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Abstract

We propose a family of preconditioners for linear systems of equations arising from a piecewise
polynomial symmetric Interior Penalty Discontinuous Galerkin (IP-DG) discretization of H(curl, Q)-
elliptic boundary value problems on conforming meshes. The design and analysis of the proposed
preconditioners relies on the auxiliary space method (ASM) employing an auxiliary space of H(curl, Q)-
conforming finite element functions together with a relaxation technique (local smoothing). On simplicial
meshes, the proposed preconditioner enjoys asymptotic optimality with respect to mesh refinement. It is
also robust with respect to jumps in the coefficients v and 3 in the second- and zeroth-order parts of the
operator, respectively, except when the problem changes from curl-dominated to reaction-dominated
and vice versa. On quadrilateral /hexahedral meshes some of the proposed ASM solvers may fail, since the
related H(curl, Q)-conforming finite element space does not provide a spectrally accurate discretization.
Extensive numerical experiments are included to verify the theory and assess the performance of the
preconditioners.

1 Introduction

This work was inspired by the development of discontinuous Galerkin (DG) methods for the magnetic
advection-diffusion equations of resistive magneto-hydrodynamics (MHD), see [57]. In each timestep of
a partly implicit time-stepping scheme we have to solve an H(curl, Q)-elliptic boundary value problem,
which, in abstract form, reads

{VX(VVXu)+5u:f in Q, an

uxn=20 on 0f).

Here 2 C R? is a bounded domain with Lipschitz boundary 99, f € L%(Q)3, and v(x) and B(x) are
possibly discontinuous coefficients, which are assumed to be positive and bounded functions in 2. They
represent properties of the medium or material: v is typically the inverse of the magnetic permeability and
B is proportional to the ratio of electrical conductivity and the time step. For the sake of simplicity, we
confine ourselves to domains 2 with trivial topology.

The boundary value problem (1.1) allows an H(curl, Q)-elliptic variational formulation, which reads:
find u € Hy(curl, Q) such that

a(u,v) == (vV x 1,V xv)yq+ (Bu,v)gq=(f,v)q Vv € Hy(curl, Q). (1.2)
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We have used the standard notations for the Hilbert spaces

H(curl, Q) := {v € L*(Q)3: V x v € L}(Q)%}
Hy(curl, Q) := {v € H(curl, Q) : n x v =0 on 0Q}

endowed with the graph norm
IVlEue = V5o + 1V x vI§q-

The assumptions v > 0, § > 0 in Q ensure existence and uniqueness of solutions of (1.2) (see e.g. [50,
Chapter 6]).

In MHD simulations the rationale for using DG is to cope with (locally) dominating transport. We are
not interested in the capability of DG to accommodate rather general meshes; the methods are considered
on standard conforming finite element meshes and this will be the setting of the present paper. We
acknowledge an extension of our approach to more general meshes is an open problem.

Our contribution. Based on the auziliary space method (ASM), explained in Section 3, we derive a
family of preconditioners for a symmetric Interior Penalty Discontinuous Galerkin (IP-DG) discretization
of (1.1) by means of piecewise polynomials on conforming meshes, see Section 2. Specifically, we address
the influence of possible discontinuities in the “diffusivity” v and/or in the “reaction coefficient” 3 on the
asymptotic performance of the preconditioners. Ideally, one aims at a robust approximation (and hence a
robust solver) to the problem that can properly handle the switch from relative large v (curl-dominated
regime) to relative large 8 (reaction-dominated regime). Throughout the paper,

we take the availability of a (direct) solver for any standard H(curl, 2)-conforming Galerkin
discretization of (1.2) for granted.

Under this assumption we aim to determine the precise dependence of the performance of the ASM pre-
conditioners on both the mesh width and the coefficients in Section 4. The main result is Theorem 4.1,
which asserts that, in a broad range of situations, the ASM approach provides a preconditioner that does
not degrade on fine meshes and in the presence of large jumps of the coefficients. The latter statement
has to be qualified, since a particular combination of discontinuities of v and /3 is not captured by our
estimates (yet?).

Related work for DG. Over the last fifteen years a considerable effort has been devoted to the devel-
opment of efficient and robust preconditioning techniques for discontinuous Galerkin (DG) discretizations.
Most analysis and especially convergence results have dealt with DG approximations of simple (mostly
second order) elliptic problems.

The first efforts were focused on the development and analysis of classical domain decomposition meth-
ods: overlapping Schwarz methods were studied in [51, 52, 28] for Interior Penalty (IP) DG approximations
of second and fourth order problems, whilst simple Schwarz methods with no overlap were introduced and
proved to be convergent (unlike to the conforming case) in [51, 2, 3] for all the DG methods considered
n [11]. The analysis in the works mentioned above uses an augmented version of classical Schwarz theory
in order to deal with the nonconformity of the finite element spaces. Simultaneously, first attempts to
design and analyze efficient multigrid solvers in [54, 29] followed the classical multigrid theories of [22] and
[21, 23], respectively. Nowadays, there is still active research in these directions trying to harness classical
theories. In particular, Schwarz preconditioners [6, 19, 27, 5, 38] and multigrid methods [25, 24, 74, 41, 7]
have been investigated for newly introduced DG discretizations and for hp-DG approximations of elliptic
problems.

Furthermore, more sophisticated non-overlapping domain decomposition preconditioners of substruc-
turing type have been recently studied for DG for elliptic second order problems in two dimensions. In
[46, 47, 48, 4] non-overlapping BDDC, N-N, FETI-DP and substructuring methods have been introduced
and analyzed for a Nitsche-type approximation. BDDC preconditioners are also studied in [26] for a weakly
penalized IP method; for the p-version of a hybrid DG method in [82]; and in [37] for hp-IP-DG spectral
methods. While different approaches have been considered in the analysis, all the above works provide
quasi-optimality results (with respect to the mesh size and in [37, 4] also with respect to the polynomial



degree) and robustness of the preconditioners with respect to possible high variations or jumps in the
diffusion coefficient.

The evolution of domain decomposition and multigrid preconditioners has been paralleled by the design
and analysis of other subspace correction methods (for two and three dimensional problems), erected on
the construction of suitable splittings of DG finite element spaces. At least two main approaches, based on
different principles, have been pursued: the use of a suitable subspace and the construction of orthogonal
splittings. Optimal multilevel preconditioners based on an orthogonal space decomposition of the DG
space, were introduced in [17] for symmetric and non-symmetric piecewise linear IP approximations of
elliptic problems. This technique has been adapted and extended to deal with a larger family of problems
including elliptic problems with jumping coefficients [15], linear elasticity [14] and convection dominated
problems corresponding to drift-diffusion models for the transport of species [16].

A different direction was followed in [42] and [33, 34], where the authors introduced two-level and multi-
level preconditioners, respectively, for the Interior Penalty (IP) DG methods. There is a close relationship
with our work, because the conceptual foundation behind both works (although in the first is not explicitly
mentioned) is the Fictitious Space Lemma and the ASM, with an auxiliary finite element space (piece-
wise constants and conforming linear finite elements, respectively) in which preconditioning techniques are
available. The ASM has been further exploited recently in [13] to construct optimal preconditioners for
a family of H(div, Q)-DG discretizations of the Stokes problem, and in [32] to develop optimal multilevel
preconditioners for spectral DG discretizations (see also [37] where these results are used for designing a
BDDC preconditioner). In particular, the analysis in [13] requires a suitable extension of the Fictitious
Space Lemma.

There is also a relatively big body of work on DG discretizations for boundary values problems like
(1.1). Different varieties of DG for different extended and regularized versions of (1.1) have been presented
in, among others, [35, 36, 65, 79]. By and large it seems that numerical analysis has entirely focused
on a priori and a posteriori error estimate and no attention has been paid to the design and analysis of
preconditioners. Apparently, the present paper is the first study to address this.

Work on preconditioners for conforming finite element methods. Subspace correction pre-
conditioners in the context of conforming Galerkin finite element discretizations of H(curl, Q)-elliptic
variational problems are well established both in the form of multigrid [58, 60, 12, 64] and domain de-
composition methods [61, 84]. The authors prove uniform performance with respect to mesh refinement,
but their analyses do not take into account discontinuities in the coefficients. However, in [58] numerical
evidence hints that multigrid methods in H(curl, Q) are affected by jumping coefficients in a similar way
as their scalar counterparts.

For conforming and nonconforming discretizations of scalar second order elliptic problems, the design
preconditioning strategies, that can be proven to be robust with respect to the jumps in the diffusion
coefficient has received a lot of attention. However, in presence of two different coefficients (i.e. a reaction-
diffusion problem or one resulting upon time discretization of a parabolic model), the asymptotic conver-
gence of multilevel solvers for conforming discretizations has only been recently addressed in [73]. The
authors show that robustness can only be achieved when one of the two coefficients is constant, or if both
coefficients have the same pattern distribution.

Much less progress has been made in the context of H(curl, 2)-elliptic problems with two variable
coefficients. In spite of the relevance of the problem, the bulk of contributions is largely restricted to
conforming finite element approximations of the two dimensional problem. Non-overlapping domain de-
composition methods of substructuring type are studied in [88, 43|, Neumann-Neumann methods in [83],
and FETI and FETI-DP in [80] and [86], respectively. Besides the work in [43], where the authors used
non standard coarse spaces based on energy minimization, all other mentioned works reflect a dependence
on the coefficients in the asymptotic convergence that predicts deterioration of the preconditioner in the
reaction-dominated regime.

For the three dimensional H(curl, Q)-elliptic problem with two variable coefficients, there are even less
works. This is certainly related to the significant challenges that emerge in the three dimensional continuous
problem but it is also due to the much intricate construction of the finite element discretizations. FETI-
DP algorithms for conforming approximations were introduced in [85] and the analysis reveals explicit



dependence on the ratio between the reaction and the curl coefficients, as appeared in all first works for
the two dimensional case. Other significant contributions are contained in [68, 69], where the authors
further extended the research from [71, 70]. In [68] a novel mortar method for H(curl, 2)-conforming finite
element discretizations is introduced and analyzed. A weighted (with respect to the reaction coefficient)
Helmholtz decomposition is derived in [69] and applied to the analysis of the substructuring preconditioner
introduced in [71] applied to the problem with variable coefficients. The assumptions on the distribution of
the coefficients seems however quite restrictive, ruling out many cases of interest. More recently in [44], the
authors have devised a non-overlapping BDDC algorithm able to improve the dependence on the quotient
H/h between the coarse and fine meshes by saving two logarithmic factors. Nevertheless, their analysis
still reflects the same dependence on the coefficients as in [85].

Remark. The asymptotic analysis and estimates derived in the remainder of this work, require to
introduce constants. With a small abuse of notation, by C' we will denote a generic positive constant
whose value may vary among different occurrences, but, unless otherwise specified, will be independent of
the mesh width and the coeflicients of the problem and may only depend on the polynomial degree, the
shape regularity and the connectivity of the mesh partition.

2 Interior Penalty discontinuous Galerkin discretization: abstract set-
ting

This section is devoted to the derivation of a symmetric Interior Penalty discontinuous Galerkin discretiza-
tion of the model problem (1.1). First, we fix the basic notation and introduce assumptions on the mesh
partition of the domain together with the finite element spaces of interest for the method. Then the
discretization approach is presented and its basic properties discussed.

2.1 Mesh Partition and Jump operators

Let 75, be a shape regular partition of the computational domain € into disjoint tetrahedra (d- simplices
with d = 3) or axis-parallel hexahedral elements such that Q = Upe7, T. Moreover, the partition 7y, is
assumed to be conforming, locally quasi-uniform, and affine. Let hp denote the diameter of T' € Tj; we
set h := maxre7;, hr to represent the mesh width of 7;. The local mesh sizes are of bounded variation,
that is, there exists a constant p > 0 depending only on the shape regularity of the mesh, such that every
neighboring elements 7' and 1" satisfy phr < hpr < p~'hp.

An interior face f = 977 N 073 is the intersection of the boundary of two neighboring elements T, Ty €
Th, while a boundary face f = 9T N I is given by the intersection of the boundary with a boundary
element T € T. Each interior face is equipped with an intrinsic orientation and the boundary faces are
by convention assumed to be oriented such that the normal vector points inward. Each interior face is
equipped with an intrinsic orientation and the boundary faces are by convention assumed to be oriented
such that the normal vector points inward. We denote by Fj, the set of all faces of the partition ((d—1)-
dimensional cells of the partition), and by F; and ]:,? the collection of all interior and boundary faces,
respectively. Trivially, Fj, = Fy U ]-}? . Similarly, &, will refer to the set of all edges of the skeleton of Ty,
((d—2)-dimensional cells of the partition), and by £ and &7 we denote the collection of all interior and
boundary edges, respectively.

In order to define the trace operators (see e.g. [79, Section 3]), let f € F} be an interior face shared by
two elements T and T~ and let n™ and n~ denote the unit normal vectors on f pointing outwards from
T and T, respectively. For a piecewise smooth vector-valued function v, we denote by v* the traces of
v taken from within 7F. We define the average and tangential jumps across f € Fy by

vi4+v™ N

{v} = [v]r:=n

><v+—|—n7><vf,

and on a boundary face f € F?, we set {v} :==v and [v], :=nx v.



Throughout the paper we will use the following sets of mesh cells:

T(e)={TeT,:ecdl}, ET):={ec&,: ecdT},
F(T):={feFy: fedl}, Fle)={feFn: ecof}.

2.2 Finite Element Spaces and local representation

We introduce the (family of) finite element spaces
Vh={vel?Q?: ve M(T), T €Ty}, (2.1)

where M(T') is a local space of vector-valued polynomials which, for a fixed degree k, satisfy M(T) C
P,(T)3 if T is a simplex or M(T) C Q(T)3 if T is an hexahedron. The corresponding Hp(curl, Q2)-
conforming finite element spaces are

Vi = VpNHp(curl, Q) = {v € Hy(curl, Q) : ve M(T), T € Tp}.

Throughout the paper, the local space M(T') will be defined as one of the following:
1. Nédélec elements of the second family on simplicial meshes: Full polynomial space

M(T) = NI(T) :=Pp(T)3,  k>1. (2.2)
2. Nédélec elements of the first family on simplicial meshes: For an integer k > 0, we define
M(T) = NI(T) :=Py(T)* & (x x Hg(T)*), k>0, (2.3)

where H*(T') denotes the space of homogeneous polynomials of degree k.
3. Nédélec elements of the first family on cubical meshes [76]: The polynomial space:

M(T) = NqI(T) = Qrk+1,k4+1(T) X Qrat o1 (T) X Qrg1 k41,:(T), k>0, (2.4)

where Qg »(T') is the local space of polynomials of degree at most ¢, m,n in each vector component. For
hexahedral and cubical meshes our analysis is restricted to local spaces of Nédélec elements of the first
family. However, a thoughtful discussion on the possible use of other local elements and the failure of the
corresponding theory is provided in Remark 4.18 and in the numerical experiments in Section 6.

For each of the above spaces, the local degrees of freedom (dofs) are the normalized moments on edges,
faces and elements (see [75, Definition 5.30] and [20, Sections 2.3.2 and 2.4.4] for details). An important
property of the spaces M(T) is that they (and their dofs) are invariant under the action of a covariant
transform in case of affine mappings. In fact, the construction, implementation and analysis of the proposed
preconditioners heavily relies on the use of the local spaces M(T') together with the corresponding choice
of degrees of freedom. In particular, denoting by ver = {v;T}f\fl, Vi = {U?T}iv:fl and vp = {v%}ZN:bl
the moments of v € M(T') (corresponding to the particular choice of M(T)), the following representation
holds,

Z Z%T%T Z Z’UfTSDfT +ZUT<PT , VxeT (2.5)

ec&(T) 1= feFr(T)

where {4,0;T}fvze1, {gp’J'c’T}i: and {cpT} = refer to the basis functions of M(T) (dual to the degrees of
freedom relative to M(T')). Note that even if the degrees of freedom are on the edges and faces of the
mesh, they are confined to a single element therefore no continuity across the mesh cells has to be imposed.

