the number
of mesh layers in direction perpendicular to e. In agreement with [24, Section 7.1],

we split K̃ℓ,ce
σ into interior elements away from c and e, boundary layer elements

along e (but away from c), and corner elements abutting at c. That is, we have

K̃ℓ,ce
σ = Õℓ

ce

.∪ T̃ℓ
e

.∪ T̃ℓ
c, with

Õℓ
ce :=

ℓ+1⋃

j=2

j⋃

i=2

L̃ij
ce, T̃ℓ

e :=

ℓ+1⋃

j=2

L̃1j
ce, T̃ℓ

c := L̃11
ce. (A.24)

Here, for 2 ≤ i, j ≤ ℓ+ 1, interior elements K ∈ Lij
ce satisfy

re|K ≃ h⊥
K ≃ σℓ+1−i, rc|K ≃ h

‖
K ≃ σℓ+1−j . (A.25)

Similarly, boundary layer elements K ∈ L̃1j
ce satisfy

re|K . h⊥
K ≃ σℓ, rc|K ≃ h

‖
K ≃ σℓ+1−j , 2 ≤ j ≤ ℓ+ 1. (A.26)

Finally, a corner element in the layer T̃ℓ
c = L̃11

ce is isotropic with re|K . hK ≃ σℓ,

and rc|K . hK ≃ σℓ. The sets L̃1j
ce and L̃11

ce are in fact singletons, and K ∈ L̃1j
ce
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can be written as

Kj = K⊥ ×K
‖
j , 2 ≤ j ≤ ℓ+ 1 , (A.27)

cf. (3.3), where K⊥ = (0, σℓ)2, and the sequence {K‖
j }ℓ+1

j=2 forms a one-dimensional

geometric mesh T ℓ
σ along the edge e as in Section A.1.3. The s-linearly increasing

polynomial degree distributions on K̃ℓ,ce
σ in (A.23) are given by

∀K ∈ L̃ij
ce : pK = (p⊥i , p

‖
j ) ≃ (max{1, ⌊si⌋},max{1, ⌊sj⌋}). (A.28)

In the sequel, we introduce the domain Ω̃ℓ
ce :=

(
∪
K∈K̃ℓ,ce

σ
K
)◦
. Analogously

to (2.7) and for exponents β = {βc, βe}, we introduce the non-homogeneous refer-

ence corner-edge semi-norm on Ω̃ℓ
ce:

|u|2
Ñk

β
(Ω̃ℓ

ce)
:=

∑

|α|=k

∥∥∥rmax{βc+|α|,0}
c ρmax{βe+|α⊥|,0}

ce Dαu
∥∥∥
2

L2(Ω̃ℓ
ce)

, (A.29)

for any k ≥ 0 and where rc and re are the distances to c and e, respectively, and

ρce = re/rc. For m > kβ as in (2.8), the weighted spaces Ñm
β (Ω̃ℓ

ce) are defined

as in Section 2.2 with respect to the norms ‖ · ‖2
Ñm

β
(Ω̃ℓ

ce)
=

∑m
k=0 | · |2Ñk

β
(Ω̃ℓ

ce)
. The

corresponding analytic reference class Bβ(Ω̃
ℓ
ce) consists of all functions u : Ω̃ℓ

ce → R

such that u ∈ Ñk
β(Ω̃

ℓ
ce) for k > kβ and such that there is a constant du > 0 with

|u|
Ñk

β
(Ω̃ℓ

ce)
≤ dk+1

u Γ(k + 1) ∀ k > kβ. (A.30)

In the following, we restrict ourselves to the classes B−1−b(Ω̃
ℓ
ce) and B−b(Ω̃

ℓ
ce)

for exponents b = {bc, be} in (0, 1) as in Remark 2.4. In the first case, we have
kβ ∈ (1, 2) and the norms on the right-hand in (A.29) are given by





‖Dαu‖2
L2(Ω̃ℓ

ce)
|α| = 0, 1, |α⊥| = 0, 1,

‖r−1−bc+|α|
c Dαu‖2

L2(Ω̃ℓ
ce)

|α| ≥ 2, |α⊥| = 0, 1,

‖rbe−bc+α‖

c r
−1−be+|α⊥|
e Dαu‖2

L2(Ω̃ℓ
ce)

|α| ≥ 2, |α⊥| ≥ 2.

