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SPARSE ADAPTIVE TENSOR GALERKIN APPROXIMATIONS
OF STOCHASTIC PDE-CONSTRAINED CONTROL PROBLEMS∗

ANGELA KUNOTH† AND CHRISTOPH SCHWAB‡

Abstract. For control problems constrained by linear elliptic or parabolic PDEs (partial differ-
ential equations) depending on countably many parameters, i.e., on σj with j ∈ N, we proved in [KS]
analytic parameter dependence of the state, the co-state and the control. Moreover, we established
that these functions allow expansions in terms of sparse tensorized generalized polynomial chaos
(gpc) bases. Their sparsity was quantified in terms of p-summability of the coefficient sequences for
some 0 < p ≤ 1. Resulting a-priori estimates established the existence of an index set Λ, allowing
for concurrent approximations of state, co-state and control for which the gpc approximations attain
rates of best N-term approximation.

The regularity and N-term approximation results of [KS] serve as the analytical foundation for
the development of adaptive Galerkin approximation methods in the present paper. Following the
ideas in [Gi2, SG] and the realizations in [EGSZ, EGSZ, GAS] for a single PDE, we construct de-
terministic adaptive Galerkin approximations of state, co-state and control on the entire, possibly
infinite-dimensional, parameter space. The starting point for these constructions are control prob-
lems formulated as abstract symmetric saddle point problems as in [KS]. Specifying this to adaptive
wavelet based schemes in space and time, we prove convergence as well as optimal complexity esti-
mates, when compared to best N-term approximations.

Key words. Linear-quadratic optimal control problems, stochastic or parametric coefficients,
linear elliptic or parabolic PDE, analyticity, polynomial chaos approximation, symmetric saddle point
problems, tensor Galerkin discretization, adaptivity, wavelets, convergence, optimal complexity.

AMS subject classifications. 41A, 65K10, 65N99, 49N10, 65C30.

1. Introduction. The numerical solution of PDEs (partial differential equa-
tions) with random inputs, and the simulation of systems modelled by parametric or
stochastic PDEs, has received increasing attention in recent years. On the one hand,
in optimization PDEs on high–dimensional design spaces are approximated by sparse
polynomial interpolation, or random field solutions of stochastic PDEs driven by noise
are approached by means of Wiener chaos [GS, KX, Sch, W].

Solving for a parametric, deterministic representation of the law of the random
solution of such problems leads to parametric PDEs depending on a large or even
countably infinite number of parameters σj for j ∈ N.

Already for a single scalar elliptic PDE, uncertainty quantification for such count-
ably parametric PDEs pose enormous challenges for numerical simulations. Over the
past years, the efficient numerical simulation of such problems has become a very ac-
tive field of research, see, e.g., [BNT, BTZ, CDS1, GWZ, SG, ST] and the references
therein. For optimal control problems governed by such PDEs, an additional challenge
arises: even in the completely deterministic situation, during the optimization process
arises the need to solve a system of coupled PDEs. At the core of efficient numerical
simulation of PDE-control problems depending on countably many parameters is the
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question of approximation: state, co-state and control need to be approximated as
parametric functions on the entire parameter space. Previous studies have focussed
either on control problems involving none, or at most only finitely many parameters,
see e.g., [CQR, GLL, HLM] and the references therein.

A new approximation paradigm for parametric PDE problems with infinitely
many parameters is based on sparsity in the solutions’ parameter dependence. It has
been introduced in [CDS1, CDS2] for a single linear elliptic PDE with PDE operator
depending affinely on the parameters (σj)j≥1. Affine parameter dependence arises,
e.g., for diffusion problems with diffusion coefficients expanded in terms of Karhunen–
Loève approximations, see, e.g., [ST] for such expansions and their numerical analysis
for elliptic PDEs with stochastic coefficients. It has since been generalized to large
classes of countably parametric equations of state with both, affine and general non-
linear holomorphic parameter dependence in [CCS2].

The main line of argument in the new paradigm is as follows. First, it is shown
that the solution of the PDE depends analytically on (σj)j≥1. Even stronger, the
solution is shown to be regular p-analytic for some 0 < p ≤ 1 if the PDE opera-
tor is; this notion is defined precisely below. This then allows an expansion of the
solution into tensor products of Legendre polynomials with a sparse, p-summable
coefficient sequence. In turn, this enables convergence rates of best N -term poly-
nomial approximations of the parametric solution of the parametric PDE. Based on
these theoretical results, corresponding greedy-type algorithms based on tensorized
polynomials in the parameter domain and finite elements in the space domain were
proposed in [Gi2, SG] together with convergence results and many practical consid-
erations; for implementational aspects for elliptic PDEs with random input data, we
refer to [EGSZ, EGSZ, GAS].

In our previous paper [KS], the first step of this paradigm is shown for a large class
of PDE-constrained control problems involving linear elliptic and parabolic PDEs,
depending on a possibly infinite sequence of parameters (σj)j≥1. The main idea is to
formulate the first order necessary conditions for optimality as a saddle point problem
in the state and the costate variables and prove p-analyticity of the saddle point
operator under the assumption that the underlying PDE operator for the constraining
PDE is p-analytic for some 0 < p ≤ 1. Quite surprisingly, this result in turn allows for
concurrent N -term truncated gpc (generalized polynomial chaos) tensorized Legendre
expansions for state, adjoint state and control on the entire parameter domain at a
rate N−(1/p−1/2) (in mean square with respect to a probability measure π on the
space Γ of parameters). This means that all three parametric variables occurring in
the control problem can be approximated at this rate with N degrees of freedom each
in the parameter domain with the same, finite set ΛN (of cardinality at most N) of
active polynomials of the parameter. In addition, as we show in the present paper,
the results of [KS] can be sharpened in the sense that the sets ΛN can be chosen with
monotone structure which renders them computationally accessible.

Besides, the purpose of the present paper is to provide a practical construction
of this index set and the corresponding approximation of the solution triple state, co-
state and control with respect to the parameters σ and with respect to time t and space
x. First, building on the results for a single parameter-dependent PDE from [EGSZ,
EGSZ, Gi2, GAS, SG], we show how this approximation in parameter space can be
realized by employing greedy-type algorithms. Second, we tie this discretization to
an appropriate one with respect to the space and time variables. For this purpose, we
will employ adaptive tensor Galerkin approximations based on wavelets. Together,
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this allows for sparse adaptive tensor discretizations of control problems constrained
by linear elliptic and parabolic PDEs, along the lines as they were developed for the
non-parametric case in [DK, GK, K].

The method of attack to derive these results for control problems is to formulate
the main results first for a class of abstract saddle point problems as in [KS]. In order
to do so, we first specify in Section 2 the classes of PDE-constrained control problems
considered here and specify their first order optimality conditions as symmetric saddle
point problems. We reformulate the main theoretical results for abstract parametric
saddle point problems from [KS] in Section 3. Section 4 specifies the type of wavelet
bases for the discretization with respect to space and time so that we can derive in
Section 5 a representation of the saddle point problem as a bi-infinite linear system,
in terms of parameter σ, space and time. Section 6 recalls the main ingredients of
adaptive approximations for parametric elliptic and parabolic problems from [EGSZ,
Gi2, GAS, SG] and extends them to the abstract saddle point problem. Section 7
highlights the corresponding tensor product structure for the biinfinite saddle point
operator, followed by adaptive Galerkin discretizations in terms of a Riesz basis built
by tensorizing a Legendre polynomial chaos in stochastic space and a multiresolution
analysis in physical space in Section 8 and an approximation of the deterministic
operator in Section 9. Finally, in Section 10, we discuss sparse, adaptive tensor
discretizations of the parametric KKT operators.

2. PDE-constrained control problems.

2.1. First order necessary conditions. We begin by recalling some general
statements about constrained optimization problems from, e.g., [NW], see also [BS].
Let Y, U be Hilbert spaces over R which shall host the state y of a system and a
control by which the state can be influenced. Let J : Y × U → R be a functional
which is twice differentiable with respect to y and u, and K : Y × U → Y ′ be a (in
y, u Fréchet-) differentiable function where Y ′ denotes the topological dual of Y . We
shall be concerned with the constrained minimization problem

inf
(y,u)∈Y×U

J(y, u) (2.1)

subject to K(y, u) = 0. (2.2)

For the constraints (2.2), we assume that there exists a unique solution y ∈ Y for the
case that u ∈ U is given. A typical way to solve (2.1) subject to (2.2) is to compute the
zeroes of the first order Fréchet derivatives of the corresponding Lagrangian functional.
It is built by introducing a new variable p, the costate or adjoint state in terms of
which the constraints (2.2) are appended to the functional (2.1), i.e.,

L(y, u, p) := J(y, u) + 〈K(y, u), p〉Y ′×Y (2.3)

with L : Y × U × Y → R. We always indicate spaces for duality pairings 〈·, ·〉 by
subscripts.

