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Exponential convergence of simplicial hp-FEM

for H1-functions with isotropic singularities ∗

Ch. Schwab

Abstract For functions u ∈ H1(Ω) in a bounded polyhedron Ω ⊂ Rd , d = 2,3,

which are analytic in Ω\S with point singularities concentrated at the set S ⊂ Ω
consisting of a finite number of points in Ω , we prove exponential rates of con-

vergence of hp-version continuous Galerkin finite element methods on families of

regular, simplicial meshes in Ω . The simplicial meshes are assumed to be geomet-

rically refined towards S and to be shape regular, but are otherwise unstructured.

1 Introduction

Many nonlinear PDEs exhibit solutions with are analytic but exhibit isolated point

singularities at a set S . We mention only nonlinear Schrödinger equations with self-

focusing, density functional models in electron structure calculations (eg. [8, 2, 4]

and the references there), nonlinear parabolic PDEs with critical growth (eg. [15]

and the references there, or continuum models of crystalline solids with isolated

point defects (eg. [16] and the references there).

We prove an exponential convergence result for C0-conforming hp-FEM on reg-

ular, simplicial mesh families with isotropic, geometric refinement towards the sin-

gular point(s) c ∈ S . These meshes are in addition required to be shape-regular.

This type of mesh arises for example in adaptive bisection-tree refinements. Specif-

ically, for singular solutions u ∈ H1(Ω) where Ω ⊂ Rd , d = 2,3 belonging to a

countably normed space with radial weights introduced in [6], we construct a con-

tinuous, piecewise polynomial interpolant Ihpu which exhibits exponential conver-

gence: there exist constants b,C > 0 which depend on Ω and on u, in general, such

that

‖u− Ihpu‖H1(Ω) ≤C exp(−bN1/(d+1)) . (1)
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Here, d = 2,3 denotes the space dimension and N denotes the number of degrees

of freedom in the hp-FE approximation. This rate coincides, in the cases d = 1,2,

with the bounds obtained in [9, 10] for corner singularities on structured geometric

meshes, and in space dimension d = 3 generalizes the hp-approximations in [17,

Sec. 5.2.2] in the case of vertex singularities to unstructured, tetrahedral meshes

with geometric refinement towards S .

The structure of the note is as follows: in Section 2, we introduce a model prob-

lem, the geometric assumptions on the singularities, and precise the analytic regu-

larity in countably normed, weighted Sobolev spaces with radial weight functions.

In Section 3, we introduce the hp-version FEM; we specify in particular the assump-

tions on the simplicial, geometric meshes, and on the elemental polynomial degrees,

and on the definition of the hp FE spaces. Section 4 contains statement and proof of

the exponential convergence bound in H1(Ω) on regular, simplicial geometric mesh

families.

2 Analytic Regularity

Analytic regularity is characterized in countably normed weighted Sobolev spaces

which have been introduced and used in exponential convergence estimates in a

number of references; we only mention [9, 10, 1, 11, 12, 6] and the references

there. Here, we denote by S ⊂ Ω the set of singular points c; we consider solutions

u ∈ H1(Ω) which are smooth in Ω\S so that the singular support of u coincides

with S . We work under the following separation assumption on S .

The singular set S consist of a finite number of isolated points c ∈ Ω . (2)

Assumption (2) implies ε(Ω ,S ) := min{dist(c,c′) : c,c′ ∈ S ,c 6= c′} > 0, and

allows to partition the set Ω into |S | many disjoint neighborhoods ωc of the singu-

larities c ∈ S . We set ΩS :=
⋃

c∈S ωc and denote Ω0 := Ω\⋃c∈S ωc.

We characterize analytic regularity of singular solutions by weighted Sobolev

spaces. To define these, we introduce distance functions:

rc(x) = dist(x,c) , x ∈ Ω , c ∈ S . (3)

With c ∈ S we collect all singular exponents βc ∈ R in the “multi-exponent”

β = {βc : c ∈ S } ∈ R|S | . (4)

We assume (β > s and β ± s understood componentwise for s ∈ R) [Dist. 2d and

3d]

b :=−1−β ∈ (0,1/2) , ie. −1 > β > −3/2 . (5)

Consider the semi-norms (cp. [6, Definition 6.2 and Equation (6.9)], [1] and [11]),
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|u|2
Mk

β
(Ω)

= |u|2
Hk(Ω0)

+ ∑
c∈S

∑
α∈Nd

0
|α|=k

∥∥r
βc+|α|
c D

α u
∥∥2

L2(ωc)
, k ∈ N0 .

(6)

We define the norm ‖u‖Mm
β
(Ω) by ‖u‖2

Mm
β
(Ω) = ∑

m
k=0 |u|2Mk

β
(Ω)

. Here, |u|Hm(Ω0) is the

usual Sobolev semi-norm of integer order m on Ω0, and D
α denotes the partial

derivative of order α ∈ Nd
0 . The space Mm

β (Ω) is the weighted Sobolev space ob-

tained as the closure of C∞
0 (Ω) with respect to the norm ‖·‖Mm

β
(Ω). Under (5), for

Ω ⊂ R3 holds M2
β (Ω) ⊂ H1+θ (Ω) for some θ > 1/2: choose θ(β ) = 1−βm − ε

in [11, Thm. 3.5] with βm :=−1−βc ∈ (0,1/2), and 0 < ε < 1/2−βm = 3/2+βc.

