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EXPONENTIAL CONVERGENCE OF hp-FEM FOR ELLIPTIC
PROBLEMS IN POLYHEDRA: MIXED BOUNDARY
CONDITIONS AND ANISOTROPIC POLYNOMIAL DEGREES

DOMINIK SCHOTZAU AND CHRISTOPH SCHWAB

ABSTRACT. We prove exponential rates of convergence of hp-version finite el-
ement methods on geometric meshes consisting of hexahedral elements for
linear, second-order elliptic boundary-value problems in axiparallel polyhedral
domains. We extend and generalize our earlier work for homogeneous Dirich-
let boundary conditions and uniform isotropic polynomial degrees to mixed
Dirichlet-Neumann boundary conditions and to anisotropic, linearly increasing
polynomial degree distributions. In particular, we construct H!-conforming
quasi-interpolation projectors with exponential consistency bounds on count-
ably normed classes of piecewise analytic functions with singularities at edges,
vertices and interfaces of boundary conditions, based on scales of weighted
Sobolev norms with non-homogeneous weights in the vicinity of Neumann
edges.

1. INTRODUCTION

We prove exponential converge estimates for conforming Ap-version finite element
methods (FEMs) for the following elliptic boundary-value problem in an open and
bounded polyhedron 2 C R? with mixed boundary conditions:

-V - (AV)u=f  inQCR? (1.1)
Yo(u) =0 onT', C09Q, e Jp, (1.2)
v (u) =0 onl', CO0Q, e In. (1.3)

The Lipschitz boundary I' = 02 is assumed to consist of a finite union of plane
aziparallel faces T', indexed by ¢ € J. The faces I', are bounded, plane polygons
whose sides form the (open) edges of . The set {[',},c7 is partitioned into a
subset of Dirichlet faces {T',},c 7, and a subset of Neumann faces {I',},c 7, with
corresponding (disjoint) index sets Jp and Jy, respectively (i.e., J = Jp U Jn).
The diffusion coefficient matrix A is assumed to be constant and and symmetric,
positive definite. The function f is a given forcing term, and the operators g
and ~; denote the trace and (co)normal derivative operators, respectively.

Upon introducing the Sobolev space V := {v € HY(Q) : v|r, =0, ¢ € Ip}, the
weak formulation of problem (1.1)—(1.3) is to find u € V such that

a(u,v) = / AVu-Vode = / fvdax Yo eV, (1.4)
Q Q
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2 D. SCHOTZAU AND CH. SCHWAB

where we understand the integral on the right-hand side in (1.4) as the duality
pairing in V* x V| with V* denoting the dual space of V. For every f € V*,
problem (1.4) admits a weak solution w € V. The solution is unique if Jp # 0,
and unique in the factor space V/R if Jp = 0 (in which case we also require the
compatibility condition [, fda = 0).

The hp-version of the finite element method for elliptic problems was proposed
by Babuska and his coworkers, inspired by exponential convergence results in free-
knot, variable order spline interpolation. We refer to [6, 17] and the references
therein for these approximation theoretic estimates. The hAp-version FEM unified
the hitherto largely separate developments of fixed-order “h-version FEM”, which
achieve convergence through reduction of the mesh size h, and the so-called “spectral
(or p-version) FEM”, which achieve convergence through increasing the polynomial
order p on a fixed mesh. Apart from unifying the existing approaches, hp-FEMs
were shown to achieve exponential convergence rates for solutions with singularities
in terms of the number N of degrees of freedom, in function spaces where the
differential equation is well-posed.

In [9], the exponential convergence rate C exp(—byv/N) was shown for univari-
ate hp-FEM for the model singular solution solution u(z) = 2* —x € H}(Q2) in
Q =(0,1), with @ > 1/2 not an integer, with constants b, C' > 0 independent of N.
This result required o-geometric mesh refinement towards = = 0 with a fized sub-
division ratio o € (0,1) (in particular, o = 1/2 yields geometric bisection meshes).
The constant b in the convergence estimate strongly depends on the singularity ex-
ponent « as well as on o: among all o € (0,1), the optimal value for o was proved
in [9, Theorem 3.2] to be oopy = (V2 — 1)% & 0.17, provided that geometric mesh
refinement be combined with nonuniform polynomial degrees p; > 1 in element €;
which are s-linearly increasing away from x = 0, i.e., p; ~ si, with the optimal
slope s being Sopt = 2(av — 1/2). 1In this case, b=1.76... x /(o — 1/2).

In two dimensions, exponential convergence bounds of the form C eXp(—b\‘q/ﬁ )
for the errors of the hp-version FEM in polygons {2 were proved by Babuska and
Guo in [1, 2, 11, 12] and the references therein. Key ingredients in their proof were
again geometric mesh refinement towards the singular support S (being a finite set
of vertices of the polygon ) of the solution and nonuniform elemental polynomial
degrees which increase s-linearly with the elements’ distance from S. In addition
to the approximation results, their papers also provide elliptic regularity results
in countably normed weighted spaces of the solutions. This constituted an essential
advance with respect to the earlier works in [6, 9, 17], where only particular singular
solutions had been considered.

Steps to extend the analytic regularity and the hp-convergence analysis in [1, 2,
11, 12] to three dimensions were undertaken in [3, 10, 13, 15] and the references
therein. In [5], Costabel, Dauge and Nicaise established an analytic regularity
shift in scales of anisotropically and non-homogeneously weighted spaces for varia-
tional solutions for a class of of second-order elliptic boundary-value problems with
constant coefficients. Their regularity result will be the basis of our exponential
convergence proof.

The present paper builds on and extends our recent work [18] on exponential con-
vergence for hp-version finite element methods in polyhedral domains. It also builds
on our earlier work [22, 23, 24] on hp-version discontinuous Galerkin (DG) methods
for second-order elliptic boundary-value problems in polyhedra. Specifically, in [18],
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we considered the boundary-value problem (1.1) with the homogeneous Dirichlet
boundary conditions in (1.2) imposed on the entire boundary 0f2. For axiparallel
configurations, we then used the non-conforming hp-version interpolation operators
constructed in [23] in conjunction with suitable polynomial jump liftings to prove
exponential rates of convergence in terms of the number of degrees of freedom for
conforming hp-FEM discretizations on appropriate combinations of geometrically
and anisotropically refined meshes and for the uniform and isotropic polynomial
degree p > 1.

The principal contribution of the present work is the construction of exponen-
tially convergent conforming hp-FE quasi-interpolation projectors on axiparallel,
o-geometric mesh patches with variable and anisotropic polynomial degree distribu-
tions for the mized second-order problem (1.1)—(1.3) (and generalizations thereof).
Our main result shows the H'-norm convergence rate estimate C exp(—bv/N),
where N is the number of degrees of freedom of the conforming hp-FE space, and
where b,C' > 0 are independent of N. While asymptotically of the same form as
the rate in [18], the univariate hp-approximation results [9, 17] suggest that the use
of subdivision ratios ¢ < 1/2 and of variable and, in particular, anisotropic polyno-
mial degree distributions will significantly reduce the number of degrees of freedom
required to reach a prescribed accuracy of approximation. This is corroborated
in preliminary numerical results in three space dimensions. Loosely speaking, our
construction and convergence proof combine the arguments in [22, 23, 24] to define
non-conforming base projectors with exponential convergence in broken morms with
the constructions of polynomially stable polynomial trace jump liftings in [18]. How-
ever, the lower regularity of the solutions and the more general hp-finite element
spaces under consideration entail several new technical difficulties addressed in this
work. We discuss them in detail.

First, the mixed boundary conditions in (1.2), (1.3) are considerably more in-
volved than the pure Dirichlet conditions analyzed in [18]. Indeed, with the regu-
larity theory from [5], solutions of problem (1.1)—(1.3) with piecewise analytic data
belong to countably normed Sobolev spaces N, Z,"(Q) with non-homogeneous weights.
In [24], the non-homogeneous structure of the weights was dealt with by splitting
the errors in edge-perpendicular and edge-parallel contributions and by bounding
these two contributions separately. The crucial stability with respect to element
anisotropy of the error splitting was ensured in [24] by the use of L?-projections
in edge-parallel directions, up to algebraic losses in the polynomial degrees. While
this was sufficient for proving exponential convergence of discontinuous Galerkin
discretizations, finding stable liftings of the polynomial jumps introduced by the L2-
projections in edge-parallel direction over edge-perpendicular faces between highly
anisotropic elements along the same edge seems an open problem.

To overcome this difficulty, the first principal contribution of the paper is a
novel construction of non-conforming hp-version base projectors. It employs L2-
projections in edge-perpendicular directions and nodally exact H'-projections in
edge-parallel direction along anisotropic elements appearing in edge- and in corner-
edge neighborhoods. The nodal exactness property in parallel direction then re-
moves the need for liftings over the critical faces mentioned above, while still allow-
ing to split the errors in edge-perpendicular and edge-parallel contributions in the
spirit of [24]. The non-conforming hp-base projectors constructed in the present
paper are well-defined on H'(2), in contrast to those used in [18]. As the proof
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of exponential convergence in broken norms for the base projectors thus obtained
follows along the lines of [24], with only a few modifications, we outline it for
completeness in Appendix A. In addition, we provide an analogous exponential
L?-norm consistency bound for L*-projections under the weak Nj(Q)-regularity.
This may be of independent interest for approximations of the pressure in mixed
hp-version discretizations of the (Navier-)Stokes equations in polyhedra as consid-
ered in [20, 21, 27].

Second, we consider in this paper the s-linear polynomial degree distributions
introduced [22], which increase linearly and anisotropically away from edges and
corners with a slope parameter s > 0. While such degree distributions can be rela-
tively easily accommodated by the discontinuous Galerkin approaches in [22, 23, 24],
enforcing conformity for variable polynomial degrees and irregular mesh refinement
is not straightforward. To deal with this, we propose a minimum rule approach
for edge and face polynomial degrees in the spirit of [7], by introducing suitable
hp-version elemental basis functions with respect to nodal, edge, faces and interior
degrees of freedom. The second principal contribution of this paper then is the
construction of conforming approximations in the presence of s-linear polynomial
degree distributions and irregular meshes. Starting from the non-conforming hp
base projectors, we adopt an averaging approach from [28] to assign unique nodal,
edge and face values while keeping exponential convergence. This yields interme-
diate approximations which are continuous across all regularly matching faces and
which satisfy homogeneous boundary conditions on Dirichlet boundary faces, while
retaining the exponential convergence estimates. Finally, we introduce polynomial
edge and face jump liftings along the lines of our previous work [18] to remove dis-
continuities over all irregular faces. Our liftings admit bounds with are independent
of element aspect ratios, with algebraic growth in the elemental polynomial degree,
thereby preserving the exponential convergence estimates of the hp-version base
projectors. We note that the present analysis is in particular applicable to the pure
Dirichlet problem, i.e., when Jx = (). Hence, the analysis here extends and gener-
alizes the results in [18] to s-linear and anisotropic polynomial degree distributions.
Our exponential convergence proofs apply directly to hp-FEMs for more general and
vector-valued second-order elliptic boundary-value problems which admit analytic
regularity shifts in the function classes of [5].

The outline of the remainder of the article is as follows: In Section 2, we recapit-
ulate analytic regularity results for solutions to (1.1)—(1.3) from [5]. In Section 3,
we introduce hp-version finite element spaces on o-geometric meshes of hexahe-
dral axiparallel elements with s-linear polynomial degree distributions, specify the
continuous Galerkin methods to be analyzed, and state and discuss our main expo-
nential exponential convergence result (Theorem 3.4), with an outline of the proof
provided in Section 3.4. Base projectors with partial conformity and exponential
convergence estimates are introduced in Section 4. Details of the convergence es-
timates can be found in Appendix A. Finally, in Sections 5 and 6, we complete
the constructions of conforming approximations by averaging and lifting operators,
respectively, which are of independent interest.

Our notation employed throughout the paper is kept consistent with [22, 23, 24].
We shall use the notations ”<” or ”~" to denote an inequality or an equivalence
containing generic positive multiplicative constants which are independent of the
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discretization and regularity parameters, as well as of the geometric refinement
level, but which may depend on the parameters ¢ and s.

2. REGULARITY

In this section, we review the regularity for weak solutions of (1.1)—(1.3). The
weighted spaces and the analytic regularity shifts are due to [5].

2.1. Subdomains and weights. We denote by C the finite set of corners ¢, and
by & the finite set of (open) edges e of Q. The singular set of  is then given by

S::CUS:(UC)U(Ue)CF. (2.1)
ceC ecé&
Force C,ec &, and x € (), we define the following distance functions:
rc(.’B) = |:ch|, Te(.’B) :Zi}é{Jm*yL pce(m) :TS(IB)/TC(IB). (22)

For each corner ¢ € C, we denote by . :={e €& : cnNe# 0} the set of all edges
of 2 which meet at ¢. Similarly, for any e € £, the set of corners of e is given by
Ce:={ceC: cne#0D}. Then, fore >0, c e, ec & respectively e € &, we
define the neighborhoods

we={x €N :re(x) <& A pee(x) > Veecl},
we={x €O : 1e(x)<e A re(x) > Vecelel, (2.3)
Wee ={x €N : re(x) < A pee(x) <€}

Without loss of generality as in [22], the domain  can be partitioned into four dis-

joint subdomains, Q = Q¢ U Q¢ U Qee U Qq, referred to as corner, edge and corner-
edge and interior neighborhoods of Q, respectively, where Qy := Q\ Q¢ U Qg U Qce

and
Qe = U We, Qe = U We, Qce = U U Wee - (2.4)

ceC ecf ceCecél.
We distinguish Dirichlet and Neumann edges by setting

SD::{EGSZELEJDWitheﬂfL#@}, SN::(S\SD. (25)

Edges in £p abut at at least one Dirichlet face I', for ¢ € Jp. Note that we possibly
have Ex = 0.

2.2. Weighted Sobolev spaces. To each ¢ € C and e € £ we associate a corner
and an edge exponent [., Be € R, respectively. We collect these quantities in the
weight exponent vector 8 = {Bc : ¢ € C}U{Be : e € £} € RICITIEl Tnequalities
of the form B < 1 and expressions like 3 + s, where s € R, are to be understood
componentwise. We shall often use the notation

be :=—1—fe ceC, be : =—1—P, ecf. (2.6)

To review the analytic regularity results of [5], we choose local coordinate systems
in we and wee, for ¢ € C and e € &, such that the edge e corresponds to the
direction (0,0, 1). Then, we indicate quantities transversal to e by (-)*, and quan-
tities parallel to e by (-)I. In particular, if & = (a1, a9, a3) € N is a multi-index
of order |a| = a1 + as + a3, then we write a = (at,all) with at = (a1, )
and ol = a3, and denote the partial derivative operator D* by D™ = Dﬁ‘_L Dﬁ‘”,

where DfL and Dﬁ‘“ signify derivatives in edge-perpendicular and edge-parallel
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directions, respectively. We further denote by D, the gradient operator in edge-
perpendicular direction, and set D)) = Dﬁ.

The solution w of problem (1.1)—(1.3) belongs to a scale of countably normed
spaces; cf. [5]. For sets ) C C’ C C and § C & C &, we introduce the following
semi-norm of order k£ > 0:

|U|?vg(§z;czgf) = Z {||D°‘u||%2(90)

le|=k

n Z Hrgcﬂa\oauuiz(wc) + Z Hr‘r:nax{ﬁcﬂa\,o}DauHiZ(%)

ceC’ ceC\C’
L n
+ Z Hrge+|a |Dau||i2(we) + Z ||7,,2nax{ﬁe+|a |’O}Dau||iz(we)
ecg’ ecE\&’
ﬁe +
+Y T H,,gc+\a\pce+la |Da“HQLz(%e) @7
celC’ ec€cNE’

DD Hrf”""'p?ew{B”""L|’O}DauHiz<
ceC’ ecEN(E\E")

. Bet|at 2
£ e o
ceC\C’ ec&NE’

YT [reteerieo et 0pay >}'
cEC\C' e€EN(ENE") -

ch)

For m > kg, with

kg = —min{rcneigﬁc,lgleigﬁe}, (2.8)
we write Ng'(Q;C’, ") for the space of functions u such that HuHNgL(Q.C, gy < 09,
with the norm Hu||?vglm;c,7g,) =31 |u|?vg(9;cz£')' For subdomains K C Q we

shall denote by | - |N§(K;C',S') the semi-norm (2.7) with all domains of integration

replaced by their intersections with K C 2, and likewise we shall use the norm
[ - ||N5L(K;C/,g/). We note that we have Mg'(Q2) := Ng'(Q;C, &), where Mg () is
the weighted Sobolev space considered in [18] for the pure Dirichlet problem.

2.3. Analytic regularity. We adopt the analytic function classes of [5].

Definition 2.1. The class Bg(Y;C’, £’) consists of all functions u such that u €
N (Q'5C', &) for m > kg, with kg as in (2.8), and such that there exists a constant

Cy > 0 such that |u|Ng(Q,;C,7g,) < CHHIT(k +1) for all k > kg.

We have the following regularity result from [5, Theorem 7.3] for variational
solutions of problem (1.1)—(1.3) (with constant coefficients).

Proposition 2.2. Let ) C Ep C £. Then there are bounds bg,be > 0 (depend-
ing on €, the coefficient matriz A and the set Ep) such that for weight exponent
vectors b with

0<be<be, 0<be<bg, cel, ecé, (2.9)
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the weak solution w € V' defined (1.4) of problem (1.1)—(1.3) satisfies:
fe Bl_b(Q;C,gp) — uc B_l_b(Q;C,gp) . (2.10)

Remark 2.3. For pure Dirichlet and Neumann problems, we have corresponding
analytic regularity shifts:

Ep=E: feBI_b(CE) — ue Boy_o(%C,E), (2.11)
Ep=0: [feBi_(Q:0,0) = uwe B_1-$(20,0); (2.12)

cf. [5, Corollary 7.1 and Theorem 7.4]. Due to the inclusions B_;_4(2;C, &) C
B_1 (C,Ep) C B_1_(Q;0,0), we shall focus on proving exponential approxi-
mation properties for the maximal space B_1_p(£;0, ).

Remark 2.4. As in [24, Remark 2.5], we assume that in (2.9) there holds
0<be<1l, 0<be<1, celC,ecé. (2.13)

With (2.6), we then have kg € (1,2) in (2.8). Hence, the regularity property
in Definition 2.1 holds for £ > 2. In addition, we shall assume that, for any
polyhedron €2 and right-hand side f in the class of problems considered here, there
exists some @ € (0,1) such that the weak solution u € V belongs to H'*9(Q).
For weight exponents b, € (1/2,1), be € (0, 1), this follows from [5, Remark 6.2(ii)]
and [14, Theorem 3.5]. We also refer to the discussion in [24, Remark 2.5].

