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ON STOCHASTIC DIFFERENTIAL EQUATIONS WITH ARBITRARY

SLOW CONVERGENCE RATES FOR STRONG APPROXIMATION

ARNULF JENTZEN, THOMAS MÜLLER-GRONBACH, AND LARISA YAROSLAVTSEVA

Abstract. In the recent article [Hairer, M., Hutzenthaler, M., & Jentzen, A., Loss of regularity

for Kolmogorov equations, Ann. Probab. 43 (2015), no. 2, 468–527] it has been shown that there

exist stochastic differential equations (SDEs) with infinitely often differentiable and globally

bounded coefficients such that the Euler scheme converges to the solution in the strong sense but

with no polynomial rate. Hairer et al.’s result naturally leads to the question whether this slow

convergence phenomenon can be overcome by using a more sophisticated approximation method

than the simple Euler scheme. In this article we answer this question to the negative. We prove

that there exist SDEs with infinitely often differentiable and globally bounded coefficients such

that no approximation method based on finitely many observations of the driving Brownian

motion converges in absolute mean to the solution with a polynomial rate. Even worse, we

prove that for every arbitrarily slow convergence speed there exist SDEs with infinitely often

differentiable and globally bounded coefficients such that no approximation method based on

finitely many observations of the driving Brownian motion can converge in absolute mean to

the solution faster than the given speed of convergence.

1. Introduction

Recently, it has been shown in Theorem 5.1 in Hairer et al. [9] that there exist stochastic dif-
ferential equations (SDEs) with infinitely often differentiable and globally bounded coefficients
such that the Euler scheme converges to the solution but with no polynomial rate, neither in the
strong sense nor in the numerically weak sense. In particular, Hairer et al.’s work [9] includes
the following result as a special case.

Theorem 1 (Slow convergence of the Euler scheme). Let T ∈ (0,∞), d ∈ {4, 5, . . . }, ξ ∈ R
d.

Then there exist infinitely often differentiable and globally bounded functions µ, σ : Rd → R
d

such that for every probability space (Ω,F ,P), every normal filtration (Ft)t∈[0,T ] on (Ω,F ,P),
every standard (Ft)t∈[0,T ]-Brownian motion W : [0, T ]× Ω → R on (Ω,F ,P), every continuous

(Ft)t∈[0,T ]-adapted stochastic process X : [0, T ] × Ω → R
d with ∀ t ∈ [0, T ] : P

(
X(t) = ξ +∫ t

0
µ
(
X(s)

)
ds +

∫ t
0
σ
(
X(s)

)
dW (s)

)
= 1, every sequence of mappings Y n : {0, 1, . . . , n} × Ω →

R
d, n ∈ N, with ∀n ∈ N, k ∈ {0, 1, . . . , n} : Y n

k = ξ+
∑k−1

l=0

[
µ
(
Y n
l

)
T
n
+σ
(
Y n
l

)(
W ((l+1)T/n)−

W (lT/n)
)]
, and every α ∈ (0,∞) we have

(1) lim
n→∞

(
nα · E

[
‖X(T )− Y n

n ‖
])

= ∞.

1
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Theorem 1 naturally leads to the question whether this slow convergence phenomenon can be
overcome by using a more sophisticated approximation method than the simple Euler scheme.
Indeed, the literature on approximation of SDEs contains a number of results on approximation
schemes that are specifically designed for non-Lipschitz coefficients and in fact achieve polyno-
mial strong convergence rates for suitable classes of such SDEs (see, e.g., [12, 10, 28, 18, 14,
31, 27, 26, 3, 30] for SDEs with monotone coefficients and see, e.g., [2, 8, 6, 1, 24, 13, 15, 4] for
SDEs with possibly non-monotone coefficients) and one might hope that one of these schemes
is able to overcome the slow convergence phenomenon stated in Theorem 1. In this article we
destroy this hope by answering the question posed above to the negative. We prove that there
exist SDEs with infinitely often differentiable and globally bounded coefficients such that no
approximation method based on finitely many observations of the driving Brownian motion (see
(2) for details) converges in absolute mean to the solution with a polynomial rate. This fact is
the subject of the next theorem, which immediately follows from Corollary 2 in Section 4.

Theorem 2. Let T ∈ (0,∞), d ∈ {4, 5, . . . }, ξ ∈ R
d. Then there exist infinitely often dif-

ferentiable and globally bounded functions µ, σ : Rd → R
d such that for every probability space

(Ω,F ,P), every normal filtration (Ft)t∈[0,T ] on (Ω,F ,P), every standard (Ft)t∈[0,T ]-Brownian
motion W : [0, T ]×Ω → R on (Ω,F ,P), every continuous (Ft)t∈[0,T ]-adapted stochastic process

X : [0, T ] × Ω → R
d with ∀ t ∈ [0, T ] : P

(
X(t) = ξ +

∫ t
0
µ
(
X(s)

)
ds +

∫ t
0
σ
(
X(s)

)
dW (s)

)
= 1,

and every α ∈ (0,∞) we have

(2) lim
n→∞

(
nα · inf

s1,...,sn∈[0,T ]
inf

u : Rn→R
measurable

E

[∥∥X(T )− u
(
W (s1), . . . ,W (sn)

)∥∥
])

= ∞.

Even worse, our next result states that for every arbitrarily slow convergence speed there
exist SDEs with infinitely often differentiable and globally bounded coefficients such that no
approximation method that uses finitely many observations and, additionally, starting from
some positive time, the whole path of the driving Brownian motion, can converge in absolute
mean to the solution faster than the given speed of convergence.

Theorem 3. Let T ∈ (0,∞), d ∈ {4, 5, . . . }, ξ ∈ R
d and let (an)n∈N ⊂ (0,∞) and (δn)n∈N ⊂

(0,∞) be sequences of strictly positive reals such that limn→∞ an = limn→∞ δn = 0. Then

there exist infinitely often differentiable and globally bounded functions µ, σ : Rd → R
d such

that for every probability space (Ω,F ,P), every normal filtration (Ft)t∈[0,T ] on (Ω,F ,P), ev-
ery standard (Ft)t∈[0,T ]-Brownian motion W : [0, T ] × Ω → R on (Ω,F ,P), every continu-

ous (Ft)t∈[0,T ]-adapted stochastic process X : [0, T ] × Ω → R
d with ∀ t ∈ [0, T ] : P

(
X(t) =

ξ +
∫ t
0
µ
(
X(s)

)
ds+

∫ t
0
σ
(
X(s)

)
dW (s)

)
= 1, and every n ∈ N we have

(3) inf
s1,...,sn∈[0,T ]

inf
u : Rn×C([δn,T ])→R

measurable

E

[∥∥X(T )− u
(
W (s1), . . . ,W (sn), (W (s))s∈[δn,T ]

)∥∥
]
≥ an.

Theorem 3 is an immediate consequence of Corollary 4 in Section 4 together with an appro-
priate scaling argument. Roughly speaking, such SDEs can not be solved approximately in the
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strong sense in a reasonable computational time as long as approximation methods based on
finitely many evaluations of the driving Brownian motion are used. In Section 6 we illustrate
Theorems 2 and 3 by a numerical example.

Next we point out that our results do neither cover the class of strong approximation algo-
rithms that may use finitely many arbitrary linear functionals of the driving Brownian motion
nor cover strong approximation algorithms that may choose the number as well as the location
of the evaluation nodes for the driving Brownian motion in a path dependent way. Both issues
will be the subject of future research.

We add that for strong approximation of SDEs with globally Lipschitz coefficients there is a
multitude of results on lower error bounds already available in the literature; see, e.g., [5, 11,
20, 21, 22, 23, 25], and the references therein. We also add that Theorem 2.4 in Gyöngy [7]
establishes, as a special case, the almost sure convergence rate 1/2− for the Euler scheme and
SDEs with globally bounded and infinitely often differentiable coefficients. In particular, we
note that there exist SDEs with globally bounded and infinitely often differentiable coefficients
which, roughly speaking, can not be solved approximatively in the strong sense in a reaonsable
computational time (according to Theorem 3 above) but might be solveable, approximatively,
in the almost sure sense in a reasonable computational time (according to Theorem 2.4 in
Gyöngy [7]).

2. Notation

Throughout this article the following notation is used. For a set A, a vector space V , a
set B ⊆ V , and a function f : A → B we put supp(f) = {x ∈ A : f(x) 6= 0}. Moreover, for
a natural number d ∈ N and a vector v ∈ R

d we denote by ‖v‖Rd the Euclidean norm of
v ∈ R

d. Furthermore, for a real number x ∈ R we put ⌊x⌋ = max(Z ∩ (−∞, x]) and ⌈x⌉ =
min(Z ∩ [x,∞)).

3. A family of stochastic differential equations with smooth and globally

bounded coefficients

Throughout this article we study SDEs provided by the following setting.
Let T ∈ (0,∞), let (Ω,F ,P) be a probability space with a normal filtration (Ft)t∈[0,T ], and

let W : [0, T ]×Ω → R be a standard (Ft)t∈[0,T ]-Brownian motion on (Ω,F ,P). Let τ1, τ2, τ3 ∈ R

satisfy 0 < τ1 ≤ τ2 < τ3 < T and let f, g, h ∈ C∞(R,R) be globally bounded and satisfy
supp(f) ⊆ (−∞, τ1], infs∈[0,τ1/2] |f ′(s)| > 0, supp(g) ⊆ [τ2, τ3],

∫
R
|g(s)|2 ds > 0, supp(h) ⊆

[τ3,∞), and
∫ T
τ3
h(s) ds 6= 0.

For every ψ ∈ C∞(R, (0,∞)) let µψ : R4 → R
4 and σ : R4 → R

4 be the functions such that
for all x = (x1, . . . , x4) ∈ R

4 we have

(4) µψ(x) =
(
1, 0, 0, h(x1) · cos(x2 ψ(x3))

)
and σ(x) =

(
0, f(x1), g(x1), 0

)
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and let Xψ = (Xψ
1 , . . . , X

ψ
4 ) : [0, T ] × Ω → R

4 be an (Ft)t∈[0,T ]-adapted continuous stochastic

processes with the property that for all t ∈ [0, T ] it holds P-a.s. that Xψ(t) =
∫ t
0
µψ(Xψ(s)) ds+∫ t

0
σ(Xψ(s)) dW (s).

