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Abstract

Recently, Hairer et. al [I4] showed that there exist SDEs with infinitely often differen-
tiable and globally bounded coefficient functions whose solutions fail to be locally Lipschitz
continuous in the strong LP-sense with respect to the initial value for every p € [1,00]. In
this article we provide sufficient conditions on the coefficient functions of the SDE and on
p € (0, 00] which ensure local Lipschitz continuity in the strong LP-sense with respect to the
initial value and we establish explicit estimates for the local Lipschitz continuity constants.
In particular, we prove local Lipschitz continuity in the initial value for several nonlinear
SDEs from the literature such as the stochastic van der Pol oscillator, Brownian dynamics,
the Cox-Ingersoll-Ross processes and the Cahn-Hilliard-Cook equation. As an application
of our estimates, we obtain strong completeness for several nonlinear SDEs.
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1 Introduction

Let d,;m € N, let O C R? be an open set, let (2, F,P, (Ft)icp,00)) be a stochastic basis, let
W:[0,00) x Q@ = R™ be a standard (F;).e[0,00)-Brownian motion, let p: O — R? and 0: O —
R¥™ be continuous functions and let X?: [0,00) xQ — O, x € O, be adapted stochastic processes
with continuous sample paths which solve the stochastic differential equation (SDE)

t t
Xf:er/ ,u(Xf)der/ o(X7)dWy (1)
0 0

P-a.s. for all t € [0,00) and all z € O.

An essential question in stochastic analysis is regularity of solution processes of the SDE ()
in the initial value. In this article, our main objective are sufficient conditions on u, o and
t,p € (0,00) which ensure that the function O > z — X € LP(Q;R?) is locally Lipschitz
continuous. Especially, for every ¢, p € (0, 00), our goal is a continuous function ¢, ,,: O* — [0, c0)
such that for all z,y € O it holds that

X = XV oomey < erp(@, ) 2 =yl (2)

In addition, we want the functions ¢y, t,p € (0,00), to be as small and as explicit as possible.
A well-known sufficient condition for ([2) with p = 2 is the global monotonicity assumption that
there exists a ¢ € R such that for all x,y € O it holds that

(z =y, u(@) = () + 5 lo(2) = o) [fsmn mey < cllz =yl (3)

In that case, inequality (2)) is satisfied with p = 2 and ¢ 2(z,y) = e for all t € (0,00) and all
z,y € O (see, e.g., Assumption (H2) and Proposition 4.2.10 in Prévot & Rockner [37]). Thus
the global monotonicity property (B]) implies for all ¢ € [0, 00) global Lipschitz continuity of the
function O > x — X¥ € L*(;RY). Unfortunately, the coefficient functions of the majority
of nonlinear SDEs from applications do not satisfy the global monotonicity assumption (B]) (see
Section [] for a selection of examples). It remained an open problem to find conditions on u, o
and p € [2,00) which are satisfied by most of the nonlinear SDEs from applications and which
ensure for all ¢ € [0, 00) local Lipschitz continuity of the function O 3 z — X7 € L?(Q;R%). In
this article, we partially solve this problem.

In the deterministic case o = 0, the solution of () is always locally Lipschitz continuous in
the initial value if p is locally Lipschitz continuous. The stochastic case is more subtle than the
deterministic case. To emphasize the challenge of the stochastic case, we consider the following
example SDE. In the special case d = 2, m = 1, D = R? and p(xy,z2) = (7129, —(71)?) for all
(71, 22) € R? the SDE () reads as

. XX .
dXT = ey dt + o(XT) dW, (4)
- t
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for (t,x) € [0,00) x R Hairer et al. [14] prove that if o(z) = z for all x € R? in (@), then
for any t,p € (0,00) the mapping R* > z — X7 € LP(Q;R?) is well-defined but not locally
Lipschitz continuous. In addition, Theorem 1.2 in Hairer et al. [14] implies that this loss of
reqularity phenomenon can happen even in the case of globally bounded and smooth coefficients.
In contrast, Corollary [Z31] below implies for the SDE () that if o in () is globally bounded and
globally Lipschitz continuous, then for all ¢,p € (0,00) the mapping R? > = — X7 € LP(Q; R?)
is locally Lipschitz continuous. More generally, Corollary 2.31] ensures for the SDE () that if
p is differentiable with lim, o [|¢/(z)]|/||z||* = 0 and limsup,_,..(z, u(x))/||z|> < oo and if o
is globally bounded and globally Lipschitz continuous, then for all ¢,p € (0,00) the mapping
R > x — X7 € LP(Q;RY) is locally Lipschitz continuous.

It turns out that for some SDEs such as Cox-Ingersoll-Ross processes (Subsection E9]) or
the Cahn-Hilliard-Cook equation with space-time white noise (Subsection L122), it is appro-
priate to measure distance with a general function V € C?(0? [0,00)) rather than with the
squared Euclidean distance O* 5 (z,y) + ||z — y||* € [0,00). Then It6’s formula implies that
dV(XE, XY) = (GuoV)(XE, X)) dt + (G, V)(XF, X}) dW, for all t € [0,00), z,y € O where the
linear operators G, ,: C*(0O?,R) — C(O%* R) (see (1.1) in Maslowski [34] and Ichikawa [23]) and
G, C?(0% R) — C(O* R™™) are defined by

£ (220w )@@ ) + 3 D () @) () o) )
(Go0)(,y) = (£¢)(z,y) o(x) + (5:0) (2, y) 0 () (6)

for all z,y € O and all ¢ € C?(O% R). In terms of these operators, we formulate the first main
result of this article.

Theorem 1.1. Assume the above setting and let t € (0,00), ag, a1, B, B1,¢ € [0,00), V' €
C?(02,]0,00)), Uy, Uy € C*(0,[0,00)), U € C(O,[0,00)), 7,p, 90, 1 € (0, 00] with *+ q% + q% = i
and (V=1)(0) C (G,.,V)~1(0) N (G,V)~10). Moreover, assume
(au‘,/o(‘;);;ﬂvy) + (r_1)2||((§(;§;))§§’y)”2 <c+ Uoz(;?;ggt(y) + U(;;);Zgy)’ (7)
U () () + B2l Mes T 4 1o (2)" (V) (2)]|* < ol () + fo, (8)
Ui () () 4 AR Tes 8@ 4 Lo (2)* (V) (@)|* + T (2) < anli () + By (9)

orallx,y € O with V(z,y) # 0 and sup IC@WI o for all compact sets K C O.
Then
x 1 2 i Ui x UZ'
IVAXE XDy < V(@) exp(ct + L 2Vt (10)

forallz,y € O.

Theorem [LT] follows immediately from the more general version in Theorem in Subsec-
tion below. In addition, the second main result of this article, Theorem in Subsec-
tion below, establishes a sufficient condition on u, o and ¢,p € (0,00) which ensures that
the function O 3 z +— X*|joy € LP(€2; C([0,t], R?)) is locally Lipschitz continuous, that is, loosely
speaking, an estimate such as (2)) with supremum over time inside the LP-norm. Theorem [[T]im-
plies local Lipschitz continuity in the initial value for all examples in Section . In many of these
examples in Section [, the function V' in Theorem [[.T]is the squared Euclidean distance, that is,
V(z,y) = ||z — y||* for all z,y € O. In that case, in the notation of Theorem [L.T], condition (7))
reads as

2(z—y,1(@)—p(W)) o (@) =W mm mdy . 2r— D) (o(2)—o (1)) (z—1)[I2 Ve ()0, (VT
oo ns (kY 4 2(r—1)|( (”g)c_yl(lzi)) (z—=y)ll <c+ oéqgttagt(y) + (Qq)ljalgy) (11)
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for all (x,y) € O* with x # y (see Example and Corollary 2225]). For Cox-Ingersoll-Ross
processes in Subsection and for Wright-Fisher diffusions in Subsection .10, we choose V/
such that G,V = 0. This considerably simplifies condition (7) with the cost that in a second
step we need to derive a local Lipschitz estimate from inequality (I0). Moreover, for the Cahn-
Hilliard-Cook equation with space-time white noise in Subsection 122 we take V to be the
squared distance with respect to a non-Euclidean inner product. Also the function O? 5 (x,y)
|z —y|I> (1 + [|z]| + [|y]|9) € [0, 00) for some ¢ € [2,00) can be a good choice. We note that in
a number of our examples, we could not verify the conditions (§) and (1)) with U = 0. The key
to many of our examples is either inequality (II) together with condition (@) with U # 0 (see
Subsections A1), 4.2 [4.5, 41T 4.12.1]) or to find a suitable function V' which is not the squared
Euclidean distance (see Subsections 9, 10 and EI122).

The method of proof of Theorem [[1] is to show under suitable assumptions (see Proposi-
tion for details) that

V(XY XY)

(@ ) " LG X2 (12)
=V(z.y) exp(g B ds) exp (f CoRLaD aw, — [ el ds)

P-a.s. for all t € (0,00) and all z,y € O where 8 := 0 and then to estimate the LP-norm
of the right-hand side for each p € (0,00). Now due to condition (), it suffices to estimate

exponential moments. Exponential moments, in turn, are guaranteed by conditions (&) and (3.
More precisely, Corollary 2.4] together with conditions (8) and (@) implies that

Up (X7
exp (f 2q0 teaOS dS) exXp <2;0(ea?)2) ‘
L2900 (5R)

exp(QU(;(iilt + f 2[{1(2215 ds)

Bot+Uo(z)
< LT YO0
L2490 (O;R) ds < exp< 290 ) (13)

< exp(751t+ljll( )> (14)

L291 (;R)

for all z € O and all t € (0,00). Note that the last exponential factor on the right-hand of (I2)
is a local exponential martingale so that the global monotonicity assumption (B) immediately
implies for all ¢ € [0,00) and all z,y € O that | X} — X{||r2mr) < ||z — yll e

There are a number of related results in the literature. The idea of a general function for
measuring distance was already used in Theorem 1.2 in Maslowski [34] (cf. also Ichikawa [23]
and, e.g., also Leha & Ritter [28, 29]) for studying long-time stability properties of SDEs under
the assumption (G,,V)(z,y) < 0 for all z,y € O. The relation (I2) with V being the squared
Euclidean distance appeared in (14) in Zhang [54] and on page 311 in Taniguchi [48] and in
(14) in Li [30] in terms of the derivative in probability (see Definition 4.9 in Krylov [27]) of the
mapping O 3> x + X € L°(;RY). Building on Taniguchi’s equation for the squared norm of
the derivative process, Theorem 5.1 and Theorem 3.1 in Li [30] proves a conditional result which
implies that if O is a complete connected Riemannian manifold, if there exists an x € O such that
P[Vt € [0,00): XF € O] =1, if u and o are twice continuously differentiable and if there exists
a measurable function f: O — [0,00) and a p € (0,00) such that for all z € O, v € R\ {0} it
holds that 2((Vu)(x)v,v) + 31", loh(@) (0)I” + (p — 2) 27, |0l oi(@) (v), v)|* < 6pf(2)]ol|”
and >, [loj(z)||3 wera) < f(x) and such that for all ¢ € (0,00) and all compact sets K C O
it holds that supxeKE[eXp(6p fo f(X?) ]]'mre[() J{Xze0} ds)] < 00, then for all ¢ € (0,00) the
mapping O > z — X* € LP(Q; C(]0,t], O)) is locally Lipschitz continuous (cf. also Corollary 22§
below). In addition, Lemma 6.1 in Li [30] derives inequality (I3) from inequality (8) in the
case ag = 0 and O = R¢. Moreover, Theorem 6.2 in Li [30] proves inequality (§) with ap = 0
and with Uy(z) = In(1 + [|z[|?) for all z € R under a global log-Lipschitz type condition (see
Li [30] for details). In addition, Corollary 6.3 in Li [30] and Theorem 1.7 in Fang, Imkeller and
Zhang [12] prove locally Lipschitz continuity results under appropriate at most quadratic growth
assumptions on p, p', o and o’ (see Corollary 2.31] below for details). Furthermore, Lemma 2.3
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in Zhang [54] implies that if O = R4, if ¢ € (0, 00) is a real number and if Uy € C?*(R%, [1, 00)) is
a function such that for all z,y € R? it holds that U}(x)u(x) + tr("(x)("(f));(HeSS Y)@) < ¢ Uy(),
lo@) (VU@ < cUple), (& — y,u(z) — p(y)) < c(Uo(z) + Uo(y)) e — yl? and |jo(z) —
a(y)||12{S(Rm7Rd) < c(Up(x) + Up(y)) ||z — y||?, then for all p € [2,00) there exists a t € (0,00)
such that the mapping R? 3 z — X%[jo4 € LP(%;C([0,¢]; RY)) is locally Lipschitz continuous.
In particular, Lemma 2.3 in Zhang [54] yields local Lipschitz continuity in the initial value for
sufficiently small positive time points for the stochastic van der Pol oscillator in the case of globally
bounded noise (Subsection [A.1]), for the stochastic Duffing-van der Pol oscillator in the case of
globally bounded noise (see Subsection [4.2)), for the stochastic Lorenz equation with additive noise
(see Subsection [.3), for the Langevin dynamics under certain assumptions (see Subsection [4.4]),
for a model from experimental psychology (see Subsection 7)) and for the stochastic Brusselator
under certain assumptions (see Subsection [.§)). Moreover, local Lipschitz continuity in the initial
value in the LP-norm for any p € (0,00) and any time point for the vorticity formulation of
the two-dimensional stochastic Navier-Stokes equations follows from Lemma 4.10 in Hairer &
Mattingly [15]. Lemma 4.10 in Hairer & Mattingly [15] also includes an inequality similar to (I4])
in the case where U; is the squared Hilbert space norm for the vorticity formulation of the
two-dimensional stochastic Navier-Stokes equations. Further instructive results on exponential
moments can be found, for example, in [0, 11, 12, 17]. Theorem [L1] in this article implies
local Lipschitz continuity in the initial value for all ¢,p € (0, 00) for the stochastic van der Pol
oscillator with unbounded noise (Subsection [4.]), for the stochastic Duffing-van der Pol oscillator
with unbounded noise (Subsection 2], for the overdamped Langevin dynamics under certain
assumptions (Subsection E.5]), for the stochastic SIR model (Subsection L), for Cox-Ingersoll-
Ross processes, for the Ait-Sahalia interest rate model, for Heston’s 3/2-volatility, for constant
elasticity of variance processes (Subsection [.9), for Wright-Fisher diffusions (Subsection .10,
for the stochastic Burgers equation with a globally bounded diffusion coefficient (Subsection [£.17])
and for the Cahn-Hilliard-Cook equation (Subsection 12]). Note that in the case of stochastic
partial differential equations (SPDEs), we first apply Theorem [Tl to spatial discretizations of the
considered SPDE and then apply Fatou’s lemma.

We sketch three applications of Theorem [LL1l First, Theorem [T and its uniform counterpart
in Theorem respectively can be applied to establish strong completeness of the SDE ().
More precisely, we show in Lemma B.I] in Subsection Bl that if there exist a p € (d,00) and an
e € (0,1) such that O 3 z — (X])seo, € LP(Q; C([0,¢],0)) is locally Lipschitz continuous, then
the SDE () is strongly complete (we assume here that X, p and o are continuously extended to
O in an appropriate way; see Lemma [3.1 for the precise assumptions and, e.g., Subsection for
the application of Lemma 3.1 to an SDE on a domain which is not equal to R?) and, thus, there
exists a mapping Z: Q — C([0,00) x O,0) such that Z% x € O, solve (). Then combining
Lemma [B.1] with Theorem yields strong completeness for all finite-dimensional examples in
Section [4; see Section [ for the precise assumptions. We emphasize that strong completeness
may fail to hold even in the case of smooth and globally bounded coefficient functions; see Li &
Scheutzow [31].

Secondly, a local Lipschitz estimate such as (2)) is an important tool for proving strong and
weak convergence rates of numerical approzimations to the solution processes of the SDE ([I).
In the literature strong and weak convergence rates for numerical approximation processes for
multidimensional SDEs are (except of in the case of Dorsek’s insightful work [9]; see Corollary 3.2
in [9]) in general only known under the global monotonicity condition (B)); see, e.g., [20, 18] 22}, 33|
25] and the references mentioned therein. Inequality (2) and Theorem [[T] respectively now allow
us to establish strong and weak convergence rates for numerical approximation processes of SDEs
which fail to satify the global monotonicity condition (B]). More formally, let 7" € (0, 00) and let
X5 [5,T]xQ — O, s € [0,T], z € O, be solution processes of dX;" = p(XP") dt + o (X)) dW;
and X3¢ = z for t € [s,T], s € [0,T], z € O, and for every h € (0,T] let Y*": [0,T] x Q — R,
x € O, be a family of one-step numerical approximation stochastic processes for the SDE ([I)




with step size h € (0,T] (cf., e.g., Section 2.1.4 in [21]). Heuristically speaking, the exact solution
is the best approximation process so that for estimating the quantity || X% — Y;"| r2(@;Rd) for

~ x,h
z € O and small h € (0,T] we need to estimate at least the quantity || X7 — X;’Yh

HL?(Q;]Rd) -

~ z ~ z,h
HX;’Xh — X;’Yh HLQ(Q;]Rd) for x € O and small h € (0,7]. But this can be done with a local

Lipschitz estimate such as (2)) together with estimates on the one-step approximation errors
| XE — Yhh’”CHLp(Q;IRd), x €O, he(0,T], p € (2,00), and together with suitable a priori estimates
on the approximation processes (see, e.g., Section 2 in [2I]). The detailed analysis of strong and
weak convergence rates for numerical approximation processes based on (2) and Theorem [l
respectively will be the subject of future research articles.

A third application of Theorem [L.I] are moment bounds on the derivative process. If the
coefficient functions p and o are continuously differentiable, then Theorem 4.10 in Krylov [27]
shows that there exist stochastic processes D%: [0,00) xQ — R4, z € O, such that for ally € O,
t € [0,00) it holds that sup,cg [ X — X2 — DY (2 )|/l — y]| +supcioq 1D — Diaet) = 0
in probability as y # x — y. So, if 4 and o are continuously differentiable and if inequality ([2I)
holds, then dividing by || —y|| € (0,00) in (2]) and applying Fatou’s lemma (cf., e.g., Lemma 3.10
in [21]) immediately implies that || D}[|oirexay < d SUp,ega <1 |1 DF 0l rmey < d @rp(y,y) for
all y € O and with t,p € (0,00) as in inequality (2).

1.1 Notation

Throughout this article we use the following notation. For d,m € N = {1,2,...}, v =
(v1,...,v5) € RY and A € R™™ we denote by |[v|| = [lvi|*+ ...+ |vd|2]1/2 and ||A] =
|AllL@m re) = SUPyerm {0} [I|Av||/||v]]] the Euclidean norm of v and the Euclidean operator
norm of A respectively and we denote by A* the transposed matrix of A. For two sets A and B
we denote by M(A, B) the set of all mappings from A to B. For two measurable spaces (A, .A)
and (B, B) we denote by L°(A; B) the set of all .A/B-measurable mappings from A to B. For two
normed vector spaces (Vi,|[|-|l,) and (Va, ||-||;,) satisfying Vi # {0} and a function f: Vi — V4

from Vi to Va, we define || fl|Lip(vi,va) = SUDPy wevi otw W If (2, F,P) is a probability
space, if I C R is a closed and non-empty interval and if (F;);es is a normal filtration on (2, F, P),
then we call the quadrupel (Q, F, P, (F;)icr) a stochastic basis (see, e.g., Appendix E in Prévot
& Réckner [37]). For d,m € N, an open set O C R? and two functions u: O — R? and o: O —
R*>™, we define linear operators G, ,: C*(O,R) - M(O,R), G,: C*(O,R) — M(O,R"™™),
Guo: C*(O*R) - M(O% R) and G,: C*(O?,R) — M(O* R"™) by

(Gor®)(x) = ¢'(2) () + & tr(0(w)or(2)" (Hess 6)(2)), (15)

(Got)(z) = ¥/ (x) (), (16)
G ®)(,0) = (£0) (@9) p(a) + (£0)(0,0) 1) + 5 D (8) (@ 9) (01(0), (2)

+ Z (55 2%®) (2, y) (0i(2), 04(y)) + % Z (2Z29) (2, 9) (0s(), 0ay)),  (17)

G ) () = (20) (2,9) 0(2) + (20) (2,9) o(y) (18)

for all z € O, ¢ € C*(O,R), ¥ € C'(O,R), ® € C*(O*R), ¥ € C(O* R). We call the
linear operator G, , defined in (I&) generator, we call the linear operator G, defined in (I6)
noise operator, we call the linear operator ?W, defined in (I7) extended generator and we call
the linear operator G, defined in (I8)) eztended noise operator. The extended generator has been
exploited in Ichikawa [23] and Maslowski [34] (see, e.g., also Leha & Ritter [28] 29]) Whereas these
references rely on the extended generator, in our analysis below both the extended generator and
the extended diffusion operator play an essential role. Throughout this article we also often
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calculate and formulate expressions in the extended real numbers [—oo,00] = R U {—00, c0}.
In particular, we frequently use the conventions % =0-00=0,0 =1, § =00, Tt = —00,
07 =g =00, = =0%=0for all a € (0,00) and all b € R and sup()) = —oco. Moreover,
if m € N, T € (0,00), if (Q, F,P, (Fi)icio,r)) is a stochastic basis, if W: [0,T] x @ — R™ is
a standard (F)efo,r)-Brownian motion and if X: [0,7] x Q — [—o0, 00]™ is an adapted and
product measurable stochastic process with fOT | X,||? ds < oo P-a.s., then we define fOT X dW; €
L*(Q; RY) by fOT X dWy = fOT Lix,erixmy Xs dW, P-a.s. Furthermore, we define zAy := min(z, y)
and z V y := max(x,y) for all x,y € R. Finally, for two sets A, B and a function f: A — B we
denote by im(f) ={y € B: (Jx € A: f(z) = y)} the image of f.

