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Abstract We consider acoustic scattering of time-harmonic waves at objects
composed of several homogeneous parts. Some of those may be impenetrable,
giving rise to Dirichlet boundary conditions on their surfaces. We start from
the second-kind boundary integral approach of [X. Claeys, and R. Hiptmair,
and E. Spindler. A second-kind Galerkin boundary element method for scatter-
ing at composite objects. BIT Numerical Mathematics, 55(1):33-57, 2015] for
pure transmission problems and extend it to settings with essential boundary
conditions. Based on so-called global multi-potentials, we derive variational
second-kind boundary integral equations posed in L2(Σ), where Σ denotes
the union of material interfaces. To suppress spurious resonances, we intro-
duce a combined-field version (CFIE) of our new method.

Thorough numerical tests highlight the low and mesh-independent con-
dition numbers of Galerkin matrices obtained with discontinuous piecewise
polynomial boundary element spaces. They also confirm competitive accuracy
of the numerical solution in comparison with the widely used first-kind single-
trace approach.
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Fig. 1.1: Two-dimensional illustration of a typical geometry of a composite
scatterer for L = 3.

1 Introduction

1.1 Acoustic Scattering Boundary Value Problem

The governing equation for acoustic scattering of time-harmonic waves is the
Helmholtz equation. In this article, we confine ourselves to the case of a glob-
ally constant principal part given by −∆.

The scatterer occupies a bounded domain Ω∗ ⊂ R
d, d = 2, 3. We assume a

partitioning of Ω∗ into open Lipschitz subdomains, i.e. Ω∗ =
(⋃L

i=1 Ωi

)
∪Ω•,

where Ω denotes the closure of the domain Ω. The subdomains Ω1, . . . , ΩL

represent the different homogeneous penetrable materials whereas the impen-
etrable object with Lipschitz curvilinear polygonal/polyhedral boundary is
given by Ω•. See Figure 1.1 for a drawing of the scatterer in the case d = 2.
The unbounded exterior complement of the scatterer is given by the Lipschitz
domain Ω0 := R

d \ Ω∗. Like Ω1, . . . , ΩL, also Ω0 is filled with homogeneous

∗ Sorbonne Universités, UPMC Univ Paris 06, CNRS, INRIA, UMR 7598, Laboratoire
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penetrable material. We characterize the penetrable materials by their wave
numbers κi ∈ R+, for i ∈ {0, 1, . . . , L}. They enter the piecewise constant
coefficient function κ ∈ L∞(Rd), κ

∣∣
Ωi
≡ κi. The impenetrable object Ω• will

be modeled by imposing Dirichlet boundary conditions at its boundary ∂Ω•.
By construction, we observe that Ωi ∩ Ωj = ∅ for j 6= i, for indices i, j ∈

{•, 0, 1, . . . , L}. The boundary of the subdomain Ωi is given by ∂Ωi for i ∈
{•, 0, 1 . . . , L}. For Lipschitz domains, and in particular for each Ωi, there
exists a unit normal vector field ni ∈ L∞(∂Ωi), ni : ∂Ωi → R

d, pointing
towards the exterior of Ωi.

The interface between two subdomains Ωi and Ωj is denoted by Γij :=

∂Ωi ∩ ∂Ωj . Moreover, we introduce the so-called skeleton Σ :=
⋃L

i=0 ∂Ωi, the
union of all boundaries of subdomains.

In our scattering model sources are given through an incident wave, coming
from infinity and impinging on the scattering obstacle. We assume that the
source field Uinc ∈ C∞(Rd)1 satisfies the Helmholtz equation

−∆Uinc − κ2
0Uinc = 0 everywhere in R

d , (1.1)

where κ0 denotes the wave number corresponding to the exterior unbounded
domain Ω0.

Now we are in a position to state the acoustic scattering problem in vari-
ational form: Seek U ∈ H1

0,loc(R
d \Ω•) such that

∫

Rd\Ω•

gradU(x) · gradV (x)− κ2(x)U(x)V (x) dx = 0 , (1.2a)

for all V ∈ H1
0,comp(R

d \ Ω•), and the scattered field Us := U − Uinc satisfies
the Sommerfeld radiation condition [12, Sect. 2.2]

lim
r→∞

∫

|x|=r

∣∣∣∣gradUs(x) ·
x

|x|
− iκ0Us(x)

∣∣∣∣
2

dS(x) = 0 . (1.2b)

Existence and uniqueness of solutions to (1.2) are well established [36,
Sect. 2].2

Remark 1.3 (Transmission Conditions) The variational formulation (1.2a)
implies so-called transmission conditions

U
∣∣
∂Ωi

= U
∣∣
∂Ωj

,

ni ·
[
(gradU)

∣∣
∂Ωi

]
= −nj ·

[
(gradU)

∣∣
∂Ωj

]
,

(1.4)

1 Capital letters are used to refer to functions defined over a volume domain.
2 Notations for function spaces (Sobolev spaces) follow the usual conventions, see [9,

26]. In particular, we write Hs
loc

(Ω) for distributions U such that φ
∣

∣

Ω
U ∈ Hs(Ω) for any

φ ∈ C∞
comp(R

d), see [33, Definition 2.6.1]. Hs
comp(Ω) contains all distributions in Hs

loc
(Ω)

that have compact support in Ω, see [33, Definition 2.6.5] and H1
0,loc

(Ω) consists of all

distributions in Hs
loc

(Ω) that vanish on ∂Ω.
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which hold on Γij = ∂Ωi ∩ ∂Ωj, i, j ∈ {•, 0, . . . , L}, i 6= j, in the sense of
distributions.

1.2 Second-Kind Boundary Integral Formulations

Boundary integral equations (BIE) are an effective tool to model the acoustic
scattering of waves at partly impenetrable objects consisting of several homo-
geneous materials. They form the foundation for Galerkin boundary element
methods (BEM), a popular class of methods to discretize and numerically
compute acoustic fields. BEM are – in contrast to finite element methods –
well-suited for scattering problems, since they can easily deal with unbounded
domains. Second-kind BIE for transmission problems in the case of a homo-
geneous scatterer are well established, that is, when there is no impenetrable
object Ω• and L = 1 (see [25,28,32] or [12, Sect. 3] or [33, Sect. 3.9]). As well
understood are second-kind BIE for exterior Dirichlet and Neumann problems
(c.f. [12, Sect. 3] or [33, Sect. 3.9], [14,15]), i.e. the case described in Subsection
1.1 for L = 0. In this case, the occurrence of spurious resonances is a persistent
problem and combined field integral equations (CFIE) are a popular remedy,
see [3, 4].

Our aim is to unify these approaches to treat complex scatterers consisting
of impenetrable as well as several penetrable homogeneous materials.

1.3 First-Kind Boundary Integral Formulations

For the geometric situation described in Subsection 1.1, a widely used BIE is
the first-kind single-trace formulation (STF) [13, 36], in computational elec-
tromagnetics also known as Poggio-Miller-Chang-Harrington-Wu-Tsai (PM-
CHWT) integral equation [5, 19, 31, 37]. Other recently developed approaches
to solve the same type of problems are various kinds of multi-trace formulations
(MTF), see [7–10,22,29,30]. The boundary element Galerkin discretization of
the classical first-kind STF as well as of the MTF leads to ill-conditioned lin-
ear systems on fine meshes. Therefore iterative solvers require preconditioning,
which means additional coding and computational effort.

1.4 Novelty and Outline

In this article, we extend the Galerkin BEM approach for second-kind STF for
transmission problems presented in [11] to partly impenetrable objects. This
type of STF is based on so-called multi-potentials (see Subsection 2.2). It is
possible to consider the (variational) second-kind STF in L2 (cf. Section 3.1).
Thus, a boundary element Galerkin discretization based on the new formula-
tions yields intrinsically well-conditioned linear systems. To overcome spuri-
ous resonances, we adopt the idea of (direct) combined field integral equations
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(CFIE, see [3, 4]) in Section 4. Numerical tests in three dimensions provide
solid evidence for

(i) stability of our second-kind Galerkin discretization,
(ii) mesh-independent good conditioning of the Galerkin matrices, and
(iii) competitive accuracy in comparison with the first-kind STF.

We emphasize that the focus of the present work is not on theoretical
investigations, but on the derivation of the new boundary integral equations,
the implementation of the related Galerkin BEM, and numerical tests probing
specific properties in typical settings. Theoretical considerations will only be
recalled briefly and for proofs we largely refer to [6, 11, 34].

In Section 2 we present the basic tools, set up the notation, and introduce
the spaces needed for our second-kind single-trace formulation. In Section 3 we
introduce the formulation itself and afterwards in Section 4, we derive its CFIE
extension. Based on a specific example, the discretization and implementation
of the method is discussed in Section 5. Finally, we report on numerical results
in Section 6.

2 Boundary Integral Equations

2.1 Traces and Potentials 2

For the ith subdomain, i ∈ {•, ∗, 0, 1, . . . , L}, we introduce the interior Dirich-
let trace

γi
D : H1

loc(Ωi)→ H
1

2 (∂Ωi) ,

extending the point-wise restriction of smooth functions to ∂Ωi, and the inte-
rior Neumann trace (co-normal trace),

γi
N : H1

loc(∆,Ωi)→ H− 1

2 (∂Ωi) , γ
i
N := ni ·

(
γi
D

γi
D

)
◦ grad ,

cf., e.g., [33, Theorems 2.6.9, 2.8.3 & Lemma 2.8.4]3. The exterior Dirichlet

and Neumann traces are defined by γ
i,c
D : H1

loc(R
d \ Ωi) → H

1

2 (∂Ωi) and

γ
i,c
N : H1

loc(∆,Rd \Ωi)→ H− 1

2 (∂Ωi), γ
i
N := ni ·

(γi,c

D

γ
i,c

D

)
◦ grad, respectively.