Remark 1. Note that for all ψ ∈ C∞(R, (0,∞)) we have that µψ and σ are infinitely often
differentiable and globally bounded.

Remark 2. Note that for all ψ ∈ C∞(R, (0,∞)), t ∈ [0, T ] it holds P-a.s. that

Xψ
1 (t) = t, Xψ

2 (t) =

∫ min{t,τ1}

0

f(s) dW (s),

Xψ
3 (t) = 1[τ2, T ](t) ·

∫ min{t,τ3}

min{t,τ2}
g(s) dW (s),

Xψ
4 (t) = 1[τ3, T ](t) · cos

(
Xψ

2 (τ1)ψ
(
Xψ

3 (τ3)
))

·
∫ t

τ3

h(s) ds.

(5)

Example 1. Let c1, c2, c3 ∈ R and let f, g, h : R → R be the functions such that for all x ∈ R

we have

f(x) = 1(−∞,τ1)(x) · exp
(
c1 +

1

x− τ1

)
,

g(x) = 1(τ2,τ3)(x) · exp
(
c2 +

1

τ2 − x
+

1

x− τ3

)
,

h(x) = 1(τ3,∞)(x) · exp
(
c3 +

1

τ3 − x

)
.

(6)

Then f, g, h satisfy the conditions stated above, that is, f, g, h are infinitely often differentiable
and globally bounded and f, g, h satisfy supp(f) ⊆ (−∞, τ1], infs∈[0,τ1/2] |f ′(s)| > 0, supp(g) ⊆
[τ2, τ3],

∫
R
|g(s)|2 ds > 0, supp(h) ⊆ [τ3,∞), and

∫ T
τ3
h(s) ds 6= 0.

4. Lower error bounds for general strong approximations

In Theorem 4 below we provide lower bounds for the error of any strong approximation of
Xψ(T ) for the processes Xψ from Section 3 based on the whole path of (W (t))t∈[0,T ] up to
a time interval (t0, t1) ⊆ [0, τ1/2]. The main tool for the proof of Theorem 4 is the following
simple symmetrization argument, which is a special case of the concept of radius of information
used in information based complexity, see [29].

Lemma 1. Let (Ω,A,P) be a probability space, let (Ω1,A1) and (Ω2,A2) be measurable spaces,

and let V1 : Ω → Ω1 and V2, V
′
2 , V

′′
2 : Ω → Ω2 be random variables such that

(7) P(V1,V2) = P(V1,V ′

2)
= P(V1,V ′′

2 ) .

Then for all measurable mappings Φ: Ω1 × Ω2 → R and ϕ : Ω1 → R we have

(8) E
[
|Φ(V1, V2)− ϕ(V1)|

]
≥ 1

2
E
[
|Φ(V1, V ′

2)− Φ(V1, V
′′
2 )|
]
.
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Proof. Observe that (7) ensures that

(9) E
[
|Φ(V1, V2)− ϕ(V1)|

]
= E

[
|Φ(V1, V ′

2)− ϕ(V1)|
]
= E

[
|Φ(V1, V ′′

2 )− ϕ(V1)|
]
.

This and the triangle inequality imply that

E
[
|Φ(V1, V2)− ϕ(V1)|

]
≥ 1

2
E
[
|Φ(V1, V ′

2)− Φ(V1, V
′′
2 )|
]
,(10)

which finishes the proof. �

In addition, we employ in the proof of Theorem 4 the following lower bound for the first
absolute moment of the sine of a centered normally distributed random variable.

Lemma 2. Let (Ω,A,P) be a probability space, let τ ∈ [1,∞), and let Y : Ω → R be a N (0, τ 2)-
distributed random variable. Then

(11) E
[
| sin(Y )|

]
≥ 1√

8π
· exp

(
−π

2

8

)
.

Proof. We have

E
[
| sin(Y )|

]
=

1√
2π

∫

R

| sin(τz)| exp
(
−z

2

2

)
dz

≥ 1√
2π

exp
(
−π

2

8

)∫ π
2

0

|sin(τz)| dz = 1

τ
√
2π

exp
(
−π

2

8

)∫ τπ
2

0

|sin(z)| dz.
(12)

This and the fact that

(13)

∫ τπ
2

0

| sin(x)| dx ≥
∫ ⌊τ⌋·π

2

0

| sin(x)| dx = ⌊τ⌋ ·
∫ π

2

0

sin(x) dx = ⌊τ⌋ ≥ τ

2

complete the proof. �

We first prove the announced lower error bound for strong approximation of Xψ(T ) in the
case of the time interval (t0, t1) being sufficiently small.

Lemma 3. Assume the setting in Section 3, let α1, α2, α3,∆, β ∈ (0,∞), and γ ∈ R be given

by

(14)

α1 =

∫ τ1

0

|f(s)|2 ds, α2 = sup
s∈[0,τ1/2]

|f ′(s)|2, α3 = inf
s∈[0,τ1/2]

|f ′(s)|2,

∆ =
∣∣∣min

{ α1

2α2

,
1

α2

}∣∣∣
1/3

, β =

∫ τ3

τ2

|g(s)|2 ds, γ =

∫ T

τ3

h(s) ds,

let ψ ∈ C∞(R, (0,∞)) be strictly increasing with lim infx→∞ ψ(x) = ∞ and ψ
(√

2β
)
= 1, let

t0, t1 ∈ [0, τ1/2] satisfy 0 < t1 − t0 ≤ ∆, and let u : C
(
[0, t0] ∪ [t1, T ],R

)
→ R be measurable.

Then
√
12

(t1−t0)3/2
√
α3

∈ ψ(R) and

(15) E

[∣∣Xψ
4 (T )− u

(
(W (s))s∈[0,t0]∪[t1,T ]

)∣∣
]
≥ |γ|

8π3/2
exp
(
− 2
β

∣∣∣ψ−1
( √

12
(t1−t0)3/2

√
α3

)∣∣∣
2

− π2

4

)
.
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Proof. Define stochastic processes W,B : [t0, t1]×Ω → R and W̃ :
(
[0, t0]∪ [t1, T ]

)
×Ω → R by

(16) W (t) =
(t− t0)

(t1 − t0)
·W (t1) +

(t1 − t)

(t1 − t0)
·W (t0), B(t) = W (t)−W (t)

for t ∈ [t0, t1] and by W̃ (t) = W (t) for t ∈ [0, t0] ∪ [t1, T ]. Hence, B is a Brownian bridge on

[t0, t1] and B and (W, W̃ ) are independent.
Let Y1, Y2 : Ω → R be random variables such that we have P-a.s. that

Y1 =

∫ t0

0

f(s) dW (s) +

∫ τ1

t1

f(s) dW (s) + f(t1)W (t1)− f(t0)W (t0)−
∫ t1

t0

f ′(s)W (s) ds,

Y2 = −
∫ t1

t0

f ′(s)B(s) ds

(17)

and put

(18) σi =
(
E
[
|Yi|2

])1/2

for i ∈ {1, 2}. By the independence of B and (W, W̃ ) we have independence of Y1 and Y2.
Moreover, for all i ∈ {1, 2} we have PYi = N (0, σ2

i ). Furthermore, Itô’s formula proves that we
have P-a.s. that

(19) Xψ
2 (τ1) = Y1 + Y2.

Therefore, we have P-a.s. that

(20) Xψ
4 (T ) = γ · cos

(
(Y1 + Y2)ψ

(
Xψ

3 (τ3)
))
.

First, we provide estimates on the variances |σ1|2 and |σ2|2. The fact that B is a Brownian
bridge on [t0, t1] shows that for all s, u ∈ [t0, t1] we have

(21) E
[
B(s)B(u)

]
=

(t1 −max{s, u}) · (min{s, u} − t0)

(t1 − t0)
.

In addition, the assumption infs∈[0,τ1/2] |f ′(s)| > 0 implies that for all s, u ∈ [0, τ1/2] we have
f ′(s) · f ′(u) = |f ′(s) · f ′(u)|. The latter fact and (21) yield

|σ2|2 = E

[∣∣∣
∫ t1

t0

f ′(s)B(s) ds
∣∣∣
2
]
=

∫ t1

t0

∫ t1

t0

f ′(s) f ′(u)E
[
B(s)B(u)

]
ds du

=

∫ t1

t0

∫ t1

t0

|f ′(s)| · |f ′(u)| · (t1 −max{s, u}) · (min{s, u} − t0)

(t1 − t0)
ds du.

(22)

Furthermore, it is easy to see that

(23)

∫ t1

t0

∫ t1

t0

(t1 −max{s, u}) · (min{s, u} − t0)

(t1 − t0)
ds du =

(t1 − t0)
3

12
.
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Combining (22) and (23) proves that

(24) 0 <
α3 (t1 − t0)

3

12
≤ |σ2|2 ≤

α2 (t1 − t0)
3

12
.

Next (24) and the assumption t1 − t0 ≤ ∆ imply

(25) |σ2|2 ≤ α2 |∆|3 = min{α1/2, 1} .
By (19), by the fact that Y1 and Y2 are independent centered normal variables, and by (25) we
get

|σ1|2 = E
[
|Y1|2

]
= E

[
|Y1 + Y2|2

]
− E

[
|Y2|2

]
− 2E

[
Y1Y2

]

= E
[
|Xψ

2 (τ1)|2
]
− |σ2|2 = α1 − |σ2|2 ≥ α1/2 ≥ |σ2|2 ,

(26)

which jointly with (25) yields

(27) |σ2|2 ≤ min
{
|σ1|2 , 1

}
.

In the next step we put up the framework for an application of Lemma 1. Observe that (20)
and the assumption γ 6= 0 imply

(28) E

[∣∣Xψ
4 (T )− u(W̃ )

∣∣
]
= |γ| · E

[∣∣cos
(
(Y1 + Y2)ψ

(
Xψ

3 (τ3)
))

− 1
γ
· u(W̃ )

∣∣
]
.