Finally we remark that for the design and analysis of the solvers it is sometimes essential to characterize
the kernel of the curl operator in V§i for each choice of M(T), see Section 4.6. Since the domain € is
assumed to be homotopically equivalent to a ball, the kernels are given by gradients of standard scalar
Lagrangian finite element functions.



2.3 Symmetric Interior Penalty method

We propose a discretization of the problem (1.1) along the lines of [65] based on the symmetric Interior
Penalty discontinuous Galerkin (SIP-DG) method introduced in [8, 89, 18] (see also [11, Section 3.4]) for
second order problems. To deal with the discontinuous coefficients of the problem and provide a robust
approximation method, we modify the classical SIP-DG method, similarly to [45, Section 4], where a
particular choice of weighted averages of the discontinuous coefficients at the mesh interfaces is introduced.
More precisely, we consider the discrete variational formulation: find u, € Vy, such that

apc(up,v) = (f,v)7, Vv € Vy, (2.6)

where

(£.v)7 = > (f.v)or,

TeT,

and the bilinear form apg(+,-) is defined as

apa(w,v) =Y (rV xu,Vxvior+ > (Bru,vier — > vV xu}, , [v]r)os

TeT TeTh fEF (2 7)
=S (ule v x v s+ > ar) N (selule  [vIeoys- '
fEF TeTy, e€&(T) feF(e)

Here v € Po(T) and pr € Po(T") are the restriction of the coefficients v and 3 to the element T' € T;,. We
assume that the partition 7y, resolves the coefficients: v, 5 € Py(7p).

In (2.7), the function s; penalizes the tangential jumps over the (d—1)-cells of the skeleton of the
partition. Every face jump is weighted with the sum of certain coefficients a(v) belonging to the elements
T sharing an edge of the given face. In particular, s; is defined as [8, 56, 79]

Sfi= coh]?1 VfeF, (2.8)

where ¢y > 0 is a strictly positive constant independent of the mesh size and the coefficients of the problem
and depending only on the shape regularity constant of 7;,. The function h; is defined as

min {hp+, hp-} feFe, f=0TtNoT,

hyp =
hr fer?, f=0TnoQ.

The coefficient function (ar(v))reT, € Po(7h) is a piecewise constant function defined elementwise by

Tm%x v fer,
or(v):= max vl with  {v)., = A . (2.9)
vr € ‘7:h .

Observe that in view of the above definition, the coefficient ar(v) is taking the maximum conductivity
coefficient v over a patch of elements surrounding 7. Moreover, in (2.7), the weighted average {-}, is
defined as the plain trace for a boundary face, whereas for f € F},

ful, =qjuf +ayu” with Ay =1-97,

for weights 'y]jf that depend on the coefficient v and might vary over all interior faces. More precisely, for
any f € FP with f =0T+ NIT~, we take 7;[ as follows:

V:':
’}/f = m where 14

+ .
= V|Ti .



The use of the weighted average {-}. together with {-}, ; and the definition of the coefficient ar(v) is
aimed at ensuring the robustness of the approximation (2.6) as well as of the preconditioners introduced
in the present paper, with respect to variations of the coefficients.

In our analysis we will use the harmonic average of the coefficient v across a face f defined as

vty o n _
———  fEeF, [=0TTNIT,
(hy, =18 vitv (2.10)
vr fer?, f=0Tnoq.

Notice that min{v™,v™} < {v}y ; < 2min{r™,v7} and hence, in particular, {v}, ; < 2v%. Moreover,
it satisfies the following relation with respect to the coefficient in (2.9)

iy < b,  ViER. (211)
We finally observe that
vV xvh ={vy  {Vxv} VeV, VfeF. (2.12)

Note that when the variational formulation (2.6) is restricted to V7§, the corresponding Hy(curl, 2)-
conforming discretization of (1.1) is obtained.
On Vj, we introduce the seminorms

IV xVI5,7 = > vrlVxv[§r VveVy, (2.13)

TeT,

V= Y art) Y Y aIvldE, Yve Vi
TeTh eGS (T) feF(e)
and norms

Vg7 == D Brlvigr  VveEVn, (2.14)

TeT
Ivllba == IV xvIg,7 + VIG5 +[VIF,  VveVy. (2.15)

2.4 Convergence of the approximation

We now briefly show that the bilinear form apg(-,-) defined in (2.7) is continuous and coercive in Vy
with respect to the ||-||pg norm (2.15) with constants independent of the mesh size h and the coefficients
of the problem. Note that, as it will be clear from the proof, the stability constant depends also on the
stabilization parameter ¢ in (2.8) which therefore has to be chosen large enough in order to ensure stability
of the bilinear form apg(+,-) in the ||-||pg norm.

Proposition 2.1. Let the bilinear form apg(-,-) be defined as in (2.7). Then, there exist constants
Cleont, Cstap > 0 depending only on the shape regularity of the mesh and on the polynomial degree such
that

lapa(u,v)| < Ceontllullpellvlipe » Vu,v € Vy, (2.16)
aDG(V,V) > CstabHVHQDGa VveVy. (217)

Proof. We first show the coercivity (2.17). Taking u = v € Vy, in (2.7), results in

2 ) /{{VVXV}} [v]-ds|. (2.18)

fEFN

apG(v,v) = +IVIE g7 + colvlZ, —




Cauchy-Schwarz inequality and the arithmetic-geometric inequality together with the relation (2.12) and
the bound (2.11) on the harmonic average, give
1/2
2
0?f>

: C({{Vhﬁ

'/f{{VVXV}},Y~[[V]]TdS 7\|g,f>1/2({{y}} i v,

(2.12)

A S [ O W N

(2.11)

< Oy IV <V + b b VIR (219)

Now, let f = 9T+ NOT~. The trace inequality [1, Theorem 3.10] and the inverse inequality [40, Theorem
3.2.6] together with the fact that {v}, , < 2vps yield

(b b IV < VI < Cps IV X VIG s+ v [V X VG5 p-) s

where C depends on the shape regularity and the local polynomial space. Moreover, by the definition (2.9)
it holds

S hsllloy<C Y ar@) FSCY ar(v) ZHHmZaT > >

fEF TeT, FEF(T) TeTy, fef TETy, e€&(T) feF(e)\F(T)

Hence, summing (2.19) over all the faces yields

S [V vl [vhas < AV <Vl 4 Y ar) 3 Y At v

fEFn TeTh ec&(T) feF(e)

Plugging the above estimate into (2.18), results in

*,V"

C
2 2
a6 (v¥) 2 (1= 260) |9 x VIR + Vs + (0 5 ) v
By taking the constant penalty parameter ¢ sufficiently large, coercivity (2.17) is achieved with a constant
Cstap depending only on the shape regularity of 7, and the polynomial degree of Vy,.

Concerning the continuity (2.16), Cauchy-Schwarz inequality gives

Z/I/TVXU VXv+pru-v

T€Th
> ar) >N / ol Tl - [v]| < Clulsuivles < O g ¥l
TET ec&(T) feF(e

A similar reasoning as in (2.19) (but without using arithmetic-geometric inequality) gives

> {vV xu}-[vl,

FEF

< ClIV xullop,7, [V,

and continuity (2.16) follows from the definition (2.15) of the ||-||pg norm. O

For solutions of problem (1.1) sufficiently regular, quasi-optimal error estimates in the DG-norm (2.15)
for the discretization introduced in (2.6) can be derived. Since the a priori error analysis of the DG
approximation (2.6) is out of the scope of the present work, we refer the interested reader to [65, 55, 56]
and references therein.

A naive application of an iterative solver (e.g. the conjugate gradient method) for the solution of
the linear system ensuing from the discretization (2.6) would be undermined by the dimension of the



system and by the problem coefficients. Indeed the spectral condition number x of the Galerkin matrix A
associated with the discrete bilinear form (2.7) is proportional to a factor h=27 (v, 3, ar) where

maxp ar (V) L2 maxr By
ming vy miny Br

J v, B,ar) =

Hence, designing a preconditioner able to harness the combined effect of the mesh width and of highly
varying coefficients is of crucial importance.

3 Auxiliary space preconditioning

In this section we present the key ideas of the abstract framework for preconditioning approaches based
on fictitious or auxiliary spaces. In particular, since in the applications we have in mind, the fictitious
space method is applied to finite element spaces, we will focus on finite dimensional real Hilbert spaces.
The design and analysis of the proposed preconditioning technique relies on the theory of the fictitious
space method. For this reason, following the guidelines given in [63], we provide the main steps required to
apply this theory to our particular problem. Then we introduce a family of preconditioners for the IP-DG
discretization of problem (1.1) presented in Section 2.3.

3.1 Fictitious space and auxiliary space method

The auxiliary space method was introduced as a technique to develop and analyze optimal (in terms of
independence on the dimension of the system) multilevel preconditioners for elliptic discretizations on
general unstructured meshes in [91] and for nonconforming methods in [78]. It can be interpreted as
a further generalization of the fictitious space approach, based on the so-called fictitious space Lemma
originally introduced by Nepomnyaschikh in [77]. Let us use the symbols ' and * to label dual spaces and
adjoint operators respectively. Two main ingredients are required in the construction of a fictitious space
preconditioner for the operator A : Vi, — V| associated with the inner product a(-,-) and the induced
norm ||-||4 on Vy:

(1) Another real (and discrete or finite dimensional) Hilbert space V, the fictitious space, endowed with
the inner product a(-, -), induced operator A :V — V' and norm Nl =

(2) A continuous, linear and surjective transfer operator IT : V — Vy, (the so-called prolongation operator
in domain decomposition and multigrid methods).

Then, the fictitious space preconditioner B : Vi, — Vy, is defined as
Bi=ToA 'oII". (3.1)

Obviously, the convergence properties of B depend on the auxiliary space V and on A. Note that the fact
that IT is surjective, ensures that B is an isomorphism, and in particular a valid preconditioner (see [63,
Lemma 2.1]). The analysis of the fictitious space preconditioner is grounded on the fictitious space Lemma,
which we recall next without proof.

Theorem 3.1. [77, Lemma 2.2]. Assume that
(i) 11 is surjective and bounded, i.e. 3C1 >0 : HHVHi < ||V||2Z Vv e V;
(i) VeV, IveV: v=Iv and 3Co>0: |v|5<Collv|’.

Then
Cot IV < a(BAv,v) < Oy |[v[% Vv € Vi
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In the present work, the space Vy, is as in (2.1) and it is endowed with the inner product apg(:,-)
given in (2.7), with induced operator A : Vi, — V} . The coercivity and symmetry of the bilinear form
apG(+,-) shown in Proposition 2.1, ensure that the operator A is self-adjoint and positive definite. Its
matrix representation, in the basis associated with the degrees of freedom (see the representation (2.5) in
Section 2) will be denoted by A and provides a symmetric positive definite matrix. The fictitious space
Theorem 3.1 provides an estimate on the spectral condition number of the preconditioned system matrix,
namely

k(BA) < CoCh,

where B denotes the matrix representation of the preconditioner (3.1).

In the auxiliary space method, the fictitious space is chosen as a product space having Vy, as one of
its components. As observed in [91], such choice eases the construction of a surjective map II, and as a
consequence facilitates the analysis. In the simplest case, the fictitious space is given by V = Vi, x W,
where W represents the true auziliary space, endowed with a symmetric positive definite bilinear form
a,,(+,-) and induced operator A,, : W — W'. As component of the fictitious space, the space Vy, is
equipped with another inner product s(-,-) which induces an operator S : Vi, — V}. The operator S is
typically referred to as smoother. This approach can be thought of as the fictitious space technique with
the inner product

(v, ¥) = s(vo,vo) +a,, (W, w) Vv =(vo,w), Vo € Vp, weW,

Q|

and the auxiliary space preconditioner operator is given by
-1 -1
B=8""+1,,0A ol (3.2)

where the linear transfer operator II,,, : W — Vy, yields the surjective map

Id —
II .= : VY — Vp.
II

w

Here, the adjoint operator 1I5 : Vi, — W is defined by
ay, (I, v, w) = a(v,IL,, w) veVy weW.

If S € RV*N with N := dimVy and Ay € RYWXNw - Ny .= dim)V, then the preconditioner (3.2) in
algebraic form reads
B =S""+PA,'P’ (3.3)

where P € RV*Nw s the matrix representation of the transfer operator IL,, .

As pointed out before, the analysis of the auxiliary space preconditioner hinges on the fictitious space
Theorem 3.1. Its assumptions boil down to fulfilling the conditions of the following theorem (see [63,
Section 2| and [62, Lemma 2.1]).

Theorem 3.2. With the notation and definitions introduced above, assume that the following conditions
are satisfied.

Property (F0): The transfer operator IL,,, is uniformly bounded, i.e. 3¢,, > 0 independent of h and the
parameters of the problem, and depending on the mesh only through its shape reqularity constant such that

apc(IL,, w,II,w) < ¢, a,, (w,w), VweW. (3.4)

Property (F1): The operator S~! is continuous, namely there exists cs > 0, independent of h and the
parameters of the problem, and depending only on the shape reqularity of the mesh such that

aDG(V¢V) < CSS(V,V) ) Vv E Vp.
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Property (F2): (Stable decomposition) For every v € Vy, there exist w € W and vy € Vy, such that
v =vo +1I,,,w and there exists Cg > 0 independent of v, such that

inf  {s(vo,vo) + a,,(w,w)} < C¢apa(v,v), Vv=vo+IL,w.
VoEVRH,WEW
v=v0+HWw

Then, a direct application of the fictitious space Theorem 3.1 yields k(BA) < Cg(cs +c,)-

3.2 Auxiliary space preconditioners for the IP-DG discretization in Hy(curl, 2)

In the present work, we consider the DG space V}, defined in (2.1) with local spaces M(T') as described
in Section 2. Concerning the auxiliary space, the following choices are adopted:

(a) Let W be the finite element space W = Vy, N Hy(curl, 2), i.e.
W:= Vi ={w € Ho(curLQ) : wir e M(T), T € Tp}, (3.5)

for any choice of the local space M(T') as in (2.2), (2.3) or (2.4), and endowed with the bilinear form
a,,, (-, -) deriving from the Hy(curl, ©2)-conforming finite element approximation of the model problem
(1.1). That is,

a,, (x,w) = Z (rrV xx,V xwW)or + Z (Brx, W)o,r Vx,w € V§.
TeTs TeTs

Note that, as observed in Section 2, a,,, (-, -) is nothing but the restriction of the bilinear form apg(-, -)
in (2.7) to the Ho(curl, 2)-conforming finite element space V§, namely

a,,(u,v) =apc(u,v), Vu,v e Vy.

The associated operator A, : V§ — (V§)' is self-adjoint and positive definite. The transfer operator
IL,, : V§ — Vy, is trivially the standard inclusion.

(b) On a simplicial mesh, if Vy, is the DG space (2.1) with local space M(T) = N'(T) as in (2.2), we
consider a second choice for the auxiliary space. Let W be the Hy(curl, 2)-conforming finite element
space based on local polynomial spaces of type N'(T) as in (2.3), i.e.

W = WE = {w € Hy(curl, Q) : w|p e N(T), T e T;,}. (3.6)

Note that W{ C Vi C Vn. The space Wy is endowed with the inner product a,,(-,-) corre-
sponding to the Hg(curl, Q)-conforming approximation based on Wf,. Hence, the corresponding
induced operator Ay : Wi — (W§)' is self-adjoint and positive definite, and the transfer operator
IL,, : Wi — Vy, is defined as the standard inclusion.

Observe that condition (FO0) in Theorem 3.2 is trivially satisfied for both the above choices since the
transfer operator II,,, is the standard inclusion. Furthermore, in both cases YW = Vi or W = W¢, the
constant in (3.4) is ¢,, = 1 in view of the fact that a,, (-, -) is the restriction of apg (-, -) to the corresponding
H(curl, Q)-conforming spaces. Therefore, inequality (3.4) becomes an identity.