Denote by Lz(y, u, p) :=
∂
∂zL(y, u, p) and Lzz(y, u, p) :=

∂2

∂z2L(y, u, p) the first and
second variation, respectively, of L with respect to z = y, u, p. Then the necessary
conditions for optimality read

δL(y, u, p) :=





Ly(y, u, p)
Lu(y, u, p)
Lp(y, u, p)



 = 0 (2.4)
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which is for (2.1), (2.2)





Jy(y, u) + 〈Ky(y, u), p〉Y ′×Y

Ju(y, u) + 〈Ku(y, u), p〉Y ′×Y

K(y, u)



 = 0. (2.5)

If J is now quadratic in both y, u, and K linear in y, u, system (2.5) can be
specified to the linear system of equations





Lyy Lyu K∗
y

Luy Luu K∗
u

Ky Ku 0









y
u
p



 = g ⇐⇒:

(

A B∗

B 0

)(

(y, u)⊤

p

)

= g

⇐⇒: Gq = g (2.6)

with some right hand side g. Here C∗ denotes a linear operator which is the dual of
C, i.e., 〈C∗q, r〉 := 〈q, Cr〉. The Hessian of L or the Karush-Kuhn-Tucker (KKT) op-
erator G has for such linear-quadratic problems constant entries. For linear-quadratic
optimization problems, the necessary conditions are then also sufficient for the infi-
mum. Moreover, if J or K do not contain products yu, one has Lyu = Luy = 0 so
that A is a block diagonal operator.

Typically, the quadratic functional (2.1) contains inner products so that the re-
sulting Riesz operators Lyy, Luu are symmetric which implies that A is symmetric.
This is the situation we will always consider from now on.

Regarding the unique solvability of (2.6), one has the following result from, e.g.,
[BBF, Theorem 4.2.1].

Theorem 1. Let V, Q be Hilbert spaces and let A : V → V ′, B : V → Q′ be linear
continuous operators. Moreover, assume that ImB = Q′ and that A is invertible on
KerB. Then the saddle point problem (2.6) has for g ∈ V ′ × Q′ a unique solution
q ∈ V ×Q.

In view of the general argument to derive (2.6), we consider in the remainder
of this work the design and analysis of adaptive stochastic Galerkin discretizations
of parametric, symmetric saddle point problems (2.6) with a boundedly invertible
linear mapping G : X → X ′ where X := Y × U × Y , and where the operator G
depends on possibly countably many parameters σ. Before detailing this, we present
some standard examples from [KS] to which this scenario applies and specify the
corresponding system (2.6).

2.2. Dirichlet problem with distributed control. Consider the standard
weak formulation of a second order elliptic PDE with homogeneous boundary condi-
tions. Choosing Y := H1

0 (Ω) and U := Y ′, we consider for given f ∈ Y ′ the linear
operator equation

K(y, u) := Ay − f − u = 0 (2.7)

and quadratic objective functional

J(y, u) :=
1

2
‖y − y∗‖

2
Y +

ω

2
‖u‖2Y ′ (2.8)

for a given target state y∗ ∈ Y and any fixed weight parameter ω > 0. We assume
that A : Y → Y ′ is a linear boundedly invertible operator. However, we do not
assume that A is self-adjoint. This is, in particular, essential for the treatment of
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parabolic evolution equations, see Section 2.3. The norms in (2.8) can be norms
on Hilbert spaces as long as they are induced by inner products and as long as the
constrained optimization system (2.1) together with (2.2) is well-posed, leading to a
unique solution pair (y, u) according to Theorem 1.

Denote by R : Y → Y ′ the Riesz operator defined by the inner product (·, ·)Y
inducing ‖ · ‖Y ,

〈v,Rw〉Y×Y ′ := (v, w)Y , v, w ∈ Y. (2.9)

Since (·, ·)Y is symmetric, R is also. The Lagrangian defined in (2.3) takes the form

L(y, u, p) =
1

2
〈y−y∗, R(y−y∗)〉Y×Y ′ +

ω

2
〈u,R−1u〉Y×Y ′ +〈Ay−f−u, p〉Y ′×Y (2.10)

Thus, the system (2.6) becomes




R 0 A∗

0 ωR−1 −I
A −I 0









y
u
p



 =





Ry∗
0
f



 , (2.11)

i.e.,

A = diag(R,ωR−1) and B = (A,−I) . (2.12)

The system matrix G defined in (2.11) is symmetric since R is. Moreover,A is positive
definite and B has full rank since, by assumption, the constraints (2.1) have a unique
solution for given u. Thus, by Theorem 1, G is boundedly invertible.

Note that this form also applies to Dirichlet problems with Neumann boundary
control by introducing an additional linear operator C applied to the control in (2.7),
see [KS]. This results in a system (2.11) with −I in the third row replaced by −C
and in the second row by −C∗, respectively.

The situation also applies to the Dirichlet problem with Dirichlet boundary con-
trol formulated as an (outer) saddle point problem of (inner) saddle point problems
as in [KS].

2.3. Parabolic PDE with distributed control. The full space-time weak
formulation of a linear parabolic evolution PDE from [SSt] in the variation from
[ChSt] fits into this framework as well. The parabolic operator equation is formulated
such that the resulting operator B is boundedly invertible from X̃ := L2(I) ⊗ Y to
X̃ := (L2(I)⊗Y )∩ (H1

T (I)⊗Y
′) where H1

T (I) is the closure of the functions in H
1(I)

which vanish at end time T and I := (0, T ) denotes the time interval.
For the control problem, the constraints are of the form (2.7) with the parabolic

evolution operator B = ∂t+A in full weak space-time form as in [ChSt] in place of A,
see [GK] for details. Choosing the objective function then as in (2.8) with the obvious
changes for the norms, i.e., using the norms for X̃ , Ỹ, we arrive at a system very
similar to (2.11) with symmetric A = diag(RX̃ , ωRỸ) with the respectively defined
Riesz operators. The corresponding operatorG is here a boundedly invertible mapping
from X := X̃ × X̃ × X̃ onto X ′.

Similarly as for the elliptic control problem with Dirichlet boundary control,
Dirichlet boundary controls can be handled for the case of the control problem subject
to a parabolic PDE as well, by formulating the PDE in full space-time weak form and
appending the Dirichlet boundary conditions by Lagrange multipliers. Thus, one has
to deal again with an (outer) saddle point problem of (inner) saddle point problems
involving a nonsymmetric operator B = ∂t + A in (2.7) in place of A. Again, the
resulting saddle point operator G in (2.6) is symmetric and boundedly invertible.
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3. Parametric saddle point problems. At the heart of our analysis are linear
parametric saddle point operator equations where the amount of parameters may
be countably infinite, such as they arise for elliptic PDEs with random coefficients
expanded in Karhunen–Loève representations. We recall the main notions and results,
first in an abstract setting, from [KS], specified to symmetric saddle point problems.

3.1. Boundedly invertible operators. Let X be a reflexive Banach space
over R with (topological) dual X ′. By L(X ,X ′), we denote the set of bounded linear
operators mapping from X to X ′. Recall from, e.g., [Au], that Riesz’ representation
theorem associates with each G ∈ L(X ,X ′) a unique bilinear form G(·, ·) : X ×X → R

by means of

G(v, w) = 〈w,Gv〉X×X ′ for all v, w ∈ X . (3.1)

For solving linear operator equations Gq = g with given data g ∈ X ′, we use the
following existence and uniqueness result which is a straightforward consequence of
the closed graph theorem, see, e.g., [BBF, NSV].

Proposition 2. A symmetric operator G ∈ L(X ,X ′) is boundedly invertible if
and only if its associated bilinear form G(·, ·) satisfies the inf-sup conditions: there
exists a constant γ > 0 such that

inf
06=v∈X

sup
06=w∈X

G(v, w)

‖v‖X ‖w‖X
≥ γ and inf

06=w∈X
sup

06=v∈X

G(v, w)

‖v‖X‖w‖X
≥ γ (3.2)

hold. In this case, for every g ∈ X ′ the operator equation

find q ∈ X : G(q, v) = 〈g, v〉X ′×X for all v ∈ X (3.3)

has a unique solution q ∈ X with the a-priori estimate

‖q‖X ≤
1

γ
‖g‖X ′ (3.4)

3.2. Parametric operator families. We shall be interested in parametric fam-
ilies of operators G(σ) ∈ L(X ,X ′). Specifically, we shall treat the practically most
important case of countably infinite sequences σ := (σj)j∈S of (independent) parame-
ters which we assume to take values in Γ ⊂ R

N, i.e., each realization of σ is a sequence
of real numbers. We equip the parameter domain Γ := [−1, 1]N with the product
probability measure

π(σ) =
⊗

m≥1

πm(σm) . (3.5)

For our regularity and approximation results, we require G(σ) to be (real) analytic
with respect to σ, i.e., the parameter family G(σ) is infinitely differentiable with
respect to σ and coincides in an open, nonempty neighborhood of each point with its
Taylor series at that point. The precise format of the parameter dependence shall be
the following.