3. FINITE ELEMENT DISCRETIZATION AND EXPONENTIAL CONVERGENCE
3.1. Geometric meshes. We review geometric mesh constructions from [22, 23].

3.1.1. Geometric mesh patches. We partition the domain €2 into a finite number 3
of open, axiparallel and hexahedral patches {Qy }23:1 which constitute the patch
mesh MY, In the axiparallel setting, each @, € M" is an affine-orthogonal image
Qpy = Gy (@) of the reference patch @ = (=1,1)%. We assume M" to be regular,
i.e., the intersection @p N Gp, of any two patches Qp,Q, € MY, p #p’, is either
empty or a vertex, an entire edge, or an entire face of both patches. Without loss
of generality we assume that (the closure of) each patch intersects either with at
most one corner ¢ € C, and with either none, one or several edges e € £, meeting
in c. In addition, we shall always assume that boundary faces on the patch @,
belong to exactly one boundary plane I',.

With each patch Q, € MO, we associate a geometric reference mesh patch
Mp on Q. We recall from [22, Section 3.3] that the geometric patch meshes are
generated recursively by iterating four basic geometric refinement operations, the
so-called hp-extensions (Ex1)—(Ex4) on the initial mesh MO, resulting in four geo-
metric mesh patch types t € {c, e, ce,int} on @ That is, we take

M, € RP := {M4e, MEbe, MEee, M) = (ME Y e ecent)- (3.1)

Whenever (), abuts at the singular set S, we assign to Mp (a suitably rotated
and oriented version) of the geometrically refined reference mesh patches shown
in Figure 1 and denoted by M%¢ (corner patch), M% (edge patch), and MEee
(corner-edge patch), respectively. We implicitly allow for simultaneous geometric
refinements towards several edges in the corner-edge patch Mf;’ce, which corre-
sponds to an overlap of at most three rotated versions of the basic corner-edge
patch; see Figure 3 below. The geometric refinements in these reference patches
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T 3i T

FI1GURE 1. Three geometric reference mesh patches on @ with
o = 0.5: corner patch M%¢ (left), edge patch M%¢ (center), and
corner-edge patch M%¢€ (right).

are characterized by (i) a fixed parameter o € (0, 1) defining the subdivision ratio of
the geometric refinements and (ii) the index ¢ defining the number of refinements.
For interior patches @, € MY, which have empty intersection with S, we assign
to Mvp a geometric reference mesh patch va;’int on @, which comprises only finitely
many reqular refinements and does not introduce irregular faces in @ In the refine-
ment process, the reference mesh Mﬁ’int is kept unchanged and is independent of the
refinement level . As different interior patches can be refined differently, without
loss of generality the notation Mve int is to be understood in a generic fashion.

The geometric reference mesh patch ./\/lp € RP introduces the corresponding
patch partition M, = G, (/\/lp ={K:K=G,(K), K € /\/lp} on Qp. Inter-
patch continuity of hp-approximations will be ensured by the following hypoth-
esis; cf. [18, Assumption 3.1]. Here and in the sequel, we denote by mg4(-) the
d-dimensional Lebesgue measure.

Assumption 3.1. For p # p’, let Qy,Qp € M be two distinct patches with
Lppr = Q, NQ,. # 0 and either ma(Tpy+) > 0 or ma(Tpy) =0, mi(Tpyr) > 0.
Then the parametrizations induced by the patch maps on the patch interfaces I'y -
are assumed to coincide “from either side”: Gy, o (G;’l |pp o ) =Gypio (G,}1 |1"p v )
In addition, the mesh patches M, , M, are assumed to coincide on I'p .

3.1.2. Geometric meshes. For fixed parameters o € (0,1) and ¢ € N, a o-geometric
mesh on € is now given by the disjoint union

M =ME=UF_ M, (3.2)

If we denote by K = (=1,1)? the reference cube, then each K € M is the image
of K under an element mapping ¢k : K — K, given as the composition of the
corresponding patch map G, with an anisotropic dilation-translation. To achieve
a proper geometric refinement towards corners and edges of 2 without violating
Assumption 3.1, the geometric refinements M, in the patches @), have to be
suitably selected and oriented. For a fixed subdivision ratio o € (0, 1), we call the
sequence M, = {Mf;}gzl of geometric meshes a o-geometric mesh family; see [22,
Definition 3.4]. As before, we shall refer to the index ¢ as refinement level.

Without loss of generality as in [23, Section 5.1.4], every element K € M can be
assumed to be a Cartesian product of the form

K =K' x Kl =(0,h%)? x (0,hl), (3.3)
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with hll( < hﬂ(. We call K isotropic if hi ~ hﬂ( ~ hy uniformly in ¢; otherwise,
element K is anisotropic. Elements in corner and interior patches are isotropic,
whereas elements in edge and corner-edge patches may be anisotropic. We also
note that the elemental diameters h3 and hﬂ( are related to the relative distances
to the edge e and corner ¢ located nearest to K; cf. [23, Proposition 3.2].

3.1.3. Vertices, edges and faces. Let M = MY be a geometric mesh. For an axi-
parallel hexahedral element K € M, we denote by N'(K), £(K) and F(K) the sets
of its elemental vertices, its elemental edges and its elemental faces, respectively.
If £ € &(K) and F € F(K), we write N(E) C N(K) for the two end points of E
and E(F) C F(K) for the four elemental edges of F.

The set of all vertex nodes is defined by

NM) = | MK). (3.4)
KeM
The subset N'p(M) of all Dirichlet nodes consists of all N € N (M) with N € T,
for some index ¢ € Jp. The node N is called regular if N € N(K) for all K € M
with N N K # (); otherwise it is called irregular.

The non-trivial one-dimensional intersection £/ = E i+ of the elemental edges
of two neighboring elements K, K’ € M is called an edge of M. The edge Ex, i’
is called regular if F € £(K) and E € E(K’); otherwise we call it irregular. Note
that Fk g+ can be located on a Dirichlet plane T, for ¢ € Jp, in which case we
call it a Dirichlet boundary edge of M. Moreover, the non-trivial one-dimensional
intersection £ = Ex e € E(K) of an elemental edge of K with e € &p is also called
a Dirichlet boundary edge. The set of all edges is denoted by £(M) and the set of
all Dirichlet boundary edges by Ep(M).

Similarly, the non-trivial two-dimensional intersection F' = Fx g+ of the elemen-
tal faces of two neighboring elements K, K’ € M is called an interior face of M.
For our class of geometric meshes, one can always assume that F' = Fg g is an
elemental face of at least one element and a non-vanishing subset of an elemental
face of the other element. For example,

FeF(K) and F CF' for F' € F(K') with ma(FNE') > 0. (3.5)

The face F is called regular if F' € F(K) and F € F(K'); otherwise it is said to be
irregular. Furthermore, the non-empty and two-dimensional intersection F' = Fx r,
of an elemental face of K € M with a Dirichlet plane I', for ¢ € Jp is a Dirichlet
boundary face of M. We always have Fi r, € F(K). Neumann boundary faces are
defined correspondingly. However, as Neumann boundary conditions are enforced
naturally, they will only play a minor role in our analysis. We write (M), Fp(M)
and Fy (M) for the sets of interior, Dirichlet and Neumann boundary faces of M,
respectively, and set Frp(M) := Fr(M) U Fp(M).

Remark 3.2. Asin [18, Assumption 3.2] and under Assumption 3.1, for any distinct
axiparallel elements K, K/ € M which share a common edge Fx g/ or an interior
face Fi g, the traces of the elemental polynomial spaces on Ex g+ and Fk g in
local coordinates induced by the corresponding elemental maps coincide.

For a piecewise smooth function v, we define the jump of v over F i/ € Fr(M)
respectively over Fx p, € Fp(M) by

[v]Fy o = vl — vk respectively by [v]ryr, = v|Kk. (3.6)
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For F € F(K), we denote by hll(yF the height of K in direction perpendicular to F.
We then introduce the trace mesh size function by

b [min{kp), P = P € Fi(M)

hi.,r F=Fgkr, € Fp(M),

with F’ € F(K’) as in (3.5). The bounded variation property in [22, Section 3.3.2]
implies hp ~ hy p =~ hi p for interior faces Fx xr € Fr(M).

(3.7)

3.2. Finite element spaces. We next introduce discontinuous and continuous
finite element spaces with anisotropic and s-linear degree distributions.

3.2.1. Local finite element spaces. Let M = M be a geometric mesh. With

each K € M and in accordance with (3.3), we assign an anisotropic polynomial de-

gree vector px = (py, pg(), with degrees p7: > 1 and pﬂ( > 1 in edge-perpendicular

and edge-parallel directions, respectively. We always will assume that pj; < pﬂ(;
cf. [23, Section 3]. For K € M, the elemental tensor-product polynomial space is

defined by

Qpy (K) = {v € LA(K) : v|x 0 Py € Qp(K)}, (3.8)
where ®x : K — K is the element mapping and Qp (IA( ) the anisotropic tensor-
product polynomial space on K = I3 with [ = (—1,1):

Upic(K) = Qp () 0, (D =By (@B, (DB, (D), (39)

with P,,(I) denoting the univariate polynomials of degree less than or equal to p on

an interval I. The polynomial degree vector p is called isotropic if pj; = pﬂ( = pK.

In this case, we write Q,, (K) in place of Qp, (K).
The elemental polynomial degree vectors px are combined into the polynomial
degree distribution p :== {prg : K € M} on M. We set |p| := maxxem |PK|, with

|px| := max{ps, pﬂ(} We then introduce the generic discontinuous space
VOM,p):={ve L*Q) : v|k € Qp, (K), K e M }. (3.10)
The hp-extensions (Ex1)—(Ex4) introduced in [22] provide s-linear polynomial de-
gree distributions ps(M%') on the geometric reference mesh patches M%! for
t € {c, e, ce,int}, which increase s-linearly and possibly anisotropically away from
singularities for a slope parameter s > 0; see [22, Section 3] for more details. By

construction, the patchwise distributions ps(ﬂf;’t) induce a s-linear polynomial
degree distribution on a geometric mesh M’ which we denote by ps(M?).

3.2.2. Face and edge polynomial degrees. Let M = MY be a geometric mesh and p
a polynomial degree distribution on M. To define conforming spaces, we introduce
edge and face polynomial degrees in conjunction with a suitable minimum rule over
neighoring edges and faces; cf. [7].

Let K € M and pg = (pf(,pg() the elemental degree vector. For E € £(K) and
F e F(K), we denote by px,r € N and pr,r = (p}(,F,pﬁ(,F) € N2 the polynomial
degrees induced by px on E and F in local coordinates, respectively. We further
introduce the sets

bkpi={K' eM: ECE €&K') withmi(ENJF') >0}, (3.11)
dkpi={K' eM: FCF for F' € F(K') with may(FNF')>0}. (3.12)
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Notice that K € dx r and K € 0k r and that the cardinalities of 0x r and dx,F
are uniformly bounded. For E € £(K) and F € F(K), the minimum edge and face
degrees are then defined by

Pr.p = Klmam P €N, (3.13)
D = N al .14
Pk, F K/Iélam Pk, F € N2, (3.14)

where the sets E' and F’ are as in (3.11) and (3.12), respectively, and where the
minimun in (3.14) is understood componentwise. With Remark 3.2, we may denote
by Pp, ,(E) and Qp, . (F) the corresponding polynomial spaces on £ € &(K)
and F € F(K), respectively.

3.2.3. Finite element spaces. On an axiparallel element K € M, we consider poly-
nomial functions v|x € Qp, (K) which can be expanded into basis functions as

'U|K _ ’Uand +’U|e[?ge +U|face+v|mt (315)

where, with the minimum degrees Dy ;; in (3.13) and Py r in (3.14),

nod __ N x N
v = E cx Px

NeN(K)

pK,E71
edge EjixFE
ik = Z Z Kk Pk (3.16)

EcE(K) i=1

1 =2
P, rp—1Pk p—1

face _ Z Z Z Fz,]q)F z,_]

FeF(K) i=1  j=1

7 Fi,j

with coefficients c% , cf(’ and cj Here, the function @% € Q1(K) denotes
the trilinear nodal shape functlon on K with the property that ®% (N') = §n N+

for N' € N(K). For E € £(K) the edge shape functions {@El}pKE "on K
are polynomials of degree Py  along the edge E tensorized with linear blending
functions in the two directions perpendicular to F. Restricted to E, they span
the space PPy p(E) N Hj(E). They vanish on the other elemental edges E' # E,
as well as on faces F' € F(K) with E ¢ E(F). Similarly, for FF € F(K) the face
shape functions {CIDf(’i’j }i,; are anisotropic polynomials of vector degree Pk,p On
the face F tensorized with linear blending functions in the direction perpendicular
to F. Restricted to F, they span the space QP (F) N Hj(F), and vanish on
the remaining elemental faces F’ # F. Finally, the interior part vl in (3.15) is a
polynomial bubble function in Qp, (K)NH}(K); as it will be left unchanged in the
subsequent analysis, we will not further specify it. For empty ranges of the indices
n (3.16), the corresponding sums are understood as zero. We refer the reader to [7,
Section 2.3] for an explicit construction of shape functions as in (3.15), (3.16).

For K € M, we collect the edge and face degrees in (3.13), (3.14) in the vec-
tor Py, and define the elemental polynomial space

Spy (K) == {v|k € Qp, (K) : v|k is of the form (3.15), (3.16) }, (3.17)
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Thus, a polynomial v € S (K) satisfies

(v|K)|E € Py, ,(E), E € E(K), (3.18)
(vlK)|F € Q5 . (F), F € F(K). (3.19)
We then introduce the minimum rule hp-finite element spaces
VM, p) = {veL2(Q) : v|x €Sy, (K), K € M}, (3.20)
VIM,p) :={v eV : v|g €Sp,.(K), Ke M}; (3.21)

cf. [7]. By construction, we have VO(M,p) CVOYM,p).

3.3. Conforming hp-FEM and exponential convergence. For parameters o €
(0,1) and s > 0, let M, = {M’}s>1 be a o-geometric mesh family on 2 and
{ps(M?)}o>1 the corresponding s-linear polynomial degree distributions. We con-
sider the sequence of conforming hp-version finite element spaces

Vs = ViMe, ps(Mg)), =1, (3.22)

and introduce its non-conforming counterparts by setting
=60 =0
Vol = VIMG,ps(My)), Vo=V (Mg,ps(Mg)), (=1 (3.23)
Remark 3.3. The fact that the conforming spaces ijgl define proper linear spaces
will follow from our construction of conforming approximations in Sections 5 and 6
ahead. In the pure Neumann case (where Jp = (), we note that the constant
function belongs to Vfﬁ’sl, which will lead to well-defined factor spaces Vfﬁ’sl /R.

The hp-version Galerkin discretization of the variational formulation (1.4) reads
as usual: find uf e V,f,’sl such that

a(u’,v) = / Sfudx Vv € Vfﬁ’; , (3.24)
Q

where we implicitly use the corresponding factor spaces V,f,’sl /R in the pure Neu-
mann case. For every ¢ > 1, the discrete variational problem (3.24) admits a
unique solution u‘ € ijﬁl which is quasi-optimal: there exists a constant C' > 0
(only depending on 2, the coefficient matrix A and the set £p) such that
||u—u€||H1(Q) <C inngU_UHHl(Q) . (3.25)
veEV, 5
One first main result of this paper is the H'-norm exponential convergence of hp-
FE approximations (3.24) for problem (1.1)—(1.3) with data f € B;_(;C',E")
as in the regularity shifts in (2.10), (2.11) or (2.12). This follows from the quasi-
optimality (3.25) and the following approximation property of the hp-version finite
element spaces ijﬁl .

Theorem 3.4. Let b be a weight exponent vector satisfying (2.13). For parameters
o € (0,1), s > 0, consider the sequence ijgl of H'-conforming hp-version finite
element spaces in (3.22). Then there exist quasi-interpolation projectors Hg’,ls V=
Vie such that for functions u € V with u € B_1_y(Q;0,0) N HF(Q) for some
0 € (0,1) there holds

|l — Hg’}guHHl(Q) < Cexp(=bl) , (3.26)
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with constants b,C > 0 independent of ¢, but depending on the parameters o, s,
the macro-mesh MO with its associated patch maps, the minimum weight exponent
in (2.13), the exponent 6, and on u through the analytic reqularity constant C,, in
Definition 2.1.

In particular, if the variational solution uw € V of problem (1.1)—(1.3) belongs
to B_1_p(0,0) N HF9(Q) for some 6 € (0,1), cf. (2.10), (2.11), (2.12) and
Remark 2.4, then the conforming finite element approzimations u’ € V,f,’sl in (3.24)
converge exponentially:

lu — | i1 (@ < Cexp (fb('*/N) : (3.27)

where the constants b,C > 0 are independent of N = dim(Vfﬁ’;), the number of
degrees of freedom of the hp-FFE discretization.

Remark 3.5. The projectors Hg’,ls in (3.26) constructed ahead are well-defined on
the space V' C H'(2). This is in contrast to the projectors constructed in [18] for
homogeneous Dirichlet boundary conditions. They require H2-regularity in each
coordinate direction in the interior of 2, and are set to zero on elements abutting
at corners and edges of (2.

Remark 3.6. The global hp-version projectors Hf;jls in (3.26) are assembled from hp-
patch projectors Hf;’};p . We write formally, with restrictions to patchesp € [1,...,B]
implied in 557,
et = Zf_lnf;v;m, (3.28)

where inter-patch continuity follows from Assumption 3.1. The hp-patch projec-
tors II5 5P in (3.28), in turn, are obtained from four families {II55* Yo>1 of hp-
reference patch projectors on the geometric reference mesh patches Mf;’t of type
t € {c e, ce,int} which are transported to the patches @, C Q via the patch
maps G, . While no liftings are necessary for interior patches (i.e., for t = int), for
patches of type t € {c, e, ce}, our construction yields jump liftings with stability
bounds in the H'(Q, )-norm which grow algebraically in |p|.

Furthermore, the exponential consistency in H 1(@) of ﬁf;%jt on the reference
patch @ can be readily verified for solutions u € V' of (1.1)—(1.3) whose pullbacks
from the mesh patch @, to @ satisfy the analytic patch regularity

up = ulg, oGy € By (Q), 1<p <P, tecce,ceint}, (3.29)
where By (@) is an analytic regularity reference class on @ with weighting towards
corners or edges of @ depending on the refinement type t € {c,e,ce,int}; see
also [18, Section 4.4] for analytic reference classes A¢(O) in the pure Dirichlet
case. For t € {c,ce}, we additionally require in (3.29) that u, € HYW0(Q); cf.
Remark 2.4. All exponential convergence rate estimates in the present paper apply
verbatim to any solution u € H'(Q) which, in local patch coordinates, exhibit the
above analytic patch regularity (3.29).

