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Abstract

In this paper we consider the inverse scattering problem for high-contrast targets. We mathe-
matically analyze the experimentally-observed phenomenon of super-resolution in imaging the target
shape. This is the first time that a mathematical theory of super-resolution has been established
in the context of imaging high contrast inclusions. We illustrate our main findings with a variety
of numerical examples. Our analysis is based on the novel concept of scattering coefficients. These
findings may help in developing resonant structures for resolution enhancement.
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1 Introduction

The aim of this work is to mathematically investigate the mechanism underlying the experimentally-
observed phenomenon of super-resolution in reconstructing targets of high contrast from far-field mea-
surements. Our main focus is to explore the possibility of breaking the diffraction barrier from the far-field
measurements using the novel concept of scattering coefficients [5, 7, 8. This diffraction barrier, referred
to as the Abbe-Rayleigh or the resolution limit, places a fundamental limit on the minimal distance at
which we can resolve the shape of a target [2, 3]. It applies only to waves that have propagated for a
distance substantially larger than its wavelength [14, 15].

Since the mid-20th century, several approaches have aimed at pushing this diffraction limits. Reso-
lution enhancement in imaging the target shape from far-field measurements can be achieved using sub-
wavelength-scaled resonant media [10, 6, 24, 25, 26, 27|, single molecule imaging [23] and using plasmonic
particles [9]. Another innovative method to overcome the diffraction barrier has been proposed after some
experimental observations in [12]. In their work, resolution enhancement in shape reconstruction of the
inclusion was experimentally shown when the contrast value is very high. In the reconstructed images
from far-field measurements, the observed resolution is smaller than half of the operating wavelength.
This encouraging observation suggests a possibility of breaking the resolution limit with high permittivity
of the target. It is therefore the purpose of this work to prove that the higher the permittivity of the
target is, the higher the resolving power is in imaging its shape.

For the transmission problem of a strictly convex domain, it was proved in [29] that there exists
an infinite sequence of complex resonant frequencies located at the upper half plane. These resonances
converge to the real axis exponentially fast, and the real part of these resonances correspond to the quasi-
resonant modes introduced as in [29]. Quasi-resonance occurs when the wavelength inside the inclusion
is larger than the wavelength in the background media and is such that it reaches the real part of one of
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these true resonant frequencies. In this paper, we have shown, via the analysis of the shape derivative
of the scattering coeflicients, that these resonant state of the inclusion actually has a signature in the
far-field and can be used for super-resolved imaging from far-field data. To be more exact, we have proved
that, in the shape derivative of the scattering coefficients for a circular domain, there are simple poles at
the complex resonant states, and therefore peaks corresponding to the the real parts of these resonances.
Henceforth, as the material contrast increases to infinity and is such that it is equal to the real part of
a resonance, the sensitivity in the scattering coefficients becomes large and super-resolution for imaging
becomes possible.
Throughout this paper, we consider the following scattering problem in R2,

(A+k2(1+q(x)))u20, (1.1)

where w is the total field, g(x) > 0 is the contrast of the medium and k is the wave number. The operating
wavelength is then 27 /k.

We consider an inclusion D contained inside a homogeneous background medium, and assume that D
is an open bounded connected domain with a C**®-boundary for some Ocr > 0. Suppose that the function
q is of the form

q(z) =" xp(x), (1.2)

where xp denotes the characteristic function of D and €* > 0 is a constant. We shall always complement
the system (1.1) by the physical outgoing Sommerfeld radiation condition:

\%us —iku®| = O(jz]"2) as |z| = oo, (1.3)
where u® := u — u' is the scattered field and u® is the incident field. The solution u to the system (1.1)-
(1.3) represents the total field due to the scattering from the inclusion D corresponding to the incident
field u'.

Following the work of [4, 7, 8], the scattering coefficients provide a powerful and efficient tool for
shape classification of the target D. Therefore, we aim at exhibiting the mechanism underlying the
super-resolution phenomenon experimentally-observed in [12] in terms of the scattering coefficients cor-
responding to high-contrast inclusions.

In [7], it is proved that the scattering coefficient of order (n,m) decays very quickly as the orders |n|,
|m| increase. Nonetheless, it is shown in [8] that the scattering coefficients can be stably reconstructed
from the far-field measurements by a least-squares method. The stability of the reconstruction in the
presence of a measurement noise is analyzed and the resolving power of the reconstruction in terms of
the signal-to-noise-ratio is estimated. It is the purpose of this paper to use the scattering coefficients to
estimate the resolution limit for imaging high contrast targets from far-field measurements as function of
the material contrast, and to prove that the higher the permittivity is inside the target, the better the
resolution is for imaging its shape from far-field measurements.

In order to achieve this goal, in this work, we first give a decay estimate of the scattering coefficients
in arbitrary shaped domains, and then in the particular case of a circular domain. Our estimate shows
different behaviors of the scattering coefficients of different orders as the material contrast increases.
Then we provide a sensitivity analysis of the scattering coefficients, which clearly shows that, in the
linearized case, the scattering coefficient of order (n,m) of a circular domain contains information about
the (n—m)-th Fourier mode of the shape perturbation. Afterwards, we establish the asymptotic behavior
of eigenvalues of an important family of integral operators closely related to the scattering coefficients.
Series representations of the scattering coefficients and their shape derivatives in the case of a circular
domain are given based on this asymptotic behavior. From these series representations, we prove that as
the material contrast increases and moves close to the reciprocal of the eigenvalues, the shape derivatives
of the scattering coefficients behave like simple poles. This explains the better conditioning of the inver-
sion process of higher Fourier modes of inclusions with large material contrast, and hence an enhanced



resolution of reconstructing the perturbation using the scattering coefficients. Numerical examples illus-
trate that the relative magnitudes of higher order scattering coefficients grow as the medium coefficients
grow and move close to the reciprocals of the eigenvalues, therefore providing more information about
the shape of the domain with a fixed signal-to-noise ratio. Our approach provides a good and promising
direction of understanding towards the super-resolution phenomenon for high-contrast targets.

This paper is organized as follows. In section 2 we give a brief review of the concept of scattering
coefficients. We also prove a fundamental expression of the scattering coefficients in terms of a family
of important integral operators. Sensitivity analysis of the scattering coefficients with a fixed contrast
is then presented in section 3, which shows that the shape derivative can also be represented by the
family of integral operators introduced in section 2. Section 4.1 briefly recalls Riesz decomposition of
compact operators. Asymptotic behavior of eigenvalues and eigenfunctions of the introduced integral
operators will be studied in section 4.2. Section 4.3 provides a series representation of the scattering
coefficients and their shape derivative. A mathematical explanation of the super-resolution phenomenon
is given. Numerical results are reported in section 5 to illustrate the phenomenon of super-resolution as
the material contrast increases.

2 The concept of scattering coefficients and a fundamental ex-
pression

In this section, we estimate the behavior of the scattering coefficients. Without loss of generality,
from now on, we normalize the wave number k in (1.1) to be k = 1 by a change of variables.

To begin with, we first recall the definition of the scattering coefficients W, (D, e*) from [4, 7]. For
this purpose, we introduce the following several notions. The fundamental solution ® to the Helmholtz
operator A + 1 in two dimensions satisfying

(A+ 1)P(z) = do(x), (2.1)
where Jg is the Dirac mass at 0, with the outgoing Sommerfeld radiation condition:
0 :
qu> —i®| =0(|z["%) as |z] = o0,
is given by
1 _(1
() =~ Hy (lal), (2.2)

where Hél) is the Hankel function of the first kind of order zero.
Now, given an incident field u’ satisfying the homogeneous Helmholtz equation, i.e.,

Au' +u' =0, (2.3)
the solution u to (1.1) and (1.3) can be readily represented by the Lippmann-Schwinger equation as
u(z) = u'(z) —&* /D d(z — y)u(y)dy, =cR?, (2.4)
and hence, the scattered field reads
u’(z) = —&* /D d(z — y)u(y)dy, =e€R?. (2.5)
Let Spp be the single-layer potential defined by the kernel ®(-), i.e.,

Sopld](z) = /6 0@ = )oly) ds(y) (2.6)

for ¢ € L2(0D). Let Sa“g*ﬂ be the single-layer potential associated with the kernel ® (v/1+&*(-)).



Definition 2.1. The scattering coefficient Wi, (D, e*) for n,m € Z is defined as follows:
W (D, e*) = / Tn(re) e "% ¢y, () ds(z) (2.7)
o

where x = r,(cos0,,sin6,) in polar coordinates and the weight function ¢,, € L?(0D) is such that the
pair (Gm, m) € L2(0D) x L*(0D) satisfies the following system of integral equations:

{SXEF [bm)(x) = Sop[thm](x) = T (r5)e™P= | )

2 G b 1 (@) — 2Sop[tm] 4 (2) = 2 (Jm(ra)e™),

Here + and — in the subscripts respectively indicate the limit from outside D and inside D to 0D along
the normal direction, and 9/dv denotes the normal derivative.