(A.31)

Similarly, for the second analytic class B−b(Ω̃
ℓ
ce), we have kβ ∈ (0, 1) and the norms

on the right-hand side of (A.29) take the form




‖u‖2
L2(Ω̃ℓ

ce)
|α| = 0, |α⊥| = 0,

‖r−be+α‖

c Dαu‖2
L2(Ω̃ℓ

ce)
|α| = 1, |α⊥| = 0,

‖rbe−bc+α‖

c r
−be+|α⊥|
e Dαu‖2

L2(Ω̃ℓ
ce)

|α| ≥ 1, |α⊥| ≥ 1.

(A.32)

In the axi-parallel setting considered in the present paper, when functions u ∈
B−1−b(Ω; ∅, ∅) and u ∈ B−b(Ω; ∅, ∅) as in Theorem 4.3 are localized and scaled

to Ω̃ℓ
ce, they belong to the reference classes B−1−b(Ω̃

ℓ
ce) and B−b(Ω̃

ℓ
ce), respectively;

cf. [18, Section 3.4].
With the error estimates in Lemma 4.2, we need to bound the error contributions

as in (3.36), (4.12), but over the reference mesh K̃ℓ,ce
σ = Õℓ

ce

.∪ T̃ℓ
e

.∪ T̃ℓ
c in the

setting above. It is then sufficient to establish the following result.

Proposition A.7. Consider weight exponents bc, be ∈ (0, 1) as in (2.13).
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Let u ∈ B−1−b(Ω̃
ℓ
ce) ∩H1+θ(Ω̃ℓ

ce) for some θ ∈ (0, 1), and let πu = π⊥
0 ⊗ π‖u be

the base interpolant (4.4) over K̃ℓ,ce
σ for any conformity indices rK ∈ {0, 1}. For

the errors η, η⊥0 , η
‖ in (4.7), we have

Υ⊥
Õℓ

ce

[η⊥0 ]
2 +Υ

‖

Õℓ
ce

[η‖]2 +Υ⊥
T̃ℓ

e

[η⊥0 ]
2 +Υ

‖

T̃ℓ
e

[η‖]2 +Υ
‖

T̃ℓ
c

[η]2 ≤ C exp(−2bℓ),

with b, C > 0 independent of ℓ.

Let u ∈ B−b(Ω̃
ℓ
ce)∩Hθ(Ω̃ℓ

ce) for some θ ∈ (0, 1), and let π0u = π⊥
0 ⊗ π

‖
0u be the

L2-projection over K̃ℓ,ce
σ . For the errors η0, η

⊥
0 , η

‖
0 in (4.7), we have

‖η⊥0 ‖2L2(Õℓ
ce)

+ ‖η‖0‖2L2(Õℓ
ce)

+ ‖η⊥0 ‖2L2(T̃ℓ
e)
+ ‖η‖0‖2L2(T̃ℓ

e)
+ ‖η0‖2L2(T̃ℓ

c)
≤ C exp(−2bℓ),

with b, C > 0 independent of ℓ.

The desired convergence bounds in Theorem 4.3 follow now from Proposition A.7
by noting that the number of degrees of freedom N in the hp-spaces in (3.23) is
given by N ≃ ℓ5 +O(ℓ4), where the implied constant solely depends on s and the
number of mesh patches. The remainder of this section is devoted to the proof of
Proposition A.7.

A.3. Proof of Proposition A.7. We bound the errors in Proposition A.7 sep-

arately for the set Õℓ
ce (Propositions A.9 and A.10), for T̃ℓ

e (Propositions A.11

and A.12), and for T̃ℓ
c (Proposition A.13).

A.3.1. Convergence on Õℓ
ce. We begin our analysis by recalling essential scaling

properties; see [23, Section 5.1.4].

Lemma A.8. Let K = (0, h⊥
K)2 × (0, h

‖
K) be of the form (3.3). Let v : K → R,

and v̂ = v ◦ Φ−1
K . Then:

(i) ‖v‖2
L2(K) . (h⊥

K)2h
‖
K‖v̂‖2

L2(K̂)
.

(ii) (h
‖
K)−2‖v‖2

L2(K) + ‖D‖v‖2 . (h⊥
K)2(h

‖
K)−1

(
‖v̂‖2

L2(K̂)
+ ‖D̂‖v̂‖2L2(K̂)

)
.

(iii) (h⊥
K)−2‖v‖2L2(K) + ‖D⊥v‖2L2(K) . h

‖
K

(
‖v̂‖2

L2(K̂)
+ ‖D̂⊥v̂‖2

L2(K̂)

)
.