Remark 3.7. The results of Theorem 3.4 are valid in particular for the isotropic
finite element spaces

VHME pe) == {v eV :vg € Q,(K), K€ M.}, 0>1, (3.30)
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with uniform polynomial degree p, > 1. For these spaces, the minimum rules
in Section 3.2.2 are trivially valid. The exponential convergence bounds (3.26)
and (3.27) follow in this case as well, provided that p, = max{1, |sf]}, albeit with
a generally smaller constant b.

Remark 3.8. The bounds (3.26) and (3.27) hold true in the pure Neumann case.
This follows readily from Remark 3.3 and since Hg’,ls reproduces constant functions.

Remark 3.9. The exponential convergence results in this paper apply verbatim to
conforming hp-FEMs for second-order and possibly vector-valued elliptic problems
which allow for analytic regularity shifts in the function classes in Definition 2.1.
In particular, they are valid for stress-strain formulations of the equations of linear
elasticity (with constant material parameters); [5, Section 7].

3.4. Outline of the proof. The proof of Theorem 3.4 follows along the lines
of [18, Section 3.4], but is significantly more involved due to the appearance of
the non-homogeneously weighted Sobolev spaces and the anisotropic and variable
polynomial degree distributions. In this section, we outline the key steps. From
now on we will frequently use the short-hand notation ”.<,” for inequalities which
hold up to algebraic losses in |p|:

xS,y & o S |p/*y for somea € N (3.31)

~.

3.4.1. Base projectors with partial conformity. We first introduce (non-conforming)
base projectors with partial conformity and exponential convergence estimates.

To discuss the conformity properties, let M = MY be a geometric mesh. For a
set F' C Frp(M) of faces, we define

jmppful® == Y Bt I[ull72 - (3.32)
FeF!
Then, to avoid the need for jump liftings over edge-perpendicular faces between
highly anisotropic elements, we construct base projectors which are conforming
across certain sets Fip (M) C Frp(M) of edge-perpendicular faces, and generally
non-conforming edge-parallel faces F' € .7:]”D (M) == Frp(M)\ F5 (M), which can
be characterized by the property that

FCF eF(K): hp~ hJI},F/ ~ h3 uniformly in £. (3.33)

If we write K in the form (3.3), then (possibly after mapping) a face F satisfy-
ing (3.33) can be assumed to be of the form

F = (0,h%) x (0,A)) uniformly in ¢ . (3.34)

Note that faces with (3.33), (3.34) appear (i) between isotropic elements and (ii) in
edge-parallel direction between anisotropic elements in edge or corner-edge patches.
In the following, we shall also split F }l (M) into interior and Dirichlet boundary
faces, i.e., fIHD(M) = ]:Ill (M) U Fg(./\/l).

To state exponential convergence estimates in broken norms, we split the errors
into edge-perpendicular and edge-parallel contribution as in [24],_except for the
(isotropic) corner elements. For ¢ € C, we set T4 := {K €¢ M’ : KNnec# 0} and
define

=T Ml =MoL (3.35)

ceC
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Here, we will always assume that the initial patch mesh M? is sufficiently fine so
that T, and T¢, are disjoint for ¢ # ¢’. For sets M’ C MY of axiparallel elements,
we introduce the broken H'-norms:

Tholu? = > NE@l,  Thelw?= Y NP (3.36)
KeM' KeM'

with elemental norms defined by
Nig[u]* := (hg) 2 llullfz ey + 1 VullZag,

7,12 I y=2,,112 2 (3.37)
Ny [u]” = (hy) HUHLZ(K) + HVU”L?(K)-

Evidently, we have
Nkl S NiW)?,  KeM, (3.38)
whereas Nz [u] ~ N y( [u] for isotropic elements K.

Proposition 3.10. For all parameters o € (0,1), s > 0 there are tensor projectors

nt, = ﬂﬁ’j ® Wﬁ’yﬂ CHY Q) = VY (3.39)

0,5 0,5

which are conforming over sets ]'—IJ‘D(Mf;) C Frp(MY) of edge-perpendicular faces

and non-conforming over the complement sets fﬁD(Mﬂ) = fy (ML) U .7,':‘)(./\/15)
of edge-parallel faces F satisfying (3.33), (3.34).

Moreover, for functions u with u € B_1_p(Q;0,0) N H*9(Q) for some 6 € (0,1)
as in Theorem 3.4 and for the error terms given by

0 L 0L _ 0,1 Ll _ 2|
Nys = U — Ty U, Nys = U— TS5 U, Nos = U — Ty U, (3.40)
we have the H'-norm bound

Tﬂwg [775;15]2 + T/L\/lf", c[nﬁ’é]Q + Tﬂwg [nﬁ’,ﬂ? < Cexp ( — QbW), (3.41)

c

as well as the jump bound

D1 e 1567 < Cexp (= 26N, (3.42)

with constants b, C' > 0 independent of N = dim(fo), but depending o and s.

We will show the estimate (3.41) for a more general class of quasi-interpolation
tensor projectors on H'(€) in Section 4, see Theorem 4.3, with most parts of the
proof relegated to Appendix A. The jump bound in (3.42) will be established for
the specifically chosen projectors in (3.39) under smoothness requirements which
are slightly stronger than « € H'(Q); in particular, u € B_1_p(£2;0,0) is sufficient.

3.4.2. Discontinuous hp-version base spaces. To exploit the approximation proper-

ties for the non-conforming base projectors ﬂ'ﬁ,su in Proposition 3.10 for the mini-

—
mum rule finite element spaces Va:Os in (3.23), we introduce discontinuous hp-base
spaces as follows. For K € MY axiparallel, we introduce the subsets £+ (K) and

EI(K) of elemental edges of £(K), respectively F*(K) and FI(K) of elemental

faces of F(K), which are perpendicular and parallel to the nearest singular edge.

For K € FI(K), we write px r = (pf(,pg() to distinguish the perpendicular and

parallel components pg . r.
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Lemma 3.11. Let ps(M.) be a s-linear degree distribution on MY. For K €
M, let the face and edge degrees Pr.p and Dy p be defined in (3.13) and (3.14),
respectively. Then there exists i € (0,1] depending only on s > 0 such that

VE € EN(K):  ppr <DPr.p < Pk

VE € EWK) . i <Prp <P

VK € FH(K): ppg <Prr <P, MK <DPr.r < P
VK € FI(K):  ppk <Prr <pk, WPk <Pkr <Dk

Proof. These properties follow from the construction of the s-linear degree dis-
tributions and their properties of bounded variation; cf. [22, Section 3.2 and Re-
mark 3.9]. O

On K € M we then introduce the base degree vector px = (pr, p 5 i) as

1
Pg = min { Eelélil(l )pK B FE}}}%K)I’K,F Fe}}j} )pK F} m)
sl .— - Il '
Pk mm{EenglﬁI(l )pK,E Fe@ﬁl(l )pK,F .
Consequently, we have
Qpr (K) CSp,. (K), KeM.. (3.48)

From Lemma 3.11, we further have upx < px and /Lpﬂ( < p')(. As a consequence,

the base degree vectors {Px}xc Mme give rise to a §-linear polynomial degree dis-
tribution ps(MY), for a base slope parameter 5 with 0 < § < s and only depending
on s. Hence, the discontinuous hp-base spaces Vf,’go thus constructed satisfy

V@ 0 VZ,O

0'5 — g,5°

(3.49)

We point out that for the uniform and isotropic spaces in (3.30), the construction
of discontinuous hp-base spaces is not necessary and can be omitted.

—
3.4.3. Averaging over regular vertices, edges and faces. We denote by V Ot the

which are conforming over Fij(MY) C f[D(Mf;)
and possibly non-conforming over F y (ML), We then adopt the approach of [28]

subspace of functions in VU s

. —0,0, L . . .
to assigntov € V.~ vertex, edge and face values which are obtained by averaging
over regularly matching vertices, edges and faces.

—0,0,L  —£0,L

. . e . thal
Theorem 3.12. There are linear averaging operators A, o 2V, —V

o5 Such

that the following holds: (i) .Agg(’l}) is continuous over reqular faces in the interior
of each mesh patch; (i) A ,(v) vanishes on all Dirichlet boundary faces; (iii)

Ags (v) is continuous across adjacent mesh patches; (iv) Af;s (v) =w forv e Vae,’.r.l ;
(v) we have the stability bound

Yo [0 = Ao ()1 +Jmp ey [A5 (01 Sp Jmp e 0], (3.50)

forallv e VZOJ_.
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Remark 3.13. The construction of A% . (v) in Theorem 3.12 is carried out on each
element K € M separately, by adding averaged values associated with elemental
vertices N € N(K), elemental faces E € £(K) and elemental faces F' € F(K). As
a consequence, Af;s can (in principle) be obtained from corresponding reference av-
eraging operators on C~2 as in Remark 3.6, with inter-patch continuity being ensured
by Assumption 3.1.

Theorem 3.12 will be established in Section 5.

3.4.4. Polynomial jump liftings. The averaged approximations Ag,s(v) in Theo-
rem 3.12 are non-conforming over irreqular faces in the interior of mesh patches.
Our proof then proceeds as in [18] by introducing suitable polynomially stable
jump liftings on MY which preserve stability bounds as in (3.50). This leads to the
following result.

Theorem 3.14. Let Ag,s be the averaging operator from Theorem 3.12. Then there
exist linear operators Eg,s : range(A?s) — V,f,’sl such that the following holds: (i)
L (v) =v forve Ve (ii) we have the stability bound

T [0 = £5,3(0)] Sp g o (351)
Jor all v € range( AL ) C Vf;’z.’{

Remark 3.15. Since functions in v € range(Af ) have non-vanishing jumps only
over irregular faces in the interior of mesh patches, upon mapping it is sufficient to
construct 5575 on the reference mesh patches /Wf;’t of type t € {c, e, ce, int}; inter-
patch continuity will again follow from Assumption 3.1; cf. [18]. This observation
along with Remark 3.15 allows us to assemble Hf;’; from reference patch projectors
as discussed in Remark 3.6.

The proof of Theorem 3.14 will be detailed in Section 6.

Remark 3.16. The bounds (3.50) and (3.51) involve relatively large algebraic losses
in the polynomial order |p|. As in [18], this is due to the use of polynomial trace
liftings which are linear in one or more directions and can possibly be improved by
employing polynomial liftings of higher order.

3.4.5. Proof of Theorem 3.4. To prove (3.26), consider u € V. Let wﬁﬁgu € Vfﬁ’go be
the base projection of u defined in (3.39) into the hp-base space Vf,’go constructed
in Section 3.4.2, for the base slope parameter § > 0. By Proposition 3.10 and
the inclusion (3.49), we have ﬂﬁ,gu € Viog’l. In addition, the broken H'-norms of
the interpolation errors ng’; and nﬁ’,! in (3.40) converge exponentially for u as in
Proposition 3.10, albeit with respect to the base slope §. We then define

g s(u) == (Lo g0 Ag g 0y 5)(u) € Vo (3.52)

0,59

with the operators Ag, . and Ef;s from Theorems 3.12 and 3.14. Clearly, the quasi-
interpolation operator Hf;’}g is well-defined. It is linear and can readily be seen to
be idempotent on a subspace on ijgl .
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We now set v = 7 qu, of := AL (v), and v° := Lf (v). With the triangle
inequality and property (3.38), we obtain
lu = 10 Sl ) S Thhgs fu = o 4+ Loigg [ = o' + Ty [oF = 0]
The bounds (3.50) and (3.51) imply
TM[ [v —o']? —l—TM[ [vf — v]? <, jmp}}”D(M?,)[U]Q'

With the error terms (3.40) for the base projector v = 7r575u (noting that [u]p = 0),
we conclude that

llu — Hasu||H1 @ Sp TH [Uﬁ,sP +Jmpf1uD(Mg)[77f;,s]2-

Referring to (3.41), (3.42) in Proposition 3.10 yields (3.26) for u piecewise analytic
as in Theorem 3.4.

4. NON-CONFORMING BASE PROJECTORS

We introduce non-conforming and tensorized hp-base projectors, prove exponen-
tial convergence estimates in broken Sobolev norms, and establish Proposition 3.10.

4.1. Tensor projectors. We introduce a class of anisotropic tensor projectors on
the reference cube K.

To this end, let T = (—=1,1) be the reference interval. For p > 0, we denote
by 7.0 the univariate L2-projection onto Pp(f ). For p > 1, we further introduce
the univariate H'-projector 7,1 : H'(I) — P,(I) by

3
Fpa@)©) = A1)+ [ s n)dy (@.1)
—1
cf. [25, Theorem 3.14]. The projector satisfies (7 1u) = Tp_1,0(u’) and
(Tpau)(£1) = u(£1). (4.2)

Some hp-version approximation properties of 7, and 71 are collected in Sec-
tion A.1.1. - -

We next consider next the reference cube K = I3 with I = (—1,1). In analogy
o (3.3), we write K=K~ Kl =121 Let p = (p*,pll) be an anisotropic
polynomial degree vector, and r € {0,1} a conformity index in edge-parallel di-
rection. For a function @ : K — R, we define the tensor projector TprU into

Qp(K) = Q. (K+) @ P, (K) by

7Tp T’U, = (ﬂ(i) 0 (%] 71'(2) X ﬂl(j)r) U= (7TJ1 0 [=9] ﬂz‘)‘” 7‘) ’a, (43)
(1)

where the univariate projectors Tp.r act in directions Z1, s, and T3, respectively,
and where we write 7, 2L 0 and 7T”H to denote the projectors in edge-perpendicular
and in edge-parallel dlrectlon respectively. The projector Tp o is the (tensor-
product) L2projector which is well-defined for @ € L2(K), whereas Tp,1 is an
anisotropic projector which is well-defined for 7 € L2(K+) ® H*(K!) and nodally
exact in edge-parallel direction; cf. property (4.2). Note that H'(K) ¢ L*(K+) ®
H! (I?H ). In Section A.1.2 we derive approximation properties for 7, in (4.3), with
the aid of tensor-product arguments and consistency bounds for the univariate pro-
jectors Tp 0 and Ty 1.
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4.2. Exponential convergence in broken norms. We next establish exponen-
tial convergence bounds in broken norms for families of tensor projectors obtained
from (4.3).

4.2.1. Families of projectors. Let M = MY be a geometric mesh and let ps(M) =
{PK } kem denote a o-linear polynomial degree distribution on M. To each element
K € M, we further assign an elemental conformity index rx € {0,1}. We then
consider the tensor projectors 7 : H'(Q) — Va{f given by

TU| K = Tpge rre (UK ), KeM, (4.4)
where the elemental projectors mp, ;. : H(K) — Qp, (K) are defined by
ﬂ-pK,TK(ulK) = (/TFPKJ‘K (U|K o ®g))o (I);(la (4'5)

with Tp, r, defined in (4.3) and @k : K — K the clement mapping. As the
projectors mp,. . tensorize into mp, , = W;l 0 ® 7r”“ on K = K+ x Kl and
I3

Py sTK
L?-projections are used in perpendicular direction, we write
1
mulx = 75 @ 7l k. (4.6)

For u € H'(Q2), we consider the error terms

n=u—mu, Ny = u — Ty u, nl =u—7lu, (4.7)
and note that
= (u—mu)+my (u—mlu) = ny + . (4.8)

In the notation in (4.4)—(4.8), we generally omit the dependence on rx in edge-
parallel direction. However, if rx = r € {0,1} for all K € M, we write 7, =

o
T ® 7 for the projectors resulting in (4.4), as well as 7, nﬂ for the errors in (4.7).
In particular, mp = 13- ® Wg . L2(Q) — V2P is the usual L2-projection. A specific
choice of conformity indices rx leading to 7r§7 , in Proposition 3.10 will be introduced
in Section 4.3 below.

4.2.2. Error bounds. We show that the full errors n can be bounded in terms of the
errors - and nll in edge-perpendicular and in edge-parallel directions, in appropri-
ate norms. We first establish the following stability result.

Lemma 4.1. Let K = K+ x Kl € MY be of the form (3.3) and pjz > 1. Then
IDL(my gl Zarry S 0R)IDLulZo(rery,  we HY(KS). (4.9)
Furthermore, for the element errors in (4.7) and any rx € {0,1}, we have
Il 22y S Mo N2y + 110122 )
DLl (1) S 1D 72y + (03) 1D 220 (4.10)
HDlm||2L2(K) S HDHné—H%Z(K) + HDHUHH%Z(K)'
Proof. Since both sides of the inequalities in (4.9) and (4.10) scale in the same way,
it is sufficient to prove the results for the reference element K = K+ x K.
We prove (4.9) on K*. To do so, note that

D1 (7L o) = Di(F gl — 7ol = Du (R (@ — 7iloit))- (4.11)
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The inverse inequalities in [25, Theorem 3.91], the L2-stability of %pﬁ , and standard
i

approximation properties for %OLO yield

DLy 0@ 7e 0y S P 1T o(@ = To0@) 17 1

/S (pK) ”quOOa”Lz(KL) S ( ) ||DJ-UHL2(KL)
This yields (4.9).
Then, the L?-norm bound in (4.10) follows from the splitting (4.8) with the
aid of the triangle inequality and the L2-stability of the L?-projection %pﬁ o- The
K
second estimate in (4.10) is a consequence of (4.8), the triangle inequality and
the p-dependent stability bound (4.9) in perpendicular direction. The third esti-
mate in (4.10) is again obtained from (4.8), by employing the commutativity of D

and T4, as well as the L2-stability of 71 . O
PO P70

In addition to the broken H'-norms in (3.36), we introduce
¢
lulZaney = D lulfey, M S M. (4.12)
KeM
The next lemma ensures the stable splitting of the errors into edge-perpendicular
and edge-parallel contributions.

Lemma 4.2. Letu € H'(Q) and let mu = mg @7lu be the base interpolant in (4.4)
for any conformity indices rx € {0,1}. For the error terms in (4.7), we have

The 1 S5 Th 512+ The 11+ T ) (4.13)

Moreover, let u € L*(Q) and let mou = 75 ® ﬁgu be the L2-projection obtained
in (4.4) by taking rix =0 for all K € M%. Then we have

0122 aney N Wmnae oy + I gans oy + Imol2ngegy (419)
Proof. These bounds follow from Lemma 4.1 and the inequality (3.38). O

4.2.3. Ezponential convergence. We now state exponential convergence results in
broken norms. Note that the results do not provide jump estimates as in (3.42).

Theorem 4.3. Let b be a weight exponent vector satisfying (2.13). For parame-
terso € (0,1) and s > 0, consider the sequence Vé’ﬁO of discontinuous finite element
spaces (3.23) with elemental polynomial degrees pK >1, p” > 1.

