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hp-DGFEM FOR SECOND-ORDER MIXED ELLIPTIC PROBLEMS IN
POLYHEDRA

DOMINIK SCHOTZAU, CHRISTOPH SCHWAB, AND THOMAS P. WIHLER

ABSTRACT. We prove exponential rates of convergence of hp-dG interior penalty (IP) methods
for second-order elliptic problems with mixed boundary conditions in polyhedra which are based
on axiparallel, o-geometric anisotropic meshes of mapped hexahedra and anisotropic polynomial
degree distributions of p-bounded variation. Compared to homogeneous Dirichlet boundary
conditions in [10, 11], for problems with mixed Dirichlet-Neumann boundary conditions, we
establish exponential convergence for a nonconforming dG interpolant consisting of elementwise
L? projections onto elemental polynomial spaces with possibly anisotropic polynomial degrees,
and for solutions which belong to a larger analytic class than the solutions considered in [11].
New arguments are introduced for exponential convergence of the dG consistency errors in
elements abutting on Neumann edges due to the appearance of non-homogeneous, weighted
norms in the analytic regularity at corners and edges. The nonhomogeneous norms entail a
reformulation of dG flux terms near Neumann edges, and modification of the stability and quasi-
optimality proofs, and the definition of the anisotropic interpolation operators. The exponential
convergence results for the piecewise L? projection generalizes [10, 11] also in the Dirichlet case.

1. INTRODUCTION

Consider an open, bounded polyhedron @ C R? with Lipschitz boundary I' = 9} that consists
of a finite union of plane faces I', indexed by ¢ € J. The sets I', are assumed to be bounded,
plane polygons whose sides form the (open) edges of 2. The set {I',},c; is partitioned into two
sets Jp and Jy of Dirichlet and of Neumann faces, respectively, i.e., J = Jp U Jn, with disjoint
union. Then we consider the diffusion equation

—Au=f in Q, (1.1)
Yo(u) =0 onl', CcIN, € Jp, (1.2)
71 (u) =0 onI', CIN, veJn, (1.3)

where the operators vy and «; denote the trace and (co)normal derivative operators, respectively.
With the Sobolev space V := HL(Q) := {v € HY(Q) : v|r, =0, ¢ € Jp} and the continuous
bilinear form a(u,v) := [, Vu - Voda, the variational form of problem (1.1)-(1.3) is to find
u € H} () such that

a(u,v) = /va dx Yo € Hh(Q) . (1.4)

For every f € V* = H}(Q)*, the dual space of V, problem (1.4) admits a weak solution u € H} ().
The solution is unique if Jp # 0, and unique up to constants if Jp = 0 (in which case we also
require the compatibility condition (f, 1) . = 0).

This paper is a continuation of our work [10, 11] on hp-version discontinuous Galerkin (dG)
finite element methods (FEM) for second-order elliptic boundary-value problems in polyhedral
domains Q C R3. In [10], we showed the well-posedness, stability and quasi-optimality of hp-
version interior penalty (IP) discontinuous Galerkin discretizations of (1.1) in the pure Dirichlet
case when J = Jp, Jn = 0, and the homogeneous essential boundary conditions (1.2) are posed
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on all of 9Q. In [11], we then used these results to prove exponential rates of convergence in
the number of degrees of freedom, on appropriate combinations of o-geometric meshes and s-
linearly increasing anisotropic elemental polynomial degrees; see also [14] for related work on
linear elasticity.

In this work, we consider the case Jny # 0. The case Jny = 0 is the pure Dirichlet case where
exponential convergence was established in [10, 11]. The hp-error analysis in the present paper
is along the lines of [10, 11], however, there are some significant differences: as shown in [3],
the solutions of mixed Dirichlet-Neumann or pure Neumann problems for second order, elliptic
boundary value problems in polyhedral domains with piecewise analytic data belong to analytic
classes specified in terms of countably normed Sobolev spaces. In elements in the vicinity of T, , for
L € Jp, the analytic classes coincide with those for the Dirichlet case, and accordingly, exponential
convergence would follow as in [11]. In the present paper, we provide an alternative proof also in the
Dirichlet case, constructing an hp-interpolant from elementwise L?-projections. The exponential
convergence proofs in this work will focus on stability and exponential convergence bounds in
elements in the vicinity of I',,¢ € Jn. Here, new technical difficulties (as compared to [11])
arise, due to the solutions belonging to countably normed Sobolev spaces with nonhomogeneous
weights Ng'(Q2) introduced in [3]. In the case of homogeneous Dirichlet conditions (i.e., when
Jn = 0), these spaces coincide with the (smaller) spaces M E(Q) for which we proved exponential
convergence in [10, 11]. When Jy # 0, however, we have the strict inclusion Ng'(Q2) 2 Mg'(Q),
due to the different structure of the weights near Neumann edges, i.e., edges at the intersection of
two faces ', ¢ € Jy. Compared to [10, 11], the different structure of the weights entails essential
modifications in the definition of the anisotropic hp-interpolation operators, as well as in the error
bounds in elements containing Neumann faces. Compared to the results of [10, 11], we present
here an hp-dG discretization for (1.1)—(1.3) with Jy # 0. On axiparallel hexahedral meshes
and for linear anisotropic polynomial degree distributions, and for isotropic diffusion coefficients,
we establish exponential convergence. Specifically, we show that the hp-dG approximations are
well-defined, satisfy the Galerkin orthogonality property and, hence, the dG energy error can be
bounded with respect to a suitable discontinuous elemental polynomial interpolation operator. We
generalize the result in [11] (for the case Jy = (), and prove that hp-dGFEM achieve ezponential
convergence, i.e., asymptotic convergence rate bounds of the form C eXp(fb\E/N ), where N is the
number of degrees of freedom, and where b, C > 0 are independent of N.

The outline of the article is as follows: In Section 2, we recapitulate regularity results in count-
ably normed weighted Sobolev spaces for the solution of (1.1) — (1.3) from [3], extending the
pioneering work [2] in two dimensions to the three-dimensional case. In Section 3, we define
hp-dG finite element spaces on o-geometric meshes of mapped hexahedral elements with possi-
bly anisotropic polynomial degree distributions. In Section 4, we extend the stability and quasi-
optimality results of [10] to the mixed boundary conditions considered here. Particular attention
is being paid to the analysis of consistency errors in elements abutting at “Neumann-edges”, being
edges where two faces with homogeneous Neumann boundary conditions meet. In Section 5, we
present exponential convergence bounds for the consistency terms arising in the dG-stability anal-
ysis, and state our exponential convergence result (Theorem 5.6). Sections 6-7.6 are devoted to
the proof of this result. Although we use ideas and notation from [10, 11], the proof of exponential
convergence in the present paper is self-contained, and the results in several respects stronger than
the analysis in [11]: exponential convergence is shown for larger classes of solutions, and for an
(quasi)interpolant which requires merely L2-regularity of the solution, thereby generalizing the
analysis in [11]. This is purchased at the expense of additional powers of the maximal polynomial
degree (as compared to [11]) appearing in the consistency error bounds; these are subsequently
absorbed into the exponentially small terms.

The notation employed throughout this paper is consistent with [10, 11]. In particular, we shall
frequently use the function

I(g+1—r)
= 0<r<gq,q,reN, 1.5
q, F(q+1+7") r q, 4,7 ( )
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where T' is the Gamma function satisfying I'(m + 1) = m/!, for any m € N. Moreover, we shall
use the notations ”<” or ”~” to mean an inequality or an equivalence containing generic positive
multiplicative constants which are independent of the local mesh sizes, polynomial degrees, and
regularity parameters, as well as of the geometric refinement level, but which may depend on the
geometric refinement ratio o and on the linear polynomial degree slope s.

2. REGULARITY

To establish exponential convergence of hp-dG methods, it is necessary to specify the precise
regularity of solutions of (1.1)—(1.3) in countably normed weighted Sobolev spaces. To do so, we
follow [3], based on the notations already introduced in [10, 11].

2.1. Subdomains and Weights. We denote by C the set of corners ¢, and by £ the set of open
edges e of . The singular set of €2 is then given by

S = (ceLJCC) U <66U5e> cr. (2.1)

ForceC,ec &, and x € ), we define the following distance functions:

re(x) = dist(zx, ), re(x) = dist(x, e), Pee() = re(X)/re(). (2.2)
We assume the vertices of 2 to be separated:
Je() >0: () B=(e) =0, (2.3)
ceC

where B.(c) denotes the open ball in R?® with center ¢ and radius . For each corner ¢ € C,
E.={ee& :cne#D} denotes the set of all edges of @ which meet at ¢. Similarly, for any
e € &, the set of corners of e is given by Co =de ={ce€C : cNe#0}. Then,forceC,ec &
and e. € &, we define the neighborhoods

we={z €N :re(x) <& A pee(x) > Veekl.},
we={x €N : re(x) <e A re(x) > Veel}, (2.4)
Wee, = {2 €N 1e(x) <& A pee.(x) <e}.

Possibly by reducing ¢ in (2.3), we may partition the domain € into four disjoint parts,

Q=0Q0UQeUQe U Qce, (2.5)
where
Qe = U We, Qe = U We, Qce = U U Wee- (2.6)
ceC ecé ceC e€el.

We shall refer to the subdomains Q¢, Q¢ and Qcg as corner, edge and corner-edge neighborhoods
of Q, respectively, and the remaining interior part of the domain Q is defined by Qp = Q\
Qe U Qe UQce.

In the sequel, it will be useful to refine the partition in (2.6) by introducing the following subsets
of C and &, respectively:

Cp ::{CGC : Hseijithcﬁfs#@},
Ep={ec& :3secJpwithenTs#0}, (2.7)
5]\[ 125\51).

Corners in Cp and edges in £p abut at at least one Dirichlet face I', for ¢ € Jp. Note that we
possibly have £y = ). Hence, the edge neighborhoods in (2.6) can be further partitioned into:

Qe = e, U gy, (2.8)

where, as in (2.6), we let Qe = e, we, and Qey = Ugeg,, We-
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2.2. Weighted Sobolev Spaces. To each ¢ € C and e € £ we associate a corner and an edge
exponent e, Be € R, respectively. We collect these quantities in the multi-exponent

B={Bc:cecClU{Be: ec&}ecRICHIEL (2.9)

Inequalities of the form B < 1 and expressions like 3 £+ s, where s € R, are to be understood
componentwise. For example, B4+ s={f8c.+5s: c€ C}U{Bc+s: e € £}. We shall often use the
notation

be=—-1-8., ceC, be=—-1—0 ec&. (2.10)

At the heart of the exponential convergence analysis of hp-approximations in three dimensions
is the analytic regularity of the solution w of (1.1)—(1.2) near the set of edges £ of Q. In order
to describe it, we recall from [10], for corners ¢ € C and edges e € &, the local coordinate
systems in we and wee which are chosen such that e corresponds to the direction (0,0,1). Then,
we denote quantities that are transversal to e by (-)*, and quantities parallel to e by (-)I. In
particular, if & = (at,all) with at = (a1,a2) and ol = a3 is a multi-index corresponding to
the three local coordinate directions in a subdomain we oOr wee, then the operator D denotes
the partial derivative in these local coordinate directions. Likewise notation shall be employed
below in anisotropic quantities related to a face. Furthermore, we will write |at| = a; + as,
and |a| = |at] + a3

The solution u of (1.1)-(1.3) belongs to a scale Ng'(£2) of countably normed spaces which are,
in the case Jy # (0 under consideration here, strictly larger than the scale Mg(Q) of spaces
considered in [10, 11] for the pure Dirichlet case, i.e., for J = Jp, so that the exponential
convergence results proved in this paper generalize those in [10, 11]. We define the semi-norm

2 o
|u|N§(Q;CD,5D) T

Be at max{Be aL,
> {Dau||zz<go>+ O A D D (-

aengd ecép ecén
loc|=k
52 £
+ 3 <|‘7’£C+|Q|Dau||i2(wc)+ 3 Hrf‘:ﬂa‘pcj'o‘ IDauH;(%e)
ceCp ec€Nép
+ Z ’|Tgc+\a\pgleaX{5e+|al|70}DauHiz( )) (211)
ecENEN e
€
+ Z (Hrrcnax{ﬂc-i-la\,o}DauHiZ(wc)+ Z Hrg]ax{ﬂc-i-\a\,O}pnga |Dau||12(wce)
CEC\CD ecE.NED
. ||r;nach+lal70}pzzaxwe+aleO}Dauuig(ww))}'
ecE.NEN
For m > kg, with
kg = —min{rcneigﬁc,réneigﬁe}, (2.12)

we denote by Ng'(%;Cp,Ep) the space of functions u such that ”u”Nz,"(Q;CD,ED) < 00, with the
norm [ul|} =Ykt [uliv
N (Q:Cp.£p) = 2uk=0 [UINS(QuCp £p)"
It follows from the definition of the norm ||uHNgl(Q§CD7gD) that the spaces Ng'(Q;Cp,Ep) are
monotonic with respect to the sets Cp, Ep: for § CCp CC and B C Ep C &, we have

Mg'(2) := Ng'(Q;C,E) € Ng'(4;Cp,Ep) € Ng'(92;0,0) =: Ng'(Q2), (2.13)
where Mg'(€2) is the weighted Sobolev space obtained as the closure of C§°(£2) with respect to the
norm ||o||M5L(Q) = HOHNEL(Q;C’S). For subdomains K C € we shall denote by | o ‘Ng(K;CD7gD) the

semi-norm (2.11) with all domains of integration replaced by their intersections with K C Q, and
likewise we shall use the norm || o ||Nén(K;CD7gD).



hp-DGFEM FOR MIXED ELLIPITIC PROBLEMS IN 3D 5

2.3. Analytic regularity of variational solutions. We adopt the following classes of analytic
functions from [3].

Definition 2.1. For subdomains K C  and any subsets C' C C, &' C &, the space Bg(K;C',&’)
consists of all functions u such that u € Ng'(K;C',&’) for m > kg, with kg as in (2.12), and such
that there exists a constant C, > 0 with the property that

|u|Ng(K;C',5’) S C,Llj-i_lk' Vk > kﬁ . (214)

Remark 2.2. The analytic class Bg(Q2) = Bg(Q;0,0) is closely related to the countably normed
spaces Bf;(Q) introduced by Babuska and Guo in [2, 7, 8]: if the edge and corner exponents
Bij € (0,1) and B, € (0,1/2) introduced in [2, 7, 8] satisfy 5;; = Be + £ and B, = B + ¢ for every
c € Cand e € &, then B§(Q) = Bg(Q). By (2.13), we also have Ag(Q) = Bg(%;C, ), where
Apg(Q) is the analytic class considered in [11].

