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EFFICIENT CONVOLUTION BASED IMPEDANCE BOUNDARY CONDITION

ALBERTO PAGANINI* AND MARIA L OPEZ-FERMINDEZ!

Abstract. We consider an eddy current problem in time-domain and nelynpedance boundary conditions on
the surface of the conductor(s). We assume additionall&témsal symmetries and, with a "method of lines policy”
in mind, we pursue a semi-discretization in space by a fitément Ritz-Galerkin discretization. The resulting set
of Volterra integral equation in time is discretized by meafiRunge-Kutta convolution quadratu(€Q) focusing
on fast and oblivious implementations. The final algoritiswalidated by several numerical experiments.

Key words. eddy current problem, impedance boundary conditions,alatien quadrature, fast and oblivious
algorithms

1. Introduction. Due to the skin effect, alternating electromagnetic fieldsay expo-
nentially when penetraiting a good conductor. In transésitty current problems this prop-
erty can be exploited by modelling the conductor with thelskebwn Leontovich boundary
condition (Senior 1960, De Santis, Cruciani, Feliziani &idniewski 2012). In frequency
domain, lowest order impedance boundary condition inwhlenultiplication of the fields
with a frequency dependent term. This multiplication beesm convolution in time domain,
when harmonic oscillations of the fields can not be assumed.

Since convolution is generically non-local in time, deyeig a stable and memory ef-
ficient discretization becomes a challenge. In (Oh and $c¢kine 1995) this issue has been
tackled in the context of FDTD methods. There the Laplacesfiaam of the convolution
kernel is approximated via a truncated series expansiothamdan approximated impedance
boundary condition in time domain is derived.

As an alternative C. Lubich developed the so-called ConiariuQuadrature method
(CQ) in (Lubich 1988, Lubich 198®, Lubich and Ostermann 1993). It requires only knowl-
edge of the Laplace transforfi(s) of the convolution kernet(¢) and enjoys excellent con-
vergence and stability properties both for computing cduti@mns and solving Volterra con-
volution equations (Banjai, Lubich and Melenk 2011). Hiynalfast “oblivious” algorithm for
approximate CQ (FOCQ) with considerably reduced memoryirements was presented in
(Schadle, Lopez-Fernandez and Lubich 2006).

In this paper we demonstrate how the FOCQ can be applieddaftitient temporal dis-
cretization of eddy current problems that involve impedagnaundary conditions. Discretiza-
tion in space relies on finite elements. The eventual schehegits the algebraic convergence
in timestep size and meshwidth, respectively, of both diszations. Thanks to FOCQ it is
unconditionally stable and the computational cost scdlasst linearly with the number of
timesteps.

2. Eddy Current model. We consider a linear transient eddy current problem with a
conductor occupying the bounded and connected polyhédiroa R?. In frequency domain
at fixed angular frequency > 0 the Leontovich boundary condition reads (Senior 1960,
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De Santis et al. 2012)

(Hxn)(x) = ' E(zx), zeTl, (2.1)

wheren : I' — R3 is the exterior unit normal vector field on the conductor acef”, and
H andE denote the complex amplitudes of the magnetic and eleattit, fiespectively, and
E, = (n x E) x mn is the tangential component. The material coefficigntgnagnetic
permeability) and (conductivity) are uniformly positive, but may vary in sgac

Assuming that all fields vanish fdr< 0, from (2.1) we derive the followingransient
impedance boundary conditidar the time-dependent fields

H(x,t) x n(x) = /Otn(:c)k(t —7)Ei(x,7)dr, t>0, xel, (2.2)

with a uniformly positive functiom(z) := \/o(x)u(x)~1, € T', and aconvolution kernel
k:T x RT™ — R, whose temporal Laplace transform is given by

K(s) == (Lk())(s) = V5, seC\ (~00,0). (2.3)

For the sake of brevity we adopt the “operational calculusainon” for (2.2) (Lubich 1988),
expressing it a¥l x n = nK (9;)E;.