We bound η⊥0 over Õℓ
ce as follows.

Proposition A.9. Let u ∈ B−1−b(Ω̃
ℓ
ce) respectively u ∈ B−b(Ω̃

ℓ
ce). Then there

are constants b, C > 0 independent of ℓ ≥ 1 such that Υ⊥
Õℓ

ce

[η⊥0 ]
2 ≤ C exp(−2bℓ)

respectively ‖η⊥0 ‖2L2(Õℓ
ce)

≤ C exp(−2bℓ).

Proof. Let u ∈ B−1−b(Ω̃
ℓ
ce). We consider an element K ∈ L̃ij

ce with 2 ≤ j ≤ ℓ + 1

and 2 ≤ i ≤ j, according to (A.24). With Lemma A.8 (observing that h⊥
K . h

‖
K)

and the approximation results for η̂⊥0 in Proposition A.3 in conjunction with (A.28),
we conclude that

N⊥
K [η⊥0 ]

2 . h
‖
K‖η̂⊥0 ‖2H1

mix
(K̂)

. |pK |8 h‖
KΨp⊥

i
,s⊥

i
E⊥

s⊥
i
(K;u),

for 1 ≤ s⊥i ≤ p⊥i , where E⊥
s⊥
i

(K;u) is the expression in (A.7). Notice that here we

exclude the choice s⊥i = 0 to ensure that |α| ≥ |α⊥| ≥ 2 in E⊥
s⊥
i

(K;u). Thanks
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to the equivalences (A.26), we insert the appropriate weights as in (A.31), (A.32),
and obtain

‖Dα⊥

⊥ Dα‖

‖ u‖2L2(K) ≃ (h
‖
K)2bc−2be−2α‖

(h⊥
K)2+2be−2|α⊥|

× ‖rbe−bc+α‖

c r−1−be+|α⊥|
e Dα⊥

⊥ Dα‖

‖ u‖2L2(K) .

Hence,

N⊥
K [η⊥0 ]

2 . |pK |8Ψp⊥
i
,s⊥

i
(h

‖
K)2bc−2be(h⊥

K)2be
s⊥i +3∑

k=s⊥
i
+1

|u|2
Ñk

−1−b
(K) .

Since s⊥i +1 ≥ 2, the analytic regularity (A.30) implies the existence of C > 0 such
that

N⊥
K [η⊥0 ]

2 . |pK |8 Ψp⊥
i
,s⊥

i
(h

‖
K)2bc−2be(h⊥

K)2beC2s⊥i Γ(s⊥i + 4)2, (A.33)

for all 1 ≤ s⊥i ≤ p⊥i . Summing (A.33) over all layers in Õℓ
ce in (A.24) in combination

with (A.25) results in

Υ⊥
Õℓ

ce

[η⊥0 ] . |p|8
ℓ+1∑

j=2

σ2(bc−be)(ℓ+1−j)
( j∑

i=2

σ2be(ℓ+1−i)Ψp⊥
i
,s⊥

i
C2s⊥i Γ(s⊥i + 4)2

)
.

By interpolating to real parameters s⊥i ∈ [1, p⊥i ] as in [23, Lemma 5.8], this sum
is of the same form as S⊥ in the proof of [23, Proposition 5.17], and the assertion
now follows from the arguments there and after adjusting the constants to absorb
the algebraic loss in |p|.

For u ∈ B−b(Ω̃
ℓ
ce), we proceed similarly and note that

‖η⊥0 ‖2L2(K) . (h⊥
K)2h

‖
K‖η̂⊥0 ‖2H1

mix
(K̂)

. |pK |8 (h⊥
K)2h

‖
KΨp⊥

i ,s⊥i
E⊥

s⊥
i
(K;u),

for 1 ≤ s⊥i ≤ p⊥i . Hence, we obtain

‖η⊥0 ‖2L2(K) . |pK |8Ψp⊥
i
,s⊥

i
(h

‖
K)2bc−2be(h⊥

K)2be
s⊥i +3∑

k=s⊥
i
+1

|u|2
Ñk

−b
(K) .

The second bound follows as before. �

Next, we establish the analog of Proposition A.9 in edge-parallel direction.

