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EFFICIENT CONVOLUTION BASED IMPEDANCE BOUNDARY CONDITION

ALBERTO PAGANINI∗ AND MARÍA L ÓPEZ-FERŃANDEZ†

Abstract. We consider an eddy current problem in time-domain and rely on impedance boundary conditions on
the surface of the conductor(s). We assume additional translational symmetries and, with a ”method of lines policy”
in mind, we pursue a semi-discretization in space by a finite element Ritz-Galerkin discretization. The resulting set
of Volterra integral equation in time is discretized by means of Runge-Kutta convolution quadrature(CQ) focusing
on fast and oblivious implementations. The final algorithm is validated by several numerical experiments.
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1. Introduction. Due to the skin effect, alternating electromagnetic fields decay expo-
nentially when penetraiting a good conductor. In transienteddy current problems this prop-
erty can be exploited by modelling the conductor with the well-known Leontovich boundary
condition (Senior 1960, De Santis, Cruciani, Feliziani andOkoniewski 2012). In frequency
domain, lowest order impedance boundary condition involves a multiplication of the fields
with a frequency dependent term. This multiplication becomes a convolution in time domain,
when harmonic oscillations of the fields can not be assumed.

Since convolution is generically non-local in time, developing a stable and memory ef-
ficient discretization becomes a challenge. In (Oh and Schutt-Aine 1995) this issue has been
tackled in the context of FDTD methods. There the Laplace transform of the convolution
kernel is approximated via a truncated series expansion andthen an approximated impedance
boundary condition in time domain is derived.

As an alternative C. Lubich developed the so-called Convolution Quadrature method
(CQ) in (Lubich 1988a, Lubich 1988b, Lubich and Ostermann 1993). It requires only knowl-
edge of the Laplace transformK(s) of the convolution kernelk(t) and enjoys excellent con-
vergence and stability properties both for computing convolutions and solving Volterra con-
volution equations (Banjai, Lubich and Melenk 2011). Finally a fast “oblivious” algorithm for
approximate CQ (FOCQ) with considerably reduced memory requirements was presented in
(Schädle, López-Fernández and Lubich 2006).

In this paper we demonstrate how the FOCQ can be applied for the efficient temporal dis-
cretization of eddy current problems that involve impedance boundary conditions. Discretiza-
tion in space relies on finite elements. The eventual scheme inherits the algebraic convergence
in timestep size and meshwidth, respectively, of both discretizations. Thanks to FOCQ it is
unconditionally stable and the computational cost scales almost linearly with the number of
timesteps.

2. Eddy Current model. We consider a linear transient eddy current problem with a
conductor occupying the bounded and connected polyhedronΩC ⊂ R3. In frequency domain
at fixed angular frequencyω > 0 the Leontovich boundary condition reads (Senior 1960,
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De Santis et al. 2012)

(Ĥ× n)(x) =
√
iωσ(x)

µ(x)
Êt(x) , x ∈ Γ , (2.1)

wheren : Γ → R3 is the exterior unit normal vector field on the conductor surfaceΓ, and
Ĥ andÊ denote the complex amplitudes of the magnetic and electric field, respectively, and
Êt := (n × Ê) × n is the tangential component. The material coefficientsµ (magnetic
permeability) andσ (conductivity) are uniformly positive, but may vary in space.

Assuming that all fields vanish fort ≤ 0, from (2.1) we derive the followingtransient
impedance boundary conditionfor the time-dependent fields

H(x, t)× n(x) =
∫ t

0

η(x)k(t− τ)Et(x, τ) dτ , t ≥ 0 , x ∈ Γ , (2.2)

with a uniformly positive functionη(x) :=
√
σ(x)µ(x)−1, x ∈ Γ, and aconvolution kernel

k : Γ× R+ → R, whose temporal Laplace transform is given by

K(s) := (Lk(·))(s) =
√
s , s ∈ C \ (−∞, 0) . (2.3)

For the sake of brevity we adopt the “operational calculus notation” for (2.2) (Lubich 1988a),
expressing it asH× n = ηK(∂t)Et.