Clearly, there exist measurable functions Φi : C
(
[0, t0] ∪ [t1, 1],R

)
→ R, i ∈ {1, 2}, such that

we have P-a.s. that Y1 = Φ1(W̃ ) and Xψ
3 (τ3) = Φ2(W̃ ). Moreover, by the independence of B

and (W, W̃ ) we have independence of Y2 and W̃ . Therefore, we have P(W̃ ,Y2)
= PW̃ ⊗ PY2 =

PW̃ ⊗ P−Y2 = P(W̃ ,−Y2). We may thus apply Lemma 1 with Ω1 = C([0, t0] ∪ [t1, 1],R), Ω2 = R,

V1 = W̃ , V2 = V ′
2 = Y2, V

′′
2 = −Y2, ϕ = 1

γ
· u, and Φ: C([0, t0] ∪ [t1, T ],R) × R → R given by

Φ(w, y) = cos((Φ1(w) + y)ψ(Φ2(w))) for w ∈ C([0, t0] ∪ [t1, T ],R), y ∈ R to obtain

E

[∣∣cos
(
(Y1 + Y2)ψ

(
Xψ

3 (τ3)
))

− 1
γ
· u(W̃ )

∣∣
]

= E

[∣∣cos
((
Φ1(W̃ ) + Y2

)
ψ
(
Φ2(W̃ )

))
− ϕ(W̃ )

∣∣
]

≥ 1
2
· E
[∣∣cos

((
Φ1(W̃ ) + Y2

)
ψ
(
Φ2(W̃ )

))
− cos

((
Φ1(W̃ )− Y2

)
ψ
(
Φ2(W̃ )

))∣∣
]

= 1
2
· E
[∣∣cos

(
(Y1 + Y2)ψ

(
Xψ

3 (τ3)
))

− cos
(
(Y1 − Y2)ψ(X

ψ
3 (τ3))

)∣∣
]
.

(29)

The latter estimate and the fact that ∀ x, y ∈ R : cos(x)− cos(y) = 2 sin(y−x
2
) sin(y+x

2
) imply

E

[∣∣cos
(
(Y1 + Y2)ψ

(
Xψ

3 (τ3)
))

− 1
γ
· u(W̃ )

∣∣
]

≥ E

[∣∣sin
(
Y1 ψ

(
Xψ

3 (τ3)
))

· sin
(
Y2 ψ

(
Xψ

3 (τ3)
))∣∣
]
.

(30)
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Since (W, W̃ ), B, and (W (t)−W (τ2))t∈[τ2,τ3] are independent we have independence of Y1, Y2,

and Xψ
3 (τ3) as well. Moreover, we have PXψ

3 (τ3)
= N (0, β). The latter two facts and (30) prove

E

[∣∣cos
(
(Y1 + Y2)ψ

(
Xψ

3 (τ3)
))

− 1
γ
· u(W̃ )

∣∣
]

≥
∫

R

E

[∣∣ sin
(
ψ(x)Y1

)∣∣
]
· E
[∣∣ sin

(
ψ(x)Y2

)∣∣
]
PXψ

3 (τ3)
(dx)

=

∫

R

E

[∣∣ sin
(
ψ(x)Y1

)∣∣
]
· E
[∣∣ sin

(
ψ(x)Y2

)∣∣
]

1√
2πβ

exp
(
− x2

2β

)
dx.

(31)

Next we note that (27) ensures that 1/σ2 ≥ 1. This, the assumption that ψ is continuous, the
assumption that limx→∞ ψ(x) = ∞, and the assumption that ψ(

√
2β) = 1 show

(32) 1/σ2 ∈
[
ψ(
√
2β),∞

)
⊂ ψ(R).

It follows
∫

R

E

[∣∣ sin
(
ψ(x)Y1

)∣∣
]
· E
[∣∣ sin

(
ψ(x)Y2

)∣∣
]

1√
2πβ

exp
(
− x2

2β

)
dx

≥
∫ 2ψ−1(1/σ2)

ψ−1(1/σ2)

E

[∣∣ sin
(
ψ(x)Y1

)∣∣
]
· E
[∣∣ sin

(
ψ(x)Y2

)∣∣
]

1√
2πβ

exp
(
− x2

2β

)
dx

≥ 1√
2πβ

exp
(
− 2
β

∣∣ψ−1( 1
σ2
)
∣∣2
)∫ 2ψ−1(1/σ2)

ψ−1(1/σ2)

E

[∣∣ sin
(
ψ(x)Y1

)∣∣
]
· E
[∣∣ sin

(
ψ(x)Y2

)∣∣
]
dx.

(33)

We are now in a position to apply Lemma 2. Observe that (27) and the assumption that ψ is
strictly increasing imply that for all x ∈ [ψ−1(1/σ2),∞), i ∈ {1, 2} we have σiψ(x) ≥ σi/σ2 ≥ 1.
Employing Lemma 2 we thus conclude that

∫ 2ψ−1(1/σ2)

ψ−1(1/σ2)

E
[
| sin(ψ(x)Y1)|

]
· E
[
| sin(ψ(x)Y2)|

]
dx

≥
∫ 2ψ−1(1/σ2)

ψ−1(1/σ2)

[
1√
8π

· exp
(
−π2

8

)]2
dx =

1

8π
· exp

(
−π2

4

)
· ψ−1

(
1
σ2

)
.

(34)

Furthermore, (24), (32), and the assumption that ψ is strictly increasing ensure that

(35) ψ−1
(

1
σ2

)
≤ ψ−1

(√
12√
α3

· 1
(t1−t0)3/2

)
.

Combining (31)–(35) proves

E

[∣∣cos
(
(Y1 + Y2)ψ

(
Xψ

3 (τ3)
))

− 1
γ
· u(W̃ )

∣∣
]

≥ 1√
2πβ

exp
(
− 2
β

∣∣∣ψ−1
(√

12√
α3

· 1
(t1−t0)3/2

)∣∣∣
2)

· 1

8π
· exp

(
−π2

4

)
· ψ−1

(
1
σ2

)
.

(36)
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Finally, note that (32) and the assumption that ψ is strictly increasing imply
√
2β ≤ ψ−1

(
1
σ2

)
.

Hence, we derive from (36) that

E

[∣∣cos
(
(Y1 + Y2)ψ

(
Xψ

3 (τ3)
))

− 1
γ
· u(W̃ )

∣∣
]

≥ exp
(
− 2
β

∣∣∣ψ−1
(√

12√
α3

· 1
(t1−t0)3/2

)∣∣∣
2)

· 1

8π3/2
· exp

(
−π2

4

)
.

(37)

This and (28) complete the proof of the lemma. �

We are ready to establish our main result.

Theorem 4. Assume the setting in Section 3, let α1, α2, α3, β, c, C ∈ (0,∞), and γ ∈ R be

given by

α1 =

∫ τ1

0

|f(s)|2 ds, α2 = sup
s∈[0,τ1/2]

|f ′(s)|2, α3 = inf
s∈[0,τ1/2]

|f ′(s)|2, β =

∫ τ3

τ2

|g(s)|2 ds,(38)

γ =

∫ T

τ3

h(s) ds, c =
|γ|

8 π3/2 exp(π
2

4
)
, C =

√
12 max{1, T 3/2√α2}√
α3 min{1,

√
α1

2
} ,(39)

let ψ ∈ C∞(R, (0,∞)) be strictly increasing with lim infx→∞ ψ(x) = ∞ and ψ
(√

2β
)
= 1,

let 0 ≤ t0 < t1 ≤ τ1/2, and let u : C
(
[0, t0] ∪ [t1, T ],R

)
→ R be measurable. Then [C/(t1 −

t0)
3/2,∞) ⊂ ψ(R) and

(40) E

[∣∣Xψ
4 (T )− u

(
(W (s))s∈[0,t0]∪[t1,T ]

)∣∣
]
≥ c · exp

(
− 2
β
·
∣∣ψ−1

(
C

(t1−t0)3/2
)∣∣2
)
.

Proof. Let ∆ ∈ (0,∞) be given by (14).
First, assume t1 − t0 ≤ ∆. By Lemma 3 and by the properties of ψ we then have

(41)
[ √

12
(t1−t0)3/2

√
α3
,∞
)
⊂ ψ(R)

and

(42) E

[∣∣Xψ
4 (T )− u

(
(W (s))s∈[0,t0]∪[t1,T ]

)∣∣
]
≥ c · exp

(
− 2
β

∣∣∣ψ−1
( √

12
(t1−t0)3/2

√
α3

)∣∣∣
2)
.

It remains to observe that

(43)

√
12

(t1 − t0)3/2
√
α3

≤ C

(t1 − t0)3/2
,

and that ψ−1 is strictly increasing to obtain the desired result in this case.
Next, assume that t1 − t0 > ∆. Then Lemma 3 together with the properties of ψ yield

(44)
[ √

12
∆3/2√α3

,∞
)
⊂ ψ(R)

and

(45) E

[∣∣Xψ
4 (T )− u

(
(W (s))s∈[0,t0]∪[t1,T ]

)∣∣
]
≥ c · exp

(
− 2
β

∣∣∣ψ−1
( √

12
∆3/2√α3

)∣∣∣
2)
.
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Since

(46)

√
12

∆3/2
√
α3

=

√
12
√
α2√

α3 min{1,
√

α1

2
} ≤

√
12
√
α2√

α3 min{1,
√

α1

2
} · T 3/2

(t1 − t0)3/2
≤ C

(t1 − t0)3/2

and since ψ−1 is strictly increasing, we obtain the claimed result in the actual case as well. �

Theorem 4 implies uniform lower bounds for the error of strong approximations of the solution
processes Xψ in Section 3 at time T based on a finite number of function values of the driving
Brownian motion W . This is, in particular, the subject of the following corollary.

