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Abstract. We develop, analyze, and test a sparse tensor product phase
space Galerkin discretization framework for the stationary monochromatic
radiative transfer problem with scattering. The mathematical model de-
scribes the transport of radiation on a phase space of the Cartesian product
of a typically three-dimensional physical domain and two-dimensional angu-
lar domain. Known solution methods such as the discrete ordinates method
and a spherical harmonics method are derived from the presented Galerkin
framework. We construct sparse versions of these well-established methods
from the framework and prove that these sparse tensor discretizations break
the “curse of dimensionality”: essentially (up to logarithmic factors in the
total number of degrees of freedom) the solution complexity increases only
as in a problem posed in the physical domain alone, while asymptotic con-
vergence orders in terms of the discretization parameters remain essentially
equal to those of a full tensor phase space Galerkin discretization. Algorith-
mically we compute the sparse tensor approximations by the combination
technique. In numerical experiments on 2 + 1 and 3 + 2 dimensional phase
spaces we demonstrate that the advantages of sparse tensorization can be
leveraged in applications.
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1 Introduction

In this paper, we consider the numerical solution of the radiative transfer problem
(RTP). This transport problem is stated on the phase space Ω = D×S as the Cartesian
product of a bounded physical domain D ⊂ R

d, where d = 2, 3, and the unit dS -sphere
as the parameter domain S of dimension dS = d− 1 = 1, 2. The RTP [see e. g. 20] is
then given as the task of finding the unknown radiative intensity u : Ω → R, a real
function over the phase space satisfying

s ·∇xu(x, s) + (κ(x) + σ(x))u(x, s) = κ(x)Ib(x) + σ(x)

∫

S

Φ(s, s′)u(x, s′) ds′,

(1a)

u(x, s) = g(x, s), x ∈ ∂D, s · n(x) < 0 . (1b)

We refer to Eq. (1a) as the stationary monochromatic radiative transfer equation (RTE),
while Eq. (1b) constitutes inflow boundary conditions. A ray of light of direction s

is attenuated by absorption and scattering with the medium. In (1a), κ ≥ 0 is the
absorption coefficient, σ ≥ 0 the scattering coefficient, and Φ > 0 the scattering
kernel or scattering phase function. The scattering phase function is normalized to
∫

S
Φ(s, s′) ds′ = 1 for each direction s. Sources inside the domain D are modeled by

the blackbody intensity Ib ≥ 0, radiation from sources outside of the domain or from
its enclosings is prescribed by the boundary data g ≥ 0. The vector n(x) denotes the
outward unit normal vector which is defined in (almost every) point x on the boundary
∂D of the physical domain.

Due to the high dimension of the phase space, the nonlocality of the scattering
operator, and the hyperbolic nature of the PDE, the efficient numerical simulation
of radiative transfer is a challenging computational task even today. Still, radiative
transfer as such or as a means of energy transfer among others is of interest in many
applications, e. g. in the fields of heat transfer [20], neutron transport [14], atmospheric
sciences [6], medical imaging [e. g. 22], or other areas where transported particles
interact with a background medium, but only negligibly with each other.

In this paper, we extend the range of sparse tensor product discretization methods
for the RTP investigated before [8, 9, 10, 25] by a new phase space Galerkin framework.

Apart from Monte Carlo methods for raytracing, the most popular deterministic
approaches for the radiative transfer problem are the discrete ordinates method and
the spherical harmonics approximation. We quote a brief overview of their properties
from [10].

In the discrete ordinate method (DOM) or SN -approximation, the angular domain
is discretized by a number of fixed directions, which are inserted into Eq. (1) so that a
system of spatial PDEs results. Without scattering the equations for single directions
are independent of each other, with scattering, however, they are coupled through the
scattering integral. After the straightforward discretization of the angular domain,
the spatial PDEs are typically solved using finite differences, finite elements, or finite
volume methods.

The DOM is popular as it is simple to implement, offers straightforward parallelization,
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and can capture directed radiation relatively well as some of the ordinates can usually
be chosen freely.

On the downside, the method can suffer from so-called “ray effects” [18]: due to
the point evaluation in the angular domain, the scalar flux or incident radiation from
small isotropic sources may appear star-like with rays emanating from the source into
the chosen angular directions [24, p. 2 and following]. These effects occur especially
pronounced in settings with low scattering and absorption, i. e. in optically thin media.

An example for truncated series expansion is the method of spherical harmonics or
PN -approximation. The solution of Eq. (1) is replaced by a series of spherical harmonics
up to some order N with spatially dependent coefficients. Due to orthogonality relations,
the scattering part often decouples or couples only few terms depending on the scattering
kernel. However, the system of PDEs for the spatial coefficient functions is always
coupled by the transport part s ·∇xu.

As low order series expansions in spherical harmonics do not permit a very localized
resolution of the angular variable, the method performs best when the solutions are
nearly isotropic in angle, which is the case in diffusive, so-called “optically thick” media.
Then, rather low order spherical harmonics approximations might suffice for a good
approximation. Indeed, the P1 method can be formulated as a diffusion equation for
the incident radiation [20, Sec. 15.4]. For smooth solutions, the spherical harmonics
method exhibits spectral convergence in angle [8].

On the other hand, beam-like solutions require a high spectral order to be resolved
appropriately, leading to high computational complexity. In general, higher spectral
orders also lead to a sharp increase in computational complexity when boundary
conditions are to be satisfied [21].

When combined with a standard finite element or finite volume discretization in the
physical domain D, the deterministic, numerical SN - and PN -approximations exhibit
the so-called “curse of dimensionality”: the error (typically the L2-error of the solution)
with respect to the numbers of degrees of freedom (DoF) MD and MS on the component
domains D and S scales with the dimension d and dS of the application problem as
O(M

−s/d
D +M

−t/dS

S ) with constants s and t.
The first sparse finite element approximation method was proposed in [27] for the

solution of Laplace equation in the unit square and cube. In this paper, Zenger
developed the (direct) sparse grid approximation method which alleviates this curse of
dimensionality: the computational complexity is reduced, up to logarithmic terms, to
that of a one-dimensional problem.

The idea of sparse tensorization of finite element and finite difference methods was
generalized by Bungartz and Griebel [4], Hegland [13], Garcke [7], and others, for the
numerical solution of PDEs as well as for other applications where standard numerical
methods are obstructed by the curse of dimensionality.

Sparse tensor methods were first applied to radiative transfer by Widmer, Hiptmair,
and Schwab [25]. In that paper, the authors formulated a least squares phase space
Galerkin sparse tensor approximation with hierarchical finite elements as discretization
of the physical domain and wavelets in the angular domain. They proved that sufficient
regularity of the solution provided, their method breaks the curse of dimensionality:
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the problem complexity reduces to log-linear in the number of degrees of freedom, while
convergence rates deteriorate only by a logarithmic factor. However, the discretization
of the scattering operator had not been addressed in that work.