We have the following regularity result (see [3, Theorem 7.3]).

Proposition 2.3. There are bounds bg,be > 0 (depending on  and on the space V') such that,
for b satisfying

0<be<be, 0<be<bg, ecé&, cel, (2.15)
any weak solution uw € V defined in (1.4) of problem (1.1)—(1.3) satisfies:
f S Bl_b(Q;C,gD) — Uu < B_l_b(Q;C,(gD) . (2.16

Remark 2.4. We may and will assume in the following without loss of generality that in (2.15
there holds 0 < be, be < 1. Then B, fe € (—2,—1) in (2.10). Consequently, we have kg € (1,2
in (2.12), and (2.14) holds for all k > 1. Moreover, for |a*| > 2, there holds, max{Se + |a*|,0
Be + |at|.

~_—

Remark 2.5. Under the assumptions of Proposition 2.3, there holds
B_1_(2;C,Ep) C C°(Q) . (2.17)

This inclusion is a consequence of Remark 2.2 above on the equivalence of weighted analytic
spaces defined via (2.11), (2.14), with the spaces of Babuska and Guo introduced in [7, 8], under
our assumption that 0 < be,be < 1 (cp. Remark 2.4); see [8, Theorem 5.10]. The assertions
(2.16) and (2.17) imply in particular that point values of the solution v € B_1_(92;C,Ep) are
well-defined at £ and C.

Remark 2.6. Note that the regularity (2.16) implies the a-priori estimates (2.14) in the weighted
spaces with weights at all ¢ € C, even if ¢ is a “Neumann corner”, i.e. if only Neumann faces meet
at corner c. In the case of corners ¢ of polyhedra in R?, corner weights do not imply homogeneous
Dirichlet boundary conditions since by Hardy’s inequality {u € H*(Q) : r;'u € L*(Q) Ve € C} =
H(Q) for bounded Lipschitz domains Q2 C R3. This implies that the Dirichlet corner weights do
not contribute to the characterization of integrability of the weak solution v € V' near the singular
set S which is; by (2.11), completely characterized by the edge weight functions for all edges e € &
which meet at corner ¢ € C. The regularity (2.16) in the analytic class B_1_4(2;C,Ep) implies
Cp = C in (2.11) so that only six out of the nine terms in the weighted semi-norms | - ‘N]BC(Q§CD7$D)
suffice to characterize the analytic regularity of w. In particular, the corner weights have the same
structure as in the pure Dirichlet case, albeit with in general a larger range of the exponents
Be, whereas for each edge e € &, the two cases e € Ep and e ¢ Ep must be distinguished.
The positivity of the indices be, b. in (2.15) implies with (2.10) that —1 — fg < Be < —1,
—1—0¢ < Be < —1,and 1 < kg < 1+ min{f¢,Bc}. Inspection of (2.11) reveals that this

forces the solution to zero weakly at Dirichlet edges e € Ep; however, the structure of the weights

X1Pe + ,0 . . . . . .
r;na {Bet|et |0} associated with Neumann edges e ¢ £p in the third and sixth terms in (2.11)

allows for nonzero traces of u € V' at such edges.
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3. hp-SUBSPACES IN (2

In [10], we constructed a class of hp-dG spaces on families M, = {M[(f)}gzl of nested, o-
geometric meshes of hexahedral elements with £ layers of refinement, polynomial degree distri-
butions which are nonuniform, anisotropic within elements and s-linearly increasing between el-
ements. Here, we recapitulate the construction in the particular case of aziparallel domains and
meshes, and refer to [10, Section 3| for details and proofs.

3.1. Geometric hp-Meshes in (). We start from any coarse regular quasiuniform partition
MO ={Q; le of O into J convex axiparallel hexahedra. Each of these hexahedral elements ); €
MO is the image under an affine mapping G; of the reference patch C~2 =(-1,1)3ie Q; = Gj(é)
for j =1,...,J. In fact, since the hexahedra {Q;}; are assumed axiparallel, the mappings G; are
compositions of (isotropic) dilations and translations. Due to our assumption that the faces of
are plane, it is geometrically exact.

In [10], canonical geometric mesh patches on the reference patch @ have been constructed; see
Figure 1. Geometric meshes towards corners and edges in €2 can then be obtained by again applying
the patch mappings G; to transform these canonical geometric mesh patches on the reference
patch @ to the patches @; € M°. It is important to note that the geometric refinements in the
canonical patches have to be suitably selected and oriented in order to achieve a proper geometric
refinement towards corners and edges of 2. In addition, we allow for simultaneous geometric
refinement towards several edges. In [10, Section 3.3], a specific construction of geometric meshes
has been introduced in terms of four different hp-extensions (Ex1)—(Ex4) as displayed in Figure 1.
They also apply to our exponential convergence analysis below. Moreover, the patches @); with
@j NS = B away from the singular support S are left unrefined, i.e., no refinement is considered
on Q.

Consider now the hexahedral patch Q; € M. We denote the elements in the canonical geo-
metric mesh patch associated with @; by Mvj = {K}, where we allow Mvj = {Q} in the case of
unrefined patches. The elements in M ; are then transported to the physical domain €2 via the
(finitely many) affine patch maps G;. Moreover, for each K e Mvj, we can write K = ij((f{),
where Hj7 & K- Kisa possibly anisotropic dilation combined with a translation of the refer-
ence cube K = (—1,1)? (to be distinguished from the reference patch @) Thus, the elements in
the patch Q; C Q will be given by M; = {K K =(GjoH, z)(K), K € M; } j=1,....,J. A
geometric mesh in  is now given by

J
M= M;. (3.1)
j=1
Throughout, we shall assume that the initial mesh M? is sufficiently fine so that an element
K € M has non-trivial intersection with at most one corner ¢ € C and at most one edge e € £.
By construction, each hexahedral element K € M is the image of the reference cube K under an
element mapping ¢ K = @ (IA( ), which is a possibly anisotropic dilation with a translation from
K to K. We collect all element mappings ®x in the mapping vector ®(M) := { g : K € M }.
With each (axiparallel) element K € M in the geometric mesh, let us associate a polynomial
degree vector pr = (px.1,PK.2,Pk.3) € Ng. Its components correspond to the coordinate directions
in K = (I)I_(l(K). The polynomial degree is called isotropic if px 1 = pr2 = Px3 = px. We set
|pK| := max} | px ;.
In the hp-error estimates, we shall often write K in the form
K =K' x Kl (3.2)

L= (21,22)

perpendicular to the nearest edge e, and Kl is an interval of length hl in the third coordinate

where K= is an axiparallel rectangle of diameter hz in the first two coordinates x

direction z!l = z3 parallel to e. Analogously, we then choose PK1 = PK,2 =: pJfg, and write

pr = (D&, D).
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i i i

FIGURE 1. Examples of three basic geometric mesh subdivisions in the reference
patch @ with subdivision ratio o = 1/2: isotropic refinement towards the corner
¢ (left), anisotropic refinement towards the edge e (center), and anisotropic re-

finement towards the edge-corner pair ce (right). The sets ¢, e, ce are shown in
boldface.

Given a mesh M of hexahedral elements in ), we combine the elemental polynomial degrees py
into the polynomial degree vector p(M) := {pr : K € M}, and define ppax 1= maxgem [PK|.
We remark that, in addition to the mesh refinements, the extensions (Ex1)—(Ex4) introduced
in [10] also provide appropriate polynomial degree distributions that increase s-linearly away from
the singular set S.

In the sequel, we shall be working with sequences of o-geometrically refined meshes denoted by
MO MP MP LMD, where MY := MO. Here, o € (0, 1) is a fixed parameter defining
the ratio of subdivision in the canonical geometric refinements in Figure 1. We shall refer to the
index ¢ as refinement level, and to the sequence M, = {M((f)}521 as a o-geometric mesh family;
see [10, Definition 3.4].

3.2. Mesh Layers. As in [10, Section 3], we shall use the concept of mesh layers: these are

partitions of M, = {Mff)}gzl into certain subsets of elements with identical scaling properties in
terms of their relative distance to the sets C and £. The following result holds.

Proposition 3.1. Any o-geometric mesh family M, obtained by iterating the basic hp-extensions
(Ex1)-(Ex4) in [10] can be partitioned into a countable sequence of disjoint mesh layers {£J f;é,
and a corresponding nested sequence of terminal layers ‘Iﬂ, such that each /\/lff) eEMy, L>1, can
be written as
MO =gluely. . ugltugt. (3.3)

Elements in the submesh

Of =guglu..uglltacmMPem, >1, (3.4)
are bounded away from C U E, while all elements in the terminal layer T% have a nontrivial inter-
section with C U E. Evidently, MY = OLUTE for > 1.

We partition O into discrete corner, edge and corner-edge neighborhoods as 9% = Dé U Df: U
Db U DL, where for £ > 1,

int?
Ofy ={KeDl : KnQ#0},
Of={KeD, : KnQec#0}\9O

int»

oL ::{KEDZU :FﬁQg#@}\(D-z U Os),

int
Obe i ={KeO, : KNQce #0} \ (Oh,, UOEUDOE) .
Note that there exists £ > 1 (depending on ¢ from (2.3) and on ) such that D¢, = O for £ > /.

be int
Without loss of generality, we shall assume that the initial mesh is sufficiently fine so that we can
choose £y = 2. Consequently, in what follows we shall simply write Ojy instead of O . In

int*
addition, we may assume without loss of generality that £0 C Of . for £ > £y = 2.

(3.5)
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For an element K € M, we set hr := diam(K), and denote by hj and hg( the elemental
diameters of K transversal respectively parallel to the singular edge e € £ nearest to K; cp. [10].

For isotropic elements, we have h” ~ hll( ~ hg. In a sequence M, = {Mff)}gzl of o-geometric
meshes, we define for any K € Mg), c € C and e € & the quantities:

% = dist(K, e) = muelf( re(x), % =dist(K,c) = mlgf( re(x). (3.6)

These quantities are closely related to the elemental diameters hll( and hﬁ{; cp. [11, Prop. 3.2 &
3.4]. Tn particular, if K = K+ x K| € 9 as in (3.2), then d§; = hj, and d§ ~ hi;.
Similarly, we partition the terminal layer ‘Iﬁ into Tf; = Tfj U ‘I‘é, where

Teo= )T T={KeT, :Knc#0}, ced, (3.7)
ceC

TL = U T, T ={KecT\%T,: (Kne)isanentiteedge of K}, ec&. (3.8)
ecf

For MO sufficiently fine, we may assume that % consists of at most a finite number (independent
of ¢ € C, o, and /) of elements K € T. According to [11, Proposition 3.2], these corner elements
K € T are isotropic with hx ~ h}g ~ hg{ ~ ¢*, while elements in K € ¢ may be anisotropic
with d$ < hf( ~ gt and dg ~ hﬂ( ~ g+1=7 for an exponent 2 <j</l+1.