Corollary 1. Assume the setting in Section 3, let α1, α2, α3, β, c, C ∈ (0,∞), and γ ∈ R be

given by

α1 =

∫ τ1

0

|f(s)|2 ds, α2 = sup
s∈[0,τ1/2]

|f ′(s)|2, α3 = inf
s∈[0,τ1/2]

|f ′(s)|2, β =

∫ τ3

τ2

|g(s)|2 ds,(47)

γ =

∫ T

τ3

h(s) ds, c =
|γ|

8 π3/2 exp(π
2

4
)
, C =

√
12 max{1, T 3/2√α2}√
α3 min{1,

√
α1

2
} ,(48)

and let ψ ∈ C∞(R, (0,∞)) be strictly increasing with lim infx→∞ ψ(x) = ∞ and ψ
(√

2β
)
=

1. Then for all n ∈ N ∩ [2T/τ1,∞) and all measurable u : C([T/n, T ],R) → R we have

[Cn3/2T−3/2,∞) ⊂ ψ(R) and

(49) E

[∣∣Xψ
4 (T )− u

(
(W (s))s∈[T/n,T ]

)∣∣
]
≥ c · exp

(
− 2
β
·
∣∣ψ−1

(
C

T 3/2 · n3/2
)∣∣2
)
,

for all n ∈ N, s1, . . . , sn ∈ [0, T ] and all measurable u : Rn → R we have [8Cn3/2(τ1)
−3/2,∞) ⊂

ψ(R) and

(50) E

[∣∣Xψ
4 (T )− u

(
W (s1), . . . ,W (sn)

)∣∣
]
≥ c · exp

(
− 2
β
·
∣∣ψ−1

(
8C

(τ1)3/2
· n3/2

)∣∣2
)
,

and for all n ∈ N∩[2T/τ1,∞), s1, . . . , sn ∈ [0, T ] and all measurable u : Rn×C([T/n, T ],R) → R

we have [23/2C · n3/T 3/2,∞) ⊂ ψ(R) and

(51) E

[∣∣Xψ
4 (T )− u

(
W (s1), . . . ,W (sn), (W (s))s∈[T/n,T ]

)∣∣
]
≥ c · exp

(
− 2
β
·
∣∣ψ−1

(
23/2 C
T 3/2 · n3

)∣∣2
)
.

Proof. Let n ∈ N with T/n ≤ τ1/2 and let u : C([T/n, T ],R) → R be a measurable mapping.
Then Theorem 4 with t0 = 0 and t1 = T/n implies [C · n3/2/T 3/2,∞) ⊂ ψ(R) and

E

[∣∣Xψ
4 (T )− u

(
(W (s))s∈[T/n,T ]

)∣∣
]
≥ c · exp

(
− 2
β
·
∣∣ψ−1

(
C

(T/n)3/2

)∣∣2
)
.(52)

This establishes (49).
Next let n ∈ N, s1, . . . , sn ∈ [0, T ] and let u : Rn+2 → R be a measurable mapping. Then

there exist ŝ0, ŝ1, . . . , ŝn+1 ∈ [0, T ] such that 0 = ŝ0 ≤ ŝ1 ≤ · · · ≤ ŝn+1 and {ŝ0, ŝ1, . . . , ŝn+1} ⊇
{s1, . . . , sn, τ1/2}. In particular, there exists i ∈ {1, 2, . . . , n+ 1} such that

(53) ŝi ≤ τ1
2

and ŝi − ŝi−1 ≥ τ1
2(n+1)

.
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Using Theorem 4 with t0 = ŝi−1 and t1 = ŝi and the fact that ψ−1 is increasing we conclude

that [8C n3/2/τ
3/2
1 ,∞) ⊂ [C(2(n+ 1))3/2/τ

3/2
1 ,∞) ⊂ [C/(ŝi − ŝi−1)

3/2,∞) ⊂ ψ(R) and

E

[∣∣Xψ
4 (T )− u

(
W (ŝ0),W (ŝ1), . . . ,W (ŝn),W (ŝn+1)

)∣∣
]

≥ c · exp
(
− 2
β
·
∣∣ψ−1

(
C

(ŝi−ŝi−1)
3/2

)∣∣2
)
≥ c · exp

(
− 2
β
·
∣∣ψ−1

(
8C

τ
3/2
1

· n3/2
)∣∣2
)
.

(54)

This implies (50).
The proof of (51) is analogous to the proofs of (49) and (50). �

In Lemma 5 below we characterize a non-polynomial decay of the lower bounds in (49), (50),
and (51) in Corollary 1 in terms of a exponential growth property of the function ψ. To do so,
we recall the following elementary fact.

Lemma 4. Let ϕ1 : R → [0,∞) be non-decreasing, let ϕ2 : R → [0,∞) be non-increasing, and

assume that lim infN∋n→∞ [ϕ1(n) · ϕ2(n+ 1)] = ∞. Then lim infR∋x→∞ [ϕ1(x) · ϕ2(x)] = ∞.

Proof. By the properties of ϕ1 and ϕ2 we have for all x ∈ R that ϕ1(x) · ϕ2(x) ≥ ϕ1(⌊x⌋) ·
ϕ2(⌊x⌋+ 1). Hence

(55) lim inf
R∋x→∞

[ϕ1(x) · ϕ2(x)] ≥ lim inf
N∋n→∞

[ϕ1(n) · ϕ2(n+ 1)] = ∞,

which completes the proof. �

Remark 3. We note that in general it is not possible to replace in Lemma 4 the assumption
lim inf
N∋n→∞

[
ϕ1(n) · ϕ2(n+ 1)

]
= ∞ by the weaker assumption lim inf

N∋n→∞
[ϕ1(n) · ϕ2(n)] = ∞. Indeed,

using suitable mollifiers one can construct ϕ1, ϕ2 ∈ C∞(R, [0,∞)) such that ϕ1 is non-decreasing
with ∀n ∈ Z ∀ x ∈ [n, n + 1/2] : ϕ1(x) = exp

(
(n + 1/2)2

)
and such that ϕ2 is non-increasing

with ∀n ∈ Z ∀ x ∈ [n− 1/2, n] : ϕ2(x) = exp(−n2). Then

(56)

lim inf
N∋n→∞

[ϕ1(n) · ϕ2(n)] = lim inf
N∋n→∞

exp
(
(n+ 1/2)2 − n2

)
= ∞,

lim inf
N∋n→∞

[ϕ1(n) · ϕ2(n+ 1)] = lim inf
N∋n→∞

exp
(
(n+ 1/2)2 − (n+ 1)2

)
= 0,

lim inf
R∋x→∞

[ϕ1(x) · ϕ2(x)] ≤ lim inf
N∋n→∞

[ϕ1(n+ 1/2) · ϕ2(n+ 1/2)] = 0.

Lemma 5. Let η1, η2, η3 ∈ (0,∞) and let ψ : R → (0,∞) be strictly increasing and continuous

with lim infx→∞ ψ(x) = ∞. Then ∀ q ∈ (0,∞) : lim infN∋n→∞
[
nq ·exp

(
−η1 |ψ−1(η2n

η3)|2
)]

= ∞
if and only if ∀ q ∈ (0,∞) : lim infR∋x→∞ [ψ(x) · exp(−qx2)] = ∞.

Proof. We use Lemma 4 with ϕ1(x) = xq and ϕ2(x) = exp(−η1 |ψ−1(η2x
η3)|2

)
for x ∈ R to

obtain

(57)

(
∀ q ∈ (0,∞) : lim inf

N∋n→∞

[
nq · exp

(
− η1

∣∣ψ−1(η2n
η3)
∣∣2 )] = ∞

)

⇔
(
∀ q ∈ (0,∞) : lim inf

R∋x→∞

[
xq · exp

(
− η1

∣∣ψ−1(η2x
η3)
∣∣2 )] = ∞

)
.
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Furthermore,
(
∀ q ∈ (0,∞) : lim inf

R∋x→∞

[
xq · exp

(
− η1

∣∣ψ−1(η2x
η3)
∣∣2 )] = ∞

)

⇔
(
∀ q ∈ (0,∞) : lim inf

R∋x→∞

[
xη3q · exp

(
− η1

∣∣ψ−1(η2x
η3)
∣∣2 )] = ∞

)

⇔
(
∀ q ∈ (0,∞) : lim inf

R∋x→∞

[
xq · exp

(
− η1

∣∣ψ−1(η2x)
∣∣2 )] = ∞

)

⇔
(
∀ q ∈ (0,∞) : lim inf

R∋x→∞

[
x · exp

(
− η1

q

∣∣ψ−1(η2x)
∣∣2 )] = ∞

)

⇔
(
∀ q ∈ (0,∞) : lim inf

R∋x→∞

[
x · exp

(
− η1

q

∣∣ψ−1(x)
∣∣2 )] = ∞

)
.

(58)

Using the properties of ψ we have
(
∀ q ∈ (0,∞) : lim inf

R∋x→∞

[
x · exp

(
− η1

q

∣∣ψ−1(x)
∣∣2 )] = ∞

)

⇔
(
∀ q ∈ (0,∞) : lim inf

R∋x→∞

[
ψ(x) · exp

(
− η1

q
x2
)]

= ∞
)

⇔
(
∀ q ∈ (0,∞) : lim inf

R∋x→∞

[
ψ(x) · exp

(
− qx2

)]
= ∞

)
,

(59)

which completes the proof. �

As a immediate consequence of (51) in Corollary 1 and Lemma 5 we get a non-polynomial
decay of the error of any strong approximation of Xψ(T ) based on n ∈ N evaluations of the
driving Brownian motion W and the path of W starting from time T/n if ψ satisfies the
exponential growth condition stated in Lemma 5.

Corollary 2. Assume the setting in Section 3, let β ∈ (0,∞) be given by β =
∫ τ3
τ2

|g(s)|2 ds,
and assume that ψ ∈ C∞(R, (0,∞)) is strictly increasing with the property that ψ

(√
2β
)
= 1

and ∀ q ∈ (0,∞) : lim infx→∞ [ψ(x) · exp(−qx2)] = ∞. Then for all q ∈ (0,∞) we have

(60)

lim inf
n→∞

(
nq · inf

u : Rn×C([T/n,T ],R)→R

measurable, s1,...,sn∈[0,T ]

E

[∣∣Xψ
4 (T )− u

(
W (s1), . . . ,W (sn), (W (s))s∈[T/n,T ]

)∣∣
])

= ∞.