In earlier work [8], we showed that the sparse tensor product method of Widmer et al.
[25] can also be combined with a spectral discretization involving spherical harmonics,
resulting in a sparse PN -method which also treats scattering. Boundary conditions
were satisfied in a strong sense by introducing piecewise spectral functions in angle.

Secondly we presented a sparse tensor version of the DOM as a sparse collocation
method with a Galerkin ansatz in the physical domain and strong enforcement of the
boundary conditions, while not yet accounting for scattering [9]. This sparse tensor
SN -method was realized computationally with the sparse grid combination technique
[11] to construct a sparse approximation to the radiative transfer solution.

The sparse DOM was subsequently reformulated as a phase space Galerkin method
with quadrature in angle [10] in order to treat sparse PN - and sparse SN -method in
a more uniform manner. In this reformulation, we employed SUPG stabilization and
weak satisfacion of boundary conditions. Sparse SN -methods were derived as a direct
sparse tensor method and implemented algorithmically via the combination technique.

In the present paper, we derive a sparse PN - and sparse SN -method from the same
phase space Galerkin framework with transport stabilization and scattering. Boundary
conditions are satisfied in a weak sense. In doing so we close a gap in the list of
conceivable combinations of formulations regarding stabilization and type of angular
approximation. In contrast to the previous approach [10], we stabilize the formulation
in a different way and the analytical focus will be on the direct sparse approach. With
transport stabilization and direct sparse approach we follow Widmer et al. [25] more
closely, extending their work by treatment of scattering and weak satisfaction of the
boundary conditions.

Similar savings in computational effort are realized with other variational formulations,
such as Petrov-Galerkin saddle point formulations (see e. g. [5] and the references there).

The outline of this paper is as follows. In Section 2, we formulate the phase space
Galerkin framework in operator form and outline how PN and SN -methods can be
derived from it. Then we develop full tensor and sparse tensor discretizations based on
the framework and analyze and compare their convergence properties.

Section 3 presents several basic numerical experiments designed with the purpose of
validating and illustrating the theoretical convergence results.

Finally we conclude this work in Section 4 by summarizing and reviewing the results.

2 Phase space Galerkin method

We begin by introducing the radiative transfer problem in operator form. Using this
compact notation we then state the variational formulation of our phase space Galerkin
method and proceed to discretizations of the method.
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2.1 Operator formulation

Problem (1) reads in operator form: Find the intensity u(x, s) : D × S → R such that

Au = f, u|∂Ω−
= g. (2)

In this, ∂Ω− represents the inflow part of the boundary ∂Ω = ∂D × S of the computa-
tional domain or phase space Ω = D × S. The inflow boundary is defined by

∂Ω− := {(x, s) ∈ Ω : x ∈ Γ−(s)} (3)

with the physical part of the inflow boundary

Γ−(s) := {x ∈ ∂D : s · n(x) < 0}. (4)

Correspondingly we define the physical part of the outflow boundary as

Γ+(s) := {x ∈ ∂D : s · n(x) > 0}. (5)

The radiative transfer operator A = T+Q consists of the transport operator T,

Tu := (s ·∇x + κ)u, (6)

and the scattering operator Q,

Qu := σQ1u := σ(Id− Σ)u := σ(x)u(x, s)− σ(x)

∫

S

Φ(s, s′)u(x, s′) ds′ . (7)

Here, Q1 = Id − Σ is the unity scattering operator, and Σ is the scattering integral
operator, the integral of Φ and u. The source function f contains the sources of
radiation in the domain,

f := κIb, (8)

and g is the incoming radiation on the boundary ∂Ω−, as in Sec. 1.

2.2 Properties of the scattering operator

Aside from the positivity and normalization requirements already mentioned in Sec. 1,
we assume an isotropic medium, i. e. Φ does not depend on x.

Furthermore, if spherical scatterers are assumed, the scattering phase function does
not vary with the azimuthal angle so that Φ only depends on the inner product of s
and s′. From this it follows immediately that Φ(s, s′) = Φ(s · s′) = Φ(s′, s).

From here on, we shall take Φ to be forward dominant [cf. 15, Def. 1] if Φ(s, s′) =
∑∞

k=0 ak cos(k arccos(s · s′)) with all ak ≥ 0. Then, one can show that Σ is positive
semi-definite [15, Lemmata 2 and 3], i. e.

(v,Σv)L2(S) ≥ 0 ∀v ∈ L2(S). (9)

Normalization and symmetry of Φ w. r. t. s, s′ leads to ‖Σ‖L2(S)→L2(S) = 1 [15, Lemma
5].
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From these properties and a Hilbert-Schmidt theorem for integral operators [e. g.
16, Thm. 2.4], one can derive that the spectrum of Q1 lies in [0, 1] with an isolated
eigenvalue λ0 = 0, from which the next largest eigenvalue λ1 differs by a positive
constant [1, Sec. 2.2].

With the previous considerations, one arrives at the following properties of Q:

Lemma 1. For any u ∈ L2(Ω), the scattering operator Q as defined by Eq. (7) satisfies
[cf. 1, Eq. (11)]

λ1‖σP⊥u‖L2(Ω) ≤ ‖Qu‖L2(Ω) ≤ ‖σ‖L∞(Ω) ‖u‖L2(Ω) , (10)

(u,Qu)L2(Ω) ≥ ‖Qu‖2L2(Ω) ≥ 0, (11)

in which the projector P⊥ maps u(x, ·) ∈ L2(S) to (kerQ)⊥, the space orthogonal to
the kernel of Q, and λ1 ∈ (0, 1] is the smallest nonzero eigenvalue of Q1.

For a proof of (11) we refer to Grella [10].

2.3 Variational formulation

Our variational formulation will be based on a Galerkin finite element framework over
the phase space Ω with stabilization applied to the operator RTP (2).

2.3.1 A generic stabilized phase space variational formulation

To begin with, we define the Hilbert space

V := {u ∈ L2(Ω) : s ·∇xu ∈ L2(Ω)} (12)

with the usual L2(Ω) inner product

(u, v)L2(Ω) :=

∫

S

∫

D

u(x, s)v(x, s) dx ds, (13)

and the triple bar norm

|||v|||2 := ‖v‖2L2(Ω) + ‖s ·∇xv‖2L2(Ω) + ‖Q1v‖2L2(Ω) , v ∈ V . (14)

For the weak enforcement of boundary conditions, we define the boundary form

b(u, v) := (v, s · nu)L2(∂Ω−) =

∫

S

∫

Γ−(s)

|s · n|uv dx ds, (15)

in which we have omitted the dependence of the outward unit normal n on the position
x. This boundary form was introduced by Manteuffel et al. [19, Eq. (2.16)]. It is
well-defined for functions v ∈ L2(Ω) with finite inflow norm

‖v‖− := b(v, v)1/2. (16)
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Combining (14) and (16) yields the new norm

‖v‖1 :=
(

|||v|||2 + ‖v‖2−
)1/2

, (17)

which gives rise to the closed, linear subspace of V,

V1 := {v ∈ V : ‖v‖1 < ∞} (18)

which, with the inner product related to ‖v‖1, is a Hilbert space. For functions u, v ∈ V1,
we define the bilinear form

a(u, v) := (Rv,Au)L2(Ω) + 2b(u, v), (19)

where R is a stabilization operator on the test function side yet to be specified. Together
with the linear form

l(v) := (Rv, f)L2(Ω) + 2b(g, v), (20)

the bilinear form constitutes the following variational problem: Find u ∈ V1 such that

a(u, v) = l(v) ∀v ∈ V1. (21)

Different ways of stabilization are conceivable and have been used in the literature,
e. g. the least squares approach by Manteuffel et al. [19], or SUPG introduced by Brooks
and Hughes [3]. For our purposes here, we will choose the T-stabilized formulation [8]
to avoid mesh-dependent quantities and the square of the scattering operator. More
precisely, we set R = εT with a stabilization parameter ε that depends on the absorption
coefficient κ.