Assumption 1. The parametric operator family

{G(σ) ∈ L(X ,X ′) : σ ∈ Γ}

is regular p-analytic for some 0 < p ≤ 1, i.e.,
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(i) G(σ) ∈ L(X ,X ′) is boundedly invertible for every σ ∈ Γ with uniformly
bounded inverses G(σ)−1 ∈ L(X ′,X ), i.e., there exists C0 > 0 such that

sup
σ∈Γ

‖G(σ)−1‖L(X ′,X ) ≤ C0; (3.6)

(ii) for any fixed σ ∈ [−1, 1]N, the operators G(σ) are analytic with respect to each
σj and there exists a nonnegative sequence b = (bj)j≥1 ∈ ℓp(N) such that

for all ν ∈ F\{0} : sup
σ∈Γ

∥

∥(G(0))−1(∂νσG(σ))
∥

∥

L(X ,X )
≤ C0b

ν . (3.7)

Here, the index set

F := {ν ∈ N
N

0 : # supp ν <∞} (3.8)

appearing in (ii) where supp ν := {m ∈ N : νm 6= 0} is countable; it contains all
finitely supported sequences of nonnegative integers, i.e., sequences which only have a
finite number of nonzero entries. For ν ∈ F, bν denotes the (finite) product bν11 b

ν2
2 . . .

with 00 := 1, and ∂νσG(σ) :=
∂ν1

∂σ1

∂ν2

∂σ2
· · ·G(σ).

We point out that the estimates in (3.7) are taken for all finite order derivatives
from the countable index set F. This will be the key for dealing with infinitely many
parameters σ. The regularity parameter p ∈ (0, 1] which controls the derivatives
∂νσ(G(σ))

−1 according to (3.7) will later determine the best N -term approximation
rate in (3.31) below.

3.3. Affine Parametric Operator Families. The dependence of G(σ) on σ
formulated in Assumption 1 allows for very general situations. One of the most fre-
quently and particular relevant appearing case is the one where the operator family
G(σ) depends on σ in an affine fashion, sometimes also denotes as the (stochasti-
cally) linear case. This appears, for example, for diffusion problems with stochastic
coefficients when the diffusion coefficients are represented in terms of a Karhunen–
Loève expansion using a spectral approach, see, e.g., [ST]. Then there exists a family
{Gj}j≥1 ⊂ L(X ,X ′) such that the parametric operator G(σ) can be represented as

∀σ ∈ Γ : G(σ) = G0 +
∑

j≥1

σj Gj , (3.9)

with G0 = G(0) the nominal or mean-field operator and fluctuation operators Gj , j ≥
1. As in (3.1), we associate with each operator Gj a bilinear form Gj(·, ·) : X×X → R.
We impose the following assumptions on {Gj}j≥1.

Assumption 2. The family of operators {Gj}j≥1 in (3.9) satisfies:
(i) G0 ∈ L(X ,X ′) is boundedly invertible with constant γ0 > 0 in (3.2);
(ii) The {Gj}j≥1 are small with respect to G0: there exists a constant 0 < κ < 1

such that
∑

j≥1

‖Gj‖X→X ′ ≤ κγ0 . (3.10)

Assumption 2 on {Gj}j≥1 implies the following statements [KS, Thm. 2].
Theorem 3. Let Assumption 2 on {Gj}j≥1 hold. Then one has:
(i) The sum in (3.9) converges absolutely and uniformly on [−1, 1]N.
(ii) The parametric operator G(σ) is boundedly invertible uniformly in σ with

constant γ = (1 − κ)γ0 > 0.
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(iii) For every g ∈ X ′ and for every σ ∈ Γ, the parametric operator equation

find q(σ) ∈ X satisfying G(σ) q(σ) = g (3.11)

has a unique solution q(σ) which satisfies the a-priori estimate

sup
σ∈Γ

‖q(σ)‖X ≤
‖g‖X ′

(1− κ)γ0
. (3.12)

(iv) The affine parametric operator family {Gj}j≥1 satisfies Assumption 1 with
p = 1 and

C0 =
1

(1− κ)γ0
and bj :=

‖Gj‖X→X ′

(1− κ)γ0
for all j ≥ 1 .

Moreover, if

∑

j≥1

‖Gj‖
p
X→X ′ <∞ (3.13)

holds for some 0 < p ≤ 1, then the family {Gj}j≥1 satisfies Assumption 1
with the same p.

We remark that stronger assumptions than (3.10) on the sequence {Gj}j≥1 in
the affine family (3.9) allow the verification of p-summability (ii) in Assumption 1
with condition (3.13) for a smaller exponent p′ < p. As the convergence rates of
adaptive stochastic Galerkin approximations are only based on Assumption 1, and
yield approximation rates N−r, r := 1

p
− 1

2 , with N gpc degrees of freedom, they will
also apply in these cases. Optimality will be shown in Theorem 5 and Corollary 6.

3.4. Analytic parameter dependence of solutions. For the remainder of
this Section, we return to the case of general parameter dependence from Subsection
3.2. Next we recall analytic dependence of the solution q(σ) on σ, with precise bounds
on the growth of the partial derivatives. This later allows for a-priori estimates for
finite dimensional approximations of q(σ) relative to σ, see (3.23) and Theorem 5
ahead.

Theorem 4. Let the parametric operator family {G(σ) ∈ L(X ,X ′) : σ ∈ Γ}
satisfy Assumption 1 for some 0 < p ≤ 1 and sequence b = (bj)j≥1 ∈ ℓp(N). Then,

(i) for every g ∈ X ′ and every σ ∈ Γ, there exists a unique solution q(σ) ∈ X of
the parametric operator equation (3.11),

G(σ) q(σ) = g in X ′;

(ii) the parametric solution family {q(σ) :σ ∈ Γ} depends analytically on σ;
(iii) the partial derivatives of q(σ) satisfy the bounds

sup
σ∈Γ

‖(∂νσq)(σ)‖X ≤
C0

ln 2
‖g‖X ′ |ν|! bν for all ν ∈ F . (3.14)

3.5. Stochastic Galerkin formulations. The bounds (3.14) are the basis for
quantifying approximability of q(σ) in the space L2

π(Γ;X ) This Lebesgue-Bochner
space is the space of all functions v with finite norm

‖v‖L2
π
(Γ;X ) :=

(∫

Γ

‖v(σ)‖2X dπ(σ)

)1/2

. (3.15)
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It is isometrically isomorphic to the Hilbert tensor product L2
π(Γ)⊗X see, e.g., [Au],

where L2
π(Γ) is the Hilbert space of all functions v for which the norm ‖v‖L2

π
(Γ) defined

by ‖v‖2L2
π
(Γ) :=

∫

Γ
|v(σ)|2 dπ(σ) is finite.

We shall be concerned with Galerkin-type approximations of (3.11). These for-
mulations are based on the Bochner space L2

π(Γ;X ). The weak stochastic formulation
of the problem reads as follows: given g ∈ L2

π(Γ;X
′), find q ∈ L2

π(Γ;X ) such that

E(〈G(·)q(·), v〉) = E(〈g, v〉) for all v ∈ L2
π(Γ;X ) (3.16)

holds. Here, the mathematical expectation E(·) is defined for v ∈ L2
π(Γ;X ) as Bochner

integral

E(v) :=

∫

Γ

v(σ) dπ(σ) ∈ X . (3.17)

Note that the right hand side remains unchanged since g does not depend on σ and
E(g) = g

∫

Γ dπ(σ) = g on account of (3.5).
If the right hand side g ∈ X ′ is deterministic (as we have assumed up to now),

problem (3.16) is well-posed for the solution space L2
π(Γ;X ) and test space L2

π(Γ;X ).
The resulting parametric Galerkin formulation reads: given σ ∈ Γ,

find q(σ) ∈ X : 〈G(σ)q(σ), v〉X ′×X = 〈g, v〉X ′×X for any v ∈ X . (3.18)

The pointwise in σ variational formulation (3.18) is the foundation for the so-called
“stochastic collocation” approaches, where (3.18) is “sampled” on judiciously chosen
subsets ΣN ⊂ Γ of cardinality not exceeding N , either from sampling methods (eg.
[SG, BNT, BTZ]) or selected adaptively (eg. [CCDS, CCS1]. At present, no rigorous
results on adaptivity of stochastic collocation approaches seem to be available. Here,
we are interested in the situation that we also discretize adaptively in the parameter
domain Γ: the stochastic Galerkin formulation reads: given g ∈ L2

π(Γ;X
′), find q ∈

L2
π(Γ;X ) such that for any v ∈ L2

π(Γ;X ) it holds
∫

Γ

〈G(σ)q(σ), v(σ)〉X ′×X dπ(σ) =

∫

Γ

〈g(σ), v(σ)〉X ′×X dπ(σ) . (3.19)

The stochastic Galerkin formulation (3.19) is the basis for adaptive stochastic Galer-
kin discretizations to be considered ahead. As it has been shown in [Gi1, Gi2, GAS]
for elliptic and parabolic problems, these adaptive discretizations produce sequences
of finitely truncated gpc approximations of which realize optimal convergence rates
afforded by sparsity of the solutions, using techniques from adaptive wavelet approx-
imations in [CDD1, CDD2]. The control problems for parametric operator equation
as formulated in Section 2 always lead to symmetric operators G(σ). Therefore, we
work in the following with the stochastic Galerkin formulation (3.19).

