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Abstract: Microlenses are highly attractive for optical applications

such as super resolution and photonic nanojets, but their design is more

demanding than the one of larger lenses because resonance effects play an

important role, which forces one to perform a full wave analysis. Although

mostly spherical microlenses were studied in the past, they may have

various shapes and their optimization is highly demanding, especially,

when the shape is described with many parameters. We first outline a

very powerful mathematical tool: shape optimization based on shape

gradient computations. This procedure may be applied with much less

numerical cost than traditional optimizers, especially when the number of

parameters describing the shape goes to infinity. In order to demonstrate the

concept, we optimize microlenses using shape optimization starting from

more or less reasonable elliptical and semi-circular shapes. We show that

strong increases of the performance of the lenses may be obtained for any

reasonable value of the refraction index.
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1. Introduction

It is well known that the classical diffraction limit of optical lenses restricts the resolution of

optical microscopes to approximately half of the wavelength. One way to increase the resolution

is to work within media (e.g., oil) with an index of refraction higher than the one of air, i.e., with

a wavelength smaller than the one of air. Since lenses always have an index of refraction higher

than the one of air, sufficiently thick lenses will have a focus point inside that is smaller than

half the wavelength in air. By tuning the index of refraction of a microlens of spherical shape

(3D) or of circular-cylinder shape (2D), one may move the focus on or close to the surface of

the lens. By doing this, one may overcome the diffraction limit in some sense. Ultramicroscopy

based on this concept has been proposed in [1].

When the focus of a microlens is on or near its surface, one may also observe a very much

elongated shape of the focus area, which is called nanojet. Nanojets have been shown both by

simulations and experiments [2].

The length of a nanojet may be strongly increased, for example, by considering layered

spheres [3]. It should be mentioned that these ultra-long nanojets have a waist of more than half

wavelength, but they have various promising applications as mentioned in [3].

The main advantage of studying microlenses of spherical or of circular-cylinder shape is

simplicity, i.e., only two parameters (radius and index of refraction of the lens) have to be

studied for an incident plane wave of a certain wavelength. Furthermore, Mie scattering theory

may be used for obtaining solutions with high accuracy. However, for engineering the shape of

the nanojet, more complex models with more tuning parameters are needed. Furthermore, it is

important to note that appropriate low-loss dielectrics for manufacturing microlenses are only

available with certain values of the index of refraction, i.e., this index should not be considered

as a parameter that may be optimized.

The standard way to tune the optical features of lenses is shape optimization. An obvious

geometry with still very few optimization parameters is a 2D lens of cylindrical shape with el-

liptical cross section [4] or a 3D lens with the shape of an ellipsoid. In [4], it was also shown that

lenses with another topology (e.g., toroidal) may cause nanojets that are located considerably

away from the surface.

By increasing the number of parameters describing the microlens, one can increase the search

space for finding nanojets with desired shape and one may hope for better solutions than what

has been found so far. This leads to very demanding optimization problems because the compu-

tation time of conventional numerical optimizers increases drastically with the number of pa-

rameters. In this paper, we demonstrate that this problem may be overcome by using advanced

mathematical techniques, so-called shape gradients [5]. We outline the concept of shape opti-

mization. Based on shape gradients, this allows us to start with a lens of arbitrary shape and

index of refraction and to deform it until a local optimum is reached. We can handle an unlim-

ited number of shape parameters and obtain various promising structures without high compu-

tational cost. However, it goes without saying that best results are achieved with a reasonable

initial guess.

In order to demonstrate the procedure, we consider a rather simple 2D test problem, starting

from elliptic semicircular lenses. We optimize thier shape in such a way that the field inside

a specified rectangular box is maximized. This procedure can easily be applied to lenses of

axisymmetric shape and for various optimization goals, for example, strong gradients of the

intensity near the nanojet, which is interesting, e.g., for optical trapping. Since we utilize a

standard finite element method (FEM), a full 3D particle shape could also be considered.



2. Model problem

Let DL be the cross section in the x-y-plane of a simply connected, homogeneous, non-

magnetic, cylindrical lens that is infinitely long in the z-direction and has a refractive index

nL. The lens is surrounded by non-magnetic material with refractive index nA = 1. It is illu-

minated by a plane wave Ein(x) := E in
z ez exp(ik · x), where ez denotes the unit vector in the

z-direction. The wave vector k of the incident field Ein lies in the x-y-plane; see Fig. 1.
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Fig. 1. A dielectric lens DL is illuminated by a plane wave Ein. The goal is to find the shape

of DL so that the focused light in DF is maximized.