3.3 Smoothers for the auxiliary space preconditioner

To assess the performance of the proposed family of preconditioners, the choices of the auxiliary space
described in Section 3.2 are combined with different possible smoothing operators S : Vi, — V. We
now briefly introduce our choice of relaxation techniques (non-overlapping and overlapping) as subspace
correction (SC) methods [90], and postpone to Section 4.2 their theoretical analysis. We focus on two main
types: pointwise relaxation and patch smoothers.
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Pointwise relaxation or non-overlapping SC: Since the Galerkin matrix A associated with the DG dis-
cretization of the model problem (2.6) is symmetric positive definite, we focus on Jacobi-type smoothers.
Indeed, by virtue of [92, Lemma 3.3], the pointwise symmetric Gauss-Seidel smoother is spectrally equiv-
alent to the corresponding Jacobi smoother, with constants independent of the problem coefficients and
mesh size.

Our smoother are defined as non-overlapping additive Schwarz smoothers based on the following split-
tings of Vy:

(i) Pointwise Jacobi smoother:

Ne . Nf . Ny .
Ve @ (¥ Yowanlelad ¢ ¥ Ssanleha) + wanleh) )i G0

TET, ~e€&(T) i=1 fEF(T) i=1
(ii) Block Jacobi smoother:

Ne N N,
Vi = @ span{api’T, e P @},T’ .. ,cpfyfT, 7 o’} (3.8)
TeT,

In Lemma 4.4 we will show that the (non-overlapping) block Jacobi smoother associated with (3.8) is
spectrally equivalent to the pointwise Jacobi relaxation relative to the splitting (3.7).

Patch smoothers or overlapping SC methods: When the auxiliary space W is “coarser” than V¢, i.e., is
of type (b) as in Section 3.2, a local relaxation will not be effective (see Remark 3.3 and the numerical
experiments in Section 5) and one needs to resort to patch smoothers. For their description and analysis
one can rely on overlapping additive Schwarz methods [49] or on the subspace correction method [90]. We
consider the decomposition of V}, as a sum of spaces supported in small patches of elements. In particular,
let NV}, denote the set of all vertices of the mesh 7;, and let y be either a vertex in NV}, an edge in &}, or an
element of the mesh 7;,. We denote generically by €, the patch related to y, i.e.

Q={TeTy: “ycT"}, yeEN,UELUT,

where the precise definition of the relation “y C T is specified below in (3.9), (3.10) and (3.11) for each
case. The corresponding subspace associated with each patch is defined as

Vi ={veVy:supp(v) CQ}, yeENUEUT,.

We therefore have the following (overlapping) space decompositions:

Vi= Y Vp%, Q, ={T eT:xecdl}, (3.9)

CEENh
Vi= Y Vi, Qe={TeTp:ecCdT}=:Tle), (3.10)

e€e€y
Vi= > Vi, Qpr ={T" €Ty, : dT' N AT € &,}. (3.11)

=N

Observe that
oc |J 2% aeclo ac ] ar (3.12)
zeN}, ecéy TETh

Moreover, since Vy, is a space of piecewise discontinuous polynomials, there are no continuity constraints
imposed in the above space splittings.
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In order to define the additive overlapping Schwarz (or additive subspace correction method) associated
with a given domain decomposition €, as in (3.9), (3.10) or (3.11), we first consider the restriction of the
IP-DG method (2.6) to the subspace V%, namely the bilinear form in (2.7) becomes:

ant(v,v) = Y (| VxVIB 4 BrlvIEr) -2 > (frV x vl [vInos

= FEFPNN\I0,
+ Y arw) Y Y (v IvInos = Do Avhgymxv,Vxv)ey
= c€&(T) feF(e)\0%y, FEFINOQ, (3.13)
+ Z ar(v) Z Z (sfnx Vv ,nxvV)y Vve Vi,
TeQy, e€&(T) fFEF(e)NOy
TN #0

The above bilinear form defines the local solvers for 2, N0Q = (). For those patches touching the boundary
of Q, the fourth term in the above sum is modified having vy instead of {v} .- Denoting now by Jy the
cardinality of the patches required to cover the domain, the additive Schwarz smoother is defined as

Jy Jy
so(v,v) = Z agé(vj, vj) with v = Zvj . v €V, (3.14)
j=1 j=1

Remark 3.3. As we will show in Lemma 4.19 and observe numerically, the use of a block oriented
smoother in the preconditioner B is only essential when the auxiliary space W is coarser than V§; i.e., is
of the type (b). The requirement of using overlapping block-type smoothers in two-level and multi-level
preconditioners for the finite element approximation of (1.1) has been observed (and illustrated numerically)
in the literature by many authors and for different approaches [61, 60, 12]. The basic rigorous mathematical
justification that a pointwise smoother in a two level preconditioner will not provide a convergent method,
is given in [92] where a lower bound of order 1—ch? on the convergence rate of such two level preconditioner
is derived. More precisely, in [92, Section 4] the author provides an explicit construction of a function that
cannot be seen by the coarse solver and cannot be damped by a pointwise relaxation. Here, as we will show
in Lemma 4.19, the use of a pointwise smoother would break the edge bubbles (not seen by the auxiliary
space) leading to a component with arbitrary high energy, that cannot be damped.

4 Asymptotic optimality of preconditioner

This section is devoted to the analysis of the preconditioners introduced in Section 3.2 and Section 3.3. We
first state and discuss the main results. Then some basic auxiliary estimates required in the convergence
analysis are introduced. Finally, we prove conditions (F1) and (F2) of Theorem 3.2.

Theorem 4.1. Let B be the auziliary space preconditioner as defined in (3.3) and associated with one
of the following:
(1) Auziliary space W = Vi as in (3.5) and Jacobi smoother relative to the splitting of Vi, (3.7) or (3.8);
(1t) Auziliary space W = W§ as in (3.6) and overlapping patch smoother as in (3.14) and (3.13).
Then,
K(BA) < 2 (1+cs) = cq (14 cs) max{1,5(v, B)},

where )
h ar(v
0(v, B) := min { max TBT, max BT, max r(v) ) (4.1)
TET, vr = T,T'eT, Pr Te,Ten, ap(v)
OTNOT'#0 ATNAT'#0

where A, denotes the set of elements in the curl-dominated regime and A} denote the elements in a
reaction-dominated region (according to definition (4.37)). The constants cs, ¢ depend only on the
polynomial degree and on the shape regularity of the mesh.
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The proof of the above Theorem relies on the application of the fictitious space Theorem 3.1 and therefore
boils down to the verification of conditions (F0), (F1) and (F2) in Theorem 3.2. As pointed out in the
description of the preconditioners in Section 3.2, condition (FO0) is trivially satisfied in all cases, as it
can be plainly seen from the definition of a,, (-,-) and due to the fact that II,, is the standard inclusion.
Therefore, we are left with showing Properties (F1) and (F2).

4.1 Auxiliary results: Local estimates

In the analysis of the preconditioners some basic local estimates will be instrumental. These results are
therefore collected in the next Lemma whose proof relies on standard arguments and the equivalence of
all norms in finite dimensional spaces and it is therefore relegated to Appendix A. We refer the interested
reader to [59, Lemma 3.12], [75, Lemma 5.43] and references therein.

Lemma 4.2. Let T € Ty be an arbitrary element and let T be the corresponding reference element (unit
tetrahedron, or unit cube) under an invertible affine map Fr(X) = BrX+cp. Let v e M(T) be represented
as in (2.5) and let v denote the function defined through a contravariant transformation, v = BTTV o Fp.
Then, there exists C' > 0 depending only on the polynomial degree and the shape regularity of the mesh,
such that the following inequalities hold:

S S —1
VI3 < Cher|¥]l 91l 7 < Chy'IIvIG.r (4.2)

2/\
07 °

IV x VI3 7 < Chy! |V x 9] IV x 91 7 < Chrl|V x VIR 7, (4.3)

2 o~
0,7’
and for f € T image of the reference face fe OT under Fr,

/\nxv|2ds§C/Jﬁ><ﬂ2d§, /A|ﬁx§\2d§§0/]nxv\2ds. (4.4)
f f f f
Moreover, there exist C1, Co, C3 > 0 such that
S oo - 2 2 2 N
CUV x VI35 SCANVIE 7 < D Iverlle + D Iverlle + Ivrlle < CsIVIE 7 (4.5)
e€&(T) feF(T)

where ||-||,2 denotes the standard Euclidean norm. Finally, there exist Cy, Cs > 0 such that

04/A|ﬁ xV2dg < Y lverlp + Iverlf < 05/A|ﬁ x V| ds, (4.6)
/ ec€(f) !
where E(f) denotes the set of edges of f.
Note that, as shown in [59, Equation (3.37)], the affine equivalence techniques deployed in the previous

Lemma 4.2 allow to establish the L?-stability of the local basis functions of V. As immediate consequence
of Lemma 4.2, we can derive the following:

Lemma 4.3. Let f = 0T~ NOT be an interior face. There exist C1, Co > 0 depending only on the
polynomial degree and the shape regularity of the mesh such that for all v € Vi,

2 2
CI/H[V]]T\QCZS <lvprs =vpr-lle+ 2 [vers = Ver-l < C?/ vl-Fds. (47
/ ces(f) /
Proof. Let v € M(T™) denote the restrictions of v € Vy, to TF. By definition of tangential jump and
normal unit vector, one has [v ] =nTxvt4+n~xv™ =nt x (v —v7). Then, the function w = (v —v ™)

has degrees of freedom given by {v} B v;} - }fifl and {v’ ., — 0! o }Ne, for every e € £(f). Using a
contravariant transformation, as in Lemma 4.2, we can apply (4.6) to get the desired equivalence on the
reference element

~ ~ ~ 2 2 ~ ~ ~
Ca /Alm+ x WS < [Vpze =vir- [+ D0 [Vers = ver-[[e < Gs /Arl+ x Wl ds.
! c€s(f) d
Applying estimate (4.4) from Lemma 4.2 and substituting n* x w = [ v ], results in (4.7). O
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4.2 Smoothers

In this section we deal with the analysis of the smoothers introduced in Section 3.3. In particular, for
each smoother, this involves not only proving that property (F1) is fulfilled (and therefore the smoothing
operator has continuous and uniformly bounded inverse), but also determining how the operator S scales in
relation with the identity operator. The corresponding result for the pointwise relaxation methods defined
in (4.9) and (4.10) is given in the next Lemma.

Lemma 4.4. Let s(+,-) denote any of the bilinear forms associated with the pointwise Jacobi or block-Jacobi
smoothers as defined in the splittings of Vi, in (3.7) and (3.8), respectively. Then, there exists cs > 0
independent of the mesh size and the coefficients of the problems but depending on the local polynomial
space and on the shape regularity of the mesh such that

c;tapa(v,v) < s(v,v) VveVy.
Moreover, s(-,-) satisfies
s(v,v) <C Y vrhPIvIEr + Y Briviss + Y arhEIvIEr . YV E Vi, (4.8)
TeTh TeTh TeTh

with C' > 0 depending on the local polynomial space and on the shape regularity of the mesh.

Proof. To define the bilinear form s(-, -) relative to Jacobi smoother associated with the space splitting (3. 7)
we make use of the representation (2.5) of functions in Vy, where each basis function {cpe e e fT}Z 1

o :” is now considered as a global basis function on 2 extended by zero outside of its support. The
TJi=1
pointwise Jacobi relaxation reads:

Z Z ZaDG (peT7SOeT)( eT)

TeTh ec&(
ressm) = (4.9)
+>> Zanc O P W) + Y ZaDG o 9) (V)2
TET, feF(T) i= TeT, i=1
whilst the block Jacobi operator, using as blocks the elements T € 7;, of the mesh, has bilinear form
syp(v,v) = Z Z Z ZaDG SOeTa(pe’T) eTU’T
TETh ec&(T) e/ €&(T) i=1
(4.10)

DD DY ZaDG Ol P )0l Y ZaDG o, i) (vF).

TeTy, feF(T) f'€F(T) i=1 TeTy, i=1

As it will be clear from the proof, it is enough to focus on the lowest order case, namely for local degrees
of freedom given by {v¢ T}ﬁvz"'l for T € Ty, e € E(T) with N, < 2. The general case (as given in (4.9)
and (4.10)) can be shown by arguing exactly in the same way for the terms involving faces and elements
degrees of freedom.

First we prove continuity of the pointwise smoother. Using the representation (2.5), Cauchy-Schwarz
inequality and the arithmetic-geometric inequality yield

apg(v,v) Z Z Z Z ZaDG %Ta(Pe/T')eTU'T'

TeTh ecE(T) T'€Th, €€E(T)i=
T NOT#D

Z Z Z Z Z\/aDG %T’%T)\/aDG(%/ 5 P ) e eTU’T’

TeTh ecE(T) T'eTh, € €E(T7)i=1
OT'NOT#D
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1
<35 Z Z Z Z Z apc (k1 o) (er)? + apc (Ol @l ) (Vo 1)?)
TETh ec&( e'e&(T") i=

T'€Th,
6T’08T;£(Z)
=C Z Z ZaDG eor Phr) Vi)’ = Csy(v,v),
TeT) ecE(T) i=

where the constant C' depends on the shape regularity of 7. In order to prove (4.8), note that the
continuity and stability of the bilinear form apg(-,-) hold for each of the basis functions (considered as
global functions). In particular, for all i = 1,..., N, we have

CstabHSOfa,T”]ZDG < aDG(wé,T#Pé,ﬂ < CCOH‘DH‘P;T”QDG ;

and therefore aD(;(gp;T, <p;T) ~C ||¢27T||]23G where the constant C' depends on the stability and continuity
constants of apg(+,-). Moreover, exploiting (4.2) and the inequalities (4.3) and (4.4), together with (4.5)
and (4.6) from Lemma 4.2, results in the following standard inverse inequalities

< Chy ||802,TH3,T ,

T H(ple,TH%),Tv

where shape regularity has been used. Hence, recalling the definition of the |||/ norm (2.15), it holds

3D

TeTy ecE(T) i=1

+Z@T Z Z Zh Ver) HHX%THOf

||806 T||0 T)

T€ETh eES(T) feF(eNF(T
<C Z Z Z Ve.r) VTh 2HS%THOT‘f'ﬂTH%THOT)
TETh ec&(T) i=
+ > ar(v) ZZ ver)? Y. hylhr
TET), ec&(T) i=1 feF(e)nF(T)
<O vrh?VI3z+ Y Brlvide + D ar@)hzIvIdy .
TeTh TeTs T€Th

with C' > 0 depending on the mesh 7 through its shape-regularity. For the block Jacobi smoother sj; in
(4.10), using the short-hand notation v; := v|z,, Cauchy-Schwarz inequality gives

apg(v,v) = aD(;< Z Vi, Z vj> < Z Z apg(vi, vi)y/apa(vy, vj)

T:€Th T;€Tn, T:€Th  T;€Th,

oT;NOT} #0 OT;NOT;#0
1
<3 Yo D (anc(vi,vi) + anc (v, v4)) < C Y apa(vi,vi) = Cspp(v,v).
T;€Tn  T5€Th, T;€Th
3T¢I"I§Tj7§®

Moreover, the non-overlapping block Jacobi smoother enjoys the same spectral scaling of the pointwise
Jacobi relaxation. Indeed,

syp(v,v) Z Z Z ZaDG SDeT,SDe/T)eTU/T

TETh ecE(T) e!€E(T) i=1

Z Z Z Z \/aDG gOe T"pe T)\/aDG((pe’ T’QDe’T) eTU T

TeTh ecE(T) e'€&(T) =1
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ﬂM
‘”’M

Ne
Z Z apa 906 TaSDeT)( )2 + aDG(‘PZe/,Tv‘Pé/,T)(Ué/,T)Z)
g =1

\IM

Z ZaDG s plr) (Vi) = Cs (v, v),
e€&(T) i=

and therefore, (4.8) follows also for s (-, -). O

We now study the continuity and spectral properties of the patch smoothers defined through (3.14) and
(3.13). In order to deal with all of them at once, we use a more compact notation and denote generically by:
Q; = Q, the patch related to y with y € N, U &, U Tp; by V4, the corresponding subspace associated with
the patch ; (see (3.9), (3.10) and (3.11)); and by a{DG(-, )= a%é( -) the local solver defined in (3.13).
Let J be the number of patches required to cover € (which will be different for the different splittings),
then we write Vi, = Zle V{l. From the shape regularity assumption and by construction, for each of the
domain decompositions, the patches (or subdomains) €2; are of comparable size. Moreover, all the domain
decompositions (3.12) have the finite covering property: that is for every x € €2, there is a finite number of
patches containing x, say N(x). We define N. = maxycq N(x) which is a finite (and moderate) number
depending on the connectivity of the mesh. Denoting by A; : Vi — (V{,)’ the local operator associated
with a{DG(‘, -) and by Z; : V{l — Vp, the natural embedding, the additive Schwarz smoothing operator
reads S = E‘j]:le o A;l oZ;.