The associated trace spaces, henceforth called Dirichlet trace space and
Neumann trace space, can be merged into the Cauchy trace space

H(∂Ωi) := H
1
2 (∂Ωi)×H− 1

2 (∂Ωi) , (2.1)

which is self-dual with respect to the pairing4

〈〈u, v〉〉H(∂Ωi)
:= 〈u, ϕ〉∂Ωi

−〈v, ν〉∂Ωi
, u :=

(
u

ν

)
, v :=

(
v

ϕ

)
∈ H(∂Ωi) , (2.2)

2 We are going to use the same notation as introduced in [11, Subsection 3.1].
3 H1

loc
(∆,Ω) := {U ∈ H1

loc
(Ω) |∆U ∈ L2

comp(Ω)}, see [33, Equation (2.108)].
4 Fraktur font is used to designate functions in the Cauchy trace space, where Roman

typeface is reserved for Dirichlet traces, and Greek symbols for Neumann traces.
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with 〈·, ·〉∂Ωi
denoting (extensions of) the L2-duality pairing on ∂Ωi. A related

compact notation is the Cauchy trace operator

γi : H1
loc(∆,Ωi)→ H(∂Ωi) , γi U :=

(
γi
D U

γi
N U

)
. (2.3)

Potential representations of solutions of (1.2) are the first step towards
boundary integral equations. The following result can be found in [33, Sect. 3.11]
and [26, Ch. 6]:

Lemma 2.4 (Single Domain Representation Formula) There are con-
tinuous linear operators, depending on the constant κ > 0, the

single layer potential Si[κ] : H
− 1

2 (∂Ωi)→ H1
loc(∆,Rd \ ∂Ωi) ,

double layer potential Di[κ] : H
1
2 (∂Ωi)→ H1

loc(∆,Rd \ ∂Ωi) ,

such that

(i) For any ϕ ∈ H− 1

2 (∂Ωi), u ∈ H
1

2 (∂Ωi) the potentials Si[κ](ϕ) and Di[κ](u)
are solutions of −∆U − κ2U = 0 in Ωi and in R

d \ Ωi and satisfy the
Sommerfeld radiation conditions (1.2b).

(ii) Every solution U ∈ H1
loc(Ωi) of

(
−∆− κ2

)
U = 0 that satisfies the Som-

merfeld radiation conditions (1.2b) if i = 0 fulfills

Gi[κ](γ
i U) =

{
U on Ωi ,

0 on R
d\Ωi ,

(2.5)

with the local potentials defined by

Gi[κ](u) := −Di[κ](u) + Si[κ](ϕ) , u :=

(
u

ϕ

)
∈ H(∂Ωi) .

For distributions ϕ and u on ∂Ωi the potentials possess the integral represen-
tations

Si[κ](ϕ)(x) =

∫

∂Ωi

Φκ(x− y)ϕ(y) dS(y) ,

Di[κ](u)(x) =

∫

∂Ωi

grad
y
Φκ(x− y) · ni(y)u(y) dS(y) ,

(2.6)

for x 6∈ ∂Ωi, based on fundamental solutions

Φκ(z) =

{
i
4H

(1)
0 (κ |z|), d = 2

1
4π|z| exp(iκ |z|), d = 3

, κ ∈ R+ , (2.7)

where H
(1)
0 is the Hankel function of the first kind and | · | represents the

Euclidean norm.
Notation. For simplicity we neglect the argument [κ] in Si[κ], Di[κ], and

Gi[κ] and write Si := Si[κi], Di := Di[κi], Gi := Gi[κi], respectively, in the
cases where κ in the formulas (2.6) coincides with the local wave number κi

of Ωi, i ∈ {0, 1, . . . , L}.
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2.2 Skeleton Trace Spaces and Multi-potentials

This subsection will follow the same notation as introduced in [11, Subsections
3.2, 3.3] or [6, Section 2], but will extend it to the setting with impenetrable
material in Ω•.

Definition 2.8 (Multi-Trace Space [6, Section 2], [11, Def. 3.1], [34, Def. 3.2.1])
The skeleton multi-trace space is defined as the product of local Cauchy trace
spaces

MT (Σ) :=

L∏

i=0

H(∂Ωi) . (2.9)

The skeleton multi-trace operator γΣ , mapping

H1
loc(∆,Rd \ (Ω• ∪Σ)) :=

{
U ∈L2(Rd \Ω•)

∣∣∣

U
∣∣
Ωi
∈ H1

loc(∆,Ωi) ∀i ∈ {0, . . . , L}
} (2.10)

into the multi-trace space, is given by γΣ : H1
loc(∆,Rd \ (Ω• ∪Σ))→MT (Σ) ,

γΣU := (γ0 U, γ1 U, ..., γL U) . (2.11)

We notice self-duality of MT (Σ) with respect to the L2-type bilinear pairing
(2.2) defined as

〈〈u,v〉〉 :=
L∑

i=0

〈〈ui, vi〉〉H(∂Ωi)
,

u = (u0, ..., uL) ∈MT (Σ),
v = (v0, ..., vL) ∈MT (Σ) .

(2.12)

For sufficiently smooth functions we can rewrite (2.12) using the fact that
each transmission-interface is visited twice and each impenetrable interface is
visited once when summing integrals over all subdomain boundaries,

〈〈u,v〉〉 =
∑

0≤j<i≤L

∫

Γij

uiϕi − νivi + ujϕj − νjvj dS

+
∑

0≤i≤L

∫

Γi•

uiϕi − νivi dS ,

(2.13)

where ui = (ui, νi), vi = (vi, ϕi). Next, we introduce the important subspace of
unique traces in MT (Σ) that incorporates homogeneous Dirichlet boundary
conditions at ∂Ω•.

Definition 2.14 (Single-Trace Space [6, Section 2], [11, Def. 3.2], [34, Def. 4.2.1])

ST (Σ) :=
{
(u0, ν0, . . . , uL, νL) ∈MT (Σ) : ∃U ∈ H1

0 (R
d \Ω•), ui = γi

D U,

∃φ ∈H(div,Rd \Ω•), νi = ni ·

(
γi
D

γi
D

)
φ, ∀i ∈ {0, . . . , L}

}
.
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We observe that functions in ST (Σ) are skeleton traces of functions defined
everywhere on R

d \Ω•. Moreover, the transmission conditions inherent in the
variational formulation (1.2a), see Remark 1.3, imply that the solution U of
(1.2) is an element of ST (Σ):

U solves (1.2a) ⇒ γΣU ∈ ST (Σ) . (2.15)

The polar set characterization of ST (Σ) as a subspace of MT (Σ), see also [6,
Prop. 2.1], [9, Thm. 3.1] and [11], still holds for our extension to impenetrable
parts.

ST (Σ) = {u ∈MT (Σ) : 〈〈u,v〉〉 = 0, ∀v ∈ ST (Σ)} . (2.16)

Based on the spaces introduced above, we define the so-called multi-potential.

Definition 2.17 (Multi-Potential [6, Sect. 5], [11, Def. 3.3], [34, Def. 3.3.7])
The multi-potential is defined as the sum of all local potentials Gi[κi] defined
in Lemma 2.4, i = 0, ..., L:

MΣ : MT (Σ)→ H1
loc(∆,Rd \Σ), MΣ(u) :=

L∑

i=0

Gi[κi](ui) . (2.18)

The attribute multi indicates that generically L + 1 potentials contribute
to the value of MΣ(u)(x) for every x 6∈ Σ. Yet, the multi-potential becomes
single-valued when acting on traces of the solution of (1.2). To see this note
that, if U solves the transmission problem (1.2), then

Gi[κi](γ
iU) =

{
U in Ωi ,

0 elsewhere,
i = 1, . . . , L ,

G0[κ0](γ
0(U − Uinc)) =

{
U − Uinc in Ω0 ,

0 elsewhere.

This explains the following multi-potential representation formula.

Corollary 2.19 (Global Representation Formula [11, Cor. 3.1], [34, Cor. 3.3.8])

If U solves the transmission problem (1.2), then

U − Uinc

∣∣
Ω0

= MΣγ
Σ
(
U − Uinc

∣∣
Ω0

)
, (2.20)

where γΣ is the multi-trace defined in (2.11).
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3 Second-kind Boundary Integral Equations

Following the lines of [11, Subsection 3.3], we define the boundary integral
operator MΣ by taking the skeleton trace of (2.18).

Definition 3.1 (Multi Boundary Integral Operator [11, Def. 3.4], [34, eq. (3.21)])

MΣ := γΣ
MΣ : MT (Σ) → MT (Σ) . (3.2)

Notation. IfMΣ orMΣ are supplied with an argument [κ], all wave numbers
κi in (2.18) and (3.2) are supposed to agree with κ in MΣ [κ] and MΣ[κ],
respectively.

The representation formula in (2.20) paves the way to the boundary in-
tegral formulation. We take the skeleton-trace on both sides of the equa-
tion, insert the resulting equation into the bilinear form (2.12) and test with
v ∈MT (Σ). We obtain the following variational BIE satisfied by u := γΣU .