Let u € B_1_p(Q;0,0) N H'*9(Q) for some 6 € (0, 1) cf. Remark 2.4, and let
™ = 7r0L Qnlu : HY(Q) — fo be the non-conforming family of tensor projectors
introduced in (4.4), for any elemental conformity indices rix € {0,1}. For the
errors 0, ng- and nll in (4.7), we have

Th Il + The g1+ Thy, )P < Coxp (~2VN),  (4.15)

with constants b, C' > 0 independent of N = dlm(Ve .
In addition, let u € B_p(Q;0,0) N HY(Q) for some 6 € (0,1), and let mou =
T ® ﬁcllu be the L?- pmjection obtained in (4.4) by taking rx =0 for all K € M.

For the errors ng, 770 and 1, we have

1002 ae) + 17 12 200ae ) + 18032 0ge ) < Cexp (~26YN),  (4.16)
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with constants b, C' > 0 independent of N.

Remark 4.4. For the sake of simplicity, our proof of Theorem 4.3 is based on uni-
variate hp-approximation bounds for 7, ¢ and 7,1 in (4.1) which require p > 1;
cf. (A.1) and (A.3). Alternatively, the proof of the L?-bound (4.16) could be solely
based on the L?-norm estimates for the L2-projection in [25, Theorem 3.11], thereby

allowing elemental polynomial degrees px > 0, pg( > 0 for the bound (4.16).

Remark 4.5. Ifu € H'(Q)/R in (4.15) (as is relevant in the pure Neumann problem)
respectively v € L?(Q2)/R in (4.16), the bounds (4.15) respectively (4.16) remain
true over the factor space ijgo /R. This follows from the fact that the elemental
interpolants mp, . (u|x) in (4.4) reproduce functions which are constant in .

Remark 4.6. The L?-norm bound (4.16) is of independent interest in the context of
mixed hp-approximations for the (Navier-)Stokes equations or for linear elasticity in
mixed form under B_p(Q; 0, §)-regularity assumptions on the multipliers (although
corresponding regularity shifts do not seem to be available in the literature). We
refer to [20, 21], where the inf-sup stability of mixed hp-discontinuous Galerkin
methods is established on anisotropic geometric meshes. Based on these results,
an exponential convergence proof of mixed hp-discontinuous Galerkin methods for
mixed formulations with solutions in A_1_4(Q)3 x A_(Q) was given in [27], for
the homogeneous space Ag(2) = Bg(%;C,E).

As in [24, Section 7], by superposition and due to the structure of the patch
mappings, it is sufficient to provide the the proof of the exponential convergence
bounds in Theorem 4.3 to a reference corner-edge configuration on @ as shown in
Figure 1, which involves a single corner ¢ € C and a single Neumann edge e € &,
emanating from it. The case of a Dirichlet edge is analogous; cf. [24, Section 7.3].
Interior reference mesh patches can be treated similarly to [23, Section 5.2.1]),
and the reference meshes ./\/le ¢ and /\/le ¢ can be viewed as collections of certain
elements of /\/lf;ce and can be treated as particular cases thereof; cf. 24, Section 7.1].
In a reference corner-edge patch setting, the proof of the bound (4.15) follows
along the lines of [23, Section 7.2], albeit with some modifications. For the sake
of completeness, we review the major steps and detail the relevant modifications
of [23, Section 7.2] in Appendix A. The proof of the L?-norm bound (4.16) follows
similarly and will be outlined simultaneously.

4.3. The base projectors 7’ »s With partial conformity. By selecting specific
values of the conformity indices ri € {0,1}, we now introduce and analyze partic-

ular tensor product projectors of the form (4.4), which lead to the projectors 7rf;15

and the sets Fi5,(MY), FI (M%) in Proposition 3.10.

4.3.1. Base projectors for corner, edge and interior patches. We define reference
base projectors 7y on each reference mesh va;’t for t € {c, e, ce,int} with respect
to the linear polynomial degree distribution ps (/\A/l/f;t) Recall that the elemental
polynomial degree vectors pi are isotropic for t € {¢,int} and generally anisotropic
for t € {e,ce}. For reference patches va;’t of type t € {c,e,int}, we take the
reference base projectors 7y as

i (U|K) — { ﬂ-szo(u'K)a K e Mﬁ7ta te {C, int}7

s 4.17
FPK71(U|K)5 K e Mgea ( )
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where the nodally exact univariate projectors in (4.1) are applied in edge-parallel
direction.

4.3.2. Base projectors for corner-edge patches with re@ement along one edge. We
next consider the corner-edge reference mesh patch M%°® with refinement along
one edge e. Following [18], we partition M%° as

Mbee .= Mbeet g pmbeell | 1> (4.18)

where the mesh Mve e, L is a corner-patch type mesh of elements which are isotrop-

ically refined into the corner ¢. The mesh MGee I consists of a sequence of £ — 1

geometrically scaled edge-patch meshes, translated along the edge e:

14
Mf;’ce’” _ U ‘I’[’ce(ﬂg’e% (>2, (4.19)

=2

where we denote by Pt'ce the operation of translation with respect to the edge-
parallel variable z!l combined with a dilation by a factor only dependlng on o, l,l',
and where the mesh MZ € is a reference edge mesh patch on Q with ¢ + 1
mesh layers. In Figure 2 (left), a schematic illustration of the patch decompo-
sition (4.18), (4.19) is provided in which the scaled edge-patch blocks are high-
lighted in boldface. In Figure 2 (right), we show two adjacent edge-patch meshes
as in (4.19) along the edge e.

A particular role will be played by the subset Dé ¢ C My of the elements in
the outermost layer of each scaled mesh-patch block. It also consists of £ — 1 layers:

1 5 0.ce,||

14
Dhee = | DLee,  1>2. (4.20)

Elements in De ce are referred to as diagonal elements of Me cell, ; cf. [18]. They are
isotropic and illustrated in Figure 2. The isotropic mesh ./\/lf;ce L is decomposed
into

MZ ceL (IécUDZ ceL (4-21)

where %ﬂc is given by the eight elements nearest to ¢, and where the remaining
elements are collected in the mesh D%°¢1. We then choose the reference base
projector on the reference corner-edge mesh as

_ , K e %l,c U 5€,ce,J_ U ﬁl,ce’
7Tce('U/|K — { ﬂ-PIﬁO(u'K) o o o (422)

1 (ulK), K e Mbeel\ Dhee,

where in the definition of mp, 1 the nodally exact projectors in (A.1) are applied
in edge-parallel direction of edge e.

4.3.3. Base projectors for corner-edge patches with refinements along two or three
edges. We next consider a corner-edge patch Mﬂ’ce with anisotropic refinement
along two edges e, e; meeting at a common vertex ¢ and isotropic refinement in
perpendicular direction as illustrated in Figure 3 (left). In this case, we write

M(l;,ce . M@ ce, L (MZ ,ceq,|| U MZ ceg,”) 0> 2, (423)



hp-FEM FOR ELLIPTIC PROBLEMS IN POLYHEDRA 23

/K6 Kg

75
Dgeet Ks K} i , b
N\ %

_ Ki | K / Ki
f23 ¢ v
The K K

FIGURE 2. Left: Patch decomposition (4.18)—(4.21) for ¢ = 0.5
and ¢ = 5. The diagonal elements are shaded. Right: The scaled
edge-patch blocks U -ee(M¥€) and U¥' ~1ee(ME=1e) for ¢ = 0.5
and ¢ = 5. The diagonal elements K4, K¢ and K, K belong to
ﬁﬁ/@e and 255_1"38, respectively.

with two sequences of £ — 1 scaled edge-patch meshes as in (4.19) and an isotropic
corner-type mesh M%c€+ perpendicular to e;, e. The latter mesh is again decom-
posed as

Mbeert = ghe (j 9leet (4.24)
where ‘Eﬁ’c is the same set of corner elements as in (4.21) and 55?‘3‘3’l the set of
all remaining elements. We denote by 255@1‘ C Mﬁ’cei’ll the diagonal elements
of M5! defined as above; cf. Figure 3 (left). We then set

- | Tprolulk), K € e U Dheed U (Dheer U Dheez),
Tee(u|x) =

t,ce; ~ 4.25
WPKJ(U"K)a K e Mgce”H \D?ceia 1=1,2, ( )

with the understanding that the univariate nodally exact projectors in (4.1) are
applied in the direction of edge e; for ¢ =1, 2.

Remark 4.7. The diagonal elements in 55‘“1' act as isotropic buffer zones and
allow us to unambiguously assign different directions in the submeshes /\/lf;"cel"”

154, R
and MEee !,

Finally, if va;,ce is refined along three edges e, ez, es meeting at a common
vertex ¢, as depicted in Figure 3 (right), we analogously write

Moo o= Ftee () (Rteerd U Seenl y Afoeenl), (4.26)

each now with three sequences of ¢ — 1 scaled edge-patch blocks. As before, the

set Dbeer ¢ MEeell denotes the diagonal elements of M5l With (4.26), we
define

i L KeReu (UL, e,
ch(U|K) = { WPK7O(U|K) g ( =1 7o )

o Tlce; ~ 4.27
Tpre.1 (ul50), K e Mbee\ Breer 1<i<p 7D
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again with the univariate nodally exact projectors applied in the direction of edge e;.

/ Ke /{é’ / Ke /{é’

K" 7

4 K4
K, i /
7

/ /|

K K| K || & K A |

/ v

/

K, Ko K, K{"

FIGURE 3. Scaled edge-patch blocks for 0 = 0 and ¢/ = 5. Left:
Refinement along two edges with diagonal elements K7, Ky, K¢ and
K|, K}, K}. Right: Refinement along three edges with diagonal
elements K1, K4, K¢ and K/, K}, K{.

4.3.4. The base projectors 7 .. The reference base projectors 7 in (4.17), (4.22),

as well as the variants in (425) and (4.27), give rise to the (non-conforming) base

tensor projectors 5 ; = ﬁﬁ"é‘@ﬂﬁﬂ c HY(Q) — VY in (3.39); cf. (4.4). Theorem 4.3

then implies the bound (3.41) of Proposition 3.10. The sets Fi7, (M%), fIHD(Mﬁ)
and the jump bound (3.42) will be discussed next.

4.3.5. Partial conformity. We consider edge-perpendicular patch interfaces I' -
between two mesh patches M, , M,/ containing anisotropic elements along a com-
mon edge e and coinciding on the interface due to Assumption 3.1. The inter-
face I'y s consists of £ + 1 mesh layers of elements; cf. [22, Section 3.2]. The
definition of wﬁﬁ and the nodal exactness property (4.2) imply the following re-
sults.

Lemma 4.8. There holds: (i) if M,, M, are two adjacent edge mesh patches
along the same edge, then 7Tf;_75u is continuous across all layers of the interface I'p - ;
(i1) if My is an edge mesh patch and M. an adjacent corner-edge patch along the
same edge, then wﬁ,ﬁu is continuous across the inner layers of the interface I'y -/,

but is generally discontinuous across the outermost layer of I'yp /.

Remark 4.9. Conformity properties analogous to those in Lemma 4.8 hold on edge-
perpendicular boundaries of elements in edge or corner-edge mesh patches which
are situated on a Dirichlet boundary face I', for ¢ € Jp. On the corresponding ele-
mental boundaries, the projection wﬁ) ,u satisfies homogeneous Dirichlet boundary
conditions.

Next, we analyze the continuity within M5! = Uﬁ,ZQ\ié/’ce(ﬂﬁ/’e) in (4.19)
and as appearing in the representations (4.18), (4.23) and (4.26). The analog of
Lemma 4.8 is as follows.
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Lemma 4.10. For 3 < ¢ < (, let U/'~Lee(ME=1e) gnd W' ee(ME-€) be two
adjacent edge-patch blocks along the same edge. Then ﬂ£75u 1S continuous across
perpendicular faces on the interface between \Tle,*l’ce(./\/lgfl’e) and \if'vCE(Mﬁ've),
except for the faces between the diagonal elements in Dg’l’ce and the corresponding
elements in W' ee(ME-e).

As an illustration of Lemma 4.10, we note that wﬁ, 4U is generally non-conforming
across the isotropic faces Fix; iy, Fi; ky in Figure 2, and across the isotropic faces
FKiaKil’ FKquZ’ FKé,Ké’a FKé,Ké” in Figure 3 (1eft).

The conformity properties in Lemma 4.8, Remark 4.9 and Lemma 4.10 imme-
diately allow us to identify sets Fip, (M) and fyD(./\/lf;) = fIH (MU fjl:‘,(./\/lf;),
over which ﬂﬁygu is conforming and non-conforming, respectively. By construction,
faces F' € ]-'I”D(Mf;) satisfy (3.33), (3.34), as claimed in Proposition 3.10.

4.3.6. Polynomial face jump bounds. Next, we bound the face jumps of ﬂ'ﬁ,su over

the faces F' € F I”D (M) for a geometric mesh M = M. To this end, we first recall
the anisotropic trace inequality from [22, Lemma 4.2] (with ¢ = 2).

Lemma 4.11. For F € fyD(M) with F C F' € F(K) and u € HY(K), there
holds
bt lullZacr S (hi) 2 lull o) + IDLul ey S Niglul®. (4.28)

Next, we establish the following variant of the jump estimate of [24, Section 5.5],
which is essential for controlling jumps of wﬁ, ,u over anisotropic faces of M. Due to
the appearance of H!-projectors in edge-parallel direction, we require in this bound
a local smoothness assumption which is slightly stronger than H!-regularity.

Lemma 4.12. Consider an edge-parallel face F = Fk, i, € ]-'y (M) shared by
two aziparallel elements Ki = Ki- x Kl and Ky = K5 x Kl as in (3.3), with
KW= (0,nlY in parallel direction and with Ki- and Ks- two shape-reqular and
possibly non-matching rectangles of diameters hJIh ~ hfﬁ ~ ht in perpendicular
direction, for parameters h*~ < hll. Let the elemental polynomial degrees be given by
Pk, = (piL’pH)' Letu e 1{1((?1L UF;)O) ® HI(KH) and 7T1U|Ki = ﬂ-Ol ®7Tﬂu|Ki =
Tpr, 1 (uli;) for i = 1,2. For the error terms m = u — mu, ng = u— mpu and

77! =u—mu as in (4.7), we have the bound

2
| rul el e Sp D (D005 320y + 1010 132, - (4.29)
i=1

Similarly, let F = Fgp, € f,ljl)(/\/l), v € JIp, be a Dirichlet face of K = K+ x K|,
with Kl = (0, h”) and K+ a shape-regular rectangle of diameter h*, for h'- < hl.
Let the elemental polynomial degrees be given by pr = (p~,pl). Letu € HY (K1) ®
HY (K with u|lp = 0 and mulx = 73 ® ﬂ'ﬂuh{ = Tpg 1(ulk). Then we have the

bound

g el e 1320y Sp 1D 120y + D00 13 20)- (4.30)

Proof. Note that the setting is such that property (3.33) is fulfilled. On element
K;, i=1,2, we have
1L 1 1 1

my =y = (u—mpu) = Ty (u—myu) = u— T u =1y (4.31)
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Then, we note that W!Ul[(i € H'(K}) @ P, (Kl) ¢ HY(K) for i = 1,2 and

(W!U|Kl)|p = (W!U|K2)|F in L2(F). With the latter identity and since 73~ and
I

m, commute, we conclude that

lrul pll7ery = Imulk, — mulllie e

2
<N g @ wlu Z [t
=1

We then consider element K; for i = 1,2. With the trace mequahty (4.28), we have

U\ K; 77'('1 ):

!l nt [ 2y S (hik) 2l 120 g,y + IDL(mlme ) 12 k-

Property (4.31) and standard h-version approximation results for 73~ in perpendic-
ular direction yield

i 122 .y = I(ming) — ma (i) 2e i,y S (k)2 IDL(mimg )22, -
Therefore,
it ol a3y S IDL (e )32 i,

S IPL(m = 1))l ey + DL (o)l oy (4:32)
We next bound the two terms in (4.32). We write the first term as

(m) — 7y )g = (m) — mh)u — m (m) — i )u

—ﬂ'(q(ﬂ'!u u) — mp (ﬂ'(q(ﬂ'!u u)).

With the stability bound (4.9) for 73 in edge-perpendicular direction, we find that

DL ((x) — 7)md ) 22y S ) IDL (mh (el w — w)) 12 xc,)-

Then, since Df and 7, | commute, the L2-stability of the L2-projection 7 implies

DL (] — w0 ) 32k S PO 32 k-

To estimate the second term in (4.32), we again invoke the L2-stability of ﬂg

before to obtain

as

1D (w05 2 acs) < 1P 2y
Combining these arguments yields (4.29).
The proof of (4.30) for a Dirichlet boundary face F' is obtained by proceeding
analogously, noting that (miu|x)|r = 0 in L2(F). O

Lemma 4.13. Under the assumptions in Proposition 3.10, let 7r Lu be the hp-base
projectors introduced in Section 4.3.4. With the error terms in (3 40) we have the
bound

. 4,
D e 050 S Yige 0502+ e sl + T b0 (4:33)

Proof. Anisotropic faces F' in F y D(/\/lf;)) arise in mapped edge patches Mf;’e and in

mapped submeshes M5 \5(‘;06; see (4.19), (4.20). For faces F in the interior of
these subsets or on Dirichlet boundaries away from corners, the jumps of 7T£75’U, can

be bounded by the estimates in Lemma 4.12, upon noting that the same elemental

polynomial degrees p;. are employed in edge-parallel directions and that, for u €
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B_1-5(€;0,0), the smoothness assumptions in Lemma 4.12 are satisfied, also for

Dirichlet boundary faces away from corners. The remaining faces in F y (M) are
isotropic and the jumps over them can by bounded by isotropic versions of the trace
inequality (4.28), along with the stability bounds in Lemma 4.1. O

Lemma 4.13 along with estimate (3.41) then establishes the bound (3.42) for
jmp M) [n’ ], which completes the proof of Proposition 3.10.
ID 54 ’

5. AVERAGING OPERATORS

We prove Theorem 3.12 and construct the averaging operators Af;s over the

—£,0,L
geometric mesh M = M. Throughout this section, let v € Va’g’ be fixed.

5.1. Sets of adjacent elements. Let K € M. For N € N(K), E € £(K) and
F € F(K), we introduce the following sets of elements which regularly share N, E
and F', respectively:

Agn = {K e M : NeN(K)}, (5.1)
Agpi={K e M: Ec&K')), (5.2)
AK,F ::{KIEM : FG.F(K/)} (53)

Clearly, we have K € AK,N; K e AK,E - 5K,E and K € AK,F - 5K,F7 with 5K,E
and 0 p introduced in (3.11) and (3.12), respectively. Then, card(Ax n) > 1,
card(Ag,g) > 1, and card(Ag ) € {1,2}. It can be seen that

NEN(E) AK,EgAK,N and EEE(F) AK,FQAKE. (54)
Moreover, the sets defined in (5.1)-(5.3) have the property that

A N =Ar' N, K' € Ag N,
Ak g =AMk E, K' € Ak g,
Agr=Ar F, K' e Ak F.