With a finite element discretization in mind we artificially truncate the fields to a simple
bounded computational domainΩ ⊂ R

3 with ΩC ⊂ Ω. Then, the evolution of the (scaled)
electromagnetic fields inD := Ω \ ΩC is governed by the following initial-boundary value
problem that we consider up to a fixed final timeT > 0:

curl curlE = j(x, t) , divE = 0 in D×]0, T [ , (2.4a)

curlE× n = η(x)K(∂t)Et onΓ×]0, T [ , (2.4b)

curlE× n = 0 on∂Ω×]0, T [ , (2.4c)

E(·, 0) = 0 onD . (2.4d)

This is the so-calledE-based formulation of an eddy current problem (Alonso-Rodriguez and
Valli 2010, Sect. 2.1). The zero divergence condition onE in (2.4a) should be regarded as a
gauging, which ensures uniqueness of the electric field insideD. The right hand sidej stands
for a solenoidal source current supported insideD that engenders an exciting magnetic field.

Remark.In the case of translational symmetry we end up with the so-called TM/TE eddy
current models that give rise to boundary value problems fora single scalar unknown, e.g.,

−∆u = f in D̃×]0, T [ , (2.5a)

gradu · ñ = η(x̃)K(∂t)u on Γ̃×]0, T [ , (2.5b)

u = 0 on∂Ω̃×]0, T [ , (2.5c)

u(·, 0) = 0 on D̃ , (2.5d)

where the scalar unknownu = u(x̃, t) represents a single component of the electric field and
the ˜ tags two-dimensional cross-sections of the domains/boundaries. In Section 7 we report
numerical results for this dimensionally reduced model.
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3. Spatial discretization. Adopting the “method of lines policy” an approximation of
(2.4) is obtained by discretizing in space first, followed bya suitable discretization in time.
We rely on a finite element Galerkin discretization in space,starting from the variational
formulation: seekE = E(t) ∈ H(curl, D) and a “dummy potential”V ∈ H1

Γ(D) := {v ∈
H1(D) : v |Γ = 0}, such that

∫
D

curlE · curlE′ dx +
∫
D

E′ · grad V dx + K(∂t)
∫
Γ

ηEt ·E′
t dS =

∫
D

j · E′ dx ,
∫
D

E · gradV ′ dx −
∫
D

V V ′ dx = 0 ,

(3.1)

for all E′ ∈ H(curl, D), V ′ ∈ H1
Γ(D). Note that a prioriV = 0 is known asdiv j = 0.

We equipD with a (tetrahedral and hexahedral) finite element mesh, approximateE by
means of lowest order edge elements (Hiptmair 2002, Section3.2), andV by means of piece-
wise (bi-)linear continuous functions. Using the standardlocally supported basis functions
for these finite element spaces along with mass lumping for theL2-inner product occurring
in (3.1), we end up with the linear evolution problem

Cµ(t) + GT ψ(t) + K(∂t)Bµ(t) = ϕ(t) ,
Gµ(t) − Dψ(t) = 0 .

(3.2)

Hereµ(t),ψ(t) are the time-dependent basis coefficient vectors for the approximations ofE
andV , respectively, and

ϕ(t) :=

(∫

D

j(t) · φ1
h dx, . . . ,

∫

D

j(t) · φM
h dx

)T

,

with φi
h, i = 1, . . . ,M , denoting the basis of the edge element space. The matricesC, G,

B, andD are the sparse Galerkin matrices arising from the various bilinear forms in (3.1),
whereD is diagonal thanks to mass lumping (Hiptmair 2002, Section 6.1).

Thus an elimination ofψ(t) becomes feasible and we end up with the Volterra integral
equation inRM

(C+GTD−1G)︸ ︷︷ ︸
=:A

µ(t) +K(∂t)Bµ(t) = ϕ(t) , (3.3)

with A ∈ RM,M symmetric positive definite, and symmetric positive semi-definite B ∈
RM,M . In particular both matrices are sparse andB acts only on the boundary degrees of
freedom.