2.3.2 Properties of the variational formulation

At this point, we introduce the anisotropic or mixed Sobolev spaces Hs,t(Ω) = Hs(D)⊗
Ht(S) as

Hs,t(Ω) := {v ∈ L2(Ω) : Dβ
sD

α
xv ∈ L2(Ω), 0 ≤ |α| ≤ s, 0 ≤ |β| ≤ t} (22)

with the corresponding mixed Sobolev norms ‖·‖Hs,t(Ω), given by

‖v‖2Hs,t(Ω) :=
∑

0≤|α|≤s

∑

0≤|β|≤t

∥
∥Dβ

sD
α
xv
∥
∥
2

L2(Ω)
. (23)

Here, Dβ
sD

α
xv denotes the weak derivative of v : D × S → R of order |α| w. r. t. x ∈ D

and order |β| w. r. t. s ∈ S, with the multi-indices α ∈ N
d
0 and β ∈ N

dS+1
0 .

The following lemma collects auxiliary results which will become helpful later.

Lemma 2 (Auxiliary results).
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1. Let v ∈ V. Then (v, s ·∇xv)L2(Ω) ≥ 1
2

∫

S

∫

Γ−(s)
v2s · n(x) dx ds. If furthermore

v ∈ V0, then (v, s ·∇xv)L2(Ω) ≥ 0.

2. For v ∈ H1,0(Ω), it holds ‖s ·∇xv‖ ≤
√
d ‖v‖H1,0(Ω).

Proof. 1. A proof is given by Manteuffel et al. [19, Thm. 2.1]. It uses the divergence
theorem and exploits the fact that v|∂Ω−

= 0 for s · n(x) < 0 if v ∈ V0, where
n(x) is the outward unit normal on the boundary ∂D:

(v, s ·∇xv)L2(Ω) =
1

2

∫

S

∫

D

∇x · (sv2) dx ds =
1

2

∫

S

∫

∂D

v2s · n(x) dx ds

=
1

2

∫

S

∫

Γ−(s)

v2s · n(x) dx ds+
1

2

∫

S

∫

Γ+(s)

v2s · n(x) dx ds.

As s · n ≥ 0 in the second integral, we obtain the first assertion. If additionally
v ∈ V0, then the first integral vanishes, and the second assertion follows.

2. We again quote Manteuffel et al. [19, Lemma 4.1 (i)]:

‖s ·∇xv‖2L2(Ω) ≤
∫

D

∫

S

(
d∑

i=1

siDxi
v

)2

ds dx ≤ d

∫

D

∫

S

d∑

i=1

(siDxi
v)

2
ds dx

≤ d

d∑

i=1

‖Dxi
v‖2 ≤ d ‖v‖2H1,0(Ω) .

In order to establish well-posedness of the variational formulation (21), we prove
continuity and coercivity of the bilinear form (19) and continuity of the linear form (20)
in the following.

Lemma 3 (Continuity of bilinear form). Let σ, κ, ε ∈ L∞(D) with ‖σ‖L∞(D) =: σmax,

‖κ‖L∞(D) =: κmax, ‖ε‖L∞(D) =: εmax, then there is a constant 0 < cc < ∞ such that
for all u, v ∈ V1

|a(u, v)| ≤ cc ‖u‖1 ‖v‖1 .

Proof. We proceed analogously to Manteuffel et al. [19, Thm. 3.3]. To begin with, we
estimate for all u, v ∈ V

‖Rv‖ = ‖εv + εs ·∇xv‖ ≤ εmax ‖v‖+ εmax ‖s ·∇xv‖ ≤ max{εmax, 1} ‖v‖1 , (24)

‖Au‖ ≤ κmax ‖u‖+ ‖s ·∇xu‖+ σmax ‖Q1u‖ ≤ max{κmax, 1, σmax}|||u|||. (25)

Using the Cauchy-Schwarz inequality as well as estimates (24) and (25) it holds

|a(u, v)| ≤ | ‖Rv‖ ‖Au‖+ 2 ‖v‖− ‖u‖− |

≤ 2
(

‖Rv‖2 + ‖v‖2−
)1/2 (

‖Au‖2 + ‖u‖2−
)1/2

≤ 2max{1, εmax}max{κmax, 1, σmax} ‖u‖1 ‖v‖1 .
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Lemma 4 (Continuity of linear form). Given the assumptions of Lemma 3 on κ, σ,
ε, and additionally f ∈ L2(Ω), g : ∂Ω− → R with ‖g‖− < ∞, there is a constant
0 < cl < ∞ such that for v ∈ V1 it holds

|l(v)| ≤ cl ‖v‖1 .

Proof. The proof is analogous to that of Lemma 3:

|l(v)| ≤ | ‖Rv‖ ‖f‖+ 2 ‖v‖− ‖g‖− | ≤ 2
(

‖Rv‖2 + ‖v‖2−
)1/2 (

‖f‖2 + ‖g‖2−
)1/2

≤ 2max{1, εmax}(‖f‖+ ‖g‖−) ‖v‖1 .

Next, we show coercivity of the bilinear form. For simplicity we shall assume ε and κ
to be constant on the physical domain. Coercivity of the SUPG variational formulation
for the RTP has also been proved by Ávila et al. [1, Lemma 2], although in a different
norm. Previously, we had proved coercivity of the T-stabilized variational formulation
without the boundary form b(·, ·) [10, Lemma 4.1], here we include this boundary form
in the formulation, which will motivate the choice of the stabilization parameter ε.

Lemma 5 (Coercivity of bilinear form). Let κ, ε be positive functions which are constant
on the physical domain D. Assume minx∈D σ =: σmin > 0 and σmax = ‖σ‖L∞(D), and
additionally that

σ2
max < 4σmin, ε <

4

1 + κ
. (26)

Then the bilinear form a(·, ·) from (19) is coercive on V1 × V1: there is a constant
ce > 0 such that for all v ∈ V1 it holds

a(v, v) ≥ ce ‖v‖21 .