1.2 Setting

Throughout this article we will frequently use the following setting. Let d,m € N, T' € (0, 00),
let O C R be an open set, let p € L2(O;RY), o € LO(O;R™™), let (Q, F,P, (Fi)ieo,r]) be a
stochastic basis and let W: [0,T] x © — R™ be a standard (F;)¢cjo,r1-Brownian motion.

2 Strong stability analysis for solutions of SDEs

The main results of this section are Theorem [2.23] and Theorem [2.29] below which establish
marginal and uniform strong stability estimates respectively.

2.1 Exponential integrability bounds for solutions of SDEs

The main result of this subsection, Proposition 2.3 below, establishes certain exponential integra-
bility properites for solutions of SDEs. Further instructive results on exponential moments can,
for example, be found in [I5] 6, 1T, 12, [I7]. For the proof of Proposition 23, we first present two
well-known auxiliary lemmas.

Lemma 2.1. Let T € [0,00), let (2, F,P) be a probability space and let Z: [0,T] x Q@ — R be
a product measurable stochastic process with fOT max(Z;,0)dt < oo P-a.s. and Z; > 0 P-a.s. for
Lebesgue-almost all t € [0,T]. Then fOT Zydt > 0 P-a.s.

Proof of Lemma[2.1l. Note that
0 < E[[y max(Z;,0)dt — [; Z;dt] = E[[y max(Z;,0) — Z,dt] = [ Elmax(Z;,0) — Z,]dt =0

and hence that 0 < fOT max(Z, 0) dt = fOT Z; dt P-a.s. This finishes the proof of Lemma 21 O

For convenience of the reader, we recall the following well-known Lyapunov estimate (cf., e.g.,
the proof of Lemma 2.2 in Gyongy & Krylov [13]).

Lemma 2.2 (A Lyapunov estimate). Assume the setting in Section [L3, let V € CY2([0,T] x
0,[0,00)), a € L£°([0,T1]; [0, 00)) with fo t)dt < 0o, let 7: Q — [0,T] be a stopping time and
let X: [0, T] x 0 — O be an adapted stochastzc process with continuous sample paths satisfying
Jo IX)] + llo(X,)|? ds < oo P-a.s.,

(%V) (t AN T, Xt/\’r) + (%V) (t AN T, Xt/\T) N(Xt/\T)

+ %tr(U(Xt/\T)U(XMT)*(HessJ;V)(t AT, XMT)) <a(tAT)V(EAT, Xinr) (19)

P-a.s. and Xinr = Xo+ [, p(X,) ds+ [,"" o(X,) AW, P-a.s. for allt € [0,T]. ThenE[V (1, X,)] <
exp(fOTa(s) )E[V(O,Xo)} [0,00].



Proof of Lemma[22. First, we assume w.l.o.g. that E[V (0, X)] < co. Next define stopping times
pn: Q2 —10,T], n €N, by

pn = inf({T} U {t € [0,T]: SUP,epoq V (s, Xs) + [ llo(Xe)*(VaV)(s, Xs)||Pds > n})

for all n € N. Then note that 1t6’s formula proves that

V(A pos Xinp) = V(0, Xo) + /0 e (2V)(s.X,) 0(X,) dW, (20)

tApn
+ / (%V)(s, Xs) + (%V)(s, Xs) u(Xs) + %tr(O'(XS)O'(XS)*(HGSSJCV)(S, Xs)) ds
0
P-a.s. for all (¢,n) € [0,7] x N and assumption (I9) and Lemma 21 hence imply that

tApn tApn
V(A pry Xinp,) < V(0, Xo) +/ (ZV) (s, X,) o(X,) dW, +/ a(s) Vs, X,)ds (21)
0 0

P-a.s. for all (¢,n) € [0,7] x N. Taking expectations then shows that

E[V(tA pn, Xenp,)] SE[V(0, Xo)] + /tOé<S)E[]].{s§pn}V<S,XS>:| ds )
0 22

<E[V(0,Xo)] + /0 a(S)E[V (s A ppy Xonpn )] ds

for all (¢,n) € [0,T] x N. The estimate E[V (¢ A py, Xinp,)] <n+E[V(0,X0)] < oo for all (t,n) €
[0,7] x N and Gronwall’s lemma therefore yield E[V (¢ A pn, Xinp,)] < elo () “E[V(0,X,)] for
all (t,n) € [0,T] x N. This and Fatou’s lemma complete the proof of Lemma O

The next proposition proves exponential integrability properites for solution processes of SDEs.

Proposition 2.3 (Exponential integrability properties). Assume the setting in Section [L2, let
U e CH2([0,T] x O,R), U € L£°0,T] x O;R), let 7: Q — [0,T] be a stopping time and let
X:[0,T] x Q@ — O be an adapted stochastic process with continuous sample paths satz’sfyz’ng

Jo IR+ o (X)IP + [T (s, Xo)l ds < 00 P-aus., Xenr = Xo+ Jo 7 (X ds + [§"7 o(X,) dW,
P-a.s. for allt € [0,T] and
(2U)(t @) + (ZU)(t, 7) p(w) + 2o ol Heee DU HO@ VDI < _T(t, ) (23)
for all (t,z) € Uyea{(s, Xs(w)) € [0,T] x O: s € [0,7(w)]}. Then
E[GT[U(T,XT)HJ U(s,xs)+%||a(xs)*(sz)(s,Xs)||2ds]] < E[e"V0X0)] € [0, 00] (24)

for all r € [0, 00).

Proof of Proposition[2.3. First of all, let r € [0,00) and define V: [0,7] x O x R — R by
V(t,z,y) = exp(r|[U(t,z) +y]) for all (t,z,y) € [0,7] x O x R. Then note that assumption (23)
implies that

(GV)(2y) + (V) ,y) () + (o (@)o(2) (Hess, V)(L,2,))
(@)t 2,y) [Tt ) + 552 lo(2) (VaU) (¢, 2) 2]

— rV(t,z,y) [(%U)(t,m + (ZU)(t, o) plx) + T(t, 2) + 520 (2)* (VLU) (¢, )|
+ L te(o(2) o (x)* (Hess, U)(t,2)) + 5[lo(2)*(V.U) (¢, x>||2] (25)
=rV(t,x,y) [(%U)(t, x) + (%U)(t, x) p(x) +U(t, z)

+ 2 tr(o(z) o(x)* (Hess, U)(t,z)) + 1|lo(z)*(V.U)(t, SU)Hz} <0
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for all (t,2,9) € Uyea{(s, Xs(w)) € [0,T] x O: s € [0,7(w)]} x R. Next let Y: [0,7] x Q@ — R

be an adapted stochastic process with continuous sample paths satisfying Y; = SAT U(s, X,) +
%HU(XS)*(VQCU)(S, X,)||? ds P-a.s. for all t € [0, T]. Then we get from (25) that
(g )(t AT, Xinr, Yt/\r) + (%V)(t AT, Xinr, th) M(Xt/w)
F(GVIEAT, Xin, Yine) [T AT, Xin) + 552 0(Xonr) (TO)EA T, Xns) 2] (26)
+% ( (Xt/\T) (Xt/\r) (Hessx\_/)(t/\T, Xt/\r,Yt/\r)) <0
for all t € [0, T]. An application of Lemma hence completes the proof of Proposition O

The next corollary, Corollary 2.4} specialises Proposition 2.3 to the case where U(t,r) =
e U(0,z) and U(t,x) = e U(t,x) for all (¢t,z) € [0,T] x O and some « € R.

Corollary 2.4 (Exponential integrability properties (time-independent version)). Assume the
setting in Section L3, let « € R, U € C*(O,R), U € L°([0,T] x O;R), let 7: Q — [0,T] be a
stopping time and let X : [0,T] x Q — O be an adapted stochastic process with continuous sample
paths satisfying [ [|1(X)|| + lo(X )2+ [U(s, X,)| ds < 00 P-a.s., Xopr = Xo+ [1"7 u(X,) ds +
[ 0(X,) dW, P-a.s. for all t € [0,T] and

(GuoU) (@) + g3 o (2)" (VU) (@) |I* + T (t, ) < aU(x) (27)
for all (t,z) € [0,T] X Upyea{Xs(w) € O: s €[0,7(w)]}. Then

E [exp (ﬁ + g Uls.Xs) ds)] <E [exp(U(Xo))} € [0, 00). (28)

A slightly different formulation of Corollary 2.4l is presented in the following corollary.

Corollary 2.5. Assume the setting in Section [L2, let 7: Q — [0,T] be a stopping time and
let X:[0,T] x Q — O be an adapted stochastic process with contmuous sample paths satisfying
JTNX )]+ o (X2 ds < 00 P-a.s. and Xinr = Xo+ [3"7 1(Xy) ds + [} o(X,) AW, P-a.s. for
all t € [() T). Then

E{e U 0 AU ()= (G U)X~ 52 o (X" (VU)X ds} <E["™ ] €[0,00]  (29)

for alla € R and all U € C*(O,R).

We illustrate Corollary by three simple examples. First, observe that if » € R and if U in
Corollary 2.5 satisfies U(z) = r ||x||? for all z € O, then (29) shows for every a € R that

e(+7||xf||2+fg#[auxsukuxs,mxs» (X0 g g~ 85 ()" Xs||2] ds

Ele

< E[ernxﬂ .

Second, note that if ¢ € (0,00) and if x4 and o in Corollary satisfy p(x) = —(VU)(x) and
o(x) = /el for all x € O and some U € C?(0, R), then [29) implies for every a,r € R that

E[eem UXr)+[7 25 [aU (Xo)+[1- 5235 | (VU)(Xo) [P —(AU)(X)] d ] <E[eV0)]. (30)

A result related to ([B0) can, e.g., be found in Lemma 2.5 in Bou-Rabee & Hairer [6]. Finally,
observe that if r € R and if U in Corollary 23 satisfies U(z) = rIn(1+ ||z||?) for all z € O, then
[29) implies for every a € R that

2(Xs,u(Xs))—llo(Xs) 12

(+11Xs112)

_r_ 2\ HS(R™,R%) e J2lle(Xe)*Xs |2
Ji {aln(unxsu) M A }ds

E X [2) =
(T+[1X-%) (31)

<E|(1+]X)%)].



The following corollary of (B1]) states a moment estimate for solutions of SDEs which is interesting
on its own.

Corollary 2.6. Assume the setting in Section[LZ, let p,c € R, o € [0,00), let 7: Q — [0,T] be a
stopping time and let X : [0,T] x Q — O be an adapted stochastic process with continuous sample
paths satisfying [y ||w(Xo)|[+]0(X)[? ds < 0o P-a.s., Xin, = Xo+ [,"7 (X)) ds+ [, o(X,) dW,
P-a.s. for allt € [0,T] and

— o(x)*z||?
2(z, u(2)) + 0/(@) [fismm gy + 2ETHEA - < (e +alm(l+ [z]%) 1+ [l*)  (32)

for all z € im(X). Then E[e=7(1+ || X, |27 "] <E[(1+ || Xo]*)7].

Lemma 2.7 (Exponential martingales). Let m € N, T € [0,00), let (Q,F,P, (F)cpm) be
a stochastic basis, let W: [0,T] x Q@ — R™ be a standard (F;)iejo,r)-Brownian motion and let

A: [0, T]xQ — R™ be an adapted and product measurable stochastic process satisfying fOT | Ag||* ds
< 00 P-a.s. Then it holds for all p € (1, 00| that

t t
sup exp (/ (Ag, dW) — %/ ||As||2 ds)
te[0,7 0 0

LP(R)
T
< nt e ([t -] [ 1) (33)
ook Glas ), o,
1 r )
<o ew(0-9) [ 1agea)| e (34
-5 : )

Proof of Lemma[2.7 Inequality (34) follows from inequality (B3]) by taking ¢ = 2p. It thus
remains to prove inequality (B3]). If the right-hand side of (B3] is infinite, then the proof is
complete. So for the rest of the proof, we assume that the right-hand side of (33)) is finite. If
the infimum on the right-hand side of (33) is attained at ¢ = p, then necessarily fOT |Asl|*ds =0
P-a.s. In that case, both sides of (33) are equal to 1 and this completes the proof in that case.
So for the rest of the proof, we assume that p € (1,00) and that the infimum on the right-hand
side of (33) is not attained at ¢ = p. Let Z: [0,T] x Q@ — R, r € R, be adapted stochastic
processes with continuous sample paths satisfying

¢ ¢
Zt(r) = exp (T/ (Ag, dW) — %’I“Q/ ||AS||2 ds) (35)
0 0

P-a.s. for all t € [0,T], r € R. Tt follows from, e.g., |24, Lemma 18.21] that for every r € R the
process Z() is a local martingale. For every r € R, let Trn: 2 = [0,T], n € N, be a localizing
sequence of stopping times for Z(". Doob’s martingale inequality and Hélder’s inequality imply
that for every ¢,7 € (p,00), n € N with é + 1= % it holds that

<
Lr(;R)

1 TNATr.n
__ D (r) T 1y _ ’ 2
T (-1 H(ZTATM) exp<2(r 1)/0 [ As]l dS)
p o 1\ !
< 4 ’ Loy — 2
< o2 (E20)) e (e -0 [ jaeas)

P Nexp(3 (1 —1 /THAH2ds
(p=1) SN 0o

Letting n — oo and applying the monotone convergence theorem implies inequality (33]). The
proof of of Lemma 2.7] is thus completed. O

2 a8

TNATrn

sup Zt(l)

te[0,TATr.n] Lr(:R)

LP(C;R) (36)

Li(R)

La(3R)
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2.2 An identity for Lyapunov-type functions

In Lemma 2.10] below, a simple identity for suitable Lyapunov-type functions is proved. In
the proof of Lemma .10 the following stochastic version of the Gronwall lemma is used. For
completeness its proof is given below.

Lemma 2.8. Letm € N, T € (0,00), let (2, F,P, (F¢)scpo,m) be a stochastic basis, let W [0,T7] x
Q — R™ be a standard (Fy)icjo,r)-Brownian motion, let 7: @ — [0,T] be a stopping time,
let X:[0,T] x Q@ — R be an adapted stochastic process with continuous sample paths and
let A,A: [0,T] x Q@ — [—o00,00] and B: [0,T] x Q — [—o0, 00" be adapted and product
measurable stochastic processes satisfying [ |As| + |A,| + ||Bs||?ds < oo P-a.s. and Xypr =
Xo+ Ji"" Agds + [T BoXydW, P-a.s. for all t € [0,T] and lyery A < Lypery AcX, P-a.s. for
Lebesgue-almost all t € [0,T]. Then

X, <exp (f [AS - %||BS||2] ds + fBS dWS) Xy P-as. (37)
0 0

If, in addition, 1y Ay = ]l{t<7}fltXt P-a.s. for Lebesque-almost all t € [0,T], then (BT) holds
with equality.

Proof of Lemmal[28. Let Y: [0,T] x 2 — R be an adapted stochastic process with continuous
sample paths satisfying

AT . N tAT
Y, = Xon exp(— [ A= 31B.] ds = | B, dWs) (38)
0 0
P-a.s. for all ¢ € [0,7]. Then Itd’s formula proves that
AT SAT T . " SAT
Y;:Xo—i—/ Asexp(— / [Au—%HBu]P] du— [ Buqu) ds
0 0 0
tAT . . tAT . .
—/ [As . %HBSH sts—l—/ Y, [Bs —Bs] dw,
° tAT R tAT OA
w1 [ VBIPds— [ ViR s
0 0
tAT SAT [ . ~ SAT 170N
:X0+/ Asexp(— / [Au— %HBUHQ] du— [ Buqu> ds — [ AY,ds
0 0 0 0

P-a.s. for all t € [0,T]. The assumption ]l{S<T}(flsXs — As) > 0 P-a.s. for Lebesgue-almost
all s € [0,7] together with Lemma 2T and [ |4, + |A,X,|ds < co P-a.s. hence implies that
Y; < Xy P-a.s. for all t € [0, 7] and, in particular, that Yy < X, P-a.s. In addition, observe that
if 1yeryAs = 1{S<T}ASXS P-a.s. for Lebesgue-almost all s € [0, T], then Lemma 2] implies that
Yr = Xy P-a.s. This finishes the proof of Lemma 2.8 O

The following corollary shows that if X in Lemma 2.8 is nonnegative, then fewer integrability
assumptions are needed.

Corollary 2.9. Let m € N, T € (0,00), let (0, F,P, (Fi)wcior)) be a stochastic basis, let
W:[0,T] x Q = R™ be a standard (F;)ico,r-Brownian motion, let 7: Q — [0,7T] be a stop-
ping time, let X:[0,T] x Q@ — R be an adapted stochastic process with continuous sample paths
and let A, A: [0, T]xQ — [—00, 0] and B: [0, T]xQ — [—00, 00]"™*™ be adapted and product mea-
surable stochastic processes satisfying Xin, > 0 P-a.s., [ |As] +max(A,, 0)+]||Bs||? ds < co P-a.s.

and Xipr = Xo + fOMT Agds + OMT B, X, dW, P-a.s. for allt € 0,T] and Lyen Ay < ]l{t<T}AtXt

P-a.s. for Lebesgue-almost all t € [0,T]. Then

X, < exp(

=

[As . %”34;2] ds + Ost dWS) Xy P-as. (40)
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If, in addition, 1y Ay = ]l{t<7}fltXt P-a.s. for Lebesque-almost all t € [0,T], then ([@Q) holds
with equality.

PTOOf Of COTOZZGTZ/ . As ]]-{t<T}At S ]]'{t<T}AtXt = ]]'{t<T}AtXt/\T S ]]-{t<7'} maX(Ah —n)Xt P-a.s.
and [, | max(A,, —n)| ds < co P-a.s. for Lebesgue-almost all ¢ € [0, 7] and all n € N, Lemma
implies

X, <exp (} [max(fls, —n) — %HBSHQ] ds + }BS dWS) Xy P-as. (41)
0 0
for all n € N. Now the monotone convergence theorem shows
lim max(Ag, —n)ds = / max(Ag, 0) ds — lim mm(max( A, 0),n)ds
n—o00 n—0o0
° , (12)
/ max( AS, 0)ds — / max( 0)ds = / A, ds.
0
So letting n — oo on the right-hand side of (@1l yields
X, <exp (f [A — —||B I ] ds + ]38 dWS> Xo P-as. (43)
0

This proves (40). For the rest of the proof, we assume that 1y A; = ]l{t<T}fltXt P-a.s. for
Lebesgue-almost all t € [0,7]. Define a sequence of stopping times p,: @ — [0,7], n € N,
by p, = inf({r} U{t € [0,T]: [;|As|ds > n}) for all n € N. Then left-continuity of the

mapping [0,7] 3 t = [)'|A,| ds € [0, 00] implies that [/ |A,|ds < n for all n € N. Consequently,
Lemma 2.8 shows

X, = exp<f [A — LB ] ds+ | B, dWS) Xy Pas. (44)
0 0

for all n € N. Now the assumption that X, > 0 P-a.s., inequality @3) and [ [|Bi|>ds +
| B, dW,| < oo P-a.s. imply

0= Xolipmd, dsm—oop < Lijr A, dsmoc} EXP (g [A — 3118 ] ds+ [ B, dWs) Xo=0  (45)

P-a.s. Moreover, it follows from Lo Avds>—o0) = L{J7 | Au ds<oo) = LUnex{pn=r}) = limy, o0 (Lgp,=r})

P-a.s. and from (44]) that

XT]l{fo Ay ds>—o0) = lim (X 1yp,— T}) = lim (Xpn]l{pn T})

n—o0 n—oo

Pn 1 A ~ A~
= hm |:]]‘{Pn7'} eXp(f [As — %”BSH2] dS + f Bs dWs) XO:| (46)
0 0

n—oo
= L7 A, ds>—oc} €XP (({ [As - %HésH?] ds + gﬁ’s dWs> Xo

P-a.s. Combining (5] and (46) finishes the proof of Corollary O

Lemma 2.10 (An identity for Lyapunov-type functions). Assume the setting in Section[1.2, let
V e C?*(O,R), let 7: Q — [0, T be a stopping time, let X : [0, T]xQ — O be an adapted stochastic
process with continuous sample paths satisfying V(Xinr) > 0 P-a.s., fOT (X + [|o(X:)]]? +
max (G2 JXe) gy 4 WEDEIE g5 < o0 P-a.s. and Xinr = Xo + U (X, s+ T o (X,) dW,
P-a.s. for allt € [0,T]. Then

V(X,) < V(Xo) exp( / [ Gng ) _ UCTIOAP ] g5 + / il dWs) P-a.s.  (47)
0

If, in addition, (V=')(0) C (G,,V)([0,00)), then equality holds in (4T).
12




Proof of Lemma[2.10. Path continuity together with V' € C?*(O, R) implies that [J [(G,..V)(X;)|+
[(GoV)(X,)|[?ds < oo P-a.s. Next the inequality a < 0 = & -0 for all a € (—o00,0) implies

Lirer) (G0 V)(X0) — 52259V (X)) 1(g,,.v)(x0) <0 < 0 P-as. for all ¢ € [0,T]. Morecover, the
assumption that [J max((g“"’v)(xs),O) + I VX VX 75 < 00 P-as. yields that

V(Xs) 5))?
/0 (G V)X L(g,. 0 vixz0p + (G VI X)Ly x)=0y ds = 0 (48)
P-a.s. and, consequently, that
[ 161010 = SV () Ly, v 01 + 16V = SRSV (X ds =0
(49)
P-a.s. This together with It6’s formula results in
tAT
V(Xinr) = V(Xo) +/ (GuoV)(Xs)ds + / s) AW
o ° (50)
GoV)(Xs)
= V(Xo) +/0 (gua X,)ds + /0 ( V())(() V(X)) dW,
P-a.s. for all ¢ € [0,T]. Moreover, ([@9)) and Fubini’s theorem also imply that
{ (GuoV)(X) = BRIV (X)L, x)20) dS}
(51)

gy.,o'v Xt
= /0 E [1{t<7}\(gu,ov)(Xt) - %V(Xtﬂﬂ{(gu,avxxt)zo}] dt

so that Lcry ((GuoV)(Xi)— WV()Q)) 14(G,..v)(x»)>0y = 0 P-a.s. for Lebesgue-almost all t €

[0, 7). Combining these observations then shows that 1,y ((G.0V)(Xy) — %V(Xt)) <0
P-a.s. for Lebesgue-almost all ¢ € [0,T]. Applying Corollary to the stochastic process V (X;),
t € [0,T], and to the stopping time 7 together with [J [(G.,V)(Xs)| + maX(M,O) +

V(Xs)
1(Go V)(Xs)ll2
(V(Xs

" [(GuaV)(X)  IGVIXIP G V)(Xe
V(X,) < V(Xo) exp(/o el pae bt ]ds+/ (Eo i) )dWs) P-as.  (52)

This proves inequality (7). The additional assumption (V=1)(0) C (G,,V)7*([0,00)) implies

Litery ((Guo V) (Xy) — %V(Xt)) = 0 P-a.s. for all t € [0,7]. In that case, Corollary

yields equality in (47)). This completes the proof of Lemma 210 O

ds < 0o P-a.s. yields then that

2.3 Two solution approach

In this subsection, we apply Lemma to the bivariate process of two solutions of the same
SDE (see Proposition below). From this, we then derive marginal and uniform estimates for
this bivariate process (see Proposition .17 below and Proposition below respectively).