According to [4, 7], the scattering coefficients Wy, (D, €*) are basically the Fourier coefficients of the
far-field pattern (scattering amplitude) which is 27-periodic function in two dimensions. The far-field

pattern A, (c/l\, 7), when the incident field is given by €/¢® for a unit vector c/l\, is defined to be

) ) il x| .
(u—uf)(x) = ie ™4 ——— A (d,7) + O(|z| %) as |z] = oo,
87 |x]

with Z := z/|x|. We have, recalling from [4, 7], that
W (D, %) = """ o,.6. [Aoo (d, B)] (=, ), (29)

where T = (cos 0,sin ;) and d= (cosBg,sinfy) in polar coordinates and Fo, 0. [Aoo(CZ Z)](m, n) denotes
the (m,n)-th Fourier coefficient of the far-field pattern A (c/l\, 7).

Our first objective is then to work out an explicit relation between the far-field pattern and the
contrast €* so as to obtain the behavior of the scattering coefficients when &* is large.

In view of (2.4), we introduce the following operator for the subsequent analysis.

Definition 2.2. The operator Kp : L*(D) — L2(D) is defined by
Kplg)(z) = / d(z —y)o(y)dy, forx €D and ¢ € L*(D); (2.10)
D

whereas, the operator K p : L2(D) — L (R2) is given by

Kpld)(z) = /D Oz —y)o(y)dy, forxz€R? and ¢ € L*(D). (2.11)

It is easy to see from the definition of K p and the Rellich lemma that K p is a compact operator. However,
it is worth emphasizing that K p is not a normal operator in L?(D). Therefore, it is not unitary equivalent
to a multiplicative operator. With Definition 2.2, we can rewrite (2.4) as

(I+¢*Kp)[u)(z) =u'(z), VzeD, (2.12)
hence in L?(D),
uw=(I+c"Kp) '[u]. (2.13)

From the well-known fact that

; . eilel—imy
O(w—y) = — B (o = yl) = —ie ™ £ O(fal ) s o] > o0, (2.14)

\/87|x]



we have

i|z]

u(w) = —e* / D — yuly) dy = ic*e /4 “TVu(y)dy+O(2|3) as |z = oc. (2.15)
D

\/8mlx| Jp ‘

Therefore, the far-field of the scattered field can be written as

A (04,0,) := Aso(d, T) = 5*/ e~ T Yu(y)dy . (2.16)
D

Recall the following well-known Jacobi-Anger identity [30] for any unit vector d,

e—idw _ Z (_i)an(T)ein(GrG) (2.17)

n=—oo

for = (r,0) in polar coordinates. Using (2.17) and taking the Fourier transform with respect to 6, we
get

Fo. [Accl(n) = (=)' ()™ uhpaiy = i7" (Ju()e™, (7 + f{D)—l[ui]>L2(D) L (218)

Now using u'(x) = eide it follows from (2.9) and (2.17)-(2.18) that the following theorem holds:
Theorem 2.3. For a domain D and a contrast €*, the scattering coefficient W, (D, e*) for n,m € Z
can be written in the following form

Wom(D, &%) = ™0, 0,[A(04, 0.)](=m, n) = (Ju(r)e™, (7" + Kp) ™ [T (r)e™]) (2.19)

L2(D)’
where Kp is defined by (2.10).

The expression (2.19) of the scattering coefficients W, will be fundamental to the analysis of the
behavior of W, with respect to €*.

Using (2.19), we can readily obtain an a priori estimate for the coefficients W,,,,. Let us first recall
the following facts on Schatten-von Neumann ideals; see, for example, [20]. Given a Hilbert space H, we
let B(H) to be the set of bounded operators on H. We denote by So(H) the closed two-sided ideal of
compact operators in B(H). For K € S, and k € N, let the k-th singular number s, (K) be defined
as the k-th eigenvalue of |K| = v K*K ordered in descending order of magnitude and being repeated
according to its multiplicity, written as si(K) := A (|K|). Now, for 0 < p < oo, we shall often write the
following Schatten-von Neumann quasi-norms (which are norms if 1 < p < o0) as follows:

(oo}

1/p
1K]|s, () = <Z Sk(K)p> for p<ooy ||K||s ) = [K|ln, (2.20)
k=1

whenever they are finite. Now let the Schatten-von Neumann quasi-normed operator ideal S,(H) be
defined by

Sp(H) == {K € Ss : ||K||s, ) < 0} - (2.21)

Note that with this convention, S;(H) is the well-known trace class, So(H) is the usual Hilbert-Schmidt
class, and S, (H) is the usual class of compact operators in H. Moreover, if H = L?(D) and K € Sy(H)
is the integral operator defined by

K[f|(z) = /D K(z,y)f(y)dy, forxz e D and f e L*D), (2.22)



then it holds that
1, 2 ) = /D /D K ()| da dy, (2.23)

which is always well-defined for any K € So(L?(D)). We refer the reader to, for example, [20] for more
properties concerning the Schatten-von Neumann ideals.

For a compact operator K, let o(K) := {\ € C| A — K is singular} denote its spectrum and (z — K)~!
its resolvent operator whenever z € C\o(K). Now, we have the following resolvent estimate [13].

Theorem 2.4. For 0 < p < oo and K € S,(H), we have the following estimate for the resolvent operator
1

(z—K)™" that
I,
| y = Ao P ( 1o (K)) “’”) | 229

where a,, b, are two constants depending on p and d(z,0(K)) is defined by

(z—K)"

d(z,0(K)) = Aei?(fK) |z — Al (2.25)

Now we can apply Theorem 2.4 to get an estimate for W,,,,,(D,e*). In fact, with the logarithmic type
singularity of the function Hél), we readily obtain that

I1KplI%, (L2 (py) = /D /D \HD (|2 — y|)P dedy < C (14 R)* (1 +log R)* < oo, (2.26)

whenever D C B(0,R), and hence Kp € S;. Therefore, using the Cauchy-Schwartz inequality and
applying (2.24) for H = L?(D) to (2.19), together with the following well-known asymptotic expression
of J, for large m [1, pp. 365-366 |,

Jm(z)/\/% (%)m—n asm — 00, (2.27)

we readily obtain the following inequality (using that as = 1/2,bo = 1/2 if p = 2 [17]):

* — inf x—1 ot -1 im0
W (D,e*)| = '<Jn(r)e (& Kp) [ Im(r)e ]>L2(D)
*—1 o —1 inb im0

= H(E +£Kp) ‘ L2(D) HJn(T)e HLQ(D) HJm(T)e HLZ(D)
1 ||KD||§ (L2(D)) 1 . .

< - ex IS + = I (r)e™? T (1)e"™0

- d(—a*_l,a(KD)) p( d(—a*_l,a(KD))Q 2 H ( ) HL2(D) H ( ) HL2(D)
1 ( Cur 1> cyg ™

< = exp ——= 0 A oy e e

d(—e*~1,0(Kp)) d(—e*',0(Kp))> 2/ |m|™|n|™

where C; g (i = 1,2) are some constants, which depend only on the radius R such that D C B(0, R). We
summarize the above result in the following theorem.

Theorem 2.5. For a given domain D and a contrast €*, we have the following estimate for the scattering
coefficient Wy, (D, e*), for n,m € Z,

clml+inl
W (D, %] < L exp( Cir +1> 2R (2.28)
d(-e* ", 0(Kp)) d(=*"V0(Kp))? 2 |m|™l|n|"

From Theorem 2.5, we foresee that the magnitude of W,,, may grow as ¢* increases, and becomes a
very large value as ¢* ' is close to the spectrum of the operator Kp.



2.1 The case of a circular domain

Now, we consider the operator Kp for a circular domain, i.e., when D = B(0, R). In this case, the
operator Kp becomes more explicit. Actually, from Graf’s formula [30], we have for |z| # |y| that

1 —imb, imoy —1mb imby
HP(z =y = > Xqal<lypIm(zhe ™0 HO (g™ + X (jas 1y HD (e~ T (|y])e™ > |

Therefore, for all f € L?(D), the operator Kp can be written as

Rolflo) = =5 30 [(n)e™. 1)pnaos HE (a)e™

m=—0o0

(1) im# im0,
+(H (r)e"™, ) oy /m (u)e
The above expression of Kp will be helpful to investigate the behavior of Kp and W,,,. Before we
continue our discussion on the operator Kp, we shall first define some operators.
Definition 2.6. Given an integer m € Z, the operators KW L2((0, R),rdr) — L2((0,R),rdr) for
1 =1,2 are defined as

~. h ) R _
R0 =5 ([ ramomar ) 9w - ([ meein)aam @)
for h € (0,R) and ¢ € L?((0, R),rdr), and their extensions I:{:l) : L2((0,R),rdr) — L>((0,+0c0)) for

i1 =1,2 as

Rt =5 ( [ o) a5 [Crapesea)mm s

for h € (0,+00) and ¢ € L?((0, R),rdr).