In dimension d = 2, ie. for Ω ⊂ R2, we find under (5) that M2
β (Ω)⊂ H1+θ (Ω) for

some θ >, so that in any case M2
β (Ω) ⊂ C0(Ω) with continuous embedding. With

Mk
β (Ω) in (6), the analytic class in [6, Definition 6.3] reads

Aβ (S ;Ω) =

{
u ∈

⋂

k≥0

Mk
β (Ω) : ∃Cu > 0 s.t. |u|

Mk
β
(Ω) ≤Ck+1

u k! ∀k ∈ N0

}
. (7)

Several application problems have solutions in this class, cp. [8] for electron struc-

ture models, [1, 6] for elliptic problems in polyhedral domains.

3 hp-Finite Element spaces

For two parameters 0 < κ,σ < 1, we consider families Mκ,σ = {M (ℓ)}ℓ≥1 of geo-

metric meshes M (ℓ) ∈Mκ,σ . The meshes M ∈Mκ,σ are regular partitions of the

polyhedron Ω into a finite number of open simplices (triangles in space dimension

d = 2, tetrahedra in space dimension d = 3) T ∈ M (ℓ). Here, regular means that

for every M ∈ Mκ,σ , the intersections of closures of any two distinct T,T ′ ∈ M

are either empty, a vertex v, an entire edge e or an entire face f . We assume the

family Mσ to be uniformly κ-shape regular: for a simplex T ∈ M (ℓ), we denote

by hT = diam(T ) its diameter and by ρT = sup{ρ > 0|Bρ ⊂ T}, the radius of the

largest ball Bρ that can be inscribed into T . For a regular, simplicial mesh M , the

(nondimensional) shape parameter κ(M ) = max{hT/ρT |T ∈ M } is well defined.

A collection {M (ℓ)}ℓ≥1 of regular, simplicial meshes is called κ-shape regular, if

supℓ≥1 κ(M (ℓ))≤ κ < ∞.

Each simplex T ∈ Mℓ is the image of the reference simplex, defined by T̂ :=
{x̂ ∈ R3 : x̂i > 0,∑d

i=1 x̂i < 1}, under the affine element map FT , ie.

T = FT (T̂ ), T ∋ x = FT (x̂) = BT x̂+bT , x̂ ∈ T̂ . (8)

For a regular, simplicial triangulation M of Ω with κ(M ) < ∞, the affine el-

ement maps are nondegenerate: the jacobians BT = DFT in (8) are nonsingular,
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and ‖BT‖F ≤ κ(M ), see, eg., [3, Sec. II]. The reference simplex T̂ is contained

in the unit cube K̂ = (0,1)d ; with each T ∈ M , we associate a parallelepiped

via KT = FT (K̂) and assume that KT ⊂ Ω . Here, for T ∈ M the local polyno-

mial approximation space Pp(T ) = span{xα : |α| ≤ p} is the linear space of all

multivariate polynomials on T ∈ M whose total degree does not exceed p. The

space Pp(T ) is invariant under the affine mapping FT , i.e. u ∈ Pp(T ) if and only if

û := u◦FT ∈ Pp(T̂ ).
On parallelepipeds K, the polynomial space Qp(K) is the affine image of Qp(K̂),

K̂ = Îd with Î = (0,1), given by

Qp(K̂) = span{ x̂α : 0 ≤ αi ≤ p, 1 ≤ i ≤ d } . (9)

For each parallelepiped KT associated with a tetrahedron T ∈ M (resp. a triangle

if Ω ⊂ R2), with associated affine element mapping FT : K̂ → KT and polynomial

degree p ≥ 0, we set

Qp(KT ) =
{

v ∈ L2(KT ) : (v|KT
◦FT ) ∈Qp(K̂)

}
. (10)

For polynomial degree p ≥ 1, and for a family of regular, simplicial triangulations

M (ℓ) ∈Mκ,σ of Ω , we introduce the finite element spaces

Sp(M (ℓ)) =
{

u ∈ H1(Ω) : u|T ∈ Pp(T ), T ∈ M
(ℓ)

}
. (11)

hp-FEM are obtained when the level ℓ of geometric mesh refinement is tied to the

polynomial degree p.

Mesh layers A key ingredient in exponential convergence proofs of hp-FEM is

geometric mesh refinement towards the set S of singularities. We call a regular,

simplicial mesh family Mκ,σ = {M (ℓ)}ℓ≥1 σ -geometrically refined towards S ⊂
Ω if there exists 0 < σ < 1 such that for every T ∈ M (ℓ) : T ∩S = /0, ℓ = 1,2, ...
holds

0 < σ < ρ(T ;S ) :=
diam(T )

dist(T,S )
<

1

σ
. (12)

We tag members of a σ -geometric family Mκ,σ by a subscript σ , i.e. we write M
(ℓ)
σ .

Proposition 1. Consider a regular, nested and σ -geometrically refined, κ-shape

regular simplicial mesh family Mκ,σ in Ω . Then, all elements T ∈ M
(ℓ)
σ for every

ℓ≥ 1, can be grouped in mesh-layers: there exists a partition

⋃

ℓ≥1

M
(ℓ)
σ = L1

.∪ L2

.∪ .... (13)

and a constant c(Mκ,σ )≥ 1 with

∀k ≥ 1 : #(Lk)≤ c(Mκ,σ ) (14)

and such that, for every T ∈ Lk and every k ≥ 1,
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0 <
1

c(Mκ,σ )
≤ diam(T )

σ k
≤ c(Mκ,σ ) . (15)

Proof. The proof is by induction over ℓ.

