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KOLMOGOROV–CHENTSOV THEOREM AND DIFFERENTIABILITY OF

RANDOM FIELDS ON MANIFOLDS

ROMAN ANDREEV AND ANNIKA LANG

Abstract. A version of the Kolmogorov–Chentsov theorem on sample differentiability and
Hölder continuity of random fields on domains of cone type is proved, and the result is
generalized to manifolds.

1. Introduction

Sample regularity of random fields and stochastic processes has been first studied by Kol-
mogorov in the 1930th, as reported in [22], and extended by Chentsov in [5]. The Kolmogorov–
Chentsov theorem states the existence of continuous modifications of stochastic processes and
derives bounds on the exponent of sample Hölder continuity. This result has been extended in
many ways, for example: for random fields on cubes [2], for random fields on the sphere [12],
for random fields on metric spaces [20, 9], and for random fields with values in more general
spaces [18, 16]. For a review on the literature and the history of the problem we refer the
reader to the introduction of [20].

The first objective of this paper is to reproduce these results for random fields on domains.
In fact, we also show sample differentiability under suitable further assumptions on the ran-
dom fields. The second objective is to extend these results to random fields on manifolds.

In contrast to Hölder continuity of stochastic processes and random fields, sample differen-
tiability has hardly been studied so far, partly because the Brownian motion and the related
stochastic processes are almost surely nowhere differentiable. In recent years, however, the
question of smoothness of random fields (beyond Hölder continuity) has become more impor-
tant. In particular, higher spatial smoothness of solutions of stochastic partial differential
equations can be exploited to improve the order of convergence of numerical algorithms.
Other examples include solutions of random partial differential equations as presented in [4],
or lognormal random fields on the sphere in modeling of ice crystals (cf. [17, 12]). Results on
existence of sample differentiable modifications for stochastic processes are presented in [6]
and [15]. Furthermore, differentiability on R

n of Gaussian random fields is discussed in [3]
and first order sample derivatives are obtained in [21] with a differential and integral calculus
in quadratic mean. As a first approach to manifolds, existence of higher order derivatives
of isotropic Gaussian random fields on the sphere is shown in relation with the decay of the
corresponding angular power spectrum in [12]. To the best of our knowledge, this paper
is the first to provide an extension of the Kolmogorov–Chentsov theorem to show sample
differentiability of random fields on domains of cone type as well as on manifolds.

The main technical device of our proof is the Sobolev embedding theorem, as was sketched
in [7, Proof of Theorem 3.4]. In general, it provides a modification (in space) of the function
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in question, and its application to a random field sample-wise may affect the measurabil-
ity of the random field. We circumvent this complication by showing existence of a sample
continuous modification first. Our results are stated in terms of spaces of continuously dif-
ferentiable functions of fractional order, which characterize the order of differentiability and
the “remaining” Hölder continuity of the highest order derivatives.

The paper is organized as follows. In Section 2 we introduce the necessary basics on
Sobolev spaces, Sobolev embeddings, manifolds, and random fields, as well as our notation.
Section 3 contains our two main results, which state the existence of Hölder continuous and
differentiable modifications of random fields on domains of cone type, and on sufficiently
smooth manifolds. The proofs can be found in the same section.

2. Preliminaries

In this preparatory section we collect the notions required to obtain our main results in
Section 3 in the order that is needed later on. Therefore, we start with the introduction
of Sobolev spaces on domains, and recall the appropriate variant of the Sobolev embedding
theorem. We move on to define manifolds, and spaces of Hölder continuous and differen-
tiable functions on them. Finally, we introduce random fields on manifolds and associated
properties.

We briefly recall the theory of (fractional) Sobolev spaces and spaces of Hölder continuous
and differentiable functions on domains. For details, we refer the reader to the standard
literature [1, 8, 23].

For any t > 0, the integer part ⌊t⌋ ∈ N0 and the fractional part {t} ∈ [0, 1) of t are uniquely
determined by t = ⌊t⌋+ {t}. For a multi-index α ∈ N

n
0 we set |α| :=

∑n
i=1 αi.

A subset D ⊂ R
n is called a domain if it is nonempty, open, and connected. If D is a

domain, we define for t ∈ N0

‖f‖C̄t(D) :=
∑

|α|≤t

sup
x∈D

|∂αf(x)|,

where ∂α := ∂|α|/(∂xα1

1 · · · ∂xαn
n ) is the classical partial derivative, and for noninteger t > 0

‖f‖C̄t(D) := ‖f‖C̄⌊t⌋(D) +
∑

|α|≤⌊t⌋

sup
x,y∈D
x6=y

|∂αf(x)− ∂αf(y)|

|x− y|{t}
.