With this notion, we can readily see that if f € L?(D) has the form f = ¢(r)e?™? then we have in polar
coordinates by the orthogonality of {¢?™%},,cz on L?(S!) that

- i h , i R .
Rolfln0) = ~5( [ raniomar)apaen - ([T @) guimene
= Rl (231

and K3[f](h,0) = KP [#](h)e’™? . Furthermore, we can directly see that U(f(,(,f)) = U(Kfé)). Moreover,
using the following relations for all m € Z,

Tom(z) = (~1)"Jm(2) and  HU) (2) = (~1)"HV (=), (2.32)

we immediately infer the properties for the integral operators:

~ (i) ~ = (4) = (4)
K%Y =K@ and K ,=K,, . (2.33)
Substituting (2.31) into Theorem 2.3, we obtain the following simplified expressions of the scattering
coefficients when D = B(0, R).



Theorem 2.7. For a domain D = B(0,R) for some R > 0 and a contrast value €*, the scattering
coefficient Wy (D, e*), n,m € Z, can be written in the following form

- —1
Wi (D, €%) = 6 <Jn, (5*_1 T K,SP) [Jm]> , (2.34)
L2((0,R),rdr)

where Opm 18 the Kronecker symbol.

As a consequence of Theorem 2.7, we easily see that W,,, = 0 for n # m. Moreover, we readily
have the following a priori estimate for the coefficients W,,,,, by the same arguments as those in Theorem
2.5. In order to obtain the desired estimate, we consider the asymptotic expression of Y;,, as m — oo [1,

pp. 365-366 |-
Ym(z)/\/% (%)_m o1 (2.35)

Together with (2.27) and the logarithmic type singularity of Y, we have from the definitions of IN{,(,? for
1 =1,2in (2.29) that

K, 220,y aryy < Cm (1+ R)* (1 +1og R)* < 00 (2.36)

Consequently, following the same arguments as the ones for (2.28), we arrive at the estimate:

<Jn, (5*_1 + f(fg))_l [Jm]>

m|+|n
1 exp CnCi R 1 Oé.,R‘ g
d (=1 oK) ™t

+ —
- 2
d (—5*’1,0(1{7(,11))) 2 ] Im
where C), is a constant depending only on m and C; g,% = 1,2, are constants only depending on the
radius R such that D C B(0, R).

|an(D75*)| = 5nm

L2((0,R),r dr)

IN

6nm

Theorem 2.8. For a circular domain D = B(0,R) and a contrast £*, we have the following estimate
for the scattering coefficient W, (D, e*), for n,m € Z,

olml+in|
2. (2.37)

1
2 ) ™™

1 CnCi R
— exp 5
d(_g*—17o'(K,(r%))) d(—E*il,U(Kr(r})))
In the next section we perform a sensitivity analysis of the scattering coeflicients in order to obtain a

quantitative description of what piece of information is provided by the scattering coefficients of different
orders.

|an(D75*)| < Onm

+

3 Sensitivity analysis of the scattering coefficients for a given
contrast

In this section, for a given contrast £*, we calculate the shape derivative D Wi, (D,e*)[h] of the
scattering coefficient W, (D,e*) along the variational direction h € C1(dD) when 9D is of class C2.
From the shape derivative, we will clearly understand what piece of information is provided by the
scattering coefficients of different orders, and how the knowledge of the scattering coefficients is related
to the resolution of the reconstructed shapes.

Before going into the sensitivity analysis, we will consider the inclusion of the operators and spectra
between operators for the subsequent analysis. To do so, we define the following inclusion maps.



Definition 3.1. For a given domain D, suppose that the bounded linear operator Kp e B (L2 ) 18
defined as in (2.10). Consider any domain D such that D C D, we shall often write ((Kp) € B ( ﬁ )

as the following operator:

W(Ep)[f] (x) = Kp [xpf] (x) for any [ € L*(D), (3.1)

where xp s the chamctemstzc function of D. Likewise, for a given radius R > 0, assume the bounded
linear operators K\ € B (L*((0,R),rdr)) (m € Z,i = 1,2) , which are defined in (2.29). Then we
write

UK [f) () = K2 [xo,m) f] (&) for any f € L*((0, R),rdr). (3.2)

Then the operators t(Kp) and L(f(f,?), i = 1,2, are compact on L2((0, R), r dr). Moreover, we have

the following relations between the spectra of Kp and «(Kp), as well as between K and K (l)) for

mez,i=12

Lemma 3.2. Let Kp and «(Kp) be defined as in (2.10) and (3.1), respectively. Then, the following
simple relationship between the spectra of Kp and L(KD) holds:

U(L(KD)) = U(KD) U{O}- (3.3)
Likewise, form € Z, 1= 1,2, we have
o(U(KW)) = o(KD) {0} (3.4)

Proof. For a given ), suppose that the pair (), ey) is an eigenpair of Kp over L2(D). If A # 0, we denote
by éx € L2(D) the following function

~ 1=

€e) = XKD[G)\] . (35)
If A = 0, we write ey € L? (ﬁ) as the extension by zero of the function ey outside the domain D, i.e.,
_ ex(z) ifxzeD,
= 36
@) {O otherwise . (36)
Then we readily check from the definition of ((Kp) that L(K’D)[N] = Aéy and hence the pair (A, éy) is

an eigenpair of +(Kp) over L*(D D). As any function f € L2(D\D) is a zero eigenfunction of «(Kp), hence
we know o(Kp)J{0} € a(«(Kp)).

Conversely, if a pair (\,€y) is an eigenpair of (Kp) over LQ(D) then, by writing ey := ey |p, it is
easy to see form the definition of Kp that (A, ey) is an eigenpair of Kp. Hence, o(«(Kp)) C o(Kp). The

proof of o (¢ (K,(,?)) = U(K,(,i )U{0} is the same. O

Lemma 3.2 and the Fredholm alternative yield that e* ' + L(K p) is invertible over L?(D ) if and only
if *~' + Kp is invertible over L?(D). Moreover, from the definition, we can show as in section 2 that
((Kp) € S3(L?(D)) and then apply (2.24) to obtain the following resolvent estimate for ¢* ' + (K p)
that

=1 _ (K -t ! ex Cu.R 1
H (E + (KD)) L2(D) = d (_8**1,U(L(KD))) ' d (_5*_1’U(L(KD)))2 =
- 1 o Cir z
- d(—g**l,a(f(D)) Y d( 5*—1,0'(KD))2 | 7



Here the last equality comes from Lemma 3.2 and the fact that O’(IA(: p) must have zero as its accumulation

point, since L?(D) is infinite dimensional. The above argument also applies to the operators L(f(,(,i)) for
m € Z,1 = 1,2, where the resolvent estimate reads

CnCh,
1 ) exp d(_g*_ljal(‘};%)))z —I—l . (3.8)

< -
L2((0,R),rdr) d (—a**l, o(K3) 2

Furthermore, we can easily recover the relationship between L(IN( B(0,r)) and L(K,S?) for any D such that
B(0, R) C D from their definitions. In fact, for any f € L?(D) in the form f = ¢(r)e’™? where (r,0) € D,
we have in polar coordinates that

UE po,m)f1(h,0) = o KD) @l ()™, UK 0,p))[f1(R, 0) = (K [9)(R)e™ (3.9)

where the operators L(IN(,(,?) for m € Z,i = 1,2, are the extensions to L2((0, Rg), r dr) with the radii Ry
being defined as Ry := sup{r : (r,0) € D} for different 6 € [0,2x]. Although the extensions L(IN(,%)) are
now different for different angles 6, no difficulty will arise in understanding the properties of L(IN( B(O,R))
via estimating L(IN(,(,%)), since the conclusions of Lemma 3.2 and (3.8) do not depend on the choice of R
and thus can be applied to different choices of radii.

From now on, we will no longer distinguish between the operators Kp and L(f( p) whenever there is
no ambiguity, and by an abuse of notation, we denote both operators by Kp, likewise for the operators
f(fy? and L(fﬂ(y?) formeZ,i=1,2.