The next remark illustrates the relation between the extended generator in (I7) and the
“standard” generator in ([H]) and between the extended noise operator in (I8) and the “standard”
noise operator in ([I6). The proof of Remark 21T is clear and therefore omitted.

Remark 2.11 (Relation between generator and extended generator and between noise operator
and extended noise operator). Let d,m € N, let O C R? be an open set, let u: O — Re and
o: O — R™>™ be functions and define functions fi: O — R and 5: 0% — RED*™ by i(z, y) =
(1(z), u(y)) and by 7(z, y)u = (o(z)u, o(y)u) for all z,y € O and allu € R™. Then G, , = Gus
and G, = G.
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Using both the extended generator and the extended noise operator, we now establish in
Proposition an elementary identity which is crucial for the results developed in this arti-
cle. Proposition follows immediately from Remark 211 and Lemma .10l Proposition
generalizes a relation on page 1935 in Zhang [54].

Proposition 2.12 (Two solution approach). Assume the setting in Section[1.3, let 7: Q — [0, T

be a stopping time, let V € C*(O* R), let X*: [0,T] x Q — O, i € {1,2}, be adapted stochastic
processes with continuous sample paths satisfying [J max (% 0) -+ (X)) + o (XH]1*+

Wc&s < o P-as., V(X},,X?,) > 0 P-a.s. and X}, = X +fMT (X)) ds +

ftAT o(X?%) dW, P-a.s. for all (t,1) € [0,T) € {1,2}. Then
V(X X2) )

T [@uoV)(XL X2 G, V)(XL,X2)|2 G, V)(X! X2)
<V(Xg,X?) exp(/o [( H{/()g;(,xg) ) IC (v&l FENE )l }d +/ (V(%dW) P-a.s.

If, in addition, (V=1)(0) C (G,.,V)~1([0,00)), then equality holds in (53).

2.3.1 Calculations for the extended generator and the extended noise operator

In this subsection we calculate the extended generator and the extended noise operator applied
to a suitable class of twice continuously differentiable functions (see Lemma 2.4 below). In these
calculations the following well-known remark is used.

Remark 2.13 (Derivatives of powers of the norm function). Letp € [2,00) and let (H, (-,-) |||l 5)
be an R-Hilbert space. Then the function F': H — R given by F(x) = ||z||P for all x € H is twice

continuously differentiable and fulfills
F'(z)(v) = p || "™ (z,0), 50
F!(@)(v,w) = pllz| "™ (v, w) + p (p = 2) 2] (. 0) (2, )

for all x,v,w € H. In particular, the function G: H> — R given by G(z,y) = ||z — y||? for all
x,y € H is twice continuously differentiable and fulfills

((%G) (, y)) (v) =— ((%G) (z, y)) (W) =plle—y|"? (z —y,v),
(&) @) @) = (Z6) @) w.w) = -((Z26) @) v.w) (59)
=pllz =y (w,w) +p(p = 2) |z — y| " (z = y,v) (@ — y, w)
for all xz,y,v,w e H.

The next lemma, Lemma [2.14] is the main result of this subsection. It calculates the extended
generator and of the extended noise operator when applied to a suitable class of twice continuously
differentiable functions.

Lemma 2.14. Let d,m,k € N, p € [2,00), let O C R? be an open set, let p € LO(O;RY),
o€ LOYO;R>™), d € C*O,RF) and let V: O* = R be given by V(z,y) = ||®(z) — ®(y)|| for
all z,y € O. Then V € C*(O*,R) and

@@l p S8 (@) = 2), (@) o) = ¥@ o) (56)
V()P |2(x) - &)
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(GuoV)(z,y) _ p(2(x) — P(y), ¥'(2) p(z) — ¥'(y) ply)) , (P—2) @)@y
V(z,y) | D (z ) <I>( |17 2p|V(x,y)l?
+pZ§11 (P(x) - () (0i(2), 03(2)) — " (y) (0:(y), 0i(y)))
2||‘I’(90) ( )||
+p||<1’(9€) —0(y)| "7 |9 () o(x) — ¥ (y) o (W) [Fis ety
2| @(z) — 2(y)|”

(57)

forall x,y € O.

Proof of Lemma([2.14] First, note that the chain rule together with Remark 213 shows that
V € C*(O? R). Next observe that Remark 213 implies that

GV )( y) = p@(x) — ()" (@) - D(y), ¥'(x) p(z) — ¥'(y) u(y))

p Z |@(x Yl v <(I) — ®(y), ®"(x) (Uz‘(fc)a oi(z)) — "(y) (0i<y>7 Uz(y))>

+Zp||‘b )| [||<1>'<x>oi<m>||2;||<1>/(y>ai<y>ll2 — (¥ (x) 03(z), D' () oi(y)>}
ple ~2) Z 19(2) — B() [ | (B(z) — B(y), &'(z) 7, (@)
+ @ > () = 2) [ [(@(2) — 2(0), ¥'0) (1)

—p(p—2) il [9(z) = @) 77 (@(x) — B(y), ¥ (@) 05(2)) (D () — Dy), ¥ (y) ouly))
and
(GoV)(w,y) = plI®(x) — ()| (P(z) — B(y))" (¥'(x) o(x) — P'(y) 7(y)) (59)
for all z,y € O. This shows that
GV )( y) = p[|®(z) — ()T (@(x) - B(y), ¥'(x) p(z) — ¥'(y) u(y))

+ 2 Z 1B (z) — @) (D(x) — D(y), " (2) (04(x), 0:(2)) — D" (y) (03(1), 04(»)))

P=2) 15/ / 2 (60)
5 H‘P( )— () I |9 (2) o(x) — ' (y) o (Y) s mm mr)

D" (@ () - B(y), ®'(z) 0:(x) — ¥ (y) 0i(y))[*

and

([ceAT IR ] [—

o) | , , ) (61)
=p* [ ®(z) — 2|V | Y [(@(2) — D), () 05(x) — ¥ (y) o:(y))]

i=1
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for all x,y € O. Hence, we obtain that

GuaV)(@y) _ p(2(x) = B(y), ¥'(z) p(z) — '(y) ply))
Viw,y) 1@ () — @(y)|*
L Pl (2(x) — 2(y), 2" () (0i(x), 04(x)) — @"(y) (0:(y), 0:()))
2@ (z) — 2(y)["

(—2) || &/ ! 2 (62)
+pH‘P(:E)—(I)(y)H 12 (z) o(z) — ' (y) o (y) lnswm mH)

2] @(x) — @ (y)|”
p(p—=2) 0 |@(z) — 2y |PY [(@(x) — (y), ¥ (@) 03(x) — ¥'(y) o3(y)) [’
2)|@(z) — @(y)]”

+

and

GV @) 1@V 9 sz

Vel VP
_ Plle@) = o) [S7, (@) - ). ¥ @) oila) = VW s (g
() — @)
_ X R) ~ ¥(). ¥ i) — ¥) o)
o) - 2(u)]*

and therefore

GuaV)(@y) _ p(2(x) = B(y), ¥'(z) p(z) — '(y) ply))
Vi(z,y) |2(2) — @(y)’
L P (2(x) — 2(y), 2" (2) (0i(x), 0i(x)) — 2" (y) (0i(y), 0:()))

2 [0(a) — 0() oy
P 1B (x) — D(y) |72 (|¥ () o () — ' (1) o (1) i ety N (p—2) |GV (@)
2|[@(x) — 2(y)[I” 2p|V(z,y)P?
for all z,y € O. This completes the proof of Lemma [2.14] O

Next we illustrate (56) and (57) in Lemma [2.14] by two simple corollaries, Example 2.15 and
Example 21601 Example 215 is the special case of Lemma 2.4 where ®(x) = z for all = € O.

Example 2.15. Let d,m € N, p € [2,00), let O C R? be an open set, let p € LO(O;RY),
o € L2YO;R¥™) and let V: O* — R be given by V(z,y) = ||z —y||” for all z,y € O. Then
V e C?(0*,R) and

@GV @I _ P llo(x) — o(y) (= - y)IP

2
llz=yll

d 65
[V, y)P o — ylI " (%)
_ — 2
(G oV (. y) _ [ Ao s | (p—2) [|(GoV) (2, v)|| (66)
V(z,y) lo—yl” 2p|V(x,y)]?
< {(w—yvu(ﬂc)—u(y)H(”—gl”J(x)—a(y)llilsmmmd)}

forallz,y € O.

Example 2.T6] is the special case of Lemma [2.14] where O = (0,00) C R and where ®(z) = 29
for all x € O and some ¢ € R.
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Example 2.16. Let p € [2,00), ¢ € R and let V': (0,00)?> = R be given by V(x,y) = |27 — ¥
for all z,y € (0,00). Then V € C?*((0,00)% R) and

|@ V)@ )| ¢ (20 o(x) -y a(y))’

V(z,y)2 = (27 — yq)2 and (67)
GV gy P(20 ) =y () + G2 2073 (0(2))* - g2 (o (y))?])
Ve =y (68)
P (p—1)¢* (Y o(z) -y o(y))’
2 (x9 —y)°

for all z,y € (0,00).

2.3.2 DMarginal strong stability analysis for solutions of SDEs

Proposition 2.17 (Marginal strong stability analysis). Assume the setting in Section [L.2, let
r,y € 0,V € C*0?10,00)), let 7: Q — [0, T] be a stopping time and let X*: [0,T] x Q@ — O,
z € {x,y}, be adapted stochastic processes with continuous sample paths satisfying [ ||n(XZ)| +

HJ(XZ)HZ—i—max((g“{;’(‘)/()sgé’)xy) 0) + ”(G(” ())((;X;f)(;w ds < oo P-a.s. and X}, = z—i—ft/\T (XZ?)ds+

ftm o z)dWS P-a.s. for all (t,z) € [0,T] x {z,y}. Then it holds for all p,q,r € (0, 00| with
= + = that

(=1 (GaV)(XZ,XY)|2

I (Gu,oV)(XE,xY)
0 2(V(XZ,Xx¥))2

ds
V(X%,xY¥)

+

”V<XfaX%y)HLr(Q;1R) < Vi(z,y)|e (69)

La(;R)

In addition, if [} [(G.V)(XZ, XY)|?ds = 0 P-a.s. and (V~')(0) C (G,,V) ([0,00)), then it
holds for all r € (0, 00] that

o VXS XE) 4o
IV (X2 XDy = Vi) || Ve - (70)
L™ (3R)
Proof of Proposition[2.17. Proposition [2.12] together with Holder’s inequality implies that
HV(X$7X7Z—/> L7 (S%R)
[ GuoV) (X2, XY G’VX’CXyQ GVXXy
0 LT (R)
< V(a,y) [lexp( ] [Eaeld2D) 4 0=y ||<60vz><xs,X£)n2] ds)
(,y) p({ V(X3 XY) 2(V(Xz,X)? L(:R) (71)
T G V(X2.XY) 7 pll@ov (XI XY)||2
exXp (g WdWS gp Xz Xy)) dS)
Lr(C;R)
GV (X2 XY —1) |G, V) (X2 XY)|2
< V(z,y) exp(f e+ e ds)
0 LI(%R)

for all p,q,r € (0,00] with % + % = % This proves (69). In the next step we observe that if

Jo NG V)(XE, XY)||?ds = 0 P-a.s. and if (V71)(0) C (G,..V)7([0,00)), then Proposition

proves that

V(X2 XY) = exp ( /0 ol B3 A ds) V(z,y) (72)
P-a.s. and hence
. " G0V (X2 XY
IV X XDl = Vi) o [ St as) (73)
0 L (R)
for all r € (0, 00]. The proof of Proposition 217 is thus completed. O
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Remark 2.18. Note in the setting of Proposition [2.17 that if V e C?(0,[0,0)), g € C(O,RU
{00, —00}), © =y and if V(v,w) = V(v) and g(v,w) = g(v) for all v,w € O, then ([@9) in
Proposition [2.17 reduces to an estimate for ||V (X?)| rror)-

The next corollary follows immediately from Proposition 217 and Example ZT5] It establishes
an estimate for the L™-norm of the difference of two solutions of the same SDE starting in different
initial values for r € (0, o0].

Corollary 2.19. Assume the setting in Section[I.2, let x,y € O, let 7: Q — [0,T] be a stopping
time, let X#: [0,T] x Q — O, z € {x,y}, be adapted stochastic processes with continuous sample

paths satisfying [ ||u(X2)| + |lo(X2)|)* + maX«ngXsy’”(Xg)”}é(i(;i);ng)ﬂlo()(?)7J(X$y)”2 ds < oo P-a.s.

and X7, =z + fJAT u(XZ2)ds + fOtM o(XZ)dWs P-a.s. for all (t,z) € [0,T] x {z,y}. Then

1X7 = X7 o)

(X7 =XV (X3) = (X + 3 1o () =0 (XD g m ma

< [lz =yl |lexp /T Xz —X7|? . -
0 +(%71) l(e(XZ)—a(XIN*(XZ-XY)|?
[Xz-Xx7|* Le@R)

T

111
for all p,q,r € (0, 00| with st =1
Corollary 219 simplifies in the case of one-dimensional SDEs. More precisely, (74]) reads as

1XE = XV o my

< [lz =yl (75)

La($3R)

|Xz—Xx7[?

t T x - T
exp(/ (X2 =XY) (WXT)=u( X))+ |0 (X2) = (X |}is mm 1) ds)
0

for all p,q,r € (0,00] with % + % = % in the case d = 1. To analyze and to estimate the term

appearing in the exponent in (7)) in Corollary 2.19] the following elementary remark can be useful
(see, e.g., Subsection [.4] below).

Remark 2.20. Let D C RY be an open set and let F: D — R? be a continuously differentiable
function. Then

Vo e D: sup [%} < sup [%} , (76)
veR4\{0} yeD\{z}
Vo,y € D withz #y : % < sup sup [(uFf(rm”—Z'(';—r)y)v)} ’ (77)
Y ref0,1] veR4\ {0}
o () )
z€D veR4\ {0} "oy
ay

Lemma 2.22] below uses Corollary 2.4] above to estimate expectations of certain exponential
integrals. Besides Corollary 2.4, the proof of Lemma [2.22] also uses the following well-known
consequence of Jensen’s inequality in the next lemma (see, e.g., inequality (19) in Li [30]).

Lemma 2.21. Let T € (0,00), let (2, F,P) be a probability space and let A: [0,T] x Q2 — R be a

product measurable stochastic process with fOT max(0, As) ds < oo P-a.s. or with fOT max(0, —A;) ds <
o0 P-a.s. Then it holds for all p € [1,00] that

T
exp ( / Ay dt)
0

1 /7
<7 / lexp(T' Al ooy dt < sup [lexp(T'Ad)l|ppomy - (79)
LP(R) 0 te[0,T)
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Proof of Lemma[2.2]l. Jensen’s inequality and Minkowski’s integral inequality imply that

T 1 (T
exp < / Ay dt) exp (T / TA; dt)
0 0

LP(Q;R) Lr(;R)
1 /T T
< H—/ exp(T'Ay) dt == / exp(T'Ay) dt (80)
T Jo LP(R) 0 LP(4R)
1 /T
<7 [ 10T A @t < sup [exp(TA oo
t€[0,T
for all p € [1,00]. This completes the proof of Lemma 2211 O

Using Lemma 2211 and Corollary [Z4] we are now ready to prove Lemma 2221 Lemma 2.22]is
crucial for Theorems [2.23] and 2.29] below.

Lemma 2.22. Assume the setting in Section [L.3, let k € N, x,y € O, ag, a1, Po, /1 € R,
JURS (0700]; do, 1 € (O,Oo]k with Zi:o Zle il = %, Uy = (UO,l)le{l,...,k}; Uy = (U1,l)le{1,...,k} S
C2(O,RY), U = (U))ieq,..iy € C(O,R¥), V € LYO%R), ¢ € L20,T];R), let 7: Q@ — [0,T]
be a stopping time and let X*: [0, T] x Q — O, z € {x,y}, be adapted stochastic processes with
continuous sample paths satzsfymg Jo max(c ( ) 0)+| (X2)||+|lo(XZ)[|P+max(V (X, X¥),0) ds <
oo P-a.s. cdet/\T—erfO u(XZ) ds+f0 o(XZ) dWg P-a.s. for all (t,z) € [0,T] x {x,y} and

V(v,w) < e(t) + Yooy [P + Sl ] and (81)
(GpoUsa) () + 5 0 () (VU (@) + Ly () - T () < @ipUsi(u) + By (82)

foralli e {0,1}, 1 € {1,...,k}, u € {v,w}, (v,w) € Im(X]) x im(X}), t € [0,T]. Then

Hefg V(XZ,XY)ds

Bo,1 (1— Ui i(#)+Ui i (y)
LP(4R) = o <E [f o st E 24 D

=1 LO

T k|7 T
B1, Uy (X5)+Uy 1 (XY) Uo (XE)+Uo(XY)
exp (Of c(s)ds+ > Lf e ds — 2T —f Sa T ds
=1 ’

Lo (4R)

Proof of Lemma[2.22. First of all, observe that Holder’s inequality proves that
Hefo V(XZ,XY)ds
LP(R)
T k
Uy 1 (X2)+Uy 4 (XY Uo.t (X2)+Up (XY
exp < [ e(s)ds — Y, Pl i) z f ) ds + z f e d )
0 =1 ’ L (%R)

K

k —
z Uy (X2)+U, (XY Up 1 (XZT)+Uo 1 (X5
eprV(XS,Xg)—c(s)—lz L) ds +zf s >ds)
=1

k T
Ui (X2)+U1,(X ULi(X5H)+U L (XY) B,
exp <Z [ B e +f o Pt ds ‘0[‘11,leal’ls ds

=1

ko _1 3-1
=1 a7 (%R)

L[Zle /g1t (GR)

Hence, (BI]) implies that

Hefg V(X®,XY)ds

k T
Uo, Y+Up 1 (X3
< oo (£ 1 ittt )

=10

LP(R) L[Zle /0,171 (LR)

eXp<i {Ul,l(X:>+arﬁ,lf(X£) LT Ul,l(xz>+ﬁli§i<§)—2ﬁl,l dSD

2 2
=1 q1,1€ 0 a,1¢ L[Zl 1 Val~ (Q R)
T k
b1, U i(X3)+U(X Uo (XE)+Uou(XY)
exp(fc d$+2fq alls - 241" Zf 2qolTe sos—— ds
0 =10 =1 L=(%R)
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and again Holder’s inequality therefore proves that

Hefo V(XZ,XY)ds

Lr(;R)
k
T
< f Uy, (X f Bo.i dud
< exp| [ 507 oy l 2q0 Terom duds i
=1 L7101 (;R)
k
T s
Up, (XY) Bo,1
H exp quOITe e quOITeao,lu duds
=1 0 (U L%, (:R)
k
Uy (X2 Uy 1(X5)—B1y
H exp(zq a” +f 5011 o ds .
=1 L R)
k
k Ts
Uy (XY) Ui(X8—B1, Bo,1
H exp ( g T +f Sara ealls ds cexp| > [ [ L du ds
’ 0 1,291, (QR) =100

Up 1 (XE)+Ug (XY
01X+ s>d3)

M=
*\%H

k
511 Upi(X2)+U1,1(XF)
exp( s)ds + § f alls - 2g 1T _
=1 ’