With a finite element discretization in mind we artificiallyhcate the fields to a simple
bounded computational domaih C R? with Qc C Q. Then, the evolution of the (scaled)
electromagnetic fields i := Q \ Q¢ is governed by the following initial-boundary value
problem that we consider up to a fixed final tiffie> 0:

curlcurlE = j(z,t) , divE=0 in Dx]0, T, (2.4a)
curlE x n = n(x)K(0;)E; onI'x]0,T7, (2.4b)
curlE xn =0 onoNxJ0, 77, (2.4c)
E(,0)=0 onD. (2.4d)

This is the so-calle@E-based formulation of an eddy current problem (Alonso-Rpdiz and
Valli 2010, Sect. 2.1). The zero divergence conditiorim (2.42a) should be regarded as a
gauging which ensures uniqueness of the electric field inéld& he right hand sid¢stands
for a solenoidal source current supported inditlthat engenders an exciting magnetic field.
Remarkln the case of translational symmetry we end up with the $ed¢aM/TE eddy
current models that give rise to boundary value problema &ingle scalar unknown, e.g.,

—Au=f in Dx]0,T7], (2.5a)
gradu -7 = n(2)K(,)u onT'x]0, T, (2.5b)
u=0 ond0x]0, 77, (2.5¢)
u(-,0) =0 onD, (2.5d)

where the scalar unknown= u(x, t) represents a single component of the electric field and
the ~ tags two-dimensional cross-sections of the domaiusytharies. In Sectidd 7 we report
numerical results for this dimensionally reduced model.
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3. Spatial discretization. Adopting the “method of lines policy” an approximation of
(2.9) is obtained by discretizing in space first, followedaguitable discretization in time.
We rely on a finite element Galerkin discretization in spatarting from the variational
formulation: seekE = E(t) € H(curl, D) and a “dummy potentialV € HL(D) := {v €
HY(D) : v = 0}, such that

fcurlE curl E'dz + fE’ gradVdz + K(0) ant E,dS [j-Edz,
D
fE gradV'de  — fVV’dcc = 0,
3.1)

forall E' € H(curl, D), V' € H}(D). Note that a priorl/ = 0 is known asliv j = 0.

We equipD with a (tetrahedral and hexahedral) finite element mestroxppateE by
means of lowest order edge elements (Hiptmair 2002, Se8tR)nandl” by means of piece-
wise (bi-)linear continuous functions. Using the standaiglly supported basis functions
for these finite element spaces along with mass lumping fLthinner product occurring
in (3.1), we end up with the linear evolution problem

Cult) + G'o(t) + K@)Bul) = ¢lt), 32)
Gut) — D) = 0. '

Hereu(t), ¥ (t) are the time-dependent basis coefficient vectors for theoappations ofE
andV/, respectively, and

olt) = (/Dj<t>-¢zdm,...,/Dj<t>- %dm>T ,

with ¢!, i = 1,..., M, denoting the basis of the edge element space. The ma€tic€s
B, andD are the sparse Galerkin matrices arising from the varidiirselir forms in [(3.11),
whereD is diagonal thanks to mass lumping (Hiptmair 2002, Sectidi.6

Thus an elimination of)(¢t) becomes feasible and we end up with the Volterra integral

equation inRM

(C+G™D'G) u(t) + K(9)B u(t) = (1), (3.3)
— —
=:A
with A € R™M symmetric positive definite, and symmetric positive seefisite B ¢
RM-M 1n particular both matrices are sparse dhdcts only on the boundary degrees of
freedom.
RemarkSpatial discretization of (2.5) is easier: testing V\Hﬁ ( ) functions, the vari-

ational formulation of{(25) reads

/~gradu-gradvdcc+K(8t)/~nuvdS:/~fvdcc forallveHéﬁ(E). (3.4)
D r D

A Ritz-Galerkin discretization of (314) by piecewise limdagrangian finite elements leads
to a system of integral equations

A p(t) + K(0,)B p(t) = e(t) fort €]0,T7, (3.5)

where the vectop(t) € RM contains the time-dependent coefficients of an approxonati
in space ofu with respect to the finite element basis.
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4. Convolution quadrature (CQ). The Convolution Quadrature (CQ) is based on
Runge-Kutta methods and approximates the continuous taiom

T
K(0)g := /0 k(t —7)g(T) dr 4.1)

at the timel’ = (N + 1) At with the last component of the discrete convolution vector

( aAt ZWN i85 5 (4.2)

where the entries of the vector
g = (g(t; + c1Ab), ..., g(t; + cmAt))T € R™ (4.3)

are the values of the functignat the Runge—Kutta internal timestat:= jAt.