Based on Proposition 1, for ℓ sufficiently large, and for any constant cT(κ) > 0

which is independent of ℓ, every mesh M
(ℓ)
σ ∈Mκ,σ may be partitioned into

M
(ℓ)
σ =O

(ℓ)
σ

.∪ T
(ℓ)
σ , (16)

where

O
(ℓ)
σ :=O

(ℓ−1)
σ

.∪ Lℓ = L1

.∪ L2

.∪ ...
.∪ Lℓ ,

and there exists cT > 0 being independent of ℓ such that for all ℓ holds

S ⊂
⋃

T∈T(ℓ)
σ

T , dist(S ,O(ℓ))≥ cTσ ℓ . (17)

The terminal layers T
(ℓ)
σ ⊂ M

(ℓ)
σ in (16) satisfy the following properties.

Proposition 2. There exists a constant cT(κ,σ) > 0 such that for every M
(ℓ)
σ ∈

Mκ,σ , the set T
(ℓ)
σ has the following properties: for all ℓ ≥ 1 holds (1) #(T

(ℓ)
σ ) ≤

cT(κ,σ), (2) ∀c∈C : |T(ℓ)
σ ∩ωc| ≤ cT(κ,σ)σdℓ, (3) ∀T ∈T

(ℓ)
σ : hT ≤ cT(κ,σ)σ ℓ.

4 Exponential Convergence

4.1 Statement of the Exponential Convergence Result

Theorem 1. Let u ∈ M2
−1−β (Ω) with weight vector β as in (5) in a bounded poly-

hedron Ω ⊂ Rd , d = 2,3.

Then, for every sequence Mκ,σ (S ) of nested, regular simplicial meshes in Ω
which are σ -geometrically refined towards S and which are κ shape-regular, there

exist continuous projectors Π
p
κ,σ : M2

−1−β (Ω)→ Sp(M
(p)
σ ) and constants b,C > 0

(depending on κ , Cu, du in (7) and on σ ) such that there holds the error bound

∥∥u−Π
p
κ,σ u

∥∥
H1(Ω)

≤C exp(−b
d+1
√

N) . (18)

Here, N = dim(Sp(M
(p)
σ )) = O(pd+1).
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4.2 Proof

The proof of the approximation result Theorem 1 is based on constructing the pro-

jectors Π
p
κ,σ ; our construction will proceed in several steps and we detail it for d = 3,

the case d = 2 being a (minor) modification. first, we review from [17, Section 5] a

family of univariate hp-projections with error bounds which are explicit in the poly-

nomial degree as well as in the regularity of the functions to be approximated. A cor-

responding family of polynomial projectors on the unit cube K̂ = (0,1)3 with analo-

gous consistency error bounds is then obtained as in [17, Section 5] by tensorization

and scaling. We shall use these bounds for a tetrahedron T ∈O
(ℓ)
σ ⊂ M

(ℓ)
σ ∈Mκ,σ

as follows. By Proposition 1, T ∈ Lk for some 1 ≤ k ≤ ℓ−1. The (up to orientation)

unique parallelepiped KT = FT (K̂) associated with T ∈ Lk has the same scaling

properties as T , in particular (15) also holds for KT . For u belonging to the analytic

class (7) with weight vector satisfying (5), u ∈ C0(Ω)∩C∞(Ω\S ). For T ∈O
(ℓ)
σ ,

the pullback ûT = u|KT
◦FT satisfies on K̂ the same analytic derivative bounds as

u|T ◦FT on T̂ (with larger constant Cu, depending on κ , but independent of ℓ and

of T ). The tensorized hp interpolation operator from [17] on K̂ is therefore well-

defined and allows to construct a polynomial approximation û
p
T ∈Qp(K̂) with ana-

lytic consistency error bounds on K̂; since T̂ ⊂ K̂, and since Qp(T̂ ) ⊂ Ppd(T̂ ), the

pushforwards of the restrictions û
p
T |T̂ under the affine mapping FT : T̂ → T will be

local polynomial approximations of degree pd with exponential convergence esti-

mates in H1(T ). Moreover, since the tensorized interpolant is nodally exact in the

vertices of K̂, and since the set of vertices of T̂ is a subset of the set of vertices of

K̂, the pushforwards of û
p
T |T̂ under FT are nodally exact in the vertices of T . By

the continuity of u ∈ Aβ (S ;Ω) on Ω\S , the resulting global, piecewise polyno-

mial interpolant is nodally exact (and, in particular, continuous) in all vertices of

T ∈ O
(p)
σ , but has polynomial jump discontinuities across edges and (in space di-

mension d = 3) faces of T ∈ O
(p)
σ which we remove by polynomial trace liftings,

preserving the exponential convergence estimates.

4.2.1 Univariate hp-Projectors and hp Error Bounds

Let I = (−1,1) be the unit interval. For any k ≥ 1, we write Hk(I) for the usual

Sobolev space endowed with norm ‖u‖Hk(I). For q ≥ 0, we denote by π̂q,0 : L2(I)→
Pq(I) the L2(I)-projection. The following Ck−1-conforming and univariate projector

has been constructed in [7, Section 8].