For N € N (M) \ Np(M) respectively N € Np(M), we require the sets

FlAkN) ={F=Fxx € FI(M) : K' € Agn \{K}},

(5.8)
f%(AKﬁN) = {F: FKlpr S ]:E)(M) K e AK,N and ¢t € Jp }
Similarly, for £ € E(M) \ Ep(M) respectively E € Ep(M), we set
]:]”(AK,E) ::{F:FKﬁK/ GJ:I”(M) :K’GAKﬁE\{K}}, (59)

Fl(Akp) ={F=Fxip, € Fl(M) : K' € Ak pand ¢ € Jp }.
We further define
Flp(Bkn) = Fl(Akn) UF) (A N),
Fip(Ax.p) = F)(Ak5) UFh(AK B).

Notice that any of these sets could be empty.

—

5.10)
5.11)

—
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5.2. Averaging over Ay n. We construct an approximation v" € Vf;’g by modi-
fying the base projection v at possibly all elemental vertices.

For K € M and N € N(K), we define the averaged vertex value Ak n(v) by
averaging v over all elements in Ag N in (5.1):

1
_ vl (IN), if N e N(M)\ Np(M),
AK,N('U) = card(AKﬁN) K’EXA:K,N
0, if N e Np (M)
(5.12)
The averaged value Ax n(v) in (5.12) is well-defined irrespective of whether N €
N (K) gives rise to a regular or irregular node in N'(M). With (5.5), we have

AK7N(’U) = AK/,N(’U), K e AK,N- (513)

Hence, the values Ax n assign a unique vertex value over the elements in Ag n
which match regularly with the vertex IN.

For K € M and N € N(K), we denote by Li n(v) € Q1(K) the polynomial
vertex lifting with the property that, for N’ € N(K),

’UlK(N)—AKJ\](’U) NI:N,

. NN, (5.14)

Lrn@)(N') = {

Lemma 5.1. For K € M and N € N (K), let the vertez lifting Lk n(v) be defined
by (5.14) with the averages Ar,n(v) in (5.12). Then there holds

Nilern @) SIpelimpey o, 01 (5.15)

with f}lD(AKN) in (5.10). If f}lD(AKN) = (), the sum on the right-hand side is
understood as zero.

Proof. From the definition (5.12) with anisotropic scaling, we readily find that

2

1Ca.n )32y S (h) R0l (N) = Aren ()] (5.16)

The univariate inverse estimate (see, e.g., [25, Theorem 3.91]) combined with aniso-

tropic scaling and employing that hx < hu( and pp < pﬂ( yields the anisotropic

inverse inequality

IVolfeie) S I ()20l 3y v € Qpr(K) (5.17)

Therefore,

2

NiE[Lkn (@) S Ipxl*h vl (N) = Ag,n(0)] (5.18)

We proceed to estimate [v|x (IN) — Ag,n(v)] in (5.18). We consider first the case
where the elemental node N € N (K) gives rise to a node of N'(M)\Np(M). Then,
if card(A g n) > 2, with (5.12), the triangle inequality, the fact that card(A g n)~*
is bounded uniformly in ¢, and the partial conformity properties of v discussed in
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Section 4.3.5, we conclude that
2

2 1
— < - — ,
[v(N) = Agn(v)]” S A K@} j\{K}]v|K(N) vl (V)]
K,N

S Y Rle e NP

K’GAK,N\{K}

Z HIIU]]FK,K’H%OO(FK,K’)

K'GAK,N\{K}

DR | C P [t

FE]'-IH (AK,N)

(5.19)

IN

If card(Ag,nv) = 1, we have Ag n(v) = v|x(IN) and f}l(AKN) = (. As a conse-
quence, Lk n(v) =0 in (5.14). Hence, inequality (5.19) above holds true trivially

if the sum over ]-'y (Ak, n) is understood as zero.
Second, let N € N(K) give rise to a Dirichlet node in Np(M). Consider a
Dirichlet boundary face F' = Fx/r, with N € F, K' e Ag,n and ¢ € Jp. We

may assume that F' € }“]':‘, (Ag,N), otherwise we have L n(v) = 0 by Remark 4.9
and since A n(v) =0 by (5.12). We thus conclude that

0|k (N) — Ag,n (0)|* = o] (V)]

<NlelBemy < > Mlelieg.  (5:20)
Ferl (ak,n)

Combining (5.18), (5.19) and (5.20) gives
Ngllun@ S lpel'hle Y Ilelle ). (5.21)
FeF),(Ax.n)

To bound the L*®-norms of the jumps of v in (5.21), we recall from [25, Theo-
rems 3.92] the following univariate inverse inequality: let I = (a,b) be an interval
of size h = b — a. Then

la(a)* + g < gl S PR dllZoy . a € Po(d). (5.22)

for all polynomials ¢ € P,(I). A face F € flllD(AK,N) can be written in the
form (3.34). Applying (5.22) in the two directions on F and the definition of the
face polynomial degrees Py - in (3.14) yield

1ol ey S Il (hg) ™ (Bl) M I Ll - (5.23)

The bound (5.15) follows from (5.21) and (5.23). O
For K € M, we introduce the full vertex lifting

Li()= > Lrxn()eQK). (5.24)

NeN(K)

. . —£,0
We further define the approximation v™ € V, ; as

vk =g — Lk (v) € S, (K), K e M. (5.25)
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The function v"|x has assigned vertex values at all elemental vertex nodes:
vk (N) = Ag,n(v), N e N(K). (5.26)

Note also that, in the expansion (3.15), (3.16), only the nodal part of v®|x differs
from the nodal part of v|x, while the edge, face and interior parts of v™|x and v|k
coincide.

Proposition 5.2. Let v"|x be defined in (5.25) for K € M. Then the function v
is conforming over faces F € Frp(M) \]'—}lD(M) and there holds

TJ/\_/I [’U - Un]2 +jmp]__}|D(M)[Un]2 5 |p|8 jmprHD(M)[v]2' (527)

Proof. As outlined in Section 4.3.5, the base interpolant v is continuous over edge-
perpendicular faces F' € Fip(M)\ F }' (M) between anisotropic elements across
which the nodally exact interpolants (A.1) are used in edge-parallel direction. Then,
the definition (5.14) and property (5.13) imply that the liftings Lx n(v) yield
conforming approximations over the same faces. Since v"|x = v|x — L% (v), the
approximation v" is continuous over these faces as well, and thus generally non-
conforming over faces in F }l H(M).

The bound for T4, [v — v"]? in (5.27) follows immediately by summing (5.15)
over all elements K € M and N € N(K). To bound the L?-norms of the jumps

of v", consider an interior face F' = Fk g+ € ]-'}‘D(/\/l). The definition (5.25), the
triangle inequality and the trace inequality (4.28) yield

b 1 TF 122y S BE I NZe(r) + Nig[Ch (0)] + Nic/ [L (0)]2.

A corresponding bound holds for Dirichlet faces F' € F, jlrl)(M) Summing these
estimates over all ' € fIHD(M) and applying (5.15) gives the desired bound for

jmp}.IuD(/\/l)[v’“]2 in (5.27). O

—t
5.3. Averaging over Ak p. With (3.18), the approximation v" € Va’g from Sec-
tion 5.2 satisfies

(v"|K)|E € Py, (E), KeM, Ee€&(K), (5.28)

with the minimum edge degree py p in (3.13). For K € M and E € £(K), we next
average v" over the set Ak g in (5.2) and define:

1
—— g )|e, ifE€EM)\Ep(M),
AK,E(UH) = Cal"d(AK,E) KfegK’E ( | )| - ( )\ ( ) (529)

0, it E € Ep(M).

By (5.28), the function Ak g(v") is a polynomial in P _(E).

Pr.E
Lemma 5.3. Let K € M and E € E(K). Then, Ax (") = Ak g(0") for
K' € Ak . Moreover, if N € N(E) is an end point of E, we have Ax g(v*)(N) =
v g (N).

Proof. The first assertion follows with (5.6). Furthermore, we note that with prop-
erties (5.4) and (5.13), there holds A/ n(v) = Ag n(v) for K/ € Ak . This
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property in combination with definition (5.29) and property (5.26) yields
1
Ag (") (N) = ———— > v"[x/(N)

card(AKyE) K'eAg.n

= A ’
card AKE Z K

K’EAKE

1
card(Ak,g) K’GXA:KE K.N(v) x,n(v) =v" |k (IN)

The second assertion follows. O

For K € M and E € £(K), we denote by Li g(v") € Sp, (K) the polynomial
lifting which satisfies

£K7E(Un)|E = (’UH|K)|E — AK,E(UH) € PﬁKE(E) on E, (530)

and which is given by linear blending functions in the two directions orthogonal
to E. With Lemma 5.3, there holds

Lxp()(N)=0, N eN(E). (5.31)

The lifting Lx g(v) vanishes on the remaining elemental edges E' # F, as well as
on faces F € F(K) with E & E(F).

Lemma 5.4. For K € M and E € £(K), let the edge lifting Lk g(v™) be defined
by (5.30) with the averages Ag g(v") in (5.29). Then there holds

NiglLr,p(v")* < |pK|6jmpruD(AK’E) [v"]?, (5.32)

with ‘FIHD(AKE) in (5.11). If fﬁD(AKyE) = (), the sum on the right-hand side is
understood as zero.

Proof. We denote by hp the length of E € £(K). Then, either hp ~ hj or
hp ~ hﬂ(. From the definition of (5.30) and anisotropic scaling, we readily see that

hihhe o™k — A (™) 22y, i he ~ hi,

. . (5.33)
(hi)? 1"k — Ak p (@) 22y, if he = bk

L5502 k) S {

Hence, with (5.17), we conclude that

Nic[Lk z(W™)]

< | |4 (hll()_lhg(llvnp( — AK’E(UH)H%2(E)a if hg ~ hll(, (534)
~ HUD|K 7AK,E('UD)||2L2(E), if hE' ZhJR

We continue by bounding |[v"|x — v°|k||12(E). First, we consider the case E €
EM)\ Ep(M). TIf card(Ak,g) > 2, we employ the definition (5.29), the triangle
inequality, and the uniform boundedness of card(Ak g)~2, and observe that v™
has the same continuity properties as those of v established in Section 4.3.5; cf.
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Proposition 5.2. We obtain

1
nl._ A ny||2 < - - n|_ .m0 2
0"k — Ak, (V") |72(m) S card(Ar 5)? ’eAKEE\{ }||v |k — "k I72(m)

DR ] 2 P 79 (5.35)

K’EAK’E\{K}

ST D | P e

FeF)(Ax.p)

A

If card(Ag,g) = 1, then ]-'I”(AKE) = 0 and Lk g(v*) = 0. In this case, the
inequality (5.35) holds trivially if we understand the sum above as zero.

Second, let £ € £p(M) be a Dirichlet boundary edge. Then, consider a Dirichlet
boundary face F' = F r, with E C F, K' € Ak g and ¢ € Jp. As before, we may

assume F' € }“jHj(AKyE), otherwise L g(v") = 0; cf. Remark 4.9, Proposition 5.2
and (5.29). We find that

[0k = Ak p@) 728y S IV K |I2(m)

SN Tel e S Z 1ol 2 gy (5.36)

FEF},(Ax p)

For F € ]:ID(AK ) written in the form (3.34), the inequality (5.22) applied on
E C F in direction perpendicular to F implies

10" PRl N0 e 3y b o B,
L2(m) S pxl? () " N0 it by o Bl

Therefore, combining the inequalities in(5.34), (5.35), (5.36) and (5.37) gives the

(5.37)

desired bound (5.32). O
We define the full edge lifting

= Y Lrp(") €Sy (K), KeM, (5.38)
Ecé(K)

and introduce the approximation v® € Vi’g by
Vg ="k — L% (V") € Sp,. (K), K e M. (5.39)

The definition (5.39) only affects the edge parts of v"|x in (3.15), (3.16), while
nodal, face and interior parts of v"|x are not modified. By construction and
Lemma 5.3, there holds

(’Ue|K)|E :AK7E(’UH), EGS(K), (540)
vk (N) = 0"k (N), N e N(K). (5.41)
The analog of Proposition 5.2 reads as follows.

Proposition 5.5. Let v®|i be defined in (5.39) for K € M. Then the function v°
is conforming over faces F € Frp(M) \.FIHD(M) and there holds

Thilo = o P +jmpyy (BT S I Gmpg B (5.42)
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Proof. By proceeding as in the proof of Proposition 5.2, the estimate (5.32) yields
1 n 2 . 2 6 - nj2
TM[U 71}6] +Jmp]_-IHD(M)['Ue] 5 |p| Jmp}]‘r‘p(/‘/‘)[v ] :
The triangle inequality and the bound (5.27) now yield (5.42). O
5.4. Averaging over Ag p. With (3.19), the approximation v°® € V satlsﬁes
(°[K)lF € Qg . (F),  KeM, FeF(K), (5.43)
with the minimum face degree Py r in (3.14). We then average v° over Ak

n (5.3):

1
_ (&), if F e Fr(M)UFn(M),
Agp(v) = § card(Axr) K/ezA:K,F (5.44)
0, if I e ]:D(M)
By (5.43), the function A p(v°) is a polynomial in Qp, . (F). For F' € Fy(M),
we have card(Agx r) = 1 and Ag p(v°) = (v°|K)|F.

Lemma 5.6. Let K € M and F € F(K). Then, Ak p(v°) = A p(v°) for K' €
Ak r. Moreover, if E € E(F) is an edge of F', we have Ax r(v°)|p = (v°|k)|E.

Proof. The first property follows with (5.7). To show the second one, consider
x € F € £(K). With (5.4) and Lemma 5.3, there holds Ax/ (v") = Ak p(v") for
K' € Ak p. Employing (5.44) and (5.40), (5.41) (see also Lemma 5.3) then yields

1
AK,F(’Ue)(w) = m Z ’Ue|K/(:I:)

K’EAK F
- > A st
card AK ) Kiehgr
= Z Ak (") (z) = Ak p(0")(2) = v°|Kk (),
card AK ) Kiehr
which completes the proof. O

For K € M and F € F(K), we denote by Lk r(v°) € Sp, (K) the polynomial
lifting which is given by
£K1F(06)|F = (’UE|K)|F — AKyp(’Ue) S QﬁK,F(F) on F, (545)
and by a linear blending function in direction orthogonal to F. With Lemma 5.6,
there holds
ﬁKﬁp(Ue”E:O, E € &E(F). (5.46)
Therefore, the lifting Lx p(v®) vanishes on all other elemental faces F' € F(K)
with F/ £ F.

Remark 5.7. If card(Ag p) = 1 and F ¢ Fp(M), we have Lk p(v°) = 0, which
is a consequence of definitions (5.44) and (5.45). In particular, this holds true for
Neumann boundary faces F' € Fn(M). Similarly, we have Lk p(v®) = 0 if v° is
conforming over the face F. In view of the partial continuity properties of v° in
Proposition 5.5, in the subsequent lemma it is therefore sufficient to focus on faces

F e Fl,(M).
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Lemma 5.8. Let F € F(K) give rise to a face in fyD(M). Let the face lift-
ing Lx, r(v°) be defined by (5.45) with the averages Ak p(v®) in (5.44). Then there
holds

Ni[Lxr ()] S Ipx |05 [[0°]F )72 p)- (5.47)

Proof. With properties (3.33), (3.34) and anisotropic scaling combined with the
inverse inequality (5.17), we see that

NiglLr r@)? S Ipxl*(hie) vk — Ak, p (V) |72y (5.48)

If F=Fkpg € fy (M), then we obtain
[0l — Ar, P22y S 012172 (r)- (5.49)

Furthermore, for F' € }“]l:‘, (M), we have Ax p(v®) =0 and thus
vl = Ar,p (W) 22y = 1072 (- (5.50)
The bounds (5.48), (5.49) and (5.50) imply (5.47). O
For K € M, we define the polynomial face jump lifting at regular faces

L) = > Lrr()€Sp, (K), (5.51)

FeF(K)

and introduce vf € Vf;’g by setting
ol |k = 08|k — L5 (v°) € Sp,. (K), K e M. (5.52)

The definition (5.52) only affects the face parts of v°|x in (3.15), (3.16), while the
other parts of v®|f are left unchanged. In particular, the interior part of vf|f
is equal to that of v|x. By construction, the function vf is conforming over all
faces F € Fis (ML) U F jlrl)(/\/lf;) and over all regularly matching interior faces F' €
}“y (M?). With Lemmas 5.3 and 5.6, there holds

(1K) |F = Ak r(0°),  F e F(K), (5.53)
(v'x)le = (C|K)|e, B eE(K), (5.54)
Vg (N) =0 (N), N eN(K). (5.55)

We are now ready to establish Theorem 3.12 in Section 3.4.

—0,0,1 —0,0,1
Proof of Theorem 3.12. Given v € Va’g’ , we define Af _(v) := o' with of € VU’,(;’

as introduced above. Clearly, Af;s is linear. By construction, the function vf is
conforming over all faces F € Ff, (M) U F jlrl)(./\/l) and over all regularly matching
interior faces F' € F I” (M). With Assumption 3.1, this implies items (i), (ii), (iii)
in Theorem 3.12. In addition, if v € ijgl , all liftings constructed in this section are
zero, which implies item (iv). Similarly to the proofs of Propositions 5.2 and 5.5,

it follows from (5.47) that
Loe 12 . 12 < 4 . e]2
TM[U v ] +Jmp]:}\(M)[’U ] ~ |p| Jmp]:i\r\D(M)[’U ] :

Hence, the triangle inequality and the bounds (5.27), (5.42) yield (3.50) in Theo-
rem 3.12. (]
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6. PoLYyNOMIAL JUMP LIFTING OPERATORS
¢

We construct the operators L .

and prove Theorem 3.14. Throughout this

section, we fix vf = A% (v) for v € Vf;’_ros’% While conforming across regular faces
and over different mesh patches, the approximations vf are generally discontinuous
over irregular faces between different mesh layers in the interior of mesh patches.
By construction of our meshes, it is sufficient to consider three types of irregular

mesh configurations in the context of reference mesh patches.

