
Computational Higher Order Quasi-Monte
Carlo Integration

R. N. Gantner and Ch. Schwab

Research Report No. 2014-25
September 2014

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

__
Funding SNF: 149819
Funding ERC: AdG247277

Computational Higher Order

Quasi-Monte Carlo Integration

Robert N. Gantner and Christoph Schwab

Abstract The efficient construction of higher-order interlaced polynomial lattice

rules introduced recently in [4] is considered. After briefly reviewing the principles

of their construction by the “fast component-by-component” (CBC) algorithm due to

[1, 10] as well as recent theoretical results on their convergence rates, we indicate

algorithmic details of their construction. Instances of such rules are applied to high-

dimensional test integrands which belong to weighted function spaces with weights of

product and of SPOD type. Practical considerations that lead to improved quantitative

convergence behavior for various classes of test integrands are reported. The use of

(analytic or numerical) bounds on the Walsh coefficients of the integrand are found to

improve the convergence behavior. The sharpness of theoretical bounds on memory

usage and operation counts, with respect to the number of points N and dimension s

of the integration domain is verified experimentally. The efficiency of the proposed

algorithms for computation of the generating vectors is confirmed for the considered

classes of functions in dimensions s = 10, ...,1000.

1 Introduction

The efficient approximation of high-dimensional integrals is a core task in many

areas of scientific computing. We mention only uncertainty quantification, compu-

tational finance, computational physics and chemistry, and computational biology.

More specifically, high-dimensional integrals arise in the computation of statistical

quantities of solutions to partial differential equations with random inputs.

In addition to efficient spatial and temporal discretizations of partial differential

equation models, it is important to devise high-dimensional quadrature schemes that

are able to exploit an implicity lower-dimensional structure in parametric input data

Robert N. Gantner · Christoph Schwab

Seminar for Applied Mathematics, ETH Zürich, Rämistrasse 101, Zürich, Switzerland e-mail:

robert.gantner@sam.math.ethz.ch, e-mail: christoph.schwab@sam.math.ethz.ch

1

robert.gantner@sam.math.ethz.ch
christoph.schwab@sam.math.ethz.ch

2 Robert N. Gantner and Christoph Schwab

and solutions. The rate of convergence of Monte Carlo (MC) methods is dimension-

robust, i.e. the convergence rate bound holds with constants independent of the

problem dimension, but it is limited to 1/2. Thus it is important to devise dimension-

robust methods of higher order.

In recent years, numerous approaches to achieve this type of higher-order conver-

gence have been proposed; we mention only quasi Monte-Carlo integration, adaptive

Smolyak quadrature, adaptive polynomial chaos discretizations, and related methods.

In the present paper, we consider the realization of novel higher-order interlaced

polynomial lattice rules introduced in [4, 6], which allow an integrand-adapted

construction of a quasi-Monte Carlo quadrature rule that exploits sparsity of the

parameter-to-solution map. We consider in what follows the problem of integrating a

function f : [0,1)s→ R of s variables y1, . . . ,ys over the s-dimensional unit cube,

I [f] :=
∫

[0,1)s
f (y1, . . . ,ys)dy1 · · · dys. (1)

Of course, exact computation quickly becomes infeasible and we must, in most

applications, resort to an approximation of (1) by a quadrature rule. We focus on quasi-

Monte Carlo quadrature rules; more specifically, we consider interlaced polynomial

lattice point sets for functions in weighted spaces with weights of product and SPOD

type. Denoting the interlaced polynomial lattice point set by P = {xxx(0), . . . ,xxx(N−1)}
with xxx(n) ∈ [0,1) for n = 0, . . . ,N−1, we write the QMC quadrature rule as

QP [f] :=
1

N

N−1

∑
n=0

f (xxx(n)).

In section 2 we first define in more detail the structure of the point set P consid-

ered throughout and derive worst-case error bounds for integrand functions which

belong to certain weighted spaces of functions introduced in [8]. Then, component-by-

component construction is briefly reviewed and the worst-case error reformulated to

allow efficient computation. The main contribution of this paper is found in sections

4 and 5, which mention some practical considerations required for efficient imple-

mentation and application of these rules. In section 5, we give measured convergence

results for example integrands, showing the applicability of these methods.

2 Interlaced Polynomial Rank-1 Lattice Rules

Polynomial rank-1 lattice point sets, introduced by Niederreiter in [9], are a mod-

ification of standard rank-1 lattice point sets to polynomial arithmetic in Zb[x]. A

polynomial lattice rule is an equal-weight quasi-Monte Carlo (QMC) quadrature rule

based on such point sets. Here, we consider the higher-order interlaced polynomial

lattice rules introduced in [4, Def. 3.6], [3, Def. 5.1] and focus on computational

techniques for their efficient construction.

Page:2 job:gantner macro:svmult.cls date/time:18-Sep-2014/14:21

Computational Higher Order Quasi-Monte Carlo Integration 3

2.1 Definitions

For a given prime number b≥ 2 and an integer m ∈N, we denote by Gb,m = {p(x) ∈
Zb[x]\{0} : deg(p) < m} the cyclic group formed by the nonzero elements of the

finite field Zbm under multiplication. Let P ∈ Zb[x] be an irreducible polynomial of

degree m. Throughout, we frequently interchange an integer n, 0≤ n < N = bm, with

its associated polynomial n(x) = η0 +η1x+η2x2 + . . .+ηm−1xm−1, the coefficients

of which are given by the b-adic expansion n = η0 +η1b+η2b2 + . . .+ηm−1bm−1.