3.3. Finite Element Spaces. Let M = /\/lff), for some ¢, be a geometric mesh of a o-geometric
mesh family 9, in Q. Furthermore, let ®(M) and p(M) be the associated element mapping and
elemental polynomial degree vectors, as introduced above. We then introduce the discontinuous
hp finite element space
VM, ®@,p) ={ueL*Q) : ulg €Qp(K), KEM}. (3.9)

Here, we define the local polynomial approximation space Qp, (K) as follows: first, on the reference
element K and for a polynomial degree vector p = (p1,p2,p3) € N3, we introduce the anisotropic
polynomial space: Qp([?) =P, (f) ® Pp, (f) ® Py, (f) =span{ & : o; <p;, 1 <i<3}. Here,
for p € Ny, we denote by PP (]A' ) the space of all polynomials of degree at most p on the ref-
erence interval I = (=1,1). Then, if K is a hexahedral element of M with associated ele-
mental mapping P : K — K and polynomial degree vector px = (px.1,Pk.2,PK,3), we de-
fine Qp, (K) = {u € L*(K) : (ulx o P) € Qpy (I?)} In the case where the polynomial de-
gree vector px associated with K is isotropic, i.e., px1 = px,2 = Pk,3 = Pk, we simply write
Qpy (K) = Qp, (K). For technical reasons that will become clear in the analysis, we will assume
throughout the paper that all polynomial degrees on elements K € 9% are greater than or equal
to 3.

We now introduce two families of hp-finite element spaces for the discontinuous Galerkin meth-
ods; both yield exponentially convergent approximations and are based on the o-geometric mesh
families 9, = {Mff’}zzl. The first family of hp-dG subspaces is defined by

V= VMY, @MP),pr(MP), =1, (3.10)

where the elemental polynomial degree vectors px in pl(/\/lt(f)) are isotropic and uniform, given
on each element K € MY as px = max{3,¢}. The second family of hp-dG subspaces is chosen as

Vi = V(M M), po( ML), £>1, (3.11)

for an increment parameter s > 0. Here the polynomial degree vectors paf Ef)) are linearly
increasing with slope s away from S, i.e., specifically, the polynomial degrees p}g and p!( within

each element K € Ml(f) increase linearly with the number of mesh layers between that element and
the closest edge e € & respectively the closed corner ¢ € C of €2, with the factor of proportionality
(“slope” in the terminology of [6]) being s > 0; see [10, Section 3]. In the pure Neumann case (Jp =

() we consider the factor space V(ﬁ5 = VU{E /R.
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Remark 3.2. By construction, increasing the index j in the mesh layers £/ corresponds to moving
from inside the domain towards the singular set S, with £ being the most inner layer, and the
terminal layer T° being the most outer layer abutting at S; see (3.3). While this numbering takes
into account the scaling properties of £7, it is in contrast to the notion of s-linearly increasing

polynomial degrees where the polynomial degree increases s-linearly away from the singular set
into the interior of the domain; see also [10].

3.4. Properties of bounded variation. The spaces V! and Vf}s defined in (3.10) and (3.11),
respectively, satisfy bounded variation properties with respect to the local mesh sizes and polyno-
mial degrees. These properties will be implicitly used in our analysis. To describe them, let 91,
be the underlying o-geometric mesh family. For any M € 9,, we define the set of all interior
faces in M by
FiM) :={f= (0K NdK*")° #0 : K", K* ¢ M}.

The set of all Dirichlet boundary faces is given by Fp(M) :={f = (0K NAL,)° #0 : v+ € Ip },
and similarly, we denote by Fn(M) the set of all Neumann faces. In addition, let F(M) =
Fr(M) U Fp(M) U Fn(M) denote the set of all (smallest) faces of M. Furthermore, for an
element K € M, we denote the set of its faces by Fx = {f € F(M) : f COK}. For K € M
and f € Fk, we denote by h[l(’f the height of K over the face f, i.e., the diameter of element K
in the direction transversal to f. Similarly, we denote by pJK ¥ the polynomial degree of pg
transversal to f (defined as the corresponding component of ®*(K)).

The geometric mesh family now satisfies the following property with respect to the local mesh
sizes: there is a constant u; € (0,1) only depending on o and M"Y such that

i < Wi s iy < (3.12)

for all interior faces f € Fy(M), and M € M. Further, the family of degree vectors p, (./\/l((f))gzl
introduced in (3.11) satisfies a similar property with respect to the polynomial degree: there is a
constant g € (0,1) (depending on s) such that po < py; f /pIL{., 5 < py b, for all interior faces

=7 (Mg)), and ¢ > 1. Note that for the family pl(./\/l((f))ng in (3.10) this property is trivially
satisfied.

4. DISCONTINUOUS GALERKIN DISCRETIZATION

In this section we present the hp-dG discretizations of (1.1)—(1.2) for which we shall prove
exponential convergence. In addition, we shall adapt the stability and approximation results
from [10, Section 4] to mixed boundary conditions. Throughout, M € 9, denotes a generic
o-geometric mesh.

4.1. Trace operators and trace discretization parameters. We shall first recall the jump
and average operators over faces; cp. [10, 11]. For this purpose, consider an interior face f € F;(M)
shared by two elements K K* € M. Furthermore, let v respectively w be a scalar respectively
vector-valued function that is sufficiently smooth inside the elements K, K”. Then we define the
following jumps and averages of v and w along f:

[v] = v|gimgs + 0| oy (o) =12 (v|gs +v|go)
[w] = w|gs - ngs +wlgs Mg (w)) =12 (w|gs + w|g) -

Here, for an element K € M, we denote by ng the outward unit normal vector on 0K. For a
Dirichlet boundary face f € Fp(M) belonging to K € M, we let [v] = v|gng, [w] = w|k - nq,
and ((v)) = v|k, (w)) = w|k, where ng is the outward unit normal vector on 9.

Moreover, we define the trace discretization parameters h,p € L (F;(M) U Fp(M)) by

hy:=hlp:=min{hg ;b ;) Pro= Dl = max {pis 1, Pis s} (4.1)

for any interior face f € F;(M) shared by OK* and dK”. For a Dirichlet boundary face f €
Fp(M) shared by dK and T, ¢ € Jp, we set accordingly hf := h|f = hi ;, pf := plf = pi ;-
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4.2. hp-IP dGFEM. The problem (1.1)—(1.3) will be discretized using an interior penalty (IP)
discontinuous Galerkin finite element method. Let V (M, ®,p) be an hp-dG finite element space
on a o-geometric mesh M € 9, with a degree vector p(M). For a fixed parameter § € R, we
define the hp-discontinuous Galerkin solution upg by

upg € VM, ®,p) : apc (upg,v) = / fudex Vv € V(M,®,p), (4.2)
Q

where the bilinear form apg(u,v) is given by

apc (u,v) ::/ Viu-Vyo de 7/ {Vpw)) - [v] ds
Q ]'—I(M)U]:D(M)

+ 9/ {(Vro)) - [w] ds + v / jifv] - [w] ds.
Fr(M)UFp(M) Fr(M)UFp (M)

Here, V}, is the elementwise gradient operator, and v > 0 is a stabilization parameter that will be
chosen sufficiently large. Furthermore, j is facewise defined as

ily=pinst,  feFiM)NFpM). (4.3)
Finally, the parameter 6 allows us to describe a whole range of interior penalty methods: for
6 = —1 we obtain the standard symmetric interior penalty (SIP) method while for § = 1 the

non-symmetric (NIP) version is obtained; cp. [1] and the references therein.
To address the well-posedness of the hp-dGFEM, we use the standard dG norm defined by

Jolbe = / Vaol? de + / i P ds, (4.4)
Q Fr(M)UFp (M)

for any v € V(M, ®,p) + H*(R2). In the pure Neumann case (Fp(M) =10), || - |pc is a norm on
the subspace (V(M, ®,p) + H'(Q2))/R.

4.3. Galerkin orthogonality and stability properties. In order to show the well-posedness
of the dG formulation (4.2), we recall first the anisotropic trace inequality from [10, Lemma 4.2]:

Lemma 4.1. Let M e M,, 0< o<1, KeM, fe Fg. For1l < q < oo there exists Cqy > 0
such that for any v € WH4(K) holds

-1
lollgosy < Ca ()™ (1000 iy + () 10K, 01 Scrc)) (4.5)

The constant Cyq > 0 is independent of the element size and of the element aspect ratio, and Ok r, 1
signifies the partial derivative with respect to the (local coordinate) direction transversal to f € Fi .

Secondly, the following Galerkin orthogonality is crucial in the subsequent dG error analysis.

Proposition 4.2. Suppose that the solution u of (1.1)~(1.3) belongs to N2, _,(Q:;C,Ep), where b
is the weight vector from (2.15). Then, the dG approzimation upg € V(M,®,p) from (4.2)
satisfies apg(u — upg,v) = 0 for any v € V(M, ®,p).

Proof. The proof is similar to the one of [10, Theorem 4.9], and follows from the fact that the
solution u satisfies apa(u,v) = [, fvde, for any v € V(M, ®,p). To prove this identity, we first
note that, for any u € Nzl_B(Q;QED) and v € V(M, @, p), there holds the Green’s formula

/ vAuda::/ Vu - Vo da:f/ (Vu-ng)v ds, VK e M, (4.6)
K K oK

where in the case 9K N9 # (), the boundary term has to be understood as a pairing in L' (9K) x
L>*(0K). The formula (4.6) is proved along the lines of [10, Lemma 4.8] with the aid of Lemma 4.1
with ¢ = 1. Employing (4.6), the term fQ AVu - Vyv de can be integrated by parts on each
element, thereby revealing that — fQ vAu de = fQ fvdx. Here, the remaining boundary and
inter-element flux terms vanish since [u]|; = 0 along all f € Fp(M)UF;(M), and that [Vu]|; =0
on all interior faces f € Fr(M). The proof of the latter identity is similar to the proof of [10,
Lemma 4.7]. O
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Finally, the following proposition results from minor modifications of the proofs of the corre-
sponding stability results presented in [10, Theorem 4.4].

Proposition 4.3. For any o-geometric mesh M and degree vector p(M), the bilinear form apc
is continuous and coercive on V (M, ®,p): there exist constants 0 < Cy < Cy < oo independent
of the refinement level £, the local mesh sizes and the local polynomial degree vectors such that
lapc (v, w)| < Ci||vlpellwlpe for all v,w € V(M,®,p), and such that, for v > 0 sufficiently
large independent of the refinement level ¢, the local mesh sizes and the local polynomial degree
vectors we have apg(v,v) > Callv||}q for allv € V(M,®,p). In particular, there exists a unique
solution upg of (4.2) (unique up to constants in the pure Neumann case).

5. ERROR ANALYSIS AND EXPONENTIAL CONVERGENCE

We begin the error analysis by choosing the approximation operators for elements 9% and T,
respectively, and by establishing some of their properties. Then we derive generic errror estimates
along the lines of those presented in [11]. Finally, we state our main result: an exponential
convergence bound in the dG-norm |- || pg for solutions v € B_1_4(92;C,Ep) as in Proposition 2.3.

5.1. The elemental approximation operators. Let u be the solution of (1.1)—(1.3). In this
section, we specify a polynomial approximation operator Ilu € V (M, ®,p). Since functions in
V (M, @, p) are discontinuous, we choose Iu elementwise as (ITu)|x = Hxu|x for any K € M.

5.1.1. L%-projection in one dimension. For a generic, bounded interval I = (a,b), we write Tp
for the L2-projection into the space P,(I) of degree at most p > 0 on I (for simplicity we do
not explicitly indicate the dependence of m, on I; this dependence will always be clear from the
context). For the purpose of scaling arguments, we further denote by 7, the L?-projection on the

reference interval I = (=1,1). The following (p-dependent) stability properties with respect to
Sobolev semi-norms will play a crucial role in our analysis.

Lemma 5.1. Let I = (a,b) be an interval of size h =b—a, p > 0, and v € H/(I) for j € Ny.
Then, for every p > j, there holds the bound

() Dl 221y < CP2 [u || 221y (5.1)
where C' > 0 is a constant depending only on j.