The following result shows that the smallest possible error for strong approximation of Xψ(T )
based on n ∈ N evaluations of the driving Brownian motion W and the path of W starting
from time T/n may decay arbitrarily slow.

Corollary 3. Assume the setting in Section 3, let β ∈ (0,∞) be given by β =
∫ τ3
τ2

|g(s)|2 ds, and
let (an)n∈N ⊂ (0,∞) satisfy lim supn→∞ an = 0. Then there exist a real number κ ∈ (0,∞) and
a strictly increasing function ψ ∈ C∞(R, (0,∞)) with lim infx→∞ ψ(x) = ∞ and ψ

(√
2β
)
= 1

such that for all n ∈ N, s1, s2, . . . , sn ∈ [0, T ] and all measurable u : Rn × C
(
[T/n, T ],R

)
→ R
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we have

(61) E

[∣∣Xψ
4 (T )− u

(
W (s1), . . . ,W (sn), (W (s))s∈[T/n,T ]

)∣∣
]
≥ κ · an.

Proof. Without loss of generality we may assume that the sequence (an)n∈N is strictly decreas-
ing. Let c, C ∈ (0,∞) be given by (39) and put C̃ = 23/2C/T 3/2. Choose n0 ∈ N ∩ [2T/τ1,∞)
such that for all n ∈ {n0, n0 + 1, . . . } we have

(62) an < 1 < C̃ · n3 and β
2
ln
(

1
an

)
> 2β,

and let (bn)n∈{n0−1,n0,... } ⊂ (0,∞) be such that bn0−1 =
√
2β and such that for all n ∈ {n0, n0 +

1, . . . } we have

(63) bn =
[
β
2
ln
(

1
an

)]1/2
.

Note that (bn)n∈{n0−1,n0,... } is strictly increasing and satisfies limn→∞ bn = ∞.
Next let ψ : R → (0,∞) be the function with the property that for all n ∈ {n0, n0 + 1, . . . },

x ∈ R we have

(64) ψ(x) =





1− exp
(

1
(x−bn0−1)

)
, if x < bn0−1,

1, if x = bn0−1,

1 +
C̃ · n3

0 − 1

1 + exp
(

1
(x−bn0−1)

− 1
(bn0−x)

) , if x ∈ (bn0−1, bn0),

C̃ · n3, if x = bn and n ≥ n0,

C̃ · (n− 1)3 +
C̃ · n3 − C̃ · (n− 1)3

1 + exp
(

1
(x−bn−1)

− 1
(bn−x)

) , if x ∈ (bn−1, bn) and n > n0.

Then ψ is strictly increasing, positive, and infinitely often differentiable and ψ satisfies ψ
(√

2β
)
=

1, lim infx→∞ ψ(x) = ∞, and ψ(R) = (0,∞).
In the next step let εn ∈ [0,∞), n ∈ N, be the real numbers with the property that for all

n ∈ N we have

(65) εn = inf
s1,...,sn∈[0,T ]

inf
u : Rn×C([T/n,T ],R)→R

measurable

E

[∣∣Xψ
4 (T )− u

(
W (s1), . . . ,W (sn), (W (s))s∈[T/n,T ])

∣∣
]
.

Estimate (51) in Corollary 1 yields that for all n ∈ {n0, n0 + 1, . . . } we have

(66) εn ≥ c · exp
(
− 2
β
·
∣∣ψ−1

(
C̃ · n3

)∣∣2
)
= c · exp

(
− 2
β
· |bn|2

)
= c · an.

Since the sequence (εn)n∈N is non-increasing, we have for every n ∈ {1, 2, . . . , n0} that εn ≥
εn0 ≥ c · an0 . We therefore conclude that for all n ∈ N we have

(67) εn ≥ c ·min{1, an0/an} · an ≥ c an0

a1
· an,

which completes the proof of the corollary with κ = c · an0/a1. �
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Next we extend the result in Corollary 3 to approximations that may use finitely many
evaluations of the Brownian path as well as the whole Brownian path starting from some
arbitrarily small positive time.

Corollary 4. Assume the setting in Section 3, let β ∈ (0,∞) be given by β =
∫ τ3
τ2

|g(s)|2 ds,
and let (an)n∈N ⊂ (0,∞) and (δn)n∈N ⊂ (0,∞) satisfy limn→∞ an = limn→∞ δn = 0. Then

there exist a real number κ ∈ (0,∞) and a strictly increasing function ψ ∈ C∞(R, (0,∞)) with
lim infx→∞ ψ(x) = ∞ and ψ

(√
2β
)
= 1 such that for all n ∈ N, s1, s2, . . . , sn ∈ [0, T ] and all

measurable u : Rn × C
(
[δn, T ],R

)
→ R we have

(68) E

[∣∣Xψ
4 (T )− u

(
W (s1), . . . ,W (sn), (W (s))s∈[δn,T ]

)∣∣
]
≥ κ · an.

Proof. Without loss of generality we may assume that the sequence (δn)n∈N is strictly decreasing.
Let (kn)n∈N ⊂ (0,∞) be the strictly increasing sequence of positive integers with the property
that for all n ∈ N we have

(69) kn = ⌈T/δn⌉+ n.

Moreover, let (ãn)n∈N ⊂ (0,∞) be a sequence such that for all n ∈ N we have

(70) ãkn = an

and limm→∞ ãm = 0. Then Corollary 3 implies that there exist a real number κ ∈ (0,∞) and
a strictly increasing function ψ ∈ C∞(R, (0,∞)) with lim infx→∞ ψ(x) = ∞ and ψ

(√
2β
)
= 1

such that for all n ∈ N, s1, s2, . . . , sn ∈ [0, T ] and all measurable ũ : Rn × C
(
[T/n, T ],R

)
→ R

we have

(71) E

[∣∣Xψ
4 (T )− ũ

(
W (s1), . . . ,W (sn), (W (s))s∈[T/n,T ]

)∣∣
]
≥ κ · ãn.

Let n ∈ N, let u : Rn × C
(
[δn, T ],R

)
→ R be a measurable mapping, and let s1, s2, . . . , sn ∈

[0, T ]. Note that (69) implies δn ≥ T/kn and kn ≥ n. Put sm = sn for m ∈ {n + 1, n +
2, . . . , kn}. Clearly, there exists a measurable mapping ũ : Rkn×C

(
[T/kn, T ],R

)
→ R such that

u
(
W (s1), . . . ,W (sn), (W (s))s∈[δn,T ]

)
= ũ

(
W (s1), . . . ,W (skn), (W (s))s∈[T/kn,T ]

)
. Hence, by (71)

and by (70), we have

(72) E

[∣∣Xψ
4 (T )− u

(
W (s1), . . . ,W (sn), (W (s))s∈[δn,T ]

)∣∣
]
≥ κ · ãkn = κ · an,

which completes the proof. �

5. Upper error bounds for the Euler-Maruyama scheme

A classical method for strong approximation of SDEs is provided by the Euler-Maruyama
scheme. In Theorem 5 below we establish upper bounds for the root mean square errors of
Euler-Maruyama approximations of Xψ(T ) for the processes Xψ, ψ ∈ C∞(R, (0,∞)), from
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Section 3. In particular, it turns out that in the case of non-polynomial convergence the Euler-
Maruyama approximation may still perform asymptotically optimal, at least on a logarithmic
scale, see Example 2 below for details.

We first provide some elementary bounds for tail probabilities of normally distributed random
variables.

Lemma 6. Let (Ω,A,P) be a probability space, let x ∈ R, and let Z : Ω → R be a standard

normal random variable. Then

(73) P
(
Z ≥ x

)
≤ 1√

2
· exp

(
−x|x|

2

)
.

Proof. For every y ∈ [0,∞) we have

(74) (y + x)2 − x|x| − y2

2
= 1

2
(y2 + 4xy + 2x(x− |x|)) = 1

2
(y2 + 4xy + 4x21(−∞,0](x)) ≥ 0.

Hence

(75)

P(Z ≥ x) =

∫ ∞

0

1√
2π

· exp
(
− (y+x)2

2

)
dy

≤ exp
(
−x|x|

2

) ∫ ∞

0

1√
2π

· exp
(
−y2

4

)
dy = 1√

2
· exp

(
−x|x|

2

)
,

which completes the proof. �

Lemma 7. Let (Ω,A,P) be a probability space, let σ ∈ [0,∞), c ∈ (0,∞) ∩ [σ,∞), and let

Z : Ω → R be a N (0, σ2)-distributed random variable. Then for all x ∈ R we have

(76) P
(
Z ≥ x

)
≤ exp

(
− [max{x,0}]2

2c2

)
.

Proof. In the case σ = 0 we note that for all x ∈ R we have

(77) P
(
Z ≥ x

)
= 1(−∞,0](x) ≤ exp

(
− [max{x,0}]2

2c2

)
.

In the case σ > 0 we use Lemma 6 to obtain that for all x ∈ [0,∞) we have

(78) P
(
Z ≥ x

)
= P

(
Z
σ
≥ x

σ

)
≤ 1√

2
· exp

(
− x2

2σ2

)
≤ exp

(
− x2

2c2

)
,

which completes the proof. �

Next we relate exponential growth of a continuously differentiable function to exponential
growth of its derivative.

Lemma 8. Let ψ ∈ C1(R,R) satisfy ∀ q ∈ (0,∞) : lim infx 7→∞ [ψ(x) · exp(−qx2)] = ∞ and

assume that ψ′ is non-decreasing. Then ∀ q ∈ R : lim infx 7→∞ [ψ′(x) · exp(−qx2)] = ∞.