Adaptive stochastic Galerkin algorithms produce approximations qΛ ∈ QΛ to the
parametric solution q(σ) of (3.19) which are supported on a finite index set Λ ⊂ F of
cardinality N . Here, the approximation space is defined as

QΛ :=

{

vΛ(σ) =
∑

λ∈Λ

vµPµ(σ), vµ ∈ X

}

⊂ L2
π(Γ;X ) . (3.20)

Here {Pµ}µ∈F is some basis for L2(Γ,π). which as well as the specific form of the index
set Λ will be specified below in Section 3.6. The Galerkin approximation qΛ ∈ QΛ to
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q is then defined as the unique solution of the problem to find qΛ ∈ QΛ such that
∫

Γ

〈G(σ)q(σ), v(σ)〉X ′×X dπ(σ) =

∫

[−1,1]N
〈g(σ), v(σ)〉X ′×X dπ(σ) for all vΛ ∈ QΛ

(3.21)
holds. Note that (3.21) may be considered as a semi-discretization with respect to
σ: with respect to space and time, the expansion coefficients in (3.20) are still taken
from the infinite-dimensional space X .

3.6. Gpc (generalized polynomial chaos) approximations and N-term
approximation rates. Our goal is to compute the Galerkin approximation qN := qΛ
to q having at most #Λ = N degrees of freedom such that

‖q − qN‖L2
π
(Γ;X ) <

∼ N−r (3.22)

with some largest possible rate r > 0. Here the symbol <
∼ denotes inequality

up to constants that are specifically independent of N . If we are able to establish
such an estimate with a rate r exceeding the Monte-Carlo benchmark rate 1/2, this
approximation would converge faster than Monte-Carlo methods, assuming equal,
uniform cost for the solution of each system (3.11). In particular, this holds in the case
of only finitely many parameters σ. After having established the type of smoothness
for q with respect to σ in Section 3.4, such an error rate with possibly high r depends,
in addition, on the choice of the approximation space QΛ. A second fundamental
aspect of the spectral approximation methods proposed in [KS] which we recall next
is that they allow for reduced resolution in x and t in large parts of the parameter
space. This stands in contrast to Monte-Carlo sampling which mandates the same
level of resolution in all sampling points.

Our error analysis begins by applying a generalization of Céa’s lemma to solutions
of saddle point problems, called quasi-best approximation property in [NSV, Theorem
3.2]. Applying the same reasoning used there with respect to the discretization for σ
yields

‖q − qN‖L2
π
(Γ;X ) ≤ Cγ inf

vN∈QΛ

‖q − vN‖L2
π
(Γ;X ) (3.23)

with constant Cγ := γ−1(supσ∈Γ ‖G(σ)‖L(X ,X ′)). Note that in this case the LBB-
constant with respect to the discretization for σ does not depend on Λ since γ is a
uniform lower bound for all σ, see Theorem 3, (ii).

Thus, the approximation problem (3.22) is reduced to establishing an a-priori
error estimate for the best N -term approximation vN of q, independent of the con-
crete Galerkin problem (3.19). This means that vN possesses at most N degrees of
freedom and minimizes the error to q with respect to the norm of the Bochner space
L2
π(Γ;X ). Naturally, this approximation is tied to the choice of the closed subspace

QΛ of L2
π(Γ;X ) and its Riesz basis.

In the context of random parameters, the spectral approach introduced in [GS],
see also [KX, Sch], is based on representation of the parametric state and control as
so-called Wiener or generalized polynomial chaos (gpc) expansions. These expansions
are performed in terms of tensor products of orthogonal polynomials with respect to
countable product probability measure in L2(−1, 1). The choice of this interval stems
from choosing the parameter space Γ which then determines the choice of orthogonal
polynomials. The expression “polynomial chaos” goes back to N. Wiener [W] for
the spectral representation of Gaussian processes in terms of Hermite polynomials
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of i.i.d. Gaussian random variables, and ‘generalized’ expresses that one works with
orthogonal polynomials with respect to the inner product for L2

π(Γ;X ) weighted by
the uniform probability measure dπ(σ) in (3.5).

Such spectral approaches offer at least three distinct advantages over other meth-
ods: (I) It is a (deterministic) spectral expansion in terms of orthogonal polynomials
which entails that one can achieve an exponential convergence rate in the polynomial
degree N . Such an optimal result was first established in [BTZ] for a finite number K
of random coefficients σ for elliptic PDEs with random inputs. However, the constant
in the error estimate depends strongly on K which means that, as K → ∞ in the
convergence analysis, this result requires an assumption of truncation with respect to
K. Error estimates for the general case of infinitely many parameters were for the first
time established in [TS] for the same problem class under the assumption that the
Karhunen–Loève expansion of the stochastic diffusion coefficient decays exponentially
to zero in the L∞ norm. This was relaxed in [CDS1] to the more realistic assumption
of algebraic decay, as in (3.14). (II) The spectral approach allows for an immediate
computation of the mean field E(qN ), as detailed below in (3.32). (III) All the inner
products in relation to σ for different polynomial degrees vanish which is a signifi-
cant computational advantage that is not tied to the particular choice of probability
measure π.

We base our approximations on univariate orthogonal polynomials which provide
an orthogonal polynomial basis for L2

πm
(−1, 1) with respect to the measure πm (we

refer to [EMSU] for an analysis of such polynomials in the representation of random
fields). To this end, let Pmn denote the orthogonal (with respect to the measure πm)
polynomial of degree n ≥ 0 defined via the recursion formula

amn+1P
m
n+1(σm) := amn s P

m
n (σm) + amn−1P

m
n−1(σm), σm ∈ (−1, 1), m, n ≥ 1, (3.24)

where, in the case of the uniform measure, ie. dπm(σm) = dσm/2, a
m
n+1 = n + 1,

amn := 2n+ 1 and amn−1 := −n, and with the initialization Pm0 (s) := 1 and Pm1 (s) :=
s. In anticipation of their use for the parameter space and the measure (3.5), we
normalize them such that

∫ 1

−1

|Pmn (σm)|2 dπm(σm) = 1, m, n ∈ N (3.25)

so that for all m = 1, 2, ..., the collection {Pmn }n≥0 is an orthonormal basis of
L2
πm

(−1, 1). For ν ∈ F with multi-index F from (3.8), we define the tensorized orthog-
onal polynomials

Pν(σ) :=
∏

m≥1

Pmνm(σm), σ ∈ Γ . (3.26)

On account of taking ν ∈ F, there are only finitely many nontrivial factors in this
product, and each Pν(σ) depends only on finitely many of the σj . It is shown, e.g.,
in [EMSU, Gi1] that the countable collection

P := {Pν(σ) : ν ∈ F} (3.27)

is a Riesz basis for the function space L2
π(Γ), that is, a dense, orthonormal family in

L2
π(Γ). This means that each v ∈ L2

π(Γ) admits an orthonormal expansion

v(σ) =
∑

ν∈F

vνPν(σ) , where vν :=

∫

Γ

v(σ)Pν (σ)dπ(σ) ∈ X . (3.28)
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The sequence {vν : ν ∈ F} satisfies Parseval’s equality, ie.

‖v‖2L2
π
(Γ;X ) =

∑

ν∈F

‖vν‖
2
X (3.29)

and the synthesis map TP is an orthogonal isomorphism which is given by

TP : ℓ2(F) → L2
π(Γ) , (cµ)µ∈F 7→

∑

µ∈F

cµPµ . (3.30)

The polynomial chaos representation (3.28) is the basis for the analysis of best
N -term approximation rates. Denote by Λ ⊂ F a subset of cardinality N := #Λ <∞.
Denote by qν the Legendre coefficients of the solution q of the parametric operator
equation (3.11). From (3.23) and Parseval’s equality (3.29), we bound the Galerkin
error as

∥

∥q − qN
∥

∥

2

L2
π
(Γ;X )

≤ Cγ inf
vN∈QΛ

‖q − vN‖2L2
π
(Γ;X ) = Cγ

∑

ν 6∈Λ

‖qν‖
2
X .

Best N -term approximation rates in ‖ · ‖L2
π
(Γ;X ) now follow from summability of the

norms ‖qν‖X of the Legendre coefficients by Stechkin’s Lemma (see, eg. [CDS2]). We
proved in [KS] that the sequence of the norms of the Legendre coefficients satisfies
(‖qν‖X )ν∈F ∈ ℓp(F) for the same value of the regularity parameter p ∈ (0, 1] for which
G(σ) satisfies Assumption 1. Since p ≤ 1, we refer to such sequences as sparse and to
the corresponding expansions of the type (3.28) sparse generalized polynomial chaos
(gpc) expansions. Finally, we arrive at the following result on convergence rates of best
N -term polynomial approximations of the parametric solution q(σ) of the parametric
operator equation (3.11).