Given a generating vector q ∈ Gs
b,m, we have the following expression for the i-th

component of the n-th point x(n) ∈ [0,1)s of a polynomial lattice point set P:

x
(n)
i = vm

(n(x)qi(x)

P(x)

)
, i = 1, . . . ,s, n = 0, . . . ,N−1,

where the mapping vm :Zb((x
−1))→ [0,1) is given by vm

(
∑

∞
ℓ=1 ξℓx

−ℓ
)
=∑

m
ℓ=1 ξℓb

−ℓ.

A key component for obtaining higher-order convergence rates is the interlacing

of lattice point sets, as introduced in [6]. To this end, we define the digit interlacing

function, which maps α points in [0,1) to one point in [0,1).

Definition 1 (Digit Interlacing Function). We define the digit interlacing function

Dα with interlacing factor α ∈ N acting on the points {x j ∈ [0,1), j = 1, . . . ,α} by

Dα(x1, . . . ,xα) =
∞

∑
a=1

α

∑
j=1

ξ j,ab− j−α(a−1),

where by ξ j,a we denote the a-th component of the b-adic decomposition of x j,

x j = ξ j,1b−1 +ξ j,2b−2 +

An interlaced polynomial lattice point set based on the generating vector q∈Gαs
b,m,

which is now α times larger than before, is then given by the points {x(n)}bm−1
n=0 with

x
(n)
i = Dα

(
vm

(
n(x)qα(i−1)+1(x)

P(x)

)
, . . . ,vm

(
n(x)qα(i−1)+α(x)

P(x)

))
, i = 1, . . . ,s,

i.e. the i-th coordinate of the n-th point is obtained by interlacing a block of α points.

2.2 Worst-Case Error Bound

We give here a brief overview of bounds on the worst case error which are required

for CBC construction; for details we refer to [4]. The results therein were based

on the “new function space setting” from [8], which generalizes the notion of a

reproducing kernel Hilbert space to a Banach space setting.

Page:3 job:gantner macro:svmult.cls date/time:18-Sep-2014/14:21

4 Robert N. Gantner and Christoph Schwab

2.2.1 Function Space Setting

In order to derive a worst-case error bound, consider the higher-order unanchored

Sobolev space Ws,α,γ,q,r := { f ∈ L1([0,1)s) : ‖ f‖s,α,γ,q,r < ∞} where the r-th power

of the norm ‖ · ‖s,α,γ,q,r is given by

‖ f‖r
s,α,γ,q,r := ∑

u⊆{1:s}

∥∥∥γ−1
u ∑

v⊆u
∑

τ∈{1:α}|u\v|

∫

[0,1]s−|v|
(∂

(αv,τ ,0)
yyy f)(yyy)dyyy{1:s}\v

∥∥∥
r

Lq
, (2)

where (αv,τ,0) denotes the sequence ννν with ν j = α for j ∈ v, ν j = τ j for j ∈ u\v
and ν j = 0 for j 6∈ u, and by {1 : s} we mean {1,2, . . . ,s}. The space Ws,α,γ,q,r

consists of smooth functions with integrable mixed derivatives of orders up to α with

respect to each variable, and Lq-integrable (q ∈ [1,∞]) mixed derivatives containing

a derivative of order α in at least one variable. The norm (2) is defined by combining

the Lq norms of the derivatives in the ℓr sense for r ∈ [1,∞]. This space is called

unanchored because the innermost integral over [0,1]s−|v| in (2) integrates out the

“inactive” coordinates, i.e. those with respect to which a derivative of order less than

α is taken, rather than “anchoring” these variables by fixing their values equal to an

anchor point a ∈ [0,1)s.

2.2.2 Error Bound

The worst-case error eWC(P,W) of a point set P = {yyy(0), . . . ,yyy(b
m−1)} over the

function space W is defined by the following supremum over the unit ball in W :

eWC(P,W) = sup
‖ f‖W ≤1

|I [f]−QP [f]|.

Assume 1/r+1/r′ = 1, α,s ∈ N with the condition α > 1 on the interlacing param-

eter. Define a collection of positive weights γ = (γu)u⊂N. Then, by [4, Thm. 3.5], we

have the following bound on the worst-case error in the space Ws,α,γ,q,r,

sup
‖ f‖Ws,α,γ,q,r≤1

|I [f]−QP [f]| ≤ es,α,γ,r′(P),

with the bound for the worst case error es,α,γ,r′(P) given by

es,α,γ,r′(P) =


 ∑

/06=u⊆{1:s}

(
C
|u|
α,bγu ∑

ku∈D⋆
u

b−µα (ku)

)r′



1/r′

. (3)

The constant Cα,b is obtained by bounding the Walsh coefficients of functions in

Sobolev spaces, see [2, Thm. 14] for details. Here, it has the value

Page:4 job:gantner macro:svmult.cls date/time:18-Sep-2014/14:21

Computational Higher Order Quasi-Monte Carlo Integration 5

Cα,b = max

(
2

(2sin π
b
)α

, max
z=1,...,α−1

1

(2sin π
b
)z

)