Then we move to our main focus of this subsection, which is to obtain the shape derivative of the
scattering coefficients for a domain D along a perturbation h € C*(0D). Now let €* be given. For any
bounded C?-domain D in R?, let D® be a §-perturbation of D along the variational direction h € C*(9D),
ie.,

oD% = {:E =z +oh(z)v(z) : x € 8D} ) (3.10)

where v(z) is the outward unit normal at dD. For such perturbations of the domain D, we investigate
the difference between Wy, (D%, €*) and Wi (D, e*). We first estimate the difference Kps — Kp, where
both operators K s and Kp are regarded as the extended operators on L2 (D‘S U D). Indeed, from the

fact that the singularity type of the function Hél) is logarithmic, there exists a constant C'r depending
only on the radius R such that the estimate

IKps — Kpll2(B0,r)) < Cr 6 (3.11)
holds for § small enough with R being such that D € B(0, R). Therefore, we can repeatedly apply the
following resolvent equalities

w1\ L L, e N e o R T
(a + KDa) - (5 + KD) - (a* + KDa) (Kp — Kps) (5* + KD) (3.12)
~ 1

= (5*_1+KD)71 (KD—KD(;) (E*_1+KD6)7 (3.13)

10



to obtain the following expression of the difference of scattering coefficients for any n,m € Z,
W (D, e*) — Wy (D, %)
w1 e )\ F inf im0
(=" Kps) ()™ ) Tn(r)e

_ <(5*—1 + f(;;,)_l [T (r)e™], Jm(r)eim9>

L2(D%) L2(D)
~ -1 ~ -1 .
= <Jn(r)em9, [(5*1 —i—KDa) - (5*71 + KD) } [Jm(r)ezm9]>
12(D)
x—1 [k -1 in im6
(R e st Inr)e )
L2(DU D*\D N\ D%)
*—1 o * -1 inf % 2% x—1 2% -1 imé
_ _<(5 +Kp)  a(r)e™], (Kps = Kp) (¢ + Kps)  [Jm(r)e ]>
12(D)
x—1 [k -1 in im6
+<(a +KD5) [ (r)e?), sgn(h) Jm (r)e >
L2(DU D*\D N D%)
x—1 2\ T inf % % *—1 % - im0
_ _<(5 +Kp)  a(r)e™], (Kps = Kp) (=7 + Kp)  [Tm(r)e ]>
12(D)
- -1 ) .
+<(6*_1+K}5) [Jn(r)eme],sgn(h)Jm(r)e””9> +0(5%), (3.14)
L2(DU D*\D( D%)

where the last equality comes from (3.11). Now for any L' function f, considering the fact that the shape
derivative of the integral

I[D] = /Df(x)dx (3.15)
is given by the following boundary integral
DID)(h) = [ f@)h(z)ds(a), (3.16)
oD

we have for x € D|JD? and ¢ € L?>(D|J D°) that

) ~ )
(Kps — Kp)lg|(z) = _Z/(DUD‘S)\(DODJ)

= ot [ (e~ yhh()e() ds(y) + 06). (317)
oD

sgn(h) HS" (Jo — y|)o(y)dy

Therefore, by substituting the above expression into (3.14), a direct expansion of the integral together
with Fubini’s theorem yields the following expression for the first term in (3.14):

- <(s*1 - f(fj)ﬂ [Jn(r)e™], (Kps — Kp) (s*’l + I~(D)71 [Jm(r)eim9]>

L*(D)

= o4 [ 0= bt (=4 o) e | (4 Bp) T e (0o
)

+0(5?

= =5 [ h (7 Rp) e 0| Ry (5 4 K Dt ) ay + 0067

_ _5<[(g*1+f<D)1[Jm<r>eim0]] [Kz(a*1+f?,§)1[Jn<r>ei"9]]h> +0(@).  (3.18)

L2(8D)
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Likewise, for the second term in (3.14), we derive that

- -1 . .
<(5*‘1 +Kp)  a(r)e™ ) sgn(h) I (T)e””9>
LA(DUDA\DADY)

5[ b | (7 4 K) Ul )| I GI T Gy + 006

= 5<{(5*1 —|—I~(D)_1 [Jm(T)eime]} [Jn(r)eme] ,h> +O(62). (3.19)

L2(dD)
Therefore, combining the above two estimates shows that

Wym (D%, %) = Wy (D, €¥)

B 55*1<[(5*1+KD) [Jm(r)eime]] [(5*1—1—1?75) [Jn(r)eme]} ,h>L2(aD)

+0(8%). (3.20)

-1

Hence, if we define the following L?(9D)-duality gradient function VW,,.,,(D,e*) of the form of

—1

VW (D, ) := 5*1{(5*%&3) [Jm(r)eim"]} {(a*wf{;g)l [Jn(r)eme]} : (3.21)

then the shape derivative of the scattering coefficient W, (D, e*) along the variational direction h is
given by

D Wam(e®, D)[h] = (VW (™, D), h) 29D - (3.22)

In particular, for the case where D is a circular domain D = B (0, R), we have from the decomposition of
the operator Kp the following simple expression of VW,,,,, (D, &*):

1 ~

VWym(B(0,R),e*) = &} {(5*14—1?3(073)) [Jm(,r.)eime]:| [(5*14_[{;(07}%))1 [Jn(r)em@]} 7

- -1 ~ -1 .
el [(5*1 + Kf,?) [Jm]} (R) [(5*1 + K,(f)) [Jn]} (R) eitn—m)6
Consequently,

DWon(BO RN = &7 | (7 4 &) 1l )| (74 £0) T 1l @ (eomen)

PN Nl
()l [ (e ) | (0 0 - ) 323)
where §g [h] (n — m) is the (n — m)-th Fourier coefficient of the function h on L*(S'). This gives the
following key result on the shape derivative of W, (D,e*) .

Theorem 3.3. Suppose that £* > 0 is given. For any C?>-domain D and n,m € Z, the shape derivative
of the scattering coefficient Wy, (D,e*) along the variational direction h € L?(0D) is given by

D Wam(D,e*)[h] = (VWam(D,€%),h) 125D » (3.24)
where VW, is defined by

—1

VW (D,e*) = e* 7" {(5*1 n KD)_l [Jm(r)eime]} {(5*1 n ff;g) [Jn(r)emf’]] . (3.25)
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In particular, if the domain D is a circular domain D = B(0, R), then for any D° as a §-perturbation of
D along the variational direction h € C*(0D), we have

Wym (D%, e*) — Wym (D, e*) = 6 C(e*,n,m)Fo [h] (n — m) + O(6?), (3.26)

with

1

C(e*,n,m) = e* {(5*1 +ED) B [Jm]} (R) [(5*1 +EM) [Jn]} (R). (3.27)

From the above theorem, we obtain in the linearized case that the scattering coefficient W, gives us
precise information about the (m — n)-th Fourier mode of the perturbation h.
Therefore, the magnitude of the coefficients W,,,,, and C(e*, n, m) shall be responsible for the resolution

in imaging D°. Note that the function C(¢*,n,m) depends now on the spectra of both IN(,(nl) and IN(,(ll).
The change and growth of the coefficients W,,,,, and C(e*,n, m) with respect to £* will be the main focus
of the next section.

4 Asymptotic behaviors of eigenvalues over a circular domain
and the phenomenon of super-resolution

In the previous section, we have obtained a relationship between the coefficients W,,,, of a perturbed
circular domain D° and the Fourier coefficients of the perturbation h. In this section, we investigate the

decay of the eigenvalues of f(,(é) and analyze the behavior with respect to e* of W, and C(¢*,n, m) for
different values of n and m. For this purpose, we introduce the following Riesz decomposition.

4.1 Riesz decomposition of the operators [?D and K

To continue our analysis on the operators Kp and f(,(,%), we first recall the following well-known
classical spectral theorem for general compact operators (not necessarily self-adjoint or normal) in a
Hilbert space [18].

Theorem 4.1. Let K be a compact operator on a Hilbert space H, o(K) := {\ € C|\— K is singular} be
its spectrum, and o,(K) be its point spectrum consisting of all the eigenvalues of K. Then the following
results hold:

1. If X # 0, then we have that A € o(K) if and only if X € 0,(K) the point spectrum (Fredholm’s
alternative).

2. For all A € o(K) such that \ # 0, there exists a smallest my such that Ker(A — K)™ = Ker(A —
K)™ T Denoting the space Ker(A — K)™ by Ey := Ker(A — K)™, we have dim(E)) < oc.
Moreover, Ran(A — K)™* is a closed subspace and H = Ker(A — K)™ @ Ran(A — K)™*.

3. o(K) is countable and 0 is the only accumulation point of o(K) for dim(H) = oc.
4. The map z — (z — K)~! admits poles at z € o(K).

Now we aim to apply the above theorem to K D, which is compact but not normal, to obtain a spectral
decomposition of the operator Kp and the space L?(D). In order to do so, we shall assert the following
elementary lemma.

Lemma 4.2. Let Kp be defined as in (2.10), and IN(*D be its L? adjoint, then we have

o(Kp)\op(Kp) = {0} and o(Kp)\op(Kp) = {0}.

13



Proof. Let us first consider the operator Kp. From Theorem 4.1, we directly have that
o(Kp)\{0} = o, (Kp)\{0},

Therefore, in order to prove our assertion, it suffices to show that 0 ¢ op(f( p). In fact, let us assume
¢ € L?(D) is such that Kp[¢] = 0. Then from the definition of Kp, we get that

0=(a+1) (Kple]) = 9.

and therefore ¢ = 0. This shows that 0 ¢ ap(K D), and therefore our assertion for the operator Kp holds.