Proof. Since ∀ q ∈ (0,∞) : lim infx→∞
[
ψ(x) · exp(−qx2)

]
= ∞, we have

(79) ∀ q ∈ R : lim inf
x→∞

[
ψ(x) · exp(−qx2)

]
= ∞.
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By the fundamental theorem of calculus and the assumption that ψ′ is increasing we obtain for
all x ∈ (0,∞) that

(80) ψ′(x) =
1

x

∫ x

0

ψ′(x) dy ≥ 1

x

∫ x

0

ψ′(y) dy =
ψ(x)− ψ(0)

x
.

Hence, for all q ∈ R we have

lim inf
x→∞

[
ψ′(x) · exp(−qx2)

]
≥ lim inf

x→∞

[
ψ(x)− ψ(0)

x · exp(qx2)

]
≥ lim inf

x→∞

[
ψ(x)− 1

2
ψ(x)

x · exp(qx2)

]

= lim inf
x→∞

[
ψ(x)

2x · exp(qx2)

]
≥ lim inf

x→∞

[
ψ(x) · exp(−2qx2)

]
= ∞,

(81)

which completes the proof. �

We turn to the analysis of the Euler-Maruyama scheme for strong approximation of SDEs in
the setting of Section 3.

Theorem 5. Assume the setting in Section 3, assume that τ1 < τ2, let β ∈ (0,∞) be given

by β =
∫ τ3
τ2

|g(s)|2 ds, let δ ∈ (0, 1), let ψ ∈ C∞(R, (0,∞)) be strictly increasing such that

ψ
(√

2β
)
= 1, such that ∀ q ∈ (0,∞) : lim infx 7→∞ [ψ(x) · exp(−qx2)] = ∞, and such that ψ′

is strictly inreasing, and let X̂(ψ,n) : {0, 1, . . . , n} × Ω → R
4, n ∈ N, satisfy for all n ∈ N,

k ∈ {0, 1, . . . , n− 1} that X̂
(ψ,n)
0 = 0 and

(82) X̂
(ψ,n)
k+1 = X̂

(ψ,n)
k + µψ(X̂

(ψ,n)
k ) T

n
+ σ(X̂

(ψ,n)
k )

(
W ( (k+1)T

n
)−W (kT

n
)
)
.

Then there exist real numbers c ∈ (0,∞) and n0 ∈ N such that
[
|n0|δ,∞

)
⊂ ψ′(R) and such

that for every n ∈ {n0, n0 + 1, . . . } we have

(83)
(
E

[∥∥Xψ(T )− X̂(ψ,n)
n

∥∥2
R4

])1/2
≤ c

[
exp
(
−1
c
·
∣∣ψ−1(nδ)

∣∣2
)
+ exp

(
−1
c
·
∣∣(ψ′)−1(nδ)

∣∣2
)]

.

Proof. Throughout this proof let ∆W n
j : Ω → R, j ∈ {1, 2, . . . , n}, n ∈ N, be the mappings

with the property that for all n ∈ N, j ∈ {1, 2, . . . , n} we have ∆W n
j = W ( jT

n
)−W ( (j−1)T

n
), let

βn ∈ R, n ∈ N, and γn ∈ R, n ∈ N, be the real numbers with the property that for all n ∈ N

we have

(84) γn =
n∑

j=1

T
n
· h
( (j−1)T

n

)
, βn =

n∑

j=1

T
n
·
∣∣g
( (j−1)T

n

)∣∣2,

and let X̂
(ψ,n)
l,(·) : {0, 1, . . . , n} × Ω → R, l ∈ {1, 2, 3, 4}, n ∈ N, be the stochastic processes with

the property that for all n ∈ N, k ∈ {0, 1, . . . , n} we have X̂
(ψ,n)
k = (X̂

(ψ,n)
1,k , . . . , X̂

(ψ,n)
4,k ). By the

properties of f, g, h stated in Section 3 and by the definition of µψ and σ (see (4)), we have for
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all n ∈ N, k ∈ {0, 1, . . . , n} that X̂
(ψ,n)
1,k = k·T

n
and

(85)

X̂
(ψ,n)
2,k =

k∑

j=1

f
(
(j−1)T

n

)
·∆Wj =

min{k,⌈nτ1/T ⌉}∑

j=1

f
(
(j−1)T

n

)
·∆Wj,

X̂
(ψ,n)
3,k =

k∑

j=1

g
( (j−1)T

n

)
·∆Wj =

min{k,⌈nτ3/T ⌉}∑

j=⌊nτ2/T ⌋+2

g
( (j−1)T

n

)
·∆Wj,

X̂
(ψ,n)
4,k =

k∑

j=1

T
n
· h
( (j−1)T

n

)
· cos

(
X̂

(ψ,n)
2,j−1 · ψ(X̂(ψ,n)

3,j−1)
)

=
k∑

j=⌊nτ3/T ⌋+2

T
n
· h
( (j−1)T

n

)
· cos

(
X̂

(ψ,n)
2,j−1 · ψ(X̂(ψ,n)

3,j−1)
)
.

In particular, for all n ∈ N, k ∈ [nτ1
T
,∞) ∩ {1, 2, . . . , n} we have X̂

(ψ,n)
2,k = X̂

(ψ,n)
2,n and for all

n ∈ N, k ∈ [nτ3
T
,∞) ∩ {1, 2, . . . , n} we have X̂

(ψ,n)
3,k = X̂

(ψ,n)
3,n . Therefore, for all n ∈ N we have

(86) X̂
(ψ,n)
4,n =

k∑

j=⌊nτ3/T ⌋+2

T
n
· h
( (j−1)T

n

)
· cos

(
X̂

(ψ,n)
2,n · ψ(X̂(ψ,n)

3,n )
)
= γn · cos

(
X̂

(ψ,n)
2,n · ψ(X̂(ψ,n)

3,n )
)
.

We separately analyze the componentwise mean square errors

(87) εi,n = E
[
|Xψ

i (T )− X̂
(ψ,n)
i,n |2

]

for i ∈ {1, . . . , 4}, n ∈ N. Clearly, for all n ∈ N we have ε1,n = 0. Moreover, Itô’s isometry
shows that for all n ∈ N we have
(88)

ε2,n = E



∣∣∣∣∣

n∑

j=1

∫ jT/n

(j−1)T/n

(
f(s)− f( (j−1)T

n
)
)
dW (s)

∣∣∣∣∣

2

 =

n∑

j=1

∫ jT/n

(j−1)T/n

∣∣f(s)− f( (j−1)T
n

)
∣∣2 ds

≤ sup
t∈[0,τ1]

|f ′(t)|2 ·
n∑

j=1

∫ jT/n

(j−1)T/n

∣∣s− (j−1)T
n

∣∣2 ds = T 3

3n2
· sup
t∈[0,τ1]

|f ′(t)|2,

and, similarly,

(89) ε3,n ≤ T 3

3n2
· sup
t∈[τ2,τ3]

|g′(t)|2, E
[
|X̂(ψ,n)

2,n |2
]
≤ T · sup

t∈[0,τ1]
|f(t)|2.

We turn to the analysis of ε4,n, n ∈ N. For this let γ ∈ R be given by γ =
∫ T
τ3
h(s) ds (see

(14)). From (86) we obtain

(90) ε4,n ≤ 2 |γ|2 · E
[∣∣ cos

(
Xψ

2 (T ) · ψ
(
Xψ

3 (T )
))

− cos
(
X̂

(ψ,n)
2,n · ψ(X̂(ψ,n)

3,n )
)∣∣2
]
+ 2 |γ − γn|2 .
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Clearly, for all n ∈ N we have

(91)

|γ − γn| =
∣∣∣∣
n∑

j=1

∫ jT/n

(j−1)T/n

(
h(s)− h

(
(j−1)T

n

))
ds

∣∣∣∣

≤ sup
t∈[τ3,T ]

|h′(t)| ·
n∑

j=1

∫ jT/n

(j−1)T/n

∣∣s− (j−1)T
n

∣∣ ds = T 2

2n
· sup
t∈[τ3,T ]

|h′(t)|.

Using a trigonometric identity, the fact that ∀ x ∈ R : | sin(x)| ≤ min{1, |x|}, inequality (88),
the fact that PXψ

3 (T ) = N (0, β), a standard estimate of Gaussian tail probabilities, see, e.g., [17,

Lemma 22.2], and the fact that ψ−1(nδ) ≥ ψ−1(1) =
√
2β we get for all n ∈ N that

(92)

E

[∣∣ cos
(
Xψ

2 (T ) · ψ
(
Xψ

3 (T )
))

− cos
(
X̂

(ψ,n)
2,n · ψ

(
Xψ

3 (T )
))∣∣2

]

= 4 · E
[∣∣∣ sin

(
1
2

(
Xψ

2 (T )− X̂
(ψ,n)
2,n

)
ψ
(
Xψ

3 (T )
))

sin
(

1
2

(
Xψ

2 (T ) + X̂
(ψ,n)
2,n

)
ψ
(
Xψ

3 (T )
))∣∣∣

2
]

≤ 4 · E
[∣∣∣ sin

(
1
2

(
Xψ

2 (T )− X̂
(ψ,n)
2,n

)
ψ
(
Xψ

3 (T )
))∣∣∣

2
]

≤ E

[∣∣Xψ
2 (T )− X̂

(ψ,n)
2,n

∣∣2 ∣∣ψ
(
Xψ

3 (T )
)∣∣2 1{Xψ

3 (T )≤ψ−1(nδ)}

]
+ 4 · P

(
Xψ

3 (T ) > ψ−1(nδ)
)

≤ n2δ
E

[∣∣Xψ
2 (T )− X̂

(n)
2,n

∣∣2
]
+

√
β

ψ−1(nδ)
√
2π

· exp
(
− 1

2β
·
∣∣ψ−1(nδ)

∣∣2
)

≤ T 3

3n2(1−δ) sup
t∈[0,τ1]

|f ′(t)|2 + 1

2
√
π
· exp

(
− 1

2β
·
∣∣ψ−1(nδ)

∣∣2
)
.