In this article we consider the family @f-stage RadaullA methods (Hairer and Wanner
2010, Chapter IV.5) as underlying Runge-Kutta method beedtuhas become the standard
choice for CQ.

The CQ requires only the knowledge of the Laplace Transfirtrn) of the convolution
kernelk(t), which is assumed to be analytic in the sector

Y(p,0):={seC: |arg(s—o)| <7 —¢, withyp < %w ando > 0} . (4.4)

The convolution weight®,, € R™™ are defined by the power series expansion (Lubich
and Ostermann 1993, Section 2)

angn 1= <A(§)> A(Q) = (a+1é<]1bT)l, (4.5)

where@ is the Runge—Kutta coefficient matrik, is the Runge-Kutta weight vector and
1=(1,...,1)7T,
The convolution weights can be approximated by discregitfie Cauchy integral

_ 1 —1—n A(C)

271'1@/L )
Z K ( )) e—2mn€/L , (46)

with 0 < p < 1 (Lubich and Ostermann 1993, Section 2). An error of mageitQ¢, /=),
wheree stands for the machine precision, can be easily achievetiysingp ~ 23/ and
the number of quadrature poifis= N (Lubich 198®&, Section 7).

The CQ is also efficient in solving Volterra convolution etjoas (Banjai et al. 2011). A
discretization of[(313) is achieved by “evaluating” the ffiméent vectoru(t) at the Runge—
Kutta internal times and by introducing the vectors

ZZ

i, ~ (p(t + el At), - pults + e A)T € R™M

Replacing the continuous convolution with Runge—Kutta @én$ [3.8) into the linear im-
plicit scheme

(L, ® A) uz—i—z W,_;®@B)ji; =@, fori=0,.,N, 4.7)
7=0
4



where® is the Kronecker produci,,, € R™™ is the identity matrix and
@; = (p(ti +c1At), ..., p(t; + cmAt))T .

The solution vectorg, are then recursively given by

i—1

(I ©A+Wo®B)fi; =@, — Y (Wi j@B) iy , (4.8)
j=0
with = 0,..., N. The lastM entries offi, are an approximation in time of algebraic

ordermin(2m — 1,m + 1) of the exact solution(T), see (Hiptmair, Paganini and Lopez-
Férnandez 2013, Lemma 4.1).

Note that at the iteration timeall terms in the right handside df (4.8) are explicitely
known. Note also that the indices of the summands shift aisdtegion time increases. Hence
to recover an approximation df (3.3) at the final tiffie= (V + 1)At with a naive imple-
mentation all the vectorg; must be stored an@(N?) multiplications must be computed.

5. Fast and ablivious convolution quadrature (FOCQ). A fast and oblivious Runge—
Kutta based CQ (FOCQ) has been developed in (Schadle €&Q8) Ats key ingredient is the
integral representation

W, i/K(A)En(hA) dA (5.1)
Y

~ omi

of the convolution weights. The contotithas increasing imaginary part and lies in the ana-
Iyticy region of K (see Figur€l, left) and to the left of the poles of the matuixdtion

E,(z) == R(z)" (I, — zQ)~'1b7(1,, — 2Q)7" .
Here
R(z) :=1+zb"(1,, — 2Q)"'1

denotes the stability function of the underlying Runge-tKumtethod and,,, € R™™ is the
identity matrix.