Remark.Spatial discretization of (2.5) is easier: testing withH1
∂Ω̃

(D̃) functions, the vari-
ational formulation of (2.5) reads

∫

D̃

gradu · grad v dx+K(∂t)

∫

Γ̃

η u v dS =

∫

D̃

f v dx for all v ∈ H1
∂Ω̃

(D̃) . (3.4)

A Ritz-Galerkin discretization of (3.4) by piecewise linear Lagrangian finite elements leads
to a system of integral equations

Aµ(t) +K(∂t)Bµ(t) = ϕ(t) for t ∈]0, T [ , (3.5)

where the vectorµ(t) ∈ RM contains the time-dependent coefficients of an approximation
in space ofu with respect to the finite element basis.
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4. Convolution quadrature (CQ). The Convolution Quadrature (CQ) is based on
Runge-Kutta methods and approximates the continuous convolution

K(∂t)g :=

∫ T

0

k(t− τ)g(τ) dτ (4.1)

at the timeT = (N + 1)∆t with the last component of the discrete convolution vector

(
K(∂∆t)g

)(N)
:=

N∑

j=0

WN−jgj , (4.2)

where the entries of the vector

gj := (g(tj + c1∆t), . . . , g(tj + cm∆t))T ∈ R
m (4.3)

are the values of the functiong at the Runge–Kutta internal times attj := j∆t.
In this article we consider the family ofm-stage RadauIIA methods (Hairer and Wanner

2010, Chapter IV.5) as underlying Runge-Kutta method because it has become the standard
choice for CQ.

The CQ requires only the knowledge of the Laplace TransformK(s) of the convolution
kernelk(t), which is assumed to be analytic in the sector

Σ(ϕ, σ) := {s ∈ C : |arg(s− σ)| < π − ϕ, with ϕ <
1

2
π andσ ≥ 0} . (4.4)

The convolution weightsWn ∈ Rm,m are defined by the power series expansion (Lubich
and Ostermann 1993, Section 2)

∞∑

n=0

Wnζ
n := K

(
∆(ζ)

∆t

)
, ∆(ζ) :=

(
Oι+ ζ

1− ζ
1bT

)−1

, (4.5)

whereOι is the Runge–Kutta coefficient matrix,bT is the Runge-Kutta weight vector and
1 = (1, . . . , 1)T .

The convolution weights can be approximated by discretizing the Cauchy integral

Wn =
1

2πi

∫

|ζ|=ρ

ζ−1−nK

(
∆(ζ)

∆t

)
dζ ,

≈ ρ−n

L

L−1∑

ℓ=0

K

(
∆(ρe2πiℓ/L)

∆t

)
e−2πinℓ/L , (4.6)

with 0 < ρ < 1 (Lubich and Ostermann 1993, Section 2). An error of magnitudeO(
√
ε),

whereε stands for the machine precision, can be easily achieved by choosingρ ≈ 2N
√
ε and

the number of quadrature poinsL = N (Lubich 1988b, Section 7).
The CQ is also efficient in solving Volterra convolution equations (Banjai et al. 2011). A

discretization of (3.3) is achieved by “evaluating” the coefficient vectorµ(t) at the Runge–
Kutta internal times and by introducing the vectors

µ̃i ≈ (µ(ti + c1∆t), · · · ,µ(ti + cm∆t))T ∈ R
mM .

Replacing the continuous convolution with Runge–Kutta CQ turns (3.3) into the linear im-
plicit scheme

(Im ⊗A) µ̃i +

i∑

j=0

(Wi−j ⊗B) µ̃j = ϕ̃i for i = 0, .., N , (4.7)
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where⊗ is the Kronecker product,Im ∈ Rm,m is the identity matrix and

ϕ̃i := (ϕ(ti + c1∆t), . . . ,ϕ(ti + cm∆t))T .

The solution vectors̃µi are then recursively given by

(Im ⊗A+W0 ⊗B) µ̃i = ϕ̃i −
i−1∑

j=0

(Wi−j ⊗B) µ̃j , (4.8)

with i = 0, . . . , N . The lastM entries ofµ̃N are an approximation in time of algebraic
ordermin(2m − 1,m + 1) of the exact solutionµ(T ), see (Hiptmair, Paganini and López-
Férnandez 2013, Lemma 4.1).