For t > 0 we define the Hölder spaces

C̄t(D) :=
{

f : D → R; f is ⌊t⌋ times continuously differentiable and ‖f‖C̄t(D) < +∞
}

.

The Lebesgue space Lp(D), p ∈ [1,∞), comprises all measurable functions u : D → R for
which ‖u‖pLp(D) :=

∫

D |u(x)|p dx is finite. Functions that are equal for almost every x ∈ D

are identified, so that the space Lp(D) endowed with the norm ‖ · ‖Lp(D) becomes a Banach

space. For p ∈ [1,∞) and k ∈ N, the Sobolev space W k
p (D) is defined by

W k
p (D) := {u ∈ Lp(D) : ∂αu ∈ Lp(D) for all 0 ≤ |α| ≤ k},

where ∂α denotes the distributional partial derivative. Equipped with the norm ‖ · ‖Wk
p (D)

given by

‖u‖p
Wk

p (D)
:=

∑

0≤|α|≤k

‖∂αu‖pLp(D),
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it becomes a Banach space (see e.g. [1, Thm. 3.3]).
Finally, we extend the definition of Sobolev spaces to nonintegers for bounded domains D

of cone type following [23, Def. 4.2.3].

Definition 2.1. A bounded domain D is said to be of cone type if there exist domains
U1, . . . , Um, and cones C1, . . . , Cm, which may be carried over by rotations into the cone of
height h

Kh := {x = (x′, xn) ∈ R
n : 0 < xn < h, |x′| < axn}

with fixed a > 0 such that ∂D ⊂
⋃m

j=1 Uj and (Uj ∩D) + Cj ⊂ D for all j = 1, . . . ,m.

An example of a bounded domain of cone type is a bounded Lipschitz domain, i.e., the
boundary is locally a graph of a Lipschitz continuous function with a Lipschitz continuous
inverse.

The Sobolev spaces of fractional smoothness are obtained by setting

W s
p (D) := {u ∈W ⌊s⌋

p (D) : ‖u‖W s
p (D) <∞},

where

‖u‖pW s
p (D) := ‖u‖pLp(D) +

∑

|α|=⌊s⌋

∫

D×D

|∂αu(x)− ∂αu(y)|p

|x− y|n+{s}p
dx dy.

The defined norm ‖ · ‖W s
p (D) is equivalent to the norm induced by the real method of in-

terpolation by Remark 4.4.2/2 in [23]. Together with [23, Theorem 4.6.1(e)], we deduct the
following theorem.

Theorem 2.2. Let D ⊂ R
n be a bounded domain of cone type, 1 < p <∞, and t ≥ 0. Then

for all s > t+ n/p there holds the continuous embedding W s
p (D) →֒ C̄t(D). The embedding is

still valid for s = t+ n/p if t /∈ N0.

We generalize the spaces of Hölder continuous and differentiable functions C̄t to mani-
folds by imposing these properties on charts. Before doing so, we recapitulate the necessary
geometric definitions and properties. For more details on manifolds, we refer the reader to
e.g. [11, 13, 14, 24].

If A ⊂ R
n is any subset, m ∈ N, and k ∈ N ∪ {0,∞}, then f : A → R

m is k times
continuously differentiable or of class Ck if for every x ∈ A there exists an open Ox ⊂ R

n

containing x and g : Ox → R
m of class Ck that coincides with f on A. Such f are collected

in Ck(A;Rm). Looking ahead, in order to avoid technicalities we will only consider manifolds
without manifold boundary, such as the Euclidean space or a sphere therein. The first step is
the definition of an atlas.

Definition 2.3. Let M be a set, r ∈ N ∪ {0,∞}, and n ∈ N. A Cr atlas A on M is a
collection of charts (Ui, ϕi), i ∈ I, indexed by an arbitrary set I, satisfying the following:

(1) Ui ⊂M and
⋃

i∈I Ui =M ,
(2) ϕi : Ui → ϕi(Ui) ⊂ R

n is a bijection and for any i, j ∈ I, ϕi(Ui ∩ Uj) is open in R
n,

(3) ϕi ◦ ϕ
−1
j : ϕj(Ui ∩ Uj) → ϕi(Ui ∩ Uj) is a C

r diffeomorphism for any i, j ∈ I.