Formulation 3.3 ( [34, Form. 4.3.3]) Search u ∈ ST (Σ) :

〈〈(Id−MΣ)u,v〉〉 = 〈〈uinc,v〉〉 ∀v ∈MT (Σ),

where uinc := γΣUinc.

The simple expression on the right hand side is due to the identity

〈〈
(Id−MΣ)u

0
inc,v

〉〉
= 〈〈uinc,v〉〉 .

It holds, since we assume that the incident wave Uinc solves an interior Helmholtz
problem on Ω∗, see (1.1). To be more precise, by (2.5), we obtain

G∗[κ0](γ
∗ Uinc) =

{
Uinc on Ω∗ ,

0 on R
d\Ω∗ .

Since Ω0 = R
d \Ω∗, this yields

G∗[κ0](γ
∗ Uinc) + Uinc

∣∣
Ω0

= Uinc . (3.4)

Taking into account the relation between G∗ and G0 together with the fact
that

γ∗ Uinc =

(
γ0
D

− γ0
N

)
Uinc ,

we can write (3.4) in terms of the multi potential (2.18). We observe

−MΣ(γ
Σ(Uinc

∣∣
Ω0

)) + Uinc

∣∣
Ω0

= Uinc ,

which finally yields

(Id−MΣ)u
0
inc = γΣUinc = uinc .
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3.1 Second-Kind Boundary Integral Formulation in L2

3.1.1 Formulation in L2 Single-Trace Space

A boundary integral operator equation endowed with the attribute second-kind
is expected to spawn an isomorphism in an L2-type trace space. Formulation
3.3 meets these expectations in the following framework of function spaces.

Definition 3.5 (L2 Multi-Trace Space [11, Def. 4.2]) The L2 skeleton multi-
trace space is given by

ML
2(Σ) :=

L∏

i=0

L2(∂Ωi)× L2(∂Ωi) . (3.6)

Since the transmission conditions in L2 reduce to interface-wise constraints
on functions in the multi-trace space, it makes sense to define the lifted single-
trace space in the following way.

Definition 3.7 (L2 Single-Trace Space [11, Def. 4.2], [34, Def. 4.2.6])
The L2 single-trace space is defined by

SL
2(Σ) :=

{
(u0, ν0, . . . , uL, νL) ∈ML

2(Σ) : ui

∣∣
Γij

= uj

∣∣
Γij

,

νi
∣∣
Γij

= −νj
∣∣
Γij

, ∀j < i and ui

∣∣
∂Ω•

= 0, ∀i ∈ {0, . . . , L}
}
.

The next result confirms that Formulation 3.3 remains well-defined in L2-
type function spaces.

Lemma 3.8 ( [34, Thm. 3.3.13, Lem. 4.3.4, Lem. 4.3.6]) The boundary
integral operator MΣ from (3.2) maps continuously SL

2(Σ)→ML
2(Σ).

The proof uses sophisticated techniques from harmonic analysis, see [34,
Section 4.3.3] for details. The simpler proof for the pure transmission case can
be found in [11, Lem. 3.2 and Sect. 4].

Even in an L2 setting we can still capture the traces of solutions of the
scattering transmission problem (1.2), because, appealing to elliptic lifting re-
sults [24, Theorem B.2], [18, Remark 2.4.6, Corollary 2.6.7], we observe that

the solution U of (1.2) belongs to H
3

2
+ǫ

loc (Rd \Ω•) for some ǫ > 0. Then, stan-
dard trace theorems supply the following regularity even of Neumann traces
of U :

Lemma 3.9 For the unique solution U of (1.2) holds γΣU ∈ SL
2(Σ).

Of course, the polar identity (2.16) remains valid in the L2-setting. The
proof works analogously to [11, Lemma 4.1].

Lemma 3.10

SL
2(Σ) = {u ∈ML

2(Σ) : 〈〈u,v〉〉 = 0, ∀v ∈ SL
2(Σ)} .

This yields the L2 version of Formulation 3.3:
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Formulation 3.11 ( [34, Form. 4.3.7]) Search u ∈ SL
2(Σ) :

〈〈(Id−MΣ)u,v〉〉 = 〈〈uinc,v〉〉 , ∀v ∈ML
2(Σ),

where uinc := γΣUinc.

We conclude an important redundancy in the variational form of the bound-
ary integral equations in Formulation 3.11:

〈〈
(Id−MΣ)γ

ΣU,v
〉〉

= 0 , ∀v ∈ SL
2(Σ) , (3.12)

if U is the solution of (1.2). In words, testing with single-trace functions yields
“0 = 0” and does not supply any information. The relationship (3.12) not
only points to redundancy in the test space of Formulation 3.11, it also hints
at a remedy. Since SL

2(Σ) is a closed subspace of ML
2(Σ) (as an imme-

diate corollary of Lemma 3.10), it is sufficient to test with elements in any
complement space SL

2,c(Σ) of SL
2(Σ) ⊂ML

2(Σ) satisfying

ML
2(Σ) = SL

2(Σ)⊕ SL
2,c(Σ) .

For the sake of easy implementation we choose SL
2,c(Σ) := SL

2,⊥(Σ), the
L2-orthogonal complement space, which has a simple characterization, see [34,
Def. 4.3.11].

Definition 3.13 (Orth. Complement of the Single-Trace L2-Space)

SL
2,⊥(Σ) :=

{
(u0, ν0, . . . , uL, νL) ∈ML

2(Σ) : ui

∣∣
Γij

= −uj

∣∣
Γij

,

νi
∣∣
Γij

= νj
∣∣
Γij

, j < i and νi
∣∣
Γi•

= 0 ∀i ∈ {0, 1, . . . , L}
}
.

Testing with functions in this complement space leads to the following varia-
tional BIE from Formulation 3.11.

Formulation 3.14 ( [34, Form. 4.3.12]) Search u ∈ SL
2(Σ) :

〈〈(Id−MΣ)u,v〉〉 = 〈〈uinc,v〉〉 , ∀v ∈ SL
2,⊥(Σ) ,

where uinc := γΣUinc.

Corollary 3.15 Formulation 3.14 is consistent with the original scattering
problem in the sense that the exact solution of (1.2) will also fulfill Formulation
3.14.

As a consequence γΣU ∈ SL
2(Σ) we can state the equivalence of Formu-

lation 3.14 to the original problem (1.2).

Corollary 3.16 (Equivalence [34, Cor. 4.3.16]) If Formulation 3.14 has
a unique solution u ∈ SL

2(Σ), then u provides the skeleton trace γΣU of the
solution U of the original transmission problem (1.2).

The proof of Corollary 3.16 runs parallel to that of [11, Corollary 4.2].
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Remark 3.17 [11, Thm. 4.1] asserts that the operator underlying Formula-
tion 3.14 is a compact perturbation of the identity when there is no impene-
trable material. In this case the proof of well-posedness of Formulation 3.14
reduces to the verification of

Ker (Id−MΣ) = {0} . (3.18)

In the presence of Ω• showing the Fredholm property of the operator on the
left hand side of Formulation 3.14 is much more involved and could only be
accomplished for d = 2 under additional geometric assumptions, see [34, Ap-
pendix C].

It is still open, whether (3.18) holds true. But numerical tests (see [11,
Subsection 6.1]) indicate the absence of spurious resonances in the absence of
impenetrable materials. Otherwise, spurious resonances are known to affect the
formulation for particular wave numbers. A heuristic remedy will be devised
in Section 4.

3.1.2 Formulation in L2 Skeleton Trace Space

For implementation it is useful to consider the L2 skeleton trace space.

Definition 3.19 (L2 Skeleton Trace Space, [34, eq. (4.9)]) The L2 skele-
ton trace space is given by

L
2
•(Σ) :=


 ∏

0≤j<i≤L

L2(Γij)× L2(Γij)


×


 ∏

0≤i≤L

{0} × L2(Γi•)


 .

In order to make sense of the notation u = (uij , νij)j<i ∈ L
2
•(Σ), we set • < j

for all j ∈ {0, . . . , L}. It is a closed subspace of the space

L
2(Σ) :=


 ∏

0≤j<i≤L

L2(Γij)× L2(Γij)


×


 ∏

0≤i≤L

L2(Γi•)× L2(Γi•)


 ,

also allowing for non-vanishing Dirichlet contributions at the boundary of the
impenetrable subdomain ∂Ω•.

It is isomorphic to SL
2(Σ) by the following one-to-one correspondence.

Any element u = (uij , νij)j<i ∈ L
2
•(Σ) is associated to the element I(u) =

(u0, ν0, . . . , uL, νL) ∈ SL
2(Σ) according to

(ui, νi) =





(uij , νij) on Γij if 0 ≤ j < i ,

(uji,−νji) on Γji if 0 ≤ i < j ,

(ui• ≡ 0, νi•) on Γi• ,

i = 0, . . . , L . (3.20)

In a similar manner, we find an isomorphism between SL
2,⊥(Σ) and

L
2
•(Σ). In comparison to (3.20), when going from L

2
•(Σ) to SL

2,⊥(Σ), the
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idea is to flip the role of Dirichlet data uij and Neumann data νij . Any
element u = (uij , νij)j<i ∈ L

2
•(Σ) is associated to the element J (u) =

(u0, ν0, . . . , uL, νL) ∈ SL
2,⊥(Σ) via

(ui, νi) =





(−νij , uij) on Γij if 0 ≤ j < i ,

(νji, uji) on Γji if 0 ≤ i < j ,

(−νi•, ui• ≡ 0) on Γi• ,

i = 0, . . . , L . (3.21)

value distribution operator I at interface Γij

Ωi Ωj

uij ++

Ωi Ωj

νij −+

value distribution operator J at interface Γij

Ωi Ωj

νij −+

Ωi Ωj

uij ++

Fig. 3.1: Visualization of the local action of the mappings I, J at the interface
Γij acting on an L2 skeleton function uij = (uij , νij) ∈ L

2
•(Σ). It is important

to note the change of the role of Dirichlet and Neumann data inherent in the
mapping J .