A same argument applying to the operator K: 5 results in our second assertion that O'(K D)\Up(K D) =
{0}. O

Now, we are ready to apply Theorem 4.1 to K p to obtain the following decomposition of the space L?(D).

Lemma 4.3. Let the space Ey be the generalized eigenspace of the operator Kp for the eigenvalue A
defined as in Theorem 4.1. Then the following decomposition holds

L’(D)= € E.
Aeo,(Kp)

Proof. From Lemma 4.2, it follows directly that 0 ¢ ap(f(z)) and ker(f(g) = {0}. Hence we have that
~ J— -~
L*(D) = (Ker(K;g)) = Ran(Kp). (4.1)

This proves the lemma after applying Theorem 4.1. O

__ We can now restrict the action of K p on the invariant subspaces E and consider the linear operator
(Kp) |gy: Ex — E over the finite dimensional spaces Fy. By directly applying the Jordan theory to the
finite-dimensional linear operator (Kp) |g,, we get that Fy can be decomposed into Ey = ®1§iSNA E§

for some Ny such the operator (IN(D) |E, can be written as

KD |E)\ Z Kz by (42)
1<i< Ny

where the operators INQ P E; — E; admit the action of the following Jordan block under a choice of
basis e} in EY:

A1 0
0 A r ... 0
Ji=|: (4.3)
0 A1
0 A

as matrices of size smaller than or equal to my. With these notations at hand, we are now able to obtain
a decomposition of the operator Kp by combining the decompositions of its respective restricted linear

operators (Kp) |g, as follows
o= Y Y R (4.4
Aeop(Kp) 1SISNAy

keeping in mind that a summation over A stands for a direct sum over the respective actions in each
invariant subspaces ) following the direct sum decomposition of L?(D) in (4.1). A similar argument for
such a decomposition of the operator Kp can also be found in [11].
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For the sake of simplicity, for a given n € N and a given Riesz basis w, i.e., a complete frame in
L*(D), supposing that v is a finite subset of w, we shall often write, for any ¢ € L*(D), (¢), L2(p) € cr
as the coefficients of ¢ in front of the vectors in v when expressed in the Riesz basis w, i.e., if

¢ = Z biw; , (4.5)

wi; EW
for coefficients b; € C and v = (wky, Wy, - - -, Wk, ), then (¢)y r2(p) = (Okys by - -+, bk, ). Also, for any
a=(aiy,...,a,) € C" and any given finite frame v = (vq,va,...,v,) in L?(D), we write

vlia = Z a;v; , (4.6)
i=1

and, for any ¢ € L?(D), the L? inner product of v and ¢ as

(v,9)r2(D) = (<Ul, ®)12(Dys (V25 D) L2(DYs + - +» (Uny ¢>L2(D)) eC". (4.7)
With these notations, we can write (4.4) in terms of the frame ¢, (z,)Ui<i<n, e as follows:
r~ iT 74
Kp = Z Z (e})” Ji(- Jei .L2(D): (4.8)
Aeo,(Kp) 1SiSNA

where the superscript T denotes the transpose as described in (4.6). Therefore, substituting the above
expression of Kp into (2.19), we have

Wan(D,e%) = (Jafr)e™, (7 4 Kp) " n(r)e™])

S [0 ) ] e - (49)

Aeop(Kp) 1SiSNA

The above expression gives a general decomposition of the scattering coefficient W,,,,, (D, *).

Next, we consider the special domain D = B(0, R). From Theorem 2.7 we shall focus on the operators

( (1)

I?WP for m € Z. Similar to the previous argument, we can see that the operators K3 are compact on

L?((0, R),rdr). Moreover, it is direct to obtain the following lemma for IN(%) similar to Lemma 4.2.

Lemma 4.4. Let f{ﬁnl) be defined as in (2.29), and (I}r(r%)) be its L? adjoint, then we have

(RINop(RE) = {0} and o ((BD) ) oy ((BD)) = {0}

Proof. We follow a same argument as in the proof of Lemma 4.2. By directly applying Theorem 4.1, it
suffices to show that 0 ¢ ap(Kfﬁ)), in order to prove our claim for K. Assume ¢ € L2((0, R),rdr) is
such that INQ(,%)[(b] = 0. Then from the definition of f(,%), we get that

2 ~ . ~ . .
0= <%8Trar +1- 7:’—2) (K}Q’qﬁ(r)) e = (A+1)KW (g(r)e™?) = p(r)e™™?

)

which gives ¢ = 0. This proves our assertion for the operator IN{,(nl . The same argument applies to

(I}fé)) for the remaining part of our assertion. O

A same argument as in the proof of Lemma 4.3 results in the following lemma.
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Lemma 4.5. Let the space Ey, \ be the generalized eigenspace of the operator IN(,(TP for the eigenvalue X
defined as in Theorem 4.1. Then the following decomposition holds

L*((0,R),rdr)= P  Emn. (4.10)
A€oy (f(ﬁ))

Following a same argument as we did for K p to the new operator IN(m, we apply the Jordan de-
composition theorem to the finite-dimensional linear operator (K,) |g,, »: Emx — Em,x over the in-
variant subspace. Combining this with the previous lemma, we get that there exists a complete basis
U UogigN;" e, » over L*((0, R), dr) with each e}, , spanning the subspace E}, , such that K, admits

the action of a Jordan block, denoted by J?

my\?
subspace E, . Moreover, adopting the same notations as previously introduced, we can write

with respect to the basis when acting on the invariant

. -1 ) )
(8*71 + 7(71)) = Z Z (e:nJ\)T [J:n.,s**lJr)\]il(')ein’A,LQ((O,R),rdr)u (411)

Ao, (Kiy)) 1SISNT

and a similar expansion holds for f(}f’. Again, we keep in mind that the summation over \ stands for
a direct sum over the respective actions in each invariant subspaces E,, » following following the direct
sum decomposition of L2((0, R),rdr) in (4.10).

Now, using the orthogonality of {€??},,c7 on L2(S!), for a given contrast £* such that —&*~ ! is not
an eigenvalue of INQ(,% ), we have that

Wim (D, e")

~ —1
= S <Jn, (a**1+K§,§>) [Jm]>
L2((0,R),rdr)

Sam D > alr)seha)z0,r)ran)] " e 102l T (T (1) )es,
Aeo(Kf) ISISNY

L2((0,R),r dr).(4.12)

Finally, the following remarks are in order. For D = B(0, R), the action of K on each of the subspace
E}, ye™? of L?(D) is invariant and admits the same Jordan block representation as K acting on El, 5
of L?((0, R),rdr). Hence, the decomposition

L2(D):@ EB @ Ei, \em?

meEZ A€o, (f(ﬁ)) 1<i<NY®

coincides with the original Jordan block decomposition of Kp,

’o)= g € E.

ApEo(K) 1SISNy

Therefore, we readily get (J,,cz ap(f(,(,p) = 0,(Kp), and the sum (4.12) constitutes a part of the sum
(4.9) with all the other terms in (4.9) being zero. In the next section, we will focus on the decay of the
eigenvalues of K,, and the asymptotic expansion for the eigenvalues and eigenfunctions of the operators.
This will allow us to better understand the behavior of W,,,, and C(g*,n, m).

4.2 Asymptotics of the eigenvalues and eigenfunctions of KW

Intuitively, we can expect that the eigenvalues of IN(,(,%) are distributed closer to 0 as |m/| increases for
the following reason. Considering (2.33) together with the asymptotic expressions (2.27) and (2.35) of
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Jm and Y, as m — oo, we have the following bound for the operator norm of f(m for m € Z:

!

~ Cr
||K1(7%)||L2((0,R)rdr) < _2 (413)

for some constant C', depending on R. Then we obtain the estimate for the spectral radius of K,, from
the Gelfand theorem:

Cr

2. (4.14)

1
sup  |[A] = lim H (IN(,(,%)) H <
)\60’(}?'511)) oo

This implies that the spectrum U(INQ(,%)) actually lies inside o(K) () B(0, m2)
However, the above argument is a bit heuristic, and we intend to obtain a formal asymptotic expansion
of the eigenvalues for the operators K,,. For this purpose, we first restrict ourselves to the discussion of

the operators for m € N, and consider the equation f(fé)f = \f with A # 0. Since we have

( 010y +1— —) (K<1>f) = (A+ KD (feimf) = feimf (4.15)

we obtain for m # 0 the following equivalence
(Yoo, +1-%-2)f =0,

KDf=X < £(0) - o, | (4.16)
f(R) = L [T () f(r)dr HS (R) .