Two Cr atlases are called equivalent if their union is again a Cr atlas on M . This indeed
defines an equivalence relation on the Cr atlases on M . The union of all atlases in such an
equivalence class is again an atlas in the equivalence class, called the maximal Cr atlas. The
topology induced by any maximal Cr atlas is the empty set together with arbitrary unions
of its chart domains.
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Definition 2.4. Let n ∈ N and r ∈ N∪{0,∞}. A Cr n-manifold M is a set M 6= ∅ together
with a maximal Cr atlas A(M) such that the induced topology is Hausdorff and paracompact.

Recall that in a Hausdorff topological space distinct points have disjoint open neighbor-
hoods, and a topological space is called paracompact if every open cover admits a locally finite
open cover (i.e., for any point, there is an open neighborhood which intersects only finitely
many members of the collection) which refines the original cover. Usually, the maximal atlas
is not mentioned explicitly and M is understood to be equipped with the induced topology.
We will say “a chart on M” to refer to a chart in A(M). Further, we say that an atlas A on
M is an “atlas for M” if it is compatible with A(M). Any open subset U ⊂ M canonically
inherits the manifold structure of M .

Definition 2.5. Let M be a Cr n-manifold and k ≥ 0 an integer. A function f : M → R is
said to be of class Ck, denoted by f ∈ Ck(M), if f ◦ ϕ−1 ∈ Ck(ϕ(U)) for every chart (U,ϕ)
on M . The support supp f of f ∈ C0(M) is the closure of the set {x ∈M : f(x) 6= 0}.

Furthermore, a function f :M → R is said to be continuous (locally of class C̄t) if for any
x ∈ M there exists an open connected subset V ⊂ M , x ∈ V , such that for any chart (U,ϕ)
with U ⊂ V , the composite function f ◦ ϕ−1 : ϕ(U) → R is continuous (of class C̄t).

A useful technical device is the partition of unity defined next.

Definition 2.6. Let M be a Cr n-manifold. Let U = {Ui}i∈I be an open cover of M . A Cr

partition of unity subordinate to U is a collection {ψi}i∈I ⊂ Cr(M) such that

(1) 0 ≤ ψi(x) ≤ 1 for all i ∈ I and x ∈M ,
(2) there exists a locally finite open cover {Vi}i∈I of M with suppψi ⊂ Vi ∩ Ui,
(3)

∑

i∈I ψi(x) = 1 for all x ∈M (where the sum is finite by the previous assertion).

The assumed paracompactness ofM implies the existence of such partitions of unity, see [13,
Chapter II, Corollary 3.8] or [14, Theorem 1.73], which is stated in the following proposition.

Proposition 2.7. Let M be a Cr n-manifold. Let U = {Ui}i∈I be an open cover of M . Then
there exists a Cr partition of unity subordinate to U .

We close the preparatory section by introducing random fields on manifolds. Random fields
on domains are defined accordingly. In what follows, let (Ω,F , P ) be a probability space.

Definition 2.8. LetM be a Cr n-manifold and B(M) denote its Borel σ-algebra. A mapping
X : Ω×M → R that is (F ⊗B(M))-measurable is called a (real-valued) random field on the
manifold M . A random field Y is a modification of a random field X if P (X(x) = Y (x)) = 1
for all x ∈M . Furthermore, a random field X on M is said to be continuous (locally of class
C̄t) if X(ω) is continuous (locally of class C̄t) for all ω ∈ Ω.

We note that if M is endowed with a metric (say, given by a Riemannian metric), and the
resulting metric space is separable and locally compact, then measurability of X(x) for all
x ∈M and continuity in probability of X imply (F ⊗ B(M))-measurability of X (cf. [19]).

3. Hölder continuity and differentiability of random fields

This section contains our main results on Hölder continuity and differentiability of random
fields. We begin by considering random fields on domains of cone type. As indicated in
the introduction, results on sample Hölder continuity on different types of domains are well-
known (see, e.g., [2, 7, 20, 10]), but sample differentiability has not been of main interest so
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far (see, however, [3, 21] for the available results). We prove sample Hölder continuity and
differentiability properties in Theorem 3.1 by revisiting the approach of [7, Proof of Theorem
3.4] via the Sobolev embedding theorem. We then address sample Hölder and differentiability
properties of random fields on manifolds in Theorem 3.5.

We now state our version of the Kolmogorov–Chentsov theorem on domains of cone type.