=1 QqOJTe LOO(QV]R) .
Lemma 2.2T] hence implies that
k T
JTV(X?,XY)ds Bo(T—s)
He 0 Le(:R) < €exXp (l:z:lg . lT@aOlS ds
v T i
U B
H sup exp(Zqofeam — f S0 T du)’
=1 _sG[O,T] L2q0,l(Q;]R)_
. T .
Uo, (XY
. H sup exp( ‘”(am — f 2%?2;50,1” du)’
1=1 [s€l0T] ’ L*PHQR)
k - 1
vy 2411
) H E[exp(U;ziEfT + f U”({fus Pri ds)] E exp(U;’éffT + f u ds)]
1=1 L
k T k k T
8 Uy 1(X2)4+U; 1 (XY) Uo.1(X2)+Up 1 (XY)
exXp (gC dS -+ lzzl f @ 1al1 NES ds — Z: L 2q1’lea1TllT Z: f QquTe gll dS)
0 =1 =17 L (R)
and this shows that
[TV(XE XY)ds Boi(T—s
e’o <ex a s ds
H LP(%R) p(lzl({% Te™0
X 1
240,1
H sup E[exp(UOio)fs) f fgju )] - sup Elexp(UOéofs) f fgfu )]
=1 SE[O,T} SE[O,T}
k Uy (XZ) U 5 U (XY) | T U(X9)-8 ﬁ
. H E [exp( R +f Ll L ds)] E [exp( RS f EoRIaE ds)]
1=1
k T k k T
B Uy ((X2)+U U, )+Uo.1(XY)
exp( dS + Z f . 1al1 ls - E = 2q1 leoqll%" E f qu lTeO‘glL dS) .
=10 =1 =17 Lo (R)
(83)
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Corollary [2.4] therefore proves that

Hefg V(XZ,XY)ds

LP(Q4R)
o k k
(1= Up,1(x)+Up 1 (y) Uy 1 (2)+Uq 1 (x)
< exp(Zf q(; e s) - [Hexp(i(” T )] : [Hexp(iu T )] (84)
=1 =1
A 511 K Ur i (XE)+U01,1(XE) i TUOZ(Xg)ﬂLUoz(X;J)
exp| [c(s)ds + Ef ——arw ds — ) T A > f e ds
0 =1 ’ =17 ’ L>(O;R)
and this implies that
Hefg V(XZ,XY)ds
LP(Q4R)
k
Bo,i(1— Uo,1(#)+Uo,1(y) Upi(@)+U1,(2)
< eXp <Z |:({ qo, ea(”s d + 2q0,1 + 2q1,1 :|>
=1
T 511 i Ui (X5)+U11(X ko Uo, 1 (X2)+Uou(XY)
exp (fc )ds + Zf e ds — >0 = Pt = qulTeams ds) :
0 =1 =17 L (Q;R)
The proof of Lemma 2.22] is thus completed. O

In the next step we present Theorem [2.23] which is the main result of this subsection. It is
an immediate consequence of Proposition 2217 and Lemma 222 Theorem appeared in the
special case ¢ = 0 and Uy = 0 = U; in Theorem 2.1 in Maslowski [34] (cf. Ichikawa [23] and, e.g.,
Leha & Ritter [28, 29])). In Section @ below various examples of SDEs are presented that fulfill
the assumptions of Theorem [2.23]

Theorem 2.23. Assume the setting in Section [L3, let v,y € O, k € N, ag, a1, By, /1 € RF,
c € L0, T;R), V € C*(0%0,0)), Uy € C*O,R¥), U, € C*(0,[0,00)%), U € C(O,RF),
r,p € (0,00], qo, q1 € (0,00]" with Y =g andlet X7: [0,T] x Q= O, z € {z,y},
be adapted stochastic processes with continuous scmﬁple paths satisfying

(Gu,oV)(v,w) + (p—1) (G V) (v,w)]? §C<t>+zﬁ . [UO,n(U)-FUO,n(w) _'_ﬁn(v)JrUn(w)} (85)

V(v w) 2q0,nTea0’nt 2q1,nea1’nt

and  (GuoUit)(u) + sarwllo(w) (VUL ()||* + Ly (4) - Ui(w) < aiplUsi(u) + Biy (86)

foralli € {0,1}, 1€ {1,...,k}, u € {v,w}, (v,w) € Im(X}) x im(X}), t € [0,T] and fOT\ ( )|+
(X2 + [lo(X2)||2 + %ds < 00 P-a.s. and X7 = 2+ [o w(XZ)ds + [} o(XZ)dW,
P-a.s. for all (t,z) € [0,T] x {z,y}. Then

61 177 Uz T Uz
VX X0y < 0] els) s+ 3 3 [ 120500 s B2t Y )

Corollary below specialises Theorem to the case where p and o are locally Lipschitz
continuous functions, where k = 1 and where V € C%(0? [0, 0)) satisfies V(z,y) = ||z — y||? for
all z,y € O. For this the following result from the literature (see, e.g., Theorem 2.1 in Yamada
& Ogura [53]) is needed.

Lemma 2.24. Assume the setting in Section L3, let n: O — R? and o: O — R¥>™ be locally
Lipschitz continuous, let 7: @ — [0, T] be a stopping time and let X*: [0, T]|xQ — O, i € {1,2}, be
adapted stochastic processes with continuous sample paths satisfying X}, = X+ ft/\T (X?) ds+

o (XY dW, P-a.s. for all (t,4) € [0, T]x{1,2}. ThenP[{3t € [0,7]: X} = X2} N{X, £ Yp}] =
O.
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We are now ready to present the promised Corollary 225l It follows immediately from Theo-
rem 2.23] and Example 2151

Corollary 2.25. Assume the setting in Section 1.2, let u: O — R? and o: O — R¥>™ be
locally Lipschitz continuous, let ag, a1, Bo, B1,¢ € R, 7,p,q0,q1 € (0,00] with 1_12 + qio + qil = %,
Uy € C*(O,R), U; € C*(0,[0,00)), U € C(O,R) and let X*: [0,T| x Q — O, v € O, be adapted
stochastic processes with continuous sample paths satisfying X{ = :E+f0t (X7) ds+f0 o(XZ)dWy

P-a.s., (GuoUs)(x) + 1lo(x)*(VU)(2)||* + L3 (i) - U(z) < ouUsi(x) + Bi and

(a—y.1(@)=pW)+ 0@ 0 W2 m ey | (2-1)](0(e)—ow)* (—3)2 Uo(e)+Us(y) . Te)+T ()
= + =R S et TgTenot - T Tagrenit

for alli € {0,1}, (t,z,y) € [0,T] x O with x # y. Then it holds for all z,y € O that

qie®i®

z B (1-4)7Y z
| XT — T||Lr(de) <exp<cT+ZZ ol T(#d +MD lz —y . (87)

2.3.3 Uniform strong stability analysis for solutions of SDEs

Proposition 2.26. Assume the setting in Section [L2, let x,y € O, V € C?(0?%[0,0)), let
7: Q — [0,T] be a stopping time and let X*: [0,T] x Q@ — O, z € {x,y}, be adapted stochastic

processes with continuous sample paths satisfying [| ||pn(XZ)||4]lo(XZ) ]\Q—i-max(%, 0)+

”(C(;V‘(/))((D;XX”))(?J)”Q ds < oo P-a.s. and X7, = z+ [ u(X2)ds + [ o(XZ) dW, P-a.s. for all

(t,2) € [0, T x {x,y}. Then

V(z, (G V) (X2 X212
S 1/9He p( (1 1) }f V(XJCX”)) ds)‘
[1-7] s
L™ (S3R) P

r XY — G z YY)|2
exp( Sl[lp](j)’ (G, o( )();y;( 54 (6 1)2”(§/G(;(‘Q()?%)S§S)” ds)
te|0,7 5 14%s

sup V(XY X/)

te(0,7]

LY(R)

La(;R)
for allv € [p,<], 0 € (0,p) and all p,q,r € (0, 00| with % 4 % - %

Proof of Proposition [2Z.28. Let p,q,r € (0,00] with i—i— % = % and 6 € (0,p). Then Holder’s
inequality proves that

sup exp( fo g# UV)(XI X5) _ MG X2 X +ft de )

0] Xz X7) 2(V(Xz,XY))? (Xz,X7) R
T Yy _ 2l Yy|12
< || sup exp (/ (gu‘;(v)();y;( ) 4 @ 1)2|l§/(;(}‘;)()§’))§ Sl ds)
te[0,7] 0 # L9(%R)
(GoV)(X2,XY) 0 (G V) (X2, X9)|?
Sup eXp </ V(X&C Xy dW / 2(V(Xx Xy)) dS) (88)
te(0,7] 0 LP(%R)
t _
_ (GuoVIXEXY) | (0= [(GoV) (X2, XY)|?
B R / Voaxn T awegany 98
telo,7] J 0o La(%R)
1/6
1 s<T G(GO' ac Xy 1 s<T ”9 GO’ Xx )(y)”2
sup exp (/ b }V(Xz X7 dW / {o< }2(‘/ Xz Xy)) ds)
t€[0,T] 0 LP/9(QR)
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In addition, Lemma 2.7] gives

1/6
]l{S<T}'9 GU sty ]]-{s<‘r}||€(G0' Xx Xy)”Q
B
) Lr/9(Q;R)
. B 1/6
i - - 1 L O*(Go V) (X, XI)|?
S [(1 — ) eXp(Z [(%—%) 1] /0 V(X XD)? ds) ]
' P LY (5R)
1 . (59)
_ it [exp([orts; 1] / GV )X XD)I? ds)
|:1 . Q] 1/9 UG[%,OO] p( %7%) 0 2 (V(XS ,Xi’))Q LU@(Q;R)
p
1 - | " 1@ vi(xs X2
! m vég’fm] ‘ eXp([W - 0} /0 VXD o L¥(O4R)
p
Combining (88), (89) and Proposition 212 proves that
sup |V (X{, XY
t€[0,7] L7 (QR)
|V (2,y)] ( " @ vy(xz X2
< ——— llexp [1 T —9} Gﬁds 90
11— 27 - . 2(VXE X L) (90)
t
(GuoVIXE,XY) | (0=D (G V)(XZ, XY
exp ( Sup / Varxh T 2 X)) dS)
te[0,7] JO Li(QR)
for all v € [p, 00]. This completes the proof of Proposition 2.20 O

The next remark to Proposition 2.26] is the uniform counterpart to Remark 2.18|

Remark 2.27. Note in the setting of Proposition that if V. € C2(0,[0,00)), if z = y
and if V(v,w) = V(v) for all vyw € O, then Proposition reduces to an estimate for
| supiejo,) V(XO)r@my for p,q,m € (0,00], v € [p,00], 0 € (0,p) with % + % ==

The next corollary, Corollary 2.28], specialises Proposition to the case where the function
V e C?*(0?%]0,00)) satisfies V(z,y) = ||z — y||* for all z,y € O (cf. Theorem 5.1 in Li [30]).
Corollary 2.28 follows immediately from Proposition 2.26 and Example 2.15

Corollary 2.28. Assume the setting in Section[I.2, let x,y € O, let 7: Q — [0,T] be a stopping

time and let X#: [0,T] x Q — O, z € {z,y}, be adapted stochastic processes with continuous
x x x 2

sample paths satisfying [T ||(X2)|| + ||o(X7)||2 + 2axlXs — XX )”;(li(x)si)yﬁ]g)Jr”J(Xs )=oXOI 45 < oo

P-a.s. and X7\, = 2+ [,/ p(XZ) ds + [, o(XZ) dW, P-a.s. for all (t,z) € [0,T] x {x,y}. Then

sup || Xy — XY
te(0,7] L7 (%R)
|z =yl ( l(o(X2)—o(X2)" (X2 XV)]2
< —Nlexp| [ — 0] [§ el ds
[1- f%]l/@ [(p 2 | P Lv(9R) (51)
X=X (X)X o (K)o O o
exp | sup XT—XIT?
0.1 Jo OV () o (X)) (X XY
[Xz—xI* LI(4R)

for all v € [p, 0], 6 € (0,p) and all p,q,r € (0, 00] with i - % =1
23



The next theorem is the uniform counterpart to Theorem 2.23 It follows directly from Propo-
sition .26l and from Lemma 2.22]

Theorem 2.29. Assume the setting in Section[L.2, let x,y € O, k € N, r,p € (0,00], 6 € (0,p),
p € [p, ], (Qiji)ijeforyief,..kp> (Biji)ijefonryiefn,.ky C R, (Giji)ijefonyieqn,...iy C [r,00] with
Yol = 2 and L+ S A =L e € L0, T R), V € C2(0%0,00)),
U070,U170 S C’Q(O,]R,k), U071,U171 S 02(0, [d, OO)k), UOJ,ULl € C(O,]R,k) and let X*: [O,T] X
Q — O z € {x,y}, be adapted stochastic processes with continuous sample paths satisfying
fo co(s) + er(s) + |(X2)|| + [|o(X2)||? ds < 00 P-a.s. and X7 =z + [} u(XZ)ds + [ o(XZ) dW,
P-a.s. for all (t,z) € [0,T] x {z,y} and

(GpuoUij) () + sz lo (W) (VU ) )P + Ly (7) - Uiga() < @iaUsja(u) + Bige, — (92)

G,V v,w2 Uo,0,n (v)+Uo,0,n (w Uo,1,n(0)+U0,1,n(w
|:(2/pi2/p) - g] . (V(v{(w))?)” ( ) + Zn 1 |: 02(;00 )TeaOOOO n( ) + Ozlqo’(ly)neao(ill,nt( )] and (93)
go v, W 0—1) |(Go V) (v,w)]|? Uion Uton(w anv U,’nw
0V [ 5 (’l})’lf)) ) + ( )2”(§/(v w))() - ] < Cl( ) + Zn 1 |: 12(;10 );e 1100 n( ) =+ lzlql’(ly)nta;,ll,nt( )] (94)

foralli e {0,1}, 1 € {1,...,k}, u € {v,w}, (v,w) € Im(X]) x im(X}), t € [0,T]. Then

sup |V(XY, X{)
t€[0,T]

Lr(%R)

(95)
T
Sexp(éco(5)+01( )ds + Z Z L Blf;,l(te g0 " ds + m(g?};{j@@z(w]) [

V(z,y)
1_ _]1/9

1,j=01=1

The next corollary specialises Theorem to the case where £ = 1, where V satisfies
V(z,y) = ||z — y||* for all z,y € O and where p and o are continuous (cf. Lemma 2.3 in
Zhang [54]). It follows directly from Theorem and from Example 2.5

Corollary 2.30. Assume the setting in Section[L2, let z,y € O, r,p € (0 x|, 0 € (O p), ,0 €
[p. 0], (@ig)igetonys (Big)igetony C Ry (Gig)ijeqory C [roo] with o, 2= 1 and E4+30,_ - =
%, Co,C1 € C([O,T],]R), U0,07U1,0 S C2<O,]R), U071,U1,1 € 02<O, [0,00)), U071,U1,1 € C(O,]R),
p e C(O,RY), o € C(O,R™™) and let X*: [0,T] x Q — O, z € {x,y}, be adapted stochastic
processes with continuous sample paths satisfying X7 = z—l—fot (X?) ds—l—fo o(XZ)dWs P-a.s. for
all (t,z) € 10,T) x {x,y} and

(GuoUij)(w) + 5mzllo () (VU )W)l + Ty (7) - Ui(w) < aijUi(w) + Bij, - (96)
v—w)* (o (v)—o(w))]|? Uop,o0(v)+Ug,o(w Uo,1(v)+Uo1(w
927 [(2/;2/0) _ %} IC )ui ( 13”4< D2 < eo(t) + OQZELO)TSQOO?O& ) | o;éoieao(?llt( ) and  (97)

J[o—wl|? l[o—wl|

max{(), (v—w,u(v)—p(w)) +3llo(v)— U(w)”Hs(]Rm R | (6/2-1) [(v—w)*(o(v)~ o(w))||? }
(98)

S Cl(t) + Uy,0(v)+U1,0(w) + Ui1(v)4+U1,1(w)

2q1,0Te“1.0° 21 11,1t

for alli,j € {0,1}, u € {v,w}, (v,w) € IM(X}) x im(XY), t € [0,T]. Then

ST co(s)+en(s) ds N s
€Jo Bij (1—2)1=9) Ui,j (2)+Ui,;(y)
< o exp( > [[ e ds + g |

o 157 =X
L7 (%R) [ p] =010

te[0,T] |z — |

The next corollary (Corollary 2.31]) is the special case of Corollary where Upo(x) =
Uo(x) = c(1 + ||z)|*)¢ and Up(z) = Ui(z) = Upa(z) = Upa(z) = 0 for all z € R? and
some ¢ € (0,00), € € (0,1] and where g1 = 00 = q1.1, 10 = 2r = p, Qoo = 4r = p, 0 = 2,
Boo = Bro =B, Bo1r = P11 =0, r € (1,00]. Corollary 231 is related to Theorem 1.7 in Fang,
Imkeller & Zhang [12] and to Corollary 6.3 in Li [30].
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Corollary 2.31. Assume the setting in Section [I3, let x,y € O, u € C(O,RY), «,8,co,c1 €
[0,00), ¢ € (0,00), r € (1,00] and let X*: [0,T] x Q — O, z € {z,y}, be adapted stochastic
processes with continuous sample paths satisfying X7 = z+f0t (X?) ds+f0 o(XZ)dW, P-a.s. for
all (t,z) € 10,T) x {x,y} and

@) )t alo®) oWl mnnd) | llot)=otw) p=wl? o | cOtulP) +e(tuwl?)

[[v—w]]? 2 [lv—wl|* 4rTecT )
4r—2) |[(o(v)—o(w))* (v—w)]||? ¢ (1+]||v]|2)e +c (1+]|w|]?)®
( ) IIC (2”)v lill‘)l) (v—w)|| <o+ A+ ”8)7’7-1_6@( +wl*) ’ (99)

ce||o(u)*ul|? @ (1—¢)
2 (o, () + [l () s ey + Ggeyig < & (L4 ull®) + 2 (1 + ull?)
for allu € {v,w}, (v,w) € im(X?*) x im(XY). Then

Xx_Xy
wup 157 =XV

te[0,T] |z —yl

_l € [
<[1-1] exp((co + o) + Ztelitlel B e(Uvl) ) . (100)
L™ (;R)

3 Strong completeness of SDEs

The theory developed in Subsection [2.3] can be used to establish strong completeness of SDEs
with non-globally Lipschitz continuous nonlinearities by combining it with a suitable Kolmogorov
argument; see Lemma [B.I] and Lemma below. As, e.g., in the proof of Theorem 2.4 in
Zhang [54] we exploit here that local Lipschitz continuity estimates on a time interval of positive
length are sufficient to establish strong completeness on the whole time interval [0, 00).

First, however, we recall some notation: for a € [0,1], d € N, a set D C R? and an R-Banach
space (E, ||-||z), we define the real Banach space of globally bounded and a-Hélder continuous
functions from D to E by

CY(D,E) = {f € C(D,E): sup ||f(z)||p + sup WDIWIe o oo} (101)

Tr— [e3
»eD D aty lz—yll

In addition, for @ € [0,1], d € N, a set D C R? and an R-Banach space (F, ||-||;), we say that
a mapping f: D — FE is locally a-Holder continuous if for every x € D there exists a relatively
open set U C D containing = such that f|y € C2(U, E).

Lemma 3.1 (Strong completeness based on uniform strong stability estimates). Let d,m € N, let
D C R? be a closed set, let i € LO(D;RY) and o € LO(D; R™™) be locally Lipschitz continuous,
let (Q, F, P, (Fi)ico,0)) be a stochastic basis, let W: [0,00) x Q& = R™ be a standard (Fi)ic[0,00)-
Brownian motion and assume that for every x € D there exists an adapted stochastic process
X7:[0,00) x Q — D with continuous sample paths satisfying

t t
Xf:er/ ;L(Xf)der/ o(X7)dWy (102)
0 0

P-a.s. for every t € [0,00). In addition, assume that there exist € € (0,00), p € (d,00), a € ( 1]
such that for every x € D it holds that (X{ )i, € LP(Q2; C([0, ], R?)) and such that the mapping
D 3>z (X! )eps € LP(Q;C([0,e],RY) is locally a-Holder continuous. Then there exists a
Y € £°([0,00) x D x Q; D) such that for every w € Q it holds that Y (-,-,w) € C([0,00) x D, D)
and such that for every x € D it holds that (Y (t,2))ic0,00) = (X{)te[0,00) P-a.5.

Lemma 3.2 (Strong completeness based on marginal strong stability estimates). Let d,m € N,
let D C R® be a closed set, let yu € LO(D; R?) and o € LO(D; R>™) be locally Lipschitz continuous,
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let (2, F,P, (Fi)icjo,o0)) be a stochastic basis, let W: [0,00) x Q@ — R™ be a standard (Fy)ic(o,00)-
Brownian motion and assume that for every x € D there exists an adapted stochastic process
X7:[0,00) x Q — D with continuous sample paths satisfying

t t
Xf:er/ ;L(Xf)der/ o(X7)dWy (103)
0 0

P-a.s. for every t € [0,00). In addition, assume that there exist ¢ € (0,00), p € (d + 1,00),
a € (d+1, 1] such that for every (t,x) € [0,¢] x D it holds that X7 € LP(2;R?) and such that the

mapping [0,€] x D 3 (t,z) — XF € LP(Q; RY) is locally a-Holder continuous. Then there exists a
Y € £°([0,00) x D x Q; D) such that for every w € Q it holds that Y (-, -,w) € C([0,00) x D, D)
and such that for every x € D it holds that (Y (t,2))icp,00) = (X{)tc[,00) P-a.5.

3.1 Theorems of Yamada-Watanabe and of Kolmogorov-Chentsov type

We shall use a Yamada-Watanabe type theorem (see Theorem B.4] below) and the Kolmogorov-
Chentsov theorem (see Theorem below) to prove Lemmas [B.1] and But first of all, we
recall the following well-known notion from the literature.