Theorem 5. [KS] Let the parametric operator family {G(σ) ∈ L(X ,X ′) : σ ∈ Γ}
satisfy Assumption 1 for some 0 < p ≤ 1. Assume moreover that the probability
measures πm(σm) which charge the parameter σm are uniform, ie. that πm = λ1/2
where λ1 denotes the Lebesgue measure in R

1. Then there exists a nested sequence
(ΛN )N∈N ⊂ F of index sets of cardinality less or equal N such that

‖q − qN‖L2
π
(Γ;X ) <

∼ N−r , r =
1

p
−

1

2
. (3.31)

Here, qN := qΛN
where qΛN

denotes the sequence in L2
π(Γ;X ) whose entries qν equal

those of the sequence q if ν ∈ ΛN ⊂ F and which equal zero otherwise.
From Theorem 5, we can immediately derive from qN an approximation to the

mean field or “ensemble average” q := E(q) as

qN := E(qN ) =
∑

ν∈ΛN

eνqν . (3.32)

Here qν are the expansion coefficients

qν :=

∫

Γ

q(σ)Pν(σ) dπ(σ) ∈ X (3.33)

and eν are the νth moments of the Legendre polynomials

eν := E(Pν(σ)) =

∫

Γ

Pν(σ)dπ(σ) .
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In the case of a uniform probability measure (3.5), the orthogonality and normalization
properties of the Legendre polynomials (3.25) yield eν = 0 for all ν except ν = 0 in
which case we have e0 = 1. Thus, the mathematical expectation E(·) of the Galerkin
approximation with respect to the probability measure π in (3.5) of qN is just given
by the 0th polynomial chaos expansion coefficient of qN , i.e., by

qN = E(qN) = q0 =

∫

[−1,1]N
q(σ)dπ(σ) . (3.34)

Moreover, one has by the Jensen and the Cauchy-Schwarz inequality the estimate

‖q − qN‖X ≤

∫

Γ

‖q(σ, ·) − qN (σ, ·)‖X dπ(σ) ≤ ‖q − qN‖L2
π
(Γ;X ) (3.35)

which, together with the main approximation estimate (3.31) yields the same rate
also for the mean fields.

Corollary 6. Let the operator family {G(σ) ∈ L(X ,X ′) : σ ∈ Γ} satisfy
Assumption 1 for some 0 < p ≤ 1. Then, with the approximation qN defined in
Theorem 5, it holds

‖q − qN‖X <
∼ N−r , r =

1

p
−

1

2
. (3.36)

As a consequence, if the parametric operator family {G(σ) ∈ L(X ,X ′) : σ ∈ Γ}
satisfies Assumption 1 just for weakest case p = 1, our spectral approach achieves
the same benchmark rate as Monte-Carlo methods. For any p < 1, the rate of the
spectral Galerkin approximation will already outperform Monte-Carlo methods. In
the extreme case that Assumption 1 holds for any 0 < p ≤ 1 as in the case of affine
parameter dependence of Section 3.3, the above rate r is arbitrarily high.

In the next sections, we will establish the practical construction of the index
sets in Theorem 5 and the computation of the Galerkin approximation qN of (3.21).
This will be achieved simultaneously with a finite-dimensional approximation of the
Galerin approximation with respect to time and space. The starting point for these
routines will be an equivalent matrix representation of the continuous problem (3.19)
in terms of the basis P for the approximation of σ and an appropriate wavelet basis
for X specified next, as in [GAS].

4. Wavelet bases on the physical domain. For the discretization of the
operator G with respect to the physical variables, i.e., space and time, assume at our
disposal wavelet bases for X . These bases should be Riesz bases of X which, being
the cartesian product of function spaces for state, costate and control y, u, p (see the
abstract formulation (2.6)), will in turn be triplets of wavelet-type Riesz bases for the
respective spaces: For all situations encountered in Section 2 ahead, the space X will
be a cartesian product of Sobolev spaces (or intersections of Sobolev spaces). For each
of these, constructions of Riesz bases were detailed in [GAS, SSt] and in [DK, GK, K]
for corresponding control problems. Here, we state only those properties of the Riesz
basis Ψ which are required in what follows.

Properties 7. We call the collection Ψ := {ψν : ν ∈ I} a wavelet basis for X if
(R) Ψ is a Riesz basis for X , i.e., every v ∈ X has a unique expansion in terms

of Ψ,

v =
∑

ν∈I

vν ψν =: v⊤ Ψ, v := (vν)ν∈I, (4.1)
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and its expansion coefficients satisfy the norm equivalence

c‖v‖ℓ2(I) ≤ ‖v⊤Ψ‖X ≤ C‖v‖ℓ2(I), v ∈ ℓ2(I) (4.2)

with some finite positive constants c, C;
(L) (Locality) all functions ψν are compactly supported;

(CP) (Cancellation property) There exists an integer d̃ such that

|〈v,Ψµ〉X ′×X | <∼ 2−|µ|(n/2+d̃)‖v(d̃)‖L∞(supp ψλ), (4.3)

where n is the dimension of the underlying domain and v(d̃) denotes the weak
d̃th weak derivative of v.

5. Bi-infinite matrix equations for parametric saddle point problems.
Recall from (3.30) that the polynomial synthesis operator

TP : ℓ2(F) → L2
π(Γ), v := {vν : ν ∈ F} 7→

∑

ν∈F

vνPν

is an orthogonal isomorphism. Moreover, the Riesz basis property (R) in Properties
7 means that the wavelet synthesis operator

TΨ : ℓ2(I) → X , v := {vµ : µ ∈ I} 7→
∑

µ∈I

vµψµ (5.1)

is boundedly invertible. Combining both, the synthesis operator TP⊗Ψ for the ten-
sorized basis P ⊗Ψ equals the tensor product of the synthesis operators so that

TP⊗Ψ := TP ⊗ TΨ : ℓ2(F× I) → L2
π(Γ;X ) ≃ L2

π(Γ)⊗X (5.2)

is an isomorphism of Hilbert spaces. In particular, P ⊗Ψ is a Riesz basis for L2
π(Γ)⊗

X (which, we recall, is isometrically isomorphic to the Bochner space L2
π(Γ;X ) of

strongly measurable functions which are square integrable in X -norm). We shall use
the notation L2

π(Γ;X ) = L2
π(Γ)⊗X to underline the tensor-product structure of the

space and the bases.
Using the analysis and synthesis operators, we reformulate the Galerkin system

(3.19) equivalently as bi-infinite matrix-vector equation in the sequence space ℓ2(F×I).
Define

q := T−1
P⊗Ψq ∈ ℓ2(F× I), g := T ∗

P⊗Ψg ∈ ℓ2(F× I) (5.3)

and

G := T ∗
P⊗ΨGTP⊗Ψ : ℓ2(F× I) → ℓ2(F× I) . (5.4)

Owing to the isomorphism properties of TP , TΨ, the stochastic Galerkin formulation
(3.19) of the infinite-dimensional parametric control problem is then equivalent to the
bi-infinite linear system

Gq = g , (5.5)

and the solution q ∈ L2
π(Γ)⊗X can be reconstructed from the expansion coefficients

q ∈ ℓ2(F× I) via

q = TP⊗Ψq =
∑

(ν,µ)∈F⊗I

qν,µ Pν ⊗ ψµ . (5.6)
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In the case of affine parameter dependence as in Section 3.3, the structure of the
operator G in terms of A,B, see (2.6), and these, in turn, of the differential and Riesz
operators, can be provided explicitly also as tensor products, separating the temporal
and the spatial coordinates, see [Gi1, GAS].

6. Adaptive stochastic Galerkin methods. After having established the ex-
istence of a sequence of nested index sets (ΛN )N∈N ⊂ F for which the a-priori estimates
(3.31), (3.36) hold, we will describe next how to construct these index sets and how to
practically compute the Galerkin approximation qN in (3.22). This will be achieved in
an adaptive a-posteriori fashion, following the ideas in [Gi2, SG] and the realizations in
[EGSZ, GAS] for a single elliptic or parabolic PDE. Essentially, the approximation of
the bi-infinite system (5.5) follows ideas known from adaptive wavelet discretizations,
see, e.g., [St2] for an extensive survey covering specifically [CDD1, CDD2], applied to
both discretizations in terms of orthonormal polynomials and to wavelets.

6.1. Basic ideas and routines. Once the bi-infinite system (5.5) is derived,
we can employ routines which have been established in [CDD1, CDD2] for solving
deterministic stationary linear operator equations, discretized in terms of wavelets.
These techniques were extended in [SSt] to adaptive space-time Galerkin discretiza-
tions of parabolic PDEs. We will abbreviate ℓ2 := ℓ2(F× I) and ‖ · ‖ := ‖ · ‖ℓ2 for the
corresponding sequence norm.

Given an arbritrary vector of coefficients v ∈ ℓ2, the most economical approxima-
tions for v with N coefficients are provided by those vectors with support of length
N which contain N largest (in modulus) coefficients from v, yielding a best N -term
approximation of v in ℓ2. We denote any such best N -term approximation of v in ℓ2

by ΠNv.
We first describe the main ingredients as black-box solvers. The first is a rou-

tine Rhsg[ε] → gε which, for given tolerance ε > 0, produces a finitely supported
approximation of the right hand side g such that ‖g− gε‖ ≤ ε. We require

# suppgε ≤ inf
N∈N

{‖g−ΠNg‖ . ε} . (6.1)

The vector gε is supposed to be of minimal support prescribed tolerance ε, and the
number of arithmetic operations to compute gε is bounded by some absolute multiple
of # suppgε + 1. This is achieved by a routine

ApplyG[w, ǫ] 7→ z (6.2)

which, for any ǫ > 0 and any finitely supported vector w, constructs a finitely sup-
ported vector z with ‖Gw − z‖ℓ2 ≤ ǫ.