Lemma 1. For any p,k ∈ N with p ≥ 2k − 1, there is a projector π̂p,k : Hk(I) →
Pp(I) that satisfies (π̂p,ku)(k) = π̂p−k,0(u

(k)), and (π̂p,k)
( j)u(±1) := u( j)(±1), for

any j = 0, . . . ,k−1.

Moreover, there holds:

(i) For every k ∈ N, there exists a constant Ck > 0 such that
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∀u ∈ Hk(I) ,∀p ≥ 2k−1 : ‖π̂p,ku‖Hk(I) ≤Ck‖u‖Hk(I) . (19)

(ii)For integers p,k ∈ N with p ≥ 2k− 1, κ = p− k+ 1 and for u ∈ Hk+s(I) with

any k ≤ s ≤ κ there holds the error bound

‖(u− π̂p,ku)( j)‖2
L2(I) ≤

(κ − s)!

(κ + s)!
‖u(k+s)‖2

L2(I), j = 0,1, . . . ,k. (20)

We refer to [7, Proposition 8.4] and [7, Theorem 8.3], respectively, for proofs, and

further references.

4.2.2 Tensor projector on the unit cube

Based on the univariate projectors π̂p,k, we constructed in [17] polynomial projec-

tion operators on Id = (0,1)d by a) translation and scaling of the projectors π̂p,k to

(0,1) and b) by tensorization, as follows: for integers k ≥ 0 and d > 1, we define

Hk
mix(I

d) = Hk(I) ⊗·· ·⊗︸ ︷︷ ︸
d−times

Hk(I), (21)

where ⊗ denotes the tensor-product of separable Hilbert spaces. These spaces are

isomorphic to Bochner spaces, ie. Hk
mix(I

d)≃Hk(I;Hk
mix(I

d−1))≃Hk
mix(I

d−1;Hk(I)).
In Id of dimension d > 1 and for p ≥ 2k−1, we define the projector

Π̂ d
p,k =

d⊗

i=1

π̂
(i)
p,k : Hk

mix(I
d)→Qp(Id) (22)

where π̂
(i)
p,k denotes the univariate projector in Lemma 1, applied in coordinate 1 ≤

i ≤ d. For d,k ≥ 1 there exists a constant Ck,d > 0 such that for all p ≥ 2k−1 there

holds the stability bound

‖Π̂ d
p,kv‖

Hk
mix(I

d) ≤Ck,d‖v‖
Hk

mix(I
d) (23)

and ∥∥∥v− Π̂ d
p,kv

∥∥∥
Hk

mix(I
d)
≤Ck,d

d

∑
i=1

‖v− π̂
(i)
p,kv‖

Hk(I;Hk
mix(I

d−1)) . (24)

We choose throughout what follows k = 2 as in [17], and obtain from (24), (20)

Proposition 3. [17] Assume that the polynomial degree p ≥ 5. Then, for any inte-

gers 3 ≤ s ≤ p, and for v ∈ Hs+5(K̂), there holds

‖v− Π̂ 3
p,2v‖2

H2
mix(K̂)

.Ψp−1,s−1

s+5

∑
m=s

|v|2
m,K̂

(25)

where the constant implied in . is independent of s and of p, and where
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Ψq,r = 22(r+3)Γ (q+1− r)

Γ (q+1+ r)
, 0 ≤ r ≤ q . (26)

Moreover, Π̂ 3
p,2v is nodally exact in the vertices of K̂ = (0,1)3:

(Π̂ 3
p,2v)(x1,x2,x3) = v(x1,x2,x3) ∀xi ∈ {0,1} . (27)

4.2.3 Transformation Formula

For u ∈ Hk(Ω), and for a simplex T ∈ Mσ , ûT = u|T ◦FT ∈ Hk(T̂ ) for every k ≥ 0.

Quantitative bounds on derivatives under affine transformations FT in (8) are pro-

vided by the transformation formula (eg. [3, Section II.6.6]).

Lemma 2. Let G ⊂ Rd , d ≥ 2, denote a bounded polyhedron which is affine equiv-

alent to Ĝ via (8), ie. G = FT (Ĝ). For v ∈ Hk(G) and for any k ∈ N, the pullback

v̂T := v|G◦FT satisfies with |v|2m,T =∑|α|=m ‖Dα v‖2
L2(G)

and with the Frobeniusnorm

‖BT‖F of the matrix BT in (8) the bound

|v̂|
m,Ĝ ≤ dm‖BT‖m

F |det(BT )|−1/2|v|m,G . (28)

4.2.4 Element Interpolants

For any simplex T ∈O
(ℓ)
σ , the function u ∈ Aβ (S ;Ω) is analytic in the associated

parallelepiped KT ⊂ Ω . In T ∈ O
(ℓ)
σ , the polynomial approximation of u|T is ob-

tained by applying Proposition 3 to ûT := u|KT
◦FT :

∀T ∈O
(ℓ)
σ : u

p
T :=

(
Π̂ 3

p,2(u|KT
◦FT )

)
|
T̂
◦F

(−1)
T . (29)