The next Lemma establishes the property (F1) in Theorem 3.2 and provides the scaling of the smoother
so(+,+) in (3.14).

Lemma 4.5. Let Vy, = Z}]:1 V{l be a space splitting with subspaces V{l as in (3.9), (3.10) or (3.11), and
let so(+,-) be the corresponding (overlapping) additive Schwarz method given in (3.14). Then, for every
v € Vy, there exists cs > 0 depending on the local polynomial space, the shape regularity, the connectivity

of the mesh and the amount of overlapping N. in the subdomain partition, such that for any choice of
{vi}/_y for which v = 31_, v;, it holds

apg(v,v) < csso(v,v). (4.11)
Moreover, so(-,+) satisfies
J
so(v,v) 22( vV xvilep+Brlviler+ D ar) > > h vl
j=1 \TeQ, TeQ, e€E(T) fEF(e)\0Q;
(4.12)
EY ) XS vl ).
TeQ; ec&(T) feF(e)No;

BTﬂaQﬁé@

Proof. Note that (4.11) states that in the decomposition v = ijl v;, the energy of the parts bounds the
energy of the function in V. To measure the overlap of the domain splitting we introduce the constants

1 if QN #0
Cjk = i 0 7 jk=1,... . J
0 ifQNQ =0

Cauchy-Schwarz inequality, the arithmetic-geometric inequality and the fact that c;p = c; for all j, k =
., J, gives
9 9y

J J J J
apG(v,v) = aDG<ZVj,ZVk> = > crapc(vy, vi) < Y \/CjkaDG(Vjan)\/ijaDG(Vk7Vk)

j=1 k=1 jk=1 Gik=1
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1 J J

=3 Z (cjrapa(vy, vi) + crjapa (Vi, Vi) < Z cikapa(vi, vj)
],kzl 7,k=1
J J )
= Z apg(vj, vj) (Z%’k) < NCZ aha(vj,vj) = esso(v,v),
j=1 k=1 j=1

where ¢, = max;<;j< {8k : Q; N Qg # 0}. The proof of (4.12) reduces to use the continuity and coercivity
of af)(+,-) on the subspace Vi, for every j =1,...,J. O

4.3 Averaging operator

Typically, in the auxiliary space framework, the proof of the stable decomposition property (F2) relies
on the construction of an operator Py, : Vi, — Vi, N H(curl, Q) satisfying appropriate approximation and
stability properties. We construct such averaging operator, following the ideas given in [65, 72]. In fact,
our construction and approximation results could be regarded as a generalization of the result contained in
[65, Appendix]. The main novelty here, is that the operator we introduce takes into account the presence of
coefficients in the model problem (1.1) and is shown to provide robust approximation with respect to large
variation of the coefficients. Therefore, we believe that the construction and approximation results are of
independent interest, and for this reason, we present the construction of the operator and its approximation
results without restricting to low order methods. It is worth stressing that the result in [65, Appendix] has
been already used in the different contexts related to the DG approximation of the time harmonic Maxwell
problem; in the analysis of spectral approximation [36] (see also [35] for the numerical verification of the
results) and in different works related to a posteriori error estimates [66, 67].

To ease the notation, we set x := P (v) and, since x € Vi, NH(curl, 2), we can write x| in the basis
of M(T) for all T € T;,. More precisely we have the following representation:

Ne Ny
Z ZXi@iT + Z ZXf‘PfT )+ZX%@§“(X) vxeT. (4.13)
i=1

ec&(T) =1 feF(T) i=1

Hence, in order to define x, it is enough to specify the coefficients x, = {x:}1*,, Xf = {X}}f[:f , and
X1 = {XZTHV:bl in terms of those of v and ensure at the same time the H(curl, Q)-conformity of the global

function. In order to do that, we define two sets of weights associated with faces and edges of the mesh.
More precisely, let f € F? be an interior face such that f = 9T N9T~. We define:

VUp+ Vp—
w = —— and w _i=1l-w = .
f7T+ /VT+ + /VT_ fvT f7T+ /VT+ + /VT_

Note that, since trivially (a + b)? > a® + b? for a,b > 0, we have

2I/Tin2:7T; < {{V}JLH,]‘ < {V}}*J < ap+ (V) , Q- (1/)’

with {-}, ; and ar(v) defined as in (2.9) and { -}, ; as in (2.10). In order to define the weights on the
edges of the mesh, let e € £ be an interior edge and let 7 (e) be the set of elements sharing the edge e (as
defined in Section 2.1). Note that the cardinality of the set 7 (e) is bounded by a finite constant depending
on the shape regularity and the connectivity of the mesh 7}, uniformly with respect to h. Let v; := v|7;,
we define

(4.14)

_ V7
We, T, ‘= Z \/Z VT, € T(e) . (4.15)
T;€T (e)

We now have all ingredients to construct the averaging projection operator Pj,.

Definition 4.6. Let P}, : Vi, — V§ be such that x = Pp(v), for any v € Vy, is given by (4.13) with
degrees of freedom x, = {Xi}]lvzel, Xf= {X}}]lvzfl and xp = {XlT}iV:bl defined as:
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(i) For every T € Ty, the coefficients x associated with volume degrees of freedom are set equal to those
of v A A
Yo =vh  Vi=1,...,Np. (4.16)

(ii) The coefficients x 7 associated with face moments are defined, for all ¢ =1,..., Ny as

WitV Fwpr-vype  fEFR, f=0TTNOT,

Xf = (4.17)
0 fer?,
where the weights wyp+, wyp- are as in (4.14).
iii) The coefficients x. associated with edge moments are defined, for all ¢ = 1,..., N, as the convex
e
combination
' > wevTZUé,Tg ec€&?, ecC Iy,
Xe = TeeTle) (4.18)

0 ec &,
with weights {we 7, }¢ defined in (4.15).

Observe that the definition of Py, is completely general with respect to the distribution of the coefficient
v which is only required to be piecewise constant on Ty for every h. Note also that if v =1 in (2, then the
averaging operator above coincides with the projection operator proposed in [65, Appendix]|. The following
result provides the approximation properties of P, in the local v-weighted L?-norm.

Lemma 4.7. Let v € Vy, and let Pp, : Vi, — V§, be the averaging operator introduced in Definition 4.6.
Then, there exists a constant C' > 0 depending only on the polynomial degree and the shape regularity of
the mesh such that

vrllv =Pa(v)I§r < Car(v) ) hfll I-lgs +Car(v) Y- > mllvIellig,, — (4.19)
fer (Tt ec€(T) feF(e\F(T)

ar(@)|[v = Pu()§r < Coar(v Z th I-ll3 s + Car(v) ) Z hylllvielg, - (4.20)
fe}‘ ec&(T) feF(e)\F(T)

Before giving the proof of the above estimates, we present a stability result of the averaging operator
Py, in the B-weighted L?-norm defined in (2.14).

Corollary 4.8. Let v € Vy, and let Py : Vi, — Vi, be the averaging operator as in Definition 4.6. Then,
there exists C' > 0 depending only on the polynomial degree and the shape regularity of the mesh such that

IV = Pu()lIg 6.7, < Cmax{1,6(v, )} vlHe (4.21)

where O(v, ) is defined as

O(v,B) = min{ max hQTﬂT, max br } : (4.22)
TeT, vr = TT'cT, B
OTNOT#0
Proof. The proof boils down to showing the following estimates:
5T
IV =Pu)ll5 57 <C Y W Yo > ar@ivs (4.23)
TETh eGS (T) feF(e)

Br
IV =P 5s7 <C D Brivlier+ Y B =B vIIg 1 - (4.24)

TeTh T.1TeTh, T

OTNOT#0
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To prove (4.23), we exploit the v-weighted L2-estimate (4.19) by multiplying and dividing by vr the
elementwise S-weighted norms, namely

Br
Z Brllv —Pr(v ||0T = Z *VTHV — Pulv )HOT
TeT TeT),
(4.19)

oy S S awmlivg,

TeTh ee€ ) feF(e)

<02h2&” 5SS armm VIR,

TeTy, ee£ (T) feF(e)

In order to show (4.24), we use the estimate (4.20) with ar(v) = 1 for all T' € T}, and trace [1] and inverse
inequalities [39, p. 146] to get

zﬂTuv—mv)uaT<ozﬁT( Z Vg + Y hf\uvﬂfuaf)

TeTh TeT), feF(T ec&(T) feF(e)\F(T)
T
<cy BTHvHOTw >y 5.5 VI3 -
TET, TET, T'eTi \{T}
OTNAT #0

Taking into account the definition of the DG-norm (2.15), one can combine estimates (4.23) and (4.24) to
obtain (4.21). O

Proof of Lemma 4.7. In view of the definition of the norms (2.13) and (2.14), we consider the L? approx-
imation error at the element level. First, let T' € Tp be an arbitrary element that does not intersect the
boundary 0f2. To estimate the difference v —Pj(v) we use the representations (2.5) and (4.13). The bound
(4.2) together with the norm equivalence (4.5) gives

2
vr|lv = Pra(v)[§ 7 < ChT( o ve|vir—xglla+ DY vrllver - Xe||§2> : (4.25)
feF(T) ec&(T)

We estimate each of the contributions on the right hand side above separately. Let f € F(T") be an interior
face such that f = 9T' N T with T,T" € 7T;,. From the definition of the averaging operator and the
corresponding face degrees of freedom (4.17), together with the norm equivalence (4.7) from Lemma 4.3,
we have

(4.17)

2 2 (4.14)
vr |vir = xglle =" vr | = wpr)vpr —wprvi |

= vrwpr)? |vir = vir|p

(47)
Car(v v .,.st, 4.26
< Cor(v) /f v (4.26)

<vrlvir = virlp

since the face weights satisfy w7 < 1 and v < ar(v) for all T' € T}, Concerning the degrees of freedom
on the edges, using the definition in (4.18) results in

Y vrlver —xell<C D >~ vrlwen)? IVer = Ver |7 - (4.27)
ec&(T) e€&(T) TyeT (e)
To£T

To estimate the above term, we introduce a numbering (ordering) of the elements in the set 7 (e) for a
fixed e € £(T), such that T (e) = U?/IZEO T; with M, := |T (e)| — 1. The ordering is such that Ty := T and

dToNoTy € F(Tp), and 0TpN Ty, € F(Tp),
oTyNoT; E(Ty), but ITyN oT; & F(Tp) Vi=2,...,M,—1, (4.28)
oT; ﬂaTj_HEJT( )ﬂ]:( J+1> Vi=2,...,M.,—1.
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Using such numbering, by summing and subtracting suitable degrees of freedom and applying triangle
inequality (see [72, Lemma 2.2] for a similar trick), results in

Z VT (w€7Te)2 ||V€7To - Ve,TeH; < v (w67T1)2 HVE,TO — Vel H?2

TeT (e)
Te#To Me—1

+ Z vr (we,r,) 2 Z HVeT VG:TJ’HHEQ

2
+ (We,TMe HVG,TO — Ve, T, || p2

Notice that trivially vy (wer,)? , vy (we,ry,, )? < {vhn ;< {vh., with f € F(Tp) while for the interme-
diate sum above (taking into account the definition in (2.9)), one has

viy(wer,)” < fvh g with f =0T, NOTj11 j=0,....0—1, £=2,...M,—1.

Hence, the above estimates together with the norm equivalence (4.7) from Lemma 4.3 and the fact that ¢
is uniformly bounded (¢ < M,) yield

Y vnwer) IVer, = verlp <C Y Y b IvI-IG,

T,€T (e) T,€T (e) fEF (e)NF(Tk)
Te#To Te#To (429)
<C{vhs D IvI-lloy-
JFE€F(e)

Hence, substituting (4.29) into (4.27) for all elements that do not intersect the domain boundary 92 and
taking into account the definition (2.9) yields

Yo ovrlver —xelz < Car(w) Y- Y IIvI-IG (4.30)

ec&(T) ec&(T)feF(e)

where C' only depends on the shape regularity and connectivity of the mesh. For elements T € T} touching
the boundary 9T NI # () the same type of estimates can be obtained by exploiting the fact that, in view
of the boundary conditions, the degrees of freedom x;p and x.p are set to zero on the boundary faces
and on the boundary edges, respectively (see (4.17) and (4.18)). In particular, analogously to (4.25), it
holds

uTuv—P(v>||3,T<chT( S vzt Y erlverls

FCOTNON eCOTNON

+ 3 vrllvir—xsln+ Y vrlver — xll

feF(T) e€&(T)
FZo0 eZ o0

) . (4.31)

The last two contributions are estimated as in (4.26) and (4.30) respectively. The first two terms can be
bounded by arguing similarly, but using equivalence (4.6) together with (4.4), namely

VT( S vl Y Hve,TH?z)SM 3 (\vf,Trr§2+ T Hve,TH?z)

FCOTNOR cCOTNON FCOTNOR ecE(f)
<c Y aT(V)/|n><v|2ds, (4.32)
FCOTNON f

and one can conclude by using the fact that the “jump” on the boundary 952 reduces to the plain tangential
trace. Therefore, substituting into (4.25) and (4.31) the local contributions from the interior faces (4.26),
from the interior edges (4.30) and from the boundary (4.32), yields (4.19).
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In order to obtain (4.20), we proceed analogously as above using ar(v) in lieu of vp. The contribution
from the edges can be estimated (using the fact that w.r < 1 for all e € £(T")) as

> oW (wen)? Ve, = verllp < Cagy(v) Y IvI-IEy, (4.33)
T,€T (e) feF(e)
Ty #To

and substituting (4.33) into (4.27) results in

YooarWlver —xllz<C Y Y arW)IvI-lE,, (4.34)

ec&(T) e€&(T) fEF(e)

where C' only depends on the shape regularity and connectivity of the mesh. The degrees of freedom on
the faces can be evaluated as in (4.26) with ar(v) instead of vy. Hence, the result follows by substituting
into (4.25) and (4.31), the bounds (4.26), (4.34) and the boundary term (4.32). O

4.4 Stable decomposition

By means of the approximation properties of the averaging operator derived in Section 4.3, we establish a
first stability result for the splitting associated with the case (a) in Section 3.2, paying particular attention
to the distribution of the coefficients v and £.

Proposition 4.9. Let T}, be shape reqular and local quasi-uniform. Let Vi, be defined as in (2.1) and let
Vi = Vn N Hy(curl, Q) be the corresponding H(curl, Q)-conforming finite element space. Let s(-,-) be any
of the pointwise smoothers defined in (4.9) and (4.10). Then, for any v € Vy, there exist vo € Vy and
x € Vi, such that v = vy + x and

s(vo,vo) +a,, (X, x) < 0(2) max{1,0(v, )} apa(v,v), (4.35)

where 9(v, 3) is defined as in (4.22) and the constant ¢3 > 0 depends only the polynomial degree and on
the shape reqularity of the mesh.