Because of translation invariance of electric and magnetic fields in the z-direction, and tan-

gential continuity of the magnetic field on ∂DL, the z-component of the total electric field Ez

satisfies the partial differential equation (PDE) [6]

−∆Ez − k2(x)Ez = 0 in R
2, where k(x) :=

{

nL |k| in DL ,
|k| in R

2 \DL .
(1)

Additionally, the scattered field Es
z := Ez −E in

z exp(ik · x) satisfies the Sommerfeld radiation

condition [6]

lim
|x|→∞

√

|x|

(

∇Es
z (x) ·

x

|x|
− i |k|Es

z

)

= 0 . (2)

Approximations of Ez can be computed employing the finite element method [7]. Firstly, we

introduce a bounded domain Ω that encloses DL. Then we state the variational formulation of

Eq. (1) on Ω [7]. That is, Ez must satisfy

∫

Ω
∇Ez∇v− k2Ezvdx =

∫

∂Ω

∂Ez

∂n
vdS , for all v ∈ H1(Ω) , (3)

where H1(Ω) denotes the Sobolev space of square integrable functions with square integrable

weak derivatives [7]. Finally, we replace the right hand side of Eq. (3) by realizing the radiation

condition Eq. (2) via a perfectly matched layer (PML) [8].

We want to find the shape of the lens DL so that the focused light in the focus or nanojet

area DF is maximized. To model this target optical property, we introduce the shape functional

(energy content in DF)

J : DL 7→ J(DL) :=
∫

DF

|Ez|
2dx . (4)

Then, we say that the shape of the lens DL is optimal if it solves the following PDE-constrained

shape optimization problem

argmax
DL∈Uad(DL,0)

J(DL) subject to Eq. (1). (5)



To construct the set of admissible shapes Uad(DL,0), we collect all domains that can be ob-

tained by letting a diffeomorphism (a bijective continuously differentiable map with continu-

osly differentiable inverse) T act on an initial guess DL,0 for which Eq. (1) is well-defined. In

particular, we consider maps of the form TV(x) := x+V(x), where V is a vector field on R
2.

It is well known that TV is a diffeomorphism if ‖V‖C1(R2;R2) < 1 [9]. Note that all admissible

shapes share the same topology.

Since TV is a diffeomorphism, we can employ transformation techniques (change of vari-

ables) to replace the dependence of Eq. (5) on DL with a dependence on V. We obtain the

equivalent optimal control problem

argmax
V

J(V) := J(TV(DL,0)) subject to (6a)

−div(MV gradEz)− k2Ez detDTV = 0 in R
2 , (6b)

where the matrix MV is given by MV = (detDTV)DT−1
V DT−T

V , and DTV = I+DV, where I is

the identity matrix and DV is the Jacobian of V. With this approach, it is sufficient to construct

an initial grid on DL,0 to simulate any shape in Uad(DL,0), avoiding the need to generate a new

FEM mesh for every design.

3. Discretization and optimization

To discretize the control V we employ multivariate B-splines of degree 3 [10] generated on a

regular grid that covers DL and does not intersect DF; see Fig. 2. More precisely, we consider

vector fields that can be written as

VN(x) =
N

∑
i=1

(

c1
i

c2
i

)

Bi(x) , c1
i ,c

2
i ∈ R , (7)

where Bi denotes the scalar i-th multivariate B-spline of degree 3. A multivariate B-spline is the

tensor product of univariate B-splines, which are piecewise polynomials with compact support.

For example, the formula of a univariate cubic B-spline on the knot sequence (0,1,2,3,4] reads















x3/6 0 < x ≤ 1 ,
(−3x3 +12x2 −12x+4)/6 1 < x ≤ 2 ,
(3x3 −24x2 +60x−44)/6 2 < x ≤ 3 ,
(4− x)3/6 3 < x ≤ 4 .

This combination of features is excellent to access local sensitivity information and allows for

an efficient implementation.

To compute the approximate solution Eh
z of the state constraint Eq. (6b) we employ linear

Lagrangian finite elements on quasi-uniform triangular meshes [7].