6.1. Anisotropic faces. Anisotropic irregular faces arise in the generic geometric
situation illustrated in Figure 4 along an edge (i.e., in direction of z!). The figure

2z

-

FIGURE 4. Interface between K and Ki,Ks for ¢ = 0.5 and
lenght hll. The anisotropic irregular faces Fy, Fy and the elemental
edges Ef, E‘l‘ B Eg of K are illustrated. The highlighted nodes
are regular vertex nodes.

displays the elemental face F' € F(K) of the outer element K, which is subdivided
into two irregular faces Fy := Fk, g € F(K1) and Fy := Fg, x € F(K32), for two
refined elements K7, K5 in the inner layer. All elements belong to the same mesh
patch of the underlying geometric mesh. The elements {K, K, K>} and the faces
{F, Iy, F>} are possibly anisotropic; their edge-parallel lengths are thus denoted by
the generic parameter hll. The edge-perpendicular diameters of the elements in-
volved are shape-regular and of size h7 ~ hJ-i ~ ht fori=1,2, with h* < hll. The
precise locations of the elements in edge-perpendicular direction are determined by
the parameters ai, ay, by, by, whose values only depend on o. The setting is such
that the irregular faces F, F; satisfy (3.33), (3.34). The configuration shown in Fig-

ure 4 is prototypical as it appears along edges in reference edge mesh patches Mf;’e
A ¢.ce

or in the scaled edge-patch blocks M introduced in (4.18), (4.19) for reference
corner-edge mesh patches Mﬁ*ce. We note that two rotated and superimposed con-
figurations of this type can overlap over one of the smaller elements K; or Ks; cf.
Figure 1 and [18, Figure 2].

On the face F, we introduce the parallel elemental edges E‘l‘ , Eg € £(K) along
ri = 0 and 1 = ay; cf. Figure 4. In the reference mesh patches these edges
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always appear as regular edges. With (5.4), the nodes highlighted in Figure 4 are
then regular vertex nodes. We further denote by Ei-, E5- € £(K) the perpendicular
elemental edges of K on z!l = 0 and zll = Al respectively. Accordingly, we have
Ej_ = Eji U Ej; for ¢ = 1,2, with Eé € E(K;) irregular in £(M). Upon writing

Prr = (@?F,ﬁkbﬂ) and Py, , = (ﬁﬁjypj,ﬁﬂ(jﬂ) as before, the definitions (3.13)
and (3.14) imply

Prp: <Pr,ms Pk <Pkm.  Dhkr<Phk,p, 1<ij<2 (61)
Hence, with properties (3.18), (3.19),
f 1 f -
(v |)lps € PT-KJ_,EZ# (i), (' )lr; € Qpy, . (F), 1<4,j<2. (6.2)

The face approximation v is generally discontinuous across the irregular face F;.
From (6.2), it further follows that

([v']F) s € P, b (B5),  ['r € Qpy, ., (F))- (6.3)
We next define the jump [v!]r over F piecewise as
(W 1)e = ['r,  d=12 (6.4)

Lemma 6.1. In the configuration of Figure 4, we have [v']r € C°(F), as well as
[vf]F =0 on E! and on Eg

f

Proof. By Theorem 3.12; the approximation v' is continuous across the regular

face fr,.x,, which implies [vf]r € CO(F). Since E'l‘ and EQ are regular edges, the
second assertion follows with (5.54), (5.55). O
To remove non-vanishing jumps of v over the perpendicular elemental edge Ei-
of K, we introduce the polynomial edge jump lifting Ef i (vf) by
£EE ) o { [Tt 0.0)(1 — af /1) (L — 2 /R),  on Ky Ko,

6.5
0, on K. (6.5)

£ R - L
Due to Lemma 6.1 and (6.3), ot (') € C°(K, U K3) and b ()|, €

J

Sp, (K;) for j = 1,2. The lifting reproduces —[v]p on Ej- and vanishes on
J

the planes r3 = by, zl = hll, as well as on the edges E{l, EQ Moreover, it is

€L
zero if Ef is a Dirichlet boundary edge. A corresponding lifting ot (v!) can be
constructed for the edge F5. In the geometry of Figure 4, we then introduce the
full edge lifting

2
L
LEEWY =" e (). (6.6)
i=1
Lemma 6.2. For j = 1,2, there holds
Nig, (£ F () < [pl°bg 1[0 T, 12 - (6.7)

Proof. The proof follows along the lines of Lemma 5.4 by noting that hp. ~ hj;j ~
ij
ht for 1 <i,j < 2. Indeed, the definition (6.5) yields

F,Ei+
1£e™ (W)172k,) S th”II[[vf]]Fjlliz(Egj)- (6.8)
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Then, the inequality (5.22) applied on Ej; C F; in parallel direction implies
I G2y S IPPBD T TR ). (6.9)

Combining these estimates, applying the inverse estimate (5.17) and employing that
ht ~hp, give
N L8 (02 S Pl 1D, 12, (6.10)
J J I J
This implies (6.7). O
Next, we introduce the auxiliary function

f EF’E f K. K
,Uf,F,E = { vf e ('U )7 on 1, A2, (611)
v on K.

Then, v"F € C°(K; U K3) and o"F"F|g, € S@(j (K;). With (6.1) and as in

Lemma 6.1, we have [v"FP]r € Qp, . (F;) and [v"FF]p € C°(F). Moreover,
7077
there holds
[ PPl =00n EF,  [Flp=0on B,  i=1,2. (6.12)
Remark 6.3. The lifting £5°F (v') does not generally vanish on zl =0 and zll =
hll. However, with Assumption 3.1 the constructions of corresponding liftings in

adjacent elements will lead to conformity of v/>¥*F across z!l = 0 and z!l = rll in
edge-perpendicular direction. This will be detailed in Section 6.3.

Following [18, Section 5.2.1], we introduce the lifting associated with the face F'
by

Eg(’Uf) — { 7[[Uf1F1E]]F(zf_70azH)(1 - :C%‘/bf‘), on K17K27 (613)

0, on K,
with v©% in (6.11). Clearly, £E(v') € CO(K1 U K»), LE(WY)|k, € Sp,. (K;) for

j=1,2, and LL (v))|p = —[vF"F]r. Morever, the lifting £ (v!) vanishes on the
planes x3- = by, xf 3

=0, 21 = ay, and 2l =0, I = nll.

Lemma 6.4. For j = 1,2, there holds
Nig,[1£e @O < 1P np 1[0 TF 1225y - (6.14)

Proof. As in (5.47), we have

Nig,[£e (D) < Ipl*hg) 10" P TR 122 ry - (6.15)
Then, applying the trace inequality (4.28) yields

BRI PP 5 e,y S B N0 D 2 ) + N2, LEEE ()2
Referring to (6.7) completes the proof. O
To analyze the lifting (6.13), we introduce the piecewise polynomial function

op {vf[,g’E(vf)[,g(vf), on K1, Ko,
vl o=

6.16
of, on K, ( )

We have v € CO(K1 U K3) and v"F|k, € Sp,. (K;) for j =1,2.

Lemma 6.5. The function v5F in (6.16) is continuous across F.
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Proof. Consider « € Fj for j = 1,2. Then, with the definitions in (6.6), (6.13),
[0 T, e (@) = Vi, () = 01 (@) + L7 ()|, (@) = 0P (),

with v"F# in (6.11). Since [o""""F]p(x) = [[vf]]ij’K(a:)qLEf*E(vfﬂKj (x), it follows
that [viF]p(x) = [[’Uf’F]]FKj’K(:B) =0. O

6.2. Isotropic faces. Isotropic irregular faces appear by subdivision of elemental
facesa into four or two isotropic faces.

6.2.1. Refinement of one elemental face into four faces. First, we consider the
generic configuration in Figure 5 where the elemental face F' € F(K) of the outer
element K is subdivided into four irregular faces F; = F; x € F(K;), 1 <j <4,
with four elements K7, Ko, K3, K4 in the inner layer. All elements and faces in-
volved are in the same mesh patch and are isotropic of mesh size h. The faces F'
and Fj satisfy (3.33), (3.34). As before, the parameters a1, as, by and ¢1,c2 only
depend on . We further denote by E;, Es, Es, B4 the elemental edges of K on
xo = 0; cf. Figure 5. The elemental vertices of K on xo2 = 0 always appear as
regular vertex nodes in A/(M). This configuration arises in reference corner mesh

s I3
X2 '
A C2 -
/ Ky / Ks
C1
b1 FS
Ky Ky o
® al =2 - T
Fl E1 F2
K

FIGURE 5. Interface between K and K, Ko, K3, K4 for 0 = 0.5.
The isotropic irregular faces Fi, Fb, F3 and the elemental edges
FE4, Es of K are indicated. The highlighted nodes are regular vertex
nodes.

patches .//\/lvf;’c or in corner-type sub-meshes /K/lvf;":e’l of reference corner-edge mesh
patches /\f/vlf;vce with refinement along one or two edges; cf. Figure 1 and [18, Fig-
ures 4, 8 and 10]. Again, two rotated and superimposed configurations of this type
can overlap over two of the elements in {Kj, Ko, K3, K4}; cf. Figure 1 and [18,
Figure 4].
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From (3.14), we see that

Pi,r <Pk, py  Pkr <Pkpy  1<i<4 (6.17)
Therefore, we have
Wil € Qo (F),  I'lr, € Qg (Fy), 1<) <4 (6.18)
As in Section 6.1, we define the jump [[vf]]p piecewise as
(["17)| 5, =[], 1<j<4 (6.19)

Lemma 6.6. In the configuration of Figure 5, there holds: (i) [v!]r € C°(F);
(ii) [vi]F(N;) = 0 at the four elemental vertices N1 = (0,0,0), Ny = (az,0,0),
N3 = (a2,0,¢2), and Ny = (0,0, ca).

Proof. By Theorem 3.12, the approximation v! in (5.52) is continuous over the
regular faces Fi, k,, Fk, K, Frsx, and Fg, k,. As a consequence, we have
[vf]F € CO(F). Since the elemental vertices N; € N(K) are regular mesh nodes,
the second assertion follows from the construction of v and property (5.55). (]

We introduce edge liftings associated with the elemental edges Ei, Es, E3, Ey
of K. We focus in detail on edge F; on z2 = 0 and x3 = 0 intersecting with Fy, Fj
and K, Ky. By writing E; = E;; U E15 with Ey; € E(Kj), j = 1,2, it follows
from (3.13) that Py p, < Pr, B - Therefore,

WKle, €Pp o (Bry),  ([W]R)ley, €Ppy , (Bry),  §=1,2. (6.20)

We then introduce the polynomial edge jump lifting associated with E; by

LEB (of) = —[v"]p(21,0,0)(1 — 22/b1)(1 — 23/c1), on K1, Ko, (6.21)
0, on K3, Ky4.

From Lemma 6.6 and (6.18), (6.20), LEF1(vf) € CO(U}_ K;) and LEF (v)|k, €
Sﬁxj (K;) for 1 < j < 4. The lifting reproduces —[v']» on E; and vanishes on the
other edges Fs, F3, Ey; c¢f. Lemma 6.6. It also vanishes on x5 = b; and z3 = ¢;.
It vanishes identically if E; is a Dirichlet boundary edge. Corresponding liftings
{£EE:(vF)}4_, can again be constructed for the other edges E2, F3, E4. The full
edge lifting is thus defined as

4
LEPh =" LlhPh). (6.22)
i=1

Remark 6.7. As will be discussed in Section 6.3, the conformity of £IF (v!) across
outer boundaries of {K, K, K3, K4} will follow from the constructions of corre-
sponding liftings in adjacent layers of elements; cf. Remark 6.3.

Proceeding as in Lemma 6.2 (with isotropic scaling) immediately yields the sta-
bility bound

Nig, [P () S Ipl°ap 10T 5 ery): 1< <4 (6.23)
We next consider the piecewise polynomial function

f pRE(f
S FE { vt = Lo (), on Ky, Ks, K3, Ky,

6.24
vf, on K. ( )
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Then, v"F € CO(UI_, K;) and v"FF|k, € Sy, (K;). With (6.17), (6.18) and
similarly to Lemma 6.6, we have [v"""P]r € CO(F) and [v""F"F]p € Qﬁxj,Fj (EF}).
Moreover, the analog of property (6.12) holds:
['FFlp=00n E;,  1<i<4. (6.25)
As in [18, Section 5.3.1], we then introduce the lifting over the face F' by

£F(f) = { —[o" ") p(21,0,23)(1 — 22/b1), on Ky, K, K3, K,

6.26
0, on K, ( )

with v™F# in (6.24). Then, LI (v') € CO(U}_,K;) and LL(v')[k, € S, (K5),
1 < j < 4. By (6.25), the lifting £E (v") vanishes on 3 = b; and over the sets
E; x (0,¢1), 1 < i < 4. Proceeding as in the proof of (6.14) in combination with
isotropic scaling, we obtain

Nig, 1L& 2 < Ipl"bp TR 122 (ry, 1< <4 (6.27)
Analogously to (6.16), we introduce

iyl { ’Uf—ﬁg’E(’Uf)—Ef(’Uf), on Kl,KQ,K3,K4,
vt o=

6.28
of, on K, ( )

We have vf" € C’O(U?d?j) and v"F |k, € Sﬁxj (K;) for 1 <j <A4.
The following variant of Lemma 6.5 holds true.

Lemma 6.8. The approzimation v in (6.28) is continuous across F.

6.2.2. Refinement of two elemental faces into two faces. Second, we consider the
isotropic configuration in Figure 6. It involves an element K where two adjacent
elemental faces F,F' € F(K) are subdivided by using isotropic versions of the
irregular refinement in Figure 4, thereby yielding the elements K7, K5 and K7, KJ.
As in Section 6.1, we then introduce the irregular faces F; := Fg, x € F(K;) and

F = Fgix € F(Kj) for j = 1,2. Then, F=F,UF,and F = F/l UF;. In
Figure 6, we further illustrate the elements K, K and we consider the elemental
edge F € £(K) given by

E::{(ml,0,0) : 0<x1<a1}. (629)

All elements are situated in the same mesh patch. This geometry only arises in
diagonal elements of corner-edge mesh patches with simultaneous refinement along
two or three edges e;, with K, KP and K2 corresponding to diagonal elements; cf.
Figure 3.

With (6.4) and the properties of vf, we have [v']r = [v!]# on E. However, the
edge liftings LEF (vf) over o := {K, K, K3} associated with F as in (6.5) and
LEE () over o =: {K, K|, K}} associated with F” are not necessarily continuous
across the regular faces F KP and FK;, KP for 7 = 1,2. To correct for this, we
introduce on {KP, K2} the diagonal edge lifting

Lp@h) == —[v]r(21,0,0)(1 — 22/b1)(1 — x3/c1), on KP, KP. (6.30)

Since [v']#(N) = 0 for N = (0,0,0) and N = (a1,0,0), see Lemma 6.1, this
lifting vanishes on K N {x1 = 0} and KL N {21 = a1}, implying that it does
not affect values ofv’ outside the configuration in Figure 6. We also have Lp (v') €
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7 T3

- I

K1 K}

FIGURE 6. Two elemental faces F, F’ € F(K) are irregularly sub-
divided as in Figure 4. The elements K, Ko, K|, K}, KP, K2 the
irregular faces Fy, ) and the elemental edge F € £(K) are illus-
trated. The highlighted nodes are regular vertex nodes.

COK, | Ky) and Lp(vF)|xp € Sp,.p (KP) for j = 1,2. As in (6.23), the following
stability bound holds:
N;%J.D Lo@)? S I I M2y, 5= 1,2 (6.31)

Similarly to (6.11) and in the geometry of Figure 6, we then introduce the aux-
iliary function

EFE(’U ), on Kl,Kg,
D of — LEVE (o), on K{[; KQ,D (6.32)
U 7£D( )a OnK17K27
of on K.

3

We have v"P|x € S5 (K) for K € {K1, K>, K|, K}, KP,KP}. Then, since the
faces Fi, xp and Fy o are regularly matching for i = 1,2, the function ol s
conforming over these two faces due to Theorem 3.12. Moreover, from the definition

of the liftings it follows that
— —  —/ —/ —D —D
VP e COK UK UK, UK, UK, UK,). (6.33)
6.3. Superposition. In this section, we superimpose the constructions in Sec-
tions 6.1 and 6.2. Upon mapping employing the patch ‘maps Gp, it is sufficient

to consider the geometrlc reference mesh patches. For M e {/\/l e c{c,e,ce,int}s

we denote by Fe(M ) and Fe(M ) the sets of all macro-faces F appearing as in
Figures 4 and 5, respectively. We denote by L = {K, K1, K3} respectively df =
{K,Ky,..., K4} the sets of elements associated with these configurations. The ge-
ometry in Figure 6 involves two isotropic versions of the configuration shown in
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Figure 4. We then denote by D (M) the set of all pairs D = {KP, K} of elements
appearing on the diagonal as in Figure 6.

Let M, =G, (M) be a mesh patch and let M € {Mﬁ’t}t €{c,e,ce,int} be the cor-
responding geometric reference mesh patch. The averaged approximations vf| M,
in Theorem 3.12 restricted to the patch M, can be pulled back to the reference

patch M and will be denoted by ol i We define v°| 57 as:
Flg=lg— 2 (L@ +LI@)

FE&e(M) (634)
= > (LEP@Y+LEEN) - YD Lo@h).
FEFe(M) DeD (M)

Here, £LEF(3') and £LE (vF) are the liftings in (6.5), (6.6) and (6.13) associated with
the face F' and the elements in ?f. The liftings £5F(3") and £E(?') are given
in (6.21), (6.22) and (6.26) with respect to the set 0X. Finally, £p(?") are liftings
as in (6.30) over the elements D = {KP, KP} in Figure 6.

Remark 6.9. The liftings £F (2'), £E (?") and £p(vF) in (6.34) are locally supported

and vanish at the patch interfaces of M. Hence, they are not relevant for inter-patch
continuity.

For each patch My, we then set v, = v°|5; 0 G;3_1|Qv , which gives rise to
. . 74,0 . . .
a finite element function v® € V.. The approximation v“ belongs in fact to the

. 21 .
conforming space V55, as we show in two steps.

Lemma 6.10. The approximation v° is continuous over reqular faces in the interior
of each mesh patch, vanishes on all Dirichlet boundary faces, and is continuous
across adjacent mesh patches.

Proof. If ' = Fk ik is a regular interior face within a mesh patch, then of s

conforming across I' by Theorem 3.12. As definition (6.34) (and mapping) does not
alter v on K, K’ then v° is also continuous over F. Since o' and the liftings in (6.34)
vanish on faces corresponding to Dirichlet boundary faces, it also follows that v°
vanishes on Dirichlet boundary faces. The approximation vf is conforming across
adjacent mesh patches; see Theorem 3.12. It follows similarly from Assumption 3.1
and the properties of v! that mapped versions of the the edge liftings £F (%) and
LEE @) in (6.34) yield conforming approximations over the corresponding mesh
layers across two matching irregular configurations of different mesh patches. With
Remark 6.9, this implies inter-patch continuity. 0

We next establish the inner-patch continuity of v over irregular faces mesh
patches.

Lemma 6.11. On each mesh patch M, , the approzimation v°|pz, is continuous
across irregular faces within M, .