Proof. For an overview of the involved terms we split the bilinear form into separate
inner products:

a(v, v) = (εv + εs ·∇xv,Av)− 2b(v, v)

= (εv + εs ·∇xv, s ·∇xv + κv +Qv)− 2 (γ(v), s · nγ(v))L2(∂Ω−)

= (εv, s ·∇xv) + (εv, κv) + (εv,Qv) + (εs ·∇xv, s ·∇xv)

+ (εs ·∇xv, κv) + (εs ·∇xv,Qv)− 2 (γ(v), s · nγ(v))L2(∂Ω−) (27)

As we assumed ε and κ to be constant, we can factor these coefficients out of the inner
products and combine the fifth inner product with the first. Applying statement 1 of
Lemma 2 yields

ε(1 + κ) (v, s ·∇xv) ≥ −ε(1 + κ)
1

2
‖v‖2− .

Together with the boundary term, we obtain

(εv, s ·∇xv) + (εs ·∇xv, κv) + 2b(v, v) ≥ (2− ε

2
(1 + κ)) ‖v‖2− . (28)
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The second inner product is bounded from below by

(εv, κv) ≥ εκ ‖v‖2 .

To estimate the third inner product, we use property (11) of the scattering operator.
The fourth inner product in Eq. (27) is

(εs ·∇xv, s ·∇xv) = ε ‖s ·∇xv‖2 .

For the sixth inner product we apply Cauchy-Schwarz inequality and Young’s in-
equality with a parameter θ > 0:

(εs ·∇xv,Qv) ≥ −εσmax ‖s ·∇xv‖ ‖Q1v‖ ≥ −εσmax

(
θ

2
‖s ·∇xv‖2 +

1

2θ
‖Q1v‖2

)

Combining all estimates yields the result:

a(v, v) ≥ εκ ‖v‖2 + ε(1− θ

2
σmax) ‖s ·∇xv‖2 + ε(σmin − 1

2θ
σmax) ‖Q1v‖2

+ (2− ε

2
(1 + κ)) ‖v‖2−

≥ min{εκ, ε(1− θ

2
σmax), ε(σmin − 1

2θ
σmax), 2−

ε

2
(1 + κ)} ‖v‖21 .

By eliminating θ we obtain the condition σ2
max < 4σmin. The condition ε < 4/(1 + κ)

results from the last of the terms over which the minimum is taken.

The previous condition on the stabilization parameter leads to a choice of ε = 1/(1+κ).
Well-posedness of the variational formulation now follows directly.

Theorem 6 (Existence and uniqueness of solution to variational formulation). Provided
that f ∈ L2(Ω) and ‖g‖− < ∞ there exists a unique solution u ∈ V1 to the variational
formulation (21).

Proof. Since (V1, ‖·‖1) is a Hilbert space and Lemmata 3–5 guarantee continuity of the
augmented SUPG bilinear form and linear form as well as coercivity of the bilinear
form, the Lax-Milgram theorem [2, Thm. 2.7.7] ensures existence and uniqueness of
the solution to (21).

2.4 Discretization

For the discretization of the variational problem (21), we restrict the space V1 in
the variational formulation (21) to tensor products of hierarchic, finite dimensional
approximation spaces over the component domains D and S.
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2.4.1 Full tensor discretization

In the standard full tensor approximation, we choose a full tensor product space V L,N

to approximate V1:
V1 ≈ V L,N := V L

D ⊗ V N
S . (29)

As H1,0(Ω) ∼= H1(D)⊗L2(S) is a dense subspace of V1, we define the family of physical
approximation spaces as

V lD
D := S0,1(D, T lD

D ) ⊂ H1(D), lD = 1, . . . , L, (30)

the spaces of continuous, piecewise linear functions on a dyadically refined mesh T lD
D

over D. Here, the parameter lD stands for the physical resolution. It is related to the
mesh width h in T lD

D by h = O(2−lD). With respect to the resolution lD = 0, . . . , L,
the spaces V lD

D form a nested sequence

V 0
D ⊂ V 1

D ⊂ . . . ⊂ V L
D ⊂ H1(D).

Let MD := dimV L
D denote the number of degrees of freedom for the FE space V L

D in
the physical domain D. Then

MD = O(2dL) (31)

with the dimension d of the physical domain. The exact number will depend on the
geometry of the domain. For a square or cube D = [0, 1]d, respectively, we obtain

MD = (2L + 1)d. (32)

In the angular domain, we distinguish between the PN -method and the SN -method.

SN -method. Here, the family of approximation spaces is given by

V lS
S := S−1,0(S, T lS

S ) ⊂ L2(S), lS = 1, . . . , N, (33)

the spaces of piecewise constant functions on a dyadically refined mesh T lS
S . As the

physical spaces, these spaces exhibit a nested structure. The angular resolution N and
the dimension of V N

S are related by

MS := dimV N
S = O(2dSN ). (34)

PN -method. To define the angular approximation spaces of the PN -method, we first
introduce the spaces of spectral functions of the dS -sphere,

P
dS

Ñ
= span{Y (dS)

n,m : n = 0, . . . , Ñ ; m = 1, . . . ,mn,dS
} ⊂ L2(S), (35)

where Y
(dS)
n,m are the spherical harmonics of the dS-sphere, and mn,dS

is the largest
value of the secondary index m depending on the value of the primary index n and
the dimension. These spaces offer an inherent nested structure. To obtain the same
relation (34) between resolution level and degrees of freedom as in the SN -method, we
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connect the resolution level N and Ñ by Ñ = 2N −1. Then, the angular approximation
spaces are

V lS
S := P

dS

2lS−1
, lS = 1, . . . , N, (36)

and relation (34) also holds here. Up to the index relabeling and the additional
boundary form, we obtain the spherical harmonics method already analyzed in [8].

In both methods, the full tensor approximation space consequently has the dimension

ML,N := dimV L,N = MD ·MS = O(2dL+dSN ). (37)

The full tensor approximate solution can be expressed by means of a physical basis
{αi(x)}MD

i=1 of V L
D and an angular basis {βj}MS

j=1 of V N
S as

uL,N (x, s) :=

MD∑

i=1

MS∑

j=1

uijαi(x)βj(s) (38)

with solution coefficients uij ∈ R. The discrete variational formulation finally reads:
Find uL,N ∈ V L,N such that

a(uL,N , vL,N ) = l(vL,N ) ∀vL,N ∈ V L,N , (39)

with the bilinear form a(·, ·) from (19) and the linear form l(·) from (20). As V L,N is a
subspace of V1 well-posedness ensured by Thm. 6 for the continuous problem follows
also for this discrete problem.

By choosing a subset of H1(D)⊗L2(S) as trial space we effectively assume a slightly
higher regularity on the solution than what is guaranteed by the definition (12) of V1.
For instance, solutions with line discontinuities due to the transport of discontinuous
boundary data into the domain are not included in V L,N . However, since V L,N is dense
in V1, even discontinuous solutions will be approximated with increasing resolution.
Furthermore, in order to leverage the advantages of a sparse tensor approximation, a
higher regularity of the solution will be required in any case.