Proof. Let v € Vi, and Py, be the averaging operator introduced in Definition 4.6. Since by construction,
Pr(v) € Vi, for all v € Vi, we take vo = v — Py(v) € V. Then, the scaling of the smoother (4.8) given
in Lemma 4.4, together with the approximation estimates (4.20) and (4.21) and the fact that v < ar(v)
for any T € T}, gives

s(vo,vo) S C Y hlvr|v = PuM)lgz + Iv = Pallg 57, + Y hrtar@)v = Pu(v)llgx

TET, T€Th
<C Y ar) SN BV + COw.B)IVIDe
TETh 665 (T) feF(e)

To conclude we need to consider a,,, (Pr(v), Py(v)). Since
w (Pu(v), Pn(v)) < ay, (v, V) + ay, (v = Pr(v), v = Pa(v)),

the stability proof reduces to bound the weighted H(curl, Q)-norm of the difference v — Pp(v) (using the
continuity of a,, (-,-) in that norm). Hence, a standard application of inverse inequality together with
(4.20) and (4.21), yields

ay, (Vv = Pr(v),v = Pp(v)) < IV x (v = Pav))I50.7, + IV = Pat)IIG 5.7,
<C > arw) Y. D hIvIAIG + COw B IvIDe -

TETh, eeS( ) fEF(e)

Collecting the above two estimates results in (4.35). Since the choice of v was arbitrary this concludes the
proof. O
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Remark 4.10. The results derived in Proposition 4.9 entail that:

e If the problem is curl-dominated in the whole domain (i.e. vp > Brh% for all T € Tp), (4.35)
guarantees that the auxiliary space preconditioner is uniformly convergent and robust with respect
to jumps in the coefficients § and v. In this case one could replace the solution operator in the
auxiliary space A,,, by the domain decomposition preconditioner proposed in [44], getting an optimal
solver.

e If the reaction coefficient /5 is assumed to be of bounded variation, (4.35) ensures the uniform con-
vergence of the auxiliary space preconditioner and the robustness with respect to possible jumps
in the coefficient v. This could be seen as in agreement with the results available in the literature
for auxiliary space type preconditioners for discretizations of second order problems with only one
jumping coefficient [37, 32].

e If the problem is reaction-dominated in the whole domain and 5 is allowed to have high variations in
different regions, an application of Proposition 4.9 would predict a convergence affected significantly
by the size of the largest ratio h%(r/vr and the largest jump on the reaction coefficient 3. How-
ever, such prediction might be pessimistic and would not endorse the results obtained in the actual
computations, as we shall see in the numerical experiments (see Section 5). Also, if the problem
is reaction-dominated in the whole domain, one might expect that the auxiliary space solver is not
required in the preconditioner (3.3). In fact, as we will show in the subsequent Proposition 4.14 and
in the numerical experiments, by suitably turning off the auxiliary space solver in the preconditioner
its convergence will not be jeopardized by the largest ratio h2 707/vr or by the largest jump on the
reaction coeflicient.

4.5 Localized results

To efficiently address the most general case in which the local quotient hQTBT /vr can be larger than one in
some parts of the domain but smaller than one in some others; that is when the problem is curl-dominated
in some regions and reaction-dominated in others, we introduce another averaging operator Py, : Vi, — Vi
which allows to turn off the auxiliary space correction in the reaction-dominated regime, and to further
localize the error estimates. Its definition is given in terms of the operator P}, (introduced in Definition 4.6)
by setting it to zero in selected regions.

Definition 4.11. Let P;, : Vi, — Vy N Hp(curl, ) and let X := Pp(v) be defined through the local
representation (analogue of (4.13)),

Z ZXG%T Z ZXfCPfT +ZXT<,0T vxeT.

c€&(T) i=1 feF(T

The degrees of freedom of ’x are equal to the degrees of freedom of x := Pp,(v) (introduced in Definition 4.6)
or are set to zero according to the following criteria:

(i) if T' € Ty, the coefficients associated with volume degrees of freedom, for all i = 1,..., N} are:

0 lf h%BT 2 aT<V) s

Xi;p otherwise.

Xy =

(ii) if f € F7 such that f = 9T TNOT~ the coefficients associated with face moments, for alli = 1,..., Ny
are:

T = 0 if 13 Br+ > aps (v) or hy Bp- > ap-(v),

X;‘ otherwise.

On boundary faces f € .7-",‘? we set Xy = X -
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(ili) if e € &7, the coefficients associated with edge moments, for all i = 1,..., N, are:

Yi - 0 if 377 S T(@) : h%/BT’ > OéT/(I/) ,
‘ XL otherwise.

On boundary edges e € 8,‘3 we set X, = Xe-

First, we introduce some notations and establish some preliminary results on the approximation error
given by P, which will be instrumental for the subsequent analysis on the stability of the decomposition.
In particular, let 7' € Ty, be fixed and such that h%8r < ar(v). We define the following sets (see Figure 4.1
for an example in a 2D schematic representation where an element is depicted as a triangle, a face is
identified with an edge and an edge with a vertex):

FI(T):={feFT): f=0TNJT" and T’ € T;, with h2, S > ap (v)},
E(T):={e€ &T): IT" € T(e) such that h2 B > ap(v)}, (4.36)
T(T) :={T' € T(e) fore € E(T) : T N AT’ = e and h% By > ap:(v)}.

We will establish local bounds of the L?-norm of the averaging projection error given by Pj, depending on

the ratio of ap(v) belonging to elements 7' € T, at the interface between a curl-dominated region and a
subdomain in a reaction-dominated regime. For this reason we need to introduce the sets of elements:

pe=A{T €Ty : h4Br < ar(v)}, L= {T €Ty : h3Br > ar(v)}. (4.37)

Figure 4.1: 2D sketch of the sets defined in (4.36).
The elements in the white region belong to Ay, while
the elements in gray (T} and T%) are contained in A},
For the element T (in the white region): F'(T)={f'},

&' (T)={e1, e, €3}, T'(T)={T1}.

With this notation in mind, localized approximation estimates for the operator P; can be derived. The
proofs of the following Lemmas are relegated to Appendix B and Appendix C. We refer to Figure 4.2 and
Figure 4.3 for a 2D sketch of the mesh configurations covered in Lemma 4.12 and Lemma 4.13, respectively.

Lemma 4.12. Let v € Vy, and let Pp, : Vi, — V4§ be the projection operator in Definition 4.11. Let
T € Ay, be fized (i.e., T € Ty, is such that W38y < ar(v)). Assume that the set F'(T) # 0 is non-empty.
In particular, if F(T)\ F'(T) # 0, then

Vo < Carv) > Z W v+ >0 'I//ﬁT’Hng’T,. (4.38)

ec&(T) feF(e TeTh,
OTNOT'eF ’(T)

h aT HV—P}L

If F/(T) = F(T), then

hplar@)||v = Pr)|o . < Cor(w) > b IVI-R, +C > S ijﬁ:rv IVIGr . (4.39)

FeF(T) T'eTh
oTNdT' eF (T)

where the constants C' > 0 depend only on the polynomial degree and the shape regularity of the mesh.
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vy,

(a) Admissible configuration (b) Admissible configuration (c) Non-admissible configuration

Figure 4.2: 2D sketch of the required assumptions in Lemma 4.12. The elements T in the white region belong to
Ap, while the elements in gray (as 7") are contained in Aj. The element T' € Ay, in case (a) satisfies the hypotheses
of Lemma 4.12 for the bound (4.38), whereas T € A, in (b) fulfills the assumptions of Lemma 4.12 for the bound
(4.39). The configuration in case (c) does not satisfy the hypotheses of Lemma 4.12.

Lemma 4.13. Let v € Vy, and let Py, : Vi, — Vi be the projection operator introduced in Definition 4.11.
Let T € Ay, be fized. Assume that E'(T) # 0 but F'(T') = 0. Then,

H0T<CO‘T Z Z hy 1||[[V ”0f+C Z ij Br ||VH(2)’T/, (4.40)

e€&(T) fEF(e ey @

h aT HV—Ph

where the constants C' > 0 depend only on the polynomial degree and the shape regularity of the mesh.

4 o

(a) Admissible configuration (b) Non-admissible configuration

Figure 4.3: 2D sketch of the required assumptions in Lemma 4.13. Let the white cells be in Ay, and the gray cells
be in Aj. The element T' € Ay in case (a) satisfies the assumptions of Lemma 4.13, whereas configuration (b) does
not.

We have now all the tools needed to establish the following:

Proposition 4.14. Let T; be a shape reqular and locally quasi-uniform partition of Q). Let Vy, be defined
as in (2.1) and let V§, = Vu N Ho(curl; Q) be the corresponding H(curl, Q)-conforming finite element
space. Let s(-,-) be the pointwise smoother defined in (3.7). Then, for any v € Vy, there exist vo € Vp
and x € Vi, such that v = vy + x and

5(vo, vo) + a,, (X, x) < g max {1,9(v)}apa(v, V), (4.41)
with

Y(v):=  max ar(v)
TeA,,T'en) o (V)
OTNOT' 20

)



26

where the sets Ay, and A}, are defined in (4.37) and the constant c% depends only on the polynomial degree
and on the shape regularity of the mesh.

Proof. Let v € Vy, and let P;, be the averaging operator as from Definition 4.11. By construction,
Pr(v) € VE. Throughout the proof we set vo = v — Pp(v). We distinguish several cases depending on
the regions of the domain, and proceed by local estimates. In particular, for a fixed element T € T}, we
distinguish four possible cases:

(i)
(ii) (
(iii) T € Ap, i.e. h3Br < ar(v
(iv) (

The last two cases refer to those elements that have a face or an edge at the interface between the reaction-
dominated and curl-dominated regime. We will typically use

ay, (Pr(v), Pr(v))IT < @y, (v, V)| + @y, (v = Pr(v),v = Pr(v))|7, (4.42)

T e A} ie. h%ﬁT > ar(v vr i.e. the element is in the reaction-dominated regime;
and &'(T) =0 (hence F'(T) = 0);
and F'(T) # 0;

T € Ap ie. h3Br < ar(v) and F'(T) =0 but £'(T) # 0.

T e Ay ie. h%ﬁT < ar(v

) >
)
)
)

and therefore to bound a,, (Pn(v), Pr(v))|r it will be enough to bound the last term in (4.42). Let us
consider one by one the previous cases.

Case (i). In this case, T is an element in the reaction-dominated region and therefore the auxiliary space
solver is turned off. By definition of the operator P; (Definition 4.11), it holds Pp(v)|r = 0, hence
vo|r = v|p. This case leaves out (locally) the correction in the auxiliary space. Hence to prove (4.41) we
only need to consider the smoother. For the pointwise or block Jacobi smoother, using the scaling in (4.8)
together with the fact that h;Ql/T < h;QaT(l/) < B, results in

o) < Crlvige-

Case (ii). Because of the construction of the operator Py, in Definition 4.11, it holds P (v)|r = Pr(v)|r
and hence vo|r = v|r —Pp(v)|r. Therefore we can directly argue as in the proof of Proposition 4.9. Taking
into account (4.42) and using inverse inequalities, the local approximation properties of Py, in (4.20) and
the assumption h?pﬁT < ar(v) yields

(v =Pr(v),v = Pu(V)lr < vpl|V x (v = PoW)II§ 7 + Brllv — Pu(V) .1
< h—%THv—Ph(v) 5 W)V = Pa)llo.r

< Carp(v Z thlu y\g7f.

ec&(T) feF(e)

s(vo,vo)lr < C (hpwrlVIRz + BrlvIE » + hr2ar(v)

An analogous reasoning applies to the smoothing operator S. For the pointwise or block Jacobi smoother,
the scaling in (4.8) together with (4.20), gives

s(vo,vo)lr < C (/szTIIV = Pr)3z + Brlv = P52 + h’ar@)llv = Pu(v)lI5 )

< Car(v) Y Zhln I+l 5 -

ec&(T) feF(e)

The last two cases cover the configuration where the current element 7', in the curl-dominated regime,
is at the interface with a reaction-dominated region.
Case (iii). This situation corresponds to an element T’ with h%87 < ar(v) sharing at least one face with an
element 7" having h%, 8% > ar/(v). Under these assumptions, we can exploit the results from Lemma 4.12.
Let us first assume that F(T') \ F'(T) # 0. Inverse inequality together with estimate (4.38) from Lemma
4.12 gives

ay, (v = Pr(v),v =Pr(v))lr < vr||V x (v = Pr(v)5.1 + Brllv = Pu(v)llo 7
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< hpvr||lv = Pu()5 1 + h’ar(w)llv — Pr(v )”(2)T

<Corv) ¥ Zhlu Hof+cz ”VﬂTHvHOTu

ec&(T) feF(e)

aTmaT'ef'(T)

Moreover, the same bound can be derived for the pointwise Jacobi operator introduced in (4.9) (or (4.10))
by using the scaling (4.8) and applying estimate (4.38),

s(vo,vo)lr < C (hp*vrllv = Pu() i 1 + Brllv = Puv)li§ o + bz ar(w)llv = Pr(v)I5 1)
< Char()lv - Pa(v) 3 7, (1.43)
since by assumption the current element 7 satisfies h287 < ar(v).

If 7/(T') = F(T), we exploit the results of Lemma 4.12 in (4.39). For the H(curl, Q)-conforming part
of the decomposition (4.42), applying estimate (4.39) from that Lemma yields

tyy (V= Pr(v),v = Pp(v))|r < vrl|V x (v = Pu(W)|2 7 + Brlv — Pa()|3 7
< hi?vrllv = Pr(v)I3 1 + hlar )|lv — Pr(v >H%T
OéT
<Car() Y bt llvIll +C Y /3T, V1§ 7 -

fe]-'(T T,
aTmaT'ef(T)

Concerning the pointwise smoother, one can proceed as in (4.43) by applying this time estimate (4.39)
from Lemma 4.12.

Case (iv). The last case fulfills the assumptions of Lemma 4.13. Since by assumption, h?pﬂT < ap(v),
inverse inequality on the last term of (4.42) and estimate (4.40) give

ay, (v = Pp(v), v = Pr())lr < vrl|V x (v = Pr(v) 3 + Brllv = Pr(v)lI.r
< hp?vrllv = Pr)§ 7 + hz*ar @)|lv — Pr(v )H%T

<Car(w) 3 3 hM VIR, +C Z VVBT’H 6.2

eee (T) feF(e) TeT (T

Moreover, proceeding as in case (iii) above, the pointwise Jacobi smoother scales as

s(vo,vo)lr < C (hz’vr|lv = P57 + Brllv = PaW)§z + hptar@)|lv = Pu()5 r)
< Chi*ar(W)|v = Pr(v)|§.r

and the conclusion follows by applying (4.40).
Collecting the local contributions from all the cases above discussed results in

3(V07V0) + ) (XaX) < Hv X VH%),V,T;L + C’V’z,u

+ Cmax<{ 1, max ar(v) max ar(v) }HVH%BT
1T, ar(v)  TTET,  ap(v) ok
T’eT’( ) aTNdT'eF'(T)
aT(V) 2 c
< Cmax<{1l, max v v=vo+X, Vo € Vh, X € V.
- { TGAh,T’EA;L OéT/(V) }H HDG 0 X 0 h, X h
OTNOT'#0
Coercivity of apg(+,-) yields the conclusion. O

Remark 4.15. The theory presented in this paper and summarized in Theorem 4.1 encompasses the
following coefficients distributions:
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(i) There exists Bmax and Vi, such that

U > Umin > 0, and 0 < Br < Bmax VT €Ty,
(ii) v > 0 is arbitrary and there exists B > 1 such that

B’lgﬁ—TSB YT, T €7, with 0T NoT #0.
Tl

(iii) B > 0 is arbitrary and there exists A > 1 such that

ar(v)
g (v

A< <A VT eA,T €A}, with oTNoT #0.

~—

The only left out case is when there exist T' € T;, and T” € T}, such that simultaneously it holds

T NoT & Fy,, OT NOT' € &p;
vr /Stoo and  fBr \,0;
v \‘ 0 and BT/ / Q.

In this case, since all elements sharing an edge contribute to the construction of a conforming approximation
of a given function in the DG space Vy, it is not possible, with the techniques presented here, to bound
simultaneously the L?-norm of the approximation error weighted by the coefficients v and £.