×

(
1+

1

b
+

1

b(b+1)

)α−2(
3+

2

b
+

2b+1

b−1

)
. (4)

The bound (3) holds for general digital nets; however, we wish to restrict ourselves

to polynomial lattice rules. We additionally choose r′ = 1 (and thus r = ∞, i.e. the ℓ∞

norm over the sequence indexed by u⊆ {1 : s} in the norm (2)). In the following we

use ω(y) = b−1
bα−b

−b⌊logb y⌋(α−1) bα−1
bα−b

where ω(0) = b−1
bα−b

. Using [8, Thm. 3.9], we

rewrite the sum over the dual net D⋆
u

in (3) in a computationally amenable form,

es,α,γ,1(P)≤ Ed(qqq) =
1

bm

bm−1

∑
n=0

∑
v⊆{1:d}
v6= /0

γ̃v ∏
j∈v

ω(y
(n)
j), yyy(n) ∈P, (5)

where y
(n)
j = vm

(
n(x)q j(x)

P(x)

)
depends on the j-th component of the generating vector,

q j(x), and the auxiliary weight γ̃v depends on the choice of weights. For product

weights, we can define

γ̃v = ∏
j∈u(v)

γ j, γ j =Cα,bb
α(α−1/2)

α

∑
ν=1

ν!2δ (ν ,α)β ν
j , (6)

and obtain from (5) the worst-case error bound

Ed(qqq) =
1

bm

bm−1

∑
n=0

∑
u⊆{1:s}
u6= /0

(
∏
j∈u

γ j

)
∑

v⊆{1:d}
u(v)=u

(
∏
j∈v

ω(y
(n)
j)
)
. (7)

For SPOD weights we have

γ̃v = ∑
ννν
u(v)∈{1:α}|u(v)|

|ννν
u(v)|! ∏

j∈u(v)

γ j(ν j), γ j(ν j) =Cα,bbα(α−1)/22δ (ν j ,α)β
ν j

j ,

(8)

for which we obtain

Ed(qqq) =
1

bm

bm−1

∑
n=0

∑
v⊆{1:d}
v6= /0

∑
ν∈{1:α}|u(v)|

|ν |!
(

∏
j∈u(v)

γ j(ν j)
)(

∏
j∈v

ω(y
(n)
j)
)
. (9)

These two expressions will be the basis of the component-by-component (CBC)

construction elucidated in the next section. We note that the powers of Cα,b arising

in (7) and (9) can become very large, leading to a pronounced negative impact on

the construction procedure (see Section 4.1 below). The constant Cα,b, defined in (4),

stems from bounds on the Walsh coefficients of smooth functions [2].

Page:5 job:gantner macro:svmult.cls date/time:18-Sep-2014/14:21

6 Robert N. Gantner and Christoph Schwab

3 Component-by-Component Construction

The component-by-component construction (CBC) [7, 13, 14] is a simple but never-

theless effective algorithm for computing generating vectors for rank-1 lattice rules,

of both standard and polynomial type. In each iteration of the algorithm, the worst-

case error is computed for all candidate elements of the generating vector, and the one

with minimal WCE is taken as the next component. After s iterations, a generating

vector of length s is obtained, which can then be used for QMC quadrature.

Nuyens and Cools reformulated in [1, 10] the CBC construction to exploit the

cyclic structure inherent in the point sets for standard lattice rules when the dimension

s is a prime number. This leads to the so-called Fast CBC algorithm based on the fast

Fourier transform (FFT) which speeds up the computation drastically. It is also the

basis for the present construction.

Fast CBC is based on reformulating (7) and (9): instead of iterating over the

index d = 1, . . . ,αsmax, we iterate over the dimension s = 1, . . . ,smax and for each

s over t = 1, . . . ,α . Thus, the index d above is replaced by the pair s, t through

d = α(s−1)+ t and we write

y
(n)
i, j = y

(n)
α(i−1)+ j

, i = 1, . . . ,smax, j = 1, . . . ,α. (10)

In order to obtain an efficient algorithm we further reformulate (7) and (9) such that

only intermediate quantities are updated instead of computing Ed(qqq) in (7) and (9)

from scratch.

3.1 Product Weights

In the product weight case, we have for t = α the expression

Es,α(qqq) =
1

bm

bm−1

∑
n=0

s

∏
j=1

[
1+ γ j

(
α

∏
i=1

(1+ω(y
(n)
j,i))−1

)]
−1. (11)

We define the quantity Ys(n) =∏
s
j=1

[
1+ γ j

(
∏

α
i=1(1+ω(y

(n)
j,i))−1

)]
which will be

updated at the end of each iteration over t. To emphasize the independence of certain

quantities on the current unknown (the s, t component of qqq), we denote the truncated

generating vector by qqqd = (q1, . . . ,qd) or in analogy to (10), qqqs,t = (q1, . . . ,qs,t). We

now want to write Es,t(qqqs,t) = Es−1,α(qqqs−1,α)+ Ẽ(qs,1, . . . ,qs,t), such that (11) can

be used for Es−1,α(qqqs−1,α) during the iteration over t. For t < α , we have

Es,t(qqq) =
1

bm

bm−1

∑
n=0

[
1+ γs

(
t

∏
i=1

(1+ω(y
(n)
s,i))−1

)]
Ys−1(n)−1,

Page:6 job:gantner macro:svmult.cls date/time:18-Sep-2014/14:21

Computational Higher Order Quasi-Monte Carlo Integration 7

which can be written in terms of Es−1,α(qqqs−1,α) as

Es,t(qqq) = Es−1,α(qqqs−1,α)+
γs

bm

bm−1

∑
n=0

Ys−1(n)

+
γs

bm

bm−1

∑
n=0

(
t

∏
i=1

(1+ω(y
(n)
s,i))

)
Ys−1(n).