Choosing a suitable parametrizatiomgthe contour representatidn (b.1) can be approx-
imated by means of the composite trapezoidal rule with ameeptially small error when
n > ndl, see (Lopez-Fernandez, Lubich, Palencia and Scha@®, Zheorem 3). Although
the optimal choice of the contour depends on the indgke same contour can be used for a
range of convolution weight®,, whose indices belong to a geometrically growing interval
of the form[B*~1, BY], for some prescribed ratiB > 1 and . Thus, with a clever choice of
the parameters, few contours are enough for computing all the convolution weights with
a target accuracy using a the same number of quadrature nodes on all contag$-(gure
5.2).

In practice the contours are parametrized as the left brahalnyperbola

R—-T :z—vy(x):=p(l—sin(a+iz))+o, (5.2)

whose parameteys > 0 and0 < o < 7 — ¢ are chosen accordingly to (Lopez-Fernandez,
Palencia and Schadle 2006, Section 4) arahdo from (4.4) (see Figurel5).

1The approximation is poor for the the first f&,, which will be thus computed witti (4.6).
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FIG. 5.1. Left: Contour~ for the convolution weight representation form{&1). Right: Particular of trun-
cated left branch of hyperbolae for different contours with= 10, Ng = 10 and At = 0.25. The circles indicates
the position of the quadrature nodes. Note that ascreases the nodes become closer.
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FiG. 5.2.Convolution weight approximation error in the Euclideanrmoof (5.) for the 2-stage RadaullA
method withy as in (5:2) by composite trapezoidal rule discretization witf, quadrature nodes. With different
contours and a clever choice of the contour parameters ther ean be made uniformly small far > ng.

By introducing a strongly monotone decreasing sequé&m)@j%B "1 B of real values so
thatby = n, biog, »] = 0 andn — j € [B*~*, B for j € [by,by—1 — 1], the convolution
guadrature[(4]2) can be rearranged in

[logp n]
(K(0a08)" = Wogn + > UY, (5.3)
(=1
where
bgfl—l bé 1—
U= Y W, g = Z 27” K(ANEn_;(AtA)g; dX .
j=bs

2By [log 5 n] we denote the smallest integer not less thasy; n. An explicit pseudo—code for computing this
sequence is given in (Schadle et al. 2006, Section 4.1)
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Note that for eaciU'Y) we choose a suitable contoly. By sorting the sum and defining

b[71—1
y(be—1,be, N) = Y AtR(AtN) DB (I, — AtAQ) 'g; (5.4)
Jj=bs
we have
1
U = 5 K(A)R(AtA)be=1(T,,, — AtAQ) M y(by_1,bs, A) dX
o T,
Nq
~ 3 W RAND e (1, - AN Q) T y(be—r, b AY) . (B5)
j=—Nq

The last step stands for a trapezoidal rule approximatidimetontour representation Ufﬁf)
with 2Ng — 1 quadrature nodes. The trapezoidal rule weigl’if% and the trapezoidal rule

nodesklg.f) are given by

i = g e(Th), A = (),

where the parameteris adapted to. anda in (LOpez-Fernandez et al. 2006, Section 4).
Note that[(5.4) can be computed in parallel for the diffex@nttours with the recursive
formula

5.6
y(k+1,b,)) = R(AtA)y(k, b, A) + AtbT (I, — AtAQ)~'g, fork > b. (>6)

{y(b, b,A) =0 forb € N,
Thus, by exploiting the good approximation of the convalntiveights along hyperbolae,
eachUYY can be approximated as i (b.5) (nlog(1/¢)) effort, wheree is the target
accuracy and the complexityis only due to the computation ¢f (5.6).

The FOCQ is very effective in the context of \olterra equasi@and its application to
(@.8) is the central topic of the next section. Basicallgrranging the sum i (4.8) as in (b.3)
and updating the values ¢f(5.4) with (b.6) as the iteratimtek of [4.8) increases fromto
N reduce the computational effort and the memory requiresier® (N 1ogNlog(é)) and
to O(logNlog(%)) respectively (Schadle et al. 2006). The additional péstion error due
to the convolution weight approximation along hyperbolae be controlled by (Hiptmair
et al. 2013, Section 5.2) and in practice the same conveeggtbhe CQ is observed.