With u
p
T as in (29) we define the hp-base interpolant Ĩp in Oℓ

σ by

∀T ∈O
ℓ
σ ⊂ M

ℓ)
σ : (Ĩpu)|T := u

p
T . (30)

The bound (17) with cT > 0 sufficiently large, independent of ℓ ensures that there

exists c(κ,σ)> 0 such that the associated KT satisfies

∀ℓ ∈ N ∀T ∈O
(ℓ)
σ : dist(KT ,S )/diam(KT )≥ 1/c . (31)

4.2.5 Exponential Convergence in Broken Sobolev Norms

Proposition 4. For u∈ Aβ (S ;Ω) with (5), there are b,C > 0 (depending on u) such

that for every p ≥ 1 and for Ĩp in (30) holds
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‖u− Ĩpu‖
H1(O

(p)
σ )

≤C exp(−bp) . (32)

Here C > 0 depends on u and σ , but is independent of p, and H1(O
(ℓ)
σ ) denotes the

broken H1 space over O(ℓ), with corresponding norm.

Proof. Since S consists of finitely many singular points c, by localization and

superposition, we may assume wlog. S = {c} and denote by β = βc > −2. For

1 ≤ k ≤ ℓ < p, consider a simplex T ∈ Lk ∩ωc ⊂ M
(p)
σ and the associated paral-

lelepiped KT = FT (K̂)⊃ T . It satisfies 0 < σ < rc(x)|KT
/σ k < 1/σ . By assumption,

KT ⊂ Ω and, by (17), dist(KT ,S ) ≥ cTσ ℓ. Then, for u ∈ Aβ (S ;Ω) and for this

T ∈ Lk, ûT := u|KT
◦FT is analytic in K̂ and satisfies, by (28) with G = KT and

Ĝ = K̂,

∀m ∈ N : |ûT |m,K̂ ≤ dm‖BT‖m
F |det(BT )|−1/2|u|m,KT

.

For u ∈ Aβ (S ;Ω) and T ∈ Lk, we obtain for |u|m,KT
using (12) and (15)

|u|2m,KT
= ‖Dmu‖2

L2(KT )
. ‖r

β+m
c σ−k(β+m)Dmu‖2

L2(KT )

≤ σ−2k(β+m)‖r
β+m
c Dmu‖2

L2(KT )
≤ σ−2k(β+m)C

2(m+1)
u (m!)2 .

We define u
p
T ∈Qp(T )⊂ Ppd(T ) as in (29). From (25), for every integer 3 ≤ s ≤ p

and with Ψq,r as in (26) and for j = 0,1,2,

‖D j(û− û
p
T )‖2

L2(T̂ )
≤ ‖D j(û− û

p
T )‖2

L2(K̂)
≤Ψp−1,s−1

s+5

∑
m=s

|ûT |2m,K̂
.

Using the κ-shape regularity of T ∈Lk ⊂M
(p)
σ ∈Mκ,σ , we find ‖BT‖F ≤ κhT (eg.

[3, (Chap. II, (6.9)]) and, by (15) and (28), that hT . κσ k so that for every m ∈ N

|ûT |2m,K̂
≤ (κdσ k)2m

|det(BT )|
|u|2m,KT

≤ (κdσ k)2m

|det(BT )|
σ−2k(β+m)C

2(m+1)
u (m!)2 .

We obtain for j = 0,1,2 the bound

‖D̂ j(û− û
p
T )‖2

L2(T̂ )
≤Ψp−1,s−1

s+5

∑
m=s

(κdσ k)2m

|det(BT )|
σ−2k(β+m)C

2(m+1)
u (m!)2 .

Transporting to T = FT (T̂ ) ∈ Lk, we find for βc =−1−bc and j = 0,1, ...

‖D j(u−u
p
T )‖2

L2(T )
. Ψp−1,s−1

s+5

∑
m=s

(κdσ k)2(m− j)σ−2k(β+m)C
2(m+1)
u (m!)2

. Ψp−1,s−1(κdCu)
2sσ2k(1+bc− j)Γ (s+6)2 .

(33)
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For T ∈O(ℓ), we define the piecewise polynomial interpolant Ĩpu|T by (29). Then

Ĩpu coincides with u in the vertices of all T ∈O(ℓ) and is in particular continuous in

these vertices; it is, however, in general discontinuous across edges and faces.

Using the finite cardinality (14), and summing the bound (33) with j = 0,1 over

layers L1, ...,Lp, we obtain with C̄ :=Cuκd and βc =−1−bc, 0 < bc < 1

‖u− Ĩpu‖
H1(O(p)) ≤C(κ,σ)

p

∑
k=1

Ψp−1,s−1C̄2sσ2kbcΓ (s+6)2 . (34)

Using [17, Lemma 5.9], we find that there exist b,C > 0 (depending on C̄ > 0 and

on κ and d) such that for every p ≥ 1 holds

min
1≤s≤p

{
Ψp−1,s−1C̄2sΓ (s+6)2

}
≤C2 exp(−2bp) . (35)

Inserting this bound into (34), summing the geometric series and absorbing a linear

factor of p into the exponential completes the proof.