2.4.2 Equivalence of collocation DOM and phase space Galerkin DOM with

quadrature

Ordinarily the discrete ordinates method is presented as a collocation method in angle:
Fixed directions sj ∈ S, j = 1, . . . ,MS , are inserted into the RTE (1a), and for each
direction, the intensity uj(x) := u(x, sj) ∈ V L

D is sought as the solution to a purely
spatial PDE. In these PDEs, the scattering integral is replaced by a quadrature rule

∫

S

Φ(sj , s
′)u(x, s′) ds′ ≈

MS∑

m=1

wmΦ(sj , sm)um (40)

12



with weights wm > 0. By applying a Galerkin ansatz with stabilization in the physical
domain to the PDEs, a system of coupled variational formulations
(

Rjv,Tjuj + σuj −
MS∑

m=1

wmΦ(sj , sm)um

)

L2(D)

+ 2 (v, |sj · n|uj)L2(Γ−(sj))

= (Rjv, f)L2(D) + 2 (v, |sj · n|gj)L2(Γ−(sj))
∀v ∈ V L

D (41)

results with directional stabilization and transport operators

Rj := R|s=sj
, Tj := T|s=sj

, j = 1, . . . ,MS . (42)

In the phase space Galerkin approach, variational formulation (39) is discretized
further by substituting the angular quadrature rule (40) for all angular integrals so
that the bilinear form (19) is approximated by

a(u, v) ≈ ã(u, v) =

MS∑

j=1

wj

(

Rjvj ,Tjuj + σuj −
MS∑

m=1

wmΦ(sj , sm)um

)

L2(D)

+ 2

MS∑

j=1

wj (vj , |sj · n|uj)L2(Γ−(sj))
.

Let the linear functional l(·) from (20) be approximated by a functional l̃(·) with
angular quadrature correspondingly, then the directional solutions uj are determined
from the variational formulation with angular quadrature

ã(u, v) = l̃(v) ∀v ∈ V L,N , j = 1, . . . ,MS . (43)

Since this formulation has to hold for all v ∈ V L,N , it follows that for test functions
which vanish at every angular quadrature node si, i = 1, . . . ,MS except one sj ,
formulation (43) can be reduced to the variational formulation (41) from the collocation
discretization. This condition on the test functions is satisfied e. g. for a basis of the test
space of characteristic functions on the angular mesh if each mesh cell contains exactly
one angular quadrature node. With such a one-point quadrature rule and characteristic
basis functions of V N

S , the phase space Galerkin DOM is therefore equivalent to the
collocation DOM after discretization.

2.4.3 Sparse tensor discretization

The full tensor approach presented before shows the typical complexity for full tensor
approximations: The number of degrees of freedoms increases exponentially with the
dimension and the resolution levels in a dyadically refined scheme.

A way to counter this exponential increase is found in sparse tensorization. Using
the same approximation spaces on the component domains V lD

D and V lS
S as for the full

tensor approximation we define a sparse tensor approximation space V̂ L,N by

V1 ≈ V̂ L,N :=
∑

0≤f(lD,lS)≤L

V lD
D ⊗ V lS

S , (44)

13



where the sparsity profile f : {0, . . . , L} × {0, . . . , N} → R determines which tensor
product subspaces V lD

D ⊗ V lS
S are to be included in the approximation. The sparsity

profile usually depends on N as well. Here, we employ a linear profile

f(lD, lS) = lD + LlS/N, (45)

which is normally chosen if the component complexities MD and MS depend on the
resolution parameters L and N in the same way and identical order of approximation
is sought over both component domains [cf. 27, 4, 12].

If direct sum decompositions of the component approximation spaces V lD
D and V lS

S

into detail spaces W lD
D and W lS

S , i. e.

V lD
D = V lD−1

D ⊕W lD
D , lD = 1, . . . , L

are available (correspondingly in the angular domain), then the sparse tensor approxi-
mation space V̂ L,N can also be written as

V̂ L,N =
∑

0≤f(lD,lS)≤L

W lD
D ⊗W lS

S . (46)

By choosing hierarchical bases for V lD
D and V lS

S , each degree of freedom uij can directly
be associated with a tensor product detail space W lD

D ⊗W lS
S . The sparse solution is

then given by

ûL,N =
∑

0≤f(lD,lS)≤L

ulD,lS , ulD,lS =

dimW
lD
D∑

i=1

dimW
lS
S∑

j=1

uijα
lD
i (x)βlS

j (s) ∈ W lD
D ⊗W lS

S .

Thus, the sparse discrete variational problem reads: Find ûL,N ∈ V̂ L,N such that

a(ûL,N , v̂L,N ) = l(v̂L,N ) ∀v̂L,N ∈ V̂ L,N . (47)

The dimension of the sparse tensor product space V̂ L,N depends on the sparsity
profile f(lD, lS). For a linear sparsity profile as in (45), the following complexity
estimate is known (e. g. 4, Lemma 3.6, or 12, Thm. 4.1).

Lemma 7. Assuming the dimensions of the detail spaces W lD
D and W lS

S scale as

dim(W li
i ) ≤ ci2

dili with constants ci > 0 and dimensions di, i = D,S, with dD = d,
and given a linear sparsity profile f(lD, lS) as in (45), the dimension of the sparse
tensor product approximation space V̂ L,N as defined by (46) is

M̂L,N . Lθ2max{dL,dSN} . (logMD)θ max{MD,MS}, (48)

where θ = 1 if dL = dSN and θ = 0 otherwise. Relation “.” defines an order up to
constants with respect to the relevant scaling parameters L, N : a . b iff a ≤ Cb with
constant C independent of L and N .
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2.5 Error analysis

In this section, we shall show that the convergence rates of the full tensor and sparse
tensor Galerkin methods differ only by a logarithmic factor in the degrees of freedom,
provided that somewhat stronger regularity requirements are met for the exact solution.

The analysis will proceed along the usual fashion, cp. [4]. We define the Galerkin
projector PL,N : V1 → V L,N into the full tensor product approximation space

a(PL,Nu, v) = a(u, v) ∀v ∈ V L,N . (49)

Letting L → ∞ (N → ∞) the fact that the subspaces are closed and dense implies that
in the respective limits we obtain semidiscrete Galerkin projectors PN

S := limL→∞ PL,N

(PL
D := limN→∞ PL,N ) on the physical (angular) domain, as the Galerkin projector is

stable in the ‖·‖1-norm:

Lemma 8 (Stability of the Galerkin projector). Let v ∈ V1. Then there is a constant
cP > 0 independent of L and N so that

∥
∥PL,Nv

∥
∥
1
≤ cP ‖v‖1 .

Proof. With continuity (Lemma 3) of the bilinear form we obtain

|a(PL,Nv, vL,N )| = |a(v, vL,N )| ≤ cc ‖v‖1 ‖vL,N‖1 ∀vL,N ∈ V L,N .