Note that at the iteration timei all terms in the right handside of (4.8) are explicitely
known. Note also that the indices of the summands shift as theiteration time increases. Hence
to recover an approximation of (3.3) at the final timeT = (N + 1)∆t with a naive imple-
mentation all the vectors̃µi must be stored andO(N2) multiplications must be computed.

5. Fast and oblivious convolution quadrature (FOCQ). A fast and oblivious Runge–
Kutta based CQ (FOCQ) has been developed in (Schädle et al. 2006). Its key ingredient is the
integral representation

Wn =
h

2πi

∫

γ

K(λ)En(hλ) dλ (5.1)

of the convolution weights. The contourγ has increasing imaginary part and lies in the ana-
lyticy region ofK (see Figure 5, left) and to the left of the poles of the matrix function

En(z) := R(z)n−1(Im − zOι)−1
1bT (Im − zOι)−1 .

Here

R(z) := 1 + zbT (Im − zOι)−1
1

denotes the stability function of the underlying Runge–Kutta method andIm ∈ R
m,m is the

identity matrix.
Choosing a suitable parametrization ofγ, the contour representation (5.1) can be approx-

imated by means of the composite trapezoidal rule with an exponentially small error when
n > n0

1, see (López-Fernández, Lubich, Palencia and Schädle 2005, Theorem 3). Although
the optimal choice of the contour depends on the indexn, the same contour can be used for a
range of convolution weightsWn whose indicesn belong to a geometrically growing interval
of the form[Bℓ−1, Bℓ], for some prescribed ratioB > 1 and . Thus, with a clever choice of
the parameters, few contoursΓℓ are enough for computing all the convolution weights with
a target accuracyε using a the same number of quadrature nodes on all contours (see Figure
5.2).

In practice the contours are parametrized as the left branchof a hyperbola

R → Γ : x 7→ γ(x) := µ (1− sin(α+ ix)) + σ , (5.2)

whose parametersµ > 0 and0 < α < π
2 − ϕ are chosen accordingly to (López-Fernández,

Palencia and Schädle 2006, Section 4) andϕ andσ from (4.4) (see Figure 5).

1The approximation is poor for the the first fewWn which will be thus computed with (4.6).
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FIG. 5.1. Left:Contourγ for the convolution weight representation formula(5.1). Right: Particular of trun-
cated left branch of hyperbolae for different contours withB = 10, NQ = 10 and∆t = 0.25. The circles indicates
the position of the quadrature nodes. Note that asℓ increases the nodes become closer.
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FIG. 5.2.Convolution weight approximation error in the Euclidean norm of (5.1) for the2-stage RadauIIA
method withγ as in (5.2) by composite trapezoidal rule discretization withNQ quadrature nodes. With different
contours and a clever choice of the contour parameters the error can be made uniformly small forn > n0.

By introducing a strongly monotone decreasing sequence(bℓ)
⌈logB n⌉
ℓ=0

2 of real values so
that b0 = n, b⌈logB n⌉ = 0 andn − j ∈ [Bℓ−1, Bℓ] for j ∈ [bℓ, bℓ−1 − 1], the convolution
quadrature (4.2) can be rearranged in

(
K(∂∆t)g

)(n)
= W0gn +

⌈logB n⌉∑

ℓ=1

U(ℓ)
n , (5.3)

where

U(ℓ)
n :=

bℓ−1−1∑

j=bℓ

Wn−jgj =

bℓ−1−1∑

j=bℓ

∆t

2πi

∫

Γℓ

K(λ)En−j(∆tλ)gj dλ .

2By ⌈logB n⌉ we denote the smallest integer not less thanlogB n. An explicit pseudo–code for computing this
sequence is given in (Schädle et al. 2006, Section 4.1)
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Note that for eachU(ℓ)
n we choose a suitable contourΓℓ. By sorting the sum and defining

y(bℓ−1, bℓ, λ) :=

bℓ−1−1∑

j=bℓ

∆tR(∆tλ)(bℓ−1−1)−jbT (Im −∆tλOι)−1gj , (5.4)

we have

U(ℓ)
n =

1

2πi

∫

Γℓ

K(λ)R(∆tλ)n−bℓ−1(Im −∆tλOι)−1
1y(bℓ−1, bℓ, λ) dλ ,

≈
NQ∑

j=−NQ

ω
(ℓ)
j R(∆tλ

(ℓ)
j )n−bℓ−1(Im −∆tλ

(ℓ)
j Oι)−1

1y(bℓ−1, bℓ, λ
(ℓ)
j ) . (5.5)