Remark 4.16. The analysis presented in Section 4.5 could be carried out analogously by considering the
local ratio h%0r /vr instead of h%Sr/ar(v). The decomposition of v € Vi, corresponding to (4.41) would
yield a bound of the form
ar(v) ar(v)
s(vg,Vvo) +a , < ¢ max 1, max , max apa(v,v),
(0.0) + 4 (030 < G {1, e O i ST (v v)
OTNAT' £0

with v = v + X, vo € Vi, and x € V§. Here the uniform bound required on the ratio ar(v)/vz implies
that the coefficients v7, for elements T; in a curl-dominated region and belonging to the neighborhood of T’
cannot be arbitrarily small within the patch. The choice of dealing with the less natural ratio h2.8r/ar(v)
as in (4.41) is aimed at avoiding this shortcoming.

4.6 “Coarser solver” in the auxiliary space

On a simplicial mesh 7y, one can combine a DG discretization based on the local space M(T) = N'(T)
as in (2.2) and the Hy(curl, Q)-conforming finite element space based on the local space N7 (T) as in (2.3)
(reproducing case (b) in Section 3.2). Using an overlapping additive smoother of the type (3.14), the stable
decomposition property (F2) in Theorem 3.2 is fulfilled even in this case, as shown in the following:

Proposition 4.17. Let T;, be a mesh of simplices, shape regqular and quasi-uniform. Let Vy, be the space
defined in (2.1) with M(T) = NH(T). Let W be the H(curl, Q)-conforming finite element space defined
in (3.6). Let so(-,-) be an overlapping smoother as in (3.14). Then, for any v € Vy, there exist vo € Vi
and w € W{ such that v.=vo+w and

so(vo, Vo) + a,, (w,w) < é,max{1,0(v, f) }apa(v, V), (4.44)
where d(v, B) is defined as in (4.1), namely
h%ﬁT max Br ar(v) } ,

o(v := min { max max
(v 6) {TGTh vp | TTeT, B Teap,T'en; ap(v)

OTNOT'#0 OTNAT' 40

and the constant ¢, > 0 depends only on the polynomial degree and the shape reqularity of the mesh.
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Proof. In the proof we consider simultaneously two splittings for v € V. We define x := P, (v) € V§ and
X = Pp(v) € V§ where Pj, and P, are the averaging operators from Definition 4.6 and Definition 4.11
respectively. Let TV : Vi — Wi denote the H(curl, ©2)-conforming Nédélec interpolation operator of
the second kind. We define w := I/ (x) and w := IIV!(%¢) and we set vo = v — w and Vo = v — W.
To bound the H(curl, Q)-conforming part of the decompositions, local approximation estimates for the
Nédélec interpolant (cf. e.g. [12]), the definition of x = Pp(v) (resp. X := Pu(v)), together with the
estimates from Proposition 4.9 (resp. from Proposition 4.14) results in

a, (w,w) < |V x TN ()57 + TV 006 5.7 < CUV X PaW)[§ 7 + CIPeWIG 5.7
< Cmax {1,0(v, 8)}|IvIHe ,

ay, (W, W) < CIV x Pu()5.,.7, + CIIPa(V)IIG .75, < Cmax {1,9()}[[vlpe -

Concerning the patch smoother, we write vo = v—-—w =v —x +x —w = (v — Pr(v)) + (x — IV (x))
and similarly ¥o = (v — Px(v)) + (3 — IV{(X)). Observe that, since the mesh is made of simplices,
curl(N(T)) = curl(N'(T)) and therefore the difference x — w (resp. X — W) is curl-free. Hence, we
can rely on the following discrete Helmholtz decomposition (see [31]),

x =" (x) + Vg; x =1 (x) + Vg ¢,9 € Pra (Tn) N HY(Q). (4.45)
rst. In view of the Helmholtz decomposition (4.45), it holds

Pr(v),v =Pu(v)) +50(Vq, Vq). (4.46)

We focus now on the bound for sp(vo, vo) fi

s0(vo,vo) < so(v —
To bound the first term above, the scaling (4.12) derived in Lemma 4.5 together with the the estimates
from Lemma 4.7 and Corollary 4.8, gives

J
s0(V=Pr(v),v — Pp(v Z ( Z vr |V x (v — Ph(Vj))H?),T + Br|lvj — Ph(Vj)HaT
Jj=1 *TeQ;
+ Y o) Yo Y htllvidel, (4.47)
Teq; e€E(T) FEF()\OL
+ Y arv Z ST bt nx (v Ph(vj))\0f>
Teq; €E(T) fEF(e)NOQ;
oTNOQ,;#D
J
< Cmax {1,0(v,5)} > ( > Briviller+ D arw) > > I vj]],uof> (4.48)
Jj=1 ~Teq; TeQ; ec&(T) feF(e)

where v; = ;v and {Hj}jzl is a partition of unity relative to the decomposition €, = {Qj}}'le
Regarding the second term in (4.46), we write Vg; := x; — IV (x;) = Pu(v;) — IV (Py(v;)) for j =

.,J. Then, the scaling (4.12) together with Vg € Kern(curl), inverse and trace inequalities and the
local error estimates for x; — II""/(x;) (see [61], [87, Lemma 10.4 and Lemma 10.8]) yield

J
(Y4, Va) ~Z<ZﬁT\|VqJHOT+ S ) Y Y h ||nquj||0f)

Jj=1 “Teq; TeQ; ec&(T) feF(e)NOS2;
8Tﬂ89j7é@

J

<OX (3 orbe -mM 0l + 3 ern? 1 0ol )
=1 “TeQ; TeQ;

ATNAY,#0

J
<o3 (T m Pl ¥ arting? Pl )

j=1 “TeQ; TeQ,

OTNAN; #0
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Using the error bounds from Lemma 4.7 and Corollary 4.8, we reach the same bound as in (4.47). To
“glue” together the estimates for the smoother relative to different patches, we use the properties of
{Qj}le, namely (see [87])
2 2 2 2 2
Ivillor = 1165vlio.r < 1161700y IVIlor < ClivIgr VT € Qy,

10v; 12116, = 1107v 115 s < 1650700 ITVIrllg s < ClIVI-G VieFnny.

To estimate so (v, Tp) (second splitting) the proof proceeds mutatis mutandis but using the estimates from
Proposition 4.14, so that so(o, 7o) < C max {1,9(v)}||v|3-

Collecting all estimates and taking the minimum over the two splittings the conclusion (4.44) follows.

O

Remark 4.18. On a hexahedral mesh the stability results of Proposition 4.17 do not hold true. Indeed, as
pointed out in [36, Remark 4.17] and observed numerically in [35, Section 5] (see also [56, Section 6.2] where
optimal L2-convergence is studied for the corresponding time dependent problem) the local full polynomial
space Qi (T)? yields a discretization which triggers spurious modes. This is confirmed by the numerical
experiments in Section 6 (see in particular Figure 6.2 and Figure 6.3). Therefore, using a spectrally correct
auxiliary space in the preconditioner for the DG discretization based on Qg (7)? does not seem to result in a
convergent solver, independently of the type of the smoother. However, if the auxiliary space consists of full
polynomials, Theorem 4.1 applies and the resulting preconditioner is uniform (see Table 6.1 Q1-Q1 Jacobi).
Similarly, other than the choice of full polynomial space approximations and Nédélec second family auxiliary
space, if the finite element DG space Vy, in (2.1) is defined as Vi, = {v € L?(Q)¢: v ¢ ./\qu(T), TeTh}.
where NV (T) is the local space of Nédélec elements of the first family of degree k as in (2.4), the results in
Theorem 4.1 carry over.

On the other hand, one might consider as local space in V}, the spectrally correct element Sy recently
introduced in [9], and use as auxiliary space the Nédélec first kind H(curl, 2)-conforming space. This
combination together with an overlapping smoother provides, in the lowest order case and in dimension
two (see Section 6), a uniform preconditioner (for continuous coefficients). However, the proof of Propo-
sition 4.17 does not apply for this exotic element (even for k = 1), since a direct connection between the
two mentioned families in the spirit of (4.45) (through a discrete Helmholtz decomposition) does not seem
to hold straightforwardly. For polynomial degree k > 1, the lack of a clear relation or inclusion between
the two families hinders the construction of an auxiliary space preconditioner.

We close this section by providing a Lemma, similar to [92, Theorem 4.5], that shows that the use of
an overlapping smoother in Proposition 4.17 is indeed necessary.

Lemma 4.19. Let Ty, be a mesh of simplices, shape regular and quasi-uniform. Let Vy, be the space defined
n (2.1) with M(T) = NH(T). Let W¢ be the H(curl, Q)-conforming finite element space defined in (3.6).
Let s(-,-) be any of the pointwise smoothers defined in (4.9) and (4.10). Then, there exist v € Vi, w € W§
and vg € Vy, such that v =vy+w and

ar(v)hy”

, + , < Cmax4 1, ma
s(vo,vo) + a,, (W, w) < mx{ max By

} apa(v,v) ,

where C' > 0 depends on the shape regularity of the mesh and on the polynomial degree. As a consequence,
except for the reaction-dominated regime, the spectral condition number of the preconditioned system (using
Wi and s(-,-)) would depend on the mesh size and the problem coefficients.

Proof. The proof is constructive. Let T be a fixed tetrahedron with barycentric coordinates Ai, ..., A4.
Let e = e;; C 0T be a fixed edge of T with endpoints 7 and j and let b, be the basis function relative to
the edge e corresponding to a local shape function of the form V(3A;);) i.e. the gradient of a quadratic
edge bubble. Note that b, € N/(T) ~ N (T) and b, can be considered as a global function extended to
zero outside of its support (the “macroelement” consisting of the union of the tetrahedra sharing the edge
e). Then b, € Vi, , b, € V§ but b, ¢ WE.
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Observe that arguing as in the proof of Proposition 4.17, by taking vy := b, € Vy,, we plainly have
X := Pu(be) = b. € VE and w := IV (b,) = 0. Therefore, it holds
a, (M (be), T (b)) = 0,

and taking into account the definition of the pointwise smoother (see the proof of the scaling (4.8) given
in Lemma 4.4), we have

s(be,be) = > > Bribelir+ Y ar() Y D hytnx bellf,

TET, e€€(T) TETh ecE(T) feF(e)
Z Brlbells r + Z ar()hg?|[bel[§ 7 -
TeT (e) TeT (e)

On the other hand, since b, € V§, its tangential jump [b. ]+ = 0 across the mesh faces. Hence,

apG (be; be) Z Br|bellg,r -
TET (e

Therefore, for v := b, € Vy, the splitting v, := b, 4+ 0 gives
5(be, be) + ay, (T (be), TV (be)) = s(be, be) < é(hr, 8,v) apa(be, be)

where ¢y(hr, 8,v) is defined as

. ar(v)hy’
h =C 1 —_—
CO( T, 67 l/) max { ; Trél'%é) ﬂT )

and C depends only on the shape regularity of the mesh and on the polynomial degree of Vy. The last
inequality shows that unless the problem is reaction-dominated (i.e. S > h;2aT(V)), the smoother would
not be effective in damping the function b, (not seen by the auxiliary space) and the spectral condition
number of the preconditioned system would show dependence on the mesh size, deteriorating when the
mesh is refined. O

5 Numerical Experiments in 2D

In the following numerical simulations we will restrict to the two dimensional problem (1.1) in the unit
square € = [0,1]2. The numerical effort required for the validation of the theoretical results on very fine
meshes where the asymptotical behavior of the proposed preconditioner emerges, deterred us from dealing
with the three-dimensional case. The two dimensional operators are defined as

curl v = 0vy /01 — Ovy /Ox2 Vv = (v1,v2) € H(curl, Q);
curl ¢ = V¢ := (0¢/0xa, —0p/021)" V¢ € H(curl, Q).

Throughout this Section, if not otherwise specified, the constant penalty parameter ¢y in (2.8) entering the
IP-DG discretization is assumed to be ¢y = 10.

Concerning the solver, we will compare the performances of the unpreconditioned conjugate gradient
(CG) and preconditioned conjugate gradient (PCG) algorithms [53, Section 10.2 and Section 10.3] with
zero vector as initial guess. For each numerical experiment, we report the number of iterations required
by the (P)CG algorithm to achieve convergence with a tolerance of 10~7. The spectral condition number
of the unpreconditioned matrix is derived from the eigenvalues computed through the MATLAB built-in
routine eig. This is also used for the preconditioned system whenever the matrix size allows it, namely in
the numerical experiments of Section 5.3, Section 5.2 and for (5.1). On fine meshes, a Lanczos procedure
within the PCG routine (see [53, Chapter 9 and Section 10.2.5]) is used to compute the extremal eigenvalues
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of the preconditioned system with a control on the quality of the approximation of the eigenvalues up to
a tolerance of 10710,

To validate the theoretical results, we consider numerical experiments on both structured, locally
refined and quasi-uniform triangular meshes, with continuous (the first three test cases) and strongly
varying discontinuous coefficients v and 8 (the last three set of experiments). Finally, we present some
numerical results and considerations for the case of tensor product meshes along the lines of Remark 4.18.

As it is well known, in two dimensions, the space H(curl, Q) is isomorphic to H(div, Q) through a /2
rotation. We will exploit this isomorphism in order to derive H(curl, )-conforming finite element spaces
from H(div, Q)-conforming spaces by means of a vector rotation: The space M(T') in (2.3) corresponds
to the rotated Raviart-Thomas (RT) finite element space R7, [81] and similarly the space M(T) in (2.2)
corresponds to the rotated Brezzi-Douglas-Marini (BDM) element space BDM;, [30]. With a small abuse
of notation and due to space constraints, in some of the plots and tables the term “rotated” is omitted.

5.1 Structured triangular meshes. Constant coefficients.

As first test case, the problem with constant coefficients 8 = v = 1 is considered on a uniform structured
triangular mesh. The IP-DG discretization is based on the full polynomial space (2.2) and is preconditioned
with lowest order rotated BDM elements (3.5) for the auxiliary space and Jacobi pointwise smoother (4.9).
As shown in Figure 5.1, the spectral condition number of the preconditioned matrix is independent of the
mesh width (see also Table 5.1 for the number of iterations required for convergence).

In the same graphic and table are reported the results obtained with the preconditioner of type (b)
(see Section 3) based on the lowest order rotated Raviart-Thomas elements in the discretization of the
auxiliary space (3.6) combined with different pointwise and patch smoothers. Note that only in the case
of a block relaxation (overlapping additive Schwarz), the condition number is independent of the mesh
width. The non-efficacy of pointwise (Jacobi or block Jacobi) smoothers is in agreement with Remark 3.3
and Lemma 4.19. The efficiency of the different smoothers can be also observed in Table 5.1.

107F .
—— BDM-BDM Jacobi BDM elements (BDM-BDM). Different choices of the

> I > o I I

= smoother are considered.
10'F 5

(9]
o
510“— —e— Unpreconditioned 1 Figure 5.1: Spectral condition number vs. num-
s —s— BDM-RT Jacobi ber of dofs. The DG discretization is based on the
£l —— BDM-RT Schwarz (element) | | full polynomial space (lowest order rotated BDM ele-
§ ——BDM-RT Schwarz (edge) ments) and lowest order rotated RT elements for the
[ BDM-RT Schwarz (vertex) | | auxiliary space (BDM-RT) or lowest order rotated
[}
(9]
Q.
D

10* 10 10
Number of dofs
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iTn 93 | 95 97 29 9ll | 913 | 915 | 917

Vun — W smoother
BDM Unpreconditioned 45 | 190 | 434 | 889 | 1784 - — -
BDM-RT Jacobi 36 73 90 90 93 94 93 90
BDM-RT block Jacobi 32 67 78 82 85 86 7 74
BDM-RT Schwarz (element) 15 | 26 29 28 27 26 26 24
BDM-RT Schwarz (edge) 20 32 34 34 32 31 29 28
BDM-RT Schwarz (vertex) 12 | 15 16 17 17 16 16 16
BDM-BDM Jacobi 11 12 12 11 11 11 10 10

Table 5.1: Number of iterations for decreasing mesh width. Cases as in Figure 5.1.