Proof. Since M, = G, (Mv) for M € {Mﬁ*t}te{c7e7ce7int}, upon mapping it is
sufficient to verify separately the continuity of ©¢ in (6.34) for each reference mesh
patch type. . . . . .

Interior patches: For M = M5 we have Fo(M) = Fe(M) = D(M) = ()
in (6.34). Hence, v°| 5 and the inner-patch continuity follows immediately
from Theorem 3.12.
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Edge patches: For M = M%¢, we have Fo(M) = D(M) = 0, and the defini-
tion (6.34) involves two rotated and overlapping versions of the anisotropic con-
figurations in Figure 4 in each mesh layer, cf. [18, Figure 2]. This corresponds to
(a slight modification of) the construction in [18, Section 5.2.1]. Let then F be
an irregular face I in the patch. By the properties of the liftings £ (3f) and
LE @), the jump [0°]F coincides with [ofF]F, where o5 is defined in (6.16) over
the elements 0 associated with F. Then Lemma 6.5 ensures the conformity across
the irregular face F. L . .

Corner patches: For M = M%, we have Fe(M) = D(M) = ) in (6.34). The
definition (6.34) yields three rotated and superimposed versions of the geometry in
Figure 5 in each mesh layer, exactly as in [18, Section 5.3.1 and Figure 4]. If F'is an
irregular face in the patch, then [v¢] r is equal to [05F] r, where o5 is now defined
in (6.28) in terms of liftings £E*F (vf) and LL' (v') over the elements 0% associated
with F. Lemma 6.8 yields conformity across F'. .

Corner-edge patches with refinement along one edge: Note that D(M) = ()
in (6.34). We then use the representation (4.18)—(4.21) in Figure 2. In each
edge-patch block W¥'ee (Mvg '¢), the definition (6.34) activates the edge-patch lift-
ings LEF(3') and LL(v') as above; thereby ensuring conformity across irregular
faces F' within each of these blocks due to Lemma 6.5. In edge-perpendicular
direction, the isotropic mesh 5£’°6’L U ﬁ‘;’ce consists of two sequences of ¢ — 1
irregular and overlapping configurations as in Figure 5, with the smallest config-
uration extending into the corner mesh %f;’c; see Figure 2. The approximation v°
in (6.34) then involves the corner-patch liftings £ (v%) and £ ('), which enforce
the continuity across irregular faces in 55{;"364 U 1526 and from 5£’°6’L into ‘Eﬁ’c;
cf. Lemma 6.8. The edge-jump liftings £E*F(vf) and L£EF(vf) give conforming
approximations across faces of diagonal elements into the corresponding elements
of Meel (e.g., across the regular faces fx; ry and fg; ky in Figure 2 (right)).

Similarly, they yield continuous approximations from corner elements in %ﬁvc into
clements in W2ee(A2:e).

Corner-edge patches with refinement along two edges: We now have @(ﬂ) #0,
as the refinements towards two edges introduces the geometric situation analyzed
in Figure 6 over the diagonal elements in 5&“1 N 5(‘;’062 (e.g., over Kg, K¢ in Fig-

1 qcensll

ure 3 (left)). We use the decomposition (4.23), (4.24). In the submeshes Mg

and M5 again the liftings LEE @Y and LI(v') are activated and ensure
the continuity over edge-parallel anisotropic faces. Similarly, the liftings L5 (vF)
and LE (%) yield continuity across the irregular faces in O%¢e:L U (Dheer yDLee2)
in perpendicular direction and from 555*064 into the corner elements in %f;c. In
addition to £IF (@), the liftings Lp(v') in (6.30) are invoked in (6.34), as, e.g.,
from Kg into D = {K}, K} in Figure 3 (left). In the configuration nearest to ¢,
these liftings extend into two corner elements of %f;*c. With (6.33), this procedure
ensures continuity over diagonal elements along the edges. In perpendicular direc-
tion, the edge-jump liftings £L£# (3') and LE*F(v') give conforming approximations
across faces of diagonal elements into the corresponding elements in the edge-patch
blocks (e.g., across the regular faces FKLK{’ or FK‘LK;{ in Figure 3 (left)), as well

as from T4€ into elements in W2eei (M2 for i = 1,2.
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Corner-edge patches with refinement along three edges: Clearly, @(ﬂ) # 0, and
with (4.26), the geometric situation in Figure 6 now appears along three edges
situated on the diagonal elements in ﬁﬁ’cel N 255;@62, 25£7°82 N ﬁg’cei", and 55’“1 N
ﬁf:c% (e.g., over K1, K}, K4, K} and Kg, K{ in Figure 3 (right)). Trregular faces
as in Figure 5 are not present in this case (i.e., (M) = (). Hence, in (6.34)
the liftings EFE(~f) LE @' and Lp(@') in (6. 30) are activated. As before, the
liftings £p (v!) extend into the corner elements in ‘Ié ¢ in the geometry closest to c.

Property (6.33) then ensures the continuity over diagonal elements and into %ﬁvc.
O

We now complete the proof of Theorem 3.14 in Section 3.4.
Proof of Theorem 3.14. We set Ef;ﬁ(vf) := v°. By construction, £¢ , is linear and

O' 5
reproduces functions in V,f,’sl. Lemmas 6.11 and 6.10 imply v¢ € V,,,’5 . From (6.34)
and the properties of the liftings, we further find that

T =P S D (TorledF @) + 1w [£E7))?)
FEFe(M)

+ > (CELEFER + T LD @)+ Y THILn (),

FEFe(M) DeD(M)

for any geometric reference mesh patch M. The stability estimates (6.7), (6.14) for
LEF (@) and L£E (D), the estimates (6.23), (6.27) for LEF (') and L£E (7F), and the
bound (6.31) for £p(vF) yield

Yo" =0 < Ipl"imp i o 071, (6.35)

7 (M)
where fIH (Mv) denotes the interior faces on M which satisfy (3.33), (3.34). After
mapping to the physical patches and summing over all patches, this implies the
bound (3.51). O

7. CONCLUSIONS

We established the H'-norm exponential convergence rate exp(—bv/N) of con-
forming hp-FEMs in axiparallel polyhedral domains 2 C R®. The FE spaces are
based on o-geometric mesh families 9, of hexahedral elements containing, in gen-
eral, irregular faces and edges. Geometric meshes M € 9, are obtained as finite
unions of four types t € {c,e,ce,int} of o-geometric reference geometric patch
meshes /\A/l/f:t. On the geometric reference mesh patches va;" on @, the hp-version
FE spaces allow for anisotropic elemental polynomial degree distributions with s-
linear growth in terms of the logarithmic element distance to the singularity set S of
Q (for patch types t € {c, e, ce}). General subdivision ratios 0 < o < 1 and slope
parameters s > 0 are admitted (the analysis extends in a straightforward fashion
also to directional slope parameters sl and s). Inter-patch mesh compatibility
is ensured by a compatibility requirement on the patch maps, and inter-element
continuity is ensured by a minimum degree rule on the local polynomial spaces.

Our principal technical contribution are the constructions of hp-version quasi-
interpolation projectors. The projectors can be assembled from four types of ref-
erence patch projectors Hg’ls’t which are well-defined on H 1(Q) and exponentially
consistent in the H'-norm for functions @ belonging to an analytic reference class
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By (@), with weighting towards corners and edges of @ according to the patch type
t € {c,e,ce,int}. Analogous L?>norm error bounds for L?-projections for the
approximation of solutions in B_p(Q; (), 0) are also obtained.

We considered the particular, second-order model elliptic problem (1.1)—(1.3) for
which analytic regularity was established in [5]. The presently proved exponential
convergence rate estimates are, however, independent of the particular PDE and
apply to any elliptic problem which admits an analytic regularity shift in the classes
B_1_$(2;C', &) in Definition 2.1. The present results extend trivially also to hp-
FE spaces which enforce conformity by the maximum degree rule. The present
results also imply exponential convergence bounds for hp FE spaces on regular,
geometric mesh families consisting of shape-regular tetrahedra as well as anisotropic
prisms in edge- and edge-vertex patches. They also imply exponential bounds
dn (K, X) < exp(—bv/N) on the Kolmogoroff N-widths dy (K, X) of the analytic
classes K = B_1_ (9 0,0) N H'*9(Q) which are compact subsets of the Hilbert
space X = H'(Q). This bound is implied by the present results and is of interest
in connection with reduced basis approximations generated by greedy algorithms
in X. We refer to [4] for theory, and to [16] for recent developments for elliptic
problems.

APPENDIX A. PROOF OF THEOREM 4.3

We outline the major steps of the proof of Theorem 4.3.

A.1. Approximation results. We first establish some auxiliary approximation
results.

A.1.1. Univariate approzimation properties. We begin by reviewing the the follow-
ing consistency bound from [25, Corollary 3.15] for the H'-projector 7,1 in (4.1)

onl= (—1,1).

Lemma A.1. Letp>1,u € HS+1(IA) and 0 < s < p. Then there holds

Ha_ %palaHiIl(f) 5 \III%SHa(S—’_l)HiZ(f)' (Al)
Here,
L(g+1—r)
U, pi=——-= 0<r<yq, A2
ST T(g+1+7) == (42)

where T is the Gamma function satisfying T'(m + 1) =m! for any m € Ny.

We establish an analogous H'-norm error bound for the L?-projection 7, 0;
see [24, Lemma 5.2]. We also refer to [25, Theorem 3.11] for optimal L2-norm
hp-version consistency estimates.

Lemma A.2. Letp>1,u¢€ H5+1(IA) and 0 < s < p. Then there holds
Ha - /7%1770&”?11(]‘) 5 p4\111075||a(s+1) Hiz(f) : (A'3)
Proof. We first recall from [24, Lemma 5.1] the p-dependent stability bound
|Foo® Ol ary S max{ Lol 8 | arye P20, 520 (Ad)

see also property (4.9).
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Then, from the triangle inequality, the fact that 7, ¢ reproduces polynomials and
the estimate (A.4) for s = 0,1, we conclude that, for p > 1,

||ﬂ - %p,OaHHl(f) < ||ﬂ - %p,laHHl(f) + H%p,o(a - %p71a>|‘H1(f)
S pQHt/Z - %p71a||H1(f)-
Referring to (A.1) yields (A.4). O

A.1.2. Approzimation properties of Tp . Based on the univariate results above, we
now derive approximation results for the tensor projectors in (4.3). To this end, on

the reference element K = I3 we introduce the tensor-product space

Hypi () i= iy (R @ HY(ED) = Y (D @ HY (D) @ HYD. - (A5)
endowed with the standard (tensor-product) norm || - || mi (&)~ Note that we have
the continuous embedding H3(K) < HL. (K).

Let K = K+ ® K" be an axiparallel element, px = (p%, pﬂ() an elemental degree

vector and rx € {0, 1} an elemental conformity index in edge-parallel direction. For

u: K — R, we denote by u := u o ®x the pull-back to the reference element K.

In this setting, the tensor projection Tp, U = %;1 0 ® %”“ u defined in (4.3)
K> P TK

satisfies the subsequent bounds.

Proposition A.3. The error fjy = u — ﬁ;l u in edge-perpendicular satisfies

%0
112 ) S 0R)*W,p o B (), (4.6)

for any 0 < s1 < p, with
a2 L Il L Il
EL(Ksu) = > D ()2 22 D DY ulfZa ey . (AT

|at|=s+1 all=0,1

The error il = — /ﬂ:p” TK@ in edge-parallel direction satisfies
K>

RotRal A
DT I 77” ||iz(1’g)
(A.B)

_r L Sl Ls
S Gl TIw ) (hg)P I ()2 DY Dy

+1 2
< I I ullz2 k)
for any |at| >0, ol =0,1, and 0 < sﬂ( < pﬂ(-
Proof. We have

~ o~ A1 ~(2) ~ ~ A1)~ (D) (A ~(2) A)
=u-—T 0 u=(u—m u)+m u— u) .
"o px,0 ® px,0 ( pg,0 )+ g0 px,0

Hence, by the triangle inequality and the stability property (A.4) of the univariate
L2-projector 71 \e find that

p%,0’

2

~L 2 1414 ~_ =) ~2

112 %) S @0K) (_2; -7 %, ) -
1=
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The univariate approximation properties (A.3) in Lemma A.2 now imply

~ R(st EILAPS
1512 2y S GRS (D0 IDCE e g2, o

PSSk
0<ay,all<1

INCR aly~
bOY B, )

0<ai,all<1

for any 0 < s3 < pﬁ. This bound and a scaling argument as in [23, Section 5.1.4]
yield the desired bound (A.6) for 75

The bound for 7l is an immediate consequence of the consistency bounds (A1)
(re = 1) and (A.3) (rx = 0) applied in edge-parallel direction, combined again
with a scaling argument as in [23, Section 5.1.4]. O

A.1.3. Edge-parallel interpolation. We construct univariate hp-projectors and es-
tablish exponential convergence bounds for univariate geometric refinements on
the interval w = (0,1) towards z = 0. These results will be used for the hp-
approximations along edges e € &, towards corners ¢ € C.

In w and for ¢ € (0,1), we introduce geometric meshes 7} = {Ij}ﬁi} with
elements given by I; = (0,0) and I; = (6277 0 177) for 2 < j < £ +1,
respectively. We introduce the local mesh sizes h; := ¢ and

hj =o' 71— o), 2<j<i+1. (A.9)
Then, there is a constant £ > 0 solely depending on o € (0,1) with
Kk 'h; <|z| < Kkhj, relj, 2<j<l+1. (A.10)

On the geometric mesh 7%, let pll = (p!, e ,p!_ﬂ) be an (edge-parallel) polynomial

degree vector and 7 = (r1,...,7¢41) € {0,1}**! a conformity index vector. As

I — ;
;= max{l, [sj]}, for a slope parameter

s > 0 as in Section 3.2.1. We also set |pll| = maxﬁi py. We then consider the

univariate hp-version finite element spaces

elemental polynomial degrees, we take p

v pl) = {UGHT(W) o)y, €B (), j:1,...,€+1}, r=0,1. (A.11)

We denote by 7 the projection onto the space VO(TZ, p”), defined on each inter-
val I; as the (scaled) univariate projector Tl ey H"i(I;) — ]P’p;_‘ (I;) introduced
in Section 4.1. If r; = 0 for all 1 < j < £+ 1, then 7 : L?(w) — VO(TL, pl) is
the L2-projection. In addition, if r; = 1 for all 1 < j < £+ 1, then the nodal
exactness property (4.2) ensures that the projector m : H'(w) — VI(T£ pl) is
H'(w)-conforming.

For v € H'(w), we define the approximation errors 7 := u — 7u, and introduce
the elemental error quantity

Tl := b3 20l T2,y + 10 721, (A.12)
Lemma A.4. For a weight exponent 3 > 0, let u € H(w) be such that
|27 P ul) || oy < C5TID(s +1), s >2. (A.13)
Then, for any conformity indices r; € {0,1}, there exist b,C > 0 independent of
¢>1 such that Z“; T;[n]? < Cexp(—2b0).

Jj=
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Proof. Fix I; € T for 2 < j < £+ 1. A straightforward scaling argument yields
Tj[n)? ~ (hif2) ™" ||77H§{1(f), where as usual we denote by 7) the pull-back of 7|,

to the reference interval 1 = (—1,1). The one-dimensional approximation bounds
in (A.1) and (A.3) imply that

1 !
T][n] 5 |pH |4(hj/2) \Ilpg,sg Hu( ]Jrl)”iz(f)a

for any 1 < sl} < py, where we exclude sy =0in (A.1), (A.3) to ensure that s > 2
in (A.13). Scaling the right-hand side above back to element I; results in

sl s
Tl S 1p1* (s/2)™ Wyl ey, (A14)
Moreover, by the equivalence (A.10),
Sl 2+26-2(s+1) 1 B(s! Sl
[ 2y Jof =S, (a)

By combining (A.14), (A.15) with (A.13), we find that
gl 1 pa(sl 1), (s
Tim)?* < Ipl*h3P22 7yl Pl Dyt )12,
, , L (A.16)
S 1RI[*hS7 (Cuf2)™ Wy T (sy +2)°
for 1 < sl} < py. An interpolation argument as in [23, Lemma 5.8] shows that the
bound (A.16) holds for any real sl; € [1,p|;].
Next, we sum the bound (A.16) over all intervals 2 < j < ¢4 1. In view of (A.9),
we obtain
0+1 41 H
S TP S (DY min [C2w, (s +2)?] ) |
=2 77

= 35 €[1.p5)

By [23, Lemma 5.12], the bracket on the right-hand side above is exponentially
small. Adjusting the constants to absorb |pll|* finishes the proof. O

Similarly, we obtain the following result.
Lemma A.5. For a weight exponent 3 > 0, let u € L?(w) be such that
llel™* 0 < G +2), 221 (A.17)

For any conformity indices r; € {0,1}, there exist b,C > 0 independent of £ > 1

such that Zfi; ||77||2L2(1j) < Cexp(—2b0).

Proof. This follows as in Lemma A.4 or [24, Proposition 5.5]. O

A.1.4. Estimates in two-dimensional weighted spaces. In edge-perpendicular direc-
tion, we shall make use of estimates in two-dimensional weighted spaces analogous
to the results in [11, Section 3]. To state them, let £ be an axiparallel and shape-
regular rectangle of diameter hg which is affinely equivalent to the reference square
R = I Let ¢ be a corner of & and set 7(xz) = |& — ¢|. For a weight exponent
B € [0,1), we denote by L3(8) the weighted L*-space endowed with the weighted
norm HuHL%(ﬁ) i= ||rPul| 12(5). For m = 1,2, the weighted space H""™(8) is defined

as the completion of all C*(R)-functions with respect to the norm |[u/[%.m.m ) =
s
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2] wa) T |u|Hmm(ﬁ), where |u|Hmm ") =2 aj=m ||r# D= u||L2(Q We denote
by 7rp70 the L?-projection onto the tensor product polynomial space Q,(8) obtained

by mapping 7 ; on A.

Lemma A.6. Let 8 € [0,1) be a weight exponent. For u € Hé’l(ﬁ) and p > 0,
there holds

Hu - F;,OUH%Q(.Q) 5 h?ﬂ72ﬁ|u|§—]évl(ﬁ)' (A.18)
Similarly, for u € HQ’Q(R) and p > 1, there holds
4-2
lJu — OUHL2 ® T h%|IV (u — i,o“)”%?(ﬁ) §P4h.ﬂ ﬂ|“|?qgw2(ﬁ)- (A.19)

The implied constants depend on the aspect ratio of K.

Proof. To prove (A.18), we apply the triangle inequality and the stability of the
L2-projection Wgﬁo to obtain

lu =72 gull L2y S llu — 75 oullL2es) + 170w — 75 gu) [ L2(s) S llu— 75 gullL2(w)

The proof of the bound (A.18) for p = 0 can then be found in [19, Proposition 27]
or [26, Corollary A.2.11].