For later use and ease of exposition, we define Vs,t(n) = ∏
t
i=1(1+ω(y

(n)
s,i)), which

satisfies Vs,t(n) =Vs,t−1(n)
(
1+ω(y

(n)
s,t)
)

for t > 1 and Vs,1(n) =
(
1+ω(y

(n)
s,1)
)
. We

also note that Vs,t(0) = (1+ω(0))t =
(

bα−1
bα−b

)t
, since y

(n)
s,t = 0, independent of the

generating vector. This leads to the following decomposition of the error for product

weights

Es,t(qqq) = Es−1,α(qqqs−1,α)+
γs

bm

[
(1+ω(0))t −1

]
Ys−1(0)

+
γs

bm

bm−1

∑
n=1

(Vs,t−1(n)−1)Ys−1(n)

+
γs

bm

bm−1

∑
n=1

ω(y
(n)
s,t)Vs,t−1(n)Ys−1(n), (12)

where only (12) depends on the unknown qs,t . This reformulation allows efficient

computation of Es,t during the CBC construction by updating intermediate quantities.

3.2 SPOD Weights

The search criterion (9) can be reformulated to obtain [4, 3.43]

Es,t(qqq) =
1

bm

bm−1

∑
n=0

αs

∑
ℓ=1

ℓ! ∑
ν∈{0:α}s

|ν |=ℓ

(s

∏
j=1

ν j>0

γ j(ν j)
)

∑
v⊆{1:d} s.t.

u(v)={1≤ j≤s:ν j>0}

∏
j∈v

ω(y
(n)
j). (13)

For a complete block (i.e. t = α), we write Es,α(qqq) =
1

bm ∑
bm−1
n=0 ∑

αs
ℓ=1 Us,ℓ(n), where

Us,ℓ(n) is given by

Us,ℓ(n) = ℓ! ∑
ν∈{0:α}s

|ν |=ℓ

s

∏
j=1

ν j>0

[
γ j(ν j)

(α

∏
i=1

(
1+ω(y

(n)
j,i)
)
−1
)]

.

Proceeding as in the product weight case, we separate out a Es−1,α(qqqs−1,α) term by

Page:7 job:gantner macro:svmult.cls date/time:18-Sep-2014/14:21

8 Robert N. Gantner and Christoph Schwab

Es,t(qqq) = Es−1,α(qqqs−1,α)

+
1

bm

bm−1

∑
n=0

(t

∏
i=1

(1+ω(y
(n)
s,i))−1

)(αs

∑
ℓ=1

min(α,ℓ)

∑
νs=1

γs(νs)
ℓ!

(ℓ−νs)!
Us−1,ℓ−νs

(n)
)
.

Defining Vs,t(n) as above and with Ws(n) = ∑
αs
ℓ=1 ∑

min(α,ℓ)
νs=1 γs(νs)

ℓ!
(ℓ−νs)!

Us−1,ℓ−νs
(n),

we again aim to isolate the term depending on the unknown qs,t . This yields

Es,t(qqq) = Es−1,α(qqqs−1,α)+
1

bm

((bα −1

bα −b

)t

−1
)

Ws(0)

+
1

bm

bm−1

∑
n=1

(Vs,t−1(n)−1)Ws(n) (14)

+
1

bm

bm−1

∑
n=1

Vs,t−1(n)Ws(n)ω(y
(n)
s,t), (15)

where only the last sum (15) depends on qs,t through y
(n)
s,t .

As an optimization, the remaining terms can be ignored, since the error E(qqqd−1,z)
is shifted by the same amount for all candidates z ∈ Gb,m. This optimization saves

O(N) operations due to the omission of the sum (14). An analogous optimization is

possible in the product weight case. Since the value of the error bound is sometimes a

useful quantity, implementations may choose to compute the full bounds from above.

3.3 Efficient Implementation

As currently written, the evaluation of the sums (12) and (15) for all possible bm−1

values for qs,t requires O(N2) operations. We view this sum as a matrix-vector

multiplication of the matrix

ΩΩΩ :=

[
ω

(
vm

(
n(x)q(x)

P(x)

))]

1≤n≤bm−1
q∈Gb,m

(16)

with the vector consisting of the component-wise product
[
Vs,t−1(n)Ws(n)

]
1≤n≤bm−1

.

The elements of ΩΩΩ depend on n(x)q(x), which is a product of polynomials in Gb,m.

Since the nonzero elements of a finite field form a cyclic group under multiplication,

there exists a primitive element g that generates the group, i.e. every element of Gb,m

can be given as some exponent of g.