By Lemma 8 we have limx→∞ ψ′(x) = ∞. Hence, there exists n1 ∈ N such that
[
|n1|δ,∞

)
⊂

ψ′([0,∞)
)
. Put

(93) n0 = max
{
n1,
⌈

T
τ2−τ1

⌉}

and let n ∈ {n0, n0 + 1, . . . }. Then (W (s))s∈[0,⌈nτ1/T ⌉·T/n] and (W (s) −W (τ2))s∈[τ2,T ] are inde-

pendent, which implies independence of the random variables X̂
(ψ,n)
2,n and Xψ

3 (T )−X̂(ψ,n)
3,n . Using

the latter fact as well as the fact that ψ′ is strictly increasing and the estimates in (89), we may
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proceed analoguously to the derivation of (92) to obtain

(94)

E

[∣∣cos
(
X̂

(ψ,n)
2,n · ψ

(
Xψ

3 (T )
))

− cos
(
X̂

(ψ,n)
2,n · ψ

(
X̂

(n)
3,n

))∣∣2
]

≤ 4 · E
[∣∣sin

(
1
2
· X̂(ψ,n)

2,n ·
[
ψ
(
Xψ

3 (T )
)
− ψ

(
X̂

(ψ,n)
3,n

)])∣∣2
]

≤ E

[∣∣X̂(ψ,n)
2,n

∣∣2 ·
∣∣ψ
(
Xψ

3 (T )
)
− ψ

(
X̂

(ψ,n)
3,n

)∣∣2 · 1{ψ′(max{Xψ
3 (T ),X̂

(ψ,n)
3,n })≤nδ}

]

+ 4 · P
(
ψ′(max{Xψ

3 (T ), X̂
(ψ,n)
3,n }

)
> nδ

)

≤ n2δ · E
[∣∣X̂(ψ,n)

2,n

∣∣2
]
· E
[∣∣Xψ

3 (T )− X̂
(ψ,n)
3,n

∣∣2
]

+ 4 · P
(
max{Xψ

3 (T ), X̂
(ψ,n)
3,n } > (ψ′)−1(nδ)

)

≤ T 4

3n2(1−δ) · sup
t∈[0,τ1]

|f(t)|2 · sup
t∈[τ2,τ3]

|g′(t)|2

+ 4 · P
(
Xψ

3 (T ) > (ψ′)−1(nδ)
)
+ 4 · P

(
X̂

(ψ,n)
3,n > (ψ′)−1(nδ)

)
.

Note that PXψ
3
= N (0, β) and P

X̂
(ψ,n)
3,n

= N (0, βn) and supm∈N βm ∈ [β,∞). We may therefore

apply Lemma 7 to conclude

(95)
P
(
Xψ

3 (T ) > (ψ′)−1(nδ)
)
+ P

(
X̂

(ψ,n)
3,n > (ψ′)−1(nδ)

)

≤ exp
(
− |(ψ′)−1(nδ)|2

2β

)
+ exp

(
− |(ψ′)−1(nδ)|2

2 supm∈N βm

)
.

Combining (90)–(92) and (94)–(97) ensures that there exist c1, c2 ∈ (0,∞) such that for all
n ∈ {n0, n0 + 1, . . . } we have

(96) ε4 ≤ c1 ·
(

1
n2(1−δ) + exp

(
−c2 ·

∣∣ψ−1(nδ)
∣∣2)+ exp

(
−c2 ·

∣∣(ψ′)−1(nδ)
∣∣2)
)
.

By assumption we have for all q ∈ (0,∞) that lim infx→∞
[
ψ(x) · exp(−qx2)

]
= ∞. Hence,

Lemma 5 ensures that there exists c3 ∈ (0,∞) such that for all n ∈ N we have

(97) 1
n(1−δ) ≤ c3 · exp

(
−c2

∣∣ψ−1(nδ)
∣∣2).

Combining (88), (89), (96), and (97) finishes the proof. �

Example 2. Assume the setting in Section 3, assume that τ1 < τ2, let β ∈ (0,∞) be given by
β =

∫ τ3
τ2

|g(s)|2 ds, let ψl : R → (0,∞), l ∈ {1, 2}, be the functions such that for all x ∈ R we
have

ψ1(x) = exp
(
x3 + 2x− (2β)3/2 − 2(2β)1/2

)
,(98)

ψ2(x) = exp
(
x exp

(
x2 + 1

)
− (2β)1/2 exp(2β + 1)

)
,(99)
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and for every n ∈ N, l ∈ {1, 2} let X̂(ψl,n) : {0, 1, . . . , n} × Ω → R
4 be the mapping such that

for all k ∈ {0, 1, 2, . . . , n− 1} we have X̂
(ψl,n)
0 = 0 and

(100) X̂
(ψl,n)
k+1 = X̂

(ψl,n)
k + µψl(X̂

(ψl,n)
k ) T

n
+ σ(X̂

(ψl,n)
k )

(
W ( (k+1)T

n
)−W (kT

n
)
)
.

Clearly, we have ψ1, ψ2 ∈ C∞(R, (0,∞)) and ψ1

(√
2β
)
= ψ2

(√
2β
)
= 1. Moreover, for all

q ∈ (0,∞) we have

(101) lim inf
x 7→∞

[
ψ1(x) · exp(−qx2)

]
= lim inf

x 7→∞

[
ψ2(x) · exp(−qx2)

]
= ∞.

Furthermore, for all x ∈ R we have

(102)
ψ′
1(x) =

(
3x2 + 2

)
· ψ1(x) > 0,

ψ′′
1(x) =

(
6x+ (3x2 + 2)2

)
· ψ1(x) =

(
9x4 + 3x2 + 3 + (3x+ 1)2

)
· ψ1(x) > 0

and

(103)

ψ′
2(x) = (2x2 + 1) exp

(
x2 + 1

)
· ψ2(x) > 0,

ψ′′
2(x) =

(
4x+ (1 + 2x2)

(
2x+ (1 + 2x2) exp

(
x2 + 1

)))
exp
(
x2 + 1

)
ψ2(x)

>
(
4x+ (1 + 2x2)

(
2x+ 2(1 + 2x2)

))
exp
(
x2 + 1

)
ψ2(x)

≥
(
4x+ 7/4 · (1 + 2x2)

)
exp
(
x2 + 1

)
ψ2(x) ≥ (17/28) exp

(
x2 + 1

)
ψ2(x) > 0.

Hence, ψ1, ψ
′
1, ψ2, and ψ

′
2 are strictly increasing and we have ψ′

1(R) = ψ′
2(R) = (0,∞).

Using Corollary 1 and Theorem 5 with δ = 1/2 we conclude that there exist c1, c2 ∈ (0,∞),
n0 ∈ N such that for all k ∈ {1, 2} and all n ∈ {n0, n0 + 1, . . . } we have

(104)

c1 · exp
(
− 2
β
·
∣∣ψ−1

k

(
1
c1
· n3
)∣∣2)

≤
(
E

[∥∥Xψk(T )− X̂(ψk,n)
n

∥∥2
R4

])1/2

≤ c2 ·
[
exp
(
− 1
c2
·
∣∣ψ−1

k (n1/2)
∣∣2)+ exp

(
− 1
c2
·
∣∣(ψ′

k)
−1(n1/2)

∣∣2)
]
.

Next, we provide suitable minorants and majorants for the functions (ψk)
−1, k ∈ {1, 2}, and

(ψ′
k)

−1, k ∈ {1, 2}. To this end we use the fact that for all a ∈ R and all strictly increasing
continuous functions f1, f2 : [a,∞) → R with f1 ≥ f2 and limx→∞ f2(x) = ∞ we have

(105) ∀ x ∈ [f1(a),∞) : x = f2(f
−1
2 (x)) ≤ f1(f

−1
2 (x))

and therefore

(106) ∀ x ∈ [f1(a),∞) : f−1
1 (x) ≤ f−1

2 (x).
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Clearly, for all x ∈ [1,∞) we have
(107)

exp
(
x3 + 2− (2β)3/2 − 2(2β)1/2

)
≤ ψ1(x) ≤ exp

(
3x3
)
,

exp
(
exp
(
x2
)
− (2β)1/2 exp(2β + 1)

)
≤ ψ2(x) ≤ exp

(
exp
(
x2 + x+ 1

))
≤ exp

(
exp
(
3x2
))
,

ψ′
1(x) ≤ exp

(
3x2 + 2

)
· ψ1(x) ≤ exp

(
8x3
)
,

ψ′
2(x) ≤ exp

(
3x2 + 2

)
· ψ2(x) ≤ exp

(
exp
(
8x2
))
.

We may therefore apply (106) with a = 1 to obtain that for all x ∈ [exp(exp(8)),∞) we have

(108)

(
ln(x)− 2 + (2β)3/2 + 2(2β)1/2

)1/3 ≥ ψ−1
1 (x) ≥ 3−1/3 · (ln(x))1/3,

(ln(ln(x) + (2β)1/2 exp(2β + 1)))1/2 ≥ ψ−1
2 (x) ≥ 3−1/2 · (ln(ln(x)))1/2

(ψ′
1)

−1(x) ≥ 8−1/3 · (ln(x))1/3,
(ψ′

2)
−1(x) ≥ 8−1/2 · (ln(ln(x)))1/2.

Combining (104) with (108) shows that there exist c1, c2, c3, c4 ∈ (0,∞), n0 ∈ N such that
for all n ∈ {n0, n0 + 1, . . . } we have

(109)
c1 · exp

(
−c2 · | ln(n)|2/3

)
≤
(
E

[∥∥Xψ1(T )− X̂(ψ1,n)
n

∥∥2
R4

])1/2
≤ c3 · exp

(
−c4 · | ln(n)|2/3

)
,

c1 · exp
(
−c2 · ln

(
ln(n)

))
≤
(
E

[∥∥Xψ2(T )− X̂(ψ2,n)
n

∥∥2
R4

])1/2
≤ c3 · exp

(
−c4 · ln

(
ln(n)

))
.

In particular, in both cases the Euler-Maruyama scheme performs asymptotically optimal on a
logarithmic scale.