Since this holds for all vL,N ∈ V L,N , we can set vL,N = PL,Nv and exploit coercivity
of the bilinear form (Lemma 5):

ce
∥
∥PL,Nv

∥
∥
2

1
≤ |a(PL,Nv,PL,Nv)| = |a(v,PL,Nv)| ≤ cc ‖v‖1

∥
∥PL,Nv

∥
∥
1
.

If PL,Nv 6= 0 we obtain the result with cP = cc/ce.

2.5.1 Error estimates on the physical domain

To begin with, we require some approximation results in the H1(D)-norm on the physical
domain. With a Clément-type quasi-interpolation operator PL

I [e. g. 23, Thm. 4.1 and
Cor. 4.1] we obtain

Lemma 9 (Approximation of quasi-interpolation). For polyhedral D ⊂ R
d and a

shape-regular triangulation T L
D on D with mesh width h = 2−L, the quasi-interpolation

PL
I v of a function v ∈ Hs+1(D), s ∈ [0, 1], to the space V L

D = S0,1(D, T L
D ) of piecewise

affine functions on T L
D satisfies the error estimate

‖v − PL
I v‖H1(D) ≤ cH2−sL‖v‖Hs+1(D),

where cH > 0 is a constant independent of L.

Lemma 10 (Stability of quasi-interpolation). Under the assumptions of Lemma 9,
quasi-interpolation is H1-stable, i. e. there exists a constant cB > 0 independent of L
such that for all v ∈ H1(D) it holds

‖PL
I v‖H1(D) ≤ cB‖v‖H1(D).
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Next we derive an error estimate for the Galerkin approximation on the physical
domain. At this point, the approximation is semidiscrete.

Lemma 11 (Error estimate for Galerkin projection on physical domain). Let u ∈
Hs+1,0(Ω), s ∈ {0, 1}, be the exact solution to problem (21) and uL := PL

Du ∈
V L
D ⊗ L2(S) the Galerkin projected solution to

a(uL, vL) = l(vL) ∀vL ∈ V L
D ⊗ L2(S) (50)

with a(·, ·) from (19) and l(·) from (20). Then, there is a constant cp > 0 independent
of L such that

‖u− uL‖1 ≤ cp 2
−sL ‖u‖Hs+1,0(Ω) .

Proof. The proof is standard, and is based on coercivity and Galerkin orthogonality.
We proceed analogous to Ávila et al. [1, Lemma 3 and Theorem 1]. After inserting
the quasi-interpolated solution ûL := (PL

I ⊗ IdS)u with PL
I from Lemma 9 the triangle

inequality permits us to write

‖u− uL‖1 ≤ ‖u− ûL‖1 + ‖ûL − uL‖1 . (51)

For the first part, we use the fact that there is a constant cn > 0 for all v ∈ H1(D)⊗L2(S)
such that

‖v‖1 ≤ cn ‖v‖H1,0(Ω) .

Thus, we can apply Lemma 9:

‖u− ûL‖1 ≤ cn ‖u− ûL‖H1,0(Ω) ≤ cncH2−sL ‖u‖Hs+1,0(Ω) .

For the second part in (51), we use coercivity of the bilinear form, then in a second
step Galerkin orthogonality, and finally continuity of the bilinear form to write

‖uL − ûL‖21 ≤ c−1
e a(uL − ûL, uL − ûL) ≤ c−1

e a(u− ûL, uL − ûL)

≤ ccc
−1
e ‖u− ûL‖1 ‖uL − ûL‖1

≤ ccc
−1
e cn ‖u− ûL‖H1,0(Ω) ‖uL − ûL‖1 ,

and therefore with Lemma 9

‖uL − ûL‖1 ≤ ccc
−1
e cncH2−sL ‖u‖Hs+1,0(Ω) .

By inserting into (51) we arrive at the result

‖u− uL‖1 ≤ cncH(1 + ccc
−1
e )2−sL ‖u‖Hs+1,0(Ω) .

2.5.2 Error estimates on the angular domain

On the angular domain, the considerations in the following require an approximation
result for L2-projections.
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Lemma 12. For functions v ∈ Ht(S), t ∈ {0, 1}, the L2-projection to the space V N
S

satisfies the error estimate

‖v − PN
L2(S)v‖L2(S)

≤ cl2
−tN ‖v‖Ht(S) , (52)

where the constant cl > 0 is independent of N .

This result can be obtained for approximation by spectral functions as in the
spherical harmonics method (in which case t ≥ 0 is arbitrary), for instance, as well
as for approximation by piecewise constants as in the discrete ordinates method (in
which case 0 ≤ t ≤ 1). It allows the derivation of the same approximation rate for the
semidiscrete Galerkin projection on the angular domain.

Lemma 13 (Error estimate for angular Galerkin projection). Let u ∈ H1,t(Ω), t ∈
{0, 1}, be the exact solution to problem (21) and uN := PN

S u ∈ H1(D) ⊗ V N
S the

Galerkin projected solution with angular part from the subspace V N
S of L2(S). Then

there is a constant ca > 0 independent of N such that

‖u− uN‖1 ≤ ca N
−t ‖u‖H1,t(Ω) .

Proof. The proof proceeds analogously to the one of Lemma 11 while substituting the
L2-projected solution with Lemma 12 for the quasi-interpolated solution, the details
are therefore omitted here.

2.5.3 Error estimate for the full tensor phase space Galerkin method

The following theorem gives an error estimate for the full tensor approximation.

Theorem 14 (Error estimate full tensor Galerkin method). The full tensor Galerkin
approximation uL,N = PL,Nu of a solution u ∈ Hs+1,0(Ω) ∩ H1,t(Ω), s ∈ {0, 1},
t ∈ {0, 1}, to the variational problem (21) satisfies the asymptotic error estimate

‖u− uL,N‖1 . 2−sL ‖u‖Hs+1,0(Ω) + 2−tN ‖u‖H1,t(Ω) , (53)

with relation “.” as in Lemma 7.

Proof. By Céa’s Lemma [2, Thm. 2.8.1] the Galerkin approximation is quasi-optimal
in V L,N , its error can therefore be bounded (up to constants) by the error of any
other approximation to u in V L,N , for example the quasi-interpolated and L2-projected
approximation PL

I ⊗ PN
L2u:

∥
∥u− PL,Nu

∥
∥
1
.
∥
∥u− PL

I ⊗ PN
L2u
∥
∥
1
≤
∥
∥u− PL

I ⊗ Idu
∥
∥
1
+
∥
∥PL

I ⊗ Idu− PL
I ⊗ PN

L2u
∥
∥
1

. 2−sL ‖u‖Hs+1,0(Ω) +
∥
∥(Id− Id⊗ PN

L2)PL
I ⊗ Idu

∥
∥
1

. 2−sL ‖u‖Hs+1,0(Ω) + 2−tN
∥
∥PL

I ⊗ Idu
∥
∥
H1,t(Ω)

. 2−sL ‖u‖Hs+1,0(Ω) + 2−tN ‖u‖H1,t(Ω) .