Since both the control V and the state variable Ez belong to infinitely dimensional spaces, the

discrete counterpart of Eq. (6) is inherently a high dimensional optimization problem. To solve

it we employ a steepest descent direction algorithm.

The derivative in the direction W of the target functional J evaluated in V can be computed

following the standard differentiation techniques for PDE-constrained functionals [11]. By the

nature of the model problem under consideration it is meaningful to assume that the support of

the vector fields V and W does not intersect the region of interest DF. Then, the derivative of J

in the direction W reads [12]

dJ(V,W) := ℜ

{

∫

R2
∇Eh

z ∂WMV∇p̄h − k2Eh
z p̄h ∂W(detDTV)dx

}

, (8)



DL DF

Fig. 2. Left: Grid used to generate multivariate B-splines of degree 3. Right: Multivariate

B-splines of degree 3. Its support comprises 4×4 grid cells. The B-spline is polynomial in

each cell.

where

∂WMV := det(DTV)
(

tr(DT−1
V DW)DT−1

V DT−T
V

−DT−1
V (DT−T

V DWT +DWDT−1
V )DT−T

V

)

,

∂W(detDTV) := det(DTV)tr(DT−1
V DW) .

The scalar function ph is the finite element solution of the adjoint problem

{

−div(MV grad p̄)− k2 p̄detDTV = ĒzχDF
in R

2,
Sommerfeld radiation condition Eq. (2),

(9)

where χDF
denotes the characteristic function of DF.

Optimization is carried out iteratively by computing a descent direction V
update
N as the solution

of the linear variational problem

(V
update
N ,WN)H1 = dJ(VN ,WN) ∀WN as in Eq. (7) , (10)

where by (·, ·)H1 we denote the usual H1-inner product [7], and adding the update δV
update
N to

the map TVN
= I+VN . The optimization step length δ is computed according to [13].

An optimization step comprises the computation of the finite element solution of Eq. (6b) and

Eq. (9), and of the descent direction in Eq. (10). To compute uh and ph one needs to assemble a

(sparse) stiffness matrix (the same can be used for both) and to solve the related linear system.

The latter task can be performed efficiently exploiting sparsity, whilst the computational cost

of matrix assembly is directly proportional to the number of triangles of the mesh, and is only

slightly larger than the assembly of the stiffness matrix related to Eq. (1). To compute the

descent direction V
update
N it is necessary to evaluate dJ(V, ·) Eq. (8) for all basis vector fields

Bi(x)ex and Bi(x)ey. Although with a larger constant than the one for the matrix assembly,

its computational cost is directly proportional to the number of triangles of the mesh because

B-splines have compact support. A detailed explanation of an efficient implementation of the

algorithm in MATLAB is provided in [12].

Without Formula Eq. (8) at hand it would be virtually impossible to employ a steepest descent

direction algorithm. Approximations of the gradient dJ for 2N design parameters (see Eq. (7))

with finite differences would require at least 2N additional evaluations of the functional J (and

thus to solve Eq. (6b) 2N additional times), whereas Formula Eq. (8) requires only the solution

of Eq. (9). Note that 2N additional evaluations of J only lead to a first order approximation of



the gradient, which would be considerably less accurate than the proposed method. Finally, due

to the high number of design parameters, performing optimization with a genetic algorithm is

not computationally affordable because it would require too many evaluations of the functional

J.

4. Numerical experiments

We first start with an initial guess DL,0 that is an ellipse with semi-minor and semi-major axes

of length 4λ and 5λ , respectively. We illuminate DL,0 from the left as shown in Fig. 1 and

locate the region of interest DF, a rectangle of sides λ/2 and 2λ , on the backside of DL,0. The

boundary of the grid used to generate B-splines is a square of sidelength 11.2λ as in Fig. 3.

The mesh employed for finite element computations has 211313 nodes, 421184 triangles, and

width h = 0.083λ .

(a) (b)

(c) (d)

Fig. 3. First numerical experiment: Absolute value of Ez before (a) and after optimization

with 49 (b), 289 (c), and 729 (d) multivariate B-splines. The optimized shapes are thicker

in order to shift the focus close to the lens surface.