6. Numerical experiments

We illustrate our theoretical findings by numerical simulations of the mean error performance
of the Euler scheme, the tamed Euler scheme, and the stopped tamed Euler scheme for a
equation, which allows a decay of error not faster than c · exp

(
− 1/c · | ln(n)|2/3

)
in terms of

the number n ∈ N of observations of the driving Brownian motion, where c ∈ (0,∞) is a real
number which does not depend on n ∈ N.
Assume the setting in Section 3, assume that T = 1, τ1 = τ2 = 1/4, τ3 = 3/4, assume that for

all x ∈ R we have

(110)

f(x) = 1(−∞,1/4)(x) · exp
(
3 ln(10) + 1

x−1/4

)
,

g(x) = 1(1/4,3/4)(x) · exp
(
ln(2) + 4 ln(10) + 1

1/4−x − 1
x−3/4

)
,

h(x) = 1(3/4,∞)(x) · exp
(
4 ln(10) + 1

3/4−x

)
,
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(cf. Example 1), let β ∈ (0,∞) be given by β =
∫ 3/4

1/4
|g(s)|2 ds, and let ψ : R → (0,∞) be the

function such that for all x ∈ R we have

ψ(x) = exp
(
x3
)
.

Recall that the functions f , g, h, and ψ determine a drift coefficient µψ : R4 → R
4 and a

diffusion coefficient σ : R4 → R
4, see (4). Furthemore, recall that the fourth component of the

solution Xψ of the associated SDE at time 1 satisfies that it holds P-a.s. that

(111) Xψ
4 (1) =

1

∫
3/4

h(s) ds · cos
(

1/4

∫
0
f(s) dW (s) · ψ

(
∫ 3/41/4 g(s) dW (s)

))
,

see (5).

Furthermore, let X̂(n),η =
(
X̂

(n),η
1,(·) , X̂

(n),η
2,(·) , X̂

(n),η
3,(·) , X̂

(n),η
4,(·)

)
: {0, 1, . . . , n} × Ω → R

4, n ∈ N,

η ∈ {1, 2, 3}, be the mappings such that for all η ∈ {1, 2, 3}, n ∈ N, k ∈ {0, 1, . . . , n − 1} we

have X̂
(n),η
0 = 0 and

(112)

X̂
(n),1
k+1 = X̂

(n),1
k + µψ(X̂

(n),1
k ) 1

n
+ σ(X̂

(n),1
k )

(
W (k+1

n
)−W ( k

n
)
)
,

X̂
(n),2
k+1 = X̂

(n),2
k +

µψ(X̂
(n),2
k ) 1

n

1 + ‖µψ(X̂(n),2
k )‖R4

1
n

+ σ(X̂
(n),2
k )

(
W (k+1

n
)−W ( k

n
)
)
,

X̂
(n),3
k+1 = X̂

(n),3
k

+ 1{
‖X̂(n),3

k ‖
R4≤exp(| ln(n)|1/2)

}

[
µψ(X̂

(n),3
k ) 1

n
+ σ(X̂

(n),3
k )

(
W (k+1

n
)−W ( k

n
)
)

1 +
∥∥µψ(X̂(n),3

k ) 1
n
+ σ(X̂

(n),3
k )

(
W (k+1

n
)−W ( k

n
)
)∥∥2

R4

]
.

Thus X̂(n),1, X̂(n),2, X̂(n),3 are the Euler scheme (see Maruyama [19]), the tamed Euler scheme
in Hutzenthaler et al. [14], and the stopped tamed Euler scheme in Hutzenthaler et al. [16],
respectively, each with time-step size 1/n.

Let εηn ∈ [0,∞), n ∈ N, η ∈ {1, 2, 3}, be the real numbers with the property that for all
n ∈ N, η ∈ {1, 2, 3} we have

εηn = E
[
|Xψ

4 (1)− X̂
(n),η
4,n |

]
,

let f̄ : R → R and ψ̄ : R → (0,∞) be the functions such that for all x ∈ R we have f̄(x) =
exp((2β)3/2) · f(x) and ψ̄(x) = exp(−(2β)3/2) ·ψ(x), and let α1, α2, α3, c̄, C̄ ∈ (0,∞) be the real
numbers given by

α1 =
τ1
∫
0
|f̄(s)|2 ds, α2 = sup

s∈[0,τ1/2]
|f̄ ′(s)|2, α3 = inf

s∈[0,τ1/2]
|f̄ ′(s)|2,(113)

c̄ =
|
∫ 1

τ3
h(s) ds|

8 π3/2 exp(π
2

4
)
, C̄ =

√
12 max{1,√α2}√
α3 min{1,

√
α1

2
} .(114)

In the next step we note that ψ̄ ∈ C∞(R, (0,∞)) is strictly increasing, we note that lim infx→∞ ψ̄(x) =
∞, and we note that ψ̄(

√
2β) = 1. We can thus apply inequality (50) in Corollary 1 (with the
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functions f̄ , g, h, and ψ̄) to obtain that for all n ∈ N, s1, . . . , sn ∈ [0, 1] and all measurable
u : Rn → R we have [8C̄n3/2(τ1)

−3/2,∞) ⊂ ψ̄(R) and

(115) E

[∣∣Xψ
4 (1)− u

(
W (s1), . . . ,W (sn)

)∣∣
]
≥ c̄ · exp

(
− 2
β
·
∣∣ψ̄−1

(
8 C̄

(τ1)3/2
· n3/2

)∣∣2
)
.

This and the fact that ∀ y ∈ ψ̄(R) : ψ̄−1(y) =
[
ln(y · exp((2β)3/2))

]1/3
ensure that for all n ∈ N,

s1, . . . , sn ∈ [0, 1] and all measurable u : Rn → R we have

(116)

E

[∣∣Xψ
4 (1)− u

(
W (s1), . . . ,W (sn)

)∣∣
]

≥ c̄ · exp
(
− 2
β
·
∣∣ln
(

8 C̄
(τ1)3/2

· exp((2β)3/2) · n3/2
)∣∣2/3

)

= c̄ · exp
(
− 2
β

∣∣ln
(8 C̄ exp((2β)3/2)

(τ1)3/2

)
+ 3

2
ln(n)

∣∣2/3
)

≥ c̄ · exp
(
− 2
β

∣∣ln
(8 C̄ exp((2β)3/2)

(τ1)3/2

)∣∣2/3
)
· exp

(
−21/3 32/3

β
· | ln(n)|2/3

)
.

In particular, this proves that there exists a real number c ∈ (0,∞) such that for all η ∈ {1, 2, 3},
n ∈ N we have

(117) εηn = E
[
|Xψ

4 (1)− X̂
(n),η
4,n |

]
≥ c · exp

(
− 1

c
· | ln(n)|2/3

)
.

In the next step let m = 5000, N = 221, let B = (B1, . . . , Bm) : [0, 1] × Ω → R
m be an

m-dimensional standard Brownian motion, and let Y N = (Y N
1 , . . . , Y N

m ) : Ω → R, N ∈ N, be
the random variables with the property that for all N ∈ N, k ∈ {1, 2, . . . ,m} we have

(118) Y N
k =

∫ 1

3/4

h(s) ds · cos
(

1
N

⌊N/4⌋∑
i=0

f ′( i
N
) · Bk(

i
N
) · ψ

(
− 1
N

⌊3N/4⌋∑
i=⌈N/4⌉

g′( i
N
)Bk(

i
N
)

))
.

The random variables Y N
k , k ∈ {1, 2, . . . ,m}, N ∈ N, are used to get reference estimates of

realizations of Xψ
4 (1). Our numerical results are based on a simulation

(119) (b1, . . . , bm) =
(
(b1,i)i∈{0,1,...,N}, . . . , (bm,i)i∈{0,1,...,N}

)
∈ R

(N+1)m

of a realization of
(
(B1(i/N))i∈{0,1,...,N}, . . . , (Bm(i/N))i∈{0,1,...,N}

)
(a realization of (B1, . . . , Bm)

evaluated at the equidistant times i/N, i ∈ {0, 1, . . . , N}). Based on (b1, . . . , bm) we compute
a simulation (y1, . . . , ym) ∈ R

m of a realization of (Y N
1 , . . . , Y N

m ) and based on (b1, . . . , bm) we

compute for every η ∈ {1, 2, 3} and every n ∈ {20, 21, . . . , 219} a simulation (x
(n),η
1 , . . . , x

(n),η
m ) ∈

R
m of a corresponding realization ofm independent copies of X̂

(n),η
4,n . Then for every η ∈ {1, 2, 3}

and every n ∈ {20, 21, . . . , 219} the real number

(120) ε̂ηn =
1

m

m∑

ℓ=1

|yℓ − x
(n),η
ℓ |

serves as an estimate of εηn = E
[
|Xψ

4 (1)− X̂
(n),η
4,n |

]
.
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Figure 1. Error vs. number of time steps

Figure 1 shows, on a log-log scale, the plots of the error estimates ε̂1n, ε̂
2
n, ε̂

3
n versus the number

of time-steps n ∈ {20, 21, 22, . . . , 218, 219}. Additionally, the powers n−0.01, n−0.05, n−0.1, n−0.2

are plotted versus n ∈ {20, 21, 22, . . . , 218, 219}. The results provide some numerical evidence
for the theoretical findings in Corollary 2, that is, none of the three schemes converges with a
positive polynomial strong order of convergence to the solution at the final time.
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[29] Traub, J. F., Wasilkowski, G., and Woźniakowski, H. Information-based complexity. Boston, MA:

Academic Press, Inc., 1988.

[30] Tretyakov, M., and Zhang, Z. A fundamental mean-square convergence theorem for SDEs with locally

Lipschitz coefficients and its applications. SIAM J. Numer. Anal. 51, 6 (2013), 3135–3162.

[31] Wang, X., and Gan, S. The tamed Milstein method for commutative stochastic differential equations

with non-globally Lipschitz continuous coefficients. Journal of Difference Equations and Applications 19, 3

(2013), 466–490.

Seminar für Angewandte Mathematik, Departement Mathematik, HG G 58.1, Rämistrasse
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