This leads to another Formulation equivalent to Formulation 3.14 with
ansatz and test functions taken in L

2
•(Σ), where I and J represent the action

of the isomorphisms introduced above in (3.20) and (3.21), respectively.

Formulation 3.22 ( [34, Form. 4.3.17]) Search u ∈ L
2
•(Σ) :

〈〈(Id−MΣ) I(u),J (v)〉〉 = 〈〈uinc,J (v)〉〉, ∀v ∈ L
2
•(Σ) ,

where uinc := γΣUinc.

4 Combined Field Integral Equations (CFIE)

4.1 Impenetrable Scatterer (L = 0, Ω• 6= ∅)

We first consider the case of a single impenetrable scatterer, i.e. L = 0 and
R

d = Ω• ∪ ∂Ω• ∪Ω0. Then the second-kind BIE in Formulation 3.22 will fail
to have a unique solution for infinitely many wave numbers κ0 (spurious res-
onances [33, Section 3.9.2]). A widely used remedy are the so-called combined



14 Xavier Claeys, Ralf Hiptmair, and Elke Spindler

field integral equations based on an idea of Burton and Miller [3, 4]. First, let
us recall the direct CFIE policy for L = 0. Later, in Subsection 4.2, we will
adapt the idea to the case of a composite scatterer.

Let U ∈ H1
0,loc(R

d \Ω•) be a solution of an exterior Dirichlet problem, i.e.
U is assumed to solve (1.2) for L = 0. We have seen that for U equation (2.20)
holds true. Taking the trace γ0 of (2.20) yields:

(
γ0
D U

γ0
N U

)
=

(
γ0
D G0[κ0]{γ

0
D U, γ0

N U}

γ0
N G•[κ0]{γ0

D U, γ0
N U}

)
. (4.1)

Using that γ•,c =

(
1 0
0 −1

)
γ0 yields equivalently

(
γ
•,c
D U

γ
•,c
N U

)
=

(
γ
•,c
D G0[κ0]{γ

0
D U, γ0

N U}

γ
•,c
N G0[κ0]{γ0

D U, γ0
N U}

)

(1.4)
=

(
γ
•,c
D G0[κ0]{γ

•,c
D U,− γ

•,c
N U}

γ
•,c
N G0[κ0]{γ

•,c
D U,− γ

•,c
N U}

)

= −

(
γ
•,c
D G•[κ0]{γ

•,c
D U, γ

•,c
N U}

γ
•,c
N G•[κ0]{γ

•,c
D U, γ

•,c
N U}

)
,

and thus

− γ•,c U = P•,c(γ
•,c U) . (4.2)

The operator P•,c is known as Calderón projector (see [33, Proposition 3.6.2]).
The first equation in (4.1) corresponds to the Dirichlet trace while the second
equation is related to the Neumann trace. Sloppily speaking, taking just one of
the two equations in (4.1) to characterize the boundary data at impenetrable
objects means that we lose information.

We consider the second-kind BIE from Formulation 3.22 for L = 0. Due
to our choice of the test space SL

2,⊥(Σ) = L2(∂Ω0)×{0}, we rely merely on
the second equation in (4.1) which is related to the Neumann trace. However,
in the case when κ2

0 is a Neumann eigenvalue of −∆ in Ω•, i.e. if

∆U + κ2
0U = 0 in Ω• , γ

•
N U = 0 , (4.3)

has a nontrivial weak solution U ∈ H1
0,loc(Ω•), this second equation will fail

to have a unique solution. In this case, we have to make use of both equations
in (4.2) to ensure that the resulting formulation is equivalent to (1.2), L = 0.

The CFIE ansatz is to use a complex linear combination of the two equa-
tions in (4.1). For this purpose, we introduce the trace transformation operator
Ψη that transfers Dirichlet to Neumann data and multiplies it by iη, for some
η ∈ R \ {0}:

Ψη : L2(∂Ω•)× {0} → {0} × L2(∂Ω•) ,

v = (v, 0) 7→ Ψη(v) = iη(0, v) .
(4.4)

Then, the direct combined field integral approach corresponding to Formula-
tion 3.22 in the case L = 0 boils down to the following variational problem:
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Formulation 4.5 ( [34, Form. 4.3.21]) Fix η ∈ R \ {0}. Seek u ∈ {0} ×
L2(∂Ω0) such that for all v ∈ L2(∂Ω0)× {0}, we have

〈〈
(Id− γ0

G0[κ0])u,Ψη(v) + v

〉〉
H(∂Ω0)

=
〈〈
γ0 Uinc,Ψη(v) + v

〉〉
H(∂Ω0)

,

where the trace transformation operator Ψη is defined in (4.4).

Splitting the boundary integral operator γ0
G0[κ0] into components acting on

individual traces, we find that Formulation 4.5 agrees with the direct CFIE
of [3, 4].

4.2 Composite Scatterer

Now we return to the general situation of a scatterer with L > 0 penetrable
material domains and Ω• 6= ∅. Our goal is to apply the same strategy as
in Subsection 4.1 in the case of a composite scatterer. The idea is to add a
generalized version of the first equation of (4.1), related to the Dirichlet trace,
as an additional term to Formulation 3.22. This modification in the spirit
of CFIEs can be expected to suppress spurious resonances triggered by the
presence of impenetrable objects.

Starting with the global representation formula (2.20) and using the iden-
tity (3.4), for a solution U of (1.2) we obtain that

γ
•,c
D

(
U − Uinc

∣∣
Ω0

)
= γ

•,c
D MΣ

(
γΣ(U − Uinc

∣∣
Ω0

)
)

(4.6)

⇔ γ
•,c
D

(
U − Uinc

∣∣
Ω0

−MΣ

(
γΣ(U − Uinc

∣∣
Ω0

)
))

= 0

⇔ γ
•,c
D

(
−U +MΣ

(
γΣU

)
+ Uinc

)
= 0 .

This equation represents the information we lost due to the choice of our test
space SL

2,⊥(Σ) in Formulation 3.22, which has vanishing Neumann data on
∂Ω•. It corresponds to the generalized version of the first equation in (4.1).
Our goal is to incorporate the information from (4.6) into Formulation 3.22 in
order to suppress spurious resonances.

To introduce the extension to the setting of a composite scatterer of the

trace transformation operator Ψη from (4.4), we define the space L̃2(∂Ω•),
which can be seen as the extension of L2-Dirichlet data associated with the
impenetrable subdomain in L2(∂Ω•) to the skeleton space L

2(Σ) from Defi-
nition 3.19:

L̃2(∂Ω•) :=


 ∏

0≤j<i≤L

{0} × {0}


×


 ∏

0≤i≤L

L2(Γi•)× {0}


 .

In order to make sense of the notation v = (vij , ϕij)j<i ∈ L̃2(∂Ω•), we set
• < j for all j ∈ {0, . . . , L}. For any fixed η ∈ R \ {0} we define the trace
transformation operator

Ψη : L2
•(Σ)→ L̃2(∂Ω•) ⊂ L

2(Σ) ,
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v = (vij , ϕij)j<i 7→ Ψη(v) = (Ψη(v))j<i
,

with (Ψη(v))j<i
=

{
(iηϕi•, 0) i = 0, . . . , L ,

(0, 0) 0 ≤ j < i ≤ L .

We may also need the straightforward extension of the isometry J defined in

(3.21) to the space L
2(Σ) = L

2
•(Σ)⊕ L̃2(∂Ω•) from Definition 3.19. Namely,

J (u) = (u0, ν0, . . . , uL, νL) ∈ML
2(Σ) is given by

(ui, νi) =





(−νij , uij) on Γij if 0 ≤ j < i ,

(νji, uji) on Γji if 0 ≤ i < j ,

(−νi•, ui•) on Γi• ,

i = 0, . . . , L . (4.7)

Starting with the identity from (2.20) and (4.6) we obtain
〈〈
(Id−MΣ)(γ

ΣU)− γΣUinc,J (Ψη(v))
〉〉

= −
〈〈
−γΣU +MΣ(γ

ΣU) + γΣUinc,J (Ψη(v))
〉〉

(2.13)
= −iη

∑

0≤i≤L

∫

Γi•

γi
D

(
−U +MΣ(γ

ΣU) + Uinc

)
ϕi• dS

= −iη
∑

0≤i≤L

∫

Γi•

γ
•,c
D

(
−U +MΣ(γ

ΣU) + Uinc

)
ϕi• dS

(4.6)
= 0 , (4.8)

under application of the isometry J from (4.7) and using the fact that by
definition of the traces in the beginning of Sect. 2.1 we have γi

D = γ
•,c
D on Γi•,

i ∈ {0, 1, . . . , L}.
Since equation (4.8) holds true for the solution U of (1.2), the following

formulation is still consistent with the transmission problem.

Formulation 4.9 ( [34, Form. 4.3.22]) Search u ∈ L
2
•(Σ) such that

for all v ∈ L
2
•(Σ) it holds

〈〈(Id−MΣ) I(u),J (v+Ψη(v))〉〉 = 〈〈uinc,J (v+Ψη(v))〉〉 ,

where uinc := γΣUinc.