Proposition A.10. Let u ∈ B−1−b(Ω̃
ℓ
ce) respectively u ∈ B−b(Ω̃

ℓ
ce). Then there

are constants b, C > 0 independent of ℓ ≥ 1 such that Υ
‖

Õℓ
ce

[η‖]2 ≤ C exp(−2bℓ)

respectively ‖η‖0‖2L2(Õℓ
ce)

≤ C exp(−2bℓ).

Proof. For u ∈ B−1−b(Ω̃
ℓ
ce), we claim that

N
‖
K [η‖]2 . (p

‖
K)4Ψ

p
‖
K
,s

‖
K

(h
‖
K)2bc‖u‖2

Ñ
s
‖
K

+2

−1−b
(K)

, (A.34)
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for any K ∈ Õℓ
ce and 1 ≤ s

‖
K ≤ p

‖
K . To prove (A.34), we start by employing

Lemma A.8 and the approximation property (with |α⊥| = 0) for η̂‖ in Proposi-
tion A.3. It follows that

(h
‖
K)−2‖η‖‖2L2(K) + ‖D‖η

‖‖2L2(K) . (h⊥
K)2(h

‖
K)−1

∑

α‖=0,1

‖D̂α‖

‖ η̂‖‖2
L2(K̂)

. (p
‖
K)4Ψ

p
‖
K
,s

‖
K

(h
‖
K)2s

‖
K‖Ds

‖
K
+1

‖ u‖2L2(K).

for any 1 ≤ s
‖
K ≤ p

‖
K , where as before we exclude the choice s

‖
K = 1 to ensure

that |α| ≥ 2. We then insert suitable weights with the aid of (A.31) and (A.25) to
obtain

‖Ds
‖
K
+1

‖ u‖2L2(K) ≃ (h
‖
K)2+2bc−2s

‖
K
−2‖r−1−bc+s

‖
K
+1

c D
s
‖
K
+1

‖ u‖2L2(K)

. (h
‖
K)2bc−2s

‖
K |u|2

Ñ
s
‖
K

+1

−1−b
(K)

.

Hence,

(h
‖
K)−2‖η‖‖2L2(K) + ‖D‖η

‖‖2L2(K) . (p
‖
K)4Ψ

p
‖
K
,s

‖
K

(h
‖
K)2bc |u|2

Ñ
s
‖
K

+1

−1−b
(K)

.

By proceeding similarly, we find that, for |α⊥| = 1,

‖Dα⊥

⊥ η‖‖2L2(K) . h
‖
K

∑

α‖=0,1

‖D̂α⊥

⊥ D̂α‖

‖ η̂‖‖2
L2(K̂)

. (p
‖
K)4Ψ

p
‖
K
,s

‖
K

(h
‖
K)2s

‖
K
+2‖Dα⊥

⊥ D
s
‖
K
+1

‖ u‖2L2(K)

≃ (p
‖
K)4Ψ

p
‖
K
,s

‖
K

(h
‖
K)2bc‖r−bc+s

‖
K
+1

c Dα⊥

⊥ D
s
‖
K
+1

‖ u‖2L2(K)

≃ (p
‖
K)4Ψ

p
‖
K
,s

‖
K

(h
‖
K)2bc |u|2

Ñ
s
‖
K

+2

−1−b
(K)

.

This establishes the bound in (A.34).

For u ∈ B−b(Ω̃
ℓ
ce), we use analogous arguments based on Lemma A.8, Proposi-

tion A.3 and (A.32). This results in

‖η‖0‖2L2(K) . (p
‖
K)4Ψ

p
‖
K
,s

‖
K

(h
‖
K)2s

‖
K
+2‖Ds

‖
K
+1

‖ u‖2L2(K)

. (p
‖
K)4Ψ

p
‖
K
,s

‖
K

(h
‖
K)2bc‖r−bc+s

‖
K
+1

c D
s
‖
K
+1

‖ u‖2L2(K)

. (p
‖
K)4Ψ

p
‖
K
,s

‖
K

(h
‖
K)2bc |u|2

Ñ
s
‖
K

+1

−b
(K)

.