4.2.6 Polynomial Trace Lifting in O
(p)
σ

By the nodal exactness (27), the hp base interpolant Ĩp constructed in (30) of Propo-

sition 4 is continuous in vertices of simplices T ∈O
(p)
σ , but has in general discon-

tinuities across interelement edges E ∈ ET of simplices T ∈ O
(p)
σ (in dimensions

d = 2,3) and across interelement faces F ∈ FT of simplices T ∈ O
(p)
σ (in dimen-

sion d = 3) with polynomial trace jumps [[Ĩp]]E and [[Ĩp]]F .

For each T ∈O
(p)
σ , the nodal exactness (27) of Ĩpu implies for each E ∈ ET that

[[Ĩpu]]E ∈ P
pd
0 (E) := (Ppd ∩H1

0 )(E), d = 2,3, and, for d = 3 and each F ∈ FT ,

[[Ĩpu]]F ∈ Ppd(F). We lift successively these polynomial trace jumps first for all

interelement edges E ∈ ET and, second, in dimension d = 3 also for all interelement

faces F ∈ FT , for every T ∈ O
(p)
σ . Since T ∈ O

(p)
σ ⊂ M

(p)
σ ∈ Mκ,σ is κ shape-

regular, so are all F ∈ FT . For E ∈ ET , let FE ∈ FT denote any face in FT with

E ⊂ ∂F .

We recapitulate from [14, Lemma 15, Thm. 1] the required lifting and the sta-

bility estimates. Consider the reference simplex T̂ ⊂ Rd , d = 2,3. Given a piece-

wise polynomial function ĝp of degree p on each F̂ ∈ F
T̂

that is continous on

∂ T̂ , in [14, Lemma 15, Thm. 1], a polynomial trace lifting v̂p = L
T̂ ,∂̂T

(ĝp) ∈
Pp(T̂ ) is constructed which satisfies on the reference simplex T̂ in space di-

mension d = 2,3 the bound ‖v̂p‖H1(T̂ ) ≤ Ĉ‖ĝp‖H1/2(∂ T̂ ) (with Ĉ > 0 indepen-

dent of p). As H1/2(T̂ ) = (L2(T̂ ),H1(T̂ ))1/2, we have the interpolation inequality

‖ĝp‖H1/2(∂ T̂ ) ≤ Ĉ‖ĝp‖1/2

L2(∂ T̂ )
‖ĝp‖1/2

H1(∂ T̂ )
. With the polynomial inverse inequality on

each face F̂ ⊂ ∂ T̂ we get (with a possibly different constant Ĉ > 0 which is inde-

pendent of p)
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‖v̂p‖H1(T̂ ) ≤ Ĉp‖ĝp‖L2(∂ T̂ ) . (36)

Squaring this and scaling T̂ to T = FT (T̂ ) ∈O
(p)
σ we find

‖LT,∂T (gp)‖2
L2(T )+h2

T‖D1
LT,∂T (gp)‖2

L2(T ) ≤C(κ)p2hT‖gp‖2
L2(∂T ) . (37)

Iterating (36) twice, from Ê ⊂ ∂ F̂ to F̂ ⊂ ∂ T̂ to T̂ , we obtain for ĝp ∈ P
p
0(Ê) a

polynomial edge lifting L̂
T̂ ,Ê(ĝp) ∈ Pp(T̂ ) on the reference simplex T̂ ⊂ R3 with

‖L̂T̂ ,Ê(ĝp)‖H1(T̂ ) ≤ Ĉp2‖ĝp‖L2(Ê) . (38)

Squaring (38) and scaling to T = FT (T̂ ) ∈O
(p)
σ yields for gp ∈ P

p
0(E) on E ∈ ET

h−2
T ‖LT,E(gp)‖2

L2(T )+‖D1
LT,E(gp)‖2

L2(T ) ≤C(κ)p4‖gp‖2
L2(E) . (39)

Let now d = 3 and let F,F ′ ∈ FT be two distinct faces which share edge Ē =
F ∩ F ′. Using (36) in dimension d = 2 and scaled to T , we lift gp = [[Ĩpu]]E ∈
P

pd
0 (E) twice, once into F and once into F ′, resulting in a vp ∈ C0(F ∪F ′), vp ∈

Ppd(F)∪Ppd(F ′), and vp |∂F∪F ′= 0 which satisfies (37) with F in place of T . We

may therefore extend this continuous, piecewise polynomial function vp from F ∪F ′

by zero to a function ṽp ∈C0(∂T ) which is, on each F ∈ FT , a polynomial of total

degree at most pd. There exists a lifting LT,F(ṽp) ∈ Ppd(T ) such that for each

F ∈ FT we have LT,F(ṽp) |F= vp |F on F ∈ FE , (LT,F(ṽp) |F) |E≡ gp on E and

such that (39) holds. For each edge E in O
(p)
σ , we lift the polynomial jump in this

way into all T ∈O
(p)
σ for which E ∈ ET by the edge-lifting operator

LE(gp) := ∑
T :E∈ET

LT,E(gp) . (40)

By κ shape regularity, #{T ∈O
(p)
σ : E ∈ ET} is bounded independently of p and of

the particular edge E by an absolute constant depending only on κ . With Ĩp in (30),

we define

Ĭpu := Ĩpu−∑
E

LE([[Ĩ
pu]]E) . (41)

Then, Ĭpu is continuous across edges E ∈ ET for every T ∈ O
(p)
σ , and [[Ĭpu]]F ∈

P
pd
0 (F) := (Ppd ∩H1

0 )(F) for all F ∈ FT .