Definition 3.3. Let d,m € N, let D C R? be a closed set, let p € L°(D;R?), o € LO(D; R¥>™),
and let v: B(D) — [0,1] be a probability measure. We say that solutions to the SDE with
coefficients (p, o) and initial distribution v are pathwise unique if for every stochastic basis
(L, F, P, (Fi)icpo,o0)), every standard (Fi)iejo,o0)-Brownian motion W: [0,00) x Q& — R™ and all
adapted stochastic processes X', X?:[0,00) x Q — D with continuous sample paths and with
P[X)=X3] =1, Pyxi = v and

t t
X;‘:X3+/ u(XSi)ds+/ o(XD) dW, (104)
0 0

P-a.s. for every (i,t) € {1,2} x [0,00), it holds that P[X' = X?] = 1.

The following theorem is a slightly modified version of Theorem 21.14 in [24]. For the definition
of universally adapted we refer to [24, Page 423].

Theorem 3.4. Let d,m € N, let D C R® be a non-empty closed set, let p € LO(D;RY), o
LO(D;R™™), let (Q, F, P, (Fi)ieo,c0)) be a stochastic basis, let W: [0,00) x 2 — R™ be a standard
(F4)teo,00)-Brownian motion and assume that for every x € D there exists an adapted stochastic
process X*: [0,00) X Q — D with continuous sample paths satisfying

t t
Xf:er/ ;L(Xf)der/ o(X7)dW; (105)
0 0

P-a.s. for every t € [0,00). Moreover, assume that for every x € D solutions to the SDE
with coefficients (p, o) and initial distribution d, are pathwise unique. Then there exists a Borel
measurable and universally adapted function

F: D x C([0,00),R™) — C(]0, 0), R%) (106)

such that for every stochastic basis (Q, F, P, (E)te[o x)), every standard (]:t)te [0,00)~ -Brownian mo-

tion W : [0, o0) X Q — R™ and every Xy € L°(Q, Fo; D) it holds that the process X:[0,00)xQ —
R? defined by X := F(Xo, W) is the up to indistinguishability unique (F#)ie(0,00) -adapted stochastic

process with continuous sample paths satisfying X e ([0, 00), D) P-a.s. and

Xt:X0+/t (X)ds+/to—()2’s) AW, (107)

P-a.s. for every t € [0, 00).
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Proof of Theorem[3.4) Let ji: R — R and 6: RY — R¥™ be mappings given by ji(z) = 0,
o(x) = 0 for every x € RAND and fi(r) = u(z), 6(x) = o(z) for every z € D. Observe that
i€ L2(RGRY) and 6 € LO(R% RY™). Moreover, let X7:[0,00) x Q = R% x € R% be given
by X# =z for every x € RN\D, t € [0, 00) and by X7 = X7 for every z € D, t € [0, 00). Note for
every x € R? that X7 is an adapted stochastic process with continuous sample paths and observe
that

t t
X;f:x+/ (XT) ds+/ &(XT) dW, (108)
0 0

P-a.s. for every (t,z) € [0,00) x R%. It follows from the fact that R4\ D is open, that for every
x € R? the solutions to the SDE with coefficients (ji, ) and initial distribution §, are pathwise
unique. In conclusion, the conditions of [24] Theorem 21.14] are satisfied, which provides the
existence measurable and universally adapted mapping F': D x C([0, 00), ]Rm) — C([0, ), RY)
such that for every stochastic basis (Q,F,P, (F;)icp.0)), every standard (Ft)te[o o)-Brownian
motion W: [0, 00) x Q — R™ and every X, € £°(€; D) it holds that X := F(X,, W) is the up to
indistinguishability unique (.Ft)te 0,00)-adapted stochastic process with continuous sample paths
satisfying

Xt:f(ﬁ/t (X)ds+/t&(Xs)dWS (109)

I@-a;s. for every ¢ € [0,00). All that remains to be proven is that if Xo € L£%Q, Fy; D), then
F(Xo,W) € C([0,00), D) P-a.s. This follows from the fact that by construction it holds for all
z € D that F(z, W) = X* P-a.s. and that W is independent of X. O

The next theorem provides a suitable extension to Theorem 2.1 in [35].

Theorem 3.5. Letd € N, p € (d,0), (d 1], let (E, ||-||z) be a separable R-Banach space, let
F C E be a non-empty closed set, let D C IRd be a non-empty set and let X € C3(D, LP(§); F)).
Then there exists a Y € Mge(goay LP(SY; CP (D, F)) such that for every x € D it holds that

Y(z) = X(z) P-a.s.

Proof of Theorem[3.4 In the case that F' = FE, the proof of this theorem is provided in The-
orem 2.1 in [35]. In the case that I’ # E, we first observe that by the above there exists a
Y € Ngeo,a—dy LS C’bﬁ(D, E)) such that for every x € D it holds that Y (z) = X (x) P-a.s. As

D C R? is separable, there exists a sequence z,, € D, n € N, such that {z, € D:n € N} is dense
in D. This in turn implies that {z,, € D: n € N} = D. Next we define Qy € F by

Qo = Npen{Y (22) = X (20)} = Npenfw € Q: V(2 w) = X (2,,w)} (110)

and we observe that P[QO} = 1. Moreover, note for every w € Qq, y € D that there exists an

increasing sequence n, € N, k € N, such that limy_, 2, = y and the continuity of }7(-, w) and
the closedness of F' hence show that

Y (y,w) = Y(khm xnk,w) = lim Y (2,,,w) = lim X(z,,,w) € F. (111)
—00

k—o0 k—o0

This proves for every (w,y) € Qo x D that Y(w,y) € F. In the next step let & € F be arbitrary
and let Y: Q — CJ(D, F) be given by Y(z,w) = Y(z,w) for every z € D, w € Q and by
Y(z,w) = ¢ for every z € D, w € Q\Qy. By construction it holds that P[Y = Y] = 1 and for
every w € ), x € D that Y (w,x) € F. The proof of Theorem is thus completed. O

Remark 3.6. The Kolmogorov-Chentsov theorem as provided in [35, Theorem 2.1] can be obtained
from an extension result that can be found in the book of Stein [{7].
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More specifically, it is proven in [{7, Section VI.2.2.1] that for every d € N and every a € (0, 1]
there exists a real number C € [0,00) such that for every D C R there exists a mapping
E: C(D,RY) — C(RY, R?) such that for every f € C&(D,RY) it holds that E(f)|p = f and

[€0(Nlcpmarey < C | fllcapre - (112)

The proof carries over mutatis mutandis to the space C¢(D, E), where (E, ||-||;) is a real Banach
space. This extension operator in combination with the Kolmogorov-Chentsov theorem on rectan-
gles provided, e.g., in [39, Theorem I1.2.1] proves the Kolmogorov-Chentsov theorem as provided
in [35, Theorem 2.1].

Note that this version of the proof of the Kolmogorov-Chentsov theorem does not rely on Sobolev
embeddings. So, no assumptions are required regarding the smoothness of the domain D.

3.2 Proofs of the strong completeness results

Proof of Lemmal3dl. As p and o are locally Lipschitz continuous, using a standard localization
argument one can prove for every € D that solutions to the SDE with coefficients (i, o) and
initial distribution 0, are pathwise unique. Thus the conditions of Theorem B.4] are satisfied.
Let F': D x C([0,00), R™) — C([0,00), R%) be the measurable and universally adapted function
provided by that theorem. In particular, for every x € D we have

(X teo,00) = F(2, W) (113)

P-a.s.

Throughout this proof we use the closed balls Br(0) C R R € (0,00), given by B(0) =
{z € R%: ||z| < R} for every R € (0,00) and the stochastic processes W*’s: [0,00) x  — R™,
s € [0,00), given by W% = W,,, — W, for every s,t € [0,00). Observe that W** is a standard
(Fstt)te)0,00)-Brownian motion for every s € [0,00). Clearly, it holds for every s € [0,00) that
F(z,W) and F(z, W*%) are equal in distribution. It thus follows from (II3)) and the fact that
D3z (XF)iepe € LP(Q;C([0,e], RY)) is locally a-Holder continuous, that for every n € Ny
one has that D 3 x — F(x, W*<)| € LP(S; C([0,¢], R?)) is locally a-Holder continuous. As
D is closed, it follows for every n, R € Ny that D N Bg(0) is a compact set and, consequently,
that

*One *0ne
sup HF(J% W) log) — Fy, W) [Oﬁ]HLP(Q;C([o,s],Rd)) (114)
z,y€DNBR(0) |z =yl
Ty

By applying Theorem B to the mappings DNBg(0) 3 z +— F(z, W*<)|;o 4 € LP(; C([0,¢], RY)),
and recalling that F(z, W*%<)|o € C([0,¢], D) P-a.s., (n, R) € Ny x N, it follows that for ev-
ery n € Ny there exists a mapping Y™ € L£%(D x Q;C([0,¢], D)) such that for every z € D
it holds that Y™ (z) = F(z,W*)|. P-a.s. and such that for every w € € it holds that
Y™ (., w) e C(D,C([0,¢], D)).

Claim. For every n € Ny and every £, & € £9(, F,.; D) satisfying £ = € P-a.s. it holds that

Y€)= F(& W)

(0,e] P-a.s. (115)
Proof of the claim. Clearly, if £, & € L2(Q, Fpe; D) satisfy & = € P-a.s., then for every n € Ny it

holds that R
Y€)= v(g) (116)

P-a.s. Fix n € Ng. If € € £9(Q, Fpe; D) is an F,.-simple function, then Y™ (¢) satisfies

Y™ (e)(t) =€+/0 M(Y("’(f)(S))d8+/0 o (Y™ (€)(s)) W (117)
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P-a.s. for every t € [0,¢]. By the uniqueness statement in Theorem B4l it follows that
Y®(£) = F(&, W) o4 (118)
P-a.s. Now let & € L%, F,; D) be arbitrary and let &, € £°%Q, F..; D), m € N, be F,.-

simple functions such that lim,, .. &, — & P-a.s. It follows from the fact that for every w €
Q it holds that Y™ (- .w) € C(D,C([0,¢], D)) that for P-almost every w € € it holds that
lim,, oo YV (6, (w), w) = YW (£(w),w). On the other hand, by [37, Proposition 3.2.1] it holds
that

[ (&ms W) 02 = FE W) 02| o 0. mey = O (119)

in probability as m — oco. As Y((&,) = F(&,, W*)|pq P-as., it follows that Y™ (¢) =
F(f, W*G"E)‘[Oﬂ P-a.s. ]

Claim. For every £ € L%(Q, Fo; D) and every s € [0, 00) it holds that

(F(év W) (t))te[spo) - (F(F(fv W>(5>7 W*GS)(t - 3)) P-a.s. (120)

te(s,00)
Proof of the claim. Let s € [0,00) and & € L°(S), Fo; D) be arbitrary and define Q5 C by

F(&(w),W(w)) € C([0,00), D) and }

F(F(E(w), W(@))(s), W (w)) € C([0, 00), D) (121)

QOZ{WEQZ

Observe that P[Q] = 1. Next let Z: [0,00) x Q& — D be given by Z;(w) = &(w) for all (t,w) €
[0,00) x 2\ ©p and by

m@:{ﬂwmwwmw te[0,s]

, (122)
F(F(E(w), W(w))(s), W (w))(t —s) :t€ (s,00)

for every (t,w) € [0,00) x €y. One may easily verify that Z is an adapted stochastic process with
continuous sample paths which satisfies

Z =6+ / t,u(Zu) du + / ta(Zu) dw, (123)

P-a.s. for every t € [0,00). Pathwise uniqueness of solutions to the SDE with coefficients (u, o)
and initial distribution given by the law of & hence shows that Z = F(§, W) P-a.s. The proof of
the claim is thus completed. O

In the next step let Y: D x [0,00) x Q — D be a mapping defined recursively by Y (z,w, t) :=
YO (2, w,t) for every x € D, w € Q, t € [0,¢] and by

Y (x,t,w) =Y (Y (z,ne,w),w, t — ne) (124)

for every z € D, w € Q, t € (neg,(n+ 1), n € N. Note that Y is an adapted stochastic
process with continuous sample paths. Moreover, observe that by construction it holds that
Y (ne,xz) = F(x, W)(ne) P-a.s. for every « € D and every n € Ny. This and the two claims above
show that

(Y (£.)) e i1y = (F(F(x, W) (ne), W) (t — ne)) = F(2,W)|pemsnye (125)

t€lne,(n+1)e]
P-a.s. for every x € D and every n € Ny. Hence, we obtain that
(Y, 2))teo.00) = F(2, W) = (X{ )sepoo0) (126)

P-a.s. for every x € D. Moreover, as Y™ (- w) € C(D,C([0,¢], D)) = C([0,¢] x D, D) for every
w € €, it immediately follows from our construction that Y(-,-,w) € C([0,00) x D, D) for every
w € Q. This finishes the proof of Lemma O
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Proof of Lemma[3.2. As before, for every = € D the solutions to the SDE with coefficients (u, o)
and initial distribution §, are pathwise unique. Let F': D x C([0,00), R™) — C([0, 00), R?) be the
measurable and universally adapted function provided by Theorem [3.4l As before, it follows from
the fact that the mapping [0,e] x D > (t,x) — X € LP(;RY) is locally a-Holder continuous
and Theorem [B.4] that for every n, R € Ny it holds that

HF(l‘a W*ens)(s) _ F(y, W*Gns)(t) HLP(Q;]Rd)

sup (127)

(s,2),(t,y)€[0,e] x (DNBR(0)) ([lz =yl +1s = t|)a
(s,@)7(t,y)

By applying Theorem to the mappings [0,¢] x (D N Br(0)) > (t,x) — F(xz, W*=)(t) €
LP(Q; D), (n,R) € Ny x N, it follows for every n € Ny that there exists a mapping Y™ &
L£°(]0,€] x D x ;D) such that for every # € D and every t € [0,¢] it holds that Y™ (¢, z) =
F(z, W*%e)(t) P-a.s. and such that for every w € Q it holds that Y™ (., w) € C([0,¢] x D, D).
Path continuity implies for every n € Ng and every x € D that (Y™ (¢, 2))ep.e) = F (2, W) 0,
P-a.s. The rest of the proof is entirely analogous to the proof of Lemma [B.Il This finishes the
proof of Lemma 0

3.3 Strong completeness for SDEs with additive noise

Theorems 2.23] and together with Lemmas and [B.I] can be used to prove strong complete-
ness for SDEs. In the case of additive noise, another well-known possiblity for proving strong
completeness is to subtract the driving noise process from the SDE and then to try to solve the
resulting random ordinary differential equation (RODE) globally for every continuous trajectory
of the driving noise process. This approach works, for instance, if the drift coefficient grows at
most linearly. However, if the drift coefficient grows superlinearly then it might happen that the
resulting RODE can not be solved globally for every continuous trajectory of the driving noise
process. This is illustrated in the following example.

Let Q = {f € C([0,00),R?): f(0) = 0}, let F = B(2), let P: F — [0,1] be the Wiener
measure on (£, F), let W: [0, 00) x Q — R? be given by W;(w) = w(t) for every ¢t € [0,T], w € Q,
et R=1(° })€ R?*? and let X*: [0,00) x  — R?, x € R?, be adapted stochastic processes
with continuous sample paths satisfying

t
X7 :x+/ | XZPRXT ds + W, (128)
0
P-a.s. for every (t,7) € [0,00) x R2. Then observe for every p € [0,00) and every x € R? that

2p (z, (@) + 5 tr(2pI) + 5 120" = 2p + 20° |l2]|* = 20+ 2p [p]|=|*] . (129)

Corollary 24 (with U(z) = 1+ p||z||* and U(z) = 0 in the setting of that corollary) hence implies
for every p,t € [0,00) and every x € R? that

pX:vQ B
E[exp( 'L%;” )] < exp(l—e '+ pllz]?) < exp(1+plz]?). (130)

In addition, note for every x = (z1,22),y = (y1,y2) € R? with z # y that

(@ =y, [lzlPRe — |lylPRy) _ (ll® = llyl*) (= — y, Rz + y))

EERE 2]z — g2 131)
B RS O 7 D L [ PR
- 2z — o = 2 = i
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Corollary 230 (with Upop = Uip = Uz,1 =0,Uip=1+ P”5L’H27 qi0 =71, p=o00 and f;; = 0 for
i,j € {0,1} in the setting of that corollary) hence implies for every z,y € R?, p, T € (0,00) and

pe—QpT

every r € (O, T ) that

X:B_Xy
wp 1= X2

te[0,T] ||x - y”

92 2 2
< o (L2 2T 132
r

L™ (3R)

Combining this and the fact that for every p € (0,00) it holds that limg g £ e;;pT = oo with
Lemma [B.1] shows that the SDE (I28) is strongly complete. Next let zo € R?\{0} be arbitrary
and let 7 € (0, 00| be the unique maximal extended real number such that there exists a unique
continuously differentiable function z: [0,7) — R? satisfying

2
2(0) = xg and  Vtel0,7): Z(t)=|=2(t) — % R (z(t) - %) . (133)

Note that this definition ensures for every ¢ € [0, 7) that

LIIP =20, 2/(0) =2 |=(0) - 720

’ <z(t), R (z(t) - %»

= oty — 0 ), R
ECIEE ECIEE ) (134)
2
— a2 |0 -
5/4
= 2t ()2 [l + (=] = 2el|=() 172 = 2¢ [[l=(0)[1P] -
This implies that 7 is a real number, i.e., that 7 < co. Next let wy € €2 be given by
__tRz2(t) < T
wolt) = [EOIRE— 135
ol?) {O t>T (135)
for every ¢ € [0, 00) and note that (I33) implies that
20) =z and Vtel0,7): 2'(t)=]|z(t)+ Wiwo)|” R (2(t) + Wi(wp)) . (136)

This proves that there do not exist stochastic processes Y?: [0,00) x Q@ — R?, x € R?, with
continuous sample paths which satisfy for every (¢, z,w) € [0,00) x R? x Q that

Y?(W)Zx+/0 1Y (@) + W) ” R (Y (w) + Wy(w)) ds. (137)

In conclusion, the RODE (I37)) associated to the SODE (I28) with additive noise can thus not
be solved globally for every continuous trajectory of the driving noise process.

4 Examples of SDEs

In this section we apply Theorem P.23] and Theorem 2.29] to several example SDEs from the
literature.

4.1 Stochastic van der Pol oscillator

The van der Pol oscillator was proposed to describe stable oscillation; see van der Pol [52].
Timmer et. al [49] considered a stochastic version with additive noise acting on the velocity. Here
we consider a more general version hereof. Let (2, F, P, (F;):c(0,00)) be a stochastic basis, let a €
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(0,00), v,6,m0,m € [0,00), m € N, let W: [0,00) x @ — R™ be a standard (F)e[o,o0)-Brownian
motion, let g: R — R»™ be a globally Lipschtiz continuous function with ||g(y)||* < no + my?
for all y € R, let u: R*? - R? and o: R? — R?*™ be given by p(z) = (w9, (v — a(x1)?) 19 — d21)
and o(z)u = (0, g(x1)u) for all x = (x1,25) € R* u € R™ and let X*: [0,00) x Q — R? z € R?,
be adapted stochastic processes with continuous sample paths satisfying

Xi=a+ [ou(Xs)ds + [yo(X7) dW, (138)

P-a.s. for all (¢,z) € [0,00) X R% Next we define a function ¥: (0,00) — [0,00) by J(p) :=
min, e (0,00) ([‘6;” +m]|V[r]0—1]+2y+4nop]) for all p € (0,00). If p € [0,00) and if U, U: R? - R

are given by U(z) = pllz||? and U(z) = 2p[a — pmi] (z129)? for all x = (21, 25) € R2, then it
holds for every x = (z1,z2) € R? that

(GuoU)(@) + 3llo (@) (VU) (@) |* + U(x) (139)
=2p [(1 = 8) mws +y(22)” — al@122)” + 5]l 9(21)" ] + 2(p22)*lg(21)"|I* + U ()

< pio +2p [(1 = 8) wawa + L(20)? + [y + 2n0p] (22)%] + 2p [pm — a (2122)* + U (x)

< pmo+2p inf [[% + 2] (21)? + 25 + 5 + 2n0p] (xz)Q] < pio +9(p) U(x).

Corollary [2.4] hence proves for every x € R?, t € [0,00), p € [0, 7%] N R that

PN

t t 2
E {exp(erpp)tHXfHQ +/ % }XsLme’x‘Q dS)} < elo oty ds+plizll < eatellel?, (140)
0

In the next step we observe for every x = (z1,73),y = (y1,y2) € R? with x5 - y» < 0 that
(29 — yo) - ((x1)?T2 — (y1)?y2) > 0. Consequently, we get for every x = (z1,22),y = (y1,¥y2) € R?
with = # y that

a(zg — y2) [(56’1)2552 - (y1)2y2] o (r2 — o) [(371)2552 - (y1)2y2]

- < —1jg,00)(T2Y2) -

Iz —yl? lz —yl]?
A (o) - 2D 0~ (e
< —1jo o0y (T292) - a (|za| — [yel) ((fﬁﬁ)x _—y(’ﬁ;) ) min(|z2|, [y2|) (141)
< o |IL'2 - y2| |(5L'1)||x__(zl||)2 | min(|l‘2|> |y2|) . ]l(—oo,O] (<‘x2| _ ‘y2|)((x1)2 _ <y1>2))
< 5 (lza] + [ ]) min(|aa], [y2]) - L—oo,0((lz2] = ly2l) (J21] = [y1]))
< § (l21] + [w1]) min([aal, [y2]) < § [lz122] + [y192]] -

This implies for every t,¢q,0 € (0,00), p € (0, 7%), = (21,22),y = (y1,92) € R? with x # y that

(@=yopal@)—pW)+3ll0@) =0 W)} gm g2 n (2-1)||(o(x)—o(y)* (z—y)||?

llz—yl? le—yl*
_ {—yp@)—p@)+ 5llgz1)* —g(y1)*|? 1 (§-1) (m2—y2)? llg(z1)* —g(y1)*|?
- llz—yl? lz—yl*

1
3 “9* ”iip(]R,]Rm) |$1_yl|2

2 —1)2
S'Y"’\/'Y;‘(é 1) +%(

] |22| + [yallya]) +

lz—yll?
n 1§11 (21-1)? (lT:ry'Tz? 9™ 112, gy (142)
T—y
2,9(p)t
/P2 H(E-1)2 1,1 0 (|2 qoe
<———+ [5 + 7 max(g5 — 170)} g ”Lip(IR,]Rm) + m

N 2p [a — pm] [(x122)* + (y132)?]
2q619(/’)t '
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Combining this and (I39) with Corollary 230 proves for every T € (0,00), z = (x1,22), y =
(y1,92) € R?, p € (0,2), 7,p,q € (0,00], 0 € (0,p) with | + - =  that

1
-3
p
L™ (R)

YHVPHE-D2 T [p+2v(4=0)] T 9" |13, m.mm T 02?5 ds L olzl24ollyl2
< exp<[ ] + Lip(R,R )+ Jo a 2 Hollll“+ollyll .