The last step stands for a trapezoidal rule approximation ofthe contour representation ofU(ℓ)
n

with 2NQ − 1 quadrature nodes. The trapezoidal rule weightsω
(ℓ)
j and the trapezoidal rule

nodesλ(ℓ)j are given by

ω
(ℓ)
j =

iτ

2π
γ′ℓ(τj), λ

(ℓ)
j = γℓ(τj),

where the parameterτ is adapted toµ andα in (López-Fernández et al. 2006, Section 4).
Note that (5.4) can be computed in parallel for the differentcontours with the recursive

formula
{
y(b, b, λ) = 0 for b ∈ N,

y(k + 1, b, λ) = R(∆tλ)y(k, b, λ) + ∆tbT (Im −∆tλOι)−1gk for k ≥ b.
(5.6)

Thus, by exploiting the good approximation of the convolution weights along hyperbolae,
eachU(ℓ)

n can be approximated as in (5.5) inO(n log(1/ε)) effort, whereε is the target
accuracy and the complexityn is only due to the computation of (5.6).

The FOCQ is very effective in the context of Volterra equations and its application to
(4.8) is the central topic of the next section. Basically, rearranging the sum in (4.8) as in (5.3)
and updating the values of (5.4) with (5.6) as the iteration index of (4.8) increases from0 to
N reduce the computational effort and the memory requirements toO(N logN log(1ε )) and
to O(logN log(1ε )) respectively (Schädle et al. 2006). The additional perturbation error due
to the convolution weight approximation along hyperbolae can be controlled byε (Hiptmair
et al. 2013, Section 5.2) and in practice the same convergence of the CQ is observed.

6. Algorithm. From (4.8) it is clear that the algorithm can be implemented in a direct
way. The computational domainD is equipped with a (tetrahedral and hexahedral) finite
element mesh. Precomputing the matricesA andB from (3.3) andW0 as in (4.6), we can
define and store the sparse matrix

M := Im ⊗A+W0 ⊗B ∈ R
mM,mM , (6.1)

whereM is the size of the finite element space andm is the number of stages of the underlying
Runge–Kutta method. We can then rewrite (4.8) as the linear system

M µ̃i = ϕ̃i −
i−1∑

j=0

(Wi−j ⊗B) µ̃j for i = 0, .., N . (6.2)
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Algorithm 1 naive implementation
1: create a spatial mesh and assembleA,B from (3.3)
2: set∆t := T/(N + 1)
3: computeM from (6.1)
4: for i = 0 : N do
5: computeWi with (4.6)
6: computeoldconv :=

∑i−1
j=0 (Wi−j ⊗B) µ̃j

7: solve the linear systemM µ̃i = ϕ̃i − oldconv

8: end for

Algorithm 1 shows how (6.2) can be solved with a naive implementation. At each iter-
ation we have to compute the partial convolution in step 6. Since the matrixB represents
an integration on the conductor boundaryΓ, this convolution can be restricted to the entries
of µ̃i related to the conductor boundary nodesΓh. By assuming that the time necessary for
solving themM×mM sparse linear system isC1(mM) we conclude that the computational
time of Algorithm 1 is asymptotically

C1(mM) ·N + C2 ·#Γh ·N2 , (6.3)

where#Γh denotes the number of nodes on the conductor boundary.
The naive implementation can be accelerated by exploiting FOCQ when the iteration

time i > n0. As already anticipated, the idea is to split the computation ofoldconv in step 6
of Algorithm 1 into logarithmically few termsO(ℓ)

n as in (5.3). Each of these requires only the
values of (5.4), which are computed through (5.6) and whose inputs are given by the sequence
(biℓ)

⌈logB i⌉
ℓ=0 . Since the values of the sequence change in a non-linear way as the iteration time

i increases, it is more convenient to pre-compute all the different sequences at the beginning.