Theorem 3.1. Let D ⊂ R
n be a bounded domain of cone type and X : Ω × D → R be a

random field on D. Assume that there exist d ∈ N0, p > 1, ǫ ∈ (0, 1], and C > 0 such that
∂αX ∈ Lp(Ω×D) and

(1) E(|∂αX(x)− ∂αX(y)|p) ≤ C |x− y|n+ǫ

for all x, y ∈ D and any multi-index α ∈ N
n
0 with |α| ≤ d. Then X has a modification that is

locally of class C̄t for all t < d+min{ǫ/p, 1− n/p}.

The proof is given in two steps. In the following lemma we first obtain a continuous
modification of X based on [10, Theorem 2.3.1], which we again denote by X. In the second
step, we prove Theorem 3.1 by invoking the Sobolev embedding on X(ω) for all ω ∈ Ω. Since
X(ω) is continuous for all ω ∈ Ω, this does not modify the random field, and there is no need
to prove measurability of a modified field.

Let us start by showing the existence of a continuous modification.

Lemma 3.2. Under the assumptions of Theorem 3.1, X admits a continuous modification.

Proof. Observe that the domain D equipped with the usual Euclidean metric | · − · | is a
totally bounded pseudometric space in the sense of [10]; indeed, its metric entropy D(ǫ) :=

D(ǫ;D, | · − · |) is bounded by D(ǫ) ≤ C̃ǫ−n for all ǫ > 0 and some constant C̃ > 0, since
the domain D can be embedded into a n-dimensional closed cube of finite diameter. We
set Ψ(r) := Crn+ǫ, where the constant C is provided by (1), and f(r) := rǫ/p for r ≥ 0.

The integrals
∫ 1
0 r

−1f(r) dr = p/ǫ as well as
∫ 1
0 D(r)Ψ(2r)f(r)−p dr ≤ CC̃2n+ǫ are finite.

Therefore, [10, Theorem 2.3.1] shows the existence of a continuous modification of X. �

Having obtained a continuous modification, we are set to continue with the proof of The-
orem 3.1.

Proof of Theorem 3.1. Assume without loss of generality that the random field X is continu-
ous (otherwise apply Lemma 3.2). Consider arbitrary 0 < ν < min{(n+ ǫ)/p, 1} and α ∈ N

n
0

with |α| = d. Since

(ω, x, y) 7→
|∂αX(ω, x)− ∂αX(ω, y)|p

|x− y|n+νp

is (F ⊗ B(D ×D))-measurable, we apply Fubini’s theorem and hypothesis (1) to obtain

E

(
∫

D×D

|∂αX(x)− ∂αX(y)|p

|x− y|n+νp
dx dy

)

=

∫

D×D

E(|∂αX(x)− ∂αX(y)|p)

|x− y|n+νp
dx dy

≤ C

∫

D×D
|x− y|n+ǫ−(n+νp) dx dy.

The last integral is finite due to ǫ− νp > −n. With the Lp(Ω×D) integrability assumptions
on X and its derivatives of order d, this implies that

E(‖X‖p
W d+ν

p (D)
) = E(‖X‖pLp(D)) +

∑

|α|=d

E

(
∫

D×D

|∂αX(x)− ∂αX(y)|p

|x− y|n+νp
dx dy

)
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is finite, and therefore there exists Ω′ ∈ F with P (Ω′) = 1 such that X(ω) ∈ W d+ν
p (D) for

all ω ∈ Ω′. Consider as continuous modification of X the random field X̃ := 1Ω′X, where
1Ω′ is the indicator function of Ω′. By the Sobolev embedding theorem 2.2, we get that
X̃(ω) ∈ C̄t(D) for all ω ∈ Ω and all t < d + ν − n/p. Since 0 < ν < min{(n + ǫ)/p, 1} was
arbitrary, the claim follows. �

We remark that 1−n/p is positive only for p > n. In the case that n ≥ p, we obtain in The-
orem 3.1 only lower sample differentiability order ⌊t⌋ than the assumed weak differentiability
order d.

Remark 3.3. The assumptions in Theorem 3.1 can be weakened. If d 6= 0, it is sufficient
that (1) holds for |α| = d, and that X has a continuous modification as provided by Theo-
rem 2.3.1 in [10] under the assumption that (1) holds for α = 0 and some ǫ > 0.

We apply Theorem 3.1 in the following example to a Brownian motion on the interval,
recovering the classical property of Hölder continuity with exponent γ < 1/2.