We next lift, for each face F ∈FT , the face jump [[Ĭpu]]F ∈ P
pd
0 (F) by extending

first by zero to all other faces F ′ ∈ FT\{F}, then lift polynomially by referring to

[14, Theorem 1]. By construction, this lifting LT,F([[Ĭ
pu]]F) ∈ Pp(T ) will vanish

on all F ′ ∈ FT : F ′ 6= F . For each face F , we repeat this lifting at most twice for

T,T ′ ∈O
(p)
σ such that F ∈ FT ∩FT ′ . We define the continuous interpolant
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Ipu := Ĭpu− ∑
F∈FT :T∈O(p)

σ

LT,F([[Ĭ
pu]]F)

= Ĩpu− ∑
E∈ET :T∈O(p)

σ

LE([[Ĩ
pu]]E)− ∑

F∈FT :T∈O(p)
σ

LT,F([[Ĭ
pu]]F) .

(42)

To verify exponential convergence in submesh O
(p)
σ , we estimate in (42)

‖u− Ipu‖
H1(O

(p)
σ )

≤ ‖u− Ĩpu‖
H1(O

(p)
σ )

+

∥∥∥∥∥∥ ∑
E∈ET :T∈O(p)

σ

LE([[Ĩ
pu]]E)

∥∥∥∥∥∥
H1(O

(p)
σ )

+

∥∥∥∥∥∥ ∑
F∈FT :T∈O(p)

σ

LT,F([[Ĭ
pu]]F)

∥∥∥∥∥∥
H1(O

(p)
σ )

.

(43)

The first term was bound in Prop. 4. We bound the second term.

For T ∈O
(p)
σ , we write, using [[u]]E = 0 for E ∈ ET

h−2
T ‖LT,E([[Ĩ

pu]]E)‖2
L2(T )+‖D1

LT,E([[Ĩ
pu]]E)‖2

L2(T )

≤ C(κ)p4‖[[Ĩpu]]E‖2
L2(E) =C(κ)p4‖[[u− Ĩpu]]E‖2

L2(E) .
(44)

The multiplicative trace inequality implies for a κ-shape regular simplex T ⊂ Rd

with diameter hT that for every F ∈ FT and for every ϕ ∈ H1(T ) holds

‖ϕ|F‖2
L2(F) ≤C(κ)

(
h−1

T ‖ϕ‖2
L2(T )+hT‖D1ϕ‖2

L2(T )

)
. (45)

Iterating this for T ∈O
(p)
σ from E ∈ ET to F ∈ FT gives, for ϕ ∈ H2(T ),

‖ϕ|E‖2
L2(E) . h−2

T ‖ϕ‖2
L2(T )+‖D1ϕ‖2

L2(T )+h2
T‖D2ϕ‖2

L2(T ) (46)

where the implied constant depends only on κ .

Using (46) with ϕ = (u− Ĩpu)|T = u|T −u
p
T ∈ H2(T ) for T ∈O

(p)
σ in (44) gives

h−2
T ‖LT,E([[Ĩ

pu]]E)‖2
L2(T )+‖D1

LT,E([[Ĩ
pu]]E)‖2

L2(T ). p4
2

∑
j=0

h
2( j−1)
T ‖D j(u−u

p
T )‖2

L2(T ) .

Using (33) and that hT ∼ σ k for T ∈ Lk we obtain

‖LT,E([[Ĩ
pu]]E)‖2

H1(T )
. p4Ψp−1,s−1(κdCu)

2sΓ (s+6)2σ2kbc . (47)

Finally, we bound the third term in (43), ie. ‖LT,F([[Ĭ
pu]]F)‖H1(T ) for F ∈FT . Since

LT,F([[Ĭ
pu]]F) = 0 on ∂T\F , by the Poincaré inequality in {v∈H1(T ) : v|∂T\F = 0}

it suffices to bound ‖D1LT,F([[Ĭ
pu]]F)‖L2(T ). Since [[u]]F = 0, using (41) we obtain
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h−1
T ‖LT,F([[Ĭ

pu]]F)‖L2(T ). ‖D1
LT,F([[Ĭ

pu]]F)‖L2(T )= ‖D1
LT,F([[u− Ĭpu]]F)‖L2(T ) .

We estimate further, using the stability of the lifting LT,F and (45),

‖D1LT,F([[u− Ĭpu]]F)‖2
L2(T )

. p2‖u− Ĭpu‖2
L2(F)

. p2(h−1
T ‖u− Ĭpu‖2

L2(T )
+hT‖D1(u− Ĭpu)‖2

L2(T )
) .

(48)

Recalling (41), we bound for j = 0,1

‖D j(u− Ĭpu)‖2
L2(T )

= ‖D j(u− Ĩpu+∑E LT,E([[Ĩ
pu]]E))‖2

L2(T )

. ‖D j(u− Ĩpu)‖2
L2(T )

+∑E ‖D j(LT,E([[Ĩ
pu]]E))‖2

L2(T )
.

We use (33) for the first term, and (47) for the second term to conclude for j = 0,1

‖D j(u− Ĭpu)‖2
L2(T ) . p4Ψp−1,s−1(κdCu)

2sΓ (s+6)2σ2k(1+bc− j) .