Algorithm 2 fast implementation
1: create a spatial mesh and assembleA,B from (3.3)
2: set∆t := T/(N + 1)
3: computeM from (6.1)
4: for i = 0 : N do
5: compute(biℓ)

⌈logB i⌉
ℓ=0

6: end for
7: for i = 0 : n0 do
8: computeWi with (4.6)
9: computeoldconv :=

∑i−1
j=0 (Wi−j ⊗B) µ̃j

10: solve the linear systemM µ̃i = ϕ̃i − oldconv

11: updatey{i} with (5.6)
12: end for
13: for i = n0 + 1 : N do
14: for ℓ = 1 : ⌈logB i⌉ do
15: computeO(ℓ)

i :=
∑bℓ−1−1

j=bℓ
(Wi−j ⊗ IM ) µ̃j with (5.5)

16: end for
17: computeoldconv := (Im ⊗B)

∑⌈logB i⌉
ℓ=1 O

(ℓ)
i

18: solve the linear systemM µ̃i = ϕ̃i − oldconv

19: updatey{i} with (5.6)
20: end for
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Combining this knowledge with (5.6), we can start computingthe values ofy(bℓ−1, bℓ, λ)
from the beginning for all contoursℓ and store them in a structy{i}. From (5.6) is clear that
updating the values ofy{i} as the algorithm runs requires only the knowledge of the values
stored iny{i− 1}. Since only logarithmic few contours come into play, this strategy reduces
the active memory requirements toO(logB N).

The fast implementation is summarized in Algorithm 23. Since the approximation (5.5)
is poor for the first few weights, for the firstn0 iterations we rely on a naive implementation.
Note that in order to reduce the memory requirements we already start updatingy{i}. The
computational complexity of these first steps is negligiblebecause in practicen0 ≪ N . From
lines 13-20 it is then clear that the computational complexity of Algorithm 2 is proportional
to

C1(mM) ·N + C2 ·#Γh ·N logB(N) . (6.4)

7. Numerical Experiments. In our numerical tests we consider (2.5). We chooseD̃ to
be an annulus around the origin with radii 0.5 and 2 and we fixT = 4. The source function is
included by imposing the Dirichlet boundary conditiong(x, y, t) := 32

105
√
π
t7/2 + t3

6 log(4)

on∂Ω̃. The analytical solution is then

u(x, y, t) :=
32

105
√
π
t7/2 +

t3

6

(
1

2
log(x2 + y2) + log(2)

)
. (7.1)

In the implementation we opt for linear Lagrangian finite elements on triangular meshes
with nodal basis functions4. For the FOCQ range parameter we chooseB = 10 while the
hyperbola parameters are chosen accordingly to (López-Fernández et al. 2006, Section 4).

A first numerical test is performed by choosing the FOCQ basedon the implicit Euler
method, which is the 1-step RadauIIA method (FOCQ of order 1). For 6 different spatial grids
and 12 different time steps we measured the error in the time-discrete norm

‖u(t,x)‖2
ℓ2
∆t

([0,4],H1(D̃))
:= ∆t

N∑

n=1

‖u(tn,x)‖2H1(D̃)

as well as theL2(D̃)-error in space5 at a fixed timet = 4. The spatial triangular meshes have
been created through uniform refinement while the timestepsby repetitively halving an initial
timestep.

The expected linear algebraic convergence both in time and space in the
ℓ2∆t([0, 4], H

1(D̃))-norm is observed in Figure 7.1 (left). The rates of algebraic convergence
become more conspicuous when we examine theL2(D̃)-norm in space at a fixed time, where
we have quadratic convergence in space; see figure 7.1 (right).

The impact of the FOCQ on the algorithm is investigated in Figure 7.2 (left). We consider
the fourth finest spatial grid and the timestep∆t = 2−8 (see the dots in Figure 7.1) and
we compute the error in theL2(D̃)-norm in space at a fixed time for different numbers of
quadrature nodesNQ on the contours. We see that few quadrature nodes on the contours
are enough to make negligible the perturbation error due to the FOCQ approximation of the
convolution weightsWi.