Enumerating the eigenvalues A of f(r(nl ) as Am, in descending order of their magnitudes, and writing efn_’ .

as the unique eigenfunction in the Jordan basis ein) A,,, for each ¢, we are bound to have the following
form for the eigenpair of the operator for all 7, ’

; 1
(/\m,l;ein,l) = <)\m,l7']m < 1-— by lT>> . (417)

The above statement implies that the geometric multiplicities of all the eigenvalues of f(,(é) should be

Ny = 1 (while the algebraic multiplicities are still unknown for the time being). For the sake of simplicity,

we denote the frame el A,,, DY enm, and also the eigenfunction eml by em,. Substituting (4.17) into

(4.16), together with the followmg well-known property of Lommel’s integrals [1] that for all n € N and
for all a,b > 0 with a # b:

R R2
/0 [Jo(ar)?rdr = 7[Jn(aR)2—Jn_l(aurz)JnH(ULR)], (4.18)

/R In(ar) Iy (br)rdr = R prR—r [bJn(aR)Jp—1(bR) — aJ,—1(aR)J, (bR)], (4.19)
0 —

we get the following equation for A, ;:

- <@>

[ 1
—Jm1(R) I < 1- mR)] : (4.20)



Now since A\,,,; — 0 as | — oo, from the following well-known asymptotic of .J,, [1] for all n:

Jn (2) = \/gcos (z - 2"; 17r> +O0(z%?), (4.21)

we obtain the following estimate for m,n,l € N:

1
W 4/1- R =

Hence, substituting this expression into (4.20), we shall directly infer that the eigenvalues A, satisfy

the following bound:
1
o <\/ b A—R> = O(Amal. (4.23)
m,l

which has a decay order higher than the one in (4.22). With this observation, we shall expect that the

terms /1 — ﬁR should be close to the [-th zeros of the Bessel functions of J,, as [ grows, which is

indeed the case following the argument below.

For the sake of exposition, we shall often denote by a,,; the zeros of the m-th Bessel function of
the first kind, i.e., Ji,(am,) = 0, arranged in ascending order. Then it follows from (4.21), the inverse
function theorem and the Taylor expansion that

2n+1
4

ﬁ> + O(| A1) . (4.22)

2m + 4l — 1
4

ﬁ' <Cm+20"Y?* 50 asl— . (4.24)

Am,1 —

Then, again from (4.21), we have

T (1) = (=1)' = Olam,~*?), (4.25)
which, combined with (4.23), leads to

Ry[1— AL — a1 = Olam,~Y?). (4.26)
m,l

This gives us the following estimate for A, ;:

R [1- /\i)l/<(m+22[>”—£) 1 asl—o0. (4.27)

Therefore, we obtain the following decay rate of the eigenvalues,

4R? 1
m — -1 l . 4.2
A "l/<7r2 (m+2l)2)_> as | — oo (4.28)

Moreover, using (4.26) and the fact that J,, is holomorphic, we have the following uniform estimate for
the eigenfunctions:

Im <1/1 — ﬁr) —Jm (%r)

< Ol Lo (0. r) ama~ Y2 < Clm 42077 (4.29)
CO((0,R))
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Note that the set {J,, (“%r)}72, forms a complete orthogonal basis in L?((0, R), r dr). Hence, the above

estimate actually implies that the eigenfunctions of fﬂ(,% ) approach in the sup-norm to an orthogonal basis
in L2((0, R), rdr) for all m € N. From (2.33), together with the fact that a_,, ; = a,,; from (2.32), the

above analysis also holds for K (_17)71

The following theorem summarizes the main eigenvalue and eigenfunction estimates for the operator
K.

Theorem 4.6. For all m € Z\{0}, the eigenpairs of the operator KW are of the form

Aty €myi) = <)\m,l7 Im <1 [1— %r)) forl e N, (4.30)
m,l

where the eigenvalues Ay, satisfy the following asymptotic behavior

4R? 1
A R — —1 l . 4.31
’l/ (wQ <|m|+21>2>% as = o (4.31)

Moreover, the eigenfunctions also have the following uniform estimate:

= O((|m| +21)""%). (4.32)
Co((0,R))

This theorem is very important for the analysis of the behaviors of W,,,,, and C(g*,n,m). Figure 1

shows the distribution of eigenvalues of R}(nl ) for R = 10 with different values of m. It not only illustrates
that the spectral radius decreases as the value of m increases (which agrees with the estimate (4.14));

but also that, for a fixed number | € N, the magnitude of the [-th eigenvalue of f(,(rl ) decreases in general

monotonically with respect to increment of m (which agrees with (4.31)). Eigenfunctions of KW for
some values of m are also plotted in Figure 2 for a better illustration of the behaviour of eigenfunctions.

~Noaswnko

Figure 1: (a) Spectral radius of INQ(,%) for m =0,1,...,11. (b) Norms of eigenvalues A\, ;,{ =1,2,...,15,

)

for operators IN{,(nl ,m=0,1,...,7, as in the legend.
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(3a) (3b)

Figure 2: Real and imaginary parts of the first 4 eigenfunctions of IN(,(,%), m = 1,2,3. (la) Real parts of
eigenfunctions of K il); (1b) imaginary parts of eigenfunctions of K 1(1); (2a) real parts of eigenfunctions
of f(él), and so forth.
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4.3 Tail behavior of the series representation of W, and C(c*,n,m) and the
super-resolution phenomenon

In this subsection, we deduce very useful information on the behaviors of W, and C(e*,n,m) from

1

the asymptotic behaviors of eigenpairs of IN{,(n derived in the previous subsection.

4.3.1 Tail behavior of the series representation of W,,,,

We first focus on the scattering coefficients W, (D, £*) when D = B(0, R). Form (2.34), it is known
that Wy, = 0 when n # m, therefore the only interesting case is when n = m. Again, we shall first
consider m € N. From the analysis in the previous subsection that the geometric multiplicities of all the

eigenvalues of KV are N{* =1, we already obtain from (4.12) that

mm D e Z eml LZ((O,R),rdr)]T[Jm.,E*’lJr)\m,L]il( Jm(’f') )emyl,LQ((O,R),T dr)-
=0

For the sake of simplicity, from now on we shall often denote

__ 1 - "
Amgi=———  and €y :=Jn (ur) ) (4.33)
_ anl,l R
R

From (4.18) and (4.32), together with the completeness and orthogonality of €, in L?((0, R), r dr) and
the Parseval’s identity, we readily obtain that, fixing any m € N and for any given e, there exists N(m)
such that for all i > N(m), we have

__ R?
<em,i7 em,j>L2((O,R),rdr) - 617 B) ngﬂ(am,j)

< €5 (434)

where 3 € €;; < €* . Therefore, for a large Ni(m), the span of {em, i} N, (m) has a finite dimensional

orthogonal complement. This follows that there exists a large No(m) > Ny(m) such that the algebraic
multiplicity of A, is 1. Therefore, we directly obtain

Winm(D,e®) = S1m(e") + S2.m(e7), (4.35)

where the sums S; ,(¢%), i = 1,2, are defined by

Ng(m)

Sim(e™) = Z[<Jm(7')aem,l>L2((O,R),rdr)]T[Jm,a**1+>\m,l]_l(Jm(r))emﬁl,L2((0,R),rdr) (4.36)
1=0

Som(e) = i % (4.37)
l:NQ(m)-‘rlE T Aml

with the coefficients o, ; being defined, for all m,{, as
m = (Jm(1)s €m 1) L2((0,R),rdr) (I (T) e 1, L2((0,R) 1 dr)- (4.38)

Note that for any €* > —2Re ()\; Na(m)

we want to investigate the behavior of (4.35) for large £*, we shall focus on the term Ss ,,,(¢*). For this
purpose, we analyze the limiting behavior of a,,; as [ increases. Now, from (4.19) and (4.32), we have
the following estimate for the inner product:

), we have |S1 ()] < C, for some constant Cy,. Therefore, if

<Jm(T)a em,l>L2((0,R),7‘d7‘) - X7\7“L/ZCL7TL.,I']771(Fi)Jmfl(am,l) = O(a;:l/2) . (439)
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From (4.21) we get

2
Jm:tl (am,l> - (_1)l = O(am,l73/2> ) (440)
Tlm,1
and hence it follows that
— 2
<Jm(7‘), em,l>L2((0,R),rdr)/(_1)l)\m,lair{72l\/;Jm(R) —1 as | — 00. (4.41)

From (4.34), we obtain that the coefficient of J,,,(r) of e,,; with respect to the Jordan basis approaches
to the orthogonal project of J,,(r) on the subspace ey, ;, whence the following holds

(Jm(7)s €m,1) L2((0,R) rdr)
Im (1) )e rdr . 2 —1 asl— 0. 4.42
(s istomenn [ O -

Combining the above several limiting behaviors (4.41) and (4.42) yields

—2 5, Jo(R)

amt [ 2Am U1~ py = 1 asl— oo, (4.43)

which can further be reduced to the following asymptotic behavior by combining (4.26),(4.28) and (4.33),
am,l/umﬂ;(m - -1 asl— . (4.44)

From (2.32) and (2.33), the conclusions also hold for the case with —m € N.
The above analysis can be summarized in the following theorem.