XJ:_X?J
o 157 = X2

(143)
te[0,T] |z —yl

2 8 8pla—pm] 2q

In particular, in the case of additive noise, i.e., g(y) = g(0) for all y € R, this shows for every
T € (0,00), x = (71, 22), y = (y1,92) € R?, p € (0, o), € (0,00], 0 € (0,00) that

X7 — X/l
sup

te[0,T] |z —yl

YA/ V2+(6-1)2|T T ro2ed(P)s ds 1y a2+ Py
< exp<[ ] Jo 4 2 pllzll*+pllyll .

2 8pla—pm] 2r

(144)

L™ (R)

In addition, combining (I43]) with Lemma B.] proves that the stochastic Van der Pol oscilla-
tor (I38)) is strongly complete. Strong completeness for the SDE (I38) follows from earlier results
in the literature, namely from Theorem 2.4 (applied with W(z) = ||z||? for all z € R? and a = 1)
in Zhang [54] in the case of a globally bounded and globally Lipschitz continuous g and it follows
with the method of Theorem 3.5 in Schenk-Hoppé [42] in the case where g is twice continu-
ously differentiable with a globally bounded first derivative by showing for every € R? that
[0,00) Dt — (Xf’l, X2 — g(Xf’l)Wt) € R? is the solution of an appropriate random ordinary
differential equation (RODE).

4.2 Stochastic Duffing-van der Pol oscillator

The Duffing-van der Pol equation unifies both the Duffing equation and the van der Pol equation
and has, for example, been used in certain flow-induced structural vibration problems (see Holmes
& Rand [19]) and the references therein. Schenk-Hoppé [41] studied a stochastic version with
affine-linear noise acting on the velocity (see also the references in [41]). Here we consider a
more general version hereof. Let (2, F,P, (F;)cjo,00)) be a stochastic basis, let ng, n1,q € [0, 00),
ag, a3 € (0,00), m € N, let W: [0,00) x @ = R™ be a standard (F)¢c[o,o0)-Brownian motion, let
g: R — RY™™ be a globally Lipschitz continuous function with ||g(y)||*> < no +my? for all y € R,
let p: R? — R?and o: R? — R?*™ be given by u(x) = (72, aare — a1y — az(z1)?wy — (71)?) and
o(z)u = (0, g(zy)u) for all z = (z1,79) € R?, u € R™ and let X* = (X% X%2): [0,00)xQ — R?,
x € R?, be adapted stochastic processes with continuous sample paths satisfying

X7 =2+ [ou(Xe)ds + [go(X7) dW, (145)

P-a.s. for all (t,x) € [0,00) x R%. If p € (0,00) and if U: R? — R is given by U(wzy,z) =
4

p[% +ay (7)) + (x2)2] for all z = (x1,22) € R? (cf., e.g., (8) in Holmes & Rand [19]), then it

holds for every x = (z1,73) € R? that

(GuoU)(2) + 3llo(x) (VU (2)|?
= 2pon 1%y + 2p3 [y — any — asra(x1)?] + p llg(20) |* + 2(px2)?|lg (1) |12
< pno + p [m(x1)? + 2 [pno + aa] (22)*] + 2p [pm — as] (z12,)?
< pno + p[m — 200 (pio + @2)] (1) + 2p (pro + v2) [ (21)? + (22)?]
+2p [pm — ] (z125)?

—2Q « 2
< prgo + A 2enlomtas)l 9 (pny + ) Ux) + 2p [ — as] (2122)°.

(146)
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Corollary 2.4 hence proves for every ¢ € (0,00), p € [0, 2] NR, © = (21, 22) € R? that

E{exp(ﬂ (e o [XE1241X57) + f 2plas—pm ] [x3 ' x3?] ds)}

exp(2t[pno+az]) exp(2s[pno+az])

¢ pnO+P\0V(m4 201 [prota2))| A (147)
< oexp g T lted) ds + P[% +ai(z1)” + (372)2}

14p(a)? | tp(np)? 2
< 6[ 2 +4(pn0+az)+p( 1) +p(2) }

In the next step we observe for every x = (z1,2),y = (y1,y2) € R* with z # y that

llz—yl|? - [£1—y1]2 +z2—ya]?

N [(931)3_(?/1)3][3“2_?/2} o [(xl) +z1y1+(y1) ][xl y1][z2—y2] < (z1)? +x12y1+(y1) (148)

Combining (I41]) and (I48) implies for every ¢,60 € (0,00), x = (z1,22), y = (y1,%2) € R? with
x # y that

(w=y.u(@) =)+ 3ll0@) =0 W) g mm g2 " (-1 ||(o(x)—a(y)* (z—y)||?

llz—yll? lz—yll*
< ety (a-1)?+(e)? X3 [22(21)? — yo(y1)?] (2 — yo] + [(21)® — (11)?] [22 — v]
s [ERE "
lg(z1) — gly)|1? | (& — 1) ]za — w2l lg(x1) — g(m)]?
+ TR 4
2|z -yl |z —yll

< o2t (1 —1)24(a2)® | max(6+2,4)
8

3[(z1)2 2
- 2 + g™ ||L1p(IR R™) + & [|l‘1$2| + |y1ye|] + w )

Corollary 230 hence shows for every T € (0,00), po € (0, 2] N R, p1 € (0,5%), @ = (21, 32),
Y= (y17y2) S IRQ7 T, D;q0, 1 € (0700]7 0 e (07p> with % + qio + qil = % that

Hsupte[O,T] Hth - XfH‘

L™ ($5R?)
azty/(a1—-1)2+(a2)?| T [p+2V(A=0Tlg" |12, g mm) , 2s[pgmo+ag)
< exp<[ 5 } + Ry ] STEr R ds
0
T +\0V(m*2al(pono+a2))|2 (1-2) +\0V(771*20¢1(P1770+02))\2
poTIo 4(pomo+a2) T P 4(p1mo+az) d
" exXp 0 qoe2slpomno+az] + q1e2slpP1no+az] S

q1(0i3)2e2slPamo+aal po o p1| | ED*+@)? | onl@)?*+w)? | (w2) 4 (y2)? llz—yll
exp( 8p1lp1m —az] ds + |:qg + qﬂ |: 4 + 2 + 2 }) [1-0/p]1/0 ~

This implies for every T' € (0,00), po, p1 € (0, $2), x = (21, 22), y = (y1, ¥2) € R, 7,90, ¢1 € (0,00,
p € (2, 00| with l+L+L:%that

Hsupte[OT] | X5 Xy”’

L7 (QR2)

@ +2)T ; m
gexp<2q0+—+a2T+< T Tl ||Lp(m )

2q1

E qOTQGQT[Pon0+a2]
8‘11 pz 770 +oz2) 00

exp(aigrernen | ] [t sttt ) e
Combining this with Lemma B proves that the stochastic Duffing-van der Pol oscillator (I45])
is strongly complete. Strong completeness for the SDE (I45]) follows from earlier results in the
literature, namely from Theorem 2.4 (applied with W(z) = ||z||* for all z € R? and a = 1) in
Zhang [54] for all globally bounded and globally Lipschitz continuous functions g and follows with
the method of Theorem 3.5 in Schenk-Hoppé [42] for twice continuously differentiable functions g
with globally bounded first derivative by showing that [0, 00) 3 t — (X', X*—g(XPH)W,) € R?
is the solution of a random ordinary differential equation for every x € R2.
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4.3 Stochastic Lorenz equation with additive noise

Lorenz [32] suggested a three-dimensional ordinary differential equation as a simplified model of
convection rolls in the atmosphere. As, for instance, in Zhou & E [55], we consider a stochas-
tic version hereof with additive noise. Let (€, F,PP, (F)icj0,00)) be a stochastic basis, let W =
(WHL W2 W3): [0,00) x Q — R?® be a standard (F;)sefo,00)-Brownian motion, let aq, as, a3, 8 €
[0,00) and let A € R3*3, u: R? — R? and o: R3 — R3*3 be given by

—Q (e7] 0 T O
A= [6%) —1 0 s 1% i) = Ax + —I1x3 (150)
0 0 —Qs3 XT3 T1X2

and o(x) = v/Blgs for all © = (z1, 29, x3) € R3. Moreover, let X?: [0,00) x Q — R?, z € R3, be
adapted stochastic processes with continuous sample paths satisfying

X7 =+ [ p(X.) ds + [Lo(X2) dW, (151)

P-a.s. for all (t,z) € [0,00) x R®. The processes X, € RY, are thus thus solution processes
of the stochastic Lorenz equation in Zhou and E [55]. In the next step we define a real number

v € [0, 00) by

9= %in)[[M—Qal}v[r—uvo . (152)
re(0,00

If p € [0,00) and if U: R® — R is given by U(z) = p||z||? for all z € R?, then it holds for every
x = (1,72, 73) € R?® that

(GuoU)(x) + 3llo(2)"(VU)(2)]*

= 2p (x, u(x)) + 3pB + 2076 z||?

= 2pa1 21 (79 — 1) + 2pxa (o) — X9) — 2pas(w3)* + 3pB + 2pBU (1)

= 2p(aq + o)1 — 2p [0 (21)” + (22)* + as(23)?] + 3pB + 2pBU (2)

<p- rei(I()l,foo) “M = 2aq] (1) + (r = 1) (z2)* — 2043(553)2} + 3p8 + 2pBU(x) (153)
<3pB + [Qpﬁ + nf [[M — 20| V[r—1]V [—zag]H U(x)
< 3pB + 208 + ] U(x).
Hence, Corollary 2.4 implies for every x € R? and every ¢, p € [0, 00) that
E [exp (orfemy | X71%)] < exp(Jf ol ds + pllel?) < exp(3+pllal?). (154

Next we apply Corollary 2:30L For this observe for every 6 € (0, co] and every x = (21, 29, x3),y =
(y1,Y9,y3) € R? with x # y that

(@ =y, u(@) — p(y)) + 5llo(@) — o(¥)lfgms) N (5 =D llo(z) —ay) (= —y)|?

|z — yl? |z —yl[*
_ (e—y @) — py)
|z — yl?
max (spectrum(A + A*)) N (3 — y3) (1292 — Y1y2) — (T2 — Yo) (123 — V1Y3)
2 |z —yl* (155)
max(spectrum(A + A*))  (x1 — y1) (Y23 — T2y3)
2 |z =yl
_ max (spectrum(A + A*)) n (21 — 1) [(y2 + 22) (x3 — y3) — (22 — ¥2) (Y3 + 73)]
2 2|z —yll?
< max(spectrum(A4 4+ A*)) i |[z2| + [@3] + |ya2| + |ys]
- 2 4
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The estimate a < 2 + % * for all a € R, § € (0,00) hence proves for every & = (z1, 22, 23),y =
(y1,v2,93) € R3 Wlth x 7é y and every r,t, T, p € (0,00), 6 € (0, 00] that

(@ =y n(@) — p@)) + 5llo(@) — o(@)lfsms) +( D l[(o(z) — o) (@ —y)|I*

|z —yl? |z —yl*
< max(spectrum(A + A*)) N 1 . rTe(208+0)t . 8p | 222+ |3]2 + [yal? + |ys]? (156)
- 2 4 8p rTepB+o)t 16
_ max(spectrum(A + A%) e Te®Hp[af + |y
N 2 32p 2rTe(2pB+0)t

Corollary 230 hence implies for every T',r, p € (0,00) and every x,y € R? that

XJ:_X?J
o 157 = X2

te[0,7) |z —yll

max(spectrum(A+A*))T rT2e(2pB+NT 3+p =2 +p |yl
< exp( 2 Ty T 2r - (157)

L™ (5R3)

Combining this with Lemma [B.] ensures that the stochastic Lorenz equation (I5]]) is strongly
complete. In the same way as above strong stability estimates of the form (I57) and strong
completeness can be proved if the diffusion coefficient is not necessarily constant as in (I51])
but globally bounded and globally Lipschitz continuous. Strong completeness for the SDE (I51))
follows also from inequality (I56) and Theorem 2.4 in Zhang [54]. If the diffusion coefficient is
linear and if m = 1, then strong completeness follows in the case ap = a1 from Theorem 4.1 in
Schmalfufl [44]. If the diffusion coefficient is merely globally Lipschitz continuous but not globally
bounded, then it is still an open question whether strong stability estimates of the form ([I57)) do
hold (see also Section 2 in Hairer et al. [14] for a counterexample with a related drift coefficient
function and a linear diffusion coefficient function) and also whether strong completeness does
hold if ¢ is non-linear or if m > 1. Another way for establishing strong completeness for the
stochastic Lorenz equation (I51]) in the case of additive noise is to substract the noise process and
then to solve the resulting random orindary differential equations for every continuous trajectory
of the driving noise process (cf. the remarks in Subsection 3.3)).

4.4 Langevin dynamics

The Langevin dynamics is a well-known model for the dynamics of a molecular system. Let
(Q, F,P, (Fiep,c)) be a stochastic basis, let m € N, v, € (0,00), U € C*(R™ R), let
W:[0,00) x Q@ — R™ be a standard (F;)ie[o,.0)-Brownian motion, let p: R*™ — R*" and
o: R*™ — RE™*™ he given by u(z) = (29, —(VU)(21) — v22) and o(x)u = (0,/cu) for all
T = (z1,72) € R, u € R™ and let X*: [0,00) x  — R?™, z € R®*™, be adapted stochastic
processes with continuous sample paths satisfying

XP = a+ [on(X7) ds + [y o(X7) dW, (158)
P-a.s. for all (¢, ) € [0,00) x R?™. Next observe that if p € [0, 00) and if Uy: R*™ — R is given by

Us(z) = pU(z1) + & ||2o* for all = (21, 22) € R*™, then it holds for every z = (21, z,) € R*™
that

(Guolo) (@) + 5llo (@) (VU) (@)II° = 25" + p [ — ] [l=]*. (159)

Corollary 2.4 hence implies for every z = (z1,23) € R*™, t,p € [0,00) that

E[exp <pU(X by 4 X fﬂ[ &) HXi”’szds)] — " UG+l (160)
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Combining (I59) and Corollary shows that if

Jpe0,2],r,T € (0,00), c€R: VIR, <x_y’(vﬁ;(_$;[2(VU)(y)> < ¢4 ATEETW - (161)
then it holds for every x = (z1,72),y = (y1,y2) € R*™ that
Isupreory 167 = XP I gy < ex0([c+ 3+ &2) T ool ) gy (162)
This and Lemma Bl imply that if
de e [0,00): SUP,, yeRm [<x*y’(w||2(f’;i2(VU)(m)> —cU(z) — cU(y)] < oo, (163)

then the SDE (I58)) is strongly complete. Strong completeness for the SDE (I58) follows also from
inequality (I59) and Theorem 2.4 in Zhang [54]. Let us point out that even in the case of SDEs
with additive noise such as (I58]) strong completeness is not clear in general; see Subsection
above for details.

4.5 Brownian dynamics (Overdamped Langevin dynamics)

Brownian dynamics is a simplified version of Langevin dynamics in the limit of no average acceler-
ation and models the positions of molecules in a potential (see, for instance, Section 2.1 in Beskos
& Stuart []). Let (Q, F,P, (F;)icjo,0)) be a stochastic basis, let d € N, ¢ € (0, 00), n9 € [0, 00),
m € R, €[0,2], U € C*(R?, [0, 00)) satisfy

veeR:  (AU)(@) <o+ 2mU(x) + 02 [[(VU) (@), (164)

let W: [0, 00) x Q2 — R? be a standard (F;);e[0,00)-Brownian motion and let X*: [0, 00) x  — R,
r € R, be adapted stochastic processes with continuous sample paths satisfying

X7 =2 — [j(VU)(X])ds + VeW, (165)
P-a.s. for all (¢, ) € [0,00) x R If p € [0,00) and Uy, U: R — R satisfy for every o € R? that
Ui(e) = pU() and T(x) = p (1 — 50m + 9) (VD) @), (166)

then it holds for every x € R? that

(G-vu,verU1)(z) + 5 H\/_ (VUy) x)HQ +U(x)
= u<vv><x>u + % n((Hess U)(2)) + % (VD) @) + () (167)
< SBRU(@) +p [“’W 1 VO @I+ Tl) + 5 = 2 4 enli(a)

Hence, Corollary 24] implies for every ¢ € [0, 00), p € [O,% — 1] and every z € R? that

t
E[xp<<x b [ A Uy - 2 d)} < V), (168)
0

This exponential moment estimate generalizes Lemma 2.5 in Bou-Rabee & Hairer [6] in the case
where the function © appearing in Lemma 2.5 in [6] satisfies O(u) = exp(pu) for all w € R and
some p € [0,% - 772] T e (07 00)7 c € Rv Pos P1 € [Oag - nZ]v re (0700]7 do, 1 € [Tv OO] with
qio + qil = % satisfy for every z,y € R? that
2—y,(VU) (y)—(VU)(z (1—5(n2+p1))
DTN < ¢y o (V) + Uy)] + 28202 [ (V) (@) + (VO W) 7]
(169)
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then Corollary (applied with Uyg = Upy = Ugy = 0, Urg = poU, Uiy = p1U; and ¢y = 0)
together with inequalities (I67) and (I6J) shows for every z,y € R? that

< exp(cT + (Zg + Zi)SUOT 4 po(U(zz;)rU(y)) + PI(U(z;-lf—U(y ) ”x B y” .
(170)

[supsego.r 1X7 — X711|

L™ (;R)

Hence, if there exist 7, € (0,00) and 5, € (0, (174%522)2) such that

sup [ EDWEINGD 5 [17(z) + Uly)] - 7, (V) @) + (VO @)IF] | <o, a7y

i o=yl

then there exist T’ ¢ € (0,00), po, p1 € [0,2 =], 7 € (d,0), qo, 1 € (r, 00) with qio + qil = L such
that inequality (I70) holds and then Lemma [B.1] proves that the SDE (I65]) is strongly complete.
Strong completeness for the SDE (I65) follows from Theorem 2.4 in Zhang [54] under the stronger
assumption that condition (I64) holds with 7, = 0 and that condition (I7I]) holds with p; = 0.

4.6 Stochastic SIR model

The SIR model from epidemiology for the total number of susceptible, infected and recovered
individuals has been introduced by Anderson & May [3]. This section establishes strong stabil-
ity estimates for the stochastic SIR model studied in Tornatore, Buccellato & Vetro [50]. Let
(S, F, P, (Fi)icp,0)) be a stochastic basis, let W: [0,00) x Q@ — R be a standard (F;):c(0,00)-
Brownian motion, let «, 3,7,5 € (0,00), let pu: [0,00)> — R? and o: [0,00)> — R? be given
by

T —ax1Ty — 011 + 0 1 — 122
pl zo | = arvize — (v +0)z2 |, ol zo | = By (172)
T3 YTy — 03 T3 0

for all z = (w1, 79,73) € (0,00)% and let X* = (X®! X%2 X%3): [0,00) x Q — [0,00)3, = €
[0,00)3, be adapted stochastic processes with continuous sample paths satisfying
X7 =+ [yu(X)ds + [ o(X])dW, (173)

P-a.s. for all (¢,z) € [0,00) x [0,00)3. For the stochastic SIR model it is well known that the sum
of the first two coordinates serves as a Lyapunov-type function (cf., e.g., Tornatore, Buccellato
& Vetro [50]). We use this to construct an exponential Lyapunov-type function in the sense of
Corollary 24 More formally, if p, x € [0,00) and if U: R? — R is given by U(z) = p (71 + 79 — K)
for all x = (1, 22, 73) € R3, then it holds for every z = (21, a9, x3) € [0,00)? that

(GuoU)(@) + 555 o (2) (VU)(@)|* = p[—awizs — 621 + 0 + awrzs — (7 + 0)12]

= p[=0x1 + 0 — dxo] — pyxa = —dp[x1 + 3 — 1] — py2) (174)

= —0U(z) = dp[k — 1] — pyay < =06U(z) = dp [k — 1] < dp.
Corollary [Z4] hence implies for every x = (1, z2, x3) € [0,00)3, p,t € [0, 00) that

E[epe“(Xf%X?’Qfl) < eflorte-) | o (XTTHXT ) 10p [o(XT XD ds | pp(Sttartaz)

Moreover, if p € [0,00) and if U: R? — R is given by U(z) = p(x; + x5 — 1) for all z =
(71,72, z3) € R3, then it holds for every x = (1, 22, x3) € [0,00)3 that

(Guol)(@) + S lo(2)"(VU) ()|

=2p (11 + 22 — 1) [—aximy — d21 + 0 + @xyz9 — (7 + 0) 2]
=2p(x1+ 22— 1) [—0x1 + 6 — dxa] — 2py (1 + 19 — 1) o

—20U(x) — 2py (21 + 20 — 1) 20 < =20U () — 2p7y (g — 1) o

—25U ) =207 ((22)° — 2o + 1) + 2 = —26U(z) — 2py (:Eg—%)QJr%
<8 —20U(x) < 2.