By using the so-called Rader transform, originally developed in [12], the rows

and columns of ΩΩΩ can be permuted to obtain a cyclic matrix ΩΩΩ perm. Application of

the fast Fourier transform allows the multiplications (12) and (15) to be executed in

O(N logN) operations. This technique was applied to Component-by-Component

construction techniques by [11]; we also mention the exposition in [5, Ch. 10.3].

Page:8 job:gantner macro:svmult.cls date/time:18-Sep-2014/14:21

Computational Higher Order Quasi-Monte Carlo Integration 9

3.4 Algorithms

In Algorithms 1 and 2 below, V,W,Y,U(ℓ) and X(ℓ) denote vectors of length N. E is

a vector of length N−1 and Eold,E1,E2 are scalars. By⊙ we denote component-wise

multiplication and ΩΩΩ z,: denotes the z-th row of ΩΩΩ .

Algorithm 1 CBC product(b,m,α,smax,{γ1, . . . ,γs})

Y← 111

Eold← 0

for s = 1, . . . ,αsmax do

V← 111

for t = 1, . . . ,α do

E1←
γs

bm

((
bα−1
bα−b

)t
−1
)
Y(0)

E2←
γs

bm ∑
bm−1
n=1

(
V(n)−1

)
Y(n)

E←ΩΩΩ · (V⊙Y)+(Eold +E1 +E2) ·111
qs,t ← argminq∈Gb,m

E(q)

Y←
(
1+ γs(V−1)

)
⊙Y

end for

Eold← E(qs,α)
end for

return qqq,Eold

Algorithm 2 CBC SPOD(b,m,α,smax,{γ j(·)}
s
j=1)

U(0)← 111, U(1 : αsmax)← 000

Eold← 0

for s = 1, . . . ,αsmax do

V← 111

W← 000

for ℓ= 1, . . . ,s do

X(ℓ)← 0

for ν = 1, . . . ,min(α, ℓ) do

X(ℓ)← X(ℓ)+ γs(ν)
ℓ!

(ℓ−ν)!U(ℓ−ν)

end for

W←W+ 1
bm X(ℓ)

end for

for t = 1, . . . ,α do

E1←
((

bα−1
bα−b

)t
−1
)
W(0)

E2← ∑
bm−1
n=1

(
V(n)−1

)
W(n)

E←ΩΩΩ · (V⊙W)+(Eold +E1 +E2) ·111
qs,t ← argminq∈Gb,m

E(q)

V← (1+ΩΩΩ qs,t ,:)⊙V

end for

Eold← E(qs,α)
for ℓ= 1, . . . ,αs do

U(ℓ)← U(ℓ)+(V−1)⊙X(ℓ)
end for

end for

return qqq,Eold

Page:9 job:gantner macro:svmult.cls date/time:18-Sep-2014/14:21

10 Robert N. Gantner and Christoph Schwab

4 Implementation Considerations

4.1 Walsh Coefficient Bound

The definition of the auxiliary weights (6) and (8) contain powers of the constant

Cα,b defined in (4), which for b = 2 is bounded from below by Cα,2 =
9
2

(
5
3

)α−2
≥ 9

2
.

The resulting large values of the worst-case error bounds (7) and (9) have been found

to lead to generating vectors with bad projections. For integrand functions with small

Walsh coefficients, Cα,b may be replaced with a tighter bound C; this will yield a

worst-case error bound better adapted to the integrand and a generating vector with

the desired properties. Since additionally Cα,b is increasing in α for fixed b, this

becomes more important as the order of the quadrature rule increases.

4.2 Pruning

For large values of the WCE, the elements of the generating vector can repeat, leading

to very bad projections in certain dimensions. For standard lattice rules, if qs = qs̃ for

two dimensions s and s̃, the corresponding components of the quadrature points will

be identical, x
(n)
s = x

(n)
s̃ for all values of n = 0, . . . ,bm− 1. Thus, in the projection

onto the (s, s̃)-plane, only points on the diagonal are obtained. This is obviously a

very bad choice. For polynomial lattice rules, a similar effect can be observed.

With the aim of alleviating this effect, we formulate a pruning procedure that

incorporates this observation into the construction of the generating vector. We

impose the additional condition that the newest element of the generating vector is

unique, i.e. is not equal to a previously constructed component of qqq. This can be

achieved in the CBC construction by replacing the minimization of E(qqq) over all

possible bm−1 values of the new component by the restricted version

qd = argmin
z∈Gb,m,

z6∈{q1,...,qd−1}

E(q1, . . . ,qd−1,z).

This procedure requires d− 1 operations in iteration d to check the previous

entries of the vector, or O(α2s2) in total, and thus does not increase the asymptotic

complexity. Alternatively, the indices can be stored in an additional sorted data

structure with logarithmic (in αs) cost for both inserting new indices and checking

for membership. This yields a cost of O(αs log(αs)) additional operations, with an

additional storage cost of O(αs).