The concrete format of the routine ApplyG has been specified for the control
problem derived from the Dirichlet control problem in Section 2.2 in [DK] and for the
control problem constrained by a parabolic PDE mentioned in Section 2.3 in [GK].
In both cases, the routine ApplyG is based on a gradient method for the control
variable u (the condensed equation) which is updated by applying a routine ApplyA
(or ApplyB in the parabolic case) to update the current approximation y, followed by
applying a routine ApplyA∗ (or ApplyB∗ in the parabolic case) to update the current
approximation p. Here A,B denote the bi-infinite representations of the elliptic and
parabolic differential operators appearing in (2.7) and Section 2.3, with respect to the
basis for ℓ2(F × I) in analogy to G defined in (5.4). Similarly, the Riesz operators
appearing in (2.11) or Section 2.3 can be written as bi-infinite matrices R for which
corresponding routines ApplyR can be designed as well.
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The discrete operator G is called s∗-admissible for a given s∗ ∈ (0,∞] if, for all

s ∈ (0, s∗), # supp z . ǫ−1/s‖w‖
1/s
As

∞
(ℓ2) and the number of arithmetic operations and

storage locations used by ApplyG[w, ǫ] is bounded by (6.4) up to a fixed constant
independent of w. Here As

∞(ℓ2) denotes the subspace of ℓ2 defined by the quasi-norm
(6.3) We recall from (6.2) the routineApplyG[v, ε] → vε which determines for a given
tolerance ε > 0 and a finitely supported input vector v a finitely supported sequence
vε such that (6.2) holds.

In order to quantify the computational complexity when designing Apply, we
employ the following notions. We collect in one class all vectors v whose best N -term
approximations ΠNv converge to v in ℓ2 at rate s > 0.

To this end, we introduce the approximation class As
∞(ℓ2), the subset of ℓ2 of all

sequences for which the quasi-norm

‖v‖As
∞

(ℓ2) := sup
N∈N0

(N + 1)s‖v − PN (v)‖ℓ2 , (6.3)

is finite, where PN (v) is any best N -term approximation of v in ℓ2.

If q is the solution of an infinite matrix-vector equation like (5.5), best N -term ap-
proximations PN (q) require an infinite search, and are therefore not computationally
accessible.

The main issue of the construction of adaptive schemes is to design a practical
method that yields approximations PN (q) of q which, if q ∈ As for some s > 0,
converge to q at this rate s with linear computational complexity. To realize this
means to find an adaptive scheme which is asymptotically not more expensive than
an absolute, fixed multiple of the support size N of the best N -term approximation
PN (q), and assuming that the vector q was known.

The operatorG is called s∗-admissible for a given s∗ ∈ (0,∞] if, for all s ∈ (0, s∗),

the output vector satisfies suppvε <
∼ ε−1/s‖v‖

1/s
As and the amount of arithmetic op-

erations and storage locations used in ApplyG[v, ε] is bounded by

ε−1/s‖v‖
1/s
As + suppv + 1, (6.4)

up to a fixed constant independent of v.

In all the cases where G stems from a saddle point problem as in Section 2, G is
symmetric but not coercive. The formulation in [KS], eliminating the control, yields
a coercive but nonsymmetric system (for weight parameter ω ∈ (0, 1] in the control
functional (2.8)). In both situations we can work with anApply routine which realizes
applications to a finitely supported vector for the (bi-infinite) normal equations

G∗Gq = G∗g. (6.5)

Routines which are valid within the general setting of [CDD2, GHS] are

ApplyG∗G[v, ε] := ApplyG∗ [ApplyG[v, ε(2‖G‖)−1, ε/2]]

RhsG∗g[ε] := ApplyG∗

[

Rhsg[ε(2‖G‖)−1], ε/2
]

(6.6)

where ε > 0 is arbitrary, and where ApplyG∗ is the equivalent of ApplyG when
exchanging G by G∗.
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6.2. Approximate application of bi-infinite operators. The construction
of ApplyG hinges on the ability to approximate the bi-infinite matrix G by sparsely
populated matrices with controlled error versus accuracy. Any bi-infinite matrix C ∈
L(ℓ2, ℓ2) is called n-sparse if each column of C contains at most n nonzero entries. G

is called s∗-compressible for some s∗ ∈ (0,∞] if there exists a sequence {G(j)}j∈N in

L(ℓ2, ℓ2) such that G(j) is nj-sparse with strictly increasing sequence (nj)j∈N ∈ N
N

which satisfies supj∈N nj+1/nj < ∞ and such that for every s ∈ (0, s∗), the sparse

G(j) converge to G in norm with rate essentially s∗ with respect to nj , i.e.,

sup
j∈N

(nj)
s ‖G−G(j)‖ℓ2→ℓ2 <∞ . (6.7)

The definition of s∗-compressibility involves the parameter nj which is proportional

to the cost of accessing one column of G(j). This, however, does not include the cost
of assembling this column. A stronger notion is s∗-computability (eg. [GHS, St2]):
The bi-infinite matrix operator G is called s∗-computable for some s∗ ∈ (0,∞] if it is
s∗-compressible and if the number of arithmetic operations and storage locations used
to construct an arbitrary column of G(j) is bounded by an absolute, fixed multiple of
nj for all j ∈ N.

Theorem 8. [CDD1, CDD2, GHS] If G is symmetric positive definite and s∗-
admissible, then for any ε > 0, the adaptive wavelet methods from [CDD1, CDD2,
GHS] construct an approximation qε of q with ‖q−qε‖ℓ2 ≤ ε. If q ∈ As

∞(ℓ2) for any
s > 0, then #supp qε . ε−1/s‖q‖As

∞
(ℓ2). If s < s∗, then the number of arithmetic

operations and storage locations used to compute qε is bounded by an affine function
of ε−1/s‖q‖As

∞
(ℓ2).

Remark 9. The estimate #supp qε . ε−1/s‖q‖As
∞

(ℓ2) can be interpreted as
follows: if ‖q − PN (q)‖ℓ2 . N−s, then ‖q‖As

∞
(ℓ2) is finite, and consequently ‖q −

qε‖ℓ2 ≤ ε . (# supp qε)
−s. Thus adaptive Galerkin methods recover the optimal

convergence rate in terms of the support size, albeit with a larger constant in the error
estimate. In the case s < s∗, the same estimate holds for the computational cost and,
in this sense, the solvers have optimal complexity.

Remark 10. Replacing G by G∗G and f by G∗g, Theorem 8 applies to the
normal equations for nonsymmetric or to symmetric, but indefinite systems such as
those which arise from the saddle point formulation (2.6), see [DK, GK] for details.
In this case, valid Apply and RHS routines are given by

ApplyG∗G[w, ε] := ApplyG∗ [ApplyG[w, ε/(2‖G‖)], ε/2] (6.8)

and

RHSG∗g[ε] := ApplyG∗ [RHSg[ε/(2‖G‖)], ε/2] , (6.9)

where ‖G‖ denotes the operator norm of G in ℓ2(F × I). The product G∗G is s∗-
admissible if both G and G∗ are s∗-admissible. A slightly weaker but sufficient variant
of (6.6) is required to hold for RHSG∗g.

7. Tensor structure of bi-infinite matrix equation. We now apply the fore-
going, general concepts to the first order necessary conditions of the symmetric saddle
point formulations, ie. to (2.6) and its instances (2.11) of optimal control problems
for affine parametric operator eqations, ie. to the case where the operator A in the
equation of state depends affinely on the parameter sequence σ. This affine depen-
dence implies, in turn, that the operator G in (2.6) and its instances will take the form
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(3.9) with self-adjoint (but indefinite) operator G0. To apply the general approach,
we convert the parametric control problem (2.6), (3.9) to a bi-infinite matrix equation
(5.5). Due to the symmetry of G in (2.6), the bi-infinite matrix G is symmetric, ie
G∗ = G.

7.1. Tensor structure of the bi-infinite operator. We separate the spatial
and temporal discretization from that in the parameter sequence σ ∈ Γ. Here and in
the following, we restrict to the setting of Section 3.3, ie. G(σ) has the form (3.9)
with affine dependence on σ ∈ Γ.