Theorem 4.7. Let D = B(0,R) be a circular domain. For all m € Z\{0}, there exist constants
N(m) € N and C,, > 0 such that, for any given contrast value ¢* > —2 Re ()\;;N(m)» the scattering
coefficient W (D, €*) has the following decomposition

Winm(D,e") = S1,m(e") + S2.m(e”), (4.45)

where S1,m(e*) has a uniform bound

[S1m (™) < Ch s (4.46)
whereas So.m(e*) is of the form
Som(e) = > 5*?7:7:;; (4.47)
I=Ny(m)—+1 m

where the coefficients o, have the following limiting behavior
amﬁl/2/\m71an(R) — -1 asl—o0. (4.48)

This decomposition of the coefficient W,,,, gives us a clear picture of the behavior of W,,,, as *
grows. When £* increases, ¢* ' passes through the values —Re(Ap) ~ (|m| + 21)=2 for large 1. If
Am, € R, e* 71 directly passes through the pole. Therefore W,,,, grows from a finite value rapidly to a
directional complex infinity ooe?® for some 6, and then comes back from —ooe® to a finite value after

e*~! passes through it. Otherwise, if \,,; ¢ R, then e* ! does not directly hit the pole. However, since

At ~ —(Jm|+21)~2 where (|m| 4 21)~2 are real, Im(\, ;) is very small for large I. Hence, as £* ™ moves
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close to —Re(Ap,1), it comes close to the pole. Therefore, Wi, grows from a comparably small value
very rapidly to a complex value of very large modulus, and then drops back to a small value after passing
through —Re(\,,,1). The behavior of W, is consequently very oscillatory as ¢* grows. Moreover, from
(4.48) we have for a fixed pair of m, ! that

Qm, 1

—m s 9272 (R 4.49
s B (4.49)

as € — 00, and therefore it is clear that there is no hope on any convergence behavior of W,,,, as ¢*
grows to infinity.
Furthermore, from (4.31) that the asymptotic Ap,; ~ —(Jm| + 21)72 holds and the limit comparison

test, we have for a fixed e* > —2Re ()\ 1N( )) that

C/

c* 170.(

IN

/ \m|+\n|
Com R ) (4.51)

Spm | Cm + —
d(—e*=1,a(KR)) [m|™ ||

Corollary 4.8. Let D = B(0, R). For all m € Z\{0}, there exist constants N(m) € N and C; p,, i = 1,2

such that, for any given contrast value €* > —2 Re ()\mlN(m)>, the scattering coefficient Wi (D, e*)
satisfies the following estimate for alln € Z,
Co.m Rlml+In|
[Wam (D, e)| < 6nm | Crom + e (4.52)
d(—e*~1 a(Km’)) Im["™|n|

This clearly improves the estimate (2.37).

4.3.2 Tail behavior of the series representation of C(c*,n,m)

We now focus on the behaviors of the coefficients C(¢*,n,m), which will help us to understand the
phenomenon of super-resolution. We first focus on the case when n,m € N. We recall the expression of
the coefficient C'(e*,n,m) in (3.27):

C(e*n,m) =" {(5*_1 + K,Sp) B [Jm]} (R) [(5*_1 + f<,<}>) B [Jn]} (R).

1
It remains to study the term (5* 4 K(l)) [Jm](R). From the previous subsection, the geometric

multiplicities of all the eigenvalues of Kfn) are Ny = 1, and the algebraic multiplicities of eigenvalues

Am,1 of K are also 1 for | > Ny(m) (see Theorem 4.7). Together with the regularity of .J,,, we readily
obtain as in the previous subsection that

Ce*,n,m) = & (s1.0(€%) + 52.0(€"))(51.m (%) + s2.m (7)), (4.53)

where the sums s; ,,(e*), (i = 1,2) are defined by

Nz(m)

Sl,m(g*) = Z (em,l(R))T[Jm,s**l-i-)\m,L]_l(Jm('r) )em,l,LQ((O,R),Tdr)u (454)
=0

Som(e¥) = i Wlﬁ% (4.55)
=Ny (m)+1 c T Am
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with the coefficients 3, ; being given for all m,[ by

1
Bt = (Jm () Ve 1 ,L2((0,R) v dr) Im <\ [1— A—1R> : (4.56)

Similarly to the previous subsection, for any ¢* > —2Re ()\;INQ (m)

constant Cy,. Therefore, we can study the behavior of (4.53) for large £* by investigating the limiting
behavior of 3, in the series s2 () .
Substituting (4.22), (4.26) and (4.28) into (4.20), we readily derive

/ 1 ' 2R
Jm < 1— A—R) /(—1)&%71@},{311,(;)(R)Jm(R) 51 asl—oo. (4.57)
m,l ’ a

Together with (4.41) and (4.42), we conclude that

), we have [s1 ()] < Cp, for some

ﬁm,l/%\/ﬁAm,lJﬁl(R)Hf,%)(R) -1 asl— oo. (4.58)

Combining the above results with (2.32) and (2.33), we obtain the following decomposition of C(¢*, n, m).

Theorem 4.9. Let D = B(0, R) be a circular domain. For all p € Z\{0}, there exist constants N(p) € N

and Cp, > 0 such that, for anyn,m € Z\{0} and any contrast value e* > —2 max {Re (A;,lzv(n)) , Re (/\;L%N

the coefficient C(e*,n,m) (3.27) admits the following decomposition:
Cle*,n,m) = e (s1.0(€%) + 52.0(€"))(51.m (%) + s2.m (7)) . (4.59)

For all p € Z\{0}, s1,(c*) satisfies the uniform bound

[s1,p(e)| < Cyp, (4.60)
whereas s2,,(*) is given by
*\ > Bp,l
s2p(E) = > i (4.61)
I=N2(p)+1 pil

where the coefficients B, have the following limiting behavior
i
Bp,l/5\/ﬁAp,lJ§(R)H1§1>(R) — -1 asl— 0. (4.62)

Similarly to the previous subsection, the aforementioned decomposition of C(¢*,n,m) clearly illus-
trates the behavior of C(¢*,n,m) as e* grows and £* ' passes through the values —Re()\, ) ~ (|p|+21) 2
with p =n,m. If A\p; € R, e*~! directly hits the pole. Therefore C'(¢*,n,m) first grows from a finite
value rapidly to a directional complex infinity coe? for some 6, then back from —ooe® to a finite value
after passing through it. Otherwise if A, ; ¢ R and when [ is large, £*71 does not pass through the pole,
but comes very close to it. Hence, C(e*, n,m) grows rapidly from a considerably small value to a complex
value of very large modulus, then drops to a small value after passing through —Re(\, ;). Moreover, for
a fixed pair of p, [, we have

ﬂp,l

¢ VR 72 R (1) R
E*—l + )\;D,l 2 p( ) p ( ) ( 63)

as €* — 00. Therefore, we can see that C(¢*,n, m) has very oscillatory behavior as £* grows.
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4.4 The super-resolution phenomenon

Although C(g*,n,m) is very oscillatory as * grows, the aforementioned behavior and series decom-
position of C(g*,n,m) gives a clear explanation of the super-resolution phenomenon for high-contrast
inclusions. It is because, what we have actually proved is that, in the shape derivative of the scattering
coefficients of a circular domain, there are simple poles corresponding to the complex resonant states,
and therefore peaks at the real parts of these resonances. Hence, as the material contrast €* increases to
infinity and is such that it hits the real part of a resonance, the sensitivity in the scattering coefficients
becomes very large and super-resolution for imaging occurs.

To put it more accurately, let us recall (3.26). Suppose D = B(0, R), then for any §-perturbation of
D, D°, along the variational direction h € C*(8D), we have

Wim (D%, e*) = Wy (D, %) = 6 C(e*,n,m)Fo [h] (n — m) + O(6%) .

As one might recall from (2.28), W, (D°, e*) always decays exponentially as |n|, |m| increase. Hence, it
is always of exponential ill-posedness to recover the higher order Fourier modes of the perturbation h.
The inversion process to recover the k-th Fourier mode §y [h] (k) becomes less ill-posed if C'(e*,n,m) is
large for some n,m € Z such that k = n — m. This not only makes the respective scattering coefficients
more apparent than the others, but also lowers the condition number of the inverse process to reconstruct
the respective Fourier mode. From the analysis in the previous subsection, this can only be made possible
when £* ! comes close to —Re()\,;) for some p = n,m and for some [ € N.

Now, suppose €* is close to the following resonant value (% — ﬁ)Q where K € N is large. Then,
from the fact that the eigenvalues A, ; of the operators IN(;()l) follow the asymptotics:
_ +20) 7 2
Y S Ay M -0 4.64
Pl ( 2R AR) (4.64)

we see that ¢* ! is close to —Re()\;ll(p)) for all p € Z such that |p| + 21(p) = K for some I(p) € N.