Also in this case, uniqueness of solutions remains open, cf. Remark 3.17.

5 Galerkin Boundary Element Discretization of the Second-Kind
Formulations

5.1 Boundary Element Spaces

For the Galerkin discretization of the variational boundary integral equations
of Formulations 3.22 and 4.9 we have to rely on a finite-dimensional subspace
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VM of L2
•(Σ). We first give a general abstract description before discussing

concrete choices.
Following the interface-oriented perspective of Definition 3.19 we decom-

pose trial and test functions into interface contributions:

u =
(
(uij , νij)0≤j<i≤L, (0, νi•)0≤i≤L

)
∈ L

2
•(Σ) ,

v =
(
(vij , ϕij)0≤j<i≤L, (0, ϕi•)0≤i≤L

)
∈ L

2
•(Σ) .

(5.1)

For the Galerkin discretization of (5.6), we rely on Mij-dimensional, Mij ∈

N, subspaces of L2(Γij) spanned by basis functions b1ij , . . . , b
Mij

ij , where i ∈
{0, . . . , L}, j ∈ {•, 0, . . . , i − 1}. This gives basis expansions of interface com-
ponents uij , vij , νij , and ϕij , of Galerkin trial and test functions u,v ∈ VM ,
for instance,

uij =

Mij∑

ℓ=1

uℓ
ijb

ℓ
ij with −→u ij := (u1

ij , . . . , u
Mij

ij )⊤ ∈ C
Mij . (5.2)

Wherever required, the basis functions will be considered as elements of L2(Σ)
after extension by zero. The resulting subspace VM ⊂ L

2
•(Σ) has dimension

M := 2
∑

0≤j<i≤L

Mij +
∑

0≤i≤L

Mi• . (5.3)

We denote the vectors of the basis expansion coefficients of u,v ∈ VM as

−→
u = ((−→u ij ,

−→ν ij)0≤j<i≤L, (
−→ν i•)0≤i≤L) ∈ C

M ,
−→
v = ((−→v ij ,

−→ϕ ij)0≤j<i≤L, (
−→ϕ i•)0≤i≤L) ∈ C

M .
(5.4)

Of course, we have dropped the vanishing Dirichlet contribution on Γi•. The
local coefficient vectors −→u ij ,

−→v ij ,
−→ν ij and −→ϕ ij are defined as in (5.2).

In the concrete case of fixed-degree piecewise polynomial boundary ele-
ment spaces VM we rely on a mesh/triangulation T = {τ1, . . . , τ|T |} of Σ

(see [33, Sect. 4.1.2]) that resolves the given geometry of Σ, in the sense that
the closure of every Γij agrees with the union of some closed cells of T . Mesh
based boundary element subspaces VM ⊂ L

2
•(Σ) do not have to satisfy any

continuity conditions at cell boundaries. Therefore, we opt for a simple piece-
wise polynomial discontinuous approximation of L2

•(Σ) by means of5

VM := VT ,p := Sp,−1
T (Σ)× Sp,−1

T (Σ) ⊂ L
2
•(Σ) , (5.5)

where the total degree p ∈ N0 is fixed, see [33, Def. 4.1.17] (d = 3), [35,
Sect. 10.2] (d = 2). In other words, we use piecewise polynomial functions
of maximal total degree p in each mesh cell. L2

•(Σ)-stable bases of VT ,p are
readily available. In the case p = 0 we simply use the set of characteristic
functions of the mesh elements τk ∈ T .

5 The notations for boundary element spaces are borrowed from [33, Sect. 4.1].
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5.2 Galerkin Linear Systems of Equations

In this section, we dip into the details of the Galerkin boundary element dis-
cretization of Formulation 3.22. For the sake of lucidity, we restrict ourselves
to the situation depicted in Figure 5.1. This situation is sufficiently general to
convey all key considerations.

The main idea is to consider all the operator contributions from Formu-
lation 3.22 interface-wise instead of subdomain-wise, as it has already been
done in the definition of the L2 single-trace space SL

2(Σ) (see Def. 3.7) and
the L2 skeleton trace space L2

•(Σ) (see Def. 3.19). Definition 3.7 of the single-
trace space and the isometry given in (3.20) adopt the the convention that
at transmission interfaces the intrinsic orientation chosen for the interface Γij

is inherited by the orientation of the boundary of the adjacent domain Ωi

with larger index i > j. In the case of an impenetrable interface Γi• ⊂ Ω•
the orientation is induced by the penetrable domain Ωi, i ∈ {0, 1, . . . , L}. In
Figure 5.1, the intrinsic orientations of the interfaces Γ01, Γ0• and Γ1• are
indicated through the directions of the normal vectors n01, n0• and n1•, re-
spectively.

Ω0

Ω1

Ω•

n0•

n1•

n10

Γ10
Γ1•

Γ0•

Fig. 5.1: Model geometry (L = 1) for studying the implementation of the
second-kind formulation.

Based on this convention, we study the structure of Formulation 3.22:

Seek u ∈ L
2
•(Σ) such that

〈〈(Id−MΣ) I(u),J (v)〉〉 = 〈〈uinc,J (v)〉〉 ∀v ∈ L
2
•(Σ). (5.6)

To begin with, we study the discretization of the identity operator. We
start from (2.13)

〈〈u,v〉〉 =
∑

0≤j<i≤L

∫

Γij

uiϕi − νivi + ujϕj − νjvj dS +
∑

0≤i≤L

∫

Γi•

uiϕi − νivi dS ,
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and replace u← I(u), v← J (v). In light of the definitions (3.20) and (3.21)
of I and J , respectively, this boils down to setting in the first sum of (2.13)
ui ← uij , ϕi ← vij , νi ← νij , vi ← −ϕij , uj ← uij , ϕj ← vij , νj ← −νij ,
and vj ← ϕij . In the second sum we replace ui ← 0, ϕi ← 0, νi ← νi•, and
vi ← −ϕi•. This yields

〈〈I(u),J (v)〉〉 = 2
∑

0≤j<i≤L

∫

Γij

uijvij + νijϕij dS +
∑

0≤i≤L

∫

Γi•

νi•ϕi• dS .

Thus, after introducing the interface mass matrices

Mij
ij :=

(∫

Γij

bℓijb
k
ij dS

)

1≤ℓ,k≤Mij

∈ R
Mij ,Mij ,

in the model situation of Figure 5.1 the bilinear form (u,v) 7→ 〈〈I(u),J (v)〉〉
gives rise to the block-diagonal Galerkin matrix




2M10
10 0 0 0

0 2M10
10 0 0

0 0 M0•
0• 0

0 0 0 M1•
1•


 ,

where the color code of Figure 5.1 is used to highlight contributions of partic-
ular interfaces. The color red denotes the interface Γ10, violet stands for Γ0•
and green represents Γ1•.

Next, we examine the remaining term on the left hand side in (5.6). We con-
tinue using the interface-wise notation (5.1) for components of u,v ∈ L

2
•(Σ).

As above we write the expressions interface-wise using the definition of the
duality pairing from (2.13). We also rely on the insight that, if we restrict MΣ

to SL
2(Σ), then Range(MΣ) will be single-valued.

〈〈MΣ I(u),J (v)〉〉 = 2
∑

0≤j<i≤L

∫

Γij

γi
D MΣ(I(u))vij − γi

N MΣ(I(u)) (−ϕij) dS

+
∑

0≤i≤L

∫

Γi•

0− γi
N MΣ(I(u)) (−ϕij) dS

If we translate this to the concrete setting of Figure 5.1, we get

〈〈MΣ I(u),J (v)〉〉

= 2

∫

Γ10

γ1
D MΣ(I(u))v10 + γ1

N MΣ(I(u))ϕ10 dS

+

∫

Γ0•

γ0
N MΣ(I(u))ϕ0• dS +

∫

Γ1•

γ1
N MΣ(I(u))ϕ1• dS ,

where the colors indicate to which interface a term contributes (see Figure 5.1).
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Next, we split the trial space into interface contributions and take into
account that at the transmission interface Γ10, we have two adjacent domains
contributing to the interface, while for the Dirichlet interfaces Γ0• and Γ1•, we
have only one contribution from the penetrable side Ω0 and Ω1, respectively.
Throughout, we interpret the interface-wise defined functions uij , vij and νij ,
ϕij , i, j ∈ {•, 0, 1, . . . , L} as functions on the whole skeleton Σ after formal
extension by 0. Nine terms result from splitting trial and test functions into
three interface contributions each.

〈〈MΣ I(u),J (v)〉〉

= 2

∫

Γ10

γ1
D(G1[κ1])(u10, ν10)v10 + γ1

D(G0[κ0])(u10,−ν10)v10

+ γ1
N (G1[κ1])(u10, ν10)ϕ10 + γ1

N (G0[κ0])(u10,−ν10)ϕ10 dS

+2

∫

Γ10

γ1
D(G0[κ0])(0, ν0•)v10 dS+2

∫

Γ10

γ1
D(G1[κ1])(0, ν1•)v10 dS

+2

∫

Γ10

γ1
N (G0[κ0])(0, ν0•)ϕ10 dS+2

∫

Γ10

γ1
N (G1[κ1])(0, ν1•)ϕ10 dS

+

∫

Γ0•

γ0
N (G1[κ1])(u10, ν10)ϕ0• + γ0

N (G0[κ0])(u10,−ν10)ϕ0• dS

+

∫

Γ0•

γ0
N (G0[κ0])(0, ν0•)ϕ0• + γ0

N (G1[κ1])(0, ν1•)ϕ0• dS

+

∫

Γ1•

γ1
N (G1[κ1])(u10, ν10)ϕ1• + γ1

N (G0[κ0])(u10,−ν10)ϕ1• dS

+

∫

Γ1•

γ1
N (G0[κ0])(0, ν0•)ϕ1• + γ1

N (G1[κ1])(0, ν1•)ϕ1• dS .