6. Algorithm. From [4.8) it is clear that the algorithm can be implemented direct
way. The computational domaiP is equipped with a (tetrahedral and hexahedral) finite
element mesh. Precomputing the matrigesind B from (3.3) andW|, as in [4.6), we can
define and store the sparse matrix

M:=1,0A+W,®BecR"MmM (6.1)

wherel is the size of the finite element space amd the number of stages of the underlying
Runge—Kutta method. We can then rewiiite|(4.8) as the linesies

i—1
M, =@, - (Wi ;@B)fp; fori=0,.,N. (6.2)
j=0



Algorithm 1 naive implementation
1: create a spatial mesh and assendleB from (3.3)
s setAt:=T/(N +1)
computeM from (6.1)
:fori=0:Ndo
computeW; with (4.6)
computeoldconv := Y'~( (W,_; ® B) ji,
solve the linear systeoM fi; = ¢, — oldconv
end for

NGO R WD

Algorithm[1 shows how{{€]2) can be solved with a naive impletaton. At each iter-
ation we have to compute the partial convolution in step icSithe matrixB represents
an integration on the conductor boundarythis convolution can be restricted to the entries
of i, related to the conductor boundary nodgs By assuming that the time necessary for
solving them M x mM sparse linear system(3; (m ) we conclude that the computational
time of Algorithm[1 is asymptotically

Ci(mM) - N + Cy - #T,, - N? | (6.3)

where#I'; denotes the number of nodes on the conductor boundary.

The naive implementation can be accelerated by exploit@@® when the iteration
timei > ng. As already anticipated, the idea is to split the computetitoldconv in step 6
of Algorithm[d into logarithmically few term(;)ﬁf) as in [5.3). Each of these requires only the
values of[[5.14), which are computed throughl5.6) and whusets are given by the sequence
(b})gljﬁB ‘1. Since the values of the sequence change in a non-linearshy dteration time
i increases, it is more convenient to pre-compute all theifit sequences at the beginning.

Algorithm 2 fast implementation
1: create a spatial mesh and assendleB from (3.3)

2: setAt :=T/(N +1)

3: computeM from (6.1)

4:fori=0:Ndo

5. compute(bi); 57 !

6: end for

7. fori=0:ngdo

8: computeW; with (4.6)

9:  computeoldcony := Y'—¢ (W;_; @ B) fi;
10:  solve the linear systeoM i, = ¢, — oldconv
11:  updatey{i} with (5.8)

12: end for

13: fori=ng+1: N do

14: for¢=1:[loggi] do

15: computeO!” := ST (Wi @ Ty) oy with (B5)
16:  end for o

17:  computeoldconv := (I,, ® B) ¥,°%# 1 0¥)

18:  solve the linear systemtM 1, = ¢, — oldconv

19:  updatey{:} with (5.8)

20: end for




Combining this knowledge witli (5.6), we can start computivegvalues ofj (by—_1, bg, A)
from the beginning for all contoursand store them in a strugt{i }. From [5.6) is clear that
updating the values qf{i} as the algorithm runs requires only the knowledge of theeslu
stored iny{i — 1}. Since only logarithmic few contours come into play, thisitgtgy reduces
the active memory requirements@{log V).

The fast implementation is summarized in Algoritﬁﬁl gince the approximatiof (3.5)
is poor for the first few weights, for the firag iterations we rely on a naive implementation.
Note that in order to reduce the memory requirements we dyrstart updating/{i}. The
computational complexity of these first steps is negligiideause in practice, < N. From
lines 13-20 it is then clear that the computational compyexd Algorithm 2 is proportional
to

Ci(mM) - N+ Cy - #T'), - Nlogg(N) . (6.4)

7. Numerical Experiments. In our numerical tests we considér (2.5). We chobs®
be an annulus around the origin with radii 0.5 and 2 and wé&'fix 4. The source function is

included by imposing the Dirichlet boundary conditigfx, v, t) := 102%/?t7/2 + % log(4)
ondQ. The analytical solution is then
32 s 3 /1 5 o
t) := t — [ =1 log(2) | . 7.1
u(z, y,t) 05 T6\2 og(z” +y~) + log(2) (7.1)

In the implementation we opt for linear Lagrangian finiteneémts on triangular meshes
with nodal basis functioffs For the FOCQ range parameter we chodse- 10 while the
hyperbola parameters are chosen accordingly to (LopezaRéez et al. 2006, Section 4).