In the first numerical experiment we choose the refractive index n= 1.5. Before optimization,

the focus lies beyond the region of interest; see Fig. 3(a). We optimize the shape employing

72 = 49 (b), 172 = 289 (c), and 272 = 729 (d) multivariate B-splines. The target functional J

increases to 315%, 355%, and 359% of the initial value, respectively. Essentially, the optimized

shapes are thicker than the original ellipse. This obviously shifts the focus close to the lens

surface. The three retrieved shapes differ slightly, but this is a consequence of the optimization

problem being ill-posed [14]. In particular, we observe that the front of the lens evolves into a

more or less sinusoidal line, when sufficiently many B-splines are used.

In the second numerical experiment we choose the refractive index n = 2.7. In this case, the

initial shape is already almost optimal; see Fig. 4(a). As in the first numerical experiment, we



(a) (b)

(c) (d)

Fig. 4. Second numerical experiment: Absolute value of Ez before (a) and after (b,c,d)

optimization. We observe a high sensitivity of the field distribution.

optimize the shape employing 49 (b), 289 (c), and 729 (d) multivariate B-spline. Although the

difference between the optimized and the initial shapes are hardly visible, we observe a high

sensitivity of the field distribution. The target functional J increases to 162%, 203%, and 186%

of the initial value, respectively. The improvement employing 789 B-splines is slightly less than

the one for 289 B-splines. Again, this is a consequence of the ill-posedness of the optimization

problem: there are many local minima close to the optimum, and steepest descent methods are

not global minimizers [13].

In the third numerical experiment we choose the refractive index n = 3.5. Before optimiza-

tion, the focus lies inside the lens; see Fig. 5(a). As in the first numerical experiment, we

optimize the shape employing 49 (b), 289 (c), and 729 (d) multivariate B-spline. This time,

optimized shapes are thinner in order to shift the focus outside the lens. In this case, the high

sensitivity of the field distribution with respect to the shape boundary influences the improve-

ments of the target functional J, which increases to 451%, 461%, and 570% of the initial value,

respectively.

Finally, we perform a fourth numerical experiment to show that we can easily deal with non-

smooth shapes, too. The initial guess DL,0 is a half-circle of radius 2λ with refractive index

n = 2; see Fig. 5(e). The boundary of the grid used to generate B-splines is a square of side

5λ as in Fig. 5(e). The mesh employed for finite element computations has 211937 nodes,

422432 triangles, and width h = 0.0817λ . The optimized shape obtained employing 729 B-

splines is displayed in Fig. 5(f). The target functional J increases to 217% of the initial value.

Additionally, we observe that the retrieved shape reflects less. We repeat the experiment for

n = 1.5 and n = 3. The optimized shapes are displayed in Fig. 5 ((g),(h), respectively). The

target functional J increases to 183% and 482% of the initial value, respectively. For n = 1.5
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Fig. 5. Third numerical experiment: Absolute value of Ez before (a) and after (b,c,d) op-

timization. The optimized shapes are thinner in order to shift the focus outside the lens.

Fourth numerical experiment:Absolute value of Ez before (e) and after (f) optimization for

n= 2, and upper half of optimized and initial lens for n= 1.5 (g) and n= 3 (h). For the latter

case, we plot |Ez| along the x-axis before (red dotted line) and after (blue line) optimization

(i). We observe that the optimum is achieved by drastically increasing transmission.

the thickness of the lens in the region in front of DF is increased, whilst for n = 3 optimality

is achieved by corrugating the surface so that transmission increases (see Fig. 5(i)), i. e., the

optimization runs towards a mixture with a Fresnel-type lens.



5. Conclusion and outlook

We have outlined and applied shape optimization. In order to demonstrate the concept, nu-

merical models of microlenses with different indices of refraction, starting from elliptical and

semi-circular shapes, were optimized and various shapes were obtained. The goal of these op-

timizations was to maximize the energy in a rectangular output box behind the lens. It should

be pointed out that one may apply the procedure to problems with other optimization goals,

e.g., maximum intensity gradients in the output box, which would be interesting for optical

tweezers; other shapes of the output box; more than one output box; etc. Interestingly, the re-

flection of the microlenses was also reduced although this goal was not explicitly formulated.

The reason for this is that increasing reflection will decrease the light intensity in the output

box. For a proof of concept, only 2D lenses were considered, but the procedure can easily be

extended to more realistic axisymmetric lenses or even, with some bigger numerical effort, to

full three-dimensional lenses. Note that shape optimization is not limited to the optimization

of lenses. It could also be applied to various other applications, among which, for instance,

plasmonic antennas or optical tweezers.
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