5.2 Quasi-uniform triangular mesh. Constant coefficients.

For coefficients 8 = v = 1, the spectral condition number of the preconditioned system for an auxiliary
space based on lowest order rotated BDM elements with pointwise relaxation has shown to be independent
of the mesh width even on quasi-uniform triangular meshes (see Figure 5.2 and Table 5.2).

Non-uniform refinement

—e— Unpreconditioned
—=— Preconditioned

Spectral condition number

10° 10*
Number of dofs

Figure 5.2: Condition number vs. number of dofs for quasi-uniform meshes. Numerical discretization based on full
polynomial DG spaces and second family edge elements (rotated BDM;) for the auxiliary space. Pointwise Jacobi
smoother.

m [e[e]7 7]

BDM Unpreconditioned 50 | 259 | 619 | 1710 | 4356
BDM-BDM Jacobi 13 12 12 12 13

Table 5.2: Number of iterations for decreasing mesh width on quasi-uniform triangular meshes. Numerical dis-
cretization based on full polynomial DG spaces and second family edge elements (rotated BDM;) for the auxiliary
space. Pointwise Jacobi smoother.

5.3 Triangular mesh, local refinement. Constant coefficients.

Under the same discretization as in the previous test case, with § = v = 1, the preconditioner proposed
in Section 3.2 case (a), has proven competitive for locally refined meshes, see Figure 5.3 and Table 5.3. In
particular, we consider three different test cases which often occur in applications, namely a local refinement
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towards a corner of the domain, towards a boundary side and towards a point/region inside the domain 2.
The refinement strategy is not driven by any error estimator. As can be easily observed, in all cases, the
convergence of the preconditioner (measured from the spectral condition number or number of iterates) is
uniform with respect to the mesh size.

Local refinement towards a corner Local refinement towards a boundary edge Local refinement towards the domain barycenter

5 10° 10° 10°
o)
§ & 5
c -g a
8 4 =) 4 g 4
S 10 2 10 2 10
© . o —e— — iti _ iti
g —e— Unpreconditioned S Non-preconditioneq s —Non-preconditioned
o —a— Preconditioned 3 =— Preconditioned = —=— Preconditioned
[ g 2 g 2
5 10 O 10 O 10
[
Q
%)

10° 4 10° = - 10°

1000 2000 3000 4000 5000600 10 10 1000 2000 3000 400050086000
Number of dofs Number of dofs Number of dofs

Figure 5.3: Three different local refinement strategies. Condition number vs. number of dofs for a numerical
discretization based on full polynomial DG spaces and second family edge elements (rotated BDMj) for the auxiliary
space. Pointwise Jacobi smoother.

Case 1, in Figure 5.3
175 H 128 ‘ 180‘ 254 ‘ 358 ‘ 490 ‘ 640 ‘ 772 ‘ 838 ‘

BDM Unpreconditioned 434 | 705 | 1065 | 1488 | 2171 | 3073 | 4439 | 6024
BDM-BDM Jacobi 12 12 12 12 12 12 12 12

Case 2, in Figure 5.3
67T H 128 ‘ 224 ‘ 376 ‘ 632 ‘ 1032 ‘ 1672 ‘

BDM Unpreconditioned 434 | 678 | 1042 | 1445 | 2123 | 3090
BDM-BDM Jacobi 12 12 12 12 12 12

Case 3, in Figure 5.3
iTh H 128 ‘ 200‘ 280 ‘ 408 ‘ 576 ‘ 776 ‘ 944 ‘ 1016‘

BDM Unpreconditioned 434 | 682 | 1046 | 1399 | 2094 | 3049 | 4324 | 6156

BDM-BDM Jacobi 12 12 12 12 12 12 12 12

Table 5.3: Number of iterations for decreasing mesh width. Numerical discretization based on full polynomial DG
spaces and second family edge elements (rotated BDM;) for the auxiliary space. Pointwise Jacobi smoother.
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5.4 Structured triangular mesh. Coefficients: § =1, v discontinuous.

Let us assume that 8 = 1, whilst the magnetic diffusivity v is discontinuous and piecewise constant, namely

v ifx €Oy :=[0,0.5%U][0.5,1)2,
v(x) =
vy otherwise.

The coefficient v5 = 1 is fixed. Note that the initial uniform triangulation resolves the jump discontinuities
of the coefficient v. We compare the performances of the preconditioner as the mesh is uniformly refined
and for different values of the coefficient ;. The discretization is based on lowest order rotated BDM
elements (2.2) and preconditioned with auxiliary space as in (3.5) with pointwise Jacobi smoother (4.9).

Unpreconditioned system Unpreconditioned system

10 ‘ 10
1e+5 N2
— —e— e+ EI_)
8 10107 Ke) 10107 +N=29
= ——1e+3 g 7
3 —— e+ g2 ||[TN=2
5 10° ——1 §10° | ——N=2° '
= 3 3
5 1e-1 ) —¥—N=2
S 4o 1e-3 8 10°
® —v—1e-5 g
5 - - - O(Ndofs 3
2 o (Nclofe) 0
3 wn
. 2
10 : ' ‘ 10 :
2 3 4 5 107 100 10°
10 10 10 10 v, coe?nment

Number of dofs

Figure 5.4: Condition number vs. number of dofs for different values of the coefficient v (left). Condition number vs.
values of v for different mesh widths (right). Discretization based on full polynomial DG space. Unpreconditioned
system.

When the problem is solved without appealing to a preconditioner, the spectral condition number
depends, as expected, on the mesh width and on the magnitude of the jump (Figure 5.4 and Table 5.4,
Table 5.5). Concerning the preconditioned system, the condition number is independent of the mesh width
(Figure 5.5, left) and it is asymptotically independent on the magnitude of the jump of the coefficient v
(see Figure 5.5, right). This can be readily checked also from Table 5.4 and Table 5.5, which report the
condition number and number of iterations for different values of the coefficient v;. This is in agreement
with Theorem 4.1 (see also Remark 4.10) which predicts uniform convergence when only one of the two
coefficients is allowed to vary.

Preconditioned system (Jacobi smoother) Preconditioned system (Jacobi smoother)

25 25
. = ——N=2°
[0} [0}
0 20+ Q2 —— N2/ |1
2 2 ——N=2°
S 15} & 15 N2
2 'g N2
8 10t © 10 —=—N=2"51
@ (_‘S 17|
] ‘g —N=2
[0}

5r a 5r 1
& @

. |

2 o) 1 " 5 6 10° 1§0_ .

Number of dofs v, coefficient
Figure 5.5: Condition number vs. number of dofs for different values of the coefficient v (left). Condition number
vs. values of v for different mesh widths (right). Discretization based on full polynomial DG space and second family
edge elements for the auxiliary space. Pointwise Jacobi smoother.
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Unpreconditioned system Preconditioned system
ﬁﬁz 25 27 29 211 ﬁﬁ 27 29 211 213 215 217
1% v

1075 | 1.09e+4 | 4.29e+4 | 1.64e+5 | 5.93e+5 10=% | 19.1615 | 15.7454 | 10.0171 | 5.6188 | 3.6437 | 3.5113
10-3 | 7.86e+3 | 3.18e+4 | 1.27e+5 | 5.1le+5 1073 | 3.3749 | 3.3752 | 3.3753 | 3.3753 | 3.3753 | 3.3753
1071 | 7.01e43 | 2.98e+4 | 1.21e+5 | 4.87e+5 101 | 3.3639 | 3.2011 | 3.2118 | 3.2136 | 3.1995 | 3.1938

1 6.53¢+3 | 2.79e+4 | 1.13e+5 | 4.57e+5 1 3.1231 | 3.1215 | 3.1212 | 3.1212 | 3.1212 | 3.1212
10! 6.84e+4 | 2.91e45 | 1.18e+6 | 4.76e+6 10! 3.2451 | 3.2449 | 3.2448 | 3.2448 | 3.2448 | 3.2448
103 6.98e+6 | 2.97e47 | 1.20e+8 | 4.86e+8 103 3.3382 | 3.3379 | 3.3378 | 3.3378 | 3.3378 | 3.3378
10° 6.98e+8 | 2.97e49 | 1.21e+10 | 4.86e+10 105 3.3393 | 3.3390 | 3.3389 | 3.3389 | 3.3389 | 3.3389

Table 5.4: Condition number of the preconditioned and unpreconditioned system. Coefficients: S = 1, v discon-
tinuous. Discretization based on full polynomial DG space and second family edge elements for the auxiliary space.
Pointwise Jacobi smoother.

Unpreconditioned system Preconditioned system
u% 25 27 29 211 ﬁﬂl 25 27 29 211 213 215 217
%1 14}
10-5 172 | 424 | 810 1598 T 27 [ 33| 31| 22 | 16 | 11 | 9
10-3 158 | 465 | 1281 3333 10-3 20 [ 16 | 13| 12 | 12 | 11 | 11
10-! 199 | 619 | 1405 2777 10-! 1313 12] 12 | 12 | 11 | 11
1 144 | 374 | 760 1490 1 12 12|12 ] 11 | 11 | 11 | 10
10* 280 | 905 | 2073 3807 10 1212 |12 ] 12 | 11 | 11 | 11
103 640 | 3732 | 12324 | 31630 10 1315 (13| 12 | 12 | 12 | 12
10° 1155 | 7091 | 27563 | >50000 105 14 | 15| 14| 14 | 14 | 13 | 13

Table 5.5: Number of iterations. Coefficients: 8 = 1, v discontinuous. Discretization based on full polynomial DG
space and second family edge elements for the auxiliary space. Pointwise Jacobi smoother.

5.5 Structured triangular mesh. Coefficients: § discontinuous, v = 1.

In this experiment, we assume the magnetic diffusivity to be v = 1, while the reaction coefficient 3 is
discontinuous and piecewise constant, namely

: _ , )
B(x) = B ifx € Q:=10,05U[0.5,1]

(B9 otherwise

The coefficient 57 = 1 is fixed. Lowest order rotated BDM elements (2.2) are used for both the DG
discretization and the auxiliary space (3.5). The auxiliary space preconditioner uses here pointwise Jacobi
smoother (4.9). Table 5.6 and Table 5.7 report the condition number and number of iterations as the
coefficient By varies.

As it can be observed (see also Figure 5.6), the condition number of the preconditioned system is
asymptotically independent both on the mesh width and on the magnitude of the jump of the coefficient
B. This is in agreement with Theorem 4.1 (and Remark 4.10) which predicts uniform convergence when
only one of the two coefficients is allowed to vary.
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Figure 5.6: Condition number vs. number of dofs for different values of the coefficient 5 (left). Condition number
vs. values of g for different mesh widths (right). Discretization based on full polynomial DG space and second family
edge elements for the auxiliary space. Pointwise Jacobi smoother.

Unpreconditioned system

H7 25 2 29
B2

10~ 5.45e+7 | 2.62e+8 | 1.11e4+9
103 5.45e+6 | 2.62e+7 | 1.11e+8
102 5.46e+5 | 2.62e4+6 | 1.11e+7
101 5.47e+4 | 2.62e+5 | 1.12e+6
1 6.53e+3 | 2.79e+4 | 1.13e45
10! 5.53e+3 | 2.63e+4 | 1.12e+5
102 6.20e+3 | 2.7le+4 | 1.12e+5
103 1.58e+4 | 3.73e+4 | 1.23e+5
104 1.23e+5 | 1.62e+5 | 2.43e+5

Preconditioned system

ﬁ7—h 27 29 211 213 215 217
B2

10—4 3.1236 | 3.1218 | 3.1213 | 3.1212 | 3.1212 | 3.1212
103 3.1236 | 3.1218 | 3.1213 | 3.1212 | 3.1212 | 3.1212
102 3.1236 | 3.1218 | 3.1213 | 3.1212 | 3.1212 | 3.1212
10—t 3.1234 | 3.1227 | 3.1213 | 3.1212 | 3.1212 | 3.1212

1 3.1231 | 3.1215 | 3.1212 | 3.1212 | 3.1212 | 3.1212
10! 3.1405 | 3.1260 | 3.1224 | 3.1214 | 3.1212 | 3.1212
102 3.3102 | 3.1707 | 3.1336 | 3.1243 | 3.1218 | 3.1213
103 4.5068 | 3.5488 | 3.2426 | 3.1523 | 3.1290 | 3.1231
104 12.4829 | 6.8330 | 3.9759 | 3.4061 | 3.1982 | 3.1407

Table 5.6: Condition number of the preconditioned and unpreconditioned system. Coefficients: v = 1, 8 discon-
tinuous. Discretization based on full polynomial DG space and second family edge elements for the auxiliary space.

Pointwise Jacobi smoother.

Unpreconditioned system

W7 25 27 29
B2

10~4 284 | 2250 | 3685
10—3 252 | 1980 | 4823
10—2 305 | 1559 | 4048
10~1 248 | 877 | 2003
1 144 | 374 | 760
10t 173 | 570 | 1302
102 124 | 538 | 1254
103 116 | 356 | 751
104 121 | 340 | 555

Preconditioned system

0T 95 | 97 | 99 | 911 | 913 | 915 | 917
B2

104 12 |12 |12 | 11 | 11 | 10 | 10
10-3 12 |12 |12 | 11 | 11 | 10 | 10
10—2 12 12 |12 | 11 | 11 | 10 | 10
10~ 12 |12 |12 | 11 | 11 | 10 | 10
1 12 12 |12 | 11 | 11 | 11 | 10
10t 12 |12 |12 | 11 | 11 | 10 | 10
102 15 | 13 | 12 | 11 | 11 | 10 | 10
103 21 | 16 | 13 | 11 10 9 9
104 28 | 24 | 18 | 13 | 11 9 9

Table 5.7: Number of iterations. Coefficients: v = 1, 8 discontinuous. Discretization based on full polynomial DG
space and second family edge elements for the auxiliary space. Pointwise Jacobi smoother.
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5.6 Structured triangular mesh. Coefficients: § and v discontinuous.

We now turn to the more interesting and challenging case of both § and v discontinuous. Let ) :=
[0,0.5]2 U [0.5,1)%, we define

107% ifx e Qy, 20.107% ifx e Qy,
v(x) = and B(x) = (5.1)
1072 otherwise, 20.1072 otherwise.

where 0 € [—20,45] N Z. For a given mesh with 7, = 512 elements, we analyze the spectral condition
number of the unpreconditioned and preconditioned system as the ratio
I 12 ﬁT
(h,v,B) == hp— , (5.2)
vr
varies. Note that due to quasi-uniformity of the mesh and the choice of the coefficients in (5.1), the ratio
L(h,v, ) is constant on every T" € Tj and only depends on the parameter 0. For a discretization based
on lowest order piecewise polynomials (2.2), we consider three different preconditioners: a single pointwise
Jacobi as in (4.9), the ASM preconditioner based on the lowest order second kind edge elements for the
auxiliary space (3.5) with pointwise Jacobi as smoother (4.9) and, as third case, the ASM preconditioner
based on lowest order first kind edge elements for the auxiliary space (3.5) and overlapping additive Schwarz
smoother (edge based) (3.14). As predicted by Proposition 4.9, when L(h,v,3) > 1, the auxiliary space
is not needed to ensure uniform convergence with respect to both the problem coefficients and the mesh
width (see Figure 5.7).

—e— Unpreconditioned

—=—Jacobi preconditioner .
—~ BDM - Jacobi smoothet Figure 5.7: Condition number vs. ratio L for

—+—RT - Block smoother a fixed mesh size h. The condition number
refers to the unpreconditioned system (blue),
the pointwise Jacobi preconditioner (green),
the auxiliary space preconditioner based on
lowest order rotated BDM elements with point-
wise Jacobi smoother (red) and the auxiliary
space preconditioner based on lowest order ro-
tated RT elements with overlapping Schwarz
smoother (black). Discretization: Lowest or-
der rotated BDM elements.