To show (A.19), we proceed as in [11, Section 3] and first consider the reference
square R = (—1, 1)2. With the stability bound (4.9) applied on &, it follows that

S e - ol =7

@ — 75 ol — iU

7Tl Ollil(ﬂ +|| )HHI(Q

HY(R) ~

<P u — 77 OUH <P u — 73 0“”

HI(R) ~ HY(R)

Hence, up to the factor p* in (A.19), we need to consider the case p = 1. To that
end, we denote by B the L*-projection onto the linear polynomial space P;(R).

Forii: R — R, we then claim that there is a constant C>0 independent of u such
that

HaHHg’?(ﬁ) < C(|“|H2 2 + le OUHLZ(Q ) . (A-QO)

To prove (A.20), we apply the Peetre-Tartar 1emma in the spirit of [11, Lemma 3.5]
and introduce the operator

A HPP(R) = LER)? X (PL(R), || [ paw): G ({D*}aj=2, B1o8) -

It is linear and bounded (by employing the L?-stability of the projection B ).
Moreover, A is injective. Indeed, if A% = 0, then D*@ = 0 for all || = 2. Hence, u
is a linear function. The condition ﬁ%,oa = 0 then implies that 7 = 0. In addition,
let T : H§2(§) — H'(R) be the injection operator. By [11, Lemma 3.4], it is
compact and we trivially have

~ 2,25 . .

deHy (R): ll 22z < (Al 223t 183 0ll 12 gy + 178 1 3y
The inequality (A.20) then follows from [8, Lemma A.38].

We proceed by invoking (A.20) for 4 — p3 yu. Since |§%Oﬂ|H§,z(ﬁ) = 0 and

Pio(@—p3 ou) = 0, this results in

i = B2 ofll 22 ) < Clitl 22z, (A.21)
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With (A.21) we then claim that

[u— 7y O“HHQZ(R) < lu— pl OUHHZQ(ﬁ) < C|U|H22(ﬁ)? (A.22)

which implies the desired estimate (A.19) on the reference square R. Indeed, by
the triangle inequality and since %f o reproduces polynomials in Q; (&), we have

~ ~2 o~

[ — 7y OUHH22 < a7t OUHH22 ® T [ o(@—py OU)HH;Z(:Q)'
To further estimate the second term on the right-hand side above, we employ the
equivalence of all norms on finite dimensional spaces and the L2-stability of %io.
This results in

~2 -~ ~2 o~

H%%O(A P1 Ou)”[—]g’z(ﬁ) ~ ||7T1 0( — P1 OU)HLZ(Q

<|u— ﬁl,oaHLz(ﬁ) <|u- B%,oa”Hz’z(ﬁ)v
which yields (A.22).

From (A.22), a scaling argument readily yields the desired estimates in (A.19)
for a generic axiparallel and shape-regular rectangle £ of diameter hg. This finishes
the proof. 0

A.2. Reference corner-edge mesh. We consider the reference corner-edge mesh
patch Mf;’ce onQ forc € Cand e € &; cf. Figure 1 (right). As in [24, Section 7], it
is sufficient to focus on the elements in Mﬁ’ce near the corner-edge pair ¢ € C and
e € &.. That is, we introduce the reference corner-edge submesh iég,ce C Mﬁ’ce
on @ given by

+1 j

Kiee = | | 22, (A.23)

j=1i=1

where the sets Efﬁe stand for layers of elements with identical scaling properties
with respect to ¢ and e; cf. [23, Section 5.2.4]. As in the one-dimensional setting
in Section A.1.3 the index j indicates the number of the geometric mesh layers in
edge-parallel direction along the edge e, whereas the index ¢ indicates the number
of mesh layers in direction perpendicular to e. In agreement with [24, Section 7.1],
we split Kﬁvce into interior elements away from ¢ and e, boundary layer elements
along e (but away from ¢), and corner elements abutting at ¢. That is, we have
Kbee = ¢ UTL U T, with

+1 37 41 N _
= JUes, U gu =gl (A.24)
Jj=21=2

Here, for 2 <i,j < £+ 1, interior elements K € £¥, satisfy
relx ~ hg ~ o171, reli ~= Al ~ o177, (A.25)
Similarly, boundary layer elements K € E}:fg satisty
relg < h ~ o, TC|K2hg<ZO'e+1ij, 2<j</l+1. (A.26)
Finally, a corner element in the layer Tt = €11 is isotropic with re|x < hx ~ ge,
and 7¢|x < hx ~ of. The sets £ and €11 are in fact singletons, and K € £17
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can be written as
Kj=K'xK|, 2<j<(+1, (A.27)

cf. (3.3), where K+ = (0,0%)2, and the sequence {KH}ZJrl forms a one-dimensional
geometric mesh 7 along the edge e as in Section A.1.3. The s-linearly increasing
polynomial degree distributions on K% in (A.23) are given by

VK e Ezc]e : PK = (pf‘,pﬂ) ~ (max{1, |s¢]}, max{1, |sj|}). (A.28)

In the sequel, we introduce the domain ﬁﬁe = (UKeEl,ce f)o. Analogously
to (2.7) and for exponents B = {fe, e}, we introduce the non-homogeneous refer-
ence corner-edge semi-norm on

2
— max{Be+|e|,0} max{Be+|a’],0} o
= 2 Hrc Pee b u‘m(ﬁfge) ’

2
|“|1\7§(ﬁge) (A.29)

|| =k
for any k > 0 and where 7. and re are the distances to ¢ and e, respectively, and
Pece = Te/Te. For m > kg as in (2.8), the weighted spaces Nm(Qe ) are defined

as in Section 2.2 with respect to the norms || - ”Nm(m => ol Nk(m ) The
corresponding analytic reference class BB(Qﬁe) consists of all functions u : Qﬁe —R
such that u € Ng (QL,) for k > kg and such that there is a constant d,, > 0 with

lulzs @, < ATk +1) Yk > kg (A.30)

In the following, we restrict ourselves to the classes B_1_p(€2%,) and B_y(Q%,)
for exponents b = {be,be} in (0,1) as in Remark 2.4. In the first case, we have
kg € (1,2) and the norms on the right-hand in (A.29) are given by

|a|:07]‘, |aL|:O7]‘,
la| > 2, [at]=0,1, (A.31)

10l
et 1o Dy 2
12(53,)

H/’Age—bc"ra“ —1—be+|a™ lDo‘uH la| > 2, |aL| > 9.

L2(Q¢.)

Similarly, for the second analytic class B_p (€Y, ), we have kg € (0,1) and the norms
on the right-hand side of (A.29) take the form

Il a =0, lat] =0,
Irztr oDl g ol =1 et =0, (A32)

[rheterel g betleTpay 2 o > 1, |at| > 1.

L2(Qf,)
In the axi-parallel setting considered in the present paper, when functions u €
By b(Q;0,0) and u € B_p(Q;0,0) as in Theorem 4.3 are localized and scaled
to ch, they belong to the reference classes B_l_b(ﬁﬁ ) and B_ (Q ), respectively;

f. [18, Section 3.4].

With the error estimates in Lemma 4.2, we need to bound the error contributions
as in (3.36), (4.12), but over the reference mesh K% = 9L U T¢L U TL in the
setting above. It is then sufficient to establish the following result.

Proposition A.7. Consider weight exponents be,be € (0,1) as in (2.13).
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Letu € B_1_p(Q2%,) N HY(QL,) for some 0 € (0,1), and let mu = n3- @ 7lu be
the base interpolant (4.4) over K% for any conformity indices rx € {0,1}. For
the errors n, ng-, nll in (4.7), we have

Ty, [+, [0+ T4, [ + 1L [0 + T, 0 < C exp(—2b0),

with b, C' > 0 independent of £.
Let u € B_p(Q%.) N HY(QL,) for some 6 € (O 1), and let mou = mg- ®7r(qu be the
L2-projection over K%°¢. For the errors 1, 770 , n(lJl in (4.7), we have

51172 ey + [ 2@y H 1o 172 + 112, )+ lm0l175 70y < Cexp(=200),
with b, C' > 0 independent of £.

The desired convergence bounds in Theorem 4.3 follow now from Proposition A.7
by noting that the number of degrees of freedom N in the hp-spaces in (3.23) is
given by N ~ (°> + O(¢*), where the implied constant solely depends on s and the
number of mesh patches. The remainder of this section is devoted to the proof of
Proposition A.7.

A.3. Proof of Proposition A.7. We bound the errors in Proposition A.7 sep-
arately for the set D, (Propositions A.9 and A.10), for T¢ (Propositions A.11
and A.12), and for T (Proposition A.13).

A.3.1. Convergence on 5£e. We begin our analysis by recalling essential scaling
properties; see [23, Section 5.1.4].

Lemma A.8. Let K = (0,h%)? x (0,4)) be of the form (3.3). Letv: K — R,
and 0 = vo &', Then:
(0) lolZ2rey S (iR IB12, -
() ()20l g0y + D412 S (2 () (18112, ) + 1B, ).
(i) (hge) 210l ) + IDL0lFe ey S Rk (1812, ) + ||Dw||L2(K>)
We bound 75 over 5£e as follows.
Proposition A.9. Let u € B_y_(QL,) respectively u € B_ (ﬁﬁe) Then there

are constants b,C' > 0 independent of { > 1 such that TDE [n7]? < Cexp(—2bf)

respectively ||ng-|| < Cexp(—2b0).

L2(9L,) =

Proof. Let u € B_y_p(9L,). We consider an clement K € £4, with 2 < j < £+ 1
and 2 < i < j, according to (A.24). With Lemma A.8 (observing that hi < hﬂ()
and the approximation results for 7j;- in Proposition A.3 in conjunction with (A.28),
we conclude that

Niclne1? S bl 5, () S 1PxlPhie Wy o B (K ),

for 1 < s} < p;-, where El (K;u) is the expression in (A.7). Notice that here we
exclude the choice s = 0 'to ensure that la| > Jat| > 2 in El (K;u). Thanks
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to the equivalences (A.26), we insert the appropriate weights as in (A.31), (A.32),
and obtain

ID%7 D llF gy == ()72 ()2 2l

x [[rbe=betel 1=ttt IDg D 2,
Hence,
€L
s; +3
_ 2
Niglng 12 S 1pxlP Wy o (B e (hi)™ Y- Julfe -
k:strl

Since si- +1 > 2, the analytic regularity (A.30) implies the existence of C' > 0 such
that

_ s
Niglng 1> S 1picl® Wy o (Ble)?e ™2 (hg) e C* T(s ) +4)%, (A.33)

forall 1 < s < pi-. Summing (A.33) over all layers in D o in (A.24) in combination
with (A. 25) results in

l+1 J
Tée ] < pf® Zaz(bc be)(£+1—j (Zazbe Hl*i)‘l’pgs;C%#F(SiL +4)2) .
Jj=2 1=2

By interpolating to real parameters s € [1,p;] as in [23, Lemma 5.8], this sum

is of the same form as S+ in the proof of [23, Proposition 5.17], and the assertion
now follows from the arguments there and after adjusting the constants to absorb
the algebraic loss in |p|.

For u € B_p(9L,), we proceed similarly and note that

I 1220y S (i) i Iy S 1P l® (iRl W o2 B (K w),

for 1 < s;+ < pit. Hence, we obtain

sj+3
_ 2
I 320y S 1Pac P2y s Bl i)™ S ul3e -
k:strl
The second bound follows as before. O

Next, we establish the analog of Proposition A.9 in edge-parallel direction.

Proposition A.10. Let u € B_y_y(QL,) respectively u € B_y(QL,). Then there
are constants b,C > 0 independent of £ > 1 such that TIJSE 12 < Cexp(—2b¢)

respectively ||77 |2 < Cexp(—2b0).

LQ(DE ) —
Proof. For u € B_1_(Q.,), we claim that

| (Re)?e|u))?

s spc+2
7117

Nl S 0h)* e, , (A.34)
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for any K € 5£e and 1 < sﬂ( < pg(. To prove (A.34), we start by employing
Lemma A.8 and the approximation property (with |a’| = 0) for 7l in Proposi-
tion A.3. It follows that

_ _ 2l A
(h5e) M ey + 10 12y S (i) (hi) ™ > IBF 21122z,
all=0,1

sl +1
S (Plz‘<)4‘1’pu ol (hh)? )**x D) i ull 22k

for any 1 < sg( < pﬂ(, where as before we exclude the choice sﬂ( = 1 to ensure
that || > 2. We then insert suitable weights with the aid of (A.31) and (A.25) to

obtain

sl41 sl oy —1—betsl+1 +1
D ull3 2 gy = () 22205 D2,
< (h” )2b672s!(| |2 .
~ JVSK“ K
Sy (K)
Hence,
() I + 1D 120y S Wl W0 1 (Bl
Pi jl(er (K)

By proceeding similarly, we find that, for |a*| =1,

I I at a” ,\
105" ey S ke > IS DF 12, 2,

all= =0,1
s o S+l
(MwuawwﬂmDrumm
—betsl 1ot ~sk+1
M%HMHMWWC1‘%Dﬁu%m

~ ()" W1 1 ()™l

e (K)

This establishes the bound in (A.34).
For u € B_p(£2,), we use analogous arguments based on Lemma A.8, Proposi-
tion A.3 and (A.32). This results in

s sp-+1
mmw><Mwuaw%ﬂmemm

—betsh+1 sl 41
S ) Wy (hh)™elre ™ ST D o (A.35)
< (p)'w Pl (hh) elul® -

NET(K)

Next, we sum the bounds in (A.34), (A.35) over all layers of O%, . By notic-
ing (A.25), (A.28) and the analytic regularity (A.30), we conclude that

+1 J
u€ Bo1p(Qe) : Tlig ' < [pl* ZZ‘I’ |10 2eH1— b‘:CQSJF(SH +3)7,
J=2 =2
-~ L+1 g
weB_y(Qh):  |In) 12y S ol S, H “02(e+1 g)bcczéjr(sn +2)%

Jj=2 i=2
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The terms in the sums above are independent of the inner index i. Interpolation to
non-integer differentiation orders s” € [1, p”] as in [23, Lemma 5.8] and applying [23,
Lemma 5.12] (and adjusting constants) completes the proof. 0

A.3.2. Convergence on %ﬁ We start by showing exponential convergence in edge-
perpendicular direction.

Proposition A.11. Let u € B_y_y(QL,) respectively u € B_y(QL,). Then there
are constants b,C' > 0 independent of £ > 1 such that TT[ g ]? < Cexp(—2b0)

respectively ||ng||? < Cexp(—2b0).

L2(%L) =

Proof. Let K = K+ x KJ“ for j > 2, be an element in T of the form (A.27). We
claim that

(h) 2l 122y + 1D L7 72 S 0° min{b°’be”|u|2~zlfb(m ; (A.36)
DU [y S 0> ™ Ot a2, o (A)
[ ||L2(K) S UZmin{bc’be}quﬁvl K (A.38)

Lo (K)

To show (A.36), let s = |a*| = 0,1. From the bound (A.19) (with 8 = 1 — b,
and noting the pj = max{1,s} by (A.28)), we see that

(hIL()Q(s—l) H DozL 1

T 7a ) S (i) 7 (he) 27207 P D

UH%Z(K)’
< (i) |lrg " DJ_'UJHLZ(K)'

From (A.26) and (A.31), we further obtain

172 D2 ul| 2oy S (hl) 20 |[rbe~berl=be D3 u||2,

| \—2be+2be|, 2
K) |u|N317b(K) .

S
S (b

Thus, combining these estimates and expressing the mesh sizes in terms of o,
cf. (A.26), we see that

(hie)* VDY 7y < (i)™ (i)~ ful%,

~ O_ch(l+1fj)+2be(jfl)|u|%2

_p(K)

b (K)
< 0_2 min{be,be }£

2
~ |u|]\73 G (K)
which yields (A.36).

To prove (A.37), we proceed similarly and obtain

be be
D70 1220y S (hL 7200 g =P DA Dyl oy
5( )*Q*QbeJrch(hJ- )2+2be|| be*bCJrlTel:ibeDiDHu”QL?(K)
2be (0+1—37)+2be(5—1) 2(; 1) 2
< oe(t+1d Nalds e
2min{be,be}, |2
5 o |’LL|N§ —b(K) :
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To obtain (A.38), we employ an analogous argument based on (A.18) (with
B =1—be). With (A.26) and (A.32), this results in

15 132y S (hz)* 2070 g™ DL 7o)

< () P20 (i )2be [[rbe ~berl =D )|, )

< G2e(tH1=)+2be (G=1) |12, _
= [ul5e, @)

< 2min{be,be}l, |2 _
~ o |U|Nib(9£e)’

which is (A.38).
The assertions now follow by summing the estimates (A.36), (A.37) and (A.38)

over all elements K € ‘fﬁ (i.e., over 2 < j < £+ 1) and by suitably adjusting
constants. (]

A similar estimate holds for the approximation errors in direction parallel to e.

Proposition A.12. Let u € B_y_y(QL,) respectively u € B_y(QL,). Then there
are constants b,C > 0 independent of £ > 1 such that T%E 12 < Cexp(—2b¢)

respectively ||ng||i2(§€) < Cexp(—2b0).

Proof. Foru € B_l_b(ﬁﬁe), properties (A.31), (A.30) imply u, Dju, Dy u € LQ(ﬁﬁe)
and

—1—botal ~al o
Izt =e+e D ) g ) < O TN +1), ol 22

—potal ~al ol
Irg = D Dl oy, < C Tl +2), ol > 1.

[

Similarly, for u € B_p(€2%,) it follows with (A.32) that u € L2(€Q%,) and
—botal ~al ol
lrg =D ull oy < C* (0l + 1), ol > 1

In view of (A.26), (A.27), these properties correspond to the one-dimensional an-

alytic regularity assumptions considered in (A.13) and (A.17), respectively. More-

over, due to (A.28), the polynomial degrees pu( along the edge e are s-linearly

increasing away from the corner c¢. Hence, Lemma A.4 respectively Lemma A.5,
and the tensor-product structure of the elements readily yield the assertions. [

A.3.3. Convergence on T'. It remains to show exponential convergence for the
corner elements in T%.

Proposition A.13. Let u € H'(QL,) respectively u € H(QL,) for some 0 €
(0,1). Then there exist constants b,C' > 0 independent of £ > 1 such that T%E n)? <

C'exp(—2b¢) respectively HUOH;(@) < Cexp(—2b0).

Proof. The element K € %f; is isotropic with h =~ hﬂ( ~ hx ~ o' cf. (A.24).
Standard h-version approximation properties then readily show that

NP S B3lullZroge, respectively  Inoll3egy S P32l -

This implies the assertions. O
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