Using again that T ∈ Lk satisfies hT ∼ σ k, we insert into (48) and arrive at

‖D1
LT,F([[u− Ĭpu]]F)‖2

L2(T ) . p6Ψp−1,s−1(κdCu)
2sΓ (s+6)2σ2kbc .

Inserting this and the bound (47) into (43), we obtain for ‖u− IpU‖
H1(O

(p)
σ )

ex-

actly once more the bound (34) (with a slightly higher power of p). Absorbing the

polynomial factor into the exponential, we conclude the exponential error bound

‖u− Ipu‖
H1(O

(p)
σ )

≤C exp(−bp) (49)

for the continuous hp-interpolant Ipu defined in (42) in O
(p)
σ using again (35).

4.2.7 Approximation in T
(ℓ)
σ

Under (5), for Ω ⊂R3 holds M2
β (Ω)⊂ H1+θ (Ω) for some θ > (d−2)/2, d = 2,3.

From Proposition 2 items (1)-(3), the collections {T ∈ T
(p)
σ : T ∈ ωc}, c ∈ S have

uniformly bounded (w.r. to p) cardinality and shape regularity. Then u ∈ H1+θ (Ω)

and for a Clément-type, continuous, piecewise linear quasiinterpolant Π
(p)
T

u in

T
(p)
σ ∩ωc

‖u−Π
(p)
T

u‖
H1(T

(p)
σ ∩ωc)

≤ c(κ,σ)σθ p =C exp(−b′p) . (50)

Combining (49) and (50) and applying a bounded (uniformly w.r. to p by Prop. 2,

item (1)) number of further polynomial edge- and face liftings at the interface of

O
(p)
σ and T

(p)
σ completes the construction of Ihp in (1) and, hence, the proof.
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5 Concluding Remarks

We have proved the exponential convergence rate (18) for continuous hp-FE ap-

proximations κ shape-regular, simplicial meshes with geometric refinement tof an-

alytic functions with isolated point singularities at a set S in a bounded domain

D ⊂ Rd , d = 1,2,3. Apart from κ-shaperegularity and σ -geometric mesh refine-

ment the proof did not assume further structural assumptions on the triangulations.

In particular, simplicial partitions which are obtained by successive bisection tree

refinement in the course of adaptive subdivisions are admissible. The approxima-

tion results imply the exponential convergence rate exp(−b
3
√

N) for second order,

elliptic PDEs in polygons D ⊂R2 (where S denotes the set of corners of D) which

are considered, for example, in [1, 7, 12]. Theorem 1 also implies the exponential

convergence rate exp(−b
4
√

N) for hp-approximations of electron densities in DFT,

due to the quasioptimality of Galerkin approximations shown, for example, in [2, 4]

and the references there. In this application, C denotes the set of nuclei, whose

centers c ∈ S are assumed known. Unlike other approaches such as plane waves,

hp-approximations do not, apriori, impose any specific functional form of the elec-

tron densities. Due to the locality of approximation and the separation (2) of the

points c ∈ S , we may apply Theorem 1 in each neighborhood ωc implying that the

total number of degrees of freedom to achieve accuracy ε > 0 in the norm H1(D)
scales as O(#(S )| logε|4), ie. linear scaling in the number #(S ) of nuclei and poly-

logarithmic scaling in the target accuracy ε . This is analogous to what is reported

recently for discontinuous Galerkin discretizations in [13], where Proposition 4 can

be used a starting point of proof of an exponential convergence result on tetrahe-

dral meshes; for geometric meshes of hexahedra, analogous results can be found in

[17, Sec. 5.2.2]. Exponentially convergence quadrature algorithms for the (singu-

lar) electron-pair integrals are available in [5]. The results in the present note are

confined to space dimension d ≤ 3. The approach generalizes, however, directly to

hp-approximations of point singularities in any dimension d with exponential rate

exp(−b
d+1
√

N). Likewise, the result will remain true for linear polynomial degree

vectors and, more generally, for degree vectors of bounded variation as introduced

in [17]. The details will be reported elsewhere.
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11. B. Q. Guo and I. Babuška. Regularity of the solutions for elliptic problems on nonsmooth

domains in R3. I. Countably normed spaces on polyhedral domains. Proc. Roy. Soc. Edinburgh

Sect. A, 127(1):77–126, 1997.

12. B. Q. Guo and C. Schwab. Analytic regularity of Stokes flow on polygonal domains in count-

ably weighted Sobolev spaces. J. Comp. Appl. Math. 119 (2006) 487–519.

13. L. Lin, L. Ying and W. E. Adaptive local basis set for Kohn-Sham density functional theory

in a discontinuous Galerkin framework I: Total energy calculation Journ. Comp. Phys. (2013)

14. R. Munoz-Sola. Polynomial liftings on a tetrahedron and applications to the hp-FEM in three

dimensions. SIAM J. Numer. Anal. 34(1997) pp. 282-314.

15. Samarskii, Alexander A. and Galaktionov, Victor A. and Kurdyumov, Sergei P. and Mikhailov,

Alexander P. Blow-up in quasilinear parabolic equations de Gruyter Expositions in Mathe-

matics, 19 (1995) (Translated from the 1987 Russian original by Michael Grinfeld and revised

by the authors), Walter de Gruyter & Co., Berlin.

16. M. Luskin and C. Ortner, Atomistic-to-continuum coupling, Acta Numerica, 22 (2013) 397-

508.
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