Spectral condition number

5.6.1 Checkerboard Experiment

We consider an experiment where the distribution of the coefficients follows a checkerboard pattern ac-
cording to the partition:

3 3
O = J[1/43, 1740 + DJ* U | J[1/44,1/4(i + 1)] x [1/4(i + 2)modd, 1/4(i + 2)mod4 + 1/4],
=0 =0

as depicted in Figure 5.8 (white patches correspond to €21). We define

v ifxeQq, if x € Oy,
v(x) = ' ' and B(x) = A '

o otherwise, B2 otherwise.
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Figure 5.8: Components of the analytical vector-valued solution of the checkerboard experiment with v, = 1072, v, =
]-047 ﬁl = 1037 ﬂZ =1

where vq, 19, 81 and (9 are set to different values for the three experiments carried out; see Table 5.8.
Lowest order rotated BDM elements (2.2) are used both in the DG discretization and for the auxiliary
space (3.5) in the ASM preconditioner together with a pointwise Jacobi smoother (4.9). In Figure 5.8
(center and rightmost) are represented the two components of the approximate solution. We note that
the weak regularity of the solution leads to a significantly reduced convergence rate of the DG scheme. In
Table 5.8 the estimated spectral conditioned numbers and the number of iterations required for convergence
for the three different configurations of the coefficients are given. As can be observed in Table 5.8, the
preconditioner significantly outperforms the unpreconditioned system even if a slight dependence of the
jump of the coefficients might be recorded. Such slight dependence however seem to hinge on the possible
transition from reaction-dominated to curl-dominated. Notice that the first and third cases reported in
Table 5.8, correspond to cases where curl-dominated and reaction-dominated regimes alternate in the
checkerboard pattern (for the first case the problem becomes curl-dominated in the whole domain for the
two finest meshes), while the second case reported in Table 5.8 corresponds to the curl-dominated regime.

ﬁ’ﬁl 27 ‘ 29 211 213 215
v =10"2, vy =10% Br=10%, Ba=1
CcG 2.45e+8 - (1881) 1.17e+9 - (7840) 5.00e+9 - (18899) - -
PCG | 19.035376 - (28) 15.740534 - (30) 9.965288 - (26) 5.791281 - (19) | 3.643158 - (14)
vy =10%, v = 10; B1=10"2, By =10""
CG | 2.45e+12 - (15275) | 1.17e+13 - (>50000) | 5.03e+13 - (>50000) - -
PCG 3.509092 - (13) 3.509857 - (13) 3.509857 - (13) 3.509857 - (13) | 3.509857 - (16)
v =10"% wm=1, B =10% Ba =107
CcG 1.35e+3 - (148) 2.23e+43 - (228) 5.56e+3 - (363) - -
PCG | 20.525256 - (28) 20.714987 - (30) 20.524956 - (30) 19.729734 - (29) | 17.183196 - (28)

Table 5.8: Condition number and number of iterations (in brackets) for the checkerboard experiment. Discretization
based on lowest order rotated BDM elements. Auxiliary space preconditioner based on lowest order edge element of
the second family and pointwise Jacobi smoother.

6 Tensor product meshes

On tensor product meshes, we only deal with constant coefficients v and 8. As first test case, we

consider the model problem (1.1) on = [0,7]? with v =

1 and 8 = 0 as in [35, Section 5.1, Ex-
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ample 1]. The exact eigenvalues are given by n? + m? for n and m positive integers. We compute
and show in Figure 6.1 the lower part of the spectrum using a DG discretization based on the local
full polynomials space Q!(T)? (right), the rotated version of the “exotic” space S; from [9] (center):
81 := RTo + {curl(z?y), curl(zy?), curl(z?), curl(y?)} = BDM;, and the rotated Nédélec elements of
the first family R7¢ (left). As pointed out in Remark 4.18 and numerically observed in Figure 6.1, on
quadrilateral meshes a DG discretization based on the full polynomial space of degree k in each variable,
is not spectrally correct. Therefore, a preconditioner built on an auxiliary space where the Hy(curl, 2)-
conforming discretization is spectrally correct (e.g. Nédélec elements of the first family) is not effective,
independently of the choice of the smoother and the amount of domain overlaps involved in its construction
as it can be inferred from Figure 6.2 and Table 6.1.

40 . . . 40 T T T 60
o ee < exact]
35 e 1 35 oo " .
501 = Q|+
a @
30 . 1 30 o .
825 EEEE 8 25 2006°° " 401 ,:
= = = <
] T & x
é 20 E'X'E E 20 @@@ qé) 30 -
5 B S ©0 3 o
i 15 =e i 15 ) =
L] 1) 201 x B
w 0
10 as 1 10 °6 i
. . h1o . 10 : -
[ L“‘“’; q
5 L o RTO 1 5 ©6°® o 81 . N [ﬁlﬁé&&
® O
L] . . . 90

o
o
o

0 10 20 30 40 0 10 20 30 40 0 50 100 150
Eigenvalue number Eigenvalue number Eigenvalue number

Figure 6.1: Lower part of the spectrum obtained with different DG discretizations: rotated Nédélec elements of the
first family R7¢ (left), rotated S; (center), and the full polynomial space (Q1)? (right).

10 i i

. +S;;E§;T_ _Sg:::;zr Figure 6.2: Condition number vs. number of dofs (left):
s 10 e S1_RT - Schwarz piecewise bilinear Lagrangian elements discretization with
E —4—Q1-Q1 — Jacobi ASM based on rotated R7T( elements with overlapping ad-
g 10°} | —8— RT-RT - Jacobi ditive Schwarz smoother (magenta); same auxiliary space
= and smoother coupled with DG discretizations associated
§ 102k with ABFy (yellow) and S; (black); DG discretization
B with rotated RTy discontinuous elements and rotated
E.)_ : X X X X RTo as auxiliary space with pointwise Jacobi smoother
10 pa— S —— (blue); discontinuous bilinear Lagrangian elements with
k H(curl, Q)-conforming full polynomial auxiliary space and

10° - - — — ] Jacobi smoother (light blue).

10 10 10 10 10

Number of Elements

However, as stated in Remark 4.18, an effective “coarser” auxiliary space (with overlapping smoothers)
can be constructed for the special case of a discontinuous approximation based on the finite element space
S1. On the other hand, in view of Theorem 4.1, using the same local spaces for the discretization and
for the H(curl, 2)-conforming auxiliary space provides an effective solver. This can be easily checked in
Figure 6.2, Figure 6.3 and Table 6.1 where the results obtained with DG discretizations based on local
spaces of first family edge elements and full polynomials space Q(7T')?, preconditioned with auxiliary space
built on the H(curl, Q)-conforming global elements of the same family in each case are (also) reported.

Piecewise polynomial approximations based on the H(curl, Q)-conforming version of the H(div, §2)-
conforming element ABF}, = Py12 5 X Pg 12 [10, Section 5] have also been implemented for £ = 0. Even
in this case, a preconditioner based on rotated R7 o elements performs poorly (see Table 6.1).
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Figure 6.3: Spectrum of the Galerkin matrix associated with different DG discretizations (left) and spectrum of the
corresponding preconditioned matrices (right), for different combinations as in Figure 6.2.

§7h H 16 x 16 \ 32x32 | 64x64 | 128 x 128 \ 256 x 256 \

RTO Unpreconditioned 128 204 376 753 1504
Q1 Unpreconditioned 410 815 1454 2796 4554

S1 Unpreconditioned 543 1083 2031 4056 7316
RT0-RTO Jacobi 9 9 9 9 9
Q1-Q1 Jacobi 22 21 20 19 19

QI-RTO: Jacobi | overlapping || 259 | 61 | 471|113 | 844|202 | 1622 | 337 | 2936 | 618

ABFO0-RTO0 overlapping 59 116 230 458 874

S1-RTO0: Jacobi | overlapping || 88|18 | 72|19 49 | 20 3420 36| 19

Table 6.1: Number of iterations for different discretizations and preconditioners on a tensor product mesh.

A Local estimates. Proof of Lemma 4.2

We first show (4.5) and (4.6). Taking into account the representation (2.5) of v € M(T') and since we use
a contravariant transformation, the degrees of freedom of v coincide with those of v up to a sign change
(see [75, pp. 79-80, Theorem 5.34]). Hence,

Ny Ny Ny
> Z + Y Zv 213w = Y Z vi?t 30 ST+ (v (A
eee(T) = fer(T) = i=1 ecE(T) i= feF(T) i=1 i=1

On the other hand, a straightforward computation on the reference element T and the above identity give

Z Z H‘PAT” 7t Z ZV Q}T +Z OT

eeg(T) =1 fer (@) =
Ne Nf Np
= D) ViR DD D (VP (V)
e€&(T) i=1 FEF(T) i=1 i=1

Furthermore, since on 7 it holds ||V x VHgf < CHQH(Q)f, then (4.5) follows.

In order to prove (4.6), we recall that, from the definition of the local spaces M(T), the tangential trace
nxvon f C 97T is fully determined by the degrees of freedom of v on the edges and on the faces (see [75,
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Lemma 5.35]). Then, arguing as before and using (A.1) (with no volume degrees of freedom in the sums)
yields (4.6) on the reference element.

The estimates in (4.2) and the inequalities (4.3) can be found in [20, Lemma 2.10] and [75, Section 3.9].
In particular, (4.3) ensues from

V x v(x) = B; 'V x ¥(F;'(x)) By

and the fact that the affine transformation Fr satisfies det(DFr) = det(Br) < Ch® and ||B;'| < Chyt
where ||B7!|| stands for the Euclidean matrix norm. The proof of the estimate (4.4) relies on scaling
arguments, using that by means of the (affine) contravariant transformation Fp the unit normal n vector
to f is mapped to the unit normal n through n o Fp = B;'n/|B; 4.

B Proof of Lemma 4.12

Without loss of generality we can assume that T is an interior element, since the degrees of freedom on
the boundaries of the domain can be bounded exactly as in Lemma 4.7. We proceed as in the proof of
Lemma 4.7 but locally. Two cases have to be considered: first assume that F'(T') # 0 and F(T)\F'(T) # 0.
In view of the Definition 4.11 of the operator Py, by the inequalities (4.2) and (4.5),

hTQaTo/)uvPh<v>|r%,Tsc*hThT2aT<u>( S vir—xsln+ Y ||ve,Txe||§2>

FEF(T) ce&(T)
_ 2
<o (X wolvirxlie X ar) el
FEF(TO\F'(T) feF!(T)
. ZaT Mver —xl%+ 3 ZaT ||ve,T||§2).
FEF(T)\F/(T) c€€(f FEF!(T) ecE(f

We now estimate each of the contributions on the right hand side above separately. The degrees of freedom
on the faces can be bounded as in (4.26) from Lemma 4.7:

> arW) vir—xslp < Y. ar@)wrr) vir = vl
JeF(NFI(T) FeF(ONF/(T)
F=0TNaT

<0 Y arW) vl - (B.1)

FEF(TO\F/(T)

The degrees of freedom corresponding to faces where the dofs of the conforming approximation have been
set to zero are estimated by means of (4.7), (4.2) and (4.5) as

2
Z ar(v) |VfTH32 > Z 2OéT ‘VfT VT ZQ+2O‘T HVfT’
feF!(T) feF (T
f= aTmaT’
2 — 2
<C Y arW)llvilos+C Y ar@hyt Iviloq - (B.2)
fEF(T) TeTh

aTNdT'eF'(T)

Analogously, the degrees of freedom corresponding to edges belonging to faces in F'(T') can be bounded as

> Z arW) [verll < Y. D 2000) |Ver — ver 5+ 207(V) [[ver |
fEF!(T) ecE(f feF(T) e€&(f)
f=ornaT!
2
<C Y arW)llvllo;+C Y ar@)hpt Vil - (B.3)
FeF!(T) =n

aTNdT'eF'(T)
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Finally, the bound on the remaining edges can be derived as in (4.29) from Lemma 4.7,

Yoo Y arWver—xlz< Yo Y Y ar®(wen)’ IVer — verli

FeF(TN\F'(T) ecE(f) FEF(TNF'(T) ec€(f) TeeT (e)\{T}

<C > D ) ar®IvI-lay

FEF(TO\F/(T) ecE(f) fEF(e)

<C Z Z OdT HOf (B'4)

ec&(T) feF(e)

Combining the estimates (B.1), (B.2), (B.3) and (B.4) results in

hlarW)v =PuW§r < C Y. arhp' lIvIs,+ D ar@hp' IIvI-IG

JEF(MNF(T) feF!(T)
+ Y arMh?Ivlgr + Y Y armhgtIIvIFlG,
TeTh ecE(T) feF(e)

dTNAT' €F'(T)

(v) 2
<C Z VaT/ v)h QHVHOT,—F Z Z ar(v)hy 8% v]rllof -

TeTy, ec&(T) feF(e)
aTNaT' e F'(T )

Using the shape regularity of the mesh and the fact that h;?aT/(V) < By for all T € Tp, with 0T NAT' €
F(T), yields (4.38).

For the case F'(T) = F(T), by Definition 4.11 of P, one has X, = 0 for every e € £(T), x; = 0 for
every f € F(T) and X = xp. Therefore, the approximation error can be estimated as

h;ZaT<v>r\v—Ph<v>r%,T<0h;l( Y ar@lvirlh+ Y ar) ||ve,T||§2).

feF(T) ec&(T)

For the degrees of freedom on the faces we use (B.2) whereas the degrees of freedom on the edges can be
estimated through (B.3) with F'(T') = F(T'). This results in

hitar@)|lv=PrWllir <C Y arhp IlvIclos+ D hplar@) vl

feF(T) TeTy,
oTNoT e F(T)

C ¥ arOn IV + Y S k) VI

FEF(T) T'eTh,
ITNAT' €F(T)

_ ar(v
¢S ariIvIE v S aT/(V) B |13

feF(T) T'eTy, )
OTNAT' e F(T)

IA

IN

where we have used again the fact that for all 77 € T, 0T N9T" € F'(T), it holds h;?aT/(V) < Brv.

C Proof of Lemma 4.13

Using the Definition 4.11 of the operator Py, since F'(T') = ), we have X = x s for all f € F(T). Therefore,
using the representation in terms of degrees of freedom (2.5) together with (4.2) and (4.5) results in

_ = _ —_ 112 _
hplar(W)|v —Pavlgr < ChT1< > VI vir =Xl + D er@) [ver — Xllz: >
FEF(T) e€&(T)
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gC’h;l( S ar) vir - x|+ Y ar) Iverlly

fEF(T) ec&(T)
5 ar) Iver - xl ) .
€€ (T\E'(T)

Hence, the degrees of freedom on the faces can be bounded as in (4.26) in Lemma 4.7:

> ar)|lver ~ x5 < > arW)wrr)? |[vir = Vi n<C > arWIlvI-g, - (C1)
FEF(T) FEF(T) FEF(T)
F=8TNIT’

Concerning the edges, the estimate (4.29) in Lemma 4.7 gives

S ar@) ver —xllz<C >0 Y arw)lllvIlG, - (C.2)

ec€(T\&'(T) ec€(M\E'(T) feF(e)

The degrees of freedom on the edges in £'(T) can be bounded using triangle inequality as follows. Let
e € &(T) be fixed and let Ty, € T'(T) N T (e). Let T(e) = Uj-W:eOTj be as in (4.28), with Ty := T. Then,

2 2 2 2
O‘To(y) HVe,ToHeQ <C aTo(V) < HVE,TO - Ve,TlHZQ + Z HVG,TJ' — Ve T H£2 + Hve,Tng? ) .
1<j<k

Hence,

Y ar@)lverllz <C Y- arW)IvIelgs+ Y- ar@hy! VI

ec&(T) feF(T) T'eT'(T)

+ > > ar®IlvI-ey, -

ec&!(T) feF(e)\F(T)

(C.3)

Coupling (C.1), (C.2) and (C.3) yields

_ S ap(V _ —
harW)lv-PivlEr ¢ Y ST ani vty + X3 arting VIR,
TeT!(T) c€&(T) fEF(e)

Using the fact that h7az/(v) < By for all T € T'(T) yields (4.40) and concludes the proof.
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