Proof. The L2-stability of mp on I, that is the case j = 0, is clear and the inequality holds with
constant C' = 1. Next, consider the case 7 > 1. Upon scaling it is sufficient to consider the
interval I = (—1,1). For p > j, it holds that (7,(u))¥) € P,_;(I), and, for the L2-projections

~

mi—1(u) € Pj_i(I), j =1,2,..., we have that
G () 25y = 1Fp(w) = T (@)D 27y = 1 Fp e = Tj1 (@)D 27y -
Hence, applying the inverse inequality from [12, Theorem 3.91], yields
1T ()P 27y < Cinv, g9 lu = Fjm1 ()| 275
and employing a Poincaré-type inequality in H7 () /IPj,l(IA ), results in
||(%p(u))(j)”m(f) < Cinv-,jpszPoinc,jHu(j)HLz(f) .
This is the desired estimate. (]

5.1.2. Approzimation on K € 9. For an interior element K € 9%, we now construct the tensor-
product L2-projection IT,, u as follows. In the setting of (3.2), we write K = K+ x K, and let

Pk = (pf(,p” ). Then we define

I, ulk = (ﬁpx (uo CI)K)) 0o dy!
(5.2)
~(1) o ~(2) o ~(3 _
= <7r( ‘@70 ® w;>> (wo®x) o @' € Qi (KH) @@, (K),

L
Pr K

where the one-dimensional L2-projections act in directions z1, 2, and x5, respectively.
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It will be further necessary to distinguish between the perpendicular and parallel projections.
To that end, we write

My = (I3, @ Hh{)u, Keo!, (5.3)

~(1) o ~(2 - ~(3 -
where (H;%u)h( = (7?1(7; ®7T1(7%<)) (uo®)o®y!, and Hl‘)g{u = W;L)(UO(I)K) odt.

5.1.3. A low-order Py-approzimation operator. We require the following IPi-quasi-interpolation
operator considered in [5]. Let & C R? be a bounded, convex polygonal (d = 2) or convex
polyhedral (d = 3) domain which is shape-regular, with diameter hg, and whose barycenter is

7).
Ty = — x dx € R, 5.4

where |R| denotes the volume of K. Then, by definition of xg,

/ (@ —@q) dz =0 (5.5)
£
Define the quasi-interpolation operator Z; : WhH1(&) — Py (R) by

Tyv :=ov + (x — xg) - Ip(Vv), (5.6)

where P (&) denotes the polynomials of total degree at most 1 on £, and where Iy and ITy denote
element averages, i.e., the projections onto Py(£) and on Py(8)?, d = 2, 3, respectively.

Lemma 5.2. For the quasi-interpolation operator I defined in (5.6), there holds:
(1) V(Zyv) = (Vo) on & for all v € WH(R).
(2) [¢(w—Tw)de =0 and [; V(v—Tiv) dx =0 for all v € WY (R).
(3) For 1< q < oo, the quasi-interpolant I is W19(8)-stable in the following sense:

Yo e WH(R) : ||V(T1v) |l ey < VOl pags) - (5.7)
(4) For v € HY(R) hold the approzimation properties:
lv = Tuoll oy S hallVollzewy, o = Tivllegony S B IVl La(s) - (5.8)
(5) Ifv e H%(R), there holds
lv =Tyl L2(a) + hall V(v = T1o)llr2(s) S hlolmz(s) -

(6) Letd =2, and ¢ a corner of &, and denote r = r(x) = dist(x, ¢). If HrﬂD‘a‘vHLz(ﬁ) < 00,
for any |a| = 2 and some 0 < B < 1, then, with an implied constant depending on the
shape-regularity of K, we have

lv = Tovllagsy + bl V(0 = To)ll o) S hE 7 ) 177D Lag) - (5.9)
|| =2
Proof. We prove this lemma item per item.
(1) The first item follows immediately from the definition of Z; in (5.6).
(2) Moreover, note that
v—Tv = (v—TIw) — (& —xg) - My(Vv) . (5.10)

Integrating this identity over K, the second item follows from property (5.5) and from
[ (v = Tpv) dz = 0.
(3) For 1 < g < oo, the W14(&)-stability property results by noticing that IIo(Vv) is constant,
and from Holder’s inequality:
7,
— [ Vudx
18] Ja

L) 1l Lva-n gy < IVUllLacs) -

IV (Z10) | Lagsy = [T (V) | Lasy = 8]

< |8/ Vo

For ¢ = oo the proof is similar.
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(4) To prove the L?(&)-bound in (5.8), we use (5.6) and (5.7):
lv— II'U”L?(R) <|lw- HOU”L?(ﬁ) + || v — Iﬂ)HLz(ﬁ)
= [[v = Tlov||L2(s) + (& — 2a) - (V)| L2(s)

S v = Hov|| g2 gy + hall Vol L2(g) -

Furthermore, applying the Poincaré inequality on H'(£)/R, there holds ||v — gv|| 28 S
hg||Vvl|L2(g), and thus, the first assertion in (5.8) follows.

In order to prove the second assertion in (5.8), we apply the trace inequality from
Lemma 4.1 to the isotropic element K, with ¢ = 2:

lo = Tuvllzecasy S g llv = Tuvll oy + b1V (0 = Zyv)ll (s -
Taking the gradient of (5.10), we find V(v—Zyv) = Vo—IIy(Vv). We apply the first asser-

tion of (5.8), the triangle inequality, and (5.7) to arrive at [|[v—Z1v||12(9a) S h;/2||Vv||L2(R).
(5) By item 2 we can employ the Poincaré inequality twice, together with scaling, to obtain

o = ZrvllL2(g) + hsll V(0 = Thv)| 25y
S hallV(v = Tiv) [l 2y S halv = Tavl ey = hglvlmzcq)-
(6) In order to show (5.9), we proceed as in the proof of the previous item and note that
V(v —T)|l2(x) -

Thus, it remains to bound ||V (v — Zyv)||z2(g). To this end, we apply the first item with
the Poincaré inequalities of [9, Proposition 27] or [13, Corollary A.2.11] to find that

IV (0 — T10) | 2y = V0 = (Vo) 2y S BE 2 S HrﬁD|o‘|v’

lor|=2

lv—Tivlr2s) S ha

L)
This completes the proof. O

5.1.4. Approzimation on T¢. Let e € £ and consider an element K = K+ x Kll in T in (3.8).
Then we set
(Hu)|K :IlL ®H1H7H U|Ka K e Tf; (5.11)
K

where Zi- is the two-dimensional P;-projector defined in (5.6) and applied in perpendicular direc-

tion to e with & = K+, and HHH is the L?-projection onto polynomials of degree pk in parallel
Pk

direction to e as in (5.3). Finally, for a corner element K € T% as in (3.7), we set
(TTw) | i == Ty (u| k) (5.12)

5.1.5. Tensor-product structure of II on 9% and T4. On elements K = K+ x Kl in 9¢ and %,
the approximation operator ITu chosen in (5.2), (5.3), and (5.11) has tensor-product structure. In
what follows, we shall now simply write

(Mu) g = Hgulx = Mg @ Mhulx = (T @Tlu)x, Keolugl. (5.13)
Lemma 5.3. Let K € 9% UT%. Then I in (5.13) satisfies:

(1) The operator H‘Il( is the L?-projection in edge-parallel direction into polynomials in IP’pH (K,
K

and I3 is an approzimation operator from H'(K=) into Qi (K+) (respectively P (K1)
in elements K in the terminal layers).

(2) The operator Tl reproduces polynomials in (U (K1) (respectively Py (K1) in elements
K in the terminal layers).

(3) The operator HJR satisfies the approximation property:

||’U_HJI%J~’UH%2(6KL) 5hKJ~||DL’UH%2(KJ~)7 UEHl(Kl), (514)

Proof. The first two properties follow by construction. The trace approximation bound (5.14) is a

standard result for the two-dimensional L2-projection I13; = H;-L in (5.3). For I = Zi- in (5.11)
K

this follows from (5.8) in Lemma 5.2. O
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If now u is the solution of (1.1)—(1.3), and II the tensor product projection introduced in (5.13),
we shall always denote by 1 the approximation error

n‘K = ’LL|K—(H’LL)|K, K e M. (515)
In accordance with (5.13), we also set
g =g — (THu)|g,  lx =ulx — [@)|x, KeOlugt. (5.16)
For K € 9% U T4, we shall further split 5| into
nli = (ulx = (0'0) i) + T (ul e = (T a)| i) = 0 + Then* . (5.17)

The stability of the L2-projection in (5.1), and the commutativity of the L?-projectors in perpen-
dicular and parallel direction yields

Lo 1 Ll Ll
102 Df 0l ey < h)* (IDF DY asey + 108 OF 0 i) (5.18)
for any ale N%, and 0 < all < 2, with “<” uniform in the aspect ratio of K.

5.2. An anisotropic jump estimate. The following bound is crucial for controlling the consis-
tency error in anisotropic elements in the terminal layers near Neumann edges.

Proposition 5.4. Consider an interior face f = (0K; N OK3)° that is parallel to the closest
edge e € &€, and which is shared by two aziparallel elements K1 = Ki- x Kl and Ky = K5 x Kl of

possibly high aspect ratios (b”—a”)/th where Kl = (all, b1, and hg{ = bl —all denotes the element

size in edge-parallel direction, and Ki- and K5 are two neighboring (but possibly non-matching)
rectangles in edge-perpendicular direction such that the bounded variation property (3.12) holds.

Moreover, foru € H'((K1UK2)°), we let I, = HI%I_@H% be a tensor-product quasi-interpolation
operator as in (5.13) satisfying properties (1)-(3) in Lemma 5.8 for i = 1,2. Then for n, n* and
nll as in (5.15), (5.16), there holds

R NIz S ||DJ_77L||%2(K1) + ||DLUL||%2(K2)~ (5.19)
Proof. Since H}Q reproduces polynomials in perpendicular direction, we see that
=gt = (u—gu) — g, (u - Mgu) = u— g u=n,

on K, i =1,2. Since [n] = [TTu] and Tk, u|x, = Hg{z’uh(2 on f, we obtain
2
Il = f (1, © Wi, — T, @ i, ) s

2
- /f (0, @1 ul, — T ulk,) = (Mg, © W ulie, - T ulk,)) ds

g/f (Hﬂ(lnHKl)z ds—i—/f (thﬂ;{z)zd&

Applying (5.14) in perpendicular direction and the L?-stability of the L2-projection Hgﬁ yields
||[[77]]||2L2(f) S hKlLHH”Dﬂ?l”zp(Kl) + hK;HH”Dﬂ?LH%?(Kz)
< hKlLHDﬂ?L”zm(KI) + hK,;HDﬂ?L”Zm(KQ) :

By the definition of hy, the bounded variation property (3.12) and the equivalence of hg, ~ hg,,
we remark that hy > hy =~ hg, ;= hygo = hgo, which implies (5.19). O
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5.3. Error estimates. To derive error estimates, we proceed in a standard way and split the
discretization error epg = u — upg into two parts n and &, epg = n + &, with

Nk =@w—-Tu)lg &k =u—upe)lxk, KeMP. (5.20)

Here, ITu € V(M, ®,p) is a polynomial approximation operator as in Section 5.1.
In acccordance with the partition of M%) in (3.3), (3.7), and (3.8), we define the error terms

Toclnli= Y T&n T [n]:= S TER,  Yxlnli= ) TE] (5.21)
Keo! Kext Kext

for i = 1,2, where

TE ) = (h) 213200, + V013 20y + )20l ey + (RR)ZIDF Ml ey (5:22)
TX ) = (Bl 2l ey + 19003210y + (BRI IDRmII3 2 (5.23)
Kz[??] (K17 (hae)* 1D 2 5 (5.24)
T ) = hilnlZa ey + 19020y + R e i (5.25)

In addition, for a Dirichlet edge e € £p, we set
Yoo b= 3 TSl Tl = k)l (5.26)

KeT!
By property (5.18) there holds:

You ] S Prax (Tor [0+ Yor '), Txe 1] S Phax(Tse [0+ Tz [0]), 520

Ter ] S Tse ) ]+ T n'].

Theorem 5.5. Let u € N2, ,(Q,C,Ep) be the solution of (1.1)~(1.3), and let upc be the DG
approximation obtained from (4.2) with a sufficiently large penalty parameter v > 0 in the dG
space V! in (3.10), respectively in V(ﬁs in (3.11), for a o-geometric axiparallel mesh M. Let
n = u — Hu with IT chosen in Section 5.1. Then for the approximation errors in (5.15), (5.16)
there holds the error bound

lu = unc e < i <ng [ ]+ Yo ]+ (T 1]+ Yz 101])
ecé

+) Yo I+ Yaelnl+ Y (Tee [n*]+ Tae [nl])>.

ecé ceC ecfp

(5.28)

The constant C > 0 is independent of the refinement level £, the local mesh sizes and the local
polynomial degree vectors.