(175)
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Corollary [Z.4] hence ensures for every x = (11,7, 73) € [0,00)3, p,t € [0,00) that
E[exp <p X+ X — 1]2)] <exp(2[e® —1] +ploy + a2 — 1]2) (176)

x,1 x,2 z,2
and E[erX: +X 124200 [§IX3 14X —1]2d8} < e plmite—1]?,

T = (3717552,56’3)719 = (1,2, y3) € [0,00)* with x # y that

[(o(z) = o) (@ = I _ llo(x) —o@)* _ 5 (@122 — y13)”
[ = yll* eyl [l = yll?

B = ) (@t ) + (w1 + ) (@ — o))
- EE—E (a7)

% max([z, + y1]?, [22 + y2]?) + %Q[M + ][z + yo] < %2 (1 + 11 + 22 + yz]z
B2 w4+ w9 — 1 + B2 [yr +yo — 1)° + 28

In the next step note for every

<
<

and that

(z —y,u(x) — p(y)) _ v [(z2 —y2) = (z1 — y1)] (2122 — 112)
Iz =yl lz = y?
a(r2 —ya — (1 —y1)) [(T1 — 1) (@2 + 32) + (71 + y1) (T2 — 12)] (178)
2|z —yl?
<SP (o +y) + G @ ty) <FE R (e +r— 1)+ (y+y2— 1)

This implies for every 0 € [0,00), = (21,72, 73),y = (Y1, Y2, y3) € [0,00)3 with x # y that

(@ —y,u(@) = py) +5llo@) —oWlfsmrsy | (§ =1 [(o(x) — o) (@ —y)|?
o= ol? ’ 2=yl
W2D3 5430 () + @) + 22 (3 + o) + Lot oW (179)
<y (21 + @) + 5 (y1 + 42)
+ B+ -1 (2= 1P+ [+ — 1 +2).

Combining (I'74), (I'f8), (IT7) and (I79) with Corollary then shows for every T € [0, 00),
D, 101, Q102 € [2,00), n € [p,o0], 8 € (0,p) with %+ ql% + ﬁ = 1 and every z =
(71,29, 23),y = (Y1,Y2,y3) € [0,00)% that

IN

[supsego.ry [1X7 — XVIl|

LT (R)
o
(26 [atarm = 8] +7) T+ 997 [t — 4
|z —yll - exp +6°T [ @/p—2/) g} (1 + 22 = 1> + (g1 +y2 — 1)7] (180)
— 1 — 2)1/0 :
=] 30812 4 39T () by 4y + o) + BT (L4 |8 - 1]

+5°T [% % } (1 + 22— 1) + (g1 + 42 — 1)7]

This implies for every T € [0,00), r,p € (2,00), n € [p,], 6 € [2,p) with % < L and every
& = (21,29, 73),y = (y1,%2,y3) € [0,00)" that

[supsego X7 — XY

3aT
l=—y] 5T[upum 0] + 9T + 5T (20T + 21 + 22 + 1 + 1)
S ————-exp
[1 _ 911/

2
) +2L [m — 1] (VT + (@1 + 22 — 1) + (1 + y2 — 1)?]

39



This finally shows for every T' € [0,00), r € (2,00), 0 € [2,7) and every z = (z1,%2,23),y =
(1, Y2, y3) € [0,00)® that

[supseo.m I1X7 — XVl

L"(R)
lz — ]| B*T(r — 0) + 4T + 9L (26T + 21 + 2 + y1 + o) (181)
< MZIL - exp .
1/6 2 (p—
[1—7] +w (VT + (214 2 — 1) + (y1 + y2 — 1)?]

Combining this with Lemma [3.T] proves that the stochastic SIR model (I73)) is strongly complete.

4.7 Experimental psychology model

Let (Q, F, P, (Ft)ic[o,00)) be a stochastic basis, let W: [0,00) x Q2 — R be a standard (F;)sc[0,00)-
Brownian motion, let o, d € (0,00), 8 € R, let u: R?> - R? and o: R? — R? be given by

0+ 4dax Bz o —
,u( T ) _ ( ) ( 1) 7 0_( I ) _ ( 6l‘2 ) (182)
L2 —x1%2 (0 + dovry) — % L2 Eg
for all x = (21, 29) € R? and let X*: [0,00) X Q — R?, z € R?, be adapted stochastic processes
with continuous sample paths satisfying

X¢ =2+ [Lp(X7) ds + [§o(XE) AW, (183)

P-a.s. for all (t,z) € [0,00) x R% The SDE (I83)) is a suitable transformed version of a model
proposed in Haken, Kelso & Bunz [16] in the deterministic case and in Schéner, Haken & Kelso [45]
in the stochastic case (see Section 7.2 in Kloeden & Platen [26] for details). If p € [1,00),
p € (0,00) and if U: R? — R satisfies U(x) = p||z||* for all z € R?, then it holds for every
r € R? that

(GuoU)(@) + $llo(2)" (VU)(@)|* = 2pp[|2]|*"™ [(z, () + Flo(@)]*] = 0. (184)

In addition, we get from It6’s formula that for every x € R?, ¢ € [0, 00) it holds that || X7|| = ||z||
P-a.s. Next note for every 6 € (0,00), z,y € R* with x # y that

(z—y,u(z)—n(y))+3 lo@)—oWgmp2y | (E—D (0@ —0)* (@—y)|?
= * =R

_ (e—ypl@) — p@) + 5llo(@) — o)l

|z —yl

(21 — 1) [(x2)2(5 +daxy) — ﬁ?l — (2)2(6 + dayy) + 5223/1]
- EEE (185)

(T2 — y2) [—x1x2(5 + doxy) — 522”52 + y12(8 + dayy) + 522312]
+

|z —yl?
357 (@1 — y1)* + (22 — o)’
|z —yl?
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This implies for every 0, ¢ € (0,00), x,y € R? with x # y that
(@=y.n(@)—pW)+5ll0@) =0 W) 7 g g2, . (2—1) [(o(2)—o(y))* (z—y)|1?
lz—yl? lz—yl*
(@1-y1)[(w2)? (6+4a@1) —(y2)*(5+4ay1)]  (wy—yo) (w122 (6+401)—y1ya (6+4ay1)]
llz—yll? llz—yll?
d(z1—y1)(w2—y2)(x2ty2)  (z2—y2)[(w2—y2)(z1+y1)+(z1—y1)(w2+y2)]
llz—yll? 2 [lz—yl?
o1 —y1)[(w2)?21 — (y2)v1 | _ do(wa—y2)[(21)?w2—(y1)2ys]
lz—yll* llz—yll?
< @iy (@a—yo)(zatys) _ (xa—w2)*(x1+y1)
= 2 [yl 2yl (186)
20 (21 —y1) [(w2—y2) (@24y2) @14y +((2)+(y2)?) (1 —31)]
+ To—u
 20(w2—y2) [(w1—y1) (@1 +y1) (@2 +y2)+((y1) *+(21)?) (22 —p2)]
llz—yll?

alz1—1y1)2((z2)2 2)_2a(za—1y2)2((z1)2 2
§|x2+y2| + %le +y1| + 20(z1—y1)~((z2) +(y2|)|m)7y?”2( 2—y2)"((z1)°+(¥1)?)

82g + yo| + Sl + yi| + 2a [(22)* + (y2)°]
2 2
2+ 1 + 2o+ ] [l + [lyl1?] -

Combining (I84)) and (I86) with Corollary 230 proves for every e,7,T € (0,00), =,y € R? with
x # y that

IN

IN

IANIA

T s2r 6T 2a+€)T(||z]|? 2
[supictor 16 = ] gy < el = Pt sl QA gy as)

L™ (R

Combining this with Lemma [3.1] proves that the SDE (I83) is strongly complete. Strong complete-
ness for the SDE (I83)) follows also from the inequalities (I84)) and (I80) together with Theorem
2.4 in Zhang [54].

4.8 Stochastic Brusselator in the well-stirred case

The Brusselator is a model for a trimolecular chemical reaction and has been studied in Prigogine
& Lefever [38] and by other scientists from Brussels (cf. Tyson [51]). A stochastic version hereof
has been proposed by Dawson [7] (see also Scheutzow [43]). Let (€2, F,P, (F;):c[0,0)) be a stochas-
tic basis, let W: [0,00) x © — R? be a standard (F;);e[o,00)-Brownian motion, let a,d € (0, 00),

-----

tion with Vy € (0,00): 0(0,y) = o(y,0) = 0 (cf. the last sentence in Section 1 in Scheutzow [43]),
let = (uy1, p2): [0,00)* — R? be given by
r1\ [ d—(a+1)z + a9 (21)

{(5)= (7RG s
for all z = (1, z2) € [0,00)% and let X*: [0,00) x Q — [0,00)?, = € [0, 00)?, be adapted stochastic
processes with continuous sample paths satisfying the stochastic Brusselator equation

XP =+ [ou(XD) ds + [go(X7) dW, (189)
P-a.s. for all (¢,7) € [0,00) x [0,00)2. We first apply Proposition 217 to (I89). More formally,
if V:1[0,00)2 = R is given by V(z,y) = [(z —y, (L)) = [(z1 4+ 22) — (1 +)]” for all = =
(21, 22),y = (y1,92) € [0,00)?, then it holds for every = (v1,2),y = (y1,¥2) € [0,00)* with
x # y that

(GagV)(x,y) = 2[(x1 + 22) — (y1 + v2)] [(1a () + pa(x)) — (1 (y) + p2(y))]

+tr((o(x) —a(y)) (o(z) — a(y))" ( 1 1 )) (190)



Proposition 2.17 hence implies that if

o(x)—o *(1,1
Vr € (0,00): 8uP;yepo,c0)2,a lyl<r (”( T ”') < 00, (191)

then it holds for every z,y € [0,00)%, T € [0,00), r,p,q € (0, 00] with % + é = % that

(X7 = X3 + (X737 = X7

L™ (;R)

_ o TV _oH g; * , 2
< |z =) + (22 — 12)] HeXp< T (p 1)!(\<§<)gii)xg,(()1(,1;§\2(l ] ds)‘

(192)

Li(;R)

For instance, if m =1, 3 € R, v € R? and if o(x) = v + Sz for all x € [0, 00)?, then (I92) shows
for every z,y € [0,00)2, T,r € (0,00) that

(r—1)82T

(X7 = XFD) + (X = XP ) oy S € 2 1@ — 1) + (22 — o). (193)

In the following we additionally assume that n = sup,cooo) [l0(y)*(1,1)[] € [0,00) (cf. the
last sentence in Section 1 in Scheutzow [43]) and further investigate the stochastic Brusselator
equation (I89) under this additional assumption. In that case it holds that if p € (0,00) and if
U: R? - R is given by U(z) = p (21 + x2)* for all 2 = (x1,2,) € R2, then it holds for every
r = (71, 22) € [0,00)% € € (0,00) that

(GuoU) (@) + 5llo(x) (VU)(x)]”
— 2 (21 + 23) (6 — awy) + pir (a(x)a(x)* ( o )) LU lo(@) (LD (194)
< 200 (1 + @) + p” + 200U () < &+ p” + 2p [” + 2] U(x).

In addition, note for every z = (z1,22),y = (y1,y2) € [0,00)%, 6 € (0,00) that

o=y (@) =)+ 5 10 ~0 WP g g2, N (& =1 ll(o(z) — o) (xz—y)l

llz—y||? |z — y|*
(1) + (11)* 3z +y1) (22 + 12)
< 1 + 1 + [5+ 15 = UllollEipme msme)) (195)
(21)? + (1)? | 3(@122 + 2130 + Y122 + Y1Y2)
= 1 + 1 + 5 +15—1]] Ha”iip(RQ,HS(IRQ))

< (x4 22)2 + (1 +12)2 + [5+ 15 — Ullolipme msme)-

Combining (194)) and (I95]) with Corollary .30/ hence implies that if 7 = sup,¢jg )2 lo(y)*(1, 1
[07 OO)? then it holds for CVeTy T = ($1,x2),y = (ylayQ) € [07 00)27 r,D,q € (27 OO)? T,E,p S (07 OO)

with % +% =1 and exp(2pT[n* + ¢]) < oo that

Hsupte[O,T] HXI?: - Xiy”’ L™(QR)
b ol (e

< 52T/€+1+p(r1+$2)2+P(y1+3/2)2) ]
CV/1=2/p

2 ||O||%,ip(]R2,HS(]R2)) + %
This together with Lemma B.] implies that the SDE (I89) is strongly complete provided that o
is globally Lipschitz continuous and that sup,co o2 [lo(y)*(1, 1)[|* < oo.

(196)

4.9 Stochastic volatility processes and interest rate models (CIR, Ait-
Sahalia, 3/2-model, CEV)

There are a number of models in the finance literature which generalize the Black-Scholes model
by the use of a stochastic process for the squared volatility. The following SDE includes a number
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of these models for the squared volatility. Let a € (1,00), b € [%, ), ¢, B € (0,00), a, k € [0, 00),

7,6 € R, let (Q, F,P, (Fi)ico,0)) be a stochastic basis, let W: [0,00) x 2 — R be a standard

(F4)te[o,00)-Brownian motion with continuous sample paths and let X*: [0,00) x © — [0, 00),
€ (0,00), be adapted stochastic processes with continuous sample paths satisfying

t t
X7 =g+ / {L LS4 XT —a (Xj)“] ds + / B (XY AW, (197)
o L(X¥)e 0
P-a.s. for all t € [0,00) and all x € (0,00). The class (I97) of processes includes Cox-Ingersoll-
Ross processes (b = 0.5, v < 0 < §, « = k = 0), Ait-Sahalia interest rate models, the volatility
processes in Heston’s 3/2-models (b = 1.5, a = 2, 0 = k = 0 < v, o, > 0) and constant
elasticity of variance processes (b € [0.5,1], a =d =x =0 <7, §>0). Let 77: Q — [0, 00],
€ (0,00), y € [0,00), be given by 777 = inf ({t € [0,00): X = y} U{oo}) for all z € (0,00) and
all y € [0, 00). For the rest of this subsection, we assume that the boundary point 0 is inaccessible,
that is, that P[Tg = oo] =1 for all x € (0,00). According to Feller’s boundary classification (see,
e.g., Theorem V.51.2 in [40]), the boundary point 0 is inaccessible if and only if (i) x > 0 or (i7)
b= 1 and 20 > (% or (iii) b> 3 and § > 0 or (iv) b> 1 and § > 0.

In the case b # 1, the processes (X®)17% 2 € (0, 00), satisfy an SDE with constant diffusion
function (see, e.g., Alfonsi [2]) and globally one-sided Lipschitz continuous drift function (see,
e.g., Dereich, Neuenkirch & Szpruch [§], Neuenkirch & Szpruch [36]). In the following calculation
we exploit this observation together with the results in Section [2] to derive an estimate for the
Lyapunov-type function V': (0,00)? — [0,00) given by V(x,y) = |20 — (=82 for all 2,y €
(0,00). For this, let p,o: (0,00) — R be given by u(z) = kx=¢+ 0 +vxr — az® and o(x) = Ba°
for all z € (0,00). Then Example implies that for all z,y € (0, 00) it holds that

|@oV) a2 _ 40-0[s~ 52—y "5y’ ]
|V(1'7y)|2 [:B(l b) _ y(l b)]

=0 (198)
and in the case b # 1 that for all z,y € (0, 00) with = # y it holds that

(G V) (,y)
HV(:v,y) (199)

2(17b)(:1:_b [nm_c+5+'y:vfa:v“] —y~b [ny_c+5+“/yfaya] -5 [ml_b_25212b7y1_b—252y2b])
-5

z1-b_y
2(1=b) [*[=5b2(~0=D —a(a—b)z(a=b=1) —g(c4b)z(~e=b=1 LD g2, (b-2)] g,
=2 (1 - b) v+ - [ T1—b_yI=b 2 ]

2(1-b)| [¥ 2= dz||sup, oo fébu_l7a(afb)u(“_1)7n(c+b)u(_c_1)7M62u(2b_2)
<2(1 - )y + L o e e - )

=2 [ sup ((1 —b)y — % —ala— b)u(a—l) _ Z((cﬁ)) i b(12b)52u(2b—2)>] .
)

u€ (0,00

Proposition .17 with 7 = co = p = ¢ together with Lemma hence yields for all ¢ € [0, 00)
and all z,y € (0,00) that

(G0 V) (u,v)
< }x(lfb) (1 b) }e {Supu,ve(o,oo),u#v V{w,0)

H<Xtm>(lib) - <Xf)(lib HL°°(Q;IR) =

(200)

< ‘x(l—b) _ y(l—b)‘ ot SUPuE(0,00) ((1=b)y— 2 —a(a—bjule—D - S 20 g2y (20 2))_
Moreover, Proposition 2.26] with v = oo = p = ¢ = r together with Lemma [2.24] yields for all
t € 0,00) and all z,y € (0,00) that

(5 ,o'V)(“ﬂ))
< x(lb)_y(lb)}etmax{o’sup“’“em’“) V) }

sup |(X7) (1= _ (Xg)(l’b)} (201)
s€[0,1] Lo (R)
< |00 — a0 etma"{oﬂwuemm) (=722 —a(amppue=D) - Hrg) 4 OG0 g2 - 2))}.
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The right-hand sides of ([99), of [200) and of (201 are finite if (i) k > 0 or (i) b = 3 and
26 > (2 or (iii) b> 1 and 6 > 0 or (iv) b>1 and § > 0.

Next, for the convenience of the reader, we derive well-known moment estimates. For this let
n € (0,00) be a fixed real number and let U,: (0,00) — (0,00), p € R, be given by U,(z) = n+aP
for all z € (0,00), p € R. Then Lemma 2.2 implies for all ¢ € [0, 00), z € (0,00), p € R that

E[n+ (X7)"] < (n+aP) exp(supue(0 00) W)

B » tp[,.w(p 1=0) 4 §u(P=1) fyyP —qupta—1) 4 1 L(p— 1)82u(P+2b— 2)] (202)
= (n+2a")exp SUPye(0,00) [ uP] [0, o]

Next observe for all p € [1,00) N [(¢ + 1)1(g00)(k), 00) that if (i) b < 1 or (ii) b < “* and o > 0
or (iii) b = %! and 2a > (p — 1) or (iv) p = 1, then

sup

u€(0,00)

(GuoUp)(w)] k(P10 4 50, (P=1) L P —quPta—1) 4 1 (p_1)32,,(p+2b-2)
[“UTZ)U] =p- sup [ T 2 <oo.  (203)

u€(0,00)

Moreover, note that It6’s formula shows that
t
0K = U3lo)+ [ Gt (X0 dr+ [ (Gt xz) a,

t t
< U)+ | [ 006 dr] [supucom 2] + [ (v a,

P-a.s. forall t € [0,00), x € (0,00), p € R. In addition, Jensen’s inequality and Doob’s martingale
inequality yield for all ¢t € [0,00), z € (0,00), p € R that

(204)

sup /(GUUp)(Xf)dWr < || sup /(GUUp)(Xf)dWT
s€f0t] | Jo L(R) s€fot] | Jo L2(;R)

¢ 1/2 . 1/2 (205)
<2 H JRCHeATE S I [ | Bl dr}

0 LY (R) 0

Then taking supremum over the time interval [0,¢ A 77] for ¢ € [0, 00) in inequality (204]), taking
expectation and applying inequality (205]) shows for all ¢ € [0,00), z € (0,00), p € R, n € N that

tATE

sp U0 <O || T 0| om0, supe @)
s€[0,tATE] LY(4R) 0 LY 9R)
+]| s | [ (G0 (X aw,
s€l0,t] | Jo L1(R)
‘ 1/2
< Uy(a) +21p| [ | Bl dr} (206)
0

T jHSU Up(X7) || ds| max4 0, su (.o Up)(u)
) Prefo,sarg] Yo\ A )| piair) » SUPye(0,00) U, (u) .