Example 3.4. If X is a Brownian motion on the interval [0, T ] ⊂ R
1, T < +∞, then

Assumption (1) is satisfied for α = 0, any p ≥ 2, and ǫ = p/2 − 1. Thus X admits a
modification that is locally of class C̄t for any 0 < t < supp≥2(p/2− 1)/p = 1/2, which is the
well-known result.

We are now ready to generalize Theorem 3.1 to random fields on manifolds.

Theorem 3.5. Let M be a Cr n-manifold, r > 0, and let X : Ω×M → R be a random field
on M . Assume that there exist d ∈ N0, p > 1, and ǫ ∈ (0, 1] such that for any chart (U,ϕ)
on M with bounded ϕ(U) ⊂ R

n, there exists Cϕ > 0 such that Xϕ := X ◦ ϕ−1 satisfies that
∂αXϕ ∈ Lp(Ω× ϕ(U)) and

E(|∂αXϕ(x)− ∂αXϕ(y)|
p) ≤ Cϕ |x− y|n+ǫ

for all x, y ∈ ϕ(U) and any multi-index α ∈ N
n
0 with |α| ≤ d. Then X has a modification that

is locally of class C̄t for all t < d+min{ǫ/p, 1− n/p} with t ≤ r.

Proof. To obtain the continuous modification we first construct a locally finite atlas with
coordinate domains that are bounded and of cone type. On each of these charts, a modification
of X is provided by Theorem 3.1. Using a partition of unity we then patch together a
modification of X with the desired properties.

For each x ∈ M , let (Ũx, ϕ̃x) be a chart on M with x ∈ Ũx. Let Dx ⊂ ϕ̃x(Ũx) be an
open ball of positive radius centered at ϕ̃x(x). Define Ux := ϕ̃−1

x (Dx) and ϕx := ϕ̃x|Ux
. Let

A := {(Ux, ϕx) : x ∈ M} be the resulting atlas for M , which we will index by Φ := {ϕ :
(U,ϕ) ∈ A}.

Now, for each (Uϕ, ϕ) ∈ A, the coordinate domain ϕ(Uϕ) is a bounded domain with smooth
boundary, in particular of cone type. With our assumptions on Xϕ, Theorem 3.1 provides a
modification Y ϕ of the random field Xϕ : Ω× ϕ(Uϕ) → R on ϕ(Uϕ), which is locally of class
C̄t for any fixed t < d+min{ǫ/p, 1− n/p}, for each ϕ ∈ Φ.

Let {ψϕ}ϕ∈Φ be a Cr partition of unity subordinate to {Uϕ}ϕ∈Φ, which exists by Proposi-
tion 2.7. Define Y : Ω×M → R by Y :=

∑

ϕ∈Φ ψϕY
ϕ ◦ ϕ. Since the covering {suppψϕ}ϕ∈Φ

is locally finite, the sum is well-defined on a neighborhood of any x ∈ M . Furthermore, Y
is a random field on M because all ϕ ∈ Φ are Cr diffeomorphisms and therefore at least
continuous. Moreover, it is a modification of X by the properties of the partition of unity.
Owing to the fact that r ≥ t, the random field Y is locally of class C̄t. �
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We finish this section with two comments. First, since we only used the assumptions on
the random field on the charts to apply Theorem 3.1, it is clear that Remark 3.3 carries over
to Theorem 3.5. Second, for an example of random fields on manifolds, we refer the reader to
[12]. Therein, isotropic Gaussian random fields on the unit sphere in R

3 are considered and
sample regularity is obtained by direct calculations.
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stitut, Åarhus, 1991.

[10] Davar Khoshnevisan. Multiparameter Processes. An Introduction to Random Fields. Springer Monographs
in Mathematics. Springer, New York, 2002.

[11] Wilhelm P. A. Klingenberg. Riemannian Geometry, volume 1 of de Gruyter Studies in Mathematics.
Walter de Gruyter & Co., Berlin, second edition, 1995.

[12] Annika Lang and Christoph Schwab. Isotropic Gaussian random fields on the sphere: regularity, fast
simulation, and stochastic partial differential equations. arXiv:1305.1170 [math.PR], SAM Report 2013-
15, 2012.

[13] Serge Lang. Fundamentals of Differential Geometry, volume 191 of Graduate Texts in Mathematics.
Springer, New York, 1999.

[14] Jeffrey M. Lee. Manifolds and Differential Geometry, volume 107 of Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI, 2009.
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