Proof. Starting from (5.20), the Galerkin orthogonality in Proposition 4.2, implies that apg (&, ) =
—apg(n,§). Hence, by the coercivity of apg in Proposition 4.3, we arrive at

I€lbe S —apa(n,€) =: Ty + T, (5.29)
where
T = / Vin - Vi &da + 9/ (VrE) - [n] ds +7/ i [n] - [€] ds,
KeM Fr(M)UFp(M) Fr(M)UFp(M)
and

T, = (V) - [€]ds

/.;‘—I(M)UFD(M)
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The first term is bounded using the Cauchy-Schwarz inequality:

2 1/2
Ti| S Punae (Va3 + [0l
131 % e (1908000 + [0

1/2
LZ(J-'I(M)U]-'D(M))) ’

2
< (19368300 + i 4926 ¢l

L2(Fr(M)UFp(M)) ‘

Estimating the term involving (V) as in the proof of [10, Theorem 4.10], with the aid of [10
Lemma 4.3a)], we obtain

1/2
731 % e (110 + [0 ) ldbe. G0

L2 (Fr(M)UFp(M))
Next, we bound T5: There holds

n= 3 /\vhn “ng||[€]] ds

fEFI(M)UFp (M)
S > 1572V mm) - npllor o I3 2D g

fEFI(M)UFDp (M)

where my is an orthonormal vector on f pointing in a preset direction. Therefore, using [10,
Lemma 4.3b)], it follows that

ITa| S Phax > P12 =240 - gl 721D 2
foI(M)U]:D(M)
1/2
< Phaxléline > 172 mm) - gl gy
FEFI(M)UFD (M)
1/
S Phalléllve | D > 17 i VR - Ty

KeM fe(Fr(M)UFp(M)NFk

Since |Vn - ng| = [0k, f1n| on f € Fk, and |K| ~ \f|hKf7 applying the anisotropic trace
inequality (4.5) with ¢ =1 yields

1/2

1] S 2lélive | 3 S K (19 e + k20l
KeM fE(f[(M)UfD(M))m]:K

Using that || Vn||ri ) < [K[72 V0]l z2(x) by Hélder’s inequality, we conclude that
KMVl k) < IVANZ20k0

Since all elements K are axiparallel hexahedra, there are only two cases, f| e and f L e, where
e is the edge nearest to f € Fg. In the former case, there holds (h%} f) 0% fJ_77HL1(K

(h)?||D% 7]||L1(K),and in the latter (hllgf) (0% fJ_77HL1(K) ( )2 HD 17HL1(K) Therefore,

1/2
T3] £ Phaxl€lloe ( > (190032 + KT ()20l ey + 1] () DS m(K)) :
KeM



hp-DGFEM FOR MIXED ELLIPITIC PROBLEMS IN 3D 17

Combining this estimate with (5.29) and (5.30), dividing the resulting inequality by ||¢|pc and
squaring results in

— 2
1686 S Pl | V0020 + 30 05 M
feEFIUFD

+ 3 K (021D ey + <h'K>2||DQm||%1<K>)> .
KeM

Noticing that Ju — upclde < 2lnlbe + 2k, leads to

lu = uncllbe S Phax | IVanlZa + Y Br Il

FeF1uFp (5.31)

+ 3 T (k)2 I0R 3 ey + <h}(>2||D.2n||%1<K>)> .
KeM
It remains to bound the jump of 1. To this end, we distinguish several cases:
o If f | eis an interior face perpendicular to the closest edge e € £, shared by two elements

Ky and K, with hy ~ hg , ~ hg, ; ~ hu{l ~ hu(z, we use the trace estimate (4.5)
with ¢ = 2 to obtain

[

B B S 30 (Bhe) 2l + IV, ) -
=1

e For the jumps over interior anisotropic faces f|le which are parallel to e € £ (and which are
shared by two neighboring elements K; and Ks), we apply the anisotropic jump estimate
in Proposition 5.4, and see that

b Iz () S IDL 72 ckyy + 1D F 2 (k)
S HVULHQLQ(Kl) + anLHQL?(Kg) .

e Finally, for jumps which abut at a Dirichlet boundary face, we apply the trace esti-
mate (4.5) with ¢ = 2 to obtain, for any f € Fp(M)N Fk,

hfl‘l[[n]]ll?ﬁ(f) ~ (hﬁ)_1||77||2L2(f) S (h%{)_2”"7“%2(K) + 1D LnllZ 2 k)
S () 2l Z ey + 1V F 2y -
Inserting these bounds into (5.31) results in

hu—upalbe S Phae 30 (ol 21020, + 19032
KeM

I i) ID2 s ey + 1K1 )Rl
+p14'1nax Z anL”%Q(K) +p§nax Z Tlin[n] :
KeM\T¢ ecép

For K € D¢ and for K € T, e € &, we estimate the L!(K)-norms of D 7 and Dﬁn (the latter
only for K € O%) by their L?(K)-norms using Holder’s inequality. Moreover, noting that elements
in Té are isotropic with hy ~ h ~ hk and |K| ~ h;, yields

bt = upG I S P Yor 1] + P - (g 1] + Yz 0]
ec&

+pfnaxZTT‘;[7]] +pfnax Z ||VTIJ_||%2(K) +pfnax Z TTéD["ﬂ .
ceC KeM\T¢ ecép

Employing the splittings (5.27) and recalling that M = O UT% UTE implies the assertion. [



18 D. SCHOTZAU, C. SCHWAB, AND T. P. WIHLER

5.4. Exponential convergence. We are now ready to state the main result of this paper.

Theorem 5.6. Assume that the right-hand side f of the boundary-value problem (1.1)—(1.3) in the
aziparallel polyhedron Q C R3 belongs to the analytic space B1_p(2;C,Ep), with a weight vector b
satisfying (2.15) with 0 < be,bg < 1 as in Remark 2.4. Then the solution u is in B_1_p(;C,ED)
according to Proposition 2.3.

Furthermore, let M, = {Mt(f)}ezo be a family of axiparallel o-geometric meshes as introduced in
Section 3.1, and consider the hp-dG discretizations in (4.2) based on the sequences of approximat-
ing subspaces Vf and V) defined in (3.10) respectively (3.11), with the vector p, (./\/l((f)) in (3.10)
of constant, isotropic and uniform polynomial degrees equal to { for the space Vi, respectively the
s-linear, anisotropic degree distribution pg(./\/lg)) for ijs. All polynomial degrees are assumed
greater than or equal to 3 in elements not abutting at edges e or corners c.

Then for each £ > 0, the hp-dG approzimation upg is well-defined, and as ¢ — oo, the approz-
imate solutions upg satisfy the error estimate

lu — upcllpe < Cexp (—bé/ﬁ) : (5.32)

where N = dim(V(M,(f),@(M((f)),p(./\/l,(f)))) denotes the number of degrees of freedom of the
discretization for any of the two spaces V. or Vg{s.

The constants b > 0 and C > 0 are independent of N, but depend on o, M°, 6, v, minbd > 0,
and on which of the polynomial degree vectors p; (M((TE)) or pa (M((f)) are used.

Remark 5.7. In particular, the hp-dG interpolant constructed to prove Theorem 5.6 yields an
exponential approximation bound of the discretization error in the dG norm as in (5.32) for any
(IS Bflfb(Q).

The remainder of the paper is devoted to the proof of Theorem 5.6. To this end, we will construct
appropriate hp-interpolants in Section 6 on interior, edge and corner elements. Furthermore, in
Section 7 we show that the individual terms on the right-hand side of (5.28) all converge at an
exponential rate. Finally, the proof of Theorem 5.6 will be completed in Section 7.6.

6. APPROXIMATION PROPERTIES OF L2-PROJECTIONS

In this section, we establish some approximation results for L?-projections as in (5.2), (5.3), for
elements K € D¢

6.1. One-dimensional projectors and hp-approximation results. As in, e.g., [7, 9, 12], the
ensuing exponential convergence proofs are based on projectors 7, onto polynomials of degree
p > 1, with error bounds which are explicit in the polynomial degree and the regularity order s
onI=(-1,1).

Lemma 6.1. For any 3 < s < p and u € H*+*'(I), we have

(2, o (6.1)

HU77TP7.LH2 a <p8\IJP—175—1Hu 2(7)

2(I) ~
Proof. From [4, Section 8], it follows that for every p > 3 there exists a projector 7,2 : H? (1) —
P (I) that satisfies (7, 0u)® = 7, ou® and (Fp2)Du(+1) = w9 (£1) forj = 0,1. The pro-
jector 7, o is stable in HQ(I). Moreover, for any 3 < s < p and v € H* (I ) there holds the
approximation bound

G+ (6.2)

lu = Fp 2l Fpa 7y S Yp—t,a-1lu

H2(D) ~ 2D

By the triangle inequality, the fact that 7, reproduces polynomials, and by the stability esti-
mate (5.1), we see that

lu = Fpullyagry < lu = Fpatllyagpy + 1o = Fpaw)l oy S 'l = Fpatll oy (63)

Referring to (6.2) yields the assertion for any u € H*+1(I). O
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In the remainder of this subsection, we establish exponential convergence results for a broken
hp-interpolant on geometric meshes which will be used later, but which are also of independent
interest. To that end, on w = (0,1), we consider a sequence {T}32, of geometric meshes 7¢ =
{K; }fii with £+ 1 elements which are geometrically graded towards the origin with grading factor
0 < o < 1. The elements are given by K; = (0,0%) and K; = (¢/*277 ¢*177) for 2 < j < £+ 1.
The size of element K; is given by

hi, =179 (1 - 0), 2<j<l+1, (6.4)

J
which implies that there is a constant s solely depending on ¢ such that
Hilth < || < khi;, reKj, 2<j<(+1. (6.5)

For a slope parameter 5 > 0, we define on T a s-linear polynomial degree vector p of length
£4+1

{+1given by p = (p1, ..., pe+1), with p; = max{3, [sj[}, j = 1,2, ..., £+1, and set |p| = max;; p;.
We then consider the one-dimensional hp-version discontinuous finite element space
SPOw; TY) = {u e L*(w) : ulk, €PP(K;), j=1,2,...,0+1}. (6.6)

Then, we denote by 7, the L2-projection onto the space SP-0(w; T*), defined on each element
K; as (mpou)|lk, = mp,0(ulk,), with the elemental L?-projection m, on K; as introduced in
Section 5.1.1. For a function u : w — R, we define the approximation error by n := u — mpu, and
introduce the local error norm:

Ti[n) = Rl Ze e,y + 110 22y + P, 10" 22 (i, )- (6.7)
Proposition 6.2. For a weight 8 > 0, let u: w — R be such that
H|ac|_1_5+su(s)\|Lz(w) < CZ_HF(S +1), s> 2. (6.8)

Then for £ sufficiently large, we have Zfi; T;[n] < Cexp(—2bl), with constants b,C > 0 which
are independent of £.

Proof. Fix an element K; € 7! for 2 < j </ + 1. A straightforward scaling argument yields

hi; - ~(12

where as usual we denote by 7 the pullback of 9|k, to the reference interval I= (=1,1). Therefore
the approximation bound (6.1) implies that

th - ~(8;
Tl S 1ol (U)W a8

for any 3 < s; < p;. Scaling the right-hand side above back to element K results in

th QSJ‘ .
1) S 10 ("5 ) Wl (69
Moreover, by the equivalence (6.5),
S 2+28-2 5j+1 —1— Sj Sj
D 2o,y o g 202D g At Dy (o2, (6.10)

By combining (6.9), (6.10) with (6.8), we find that
T[] < |P|8h§é2f2sj \I/pj—LSj—l|||x|717ﬂ+(sj+1)u(sj+1)||%2(Kj)

¢ o5 (Cu)2 , (6.11)
P (L)l 27
for any integer index 3 < s; < p;. An interpolation argument as in [11, Lemma 5.8] shows that

the bound (6.11) holds for any real s; € [3,p;].
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Next, we sum the bound (6.11) over all layers 2 < j < £+ 1. In view of (6.4), we obtain

£+1 (+1
ZTj[ [ps |p|8 ZU e IG%I; ] [CZSj \ijj—lvsj—lr(sj + 2)2}
— et pj

In [11, Lemma 5.12], it has been shown that terms of the form as in the bracket on the right-hand
side above can be bounded by Cexp(—2b(¢ 4+ 1)). By possibly increasing the constant C' > 0
and by reducing the value of b, the algebraic factor |p|® can be absorbed into the exponential
convergence bound. O

Similarly, we obtain the following result.

Proposition 6.3. For a weight exponent 8 > 0, let u : w — R be such that there exists a constant
Cy > 0 with

2] 750 | o) < CEFT(s+2)  Vs>2. (6.12)
Then there exist constants b,C > 0 such that, for every ¢ > 2, we have Zfié Hn||2L2(KJ_) <
C exp(—2bl), with constants b,C' > 0 which are independent of £.
Proof. We may asbume that ¢ is sufficiently large. Fix an element K; € T for 2 < j < ¢+1. Scaling
gives ||7]||2L2(Kj) = 7/2||77||L2 (R’ Then, the approximation bound (6.1), a scaling argument, the
equivalence (6.5), and the regularity assumption (6.12) yield, for 3 < s; < p;,

hi, (s
Il P (2 ) Wpy syt @2
hBT 25,42 »
SIPPYy, 1551 ( 2]) ||U(S]+1)||2L2(Kj)

hic, \ 292 0p0s o gia .
5|p8wp_,.1,sj1( 21) B2 gy G2,

2(K)

Cy
<P e () R 82

From here, the desired estimate follows as in the proof of Proposition 6.2. O

6.2. Approximation properties of L2-projection on axiparallel hexahedra. Now we pro-
vide approximation properties of the element-average projection (5.2), (5.3). In the setting (5.15),
(5.16), we first show the following estimate for n!l.