To this end, we construct an approximation to the sesquilinear form G in (3.1)
which is independent of the parameter σ ∈ Γ. We interpret G0 also as an operator
G0 ∈ L(X ,X ∗). Similarly, we interpret Gm as a bounded linear map from X to X ∗.
Then, due to the affine parameter dependence (3.9), for w ∈ X and for v ∈ X ,

G(w, v) =

∫

Γ

(

G0(w, v) +

∞
∑

m=1

σmGm(w, v)

)

dπ(σ) . (7.1)

Define for m ≥ 0 the operators Gm := T ∗
ΨGmTΨ. These operators are bounded linear

maps from ℓ2(I) to ℓ2(I) and can be represented as bi-infinite matrices. To capture
the dependence on the parameter sequence σ ∈ Γ, we consider the representation of

Km : L2
π(Γ) → L2

π(Γ) , v(σ) 7→ σmv(σ) (7.2)

with respect to the polynomial basis P . Solving for the term ξPmn−1 in (3.24), it
follows that for all m ∈ N, Km := T ∗

PKmTP ∈ L(ℓ2(F)) has the form

(Kmc)µ = βmµm+1cµ+ǫm + αmµm
cµ + βmµm

cµ−ǫm , µ ∈ F , (7.3)

for c = (cµ)µ∈F ∈ ℓ2(F), where cµ := 0 if µm < 0 for any m ∈ N, and where ǫm
denotes the Kronecker sequence (ǫm)n = δmn. Also, let I be the identity on ℓ2(F).

Inserting the above basis representations into (5.4) yields, with convergence in
L(ℓ2(F× I), ℓ2(F× I)), the representation

G = I ⊗G0 +

∞
∑

m=1

Km ⊗Gm . (7.4)

7.2. Tensor structure of the bi-infinite normal equations. Since G is
symmetric but in general not positive definite since it results from a saddle point
problem, we consider the discrete normal equations

G∗Gq = G∗g , (7.5)

where the discrete adjoint operator G∗ = T ∗
P×ΨG

∗TP×Ψ : ℓ2(F× I) → ℓ2(F× I) = G

due to the symmetry of G in (2.6). Since G is bijective, (7.5) is equivalent to (5.5),
and G∗G is positive definite. The KKT system (2.6) being symmetric, there holds
G = G∗ which implies that we have for the bi-infinite matrices G0 = G0

∗ and
G = G∗

m. Since I and Km are likewise symmetric,

G∗ = I ⊗G0 +

∞
∑

m=1

Km ⊗Gm . (7.6)
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8. Adaptive Stochastic Galerkin discretization of parametric saddle
point problems.

8.1. Approximate application of discrete operators. The construction of
a routine ApplyG hinges on the ability to approximate G by sparse matrices. We
call a bi-infinite matrix G ∈ L(ℓ2) n-sparse if each column of G contains at most
n nonzero entries. It is s∗-compressible for an s∗ ∈ (0,∞] if there exists a sequence
(Gj)j∈N in L(ℓ2) such that Gj is nj-sparse with the increasing sequence (nj)j∈N ∈ N

N

satisfying

sup
j∈N

nj+1

nj
<∞ (8.1)

and such that for every s ∈ (0, s∗), (6.7) holds. Condition (6.7) states that the sparse
operators Gj converge to G with a rate of essentially s∗ with respect to nj .

By (8.1), the sequence (nj)j∈N grows at most geometrically. Consequently, for
any r > 0, there is a j(r) such that nj(r) ≤ r and supr>0 r

s‖G −Gj(r)‖ < ∞ for all
s ∈ (0, s∗). Here, we extend the sequence of approximations by G0 := 0 with n0 = 0.
In particular, we may assume without loss of generality that nj = j, as is done eg in
[GHS, SSt].

In the definition of s∗-compressibility, nj is proportional to the cost of accessing
one column of Gj . In order to capture also the assembly cost, we introduce following
[GHS], somewhat stronger notion of s∗-computability: a bi-infinite matrix G ∈ L(ℓ2)
is s∗-computable if it is s∗-compressible and if the number of arithmetic operations
and storage locations used to construct an arbitrary column of Gj is bounded by a
multiple of nj for all j ∈ N. The following result has been shown in [CDD1].

Proposition 11. If G ∈ L(ℓ2) is s∗-computable for some s∗ ∈ (0,∞] then
it is s∗-admissible. This result was given in [CDD1] for wavelet discretizations
by constructing a suitable routine ApplyG for the case of G being a deterministic
stationary linear elliptic operator. Since the appearance of [CDD1], several variants
of the (constructive) proof of [CDD1] have been obtained with subsequent refinements
in [Gi2, MP, St2].

9. Approximations of deterministic operators.

9.1. Compressibility of discrete elliptic and parabolic operators. The
wavelets in Section 4 were chosen to ensure that the deterministic operators appearing
in the series expansions (7.4) and (7.6) of G and G∗ be s∗-computable.

Proposition 12. For sufficiently smooth ã and am, m ∈ N, the bi-infinite
matrices G0, Gm are s∗-computable with s∗ = min(d̃t, d̃x).

A proof of Proposition 12 is given in [SSt, Sec. 8]. Proposition 12 implies that
there is a sequence (G0j)j∈N of bi-infinite matrices such that G0j is n0,j-sparse with
(n0,j)j∈N increasing and satisfying (6.6), and

‖G0 −G0j‖ℓ2(I)→ℓ2(I) . n−s
0,j ∀s ∈ (0, s∗) . (9.1)

Furthermore, the number of arithmetic operations and storage locations required to
compute any column of G0j is an affine function of n0,j. We extend these sequences
by G00 := 0 and n0,0 := 0. By the self-ajointness of Gm, m ≥ 0, analogous proper-
ties hold for G0

∗, Gm and G∗
m. We denote the sequences of sparse approximations

by (G0
∗
j )j∈N0 , (Gm,j)j∈N0 and (G∗

m,j)j∈N0 , and the corresponding sparsity indices
by (n∗

0,j)j∈N0 , (nm,j)j∈N0 and (n∗
m,j)j∈N0 , respectively. The matrices G0 and Gm,j

resulting from the KKT conditions (2.6) for controlling affine-parametric operators
G(σ) as in (3.9) are symmetric. Thus G∗

m,j = Gm,j for all m ≥ 0.
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9.2. Compressibility of discrete Riesz maps. Recall that the Riesz oper-
ators appear in the definition of the Lagrangian (2.10) as the representation of the
chosen norms in the optimization functional (2.1). In (2.8), these have been chosen as
the natural norms for the Dirichlet problem with distributed control. For the partic-
ular case Y = H1

0 (Ω), R would coincide with Laplace’s operator in weak formulation.
It was observed already in [DK] that the choice of the norms in the functional allows
for a large amount of ambiguity. One can essentially reduce all the cases which lead to
a well-posed control problem to Riesz operators which can be represented as a diag-
onally scaled version of a mass matrix. Thus, R as well as its inverse is compressible
with the same properties as for the elliptic and parabolic PDE operator, see [GK,
Prop. 4.2] and [P, Sect. 2.2.6].

9.3. Numerical approximation of error bounds. For constructing sparse
approximations of G, we require explicit knowledge of the constants in the estimates
(9.1) and similar estimates for Gm or, more precisely, we require numerical sequences
(ẽm,j)j∈N0 , m ∈ N0, such that

‖G0 −G0j‖ℓ2(I)→ℓ2(I) ≤ ẽ0,j and ‖Gm −Gm,j‖ℓ2(I)→ℓ2(I) ≤ ẽm,j . (9.2)

Optimal values of ẽ0,j are given by the square roots of the spectral radii of the positive
symmetric operators (G0 −G0j)

∗(G0 −G0j) since

‖G0 −G0j‖
2
ℓ2(I)→ℓ2(I) = sup

‖v‖
ℓ2(I)=1

|v⊤(G0 −G0j)
⊤(G0 −G0j)v| , (9.3)

and similarly for ẽm,j. Following [CJG, Sec. 6], we approximate these bounds by a
power iteration with suitably approximated matrix-vector multiplies.

The primary component of this power iteration is the repeated approximate ap-
plication of the operators (G0 − G0j)

∗ and G0 −G0j to finitely supported vectors.
This is achieved using the sparse approximations G0j+k −G0j, k ∈ N, of G0 −G0j

and G0
∗
j+k − (G0j)

∗ of (G0 −G0j)
∗ in routines

NApplyG−Gj
[v, N ] 7→ z and NApply(G−Gj)⊤ [w, N ] 7→ z (9.4)

similar to ApplyG from (6.6), but with a prescribed maximal support size # supp z ≤
N instead of a target accuracy ε. These routines combine to

NApply(G−Gj)⊤(G−Gj)[v, N ] := NApply(G−Gj)⊤ [NApplyG−Gj
[v, N ], N ] . (9.5)

All vectors appearing within these routines are ensured to have support size not larger
than N .

The approximate power iteration for the computation of ẽ0,j consists of repeated
application of NApply(G−Gj)⊤(G−Gj) and normalization of the resulting vector. The
approximations of ẽ0,j are given by the scalar products

ẽ0,j ≈ ẽn0,j :=
v⊤
n vn+1

v⊤
n vn

, vn+1 := NApply(G−Gj)⊤(G−Gj)[vn, N ] , (9.6)

where v0 is chosen randomly and N is fixed. We use analogous iterations to approx-
imate ẽm,j as well as the bounds in

‖G0
⊤ −G0

⊤
j ‖ℓ2(I)→ℓ2(I) ≤ ẽ∗0,j and ‖G⊤

m −G⊤
m,j‖ℓ2(I)→ℓ2(I) ≤ ẽ∗m,j (9.7)

used to construct sparse approximations of G∗.
Convergence of (a somewhat idealized variant of) (9.6) is shown in [CJG, Thm.