Therefore, €*~* comes close to —Re()\;()lo), —Re()\f(l_m), —Re()\f(l_ém), ce —Re(A}iQ[%H%]) simultane-

ously where [] is the floor function. This in turn boosts up the magnitudes of all the terms E*,ﬂﬁ%
pP,L(p
whenever p is of the form p = —K +2s, s =0,2,..., K. These terms dominate the series sz ,(¢*), hence

we obtain the following approximations of s ,(¢*) for all p = —K +2s, s =0,2,..., K:

(K —0.5)"2
A4 Tp2R2+" 1 — (K —05) 2"

. i
s9.p(e") = —5\/§J§(R)H]§1>(R)

Now we see from Theorem 4.9 that the coefficients C'(¢*,n,m) have the following approximations for

. 2
n,m € Z when £* is very close to the resonant values (% — ﬁ) for large K:

2

Q

My g (K —0.5)70 (47 112 R72* 7! — (K — 0.5)72)

if both of n, m have the form —K + 2s, s =0,2,...,K;
Cle™n,m) S~ Myp,p(K—05)"* (47 1n2R2e 7! — (K — 0.5)*2)‘1
if only one of n, m has the form —K 4+ 2s, s =0,2,..., K;

is very small otherwise,

where M, ,,  are some constants depending only on n, m and R. Here, the term (4~ !'72R~2e* 7' — (K — 0.5)72)

is very large, and makes the Fourier coefficients §p [h] (n — m) visible for n,m € {-K +2s : s =

1,2,...,K} for accurate classification of the shapes. The above mechanism is possible only when &*
. 2 . . . . .
increases up to one of the resonant values (g—g — ﬂ%) when K is large. This explains the increasing

likelihood of obtaining super-resolution as €* increases.
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Now, for a given *, consider the following bounded linear map over the space (2 (C) of two-sided
sequences (a;)7°_ such that Y ,° _ af < oo,

— 00

Al 5(C) — I1E(C)®I(C)

(al)?ifoo = (O(E ) 7m) anfm)f;)mzfoo . (465)
By Theorem 3.3, we know the shape derivative of (W (D,€*)),",,— . in the variational direction  is

given by
DW(D,e*)[h] = A(e*)Fo [h] - (4.66)
Hence, we can conclude that the least-squared map

[AE)]"[A(E)]  12(C) — E(C)

(@) ., — (Z |C’(5*,n,m)|2al> (4.67)

—m=l l=—00

is a diagonal operator, and the I-th singular value s;(A) is of the form

si(A) = Z |C(e*,n,m)|?. (4.68)
n—m=l
Therefore, from the above analysis on C'(¢*, n, m) when * is close to the resonant values ( % — ﬁ)Q, we
can observe that the singular values s; become large and comparable to each other, making the inversion
of many Fourier modes well-conditioned. This implies a much higher resolution of the modes of h, and also
for reconstructing the geometry of D? in the linearized case. This provides a good understanding towards
the recently observed phenomenon of super-resolution in the physics and engineering communities.

5 Numerical experiments

In this section, we present some numerical experiments on the behaviors of the scattering coefficients
for some domains as the contrast ¢* grows, and numerically illustrate the phenomenon of super-resolution.

In the following 2 examples, we consider an infinite domain of homogeneous background medium with
its material coefficient being 1. An inclusion D? is then introduced as a perturbation of a circular domain
D = B(0,R) for some R > 0 and § > 0 lying inside the homogeneous background medium, with its
contrast chosen to be ¢* = a?n)l/R2 — 1 running over all m, [ such that a,,; < 18.901. The exact values
of the zeros of Bessel functions are found in [16].

In order to generate the far-field data for the forward problem and the observed scattering coefficients,
we use the STES-master package developed by H. Wang [31].

The forward problem is solved by computing the solutions (¢, 1m) of (2.8) for |m| < 25 using
rectangular quadrature rule with mesh-size s/1024 along the boundary of the target, where s denotes the
length of the inclusion boundary. The scattering coefficients of D° of orders (n,m) for |n|, |m| < 25 are
then calculated as the Fourier transform of the far-field data.

In order to test the robustness of the super-resolution phenomenon, we introduce some multiplicative
random noise in the scattering coefficients in the form:

Wil (D%, ") = Wom (D®, ) (1 + (i + i) (5.1)

where 7;, i = 1,2, are uniformly distributed between [—1, 1] and ~ refers to the relative noise level. In
both examples below, we always set the noise level to be v = 5%.

Since the purpose of our numerical experiments is to illustrate the phenomenon of super-resolution
as € increases, we assume that both R and £* are known and use the following regularized inversion
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method suggested from the linearized problem (3.26) to recover the k-th Fourier mode for |k| < 50 from
the observed noisy scattering coefficients W, (D%, *), |n|, |m| < 25:

Z W, (D%, e*) — Wy (D, *)

5 hrecovered k) —
59[] () C(s*,mm)—&—a

: (5.2)

n—m=k, |n|,/m|<25

where « is a regularization parameter. The coefficients W,,,,(D,e*) used in the inversion process are
calculated using the same method as previously mentioned for the forward problem without adding
noise, and the coefficients C'(¢*,n, m) are calculated by the following approximations

C(e*,n,m) & (Wpm(D(n —m),e*) — Wym (D, %)) /do (5.3)
for |n|, |m| < 25, where D% (k) are defined as domains with the following boundaries for |k| < 50,
oD% (k) := {Z = R(1 + 6pe™*?) : 6 € (0,27} (5.4)

with d¢ chosen to be dg = 0.1.
Example 1 As a toy example, we first consider a flori-form shape D° described by the following
parametric form (with § = 0.1 ):

r = 0.3(1+ d cos(360) + 26 cos(60) + 46 cos(96)), 6 € (0,27], (5.5)

which is a perturbation of the domain D := B(0,0.3); see Figure 3 (left) for the domain and Figure 3
(right) for the comparison between the domains D? and D.

Figure 3: Inclusion shape in Example 1.

The relative magnitudes of the scattering coefficients max|,, |t [Wam (D%, €*)|/ maxm 2 |[Wam (D, €%)]
are plotted for k = 3,6,9 in Figure 4.

From Figure 4, we can clearly observe that, as €* grows, the relative magnitude of the scattering
coefficient corresponding to the £k-th Fourier mode grows from a smaller magnitude to larger magnitude,
and the peaks become apparent when * hits the respective zeros of the Bessel functions.
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Figure 4: Relative magnitudes of the scattering coefficients in Example 1.

From the relative magnitudes shown in the above figures, we observe that the scattering coefficients
are best conditioned for inversion when £* = 1971.2481,3627.456. The scattering coefficients of the
respective contrasts are plotted in Figure 5 (left),

together with e* = 63.2669 corresponding to the first zero of Jy as a comparison.

We notice from Figure 6 that the scattering coefficients corresponding to higher Fourier modes be-
come more apparent as €* increases. We then apply the aforementioned inversion process, with the
regularization parameter chosen as o = 1 x 1078, The magnitudes of the recovered Fourier modes and
the reconstructed domains are shown in Figures 6 and 7, respectively. We can clearly see that the fine
features are more and more apparent as ¢* grows along the specific contrasts that we choose. Notice
also that the fine features are of a magnitude smaller than 0.4, which is much smaller than half of the
operating wavelength, .

,5« ,nzm,{: . ,E' ,nzm,s“: "
w_ (©° 63.2669 W, (©0° 1971.2481

0.025

0.015

0.005
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Figure 5: Illustration of super-resolution in Example 1: magnitude of scattering coefficients.
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Figure 6: Illustration of super-resolution in Example 1: magnitude of recovered Fourier coefficients.

29



Shape Reconstruction, € = 63.2669 Shape Reconstruction, € = 1971.2481
;

NN

Shape Reconstruction, € = 3627.456
;

T T T T T
031 4
0.2 1
0.1 1
.
-0.2 -0.

ot 3

-0.1 1

-0.2 1

-0.3r 1
L L L L L

1 0 0.1 0.2 0.3 0.4

Figure 7: Illustration of super-resolution in Example 1: recovered domain.

Example 2 We try the following right-angled isosceles triangle D%, which is a perturbation of the
domain D := B(0,0.2); see Figure 8 (left) for the domain and Figure 8 (right) the comparison between
the domains D% and D. This case is substantially harder, since the perturbation h consists of many
Fourier modes and is no longer smooth.

0.15 T T T T T T T

0.1r 1

-0.1r 1

-0.2f —

-0.25 L L L L . L L
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Figure 8: Inclusion shape in Example 2.

The relative magnitudes of the scattering coefficients max|,, g [Wam (D%, €*)|/ maxmn |[Wam (D%, €%)]
are plotted for k = 1,2,...,6, in Figure 9. From this figure, we can see that the relative magnitude of the
scattering coefficient corresponding to the +k-th Fourier mode comes out more often when £* becomes
large.
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