Page:10 job:gantner macro:svmult.cls date/time:18-Sep-2014/14:21

Computational Higher Order Quasi-Monte Carlo Integration 11

5 Results

5.1 Model Problems

For our numerical results, we consider two problems, one of SPOD-type weights and

one with product weights. The SPOD-type integrand we consider was first mentioned

in [8], and models a parametric partial differential equation depending in an affine

manner on s parameters y1, . . . ,ys:

fθ ,s,ζ (yyy) =

(
1+θ ·

s

∑
j=1

a jy j

)−1

, a j = j−ζ . (17)

We have the differential ∂ ννν
yyy fθ ,s,ζ (yyy) = (−1)|ννν ||ννν |! f

|ννν |+1

θ ,s,ζ
(yyy)∏

s
j=1(θa j)

ν j , leading to

the bound

∀ννν ∈ {0,1, . . . ,α}s : |∂ ννν
yyy fθ ,s,ζ (yyy)| ≤C f |ννν |!

s

∏
j=1

β
ν j

j ,

for a C f ≥ 1 and with the weights β j given by

β j = θa j = θ j−ζ , j = 1, . . . ,s. (18)

Additionally, for s→∞, we have (β j) j ∈ ℓ
p(N) with p> 1

ζ
and thus α = ⌊1/p⌋+1=

ζ . Therefore, by Theorem 3.2 of [4], we have that an interlaced polynomial lattice

rule of order α with N = bm points (b prime, m ≥ 1) and point set PN can be

constructed such that the QMC quadrature error fulfills

|I [fθ ,s,ζ]−QPN
[fθ ,s,ζ]| ≤C(α,βββ ,b, p)N−1/p,

for a constant C(α,βββ ,b, p) independent of s and N. We also consider separable

integrand functions, which, on account of their separability, trivially belong to the

product weight class. They are given by

gθ ,s,ζ (yyy) = exp

(
θ

s

∑
j=1

a jy j

)
, a j = j−ζ , (19)

and satisfy ∂ ννν
yyy g(yyy) = g(yyy)∏

s
k=1(θak)

νk . Under the assumption that there exists a

constant C̃ > 0 that is independent of s and such that g(yyy) ≤ C̃ for all yyy ∈ [0,1]s,

which holds here with C̃ = exp(θ ∑
s
j=1 j−ζ), ζ > 1, we have the bound

∀ννν ∈ {0,1, . . . ,α}s : |∂ ννν
yyy gθ ,s,ζ (yyy)| ≤Cg

s

∏
j=1

β
ν j

j ,

Page:11 job:gantner macro:svmult.cls date/time:18-Sep-2014/14:21

12 Robert N. Gantner and Christoph Schwab

for a Cg > C̃ and with the weights β j given by β j = θa j = θ j−ζ for j = 1, . . . ,s, as

in (18). We have the following analytically given formula for the integral

I [gθ ,s,ζ] =
s

∏
j=1

[
jζ

θ

(
exp(θ j−ζ)−1

)]
= exp




s

∑
j=1

log




∞

∑
µ=0

(
θ j−ζ

)µ

(µ +1)!





 , (20)

along with the quadrature error bound for an interlaced polynomial point set PN

|I [gθ ,s,ζ]−QPN
[gθ ,s,ζ]| ≤C(α,βββ ,b, p)N−1/p.

5.2 Validation of Work Bound

The timing results in Figure 1 show that the work bounds O(αsN logN+α2s2N) for

SPOD weights from [4, Thm. 3.1] and O(αsN logN) for product weights from [4,

Thm. 3.2] are fulfilled in practice and seem to be tight. The work O(N logN) in the

number of QMC points N also appears tight for moderate s and N.

5.3 Pruning and Adapting the Walsh Coefficient Bound

We consider construction of the generating vector with and without application of

the pruning procedure defined in Section 4.2. Convergence rates for both cases can

be seen in Figure 2: for α = 2 no difference was observed when pruning the entries.

Results for the constant Cα,b from (4) as well as for C = 1 are shown; in this

example, adapting the constant C to the integrand seems to yield better results than

pruning. In the case of the integrand (17), this can be justified by estimating the

Walsh coefficients by numerical computation of the Walsh-Hadamard transform. The

maximal values of these numerically computed coefficients is bounded by 1 for low

dimensions, indicating that the bound Cα,b is too pessimistic.

5.4 Higher-Order Convergence

As can be seen in figures 3 and 4, the higher-order convergence rates proved in [4]

can be observed in practice for the two tested integrands. Here, C = 0.1 was used

as the Walsh coefficient bound. We also mention that for more general, non-affine,

holomorphic parameter dependence of operators the same convergence rates and

derivative bounds as in [4] have been recently established in [3]. The present CBC

constructions apply also to these (non affine-parametric) problems.

Page:12 job:gantner macro:svmult.cls date/time:18-Sep-2014/14:21

Computational Higher Order Quasi-Monte Carlo Integration 13

100 101 102 103

Number of Dimensions s
102

103

104

105

106

107

108

CB
C

Ge
ne

ra
tio

n
Ti

m
e

[m
s]

1

2

Generation Time vs. Dimension. θ=0.1, C=0.1, ζ=4, m=15

α=2

α=3

α=4

(a) SPOD, C = 0.1

100 101 102 103

Number of Dimensions s
102

103

104

105

CB
C

Ge
ne

ra
tio

n
Ti

m
e

[m
s]

1

1

Generation Time vs. Dimension. θ=0.1, C=1, ζ=4, m=15

α=2

α=3

α=4

(b) product, C = 1

100 101 102 103 104 105 106 107

Number of Points N=bm

101

102

103

104

105

106

107

CB
C

Ge
ne

ra
tio

n
Ti

m
e

[m
s]