Lemma 6.4. Let K be an axiparallel hezahedron. For 0 < |a*|, 0 < ol <2, and 3 < sﬂ( < pﬂ(,
there holds

Aot ag ) ot sl atnsh+1
1% DY 12, 2y S (Ph)* W, (h)?* 12 (B2 DY D M Fa ey (6.13)

L2(K) 1,8l -1
Proof. Note that 6ﬁL ﬁﬁ‘” pll = Dﬁ“ ((6fLﬂ) 7ﬁ”H (63’?&)) Applying Lemma 6.1 in edge-

sl yg
Vi S @)W g IDE D
argument as in [11, Section 5.1.4] 1mphes the bound (6.13).

parallel direction, we obtain || [A)O‘ H o'l A scaling

L2(R)’

Second, we derive the following bound for n*. To that end, we introduce the tensor-product

space Hgnx([?) .= H2(I) ® H2(I) ® H2(I), and endow it with the standard tensor-product norm.
Lemma 6.5. For an aziparallel element K and 3 < s% < px, there holds
015 (&) S 0R)' By oy (K, (6.14)
with
B o (K)=W, gy Y () 2 D Of e ey (6.15)

st+i<lal|<sL+3
o<all<2
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Proof. In view of (5.2), (5.3), we may write

ﬁL:a_’ﬂ:(

W erla = @-7)w+7) (a-727) .

L
Pr K

Hence, by the triangle inequality and the stability properties in (5.1), we readily find that

2
~112 148 ~ (i) ~2
H77 ”Hrzmx(f() 5 (pK) (Zl HUWP#UHHE,,,X(I?)) .

Lemma 6.1 (used in directions z; and x2) now implies
=112
17 e )
~co L Ly Nl oL Iy ~
< (pj_()16\:[lp}(71,s§71< Z HD(sKﬂ,ag a )u”;(f{) + Z ||D(“1 sx+la )U|\2Lz(g)) )
Ogaé,a”§2 OSaf,aHSQ

This bound and a scaling argument as in [11, Section 5.1.4] yield the desired bound. O

Remark 6.6. It is worth pointing out that a tensor-product argument similar to that in the proof
of Lemma 6.5 (see also [11, Section 5.2.1]) applied to the tensor-product projector II,, in (5.2)
implies the following bound: for any axiparallel element K and for n = v — I, u, there holds

8, i < ol (Bl () + B (). (6.16)
for any 3 < s}g < pJ]g and 3 < sﬂ( < pu(, with
at|— s” at SH +1
Bl W0 =0 g X G R0 0 e, (017

Ogozli,%l <2

and Ep{ . (K) defined in (6.15). Up to the algebraic loss in |px|, the estimate (6.16) is the same
KWK

as that in [11, Lemma 5.6] used in the analysis of the pure Dirichlet case. However, in the case of
a corner-edge patch involving a Neumann edge, we shall invoke the finer bound in Lemma 6.4.

7. REFERENCE CORNER-EDGE PATCH

According to the construction of the hp-dG spaces provided in Section 3, the geometric edge
mesh M consists of a finite number of physical patches {Mﬁ 3’; This makes it possible to
bound the right-hand side of (5.28) separately on each M? by means of a suitable hp-approximation
analysis. In addition, noting that each patch M? is equivalent (up to isotropic dilation, translation
and/or rotation) to one of the reference patches displayed in Figure 1, it is sufficient to limit the
proof of the exponential convergence bounds to the reference situations from Figure 1. Indeed,
due to the simple structure of the patch mappings, the weighted Sobolev space N, E(Mf, C,&p), as
restricted to a physical patch M?, can be identified with an equivalent space, which features the
same regularity and is equipped with equivalent norms, on one of the reference patches.

7.1. The setting. We consider a reference corner-edge patch in (0,1)® consisting of a single
corner ¢ € C and a single edge e € &, originating from it; see Figure 1 (right) for an illustration.
We may assume that ¢ = (0,0), and e = {0} x wl with wll = (0,1).

Similarly to [11], we now introduce a reference geometric corner-edge mesh M\ﬁe. As in [11],
M\ﬁe is built from mesh layers via

Mee = J U 2. (7.1)
j=li=1

where the sets E’cje stand for layers of elements with identical scaling properties. The decomposition
in (7.1) is not a partition, in general: elements may be contained in several layers whose number,
however, is uniformly bounded with respect to ¢.
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In (7.1), the index j indicates the number of the geometric mesh layers in edge-parallel direction

along the edge wlc‘, whereas the index ¢ indicates the number of mesh layers in direction perpen-

dicular to wll. In agreement with (3.3), (3.7), (3.8), we split M\ﬁe into interior elements away from

c and e, boundary layer elements along e (but away from c¢), and the corner element by setting

M =0 UTLUTL, (7.2)
where
o=l UL  sme=lgL  se=gl (7.3)
j=2i=2 j=2

In particular, an interior element K € D%, belongs to £4 if it satisfies

relx ~ d% ~ hjp ~ o*T17%, rc|sz}:(zhg<20[+l_j, 2<i<j<L+1. (7.4)

Moreover, the terminal layers Eije at e € & consist of elements K € T¢ with
relk 2 df Shi =o', el 2df bl x0T 2<j <041, (7.5)
Finally, any element in the layer §£ = Ei}z is isotropic with
Telg ~ d% < hi ~ o, Tolg ~d Shi ~a' . (7.6)

The cardinality of the layers £%, depends on the implied equivalence constants in (7.4)—(7.6).
We emphasize that the ensuing analysis is valid for any choice of these constants (independent
of 4, j,¢). For the reference patch as shown in Figure 1 (right) the sets £, are in fact singletons,
and any K € £ can be written in the form

Kj=K'xKl, —2<j<i+41, (7.7)

where K+ = (0,0%)2, and the sequence {K j‘-l }fié forms a one-dimensional geometric mesh 7'
along the edge wl = (0,1) as in Section 6.1; moreover, there is a single corner element K € T,
that is given by K = (0,0°)3.

In agreement with the hp-extensions (Ex1)—(Ex4) in [10], we consider s-linear polynomial degree
distributions on MY, that satisfy

VK €89 px=(pfp)) ~ (max{[si],3}, max{[sj],3}), 1<i<j<l+1. (7.8)
We note that our Ap-approximation analysis below allows for maxpx < 3 in corner elements K €

¢

Te. R -

Let now £, denote the domain formed by all elements in M¢,_:

0t = ( U F)o. (7.9)
KeMt,

14

Analogous to the reference corner-edge patch ﬁce,

corresponding to the rightmost display in Fig. 1,
we introduce the reference corner patch ﬁﬁ and the reference edge patch ﬁ‘;, which correspond to
the leftmost and the middle panel, respectively, in Fig. 1. For the purpose of deriving the ensuing
exponential convergence estimates it is important that the corresponding geometric mesh patches
can be characterized as collections of certain elements K € M\ﬁe: for ¢ > 2, we define with Efje as

in (7.1)

£+1

VeeC: ML=9'uT! ol=JgL, gl.=gll (7.10)
Jj=2

Vec&: ML=9u%! oL = gut, gl= gLttt (7.11)
1=2

We establish exponential convergence of the hp-dGFEM by proving exponential convergence es-
timates for the consistency bound (5.28) for each of the three canonical geometric mesh patches
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shown in Fig. 1. We remark that we abuse notation slightly in that the definition of §£ and §£
n (7.10) and (7.11) differs from (7.3); it will be clear from the case discussed which definition is
applicable. Due to (7.10) and (7.11), the required exponential convergence bounds for each of the
three basic geometric mesh patches depicted in Fig. 1 will follow from consistency error estimates
in patch ﬁ‘ée which we therefore now consider next.

For a function w : ﬁﬁe — R (whose regularity will be specified below) and for K € /\/lf;e,
define the elemental approximation operators (Ilu)x = Ilgu|x in accordance with the Ch01ces
in Section 5.1. That is, for interior elements K & Elc]e we select Il to be the L?-projection as

n (5.2), (5.3), with the elemental polynomial degrees taken as px = pi-, pg = p‘Jl, cp. (7.8). For
K; € T¢ of the form (7.7), we select I, as in (5.11) with p!( = py Finally, for the corner element
K € T, we select I in agreement with (5.12). For functions w : Qﬁ — Rand v : Qf; — R, we
will obtain exponential convergence estimates as direct consequences from the elementwise bounds
established in the analysis on Qf, — R.

For the dG approximation errors 7, -, ll as in (5.15), (5.16), and in view of the error estimates
in Theorem 5.5, we will now bound the contributions TDE ; Tze , Tz , and Tze, where these

e,l e,2

terms are defined exactly as in (5.21)—(5.25). If e is a Dirichlet edge, we shall also estimate T

given as in (5.26).

7.2. Exponential Convergence at Neumann edges. We shall first consider the case where
e € & is a Neumann edge, i.e., e € Ey. By the regularity property (2.16), the definition of the
weighted seminorm (2.11) in the neighbourhood of Neumann edges, and for exponents be,be €
(0,1) as in (2.15) and Remark 2.4, the solution u localized in (Alf;e has finite corner-edge seminorm
(obtained by localization of (2.11) to Q£,)

Z H —1—be+|e| max{ 1—be —HaHO}Da ‘

lee|=k

2
|u|ﬁﬁ17b(§[ L@’ k > kg, (7.12)
with kg in (2.12). Under the assumptions on the weights b, be in Remark 2.4, we note that, for
all > 0, the seminorms on the right-hand side of (7.12) take the following forms:

_ alpal,
||’I" 1=bet D HLZ(QI{ |aL| =0,
potal o
ratete1D, D o at =1, (113)
be—be +o¢” 1 be +|a Inat el i
D lati=k lITe DT Dj uHL?(Qge) k=lat]=2.

are then defined

The corresponding norms || o Hﬁl"l,b(ﬁf;e) and the weighted spaces JVTl_b(ﬁﬁe)

as in Section 2.2, for m > kg. For elements K & ﬁﬁe we denote by | - |1/\}El—b(K) the restriction of

the norm in (7.12) to K, and similarly for the full norm. We say a function v € H 1(A .) belongs
to B_1_p(Q%) ifu € N’“1 o(QL,) for k > kg and there is a constant d,, > 0 such that

”uHﬁfl_b(ﬁﬁe) < dquJrlk! ) k> kg . (7.14)

In the corner patch ﬁft and the reference edge patch Qi defined in (7.10) and (7.11), respectively,
expressions analogous (but simpler) to (7.12) for the respective seminorms result: since pee|g: =

o),

g 3 o
|| =k

7.15
L2t (7.15)

(note that in ﬁﬁ the weights are homogeneous as in the Dirichlet case considered in [11]), and in
the reference Neumann edge-patch QY we have

2 max{—1—be+|at|,0} a,
|U|N517b(m Z H D
loe|=Fk

~ 7.16
L2y’ (7.16)
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for k > kg.

7.3. Exponential Convergence in Dce, Dé and %f: For Neumann edges e € £y we obtain
exponential convergence of all contributions from 9%, in the dGFEM consistency error bound
(5.28) by an analysis of the corresponding terms in one reference corner-edge patch Q.. The

general result will then follow upon noting that ﬁf;e is obtained by a finite superposition of
(scaled and translated versions of) this reference corner-edge patch.

Theorem 7.1. Let e € Ex be a Neumann edge. Let u € B,l,b(ﬁﬁe) as in (7.12), (7.14), and let

I denote the elemental approzimation operators chosen as in Section 5.1. Then forn, n, nl as
n (5.15), (5.16), there exist constants b,C > 0 such that, for € sufficiently large, there holds the
exponential convergence estimate

Y5, ']+ Ys, 1]+ Yo ']+ Yo 0]+ Yg, (1] < Cexp(=200) . (7.17)

Analogous exponential convergence bounds hold for the consistency terms from 9%, D¢,

The proof of the exponential convergence bound (7.17) in Theorem 7.1 will be presented in

several steps. The proofs for the bounds on the terms DZ DE are analogous (by choosing hﬂ( =
O(1) in the proofs which follow) and will not be detailed.

7.3.1. Ezponential convergence of TDE For e € Ex and for u € B,l,b(ﬁﬁe), Wwe prove expo-

nential convergence of Tg [ 1] and T [77”] in (7.17). We begin by recording scalings to the
reference cube K = (—1, 1) of the terms contained in T [v] in (5.22).

Lemma 7.2. For K € ﬁﬁe and for v € H*(K), there holds:

(W) 2012 a0y + DUl sy + (PPN Ry S ()2 (D2 1B 92 ) (7:18)
0<al<2
as well as

1y €L ~
(h) 21 =D DY 012, ) < B IDS B2 lat|=1,2. (7.19)

L2(R)’
Proof. These inequalities are an immediate consequence of the scalings in [11, Section 5.1.4]. O
a

Next, we bound the error term Yg, [~] in direction perpendicular to edge e.