(A.35)

Next, we sum the bounds in (A.34), (A.35) over all layers of Õℓ
ce. By notic-

ing (A.25), (A.28) and the analytic regularity (A.30), we conclude that

u ∈ B−1−b(Ω̃
ℓ
ce) : Υ

‖

Õℓ
ce

[η‖]2 . |p|4
ℓ+1∑

j=2

j∑

i=2

Ψ
p
‖
j
,s

‖
j

σ2(ℓ+1−j)bcC2s
‖
j Γ(s

‖
j + 3)2,

u ∈ B−b(Ω̃
ℓ
ce) : ‖η‖0‖2L2(Õℓ

ce)
. |p|4

ℓ+1∑

j=2

j∑

i=2

Ψ
p
‖
j
,s

‖
j

σ2(ℓ+1−j)bcC2s
‖
j Γ(s

‖
j + 2)2.
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The terms in the sums above are independent of the inner index i. Interpolation to

non-integer differentiation orders s
‖
j ∈ [1, p

‖
j ] as in [23, Lemma 5.8] and applying [23,

Lemma 5.12] (and adjusting constants) completes the proof. �

A.3.2. Convergence on T̃ℓ
e. We start by showing exponential convergence in edge-

perpendicular direction.

Proposition A.11. Let u ∈ B−1−b(Ω̃
ℓ
ce) respectively u ∈ B−b(Ω̃

ℓ
ce). Then there

are constants b, C > 0 independent of ℓ ≥ 1 such that Υ⊥
T̃ℓ

e

[η⊥0 ]2 ≤ C exp(−2bℓ)

respectively ‖η⊥0 ‖2L2(T̃ℓ
e)

≤ C exp(−2bℓ).

Proof. Let K = K⊥ ×K
‖
j for j ≥ 2, be an element in T̃ℓ

e of the form (A.27). We
claim that

(h⊥
K)−2‖η⊥0 ‖2L2(K) + ‖D⊥η

⊥
0 ‖2L2(K . σ2min{bc,be}ℓ|u|2

Ñ2
−1−b

(K)
, (A.36)

‖D‖η
⊥
0 ‖2L2(K) . σ2min{bc,be}ℓ|u|2

Ñ3
−1−b

(K)
, (A.37)

‖η⊥0 ‖2L2(K) . σ2min{bc,be}ℓ|u|2
Ñ1

−b
(K)

. (A.38)

To show (A.36), let s = |α⊥| = 0, 1. From the bound (A.19) (with β = 1 − be
and noting the p⊥K = max{1, s} by (A.28)), we see that

(h⊥
K)2(s−1)‖Dα⊥

⊥ η⊥0 ‖2L2(K) . (h⊥
K)2s−2(h⊥

K)4−2s−2(1−be)‖r1−be
e D2

⊥u‖2L2(K),

. (h⊥
K)2be‖r1−be

e D2
⊥u‖2L2(K).

From (A.26) and (A.31), we further obtain

‖r1−be
e D2

⊥u‖2L2(K) . (h
‖
K)−2(be−bc)‖rbe−bc

c r1−be
e D2

⊥u‖2L2(K)

. (h
‖
K)−2be+2bc |u|2

Ñ2
−1−b

(K)
.

Thus, combining these estimates and expressing the mesh sizes in terms of σ,
cf. (A.26), we see that

(h⊥
K)2(s−1)‖Dα⊥

⊥ η⊥0 ‖2L2(K) . (h⊥
K)2be(h

‖
K)−2be+2bc |u|2

Ñ2
−1−b

(K)

≃ σ2bc(ℓ+1−j)+2be(j−1)|u|2
Ñ2

−1−b
(K)

. σ2min{bc,be}ℓ|u|2
Ñ2

−1−b
(K)

,

which yields (A.36).
To prove (A.37), we proceed similarly and obtain

‖D‖η
⊥
0 ‖2L2(K) . (h⊥

K)4−2(1−be)‖r1−be
e D2

⊥D‖u‖2L2(K)

. (h
‖
K)−2−2be+2bc(h⊥

K)2+2be‖rbe−bc+1
c r1−be

e D2
⊥D‖u‖2L2(K)

. σ2bc(ℓ+1−j)+2be(j−1)σ2(j−1)|u|2
Ñ3

−1−b
(K)

. σ2min{bc,be}ℓ|u|2
Ñ3

−1−b
(K)

.
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To obtain (A.38), we employ an analogous argument based on (A.18) (with
β = 1− be). With (A.26) and (A.32), this results in

‖η⊥0 ‖2L2(K) . (h⊥
K)2−2(1−be)‖r1−be

e D⊥u‖2L2(K)

. (h
‖
K)2bc−2be(h⊥

K)2be‖rbe−bc
c r1−be

e D⊥u‖2L2(K)

. σ2bc(ℓ+1−j)+2be(j−1)|u|2
Ñ1

−b
(Ω̃ℓ

ce)

. σ2min{bc,be}ℓ|u|2
Ñ1

−b
(Ω̃ℓ

ce)
,

which is (A.38).
The assertions now follow by summing the estimates (A.36), (A.37) and (A.38)

over all elements K ∈ T̃ℓ
e (i.e., over 2 ≤ j ≤ ℓ + 1) and by suitably adjusting

constants. �

A similar estimate holds for the approximation errors in direction parallel to e.