1

1

Generation Time vs. N. s=100, θ=0.1, C=0.1, ζ=4

α=2

α=3

α=4

(c) SPOD, s = 100

100 101 102 103 104 105 106 107

Number of Points N=bm

101

102

103

104

105

106

107

CB
C

Ge
ne

ra
tio

n
Ti

m
e

[m
s]

1

1

Generation Time vs. N. s=1000, θ=0.1, C=0.1, ζ=4

α=2

α=3

α=4

(d) product, s = 1000

Fig. 1: CPU time required for the construction of generating vectors of varying order

α = 2,3,4 for product and SPOD weights vs. the dimension s in (a) and (b) and

vs. the number of points N = 2m in (c) and (d).

100 101 102 103 104 105 106 107

Number of Points N=bm

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Qu
ad

ra
tu

re
 E

rr
or

 |I
[f
]−
Q
[f
]|

1

−2

Error vs. Number of Points N. s=100, θ=0.2, C=Cα,b, ζ=4

QMC, α=2

QMC, α=3

QMC, α=4

QMC (pruned), α=3

QMC (pruned), α=4

(a) C =Cα,b

100 101 102 103 104 105 106 107

Number of Points N=bm

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Qu
ad

ra
tu

re
 E

rr
or

 |I
[f
]−
Q
[f
]|

1

−2

Error vs. Number of Points N. s=100, θ=0.2, C=1, ζ=4

QMC, α=2

QMC, α=3

QMC, α=4

QMC (pruned), α=3

QMC (pruned), α=4

(b) C = 1

Fig. 2: Convergence of QMC approximation for the SPOD integrand (17) in s = 100

dimensions with interlacing parameter α = 2,3,4, with and without pruning.

Page:13 job:gantner macro:svmult.cls date/time:18-Sep-2014/14:21

14 Robert N. Gantner and Christoph Schwab

100 101 102 103 104 105 106 107

Number of Points N=bm

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Qu
ad

ra
tu

re
 E

rr
or

 |I
[f
]−
Q
[f
]|

1

−2

1

−4

Error vs. Number of Points N. s=100, θ=0.1, C=0.1, ζ=2

α=2

α=3

α=4

(a) s = 100, ζ = 2

100 101 102 103 104 105 106 107

Number of Points N=bm

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Qu
ad

ra
tu

re
 E

rr
or

 |I
[f
]−
Q
[f
]|

1

−2

1

−4

Error vs. Number of Points N. s=100, θ=0.1, C=0.1, ζ=4

α=2

α=3

α=4

(b) s = 100, ζ = 4

100 101 102 103 104 105 106 107

Number of Points N=bm

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Qu
ad

ra
tu

re
 E

rr
or

 |I
[f
]−
Q
[f
]|

1

−2

1

−4

Error vs. Number of Points N. s=1000, θ=0.1, C=0.1, ζ=2

α=2

α=3

α=4

(c) a = 1000, ζ = 2

100 101 102 103 104 105 106 107

Number of Points N=bm

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Qu
ad

ra
tu

re
 E

rr
or

 |I
[f
]−
Q
[f
]|

1

−2

1

−4

Error vs. Number of Points N. s=1000, θ=0.1, C=0.1, ζ=4

α=2

α=3

α=4

(d) s = 1000, ζ = 4

Fig. 3: Convergence of QMC approximation to (20) for the product weight integrand

(19) in s = 100,1000 dimensions with interlacing parameter α = 2,3,4.

100 101 102 103 104 105 106 107

Number of Points N=bm

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Qu
ad

ra
tu

re
 E

rr
or

 |I
[f
]−
Q
[f
]|

1

−2

1

−4

Error vs. Number of Points N. s=100, θ=0.1, C=0.1, ζ=2

α=2

α=3

α=4

(a) ζ = 2

100 101 102 103 104 105 106 107

Number of Points N=bm

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Qu
ad

ra
tu

re
 E

rr
or

 |I
[f
]−
Q
[f
]|

1

−2

1

−4

Error vs. Number of Points N. s=100, θ=0.1, C=0.1, ζ=4

α=2

α=3

α=4

(b) ζ = 4

Fig. 4: Convergence of QMC approximation for the SPOD weight integrand (17) in

s = 100 dimensions with interlacing parameter α = 2,3,4.

Page:14 job:gantner macro:svmult.cls date/time:18-Sep-2014/14:21

Computational Higher Order Quasi-Monte Carlo Integration 15

Acknowledgements This work is supported by the Swiss National Science Foundation (SNF)

under project number 200021 149819 and by the European Research Council (ERC) under FP7

Grant AdG247277. Work of CS performed in part while CS visited ICERM / Brown University in

September 2014; the excellent ICERM working environment is warmly acknowledged.