Proposition 7.3. Let u € B_y_(QL,) as in (7.12), (7.14). Then there exist constants b,C > 0
such that for £ > 2 holds Tg, [nF] < C exp(—2b0).

Proof. According to (7.3), we consider K € £4 with 2 < j < £+ 1 and 2 < i < j. The scalings
n (7.18), (7.19) and the fact that in Q% holds h% < Al allow us to conclude that

T S ((hﬁ)?(hk)* + hﬂ() 17412 (&) = bk (1+ (200 2) 11 &)

< byl
With Lemma 6.5 and (7.8)7 we obtain
Ly all— L al
TS S Il Wi W > ()2 22 DS DY ulffa .
st+i<lal|<sL+3
o<all<2

Since K € Effe with 2 < j < /¢4 1 and 2 < i < j, there hold the equivalences (7.5) on K, and we
may insert the appropriate weights according to (7.13) to obtain

¢ \2be—2be—20!  je \242bo—2|at |||, .be—betal —1—be+|at| ot e
(df)™e ()= [[roe™ e g T e DT Dj

L
IDS D ull 72 sy = ull 22k -

Then we invoke this equivalence and the analytic regularity (7.14) to obtain that there exists a
constant C' > 0 such that for all px, p;- and s;- holds

— e e s+
TE ] S o™ Wy y oo (d)2e e (d5) O (st +6). (7.20)
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Summing (7.20) over all layers in }54 in (7.3) with the use of (7.5) results in

£+1
Yo, 11T S Bl S Pt Y g L O Tt 62
j=2 =2
By interpolating to real parameters s € [3,pi] as in [11, Lemma 5.8], this sum is of exactly

the same form as S+ in the proof of [11 Proposition 5.17], and the assertion now follows from
the arguments there and after possibly adjusting the constants to absorb the algebraic loss in

pmax~ D

To establish the analog of Proposition 7.3 in edge-parallel direction, we make use of the following
estimates.

Lemma 7.4. Let K € O

ce’

() 212 20) + 1Dy 12 020) + P2 IDF M ey S )P0y ()Pl )

and 3 < sﬁ( < p . Then there holds

NUET (k)
(7.21)
IDLyl3 N (p” i S (di )?be \U|2 )
(7.22)
as well as
hi)? DR 0 1Zarey S i)™ Wy g1y (d5)e (d5)™ e e lul” 5 (7.23)
—1—b

Proof. We prove (7.21) by bounding the right-hand side in (7.18) with the aid of the approximation
property (6.13) (with |at| = 0):

(k)™ IV 13 ey + 1Dy 2 sy + () 100 2
— ANeall=~2 Al sl +1
S 20l (X 107 e ) S GRPW Ly (Bl ID e -
0<all<2
Then, we insert the weight r. by the use of (7.13), (7.4). We find that
o sl oy —1—bet+sl 41 sl 41 9

D ey = (5?42 2ek 2 IO 2, ) < )Pk,

NK (K)

Combining the two estimates above shows (7.21).
To establish (7.22), we start from the the right-hand side of (7.19), apply (6.13) (with |at| =1
and all = 0), and insert the appropriate weights employing (7.4). This results in

D132y S PRID LA 2
She s “+1
SR,y <h” P2k 2D, DI a2
Sl —2sl betslh+1 +1
S 0k)* T, _ g{_l(d%)? hev2 g y2remshem2 |y etk D iy 2,
< (pl)dw Pl 1,6 L (d5 )Pl
K

b
K+2

b (K)

which yields (7.22).
For (7.23), we proceed along the same lines and apply (7.19), (6.13) (with |a*| = 2 and o/l = 0),
and (7.4). We find that

(hi 10272 sy S P IDIAN 2,
I
< WIOBTy () (R DD ) 2

_ be—betsl +1 1_ +1
< (P ol el ()2 (d5) e e e~ TPy beDZDHK ull3 2 x);
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which finishes the proof. O
We are now ready to bound Tﬁﬁe (.

Proposition 7.5. Let u € B_y_p(Q%,) as in (7.12), (7.14). Then, there exist b,C > 0 such that,

for € sufficiently large, there holds Y 5, (] < C exp(—2b¢).

Proof. In view of Lemma 7.4, and using the definition of O ¢ e, the inequalities in (7.4), the degree
distributions in (7.8), and the analytic regularity (7.14), we conclude that T g, ] < P8 (S1 +

Sg), where the sums S; and S, are given by

41 g
ZZ\P 18l 102(€+1—j)bcczs_‘7‘r(s\}_~_3)27
j=21i=2
j g
SQ:ZZ\I/p}‘ Lol 2(04+1—i)be _2(£+1—7)(be—b CQsJF(SH+4)
j=21i=2 ’

The terms in the first sum S are independent of the inner index . Hence, by interpolation to real
parameters s‘jl € [3, p”] as in [11, Lemma 5.8], by applying [11, Lemma 5.12], and after possibly
adjusting constants, we conclude S; < £exp(—2b1(¢+ 1)) < exp(—2b2f) . The second sum Sy can
be estimated in exactly the same manner as the sum S/l in the proof of [11, Proposition 5.17], and
we obtain Sy < exp(—2bsf). Adjusting the constants to absorb the algebraic factor p8 . yields
the assertion. O

7.3.2. Exponential convergence of Yz, . In this subsection, we bound the terms Tz, in (7.17),

and first establish the following bounds for n*, by using the properties (5.9) of the quasi-inter-
polation operator Zi- for & = K.

Lemma 7.6. Let K = K+ x KJ”, j > 2, be an element in the terminal layer %ﬁ of the form (7.7).
For s = 0,1, there holds

(e ?CIIDE 0 ey S ™Ml o Jat| =, (7.24)
and
() D IDf i a0y € ™M ufZn (7.25)
Proof. To show (7.24), we apply (5.9), to get
(R DIDE 0t 320y S (hj)Z 2 (k) 272070) N |l =beD w2, ), ot =5

|t |=2
The application of the equivalences (7.4) implies that

1—be | \—2(be—be)||,.be—be 1 be | \—2be+2be1,,(2
| EH 2||re DS ul2. ) S (hg) ™ ke DY uHL2<K) (hy)™ [l o -
(% =

Thus, combining these estimates and expressing the mesh sizes in terms of o, cp. (7.5), (7.7), we
see that, for |at| = s,

o 1
(hx)*CVIDS 0 T2 e
5 (hg()2s_2_2be+2bc(hﬁ)2_2s+2be|u|2/\2 ) ~ U(€+1—j)(28—2—2be+2b ) €(2 25+2be

o A 2be(04+1—5)+2be(j—1) 25 (1—s)+2(s—1 2
~ g 2bel( ) =D g2 (A=) +2(s=1) gy 2. b(K)|u

)
|“|1V31_,,<K>

2 2 min{be,bc }o
"o o, e
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To prove (7.25), we proceed similarly and obtain

— s s— - —be —be atns
(R 2V 3240y S (B 72 (hi) 72070 3™ [l =D Diulf3a )

ot |=2
S (h) 220 (hgg)? P20 N7 |lrke et DY Djulf3a )
ok [=2

< U 1=5) (~2=2be+2be) [ 20(1tbe) |12
S [l 12, (0

< g2be(tH1—5)+2be(5-1) 52 —1) [,,|2.
512, )

i

< +2min{be,be}£|,, (2.
~ 9 [ul 2 1) -

This completes the proof. O

As a consequence of the preceding lemma, we have the following approximation bound in
perpendicular direction.

Proposition 7.7. Let u € Nfl_b(ﬁf:e) as defined in (7.12). Then there holds szil[nJ—] <
Cexp(—2bl), for constants C,b > 0 independent of £.

Proof. From Lemma 7.6 we find that, for K € %ﬁ,

(Rhe) 721 12250y + DL 12250y + Dy 12210y + (R ID3 0|22 1)

5 0,2 min{bc,be}éHull?\?i 4)(}()'

The assertion now follows by summing this estimate over all elements K € ‘fﬁ, and by suitably
adjusting constants. O

Moreover, for the approximation error nll in parallel direction to edge e, a similar estimate
holds.

Proposition 7.8. Let u € B_1_(Q%,) as in (7.12), (7.14). Then, for { sufficiently large, there
holds T 1[77”] < Cexp(—2bL), for constants b,C > 0 which are independent of £ > 1.

Proof. We note that, by (7.14), (7.13), the functions u and D u satisfy, respectively,
sttt Delu g ) < €0l +1), ol 22,
lretee D Dyl oy < C'FT(al 42), ol >2.

In view of (7.5), (7.7), these properties correspond to the one-dimensional analytic regularity

assumptions (6.8) and (6.12), respectively. Moreover, due to (7.8), the polynomial degrees p!( are

s-linearly increasing away from the corner c¢. Hence, Proposition 6.2 respectively Proposition 6.3,
and the tensor product structure of the elements yield

> ()20 2y + 1Dy 20y + (R IDF 0 2y ) S exp(—=200),
KeTt

respectively, D .z D7l ||2L2(K) < exp(—2bf). This completes the proof. O
Finally, we bound the term in Yz, [n].
e,2
Proposition 7.9. Let u be in NE1_b(§£e
(1) For K € “:"é, there holds:

T5I) S (hg)™e ()2 [rbe=Perd =D ul|3a i) - (7.26)

) as defined in (7.12).

(2) Moreover,
Tz [n] < Cexp(—2b0), (7.27)

with constants b, C' > 0 independent of £.
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Proof. To show (7.26), we note that, by Holder’s inequality and due to the fact that be, be € (0, 1),

1 _ _ _ _ L
Z DT 77||2Ll(K) Slire 1+bcpce1+be||2L?(K) Z [rg e pxti=be Ot Dg 77||2L2(K)

|t |=2 |t ]=2
be—be,.—1+b be—be,.1—b +
< lrbemberg e 2oy D ke merl ™D 3k -
|at|=2

Then, employing (7.5) in direction parallel to e yields that we have ||rg°’b9rg1+b8|\2L2(K) ~
(o) Pe=20e |l 14be |12, ) Since | K| ~ hj(hf)?, we further have [[rg 1 #0e[|2, ) < |K|(hk)?e 2.
Furthermore, for |a®| = 2, noting that Dan = DfLu - Hgﬂ((DiLIf-u) = Dﬁlu (since Zitu €
P;(K+)) implies (7.26).

To prove the bound (7.27), we refer to (7.26), (7.5), and (7.7). This results in

TX [ < UzebeUz(bc—be)(éﬂ—j)MﬁVzl — g 2eltH 1= 12be D)y 2

_p(K) 2 p(K)
2min{be,be }£|,,|12
5 o |u|ﬁ31—b(K) :
Summing this last bound over all elements K € ‘%ﬁ yields the assertion. O

7.3.3. Conclusion of proof of (7.17). The proof of the exponential convergence bound (7.17) on
the hp-dG interpolation error n on 55£e in Theorem 7.1 follows now straightforwardly by estimating
the terms on the left-hand side of (7.17) using the above results.

The proof of exponential convergence (7.17) on 9% and on D% claimed in Theorem 7.1 follows
from the bound in the corner-edge patch ﬁf;e upon noticing (7.10), (7.11).

7.4. Exponential convergence estimates in elements at Dirichlet edges. Next, we consider
the case where e € £p is a Dirichlet edge, i.e., e € £p, and establish the analog of Theorem 7.1.
According to (2.11) and [3], the solution regularity is characterized by the homogeneous corner-edge
seminorms
2
2 —1—be —1—be +
ulipie ey = 3 HTC Hlal j—1-betla |Dau‘

le|=k

12@e.) , k> k‘lg. (7.28)

While exponential convergence for solutions with regularity in this family of spaces was already
shown in [11], we present an alternative argument, based on the preceding analysis of the Neumann

case. We say a function u € H*(QL,) belongs to A__p(Q,) if u € M\flfb(ﬁﬁe), for k > kg, and
there is a constant d,, > 0 such that

lullge, | @e,y < dut'kl, V> kg (7.29)

Corollary 7.10. Let e € £p be a Dirichlet edge. Let u € A—1—b(§£e) as in (7.28), (7.29), and
let Il be the elemental approximation operators chosen in accordance with Section 5.1. Then for

n, nt, nl as in (5.15), (5.16), and for ¢ sufficiently large, there holds
Yoo ']+ Yoo 0]+ Yoo n*]+ Yo, Il]+ Yg, (1] < Cexp(-200), (7.30)

with constants b, C' > 0 independent of £.
In addition, there holds

T [nt] + Tz (7] < Cexp(—2b0), (7.31)
with constants b, C' > 0 independent of {.