Here, we used the approximation properties of the quasi-interpolant from Lemma 9
and of the angular L2-projection from Lemma 12. The last step is a consequence of
the H1-stability asserted in Lemma 10 of the quasi-interpolation.

17



2.5.4 Error estimate for the sparse tensor phase space Galerkin method

After the full tensor approximation properties, we consider the convergence properties
of a direct sparse tensor approximation on the sparse tensor product space V̂ L,N as
defined in (46).

In analogy to the full tensor Galerkin projector PL,N , we can define a sparse tensor
Galerkin projector P̂L,N by the orthogonality relation

a(P̂L,Nu, v) = a(u, v) ∀v ∈ V̂ L,N .

The error of the sparse tensor solution ûL,N = P̂L,Nu is estimated in the following
theorem (see also Thm. 2.6 by 26 and Thms. 4.3 and 7.1 by 12).

Theorem 15 (Error estimate of direct sparse tensor solution). Let the linear sparsity
profile as in (45) be given. Assume further that L and N vary such that −sL+tN = ζ =
const, then the direct sparse tensor approximation ûL,N of a function u ∈ Hs+1,t(Ω),
s, t ∈ {0, 1}, satisfies the error estimate

‖u− ûL,N‖1 . L(2−sL + 2−tN ) ‖u‖Hs+1,t(Ω) ,

where relation “.” is defined as in Lemma 7.

Proof. We follow the proof of Thm. 2.6 by 26. First we introduce so-called difference
projectors ∆lD

I := PlD
I − PlD−1

I and ∆̃lS
L2 := P̃lS

L2 − P̃lS−1
L2 as the difference between

projections to two consecutive resolution levels with the convention P−1
I = 0 = P̃−1

L2 .
They project onto the detail spaces W lD

D and W̃ lS
S , respectively.

With these difference projectors, a sparse quasi-interpolated and L2-projected ap-
proximation ūL,N ∈ V̂ L,N to u can be expressed as

ūL,N =

L∑

lD=0

lmax
S

(lD)
∑

lS=0

∆lD
I ⊗∆lS

L2u,

where lmax
S (lD) is the largest feasible angular resolution index which results from solving

f(lD, lS) ≤ L with respect to lS .
Now we exploit quasi-optimality of the Galerkin approximation on the sparse tensor

product space to replace the Galerkin approximation error by the error of the quasi-
interpolated and L2-projected approximation. Additionally applying the norm estimate
‖v‖1 . ‖v‖H1,0(Ω) yields

∥
∥
∥u− ûL,Ñ

∥
∥
∥
1
.

∥
∥
∥
∥
∥
∥

u−
L∑

lD=0

lmax
S

(lD)
∑

lS=0

∆lD
I ⊗∆lS

L2u

∥
∥
∥
∥
∥
∥
H1,0(Ω)

. (54)
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The error is split into two terms:

‖u− ūL,N‖H1,0(Ω) ≤

∥
∥
∥
∥
∥
∥

L∑

lD=0

∞∑

lS=lmax
S

(lD)+1

∆lD
I ⊗∆lS

L2u

∥
∥
∥
∥
∥
∥
H1,0(Ω)

︸ ︷︷ ︸

=:I

+

∥
∥
∥
∥
∥

∞∑

lD=L+1

∞∑

lS=0

∆lD
I ⊗∆lS

S u

∥
∥
∥
∥
∥
H1,0(Ω)

︸ ︷︷ ︸

=:II

. (55)

The second term on the right hand side can be estimated by Lemma 9:

II =
∥
∥(Id− PL

I )⊗ Idu
∥
∥
H1,0(Ω)

≤ cH2−sL ‖u‖Hs+1,0(Ω) . (56)

This term will not contribute to the asymptotic terms.
The first term on the right hand side of (55) is split up further:

I =

∥
∥
∥
∥
∥

L∑

lD=0

(PlD
I − PlD−1

I )⊗ (Id− P
lmax
S

(lD)

L2 )u

∥
∥
∥
∥
∥
H1,0(Ω)

=

∥
∥
∥
∥
∥

L∑

lD=0

(PlD
I − Id + Id− PlD−1

I )⊗ (Id− P
lmax
S

(lD)

L2 )u

∥
∥
∥
∥
∥
H1,0(Ω)

≤
L∑

lD=0

(∥
∥
∥(Id− PlD

I )⊗ (Id− P
lmax
S

(lD)

L2 )u
∥
∥
∥
H1,0(Ω)

+
∥
∥
∥(Id− PlD−1

I )⊗ (Id− P
lmax
S

(lD)

L2 )u
∥
∥
∥
H1,0(Ω)

)

. (57)

Both norms on the right hand side of (57) can be estimated by Lemma 9 and Lemma 12:
∥
∥
∥(Id− PlD

I )⊗ (Id− P
lmax
S

(lD)

L2 )u
∥
∥
∥
H1,0(Ω)

≤ cH2−slD
∥
∥
∥Id⊗ (Id− P

lmax
S

(lD)

L2 )u
∥
∥
∥
Hs+1,0(Ω)

≤ cHcl2
−slD−tlmax

S
(lD) ‖u‖Hs+1,t(Ω) .

Inserting back into (57) yields

I ≤ 2cHcl ‖u‖Hs+1,t(Ω)

L∑

lD=0

2−slD−tlmax
S

(lD). (58)

The task is now to estimate the series. Using the assumption ζ = −s+ tN/L:

L∑

lD=0

2−slD−tN/L(L−lD) = 2−tN
L∑

lD=0

2(−s+tN/L)lD

= 2−tN
L∑

lD=0

2ζlD . (59)
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We estimate the sum on the right hand side of (59) by its largest summand. Two cases
can be distinguished here:

1. If ζ ≤ 0, the largest summand occurs for lD = 0:

2−tN
L∑

lD=0

2ζlD ≤ L2−tN .

2. If ζ > 0, the largest summand occurs for lD = L:

2−tN
L∑

lD=0

2ζlD ≤ 2−tNL2−sL+tN = L2−sL.

In summary, we may write

L∑

lD=0

2−slD−tlmax
S

(lD) ≤ L2−sL−tN .

By combining this estimate with relations (54) to (58), we finally arrive at

‖u− ûL,N‖H1,0(Ω) . L2−sL−tN ‖u‖Hs+1,t(Ω) .

In conclusion, we find that the convergence rate of O(2−sL−tN ) of the full tensor
approximation is maintained up to an additional factor L, which by MD = O(2dL) is
logarithmic in the number of degrees of freedom. This result in conjunction with the
greatly reduced complexity of the sparse tensor method (Lemma 7) shows its superior
efficiency provided that the function u to be approximated is at least in Hs+1,t(Ω),
with s, t ∈ {0, 1}.

3 Numerical experiments

3.1 Algorithms

For the numerical experiments we compute a sparse tensor solution with the help of
the combination technique. The sparse solution is constructed according to the formula

ǔL,N =

L∑

ℓD=0

(

uℓD,ℓmax
S

(ℓD) − uℓD,ℓmax
S

(ℓD+1)

)

from a number of solutions uℓD,ℓS ∈ V ℓD,ℓS to the full tensor discrete variational
formulation (39) of reduced physical resolution ℓD and angular resolution ℓS .