In a next step, at the transmission interface Γ10, we rewrite the potential that
is related to Ω0. By definition of the normal n1 = −n0, we have that

G0[κ0](u10, ν10) = −G1[κ0](u10,−ν10),

and, therefore, find

〈〈MΣ I(u),J (v)〉〉

= 2

∫

Γ10

γ1
D(G1[κ1]−G1[κ0])(u10, ν10)v10

+ γ1
N (G1[κ1]−G1[κ0])(u10, ν10)ϕ10 dS

+2

∫

Γ10

γ1
D(G0[κ0])(0, ν0•)v10 dS + 2

∫

Γ10

γ1
D(G1[κ1])(0, ν1•)v10 dS
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+2

∫

Γ10

γ1
N (G0[κ0])(0, ν0•)ϕ10 dS + 2

∫

Γ10

γ1
N (G1[κ1])(0, ν1•)ϕ10 dS

+

∫

Γ0•

γ0
N (G1[κ1]−G1[κ0])(u10, ν10)ϕ0• dS

+

∫

Γ0•

γ0
N (G0[κ0])(0, ν0•)ϕ0• + γ0

N (G1[κ1])(0, ν1•)ϕ0• dS

+

∫

Γ1•

γ1
N (G1[κ1]−G1[κ0])(u10, ν10)ϕ1• dS

+

∫

Γ1•

γ1
N (G0[κ0])(0, ν0•)ϕ1• + γ1

N (G1[κ1])(0, ν1•)ϕ1• dS .

Finally, we have derived an interface-wise representation of Formulation 3.22.
Now we proceed with the Galerkin discretization based on basis expansions

of all trial and test functions as introduced above, see (5.2). Our arrangement
of basis functions leads to the following block partitioned Galerkin matrix:



C10

10 C10
0• C10

1•
C0•

10 C0•
0• C0•

1•
C1•

10 C1•
0• C1•

1•


 ∈ C

M,M , M := 2M10 +M0• +M1• . (5.7)

The detailed structure of the matrix blocks is

C10
10 = 2

(
−
(
K10

10[κ1]−K10
10[κ0]

)
V10

10[κ1]−V10
10[κ0]

W10
10[κ1]−W10

10[κ0] K′10
10[κ1]−K′10

10[κ0]

)
,

which amounts to the the difference of two Calderón operators(see [33, equa-
tion (3.122)]), where

K10
10[κ1]−K10

10[κ0] :=
(∫

Γ10

γ1
D(D1[κ1]− D1[κ0])(b

j
10)b

i
10 dS

)M10

i,j=1
∈ C

M10,M10

represents the difference of two double layer operators (see [33, Sect. 3.3.3]).
The difference of two single layer operators (c.f. [33, 3.3.2]) gives rise to the
matrix

V10
10[κ1]−V10

10[κ0] :=
(∫

Γ10

γ1
D(S1[κ1]− S1[κ0])(b

j
10)b

i
10 dS

)M10

i,j=1
∈ C

M10,M10

and the difference of two hypersingular operators (c.f. [33, Sect. 3.3.4]) and
two adjoint double layer operators (see [33, Sect. 3.3.3]), respectively, leads to
the matrices

W10
10[κ1]−W10

10[κ0] :=
(
−

∫

Γ10

γ1
N (D1[κ1]− D1[κ0])(b

j
10)b

i
10 dS

)M10

i,j=1
, (5.8)
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and

K′10
10[κ1]−K′10

10[κ0] :=
(∫

Γ10

γ1
N (S1[κ1]− S1[κ0])(b

j
10)b

i
10 dS

)M10

i,j=1
∈ C

M10,M10 .

Obviously, at transmission interfaces we end up with differences of the classical
kernels6. Taking the difference of two kernels leads to cancellation of leading
singularities such that the integrals involved in C10

10 are at most weakly singu-
lar. They are amenable to the usual singular integration techniques from [33,
Chapter 5], though we point out that numerical cancellation has to be avoided
as discussed in [11, Page 51/52]. In short, one should implement a specific
kernel for subtracted operators and use cancellation-free expressions. In our
code, we use Taylor expansions to achieve a numerically stable implementation
(see [11, eq. (5.7)-(5.9)]).

The next block is a coupling term of the Dirichlet interface Γ0• and the
transmission interface Γ10:

C10
0• = 2




( ∫
Γ10

γ1
D(S0[κ0])(b

j
0•)b

i
10 dS

)
1≤i≤M10

1≤j≤M0•( ∫
Γ10

γ1
N (S0[κ0])(b

j
0•)b

i
10 dS

)
1≤i≤M10

1≤j≤M0•


 =

(
V10

0•[κ0]

K′10
0•[κ0]

)
.

In this case, no cancellation occurs since at the Dirichlet boundary we only have
an operator contribution from the penetrable subdomain Ω0. The kernel of the
boundary integral operator γ1

D(S0[κ0])is weakly singular, while the kernel of

the operator γ1
N (S0[κ0]), i.e. the adjoint double layer operator K′10

0•, has a
strong singularity behaving like O( 1

‖x−y‖ ) for d = 2 and O( 1
‖x−y‖2 ) for d = 3,

respectively. Therefore, we face a principal part integral, which finally leads to
a jump term 1

2 Id on Γ0•, when crossing the interface Γ0• (see [26, Sec. 7.2]).
In the case of C10

0•, we can neglect this term because our trial functions are
supported on the interface Γ10, which only shares a set of measure zero with
Γ0•.

The same applies to the third block in the first row of (5.7),

C10
1• = 2




( ∫
Γ10

γ1
D(S1[κ1])(b

j
1•)b

i
10 dS

)
1≤i≤M10

1≤j≤M1•( ∫
Γ10

γ1
N (S1[κ1])(b

j
1•)b

i
10 dS

)
1≤i≤M10

1≤j≤M1•


 =

(
V10

0•[κ0]

K′10
0•[κ0]

)
.

The blocks in the second row of (5.7) are spawned by test functions supported
on Γ0•. Since the first block C0•

10 is associated with trial functions supported
on the transmission interface Γ10, we again obtain more regular differences of

6 The operators associated with transmission interfaces are studied in great detail in [11,
Lem. 5.3].
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classical kernels, which are, at worst, weakly singular.

C0•
10 =




(
−
∫

Γ0•

γ0
N (D1[κ1]− D1[κ0])(b

j
10)b

i
0• dS

)
1≤i≤M0•

1≤j≤M10( ∫
Γ0•

γ0
N (S1[κ1]− S1[κ0])(b

j
10)b

i
0• dS

)
1≤i≤M0•

1≤j≤M10




⊤

=
(
W0•

10[κ1]−W0•
10[κ0] K

′0•
10[κ1]−K′0•

10[κ0]
)
.

The second block C0•
0• in the second row of (5.7) is the self-interaction of Γ0•.

As mentioned above, since the kernel γ0
N,x

γ0
D,y

Φκ0
(x,y) of γ0

N (S0[κ0]) has a

strong singularity in x = y, we obtain a contribution 1
2 Id due to the principal

part integral when crossing the interface Γ0•. After Galerkin discretization,
this jump term is represented by the interface mass matrix

1

2
M0•

0• :=
1

2

( ∫
Γ0•

b
j
0•b

i
0• dS

)M0•

i,j=1

.

Thus, we obtain

C0•
0• =

(∫

Γ0•

γ0
N (S0[κ0])(b

j
0•)b

i
0• dS

)M0•

i,j=1
=

1

2
M0•

0• +K′0•
0•[κ0] ,

as in the case of the second-kind formulation of the exterior Dirichlet problem.
The last block C0•

1• in the second row has the form

C0•
1• =

(∫

Γ0•

γ0
N (S1[κ1])(b

j
1•)b

i
0• dS

)
1≤i≤M0•

1≤j≤M1•

= K′0•
1•[κ1] .

Finally, the last row of the block matrix in (5.7) can be obtained analogously
to the second row blocks.

C1•
10 =




(
−
∫

Γ1•

γ1
N (D1[κ1]− D1[κ0])(b

j
10)b

i
1• dS

)
1≤i≤M1•

1≤j≤M10( ∫
Γ0•

γ1
N (S1[κ1]− S1[κ0])(b

j
10)b

i
1• dS

)
1≤i≤M1•

1≤j≤M10




⊤

=
(
W1•

10[κ1]−W1•
10[κ0] K

′1•
10[κ1]−K′1•

10[κ0]
)
,

C1•
0• =

(∫

Γ1•

γ1
N (S0[κ0])(b

j
0•)b

i
1• dS

)
1≤i≤M1•

1≤j≤M0•

= K′1•
0•[κ0] ,

C1•
1• :=

(∫

Γ0•

γ1
N (S1[κ1])(b

j
1•)b

i
0• dS

)M0•

i,j=1
=

1

2
M1•

1• +K′1•
1•[κ1] .