Proof. For every k > 0, there holds |u\ﬁk(ﬁz ) < |u|1\7,€@2 ) Hence, u € A_1—b(§£e) implies
u € B_1_p(Q.,), and the bound (7.30) follows from Theorem 7.1.
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To bound (7.31), let K be in %ﬁ Then, by (5.9), the definition of the corner-edge semi-
norm (7.28), and the properties (7.5), we find that
(h) 2 e ey S (hie)™e (hge)? e ke bl ™ D ul o )

S (i)™ (hge )=l

_(K)’

In direction parallel to edge e, we proceed similarly: The stability of the L?-projection and
equations (7.28), (7.5), yield

(k)2 a0 < ()2l cy S (i) (Rl 20 iy,
Therefore, expressing the mesh sizes in term of o, cp. (7.5), implies
(h) 2 2oy + 11 20)) S 021’2%2““*1)(%*’72)||u\|f\731

2(l+1—)be+2(j—1)be |, |2 2 min{be,be}€|, |2
S0 ) ol o0 S0 Tl

_p(K)
1_b(K) ’

Summing the above bound over all elements in ‘/S\ff; implies the asserted exponential convergence
bound. ]

7.5. Exponential convergence at corner elements. To conclude the proof of Theorem 5.6 it
remains to show exponential convergence in elements K. € %ﬁ which abut at a corner ¢ € C of ) so
that K.Nc # . Such elements K, are shape-regular and axiparallel, with diameter h. = O(c").
We are left to bound the term TX<[n] defined in (5.25). On K., we use the quasi-interpolant Z;
defined in (5.6) for & = K.. Then

k. = ulk, — Ti(ulk.) - (7.32)

The quasi-interpolant Z; is well-defined under the (minimal) regularity u € WH!(K.). Fur-
thermore, by (5.8) there holds that |[n|r2(k.) S hellVnllLz(k,), and [|[Vollr2k,) = [[Vu —
Iy Vul|12(k,). We conclude

TEen] S IVu—ToVulZ2 k. + b ulfyei k. - (7.33)

To bound the first term, applying standard approximations properties for Ily would imply a
bound of order O(he) provided u € H?*(K,). The weaker regularity u € N3(K;{c},0) suffices
to obtain a (slightly weaker, yet still exponentially convergent) bound, due to the embedding
Nj(Ke;{c},0) C H'(K.) being compact. The next two lemmas provide an exponential bound on
the first term in (7.33).

Lemma 7.11. For corner weight parameters be € (0,1/2), and edge weight parameters be € (0,1),
foree & C En, c € C, we have the compact embeddings

Nj(Ke;{c},0) C L*(K.), Nj(Ke;{c},0) c H'(K,) . (7.34)

Proof. We note that, in the Ng-spaces above, all edges e € &. are Neumann edges (although
all that follows will hold verbatim if only some e € &. belong to Ex). We write, for simplicity,
Nj(K.) in place of N3(Ke;{c},0). The key observation of the proof is the equivalence N3(K.) =
H;j] (K.) proved in [8, Section 2] for the indicated range of weight exponents f,, € (0,1/2) and
Bi; € (0,1) (cp. (2.10) and Remark 2.2).

Then, [8, Theorem 3.8] implies that H'*?(K.) D H;j ., (Ke) = N3(K.), with continuous
embedding, provided that 6 := 1 — max{8,,,5;;} > ¢, for éufﬁciently small € > 0. Using that
Bij = Be +2 and B,, = B+ 2 (cp. Remark 2.2), we obtain 6 € (0, 1) if and only if 0 < be < 1 and
0 < be < 1/2, cp. (2.10), which is the asserted range of corner and edge weight exponents. The
compactness of the second embedding in (7.34) now follows from the fact that it is a composition
of the continuous embedding NE(KC) C H'Y9(K,) and the compact (by Rellich’s Theorem)
injection H'*?(K,) C H'(K.) for > 0. The compactness of the first embedding in (7.34) follows
analogously. O
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Lemma 7.12. Let u € NE(KC;C,ED), with edge weights Be € (—2,—1) and corner weights 5. €
(=3/2,—1). Then for the quasi-interpolant I, for & = K. in (5.6), there exists C > 0 independent
of he € (0,1] and of u such that ||V (u—Ziu)|[12(k,) = [|Vu—TIoVu| r2(x,) < ChZC|u|Né(KC;C,5D).

Proof. We observe that u € N3(Ke;C,Ep) implies that Vu € Nj(Ke;C,Ep)®. We denote v =
Vu € Nj(Ke;C, Ep)3. Observe that IIy(v) is the (componentwise) average of v over K.. From
the compactness of the embedding Né(Kc; C,Ep)® C L?(K.)? in Lemma 7.11, we proceed along
the lines of [13, Section A.2.4] and use appropriate scaling (in particular, recalling that —2 <
Be < —1 implies that, for £ = 1 in the sixth term of (2.11), the inhomogeneous weight exponents
Be + |at| < 0) to conclude that there exists a constant C' > 0 independent of v such that
v —TIo(v)| 22(k.) < Chc_l_66|v|Né(Kc). Referring to (2.10) completes the proof. O

It remains to bound the term h51|“|%/vz»1(xc) in (7.33).

Lemma 7.13. Let u € NE(KC;C,SD), with some Be € (—2,—1), and with some B. € (—3/2,—1),

and for K. € §f1 with K. Ne# 0, and K.Ne # () for c C€, for some e € Ex. Then, for any
0 < he = diam(K,) < 1, there holds

ulw2i ko) S R
Here, b = —1 — . € (0,1/2) is as in (2.10).
Proof. We may assume that K. Nwe = (). There holds

lulwza(k,) = Z ID*nllrr(x.) = Z ID*nll L1 (K orwe) + Z DNl L1 (Korwee)

|U|N3(KC;C,SD) . (7.35)

|ae|=2 || =2 || =2

< Z H I4be— \a|‘ ‘ —1-bet|a|pe ‘
] L2(K:.Nwe) L2(K:.Nwe)
oal=2

pltbe— x| = max(~ lfbe+\aL|,O)‘
ce

L2(KcNwee)

—1—be+|a| ;max(—1—be+|at|,0) Yo
c Pce D

L2(KeNwee)

< h5/2+bcf|a| < hl/2+bc
C C
L2(Konwe) ™ ~ ’
5/24-be—|x 1/24-be
S hdreT < nd
L2(KcNwee)

Z|a|:2 DNl (ko Sh /2+b“|u|N2 (Ke:C,£p) Which completes the proof. O

We note that, for 0 < |a| < 2, there holds Hr‘lfbflal‘

14be—|a| —max(—1—be+|at],0)
Te Pce

. We arrive at

and similarly,

Inserting the estimates in the previous lemmas into (7.33), we arrive at the following exponential
convergence result in corner elements.

Proposition 7.14. Let u € J\Alefb(@f;e), with b as in Remark 2.4. Then, there exist con-
stants b, C' > 0 such that Tz, [n] < Cexp(—2b€)\u|?\,2m;c’&3).

7.6. Proof of Theorem 5.6. The exponential convergence of hp-dGFEM, Theorem 5.6, follows
now immediately from the quasi-optimality results, Theorem 5.5, and from the fact that, by
our analysis in Section 7, all terms on the right-hand side of the estimate (5.28) convergence
exponentially with respect to the number of mesh layers . Furthermore, for the number of
degrees of freedom in either of the hp-dG spaces in (3.10) and (3.11) there holds N ~ ¢° + O(¢%),
which yields the desired estimate (5.32).

Remark 7.15. We note that Theorem 5.6 remains true in the pure Neumann case. Indeed, the
hp-approximation analysis on geometric meshes presented in this work as applied to the hp-
dGFEM (4.2) with Fp(M) = 0 and based on the hp-space V (M, ®, p)/R leads to the bound (5.32)
as well. This simply follows from the fact that all the interpolants in our error analysis reproduce
constant functions.



hp-DGFEM FOR MIXED ELLIPITIC PROBLEMS IN 3D 31

REFERENCES

[1] D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini. Unified analysis of discontinuous Galerkin methods
for elliptic problems. SIAM J. Numer. Anal., 39:1749-1779, 2001.

(2] I. Babuska and B. Q. Guo. Regularity of the solution of elliptic problems with piecewise analytic data. part I.
Boundary value problems for linear elliptic equation of second order. SIAM J. Math. Anal., 19:172-203, 1988.

[3] M. Costabel, M. Dauge, and S. Nicaise. Analytic regularity for linear elliptic systems in polygons and polyhedra.
Math. Models Methods Appl. Sci., 22(8), 2012.

[4] M. Costabel, M. Dauge, and Ch. Schwab. Exponential convergence of hp-FEM for Maxwell’s equations with
weighted regularization in polygonal domains. Math. Models Methods Appl. Sci., 15(4):575-622, 2005.

[5] V. Dolejsi, M. Feistauer, and Ch. Schwab. A finite volume discontinuous Galerkin scheme for nonlinear
convection-diffusion problems. Calcolo, 39(1):1-40, 2002.

[6] W. Gui and I. Babuska. The h, p and h-p versions of the finite element method in 1 dimension. II. The error
analysis of the h- and h-p versions. Numer. Math., 49(6):613-657, 1986.

[7] B. Q. Guo. The h-p version of the finite element method for solving boundary value problems in polyhedral
domains. In Boundary Value Problems and Integral Equations in Nonsmooth Domains, volume 167 of Lecture
Notes in Pure and Appl. Math., pages 101-120. Dekker, New York, 1995.

[8] B. Q. Guo and I. Babuska. Regularity of the solutions for elliptic problems on nonsmooth domains in R3. I.
Countably normed spaces on polyhedral domains. Proc. Roy. Soc. Edinburgh Sect. A, 127(1):77-126, 1997.

[9] D. Schotzau and Ch. Schwab. Exponential convergence in a Galerkin least squares hp-FEM for Stokes flow.
IMA J. Numer. Anal., 21:53-80, 2001.

[10] D. Schotzau, Ch. Schwab, and T. P. Wihler. hp-dGFEM for Second Order Elliptic Problems in Polyhedra I:
Stability on Geometric Meshes. SIAM J. Numer. Anal., 51(3):1610-1633, 2013.

[11] D. Schétzau, Ch. Schwab, and T. P. Wihler. hp-dGFEM for Second Order Elliptic Problems in Polyhedra II:
Exponential Convergence. STAM J. Numer. Anal., 51(4):2005-2035, 2013.

[12] Ch. Schwab. p- and hp-FEM — Theory and Application to Solid and Fluid Mechanics. Oxford University Press,
Oxford, 1998.

[13] T. P. Wihler. Discontinuous Galerkin FEM for Elliptic Problems in Polygonal Domains. PhD thesis, Swiss
Federal Institute of Technology Zurich, 2002. Diss. ETH No. 14973.

[14] T. P. Wihler and M. Wirz. Mixed hp-discontinuous Galerkin FEM for linear elasticity and Stokes flow in three
dimensions. Math. Models Methods Appl. Sci., 22(8), 2012.

MATHEMATICS DEPARTMENT, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BC V6T 172, CANADA
E-mail address: schoetzau@math.ubc.ca

SEMINAR OF APPLIED MATHEMATICS, ETH ZURICH, 8092 ZURICH, SWITZERLAND
E-mail address: schwab@math.ethz.ch

MATHEMATISCHES INSTITUT, UNIVERSITAT BERN, 3012 BERN, SWITZERLAND
E-mail address: wihler@math.unibe.ch



Recent Research Reports

Nr. Authors/Title
2013-28 V. Kazeev and I. Oseledets
The tensor structure of a class of adaptive algebraic wavelet transforms
2013-29 J. Dick and F.Y. Kuo and Q.T. Le Gia and D. Nuyens and Ch. Schwab
Higher order QMC Galerkin discretization for parametric operator equations
2013-30 R. Hiptmair and A. Paganini and S. Sargheini
Comparison of Approximate Shape Gradients
2013-31 R. Hiptmair and A. Moiola and I. Perugia
Plane Wave Discontinuous Galerkin Methods: Exponential Convergence of the
hp-version
2013-32 U. Koley and N. Risebro and Ch. Schwab and F. Weber
Multilevel Monte Carlo for random degenerate scalar convection diffusion equation
2013-33 A. Barth and Ch. Schwab and J. Sukys
Multilevel Monte Carlo approximations of statistical solutions to the Navier-Stokes
equation
2013-34 M. Hutzenthaler and A. Jentzen and X. Wang
Exponential integrability properties of numerical approximation processes for
nonlinear stochastic differential equations
2013-35 S. Cox and M. Hutzenthaler and A. Jentzen
Local Lipschitz continuity in the initial value and strong completeness for nonlinear
stochastic differential equations
2013-36  S. Becker and A. Jentzen and P. Kloeden

An exponential Wagner-Platen type scheme for SPDEs