Proposition A.12. Let u ∈ B−1−b(Ω̃
ℓ
ce) respectively u ∈ B−b(Ω̃

ℓ
ce). Then there

are constants b, C > 0 independent of ℓ ≥ 1 such that Υ
‖

T̃ℓ
e

[η‖]2 ≤ C exp(−2bℓ)

respectively ‖η‖0‖2L2(T̃ℓ
e)

≤ C exp(−2bℓ).

Proof. For u ∈ B−1−b(Ω̃
ℓ
ce), properties (A.31), (A.30) imply u,D‖u,D⊥u ∈ L2(Ω̃ℓ

ce)
and

‖r−1−bc+α‖

c Dα‖

‖ u‖
L2(Ω̃ℓ

ce)
≤ Cα‖+1Γ(α‖ + 1), α‖ ≥ 2,

‖r−bc+α‖

c Dα‖

‖ D⊥u‖L2(Ω̃ℓ
ce)

≤ Cα‖+2Γ(α‖ + 2), α‖ ≥ 1.

Similarly, for u ∈ B−b(Ω̃
ℓ
ce) it follows with (A.32) that u ∈ L2(Ω̃ℓ

ce) and

‖r−bc+α‖

c Dα‖

‖ u‖
L2(Ω̃ℓ

ce)
≤ Cα‖+1Γ(α‖ + 1), α‖ ≥ 1.

In view of (A.26), (A.27), these properties correspond to the one-dimensional an-
alytic regularity assumptions considered in (A.13) and (A.17), respectively. More-

over, due to (A.28), the polynomial degrees p
‖
K along the edge e are s-linearly

increasing away from the corner c. Hence, Lemma A.4 respectively Lemma A.5,
and the tensor-product structure of the elements readily yield the assertions. �

A.3.3. Convergence on T̃ℓ
c. It remains to show exponential convergence for the

corner elements in T̃ℓ
c.

Proposition A.13. Let u ∈ H1+θ(Ω̃ℓ
ce) respectively u ∈ Hθ(Ω̃ℓ

ce) for some θ ∈
(0, 1). Then there exist constants b, C > 0 independent of ℓ ≥ 1 such that Υ

‖

T̃ℓ
c

[η]2 ≤
C exp(−2bℓ) respectively ‖η0‖2

L2(T̃ℓ
c)

≤ C exp(−2bℓ).

Proof. The element K ∈ T̃ℓ
c is isotropic with h⊥

K ≃ h
‖
K ≃ hK ≃ σℓ; cf. (A.24).

Standard h-version approximation properties then readily show that

N
‖
K [η]2 . h2θ

K ‖u‖2H1+θ(K) respectively ‖η0‖2L2(K) . h2θ
K ‖u‖2Hθ(K).

This implies the assertions. �
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[15] B. Q. Guo and I. Babuška. Regularity of the solutions for elliptic problems on nonsmooth
domains in R3. II. Regularity in neighbourhoods of edges. Proc. Roy. Soc. Edinburgh Sect. A,
127(3):517–545, 1997.

[16] Y. Maday, O. Mula, A.T. Patera, and M. Yano. The generalized empirical interpolation
method: stability theory on Hilbert spaces with an application to the Stokes equation. Com-

put. Methods Appl. Mech. Engrg., 287:310–334, 2015.
[17] K. Scherer. On optimal global error bounds obtained by scaled local error estimates. Numer.

Math., 36:257–277, 1981.
[18] D. Schötzau and C. Schwab. Exponential convergence for hp-version and spectral finite

element methods for elliptic problems in polyhedra. Math. Models Methods Appl. Sci.,
25(9):1617–1661, 2015.
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[22] D. Schötzau, Ch. Schwab, and T. P. Wihler. hp-DGFEM for second-order elliptic problems in

polyhedra. I: Stability on geometric meshes. SIAM J. Numer. Anal., 51(3):1610–1633, 2013.
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