A first numerical test is performed by choosing the FOCQ basethe implicit Euler
method, which is the 1-step RadaullA method (FOCQ of ordgfdy) 6 different spatial grids
and 12 different time steps we measured the error in the diiserete norm

N
2 — 2
Hu(ta X)||Z2At([0'r4]'rH1(f))) = At ZlHu(tna X)HHl(f))

as well as theLQ(f))-error in spad%at a fixed time = 4. The spatial triangular meshes have
been created through uniform refinement while the timedigpspetitively halving an initial
timestep.

The expected linear algebraic convergence both in time apaces in the
¢4,([0,4], H*(D))-norm is observed in Figute 7.1 (left). The rates of algebcanvergence
become more conspicuous when we examindfHé)-norm in space at a fixed time, where
we have quadratic convergence in space; see figure 7.1)(right

The impact of the FOCQ on the algorithm is investigated iruFeg/.2 (left). We consider
the fourth finest spatial grid and the timestap = 2-8 (see the dots in Figufe 7.1) and
we compute the error in thB?(D)-norm in space at a fixed time for different numbers of
quadrature noded/ on the contours. We see that few quadrature nodes on theursnto
are enough to make negligible the perturbation error duked-OCQ approximation of the
convolution weightdw,.

3The pre-computation of the sequences in steps 4-6 is nasimecessary. In (Schadle et al. 2006, Section 4.1)

is given a pseudo—code for updatipg:} that does not require a priori knowledge(bﬁ)yzo(fB i,
“The experimgnts are perfomfd in MATLAB and are based on ltiharly LehrFEM developed at the ETHZ.
5Both theH ! (D)- and theL?(D)-norm are computed approximately with 7 point quadratukesran triangles.
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FiG. 7.1.Error in the ¢4 , ([0, 4], H(D))-norm (eft) and in theL2(D) at a fixed timet = 4 (right) for the
coupling of FEM and FOCQ base on the implicit Euler methode To dots denote the spatial mesh and timestep

used in Figuré 7R (left).
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FIG. 7.2. Left:Impact of FOCQ on the total error in thEQ(ﬁ) at a fixed time = 4 (right) for the coupling
of FEM and FCQ base on the implicit Euler meth&ight: Cpu time in seconds versus the number of time steps for

Algorithmd1 an@P.

In Figure[7.2 (right) we compare the time required for saiB.5) with the Algorithms
and2. We see that the growth of the computation time co@scabymptotically with the
theoretical growthd (613) and (6.4).

We perform a second numerical test and this time the coreolig approximated by
using the FOCQ based on the 2-stage RadaullA method (FOC@lef 8). Again we mea-
sure both the3, ([0, 4], H(D))-error and theL?(D)-error in space at a fixed time= 4
for several meshes and timesteps. We expect that the caiovoduadrature error contributes
to the total error with a cubic algebraic rateAx. This is only partially confirmed by the
experiment because the total error is almost always doetnay the discretization error in
space, as we can see in Figlrd 7.3.

8. Conclusion. We have investigated a numerical scheme for solving the edcent
problem[[Z.4). The scheme has computational compléXity¥ log V), whereN denotes the
number of timesteps, and inherits the stability propexiethe convolution quadrature. For
spatial and temporal discretization error we have obsealgebraic decay in terms of mesh
width and timestep size, respectively. The error due todisednd oblivious approximation
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FiG. 7.3.Error in the £% , ([0, 4], H!(D))-norm (eft) and in theL2 (D) at a fixed timet = 4 (right) for the

coupling of FEM and FOCQ based on the 2-stage RadaullA method

decays exponentially in a discretization parameter anaggigible compared to the other
error contributions. For an a priori convergence analysia fully discrete oblivious finite
element CQ for transient eddy current problems we referghder to (Hiptmair et al. 2013).
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