3The pre-computation of the sequences in steps 4-6 is not strictly necessary. In (Schädle et al. 2006, Section 4.1)

is given a pseudo–code for updatingy{i} that does not require a priori knowledge of(bℓ)
⌈logB i⌉
ℓ=0

.
4The experiments are perfomed in MATLAB and are based on the library LehrFEM developed at the ETHZ.
5Both theH1(D̃)- and theL2(D̃)-norm are computed approximately with 7 point quadrature rules on triangles.
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FIG. 7.1.Error in the ℓ2
∆t
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coupling of FEM and FOCQ base on the implicit Euler method. The two dots denote the spatial mesh and timestep
used in Figure 7.2 (left).
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FIG. 7.2. Left:Impact of FOCQ on the total error in theL2(D̃) at a fixed timet = 4 (right) for the coupling
of FEM and FCQ base on the implicit Euler method.Right: Cpu time in seconds versus the number of time steps for
Algorithms 1 and 2.

In Figure 7.2 (right) we compare the time required for solving (2.5) with the Algorithms
1 and 2. We see that the growth of the computation time coincides asymptotically with the
theoretical growths (6.3) and (6.4).

We perform a second numerical test and this time the convolution is approximated by
using the FOCQ based on the 2-stage RadauIIA method (FOCQ of order 3). Again we mea-
sure both theℓ2∆t([0, 4], H

1(D̃))-error and theL2(D̃)-error in space at a fixed timet = 4
for several meshes and timesteps. We expect that the convolution quadrature error contributes
to the total error with a cubic algebraic rate in∆t. This is only partially confirmed by the
experiment because the total error is almost always dominated by the discretization error in
space, as we can see in Figure 7.3.

8. Conclusion. We have investigated a numerical scheme for solving the eddycurrent
problem (2.4). The scheme has computational complexityO(N logN), whereN denotes the
number of timesteps, and inherits the stability propertiesof the convolution quadrature. For
spatial and temporal discretization error we have observedalgebraic decay in terms of mesh
width and timestep size, respectively. The error due to the fast and oblivious approximation
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FIG. 7.3.Error in the ℓ2
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([0, 4],H1(D̃))-norm (left) and in theL2(D̃) at a fixed timet = 4 (right) for the
coupling of FEM and FOCQ based on the 2-stage RadauIIA method.

decays exponentially in a discretization parameter and is negligible compared to the other
error contributions. For an a priori convergence analysis of a fully discrete oblivious finite
element CQ for transient eddy current problems we refer the reader to (Hiptmair et al. 2013).
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A. Schädle, M. López-Fernández and C. Lubich (2006), ‘Fast and oblivious convolution quadrature’,SIAM J. Sci.
Comput.28(2), 421–438 (electronic).

T. Senior (1960), ‘Impedance boundary conditions for imperfectly conducting surfaces’,Applied Scientific Research,
Section B8, 418–436. 10.1007/BF02920074.

11



Recent Research Reports

Nr. Authors/Title

2012-40 D. Schoetzau and C. Schwab and T. Wihler and M. Wirz
Exponential convergence of hp-DGFEM for elliptic problems in polyhedral domains

2012-41 M. Hansen
n-term approximation rates and Besov regularity for elliptic PDEs on polyhedral
domains

2012-42 C. Gittelson and R. Hiptmair
Dispersion Analysis of Plane Wave Discontinuous Galerkin Methods

2012-43 J. Waldvogel
Jost Bürgi and the discovery of the logarithms

2013-01 M. Eigel and C. Gittelson and C. Schwab and E. Zander
Adaptive stochastic Galerkin FEM

2013-02 R. Hiptmair and A. Paganini and M. Lopez-Fernandez
Fast Convolution Quadrature Based Impedance Boundary Conditions

2013-03 X. Claeys and R. Hiptmair
Integral Equations on Multi-Screens

2013-04 V. Kazeev and M. Khammash and M. Nip and C. Schwab
Direct Solution of the Chemical Master Equation using Quantized Tensor Trains

2013-05 R. Kaeppeli and S. Mishra
Well-balanced schemes for the Euler equations with gravitation

2013-06 C. Schillings
A Note on Sparse, Adaptive Smolyak Quadratures for Bayesian Inverse Problems