6.3].
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10. Approximations of countably-parametric KKT operators for sto-
chastic control problems. We discuss the existence and construction of sparse
approximations of the operators Gm which appear in the expansion (7.4).

In fact, the saddle point operator G derived from (2.6) contains operators A in
the case of the elliptic PDE, B for control problems constrained by parabolic PDEs,
their adjoints, for some cases mass matrices, and diagonal matrices. For the PDE
operators and their adjoints, s-sparsity has been established in [CDD1, CDD2] and
[SSt], respectively. As detailed in [DK, GK], the application of G is reduced to a
consecutive application of the solution of each of the single block systems in the
discrete version of (2.6).

10.1. Sparse approximation of discrete random operators. We construct
sparse approximations of G by truncating the series (7.4) and by replacing the re-
maining bi-infinite matrices G0 and Gm by appropriate sparse approximations G0j0

and Gm,jm .

To this end, we assume that sequences (ẽm,j)j∈N0 are available for allm ∈ N0 such
that (9.2) holds. These can be computed numerically as described in Section 9.3 and
[CJG, Sec. 6] or derived analytically as in [St1, BDD]. By switching to a subsequence,
we assume without loss of generality that (ẽm,j)j∈N0 is nonincreasing for all m ∈ N0

and, if i ≥ j, then

−(ẽm,i+1 − ẽm,i)

nm,i+1 − nm,i
≤

−(ẽm,j+1 − ẽm,j)

nm,j+1 − nm,j
, (10.1)

where G0j,0 is n0,j-sparse and Gm,j is nm,j-sparse.

For all finitely supported sequences j := (jm)m∈N0 in N0, we define

Gj := I ⊗G0j0 +

∞
∑

m=1

Km ⊗Gm,jm . (10.2)

Since j is finitely supported and since Gm,0 = 0 for all m, the sum in (10.2) is finite,
and no convergence issues arise. By the triangle inequality,

‖G−Gj‖ℓ2(F×I)→ℓ2(F×I) ≤

∞
∑

m=0

ẽm,jm =: ẽj . (10.3)

By (7.3), Km is σm-sparse with σm = 2 if the distribution πm is symmetric, and
σm = 3 in general. Consequently, Km ⊗ Gm,j is σmnm,j-sparse. We set σ0 := 1
such that I ⊗G0j is σ0n0,j-sparse for all j ∈ N0. Then the total number of nonzero
elements in any column of Gj is at most

Nj :=

∞
∑

m=0

σmnm,jm , (10.4)

and, assuming that entries of G0j and Gm,j can be computed in unit time, Nj is also
a bound for the cost of constructing any column of Gj .

We use a greedy algorithm to select a sequence (jk)k∈N0 , and define Gk := Gjk
,

which is an approximation of G with error at most ẽk := ẽjk , and containing at most
Nk := Njk

nonzero elements per column.
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We initialize the adaptive Galerkin iteration with G0 = 0, with j0 := 0. In the
adaptive refinement jk = (jk,m)m∈N0 to jk+1, the entry jk,m for which m maximizes

−(ẽm,jk,m+1 − ẽm,jk,m
)

σm(nm,jk,m+1 − nm,jk,m
)

(10.5)

is incremented by one. If this m is not unique, one maximum is selected, eg. the
smallest natural number m that maximizes (10.5).

In order to ensure optimality of this greedy algorithm, we assume that the se-
quence (ẽm,0)m∈N is in ℓ1 and σ−1

m n−1
m,1(ẽm,1 − ẽm,0) is nonincreasing in m. The

following optimality property of the sparse approximations Gk is [CJG, Cor. 7.2].
Theorem 13. For all k ∈ N0, jk minimizes the error bound ẽj among all finitely

supported sequences j in N0 with Nj ≤ Nk. Furthermore, if ẽk 6= 0, then jk minimizes
Nj among all j with ẽj ≤ ẽk.

10.2. Compressibility and computability. In order to derive s∗-compressi-
bility of G, we assume that the estimate (8.1) holds uniformly for all (nm,j)j∈N, ie.

sup
m∈N0

sup
j∈N

nm,j+1

nm,j
<∞ . (10.6)

The following theorem is the first case of [CJG, Thm. 8.4]. All unspecified norms
refer to operator norms between sequence spaces ℓ2 for the appropriate index sets.

Theorem 14. If (10.6) holds, and if

∞
∑

m=1

(

sup
j∈N

nsm,j‖Gm −Gm,j‖
)

1
s+1 <∞ (10.7)

for all s ∈ (0, s̄), then G is s∗-compressible for s∗ = min(d̃t, d̃x, s̄) and (Gk)k∈N0 from
Sec. 10.1 is a valid sequence of sparse approximations, satisfying

Ns
k‖G−Gk‖ ≤

(

(

sup
j∈N

ns0,j‖G0 −G0j‖
)

1
s+1 +

∞
∑

m=1

(

sup
j∈N

nsm,j‖Gm −Gm,j‖
)

1
s+1

)s+1

,

(10.8)
for all s ∈ (0, s∗), where Gk is Nk-sparse. Compressibility of G can also be derived
if (10.7) does not hold, as in the following theorem, which is the second case of [CJG,
Thm. 8.4].

Theorem 15. [Compressibility for parabolic PDE operator] If (10.6) holds and
if

∞
∑

m=1

‖Gm‖
1

s+1 <∞ (10.9)

for all s ∈ (0, s̄0), and

sup
M∈N

M−τ
M
∑

m=1

(

sup
j∈N

nsm,j‖Gm −Gm,j‖ℓ2(I)→ℓ2(I)

)
1

s+1 <∞ (10.10)

for all s ∈ (0, ŝ), then G is s∗-compressible for

s∗ :=
min(d̃t, d̃x, ŝ)

1 + τ/s̄0
(10.11)
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and (Gk)k∈N0 from Section 10.1 is a valid sequence of sparse approximations.

In case of the elliptic operator, the compressiblity indices need to be adjusted:
choose in (4.3) the constant d̃ as d̃ = max{d̃t, d̃x}.

Remark 16. A numerical algorithm for constructing an arbitrary column of
Gk is provided in [CJG, Sec. 7.2]. It assumes that either (jk) are precomputed, or
that the operators Gk are accessed sequentially, such that only one step of the greedy
optimization needs to be performed the first time Gk is accessed. If the work for this
precomputation step is disregarded, s∗-computability, and thus s∗-admissibility, of G
follow from Theorems 14 and 15.

The above discussion carries over to show s∗-computability ofG∗, and s∗-admissi-
bility of G∗G follows as in Remark 10. In particular, Theorem 8 applies, showing
optimality of adaptive Galerkin discretizations based on tensor products of Legen-
dre polynomial chaos with wavelet bases on the space-time domain applied to the
parametric operator equation (7.5).
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[ST] Ch. Schwab and R.A. Todor, Karhunen–Loève approximation of random fields by general-
ized fast multipole methods, Journal of Computational Physics 217 (2006), 100-122.

[St1] R. Stevenson, On the compressibility of operators in wavelet coordinates, SIAM Journal
on Mathematical Analysis, 35 (2004), 1110–1132.

[St2] R. Stevenson, Adaptive wavelet methods for solving operator equations: An overview. In:
Multiscale, Nonlinear and Adaptive Approximation, R.A. DeVore, A. Kunoth (eds.),
Springer, 2009, 543-594.

[TS] R.A. Todor and Ch. Schwab, Convergence rates for sparse chaos approximations of elliptic



Sparse adaptive Galerkin approximations of stochastic PDE-constrained control problems 25

problems with stochastic coefficients, IMA Journal of Numerical Analysis, 27 (2)(2007)
232-261.

[W] N. Wiener, The homogeneous chaos, Am. J. Math. 60 (1938), 897–936.



Recent Research Reports

Nr. Authors/Title

2015-27 F. Leonardi and S. Mishra and Ch. Schwab
Numerical approximation of statistical solutions of incompressible flow

2015-28 P. Chen and Ch. Schwab
Model Order Reduction Methods in Computational Uncertainty Quantification

2015-29 G. S. Alberti and S. Dahlke and F. De Mari and E. De Vito and S. Vigogna
Continuous and discrete frames generated by the evolution flow of the Schrödinger
equation

2015-30 P. Grohs and G. Kutyniok and J. Ma and P. Petersen
Anisotropic Multiscale Systems on Bounded Domains

2015-31 R. Hiptmair and L. Scarabosio and C. Schillings and Ch. Schwab
Large deformation shape uncertainty quantification in acoustic scattering

2015-32 H. Ammari and P. Millien and M. Ruiz and H. Zhang
Mathematical analysis of plasmonic nanoparticles: the scalar

case

2015-33 H. Ammari and J. Garnier and L. Giovangigli and W. Jing and J.K. Seo
Spectroscopic imaging  of a dilute cell suspension

2015-34 H. Ammari and M. Ruiz and S. Yu and H. Zhang
Mathematical analysis of plasmonic resonances for nanoparticles: the full Maxwell
equations

2015-35 H. Ammari and J.K. Seo and T. Zhang
Mathematical framework for multi-frequency identification of thin insulating and
small conductive inhomogeneities