Using the interface-wise decomposition in (5.7), we finally observe the fol-
lowing block structure for the linear system of equations arising from the
Galerkin discretization of Formulation 3.22 in the case of the geometry de-
picted in Figure 5.1 and choosing basis functions as described above in Sec-
tion 5.1.
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Linear System of Equations 5.9 ( [34, Form. 4.4.5])
Find −→u = (−→u 10,

−→ϕ 10,
−→ϕ 0•,

−→ϕ 1•)⊤ ∈ C
2M10+M0•+M1• , such that

















2M10
10 0 0 0

0 2M10
10 0 0

0 0
1
2
M

0•
0• 0

0 0 0
1
2
M

1•
1•









−









−2(K10
10[κ1]−K

10
10[κ0]) 2(V10

10[κ1]−V
10
10[κ0]) 2V10

0•[κ0] 2V10
1•[κ0]

2(W10
10[κ1]−W

10
10[κ0]) 2(K′10

10[κ1]−K
′10
10[κ0]) 2K′10

0•[κ0] 2K′10
1•[κ0]

W
0•
10 [κ1]−W

0•
10 [κ0] K

′0•
10[κ1]−K

′0•
10[κ0] K

′0•
0•[κ0] K

′0•
1•[κ1]

W
1•
10 [κ1]−W

1•
10 [κ0] K

′1•
10[κ1]−K

′1•
10[κ0] K

′1•
0•[κ0] K

′1•
1•[κ1]

























−→
u 10
−→ϕ10
−→ϕ0•
−→ϕ1•









=









2M10
10 0 0 0

0 2M10
10 0 0

0 0 M
0•
0• 0

0 0 0 M
1•
1•





















−−−−−−→
γ1

D
Uinc10

−−−−−−→
γ1

N
Uinc10

−−−−−−→
γ0

N
Uinc0•

−−−−−−→
γ1

N
Uinc1•













,

where −→u inc := (
−−−−−→
γ1

D
Uinc10,

−−−−−→
γ1

N
Uinc10,

−−−−−→
γ0

N
Uinc0•,

−−−−−→
γ1

N
Uinc1•)⊤ collects the

coefficient vectors of the interpolant of (γ1
D Uinc)

∣∣
Γ10

, (γ1
N Uinc)

∣∣
Γ10

, (γ0
N Uinc)

∣∣
Γ0•

and (γ1
N Uinc)

∣∣
Γ1•

, respectively, see (5.2). The coefficient vector −→u inc can be

associated with an element in the finite dimensional space VM ⊂ L
2
•(Σ), see

(5.4).

A key observation is that

no hypersingular boundary integral operators are encountered in the
interface-oriented assembly of Galerkin matrices for (5.6),

which is another manifestation of the insight from Lemma 3.8.

The Linear System of Equations 5.9, arising from Galerkin discretization in
the setting of Figure 5.1, is rather typical. For other geometries the structure
is exactly the same: when both spaces, i.e. test and trial space, are associated
with a transmission interface, then matrices of the form

2

(
M10

10 0
0 M10

10

)
−C10

10

occur. The mass term is dropped in the case when the test (superscript indices)
and trial transmission interfaces (subscript indices) do not coincide. If we
consider a block where both spaces are associated with Dirichlet interfaces,
then the matrices are of the form M1•

1• − C1•
1• in the case of a self-coupling

and of the form C0•
1• in all other cases where the Dirichlet test (superscript

indices) and Dirichlet trial interfaces (subscript indices) do not coincide. The
coupling blocks have the form C10

0•, if the test space (superscript indices) is
associated with a Dirichlet interface and the trial space (subscript indices)
with a transmission interface, vice versa for C0•

10.
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5.3 Formal Galerkin Discretization for CFIE Formulation 4.9

As in the previous subsection, we consider the geometry depicted in Figure 5.1.
Let G be the matrix on the left hand side of the Linear System of Equations
5.9. We observe that the Galerkin matrix GCFIE arising from Formulation 4.9
has the form

GCFIE := G− iη









0 0 0 0

0 0 0 0

−(K0•
10[κ1]−K

0•
10[κ0]) V

0•
10 [κ1]−V

0•
10 [κ0] V0•

0•[κ0] V0•
1•[κ1]

−(K1•
10[κ1]−K

1•
10[κ0]) V

1•
10 [κ1]−V

1•
10 [κ0] V1•

0•[κ0] V1•
1•[κ1]









.

(5.10)

For the right hand side vector we obtain

yCFIE :=




2M10
10 0 0 0 0 0

0 2M10
10 0 0 0 0

0 0 iηM0•
0• M

0•
0• 0 0

0 0 0 0 iηM1•
1• M

1•
1•







−−−−−−→
γ1

D
Uinc10

−−−−−−→
γ1

N
Uinc10

−−−−−−→
γ0

D
Uinc0•

−−−−−−→
γ0

N
Uinc0•

−−−−−−→
γ1

D
Uinc1•

−−−−−−→
γ1

N
Uinc1•




. (5.11)

It is important to notice that in the case of CFIE, the right hand side vec-
tor also contains information of the Dirichlet data of the incident field Uinc

associated with the boundary of the impenetrable subdomain ∂Ω•. Namely,

(
−−−−−→
γ1

D
Uinc10,

−−−−−→
γ1

N
Uinc10,

−−−−−→
γ0

D
Uinc0•,

−−−−−→
γ0

N
Uinc0•,

−−−−−→
γ1

D
Uinc1•,

−−−−−→
γ1

N
Uinc1•)⊤ col-

lects the coefficient vectors of the interpolant of (γ1
D Uinc)

∣∣
Γ10

, (γ1
N Uinc)

∣∣
Γ10

,

(γ0
D Uinc)

∣∣
Γ0•

, (γ0
N Uinc)

∣∣
Γ0•

, (γ1
D Uinc)

∣∣
Γ1•

and (γ1
N Uinc)

∣∣
Γ1•

, respectively, see

(5.2).
This yields the following linear system of equations generated by the Galerkin

BEM discretization of CFIE Formulation 4.9.

Linear System of Equations 5.12
Find −→u = (−→u 10,

−→ϕ 10,
−→ϕ 0•,

−→ϕ 1•)⊤ ∈ C
2M10+M0•+M1• , such that

GCFIE









−→
u 10
−→ϕ10
−→ϕ0•
−→ϕ1•









= yCFIE ,

where GCFIE and yCFIE are given in (5.10) and (5.11), respectively.

5.4 Convergence and Conditioning

Since we can show only that the operator on the left hand side of Formulation
3.22 is a Fredholm operator of index zero, see also Remark 3.17, we cannot
assert quasi-optimality of Galerkin solutions of Formulations 3.22 and 4.9.
Yet, bolstered by what we have universally observed in numerical tests, we
may assume stability of our Galerkin discretization.



26 Xavier Claeys, Ralf Hiptmair, and Elke Spindler

Assumption 5.13 (Discrete Inf-Sup Conditions) We assume that For-
mulation 3.22, discretized by means of low-order piecewise polynomial bound-
ary element spaces on shape-regular sequences of meshes, satisfies an asymp-
totic uniform discrete inf-sup condition (see [33, Theorem 4.2.7]).

Then, we conclude by [33, Theorem 4.2.7] well-posedness, asymptotic sta-
bility, and quasi-optimality of the Galerkin discretization. Assume a shape-
regular and quasi-uniform sequence {Tℓ}ℓ∈N

of skeleton meshes with

hℓ := max{diam(τ), τ ∈ Tℓ} → 0 as ℓ→∞ ,

see [35, Section 10.1] (d = 2) or [33, Section 4.1.2] (d = 3) for details. Under
these circumstances, quasi-optimality implies O(hℓ) algebraic convergence of
the discretization error in the L

2
•(Σ)-norm as a consequence of best approxi-

mation error estimates from [35, Section 10.1] or [33, Section 4.1.2].
The condition numbers of the Galerkin matrices crucially depend on the

choice of basis functions. In particular, for VMℓ
= VTℓ,0, see (5.5), we choose the

canonical basis of characteristic functions of mesh cells. This basis is perfectly
L2-stable, since, after suitable scaling, it is even L2-orthonormal. Thus, by the
continuity of MΣ : ML

2(Σ)→ML
2(Σ) and appealing to Assumption 5.13,

we can conclude that the Euclidean condition numbers of the Galerkin matrices
Gℓ ∈ C

Mℓ,Mℓ arising from Formulation 4.9 are bounded independently of hℓ.

5.5 Post-processing

Assume that we perform a Galerkin discretization of Formulation 3.22 based
on the boundary element space VMℓ

= VTℓ,0 of piecewise constant functions
on quasi-uniform sequences of triangular or quadrilateral meshes {Tℓ}ℓ∈N ob-
tained by regular refinement. In this case, we observe a gain in accuracy if
we perform a simple and cheap post-processing, which relies on the bound-
ary element space S1,0Tℓ

(Σ) of continuous, piecewise linear functions on Tℓ,
see [33, Def. 4.1.36] (d=3), [35, Sect. 10.2] (d = 2).

The post-processing we recommend boils down to computing the L2-projection
of the Dirichlet data of the discrete solution onto the continuous piecewise lin-
ear boundary element space S1,0Tℓ

(Σ). Algorithmically, the projection entails

the inversion of a sparse mass matrix for the space S1,0Tℓ
(Σ). When using mod-

ern direct sparse elimination solvers the extra computational effort is negligible
compared to the cost of handling the boundary element matrices.