References

1. Cools, R., Kuo, F.Y., Nuyens, D.: Constructing embedded lattice rules for multivariable integra-

tion. SIAM J. Sci. Comput. 28(6), 2162–2188 (electronic) (2006). DOI 10.1137/06065074X

2. Dick, J.: The decay of the Walsh coefficients of smooth functions. Bull. Aust. Math. Soc. 80(3),

430–453 (2009). DOI 10.1017/S0004972709000392

3. Dick, J., Gia, Q.T.L., Schwab, C.: Higher-order quasi-Monte Carlo integration for holomorphic,

parametric operator equations. Tech. Rep. 2014-23, Seminar for Applied Mathematics, ETH

Zürich (2014)

4. Dick, J., Kuo, F., Gia, Q.T.L., Nuyens, D., Schwab, C.: Higher order QMC Galerkin discretiza-

tion for parametric operator equations. SIAM J. Numerical Analysis (submitted 2013)

5. Dick, J., Pillichshammer, F.: Digital nets and sequences. Cambridge University Press, Cam-

bridge (2010). DOI 10.1017/CBO9780511761188

6. Goda, T., Dick, J.: Construction of interlaced scrambled polynomial lattice rules of arbitrary

high order. arXiv preprint arXiv:1301.6441 (2013)

7. Kuo, F.Y.: Component-by-component constructions achieve the optimal rate of convergence

for multivariate integration in weighted Korobov and Sobolev spaces. J. Complexity 19(3),

301–320 (2003). DOI 10.1016/S0885-064X(03)00006-2

8. Kuo, F.Y., Schwab, C., Sloan, I.H.: Quasi-Monte Carlo methods for high-dimensional integra-

tion: the standard (weighted Hilbert space) setting and beyond. The ANZIAM Journal 53, 1–37

(2011). DOI 10.1017/S1446181112000077

9. Niederreiter, H.: Random number generation and quasi-Monte Carlo methods, CBMS-NSF

Regional Conference Series in Applied Mathematics, vol. 63. Society for Industrial and Applied

Mathematics (SIAM), Philadelphia, PA (1992). DOI 10.1137/1.9781611970081

10. Nuyens, D., Cools, R.: Fast algorithms for component-by-component construction of rank-

1 lattice rules in shift-invariant reproducing kernel Hilbert spaces. Math. Comp. 75(254),

903–920 (electronic) (2006). DOI 10.1090/S0025-5718-06-01785-6

11. Nuyens, D., Cools, R.: Fast component-by-component construction, a reprise for different

kernels. In: Monte Carlo and quasi-Monte Carlo methods 2004, pp. 373–387. Springer, Berlin

(2006). DOI 10.1007/3-540-31186-6 22

12. Rader, C.: Discrete Fourier transforms when the number of data samples is prime. Proceedings

of the IEEE 3(3), 1–2 (1968)

13. Sloan, I.H., Kuo, F.Y., Joe, S.: Constructing randomly shifted lattice rules in weighted Sobolev

spaces. SIAM J. Numer. Anal. 40(5), 1650–1665 (2002). DOI 10.1137/S0036142901393942

14. Sloan, I.H., Reztsov, A.V.: Component-by-component construction of good lattice rules. Math.

Comp. 71(237), 263–273 (2002). DOI 10.1090/S0025-5718-01-01342-4

Page:15 job:gantner macro:svmult.cls date/time:18-Sep-2014/14:21

Recent Research Reports

Nr. Authors/Title

2014-15 Ch. Schwab
Exponential convergence of simplicial <i>hp</i>-FEM for <i>H</i> ¹-functions
with isotropic singularities

2014-16 P. Grohs and S. Keiper and G. Kutyniok and M. Schaefer
α-Molecules

2014-17 A. Hiltebrand and S. Mishra
Efficient computation of all speed flows using an entropy stable shock-capturing
space-time discontinuous Galerkin method

2014-18 D. Conus and A. Jentzen and R. Kurniawan
Weak convergence rates of spectral Galerkin approximations for SPDEs with
nonlinear diffusion coefficients

2014-19 J. Doelz and H. Harbrecht and Ch. Schwab
Covariance regularity and H-matrix approximation for rough random fields

2014-20 P. Grohs and S. Hosseini
Nonsmooth Trust Region Algorithms for Locally Lipschitz Functions on Riemannian
Manifolds

2014-21 P. Grohs and A. Obermeier
Optimal Adaptive Ridgelet Schemes for Linear Transport Equations

2014-22 S. Mishra and Ch. Schwab and J. Sukys
Multi-Level Monte Carlo Finite Volume methods for uncertainty quantification of
acoustic wave propagation in random heterogeneous layered medium

2014-23 J. Dick and Q. T. Le Gia and Ch. Schwab
Higher order Quasi Monte Carlo integration for holomorphic, parametric operator
equations

2014-24 C. Sanchez-Linares and M. de la Asunci�on and M. Castro and S. Mishra and J. Šukys
Multi-level Monte Carlo finite volume method for shallow water equations with
uncertain parameters applied to landslides-generated tsunamis

	 Computational Higher Order Quasi-Monte Carlo Integration
	Introduction
	Interlaced Polynomial Rank-1 Lattice Rules
	Definitions
	Worst-Case Error Bound

	Component-by-Component Construction
	Product Weights
	SPOD Weights
	Efficient Implementation
	Algorithms

	Implementation Considerations
	Walsh Coefficient Bound
	Pruning

	Results
	Model Problems
	Validation of Work Bound
	Pruning and Adapting the Walsh Coefficient Bound
	Higher-Order Convergence

	References