Clearly ǔL,N is in the space V̂ L,N =
∑L

lD=0 V
ℓD,ℓmax

S
(ℓD), which is identical to the

sparse tensor approximation space from (44). However, in general the combination
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approximation differs from a direct sparse approximation ûL,N [see also 10, Sec. 2.3.1].
Due to the quasi-optimality of the direct sparse solution as an approximation in V̂ L,N ,
the error of the combination approximation can serve as an upper bound (up to factors)
for the error ‖u− ûL,N‖1 of the direct sparse approximation.

The use of the combination technique approximation has practical advantages over
the direct sparse approximation. First, to construct the subproblem solutions of lower
resolution, an existing full tensor solver with standard nonhierarchical FEM bases can
be reused, no direct sparse solver needs to be implemented. Second, the splitting into
subproblems entails a natural level for parallelism in the algorithm, which can still
be combined with parallel solution procedures at the level of each subproblem [an
implementation is described in 10, Chap. 7].

Each of the full tensor subproblems is solved by a phase space Galerkin finite element
method with nonhierarchical affine hat functions as physical basis and piecewise
constants as angular basis. In the experiment of Sec. 3.3.2, the midpoint rule is used for
angular quadrature which corresponds to the SN -method. However, in situations where
ray effects [18] pollute the results, adaptive quadrature may help [24]. As a simple
adaptive rule we link the number of quadrature points nq per dimension and per mesh
element to the resolution levels lD, lS of the subproblem by nq = max{lD/lS , 1} in
the experiment of Sec. 3.3.1. Even though the overall computational effort is then not
bounded by Lemma 7, the total number of degrees of freedom still is. As the iterative,
approximate solution of the linear system constitutes the most time consuming part,
the sparse tensor method is, in practice, more efficient than the full tensor method.

3.2 Quantities of interest

In applications, the radiative intensity is often coupled to other modes of energy
transport via the net emission [e. g. 17, Eq. (1.1a)]. The net emission can be computed
in turn from the incident radiation

G(x) =

∫

S

u(x, s) ds. (60)

For this reason, we choose the incident radiation as a lower-dimensional variable to
visualize results and to analyze errors. The relative L2- or H1-error of the incident
radiation is given by

err(GL,N )X = ‖G−GL,N‖X/‖G‖X , X = L2(D), H1(D).

3.3 Numerical experiments

All experiments are set on the domains D = [0, 1]d, S = SdS , with d = dS +1. We solve
the RTP with isotropic scattering Φ(s, s′) = 1/|S| and zero inflow boundary conditions
g = 0.
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Figure 1: Experiment 1: Convergence in incident radiation with full and sparse phase
space Galerkin approximation. Reference resolution was Lref = 6/Nref = 6.
Reference slopes provided as visual aids only. Even with the lowest order
sparse tensor phase space Galerkin discretization, the savings in DoFs to
reach engineering accuracy of 1% - 10% in the H1 error is about an order of
magnitude.

3.3.1 Experiment 1

We search the solution to the Gaussian blackbody radiation

Ib(x) = 2 exp
(
−32(x− c)2

)
, c = (0.5, 0.5)⊤,

with absorption and scattering coefficient κ = σ = 1.
The H1-error of the incident radiation indeed converges faster in the sparse approx-

imation than the full approximation (Fig. 1). Note that the L2-error of the sparse
approximation can be larger than the error of the full approximation because the
sparsity profile f(lD, lS) has been optimized for essentially undeteriorated convergence
in the ‖·‖1-norm of the error in the radiative intensity, which is more closely represented
by the H1-error than the L2-error of the incident radiation.

3.3.2 Experiment 2

A blackbody radiation Ib(x, s) corresponding to the exact solution

u(x, s) =
3

16π
(1 + (s · s′)2)

3∏

i=1

(−4xi(xi − 1)),

with fixed s′ = (1/
√
3, 1/

√
3, 1/

√
3)⊤ is inserted into the right hand side functional

in (39) [10, Sec. 8.2, Exp. 1]. The absorption is set to κ = 1, the scattering coefficient
to σ = 0.5.
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Figure 2: Experiment 2: Convergence in incident radiation with full and sparse DOM.
Reference resolution was Lref = 4. Angular resolution N ′ corresponds to
N ≈ {1, 2, 3, 4}. Reference slopes provided as visual aids only. The savings
in DoFs to reach engineering accuracy of 1% - 10% are about two orders of
magnitude.

For this experiment we employed a discrete ordinates solver in which the angular
resolution N ′ is related to the angular degrees of freedom by MS = (N ′ + 1)2 so that
N ≈ ⌊log2(N ′ + 1)⌋, where N is the angular resolution used otherwise in this paper.

Fig. 2 shows the superior efficiency of the sparse approach with respect to number of
degrees of freedom vs. achieved error. The convergence rates indicate that the curse of
dimensionality is mitigated by the sparse discrete ordinates method.

4 Conclusion

We have shown a direct sparse tensor phase space Galerkin approximation of the
radiative intensity in the stationary monochromatic radiative transfer problem can
be computed with only O(logMD(MD + MS)) degrees of freedom as opposed to
O(MDMS) degrees of freedom for a standard full tensor approximation. Here, MD is
the number of physical degrees of freedom and MS the number of angular degrees of
freedom. At the same time, the error of the sparse approximation in the ‖·‖1-norm
still decreases essentially as the error of the full approximation, namely with the order
O(logMD(M

−s/d
D +M

−t/dS

S )) as compared to O(M
−s/d
D +M

−t/dS

S ) in the full tensor
approximation. The parameters s, t ∈ {0, 1} indicate the regularity of the exact solution
which is required to be in the space of mixed smoothness Hs+1,t(D×S) to achieve the
sparse convergence rate, whereas Hs+1,0(D × S) ∩H1,t(D × S) is sufficient in the full
tensor approximation.

To simplify implementation, we realized the sparse tensor approximation algorith-
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mically via the combination technique. Together with suitable quadrature rules, we
demonstrated in numerical experiments that this sparse tensor combination approxi-
mation retains the analyzed theoretical advantages of the direct sparse tensor method
while allowing for straightforward parallelization also at the level of subproblems.

The proposed specialization of the phase space Galerkin framework investigated here
has the advantage that both discrete ordinates and spherical harmonics method can be
derived from it so that the sparse tensorization benefits hold for the sparse variants of
both methods alike.

Therefore, for problems whose solutions exhibit so-called mixed regularity, the sparse
tensor product phase space Galerkin approximations realize a significant increase in
efficiency, i. e. achievable error per number of degrees of freedom. Even in applica-
tions where high numerical accuracy is the main objective, a sparse tensor product
approximation might be of value as an initial value for an iterative solver or in a
problem-adapted preconditioning scheme.
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