Now the monotone convergence theorem, Gronwall’s inequality, inequality (206]) and inequal-
ity (202)) yield for all ¢ € [0, 00), x € (0,00), p € R that

HSUPSE[O,t]U HLl(Q R) nhm HSUpseotf\T”]U (X5) HLl(Q R)
B t 1/2
< | Up(z) + 2|p|B / E[(Xf)@p’“%)] dr ] exp (t maX{O, SUDye(0,00) %#}) (207)
0
B 1/2
t |su 7 (G0 Uzp—2425) () e f 0.su t (G,0 Up) (u)
S Up(ﬂf) + 2‘p|/8 U2p72+2b<x) ge[ Pue(0,00) Uap—2+26(u) :| d’r’ e {0, Pue(0,00) Fz}p(uI;
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In the next step we observe that in the case b # 1 it holds for all z,y € (0, 00) that

/ ﬁz[ﬂ 2E
yl—b

- m1n |x_y|

-y

b b _
max(z”,y”) ’1‘1 b ’

[1-b]

1—b}

(208)

}l‘l_b—yl_b‘ — ‘(l—b)/x _bdZ
Yy

The estimate (201]) together with the inequalities (208]) and monotonicity of solutions of (I97])
with respect to the initial values implies in the case b # 1 that for all z,y,¢,p € (0,00) it holds
that

sup | X7 — XY|
s€[0,t] LP(QR)
1 b u\b a\1-b yy1-b
< 1—0b sup maX{(Xs) ) (Xs) } sup (Xs) - (Xs)
| - | s€(0,1] LP(QR) s€[0.t] Lo (R)
1 _ _
< max. || sup (X7 sup |(X2) - (X)) (209)
11— 0| |e{zy} || sefo.q LP(R) | |[s€[0,4 L*=(2R)

b 1—b b 9 o V)(u,v

2170 —y' | 2 tma"{o’supu,vew’oo) %}
< i——— | max || sup X; e

|1 — b z€{zy} || se[0,4] LPb(QR)
b 9 o V)(u,v

< _lr—yl : tma"{o’supu,vao,oo) %}
< ——— v | max_ || sup X; e

min(x?, yb) |ze{zy} s€[0,t] LPb(Q;R)

and inserting (207]) hence shows in the case b # 1 that for all z,y,t,p € (0, 00) it holds that

Guo V) (u0) (G.oUp)(w)
ooyl fmoe{ommmunciom B b man{osun,co) S5
. min(z?, ")

Lr(R)

sup [ X7 — XY|

s€[0,t]

®

- max_ | Up(2) + 2pbB

1/p
¢ [sup o )T(gH7UU2pb72+2b)(u)j| 1/2
u€ (0,00 U. _ ( )
Us(pbib-1)(2) [ a2t | gy . (210)
ze{zy} 0

This implies in the case b # 1, n > 1 that for all z,y,t € (0,00), p € [1,00) it holds that

[+ 7+ max(z’, )]
min (2, y?)

sup | X7 — XY

s€[0,t]

<|z -yl 1+ 2005677

LP(BR)

(Ep.,o- V) (u,v) (Q/,L,o' Up)(u) t (gH,UU2pb72+2b)(u)
et |:max{07supuyv€(ovoo) V(u,v) }+max{0’supu€(0v°°) p Up(u) }—f—max{o,supue(Qw) 2p U2pb—2+2b(u) ) (211)

Combining the statement below (201]) and ([203) shows that the right-hand sides of (Dﬂ]) and
of (211 are finite for all z,y,t € (0,00), p € [max{1, (c+ 1)1(p00)(k), (52 — 1)L(0,00)(K) }, 0)
if 1) [b=3and (26 > 2 or k> 0)] orif (ii) [ < b <1 and k + maX(O §) > 0] or if (iii)
1<b< a“, a>0and (§ > 0or k> 0)] orif (iv) [b = max{Zt pb+b— 3} < 4 and
(6 > 0 or £ > 0)]. Analogously, the inequalities (200), (202) and (208) show in the case b # 1
that for all z,y,t,p € (0,00) it holds that

1 _
> (Gp,o V) (u,0) (Gpu,oUp)(u)
||XJ»‘ B XyH < |x7y\[n+max{pr,ypb}]p et |:SuPu,v6(0,oo),u7£v HV(u,'U) +SUPy€(0,00) F;L;Up(pu) } (212)
LP(24R) min(z?,?) :
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Combining the statement below (201]) and (203]) shows that the right-hand sides of (210), of (211])
and of ([ZI2) are finite for all z,y,t € (0,00), p € [1,00) N [(¢c + 1)1 (g,00)(k), 00) if (i) [b= 1 and
(26 > B% or k > 0)] or if (ii) [§ < b <1 and k4 max(0,0) > 0] or if (iii) [1 <b< % a >0

and (6 > 0 or k > 0)] orif (iv) [b =%, (p—1)82 <2a and (§ > 0 or k > 0)] orif (v) [b> 1,
520andp:1].

4.10 Wright-Fisher diffusion

In biology, the Wright-Fisher diffusion is a model for the relative frequence of type ‘A’ in a
panmictic population of constant population size with two types ‘A’ and ‘a’; see, e.g., Chapter 7
in Durrett [10]. Let s € R denote the relative fitness advantage of type ‘A’, let py € [0, 00) be the
mutation rate from type ‘a’ to type ‘A’ let p; € [0, 00) be the mutation rate from type ‘A’ to type
‘a’ and let 8 € (0,00) be the inverse of the (effective) number of haploid individuals. Moreover,
let (Q, F,P, (Fi)ico,00)) be a stochastic basis, let W: [0,00) x © — R be a standard (F;)sc(0,00)-
Brownian motion with continuous sample paths and let X*: [0,00) x Q — [0,1], = € (0,1), be
adapted stochastic processes with continuous sample paths satisfying

t t
X7 =z + / po(l — X7) — p X7 + sX*(1 — X*) dr +/ VBXE(1— X2)dW, (213)
0 0

P-a.s. for all ¢t € [0,00) and all x € (0,1). In addition, define stopping times 77: Q — [0, o0,
z € (0,1), h € [0,1], by 7 := inf({t € [0,00): X} = h}U{o0}) for all z € (0,1) and all h € [0, 1].
Feller’s boundary classification (e.g., Theorem V.51.2 in [40]) implies that P[r§ = oo] = 1 for all
x € (0,1) if and only if 2py > 5 and that P[r{ = oo] =1 for all = € (0, 1) if and only if 2p; > 5.

In the case pg,n; € [g, 00) the processes arcsin(v/ X?), x € (0, 00), satisfy an SDE with constant
diffusion function and non-increasing drift function; see, e.g., Neuenkirch & Szpruch [36]. In the
following calculation, we exploit this observation together with the results in Section 2 to derive
an estimate for the Lyapunov-type function V: (0,1)> — R given by V(z,y) = |arcsin(y/z) —
arcsin(y/y)|* for all z,y € (0,1). Let p,0: (0,1) — R be given by pu(x) = po(1—2)—prz+sz(l—x)

and o(z) = y/Px(1 —z) for all x € (0,1) and let f: (0,7/2) — R be given by

(1—y)—pry+sy(1—y)—(1-2y) 2
flx) == 1
V=) y=(sin(z))?
po(cos ()2 —p1 (sin(x))>+-s(sin(x))? (cos(x))? — ((cos(x))2—(sin(z))?) £ (214)

sin(x)

cos(z)
= (po — g) @ — (1 — g) tan(x) + 3 sin(2x)

for all x € (0,7/2). Next we infer from (0,7/2) > x — tan(z) € (0,00) being an increasing
function that

xr)— s sin(2xz)—sin(2
f( iﬂ}j(y) <3 ( :Ziy (2y) < s (215)

for all z,y € (0,7/2) in the case py, p1 € [g, o0). Now we apply Lemma .14 and inequality (215])
to obtain that for all z,y € (0,1) it holds that

1 1 /Ba(l—x)— 1 1 —
[(Go V) ()12 Y e e V) - (vm? VY By(1-y) (216)
|V( ),|2 pu— . ; D] pu O
Y [arcsm(ﬁ)—arcsm(ﬁ)]
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and

@uoV)en) _ o 3 i (o (1—2)—pratsa(1—a)) = s—omtes(p0 (1=y)—pry+sy(1-y))
V(z,y) [arcsin(ﬁ)—arcsin(\/gj)]

_ (2e—1) o) Qy=1) _
|:4[x(1_x)]3/26$(1 x) 4[y(1—y)]3/2ﬁy(1 y):|

[arcsin(ﬁ)—arcsin(\/gj)] (217)
x(i__x) (po(lfzv)fplersm(lf:v)f(172:1:)g)f\/ﬁ—_y)(PO(I*y)*ﬂlerSy(l*y)*(l*Qy)g)
[arcsin(ﬁ)—arcsin(\/ﬂ)]

_|_

f(arcsin(\/i)) 7f(arcsin(\/§))
arcsin(y/z)—arcsin(,/y)

<|sl.
Hence, Proposition 2226l with O = (0,1) and with v = co = p = ¢ = r shows that in the case
po, p1 € [5,00) it holds for all t € [0,00) and all ,y € (0, 1) that

< |arcsin(v/z) — aurcsin(\/g)‘2 etlsl, (218)
L>(;R)

sup
rel0,t]

arcsin(y/X?) — arcsin(v/ X7) ‘2

Clearly, this implies that if pg, p; € [g, 00), then it holds for all ¢ € [0,00), x,y € (0, 1) that

arcsin(\ /X;P) — arcsin(\/ Xff)

tls]
<e
L>(;R)

sup
rel0,t]

arcsin(y/z) — arcsin(y/y)| - (219)

This together with the estimates

1

: R _ d
| arcsin(v/z) — arcsin(y/y)| /y N

<|x — ma; L
<le—yl |:z6{ar,)y<} 4z(1z)} ’

: . 2 : :
|z — y| = | [sin(arcsin(v/z))] " — [sm(arcsm(\/ﬂ))]Q’ (220)
arcsin(/x)
= / 2sin(z) cos(z) dz| < ’arcsin(\/f) — arcsin(\/@)}
arcsin(y/y)
for all z,y € (0,1) implies that if pg, p; € [g, 00), then it holds for all ¢ € [0, 00), x,y € (0, 1) that
sup | X7 — XY| < [ max =e(7) ] |z — y (221)
rel0,t] " " Lo (OR) T [eefzy) V4(1-2)

4.11 Stochastic Burgers equation with a globally bounded diffusion
coefficient and trace class noise

Let (H7 <'> >H ) HHH) = (LQ((Oa 1); IR')? <'> '>L2((0,1);]R) ) ||'||L2((0,1);]R)) be the R-Hilbert space of equiv-
alence classes of Lebesgue square integrable functions from (0, 1) to R, let ¢ € R\{0}, let F': H —
W=L1((0,1); R) be given by F(v) = §(v?) for all v € H, let B: H — HS(H) be a globally
Lipschitz continuous function with 7 := sup,ep | B(2)[fsur € (0,00), let (Q, F, P, (Fi)iclo,0))
be a stochastic basis, let (W})ico,00) be a cylindrical I-Wiener process on H with respect to
(Fi)tep.0)s let ex € H, k € N, be given by ey(y) = v2sin(kry) for all y € (0,1), k € N,
let P, € L(H), n € N, be given by P,(v) = > .7_, (ex,v)yex for all v € H, n € N and let
A: D(A) ¢ H — H be the Laplacian with Dirichlet boundary conditions, that is, D(A) =
{v € H*(0,1),R): v(0) = v(1) = 0} = {v € H: 332, k*|{er,v) 4> < 00}. Moreover, let
X*:]0,00) x Q — H, © € H, be adapted stochastic processes with continuous sample paths
satisfying X7 = ea + [§ A9 F(XT) ds + [ eAt9) B(X?) dW, P-a.s. for all (¢,z) € [0,00) x H,
let pun: Po(H) — P,(H) and 0,,: P,(H) — HS(H, P,(H)) be given by p,(v) = Av+P,(F(v)) and
on(v)u = P, (B(v)P,(u)) for all v € P,(H), u € H, n € N and let X*": [0,00) x Q — P,(H),
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x € P,(H), n € N, be adapted stochastic processes with continuous sample paths satisfying
X7 =4 [ (X2 ds + [L o, (X2™) dW, P-a.s. for all (t,z) € [0,00) x P,(H) and all n € N.
Then note that if n € N, if p € [0,00) and if U: P,(H) — R is given by U(z) = p||z||% for all
x € P,(H), then it holds for every x € P,(H) that

U/(2) () + 3 (00 () 00 (2)* (Hess U)(a)) + }llon(2) (V) @)%

=2p(z, Az + F(2)) g + p |0n(@)fisa.p, ) + 20" on(@) |3

< =2 [|(=A)allf; + p | B@)llis(r + 20° |1B(2) x|

< pn = 2p (= A)Pally + 20 nllwllFy < pn+2p [2 = 1] (= A) 2],
As for every n € N it holds that (P, (H), (") 5.z + I'l| 5, (ary) 18 isometric isomorph to (R™, (-, ), [|]]),

(P
it follows from ([222) with p = J- and Corollary M that for every n € N, t € [0,00), x € P,(H)
it holds that

(222)

z,n ! 2 Tty T2
E{exp(%HXt’ ||f,{+/0 %H(—A)WXS’ HHds)] < T Halali, (223)

In the next step we note for every n € N, € € (0,00), p € (0,00}, z,y € P,(H) with x # y that

} l[(on () —on(y )) (=9Il < (p 2)

[W -1 le—yll% 1B sy and (224)

max4 0, (@=yopn (@) —pn (V) g +3 ||on(m)—on(y>||%ls(pn<m>
2=yl

—$H{@=y)* (@+y) ) H=lI(=A) /2 (z—y) |}
< maX{Oa + Iwayllfg 43 ”BHLip(H,HS(H))}

225
< maxd 0 lellle+3/ | 7 2=l 2 12—yl Loo (0,1ym) — 1 (= A2 (z—1) 1% 18| (225)
= ’ 4l|lz—yl?, 2 Lip(H,HS(H))
e|[(=A) V2 (z+y) z—y||7 00 A2 (z—y)||2 Bl .
< max! 0, || (- . HH+165|| 117 00 ((0.19:m) — I (= A)/2( i | ||Llp<§,Hs<H>> _
le—yll%

Using the fact that there exist a function x: (0,00) — (0,00) such that for every r € (0, 00),
u € D((—A)Y?) it holds that HuHiOO((O,l);]R) < k() ||ull3 +7 [(—A 1/2uH (see, e.g., Theorem 37.5
in Sell & You [46]) hence shows for every n € N, g € (0,00), =,y € P, (H) with x # y that

s { 0, (=)= ) H”+%||]z<x>—an(y>||%1s<pn<m> }
v—w H

(226)

< %”(_AW%HZ;;%”( 1/2y”H Lc nqn(Sg(c ) | ||B||Lip<g,HS(H>>,

Combining (222)), ([224) and ([226]) with Corollary implies for every n € N, T' € (0,00),
z,y € P,(H), r,q € (2,00), p € (r,00] with % +% =1 that

[supsego,ry 1K = X"

L™(4R)
(227)

|z -y EngTr(8r/(c2ng)) | @=DTIBlLprnsny | =7 | wllel el

Fatou’s lemma applied to (227) (cf., e.g., Alabert & Gyongy [1] and Section 4.3 in Blomker &
Jentzen [5]) then shows for every x,y € H, T € (0,00), r,q € (2,00), p € (r, 00| with % + % =1
that

HSUpte[O,T] ”Xtm - Xiy”H}

L™ (3R)
||ZL‘ - y” ex (c%}qTﬁ(SW/(chq)) + (0=V)T||BllLip(r,18(5)) + T + 7r||x||§{+7r||y||§{> (228)
1 — 2/p P 8w 2 2q 4nq .
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4.12 Cahn-Hilliard-Cook equation

Lt (H, () [-l) = (Z2(0, 15 R), G, oy » o) be the R-Hilbert space of equiv-
alence classes of Lebesgue square integrable functlons from (O 1) to R, let ¢ € (0,00), S € [0, )
let F: L5((0,1);R) — W~=22((0,1); R) be given by F(v) = cA(v® —v) = ¢ (v —v)" for all v €
L%((0,1);R), let (Q, F, P, (Ft)teo,00)) be astochastic basis, let (W)seqo,00) be a cylindrical I-Wiener
process on H with respect to (F)icp,0), let ex € H, k € N, be given by ex(y) = v2sin(kmy)
for all y € (0,1), k € N, let P, € L(H), n € N, be given by P,(v) = > ;_, {ex, v) € for all
ve H,neN,let A: D(A) C H — H be given by D(A) = {v € H: S3° k% |(er, v)4|* < o0}
and Av = —v" for all v € D(A) and let B: H — HS(H, D((—A)7?)) be a globally Lipschitz
continuous function. Moreover, let X*: [0,00) x Q — H, x € H, be adapted stochastic processes
with continuous sample paths satisfying X7 = etx + [} e F(X?) ds + [t A=) B(XT) dW,
P-a.s. for all (¢t,x) € [0,00) X H, let p,: P,(H) — P,(H) and o,: P,(H) — HS(H, P,(H)) be
given by y,(v) = Av + P,(F(v)) and 0, (v)u = P, (B(v)Py(u)) for all v € P,(H), u € H,n € N
and let X*": [0,00) x Q — P,(H), x € P,(H), n € N, be adapted stochastic processes with
continuous sample paths satisfying X" = x + [¢ p,(XZ") ds + [} 0, (X)) dW, P-a.s. for all
(t,z) € [0,00) x P,(H) and all n € N.

4.12.1 Globally bounded diffusion coefficient and trace class noise

In this subsection we assume in addition to the assumptions in the beginning of Subsection [4.12]
that B(H) C HS(H) and that n € [0, 00) is a real number which satisfies sup, .y ||B(:L‘)||I2{S(H) <.

Next note for every v € D(A) that ||[v'||%, < [Jvll, "], (cf., e.g., Theorem 37.5 in Sell &
You [46]). This shows that if n € N, if p € [0,00) and if U: P,(H) — R is given by U(z) = p||z||%
for all © € P,(H), then it holds for every ¢,0 € (0,00), € P,(H) that

U'(w) pn(2) + 5 (0w (@) 0n(2)" (Hess U)(2)) + 5 lon(2) (VU) (@)l (229)
(z, Az + F(2)) g + plown(@)fEsap, ) + 20 lon(@) 2l
el = 2"l — 3e{a®, (&)%) 4] + P IIB(@) sy + 207 | B() x|
Lonllll; + ellllll2” |l — 2"l — 3¢ (2%, (')*) ;] + pn

IA A

)
2p
2p
2p

IA

20 (n+ 2) Tt [ o+ = D11 = 3 (2. @), |+

V2y {pn+ %}
—

V25 ' (y) :c(y>) : dy + (e — 1) 2" |3 = 3c (&%, (')) ;| + o1

_1
<2/
_0

(17,2 &2 45)2 , ,
< [ [yt (e = ) a1+ 6 - 300 a2, (), | + o

+c?/(4e)

= 20T L 43 (= 1) |+ 20 (5 = 30) [l

As for every n € N it holds that (P,(H), (-, '>pn(H) ) H'”PR(H)) is isometric isomorph to (R™, (-, ), [|]|),
it follows from (229) and Corollary 24l that for every n € N, ¢ € [0,00), &,0,p € (0,00), x € P,(H)
it holds that

2pt
E[ep||XZ""||%,+2pf(%(lfe)||<X;”’">"||%,+(3c76>||<X§’”)'X§’”||%, ds] < o35 lore /)] ont+plally; (230)

In the next step we note for every n € N, p € (0,00], x,y € P,(H) with x # y that

lon(@)-0w@)* @Dl  (-2)
Eoill e < B2 Bl sy and (231)
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(=gt (@) — 0 () g+ o (@)~ 00 sy 1) (232)

oV fo—ull%

O L G 0 G i) O PR L RIS
_ E=; 2

<0V _*C([(rfy)’]Q,xQJrreryQ)H*C((r*yg’(:vfy)72x’x+m/y+my’+2y’y>H " ||B||Lip(§,HS(H)) + %
_ E=2

“ov '—s<[(m—y)'12,m2+y2>H+c<<x—y>;<x—y>,<\x\+|y\>(\x'|+\y/|)>H 1 DBy |
_ E=T52

I Bllyipa,ns ) +2¢°

2
|| + ‘y/‘”LOO((O,l);]R) + 2

ac((@=)% (2 1+ D?) ;| IBllLipascay) 262
2 + 72 S 4C
lz—yl%

Bll; .
< % ||l‘”||§{ + % ||y//||i] + I ||L1p(;{,HS(H)) + %

where we used the estimates c|[o[|% < |[v]|% + [[v"]|% and [[o/|| g (o1ym) < %HU”HH for all
v € D(A) in the second and last inequality respectively. Combining (229), (231) and (232) with
Corollary implies for every n € N, T' € (0,00), z,y € P,(H), ¢ € (0,1), r,q € (2,00),
p € (r,o0] With%—i—%: L that

Xm,n _ Xy,n
o 16" = X"

(233)
te[0,T] |z — yllu

1-2
P

L™ (R)

2 2 2
-1)T 2T 16T 8¢ 2 8enT 4c|=]| 7 +Hellyll
< exp<(p 2) 1B Lip(ns iy + 5 + 27(1—¢) [3(12) + 4_5} + 3(1715) + 31({175) ’ H) :

Fatou’s lemma applied to (233)) then shows for every 7" € (0,00), z,y € H,e € (0,1), 7,9 € (2,0),
p € (r,00] with %Jr%: 1 that

Xm _Xy
aup 1XE = X2y

1—-2
P te[0,T] ||5E _?/HH

(234)

LT (3R)

2 2 2
(p—1T AT 16T 8¢ &2 8cnT 4c)|x)| % +4clly|l
S eXp( p 3 HB”Llp(H,HS(H)) + 4 + 27(1—¢) |:3(1EZ) + 4_E:| + 3(1718) + 31211—6) H) .

4.12.2 Space-time white noise

In this subsection we assume in addition to the assumptions in the beginning of Subsection
that there exists a real number 7 € [0, 0o) such that for every v, w € H it holds that ||(—A4)~Y4(B(v)—
B(w) s < n||(=A)"Y4(v — w)|%. Then note for every r € (0,00], § € (0,7), n € N,
x,y € Py(H) with x # y that

] [ (~) 4 @—)* ()i on(@)—on @))%,

[(=A) =14 (@ =)l

} n and (235)

N
N

5 - <

0oV [<(A)1/4(xy)7(A)1/4(“(m)H(y))>H+% ||(A)1/4(0'n(1')Un(y))||12-IS(H)]

N3

I @], (236)

llz—ylI%—ll(z—y)"II3 } n_ 7
< H I =1
=0V [ [(@—y) 1% T2 73

Combining this Theorem 2.29] and Fatou’s lemma implies for every T' € (0,00), r € (0, 00],
0 € (0,r), xz,y € H that

3 eXp([r—min(gg—l)MT) H(_A)71/4<x . y)HH

LT(Q;n_a) [1 - g} e

S |(=A)HXF = X)),
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