6 Numerical Experiments

This section is dedicated to numerical experiments testing the performance of
our new second-kind Formulations 3.22 and 4.9 compared to the classical first-
kind formulation from [36] for d = 3.7 While for the second-kind approach, we

7 The implementation was done based on the C++ BEM library “Boundary Element
Template Library 2” (BETL2), developed by L. Kielhorn [23].
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Fig. 6.1: Geometry of the scatterer in Experiment I. Shown is the real part of
the total field U .

Fig. 6.2: Geometry of the scatterer in Experiment II. Shown is the real part
of the total field U .

use piecewise constant boundary element test and trial spaces (see (5.5)), for
the first-kind approach we need to use ST (Σ)-conforming boundary element
spaces. We take continuous piecewise linear boundary elements S1,0Tℓ

(Σ) to

discretize Dirichlet data and S0,−1
Tℓ

(Σ) for Neumann data. The meshes {Tℓ}ℓ∈N

we used for the experiments consisted of flat triangular cells.
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Fig. 6.3: Geometry of the scatterer in Experiment III. Shown is the real part
of the total field U .

We are going to discuss three different scattering problems based on the
geometries depicted in Figures 6.1, 6.2 and 6.3, respectively.8

6.0.1 Experiment I: Transmission Problem

The first experiment solves the scattering problem (1.2a), (1.2b) at the com-
posite scatterer shown in Figure 6.1 for the incident plane wave

Uinc(x) = exp(iκ0 d · x) , (6.1)

with direction of propagation d := (0, 0, 1)⊤.
The scatterer consists of two different materials. The first part of the scattering
obstacle is given by the ball B0.4(0) of radius r = 0.4, centered in 0 and halved
by the plane

E := {x = (x, y, z)⊤ ∈ R
3 : z = 0} .

The upper half of the ball in Figure 6.1, i.e.

Ω1 := B0.4(0) ∩ {x = (x, y, z)⊤ ∈ R
3 : z > 0} ,

is filled with a penetrable medium characterized by the wave number κ1 = 5.
The lower half of the ball, denoted by

Ω2 := B0.4(0) ∩ {x = (x, y, z)⊤ ∈ R
3 : z < 0} ,

is also penetrable and with wave number κ2 = 1. The exterior domain

Ω0 := R
3 \ B0.4(0)

has wave number κ0 = 2.

8 The meshes were generated with GMSH [16] and for visualization of the computed data
(see Fig. 6.1, 6.2, 6.3) we used ParaView [1]. All other plots were generated with MATLAB.
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6.0.2 Experiment II: Transmission Problem with Impenetrable Part

We solve the acoustic scattering problem with incident plane wave (6.1) toward
direction d = 1√

2
(0, 1, 1)⊤ hitting a ball-shaped scattering object B0.5(0) of

radius r = 0.5, centered at the origin. A picture of the geometry is given in Fig.
6.2. We impose homogeneous Dirichlet boundary conditions on ∂Ω•, where

Ω• := B0.5(0) ∩ {(x, y, z)
⊤ ∈ R

3 : z > 0} .

The other half of the ball,

Ω1 := B0.5(0) ∩ {(x, y, z)
⊤ ∈ R

3 : z < 0} ,

is penetrable and characterized by κ1 = 4. The exterior domain

Ω0 := R
3 \ B0.5(0)

has the wave number κ0 = 2.

6.0.3 Experiment III: Complex Transmission Problem with Impenetrable Part

The incident plane wave (6.1) in Experiment III is incoming toward direction
d = (0, 0, 1)⊤. The scatterer, which is depicted in Figure 6.3, consists of three
different materials. The first part of the scattering obstacle is given by the ball
B0.5(0), with

Ω• := B0.5(0) ∩ {(x, y, z)
⊤ ∈ R

3 : z > 0} ,

and

Ω1 := B0.5(0) ∩ {(x, y, z)
⊤ ∈ R

3 : z < 0} .

Ω• is impenetrable and characterized by homogeneous Dirichlet boundary con-
ditions on ∂Ω•, while Ω1 is a penetrable medium characterized by κ1 = 1. In
addition, we consider another medium given through κ2 = 4 in

Ω2 := Q \ B0.5(0) ,

where Q := {(x, y, z)⊤ ∈ R
3 : 0.7 < x < −0.7 , 0.7 < y < −0.7 , 0.7 < z <

0 }. The exterior domain

Ω0 := R
3 \ (B0.5(0) ∪ Q)

is penetrable with wave number κ0 = 2.
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Fig. 6.4: Convergence of the error of (diagonally rescaled) first- and second-

kind Galerkin discretization in L2- and H− 1

2 -norm for a sequence of meshes.

6.1 Convergence and Post-Processing

We consider a sequence of nested meshes {Tℓ}
H
ℓ=1 with H = 6. The correspond-

ing number of elements are {40, 160, 640, 2560, 10240, 40960} for Experi-
ment I, {44, 176, 704, 2816, 11264, 45056} for Experiment II, and {140, 560,
2240, 8960, 35840, 143360} for Experiment III. They are created by uniform
refinement and consist of flat, uniformly shape regular triangular elements.
The local mesh width is calculated as the maximal distance of the center of
mass to all points lying inside of the element. The global mesh width hℓ is given
by the maximum over all local mesh widths. In Figure 6.4, we show the con-
vergence of the discretization error in L2(Σ) and H− 1

2 (Σ)-norm, respectively,
with respect hℓ. As a reference solution we use the discrete solution calculated
with the second-kind formulation on the finest grid TH . The convergence rates
are as expected.

The term proj. Dirichlet second-kind denotes a post-processed version of
the Dirichlet data of the second-kind solution, obtained by projecting the com-
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puted data onto the space of continuous piecewise linear boundary elements
S1,0T (Σ) in the L2-sense (see Subsection 5.5).

The convergence plot in Figure 6.4 shows that the application of this cheap
post-processing technique improves the convergence rate and we observe re-
sults that are as good as the results of the classical first-kind approach.

6.2 Conditioning of Galerkin Matrices

In Figure 6.5 the Euclidean condition number of the Galerkin matrices is plot-
ted with respect to the inverse of the mesh width hℓ of the discretization. As
expected from the L2-stability of the characteristic basis used for our second-
kind Galerkin approximation, see Section 5.1, we observe condition numbers
for the Galerkin matrix that are almost independent of the mesh size, while
the condition numbers of the Galerkin matrices of the first-kind approach blow
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Fig. 6.5: Condition numbers of (diagonally rescaled) first- and second-kind
Galerkin matrices for a sequence of meshes.
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Fig. 6.6: Convergence of GMRES applied to (diagonally rescaled) first- and
second-kind Galerkin system.

up like O
(
hℓ

−2
)
(see Figure 6.5, compare with [33, Section 4.5 & Cor. 6.4.14]).

This behavior is directly reflected by the iteration count for the iterative solver
GMRES, as can be seen in Figure 6.6.

6.3 Spurious Resonances Due to Impenetrable Objects

We tested for spurious resonances by monitoring the condition numbers of the
Galerkin matrices while varying wave numbers. In the case of a single uniform
ball-shaped impenetrable scatterer Ω• := Br(0), we can explicitly compute
the wave numbers κ0 for which we will observe a spurious resonance (see also
Section 4). They correspond to the roots of derivatives of spherical Bessel
functions and the roots of the spherical Bessel functions, respectively, scaled
by 1

r
.

We take r = 0.5 and consider the range of wave numbers between 8.8 and
9.2. This range includes 8.986, which corresponds to 1

r
x, where x = 4.493 is the

first root of the spherical Bessel function j1 and the second root of the deriva-
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Fig. 6.7: Spurious resonances due to impenetrable objects: condition numbers
of the first- and second-kind Galerkin matrix for various wave numbers. In
the case of the geometry ball, the scatterer consists of the ball B0.5(0) and
is impenetrable, while in the case of the geometry ball+cuboid, which refers
to the geometry of Experiment III, we set κ0 = κ2 and assume that Ω1 is
impenetrable as well.

tive of the spherical Bessel function j0. Figure 6.7a shows the Euclidean con-
dition numbers of the Galerkin matrices. Since we are computing the Galerkin
matrices only on relatively coarse comprising 512 and 2240 elements, we ob-
serve a shift of the resonance due to approximation errors. Obviously, the
spurious resonances disappear when using a CFIE approach.

In addition to the simple ball-shaped scatterer B0.5(0), we also consider
the geometry shown in Figure 6.3, taking the cuboid as pseudo-interface, i.e.
setting κ2 = κ0, and defining Ω1 to be impenetrable, too. In this setting, in
accordance with the theory of [8], we get rid of the spurious resonances in the
case of the first-kind formulation. In the case of the second-kind formulation,
spurious resonances persist. However, the condition numbers for the first-kind
formulation with pseudo-interface increase drastically such that the use of
pseudo-interfaces for first-kind formulations does not pay off.

7 Conclusion

In this paper, we have extended the second-kind Galerkin boundary element
method proposed in [11] to partly impenetrable composite scatterers. We also
devised a combined-field approach meant to overcome spurious resonances
due to the impenetrable parts. Numerical experiments show that the new
method is superior to the widely used classical first-kind approach [36]: it
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produces Galerkin matrices that are intrinsically well-conditioned and allow
fast iterative solution without preconditioning. Its implementation can rely
on standard algorithms for singular integration, and its Galerkin solutions are
as accurate as those obtained with the first-kind approach when applying a
cheap post-processing technique. Throughout our tests, the new formulation
has demonstrated to be perfectly stable, though this property has eluded a
rigorous proof up to now.
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