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Abstract

In the present article, we develop a new functional framework for the study of scalar
wave scattering by objects, called multi-screens, that are arbitrary arrangements of thin
panels of impenetrable materials. From a geometric point of view, multi-screens are a pri-
ori non-orientable non-Lipschitz surfaces. We use our new framework to study boundary
integral formulations of the scattering by such objects.

1 Introduction

Numerical computation of acoustic wave scattering by complex arrangements of panels made
of some sound-soft material is of great interest in applications. It often occurs that some of the
pieces composing such an arrangement have a thickness much smaller than the wavelength,
whereas they are large in the other directions; such pieces of material may then be considered
infinitely thin, and we call them ”screens”.

In this article we aim to study integral equation formulations for strongly elliptic boundary
value problems with particular focus on the scalar Helmholtz equation when a boundary
condition is perscribed on a screen-like object that may consist of several panels. We call
such an object a ”multi-screen” and a typical representative is shown in Figure 2.

Integral equations for acoustic scattering by screens have already been considered in nu-
merous works, such as [1, 2, 3, 9, 10, 11, 12, 13, 14, 20, 21]. These references provide full
description of integral formulation for wave scattering by screens for the case where they can
be described, from a geometrical point of view, as smooth manifolds with (smooth) bound-
ary. In [4], the authors extended these results to the case where only Lipschitz regularity
was assumed for the surface describing the screen. So far though, to our knowledge, it has
always been assumed that the screens where represented by surfaces that are everywhere lo-
cally orientable i.e. the surface posseses two sides in the neighbourhood of any of its point.
Unfortunately this assumption excludes a number of cases, certainly relevant for applications,
where the surface would have three or more branches joining along a curve on the surface,
see, for example, Figure 2.

The surfaces represented in Figure 2 do not belong to the class of Lipshitz manifolds. As a
consequence the result presented in [7, 4] are not directly reusable here. Adapting the results
of [7, 4] to this type of geometry is the main purpose of the present document. Here we focus
on Helmholtz equation. We will adress the case of Maxwell’s equations in a forthcoming work.

∗LJLL Paris 6/Université de Toulouse, ISAE. This work received financial support from Fondation ISAE,
and from the French Ministry of Defense via DGA-MRIS.

†Seminar of applied mathematics, ETH Zürich

1



For multi-screen we are going to recover results very similar to what is already known
in simpler situations: Green’s formula, representation theorem, etc. . . . In many respects the
conventional theory can be adapted by treating the screens as objects of finite thickness, with
one exception however: the jump formulas do not hold in the same form as in Lemma 4.1 of
[7].

In order to establish these results, we need to construct a new functional framework, that
allows to talk about traces on the surface of multi-screens. Buffa and Christiansen, in [4],
also introduced a new functional framework adapted to the study of scattering by standard
Lipschitz screens. The present approach is much different, though. The intuition behind it
is to treat multi-screens as if they had an (infinitesimal) thickness so that, crudely speaking,
they can be viewed as orientable Lipschitz manifolds without boundary, see Figure 1.

Γ

⇒

Γ

Figure 1: A two-dimensional screen structure (black) can be inflated to domain, whose bound-
ary (blue) corresponds to the original screen. Obviously, each point on the screen is associated
with two points on the new surface.

The outline of this article is as follows. In the next section, we provide a precise definition
of a multi-screen. In Section 3, we recall well known results concerning Sobolev spaces and
trace spaces. In Section 4, we introduce Sobolev spaces of functions adapted to multi-screens.
These functions may admit jump across the screens. In Section 5, we define trace spaces
on multi-screens. These new trace spaces, called multi-trace spaces, generalize standard
traces, and their definition guarantees that Green’s formula holds. In Section 6, we introduce
remarkable subspaces of the multi-trace spaces. We also exhibit close relationship between
these remarkable subspaces, and standard trace spaces. In Section 7, we study boundary value
problems set around a multi-screen, with boundary values prescribed at the multi-screen, and
we also provide two useful density results. In Section 8, we introduce and study layer potentials
adapted to multi-screens. We prove an analogue of the representation theorem, jump formulas,
and show that the Dirichlet trace of the single layer potential, and the Neumann trace of the
double layer potentials are isomorphisms.
Remark: Throughout this article, we systematically restrict the analysis to R

d with d = 2
or 3 only.
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Figure 2: Two examples of multi-screen geometries

2 Geometry

Before providing a detailed definition for the geometries that we wish to consider, let us first
recall the definition of a Lipschitz screen in R

3 as proposed by Buffa and Christiansen [4].

Definition 2.1 (Lipschitz screen).
A Lipschitz screen (in the sense of Buffa-Christiansen) is a subset Γ ⊂ R

3 that satisfies the
following properties:

• the set Γ is a compact Lipschitz two-dimensional sub-manifold with boundary,

• denoting ∂Γ the boundary of Γ, we have Γ = Γ \ ∂Γ,

• there exists a finite covering of Γ with cubes such that, for each such cube C, denoting
by a the length of its sides, we have

* if C contains a point of ∂Γ, there exists an orthonormal basis of R3 in which C can
be identified with (0, a)3 and there are Lipschitz continuous functions ψ : R → R

and φ : R2 → R with values in (0, a) such that

Γ ∩ C = { (x, y, z) ∈ C | y < ψ(x), z = φ(x, y) } ,

∂Γ ∩ C = { (x, y, z) ∈ C | y = ψ(x), z = φ(x, y) } ,
(1)

* if C contains no boundary point, there exists a Lipschitz open set Ω ⊂ R
3 such

that we have Γ ∩ C = ∂Ω ∩ C.

The definition of a Lipschitz screen in R
2 is very similar, but simpler. The only difference

compared to Definition 2.1 is that Condition (1) should be replaced by: there is a Lipschitz
continuous function φ : R → R with values in (0, a) and a constant a0 ∈ (0, a) such that

Γ ∩ C = { (x, y) ∈ C | x < a0, y = φ(x) }

and ∂Γ ∩ C = { (x, y) ∈ C | x = a0, y = φ(x) }.
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Now let us focus on potentially more complicated surfaces. In order to propose a conve-
nient definition for surfaces shaped like screen with several branches, we first introduce an
intermediary definition.

Definition 2.2 (Lipschitz partition).
A Lipschitz partition of Rd is a finite collection of Lipschitz open sets (Ωj)j=0...n such that
R
d = ∪n

j=0Ωj and Ωj ∩ Ωk = ∅, if j 6= k.

Definition 2.3 (Multi-screen).
A multi-screen is a subset Γ ⊂ R

d such that there exists a Lipschitz partition of Rd denoted
(Ωj)j=0...n satisfying Γ ⊂ ∪n

j=0∂Ωj and such that, for each j = 0 . . . n, we have Γ ∩ ∂Ωj = Γj

where Γj ⊂ ∂Ωj is some Lipschitz screen (in the sense of Buffa-Christiansen).

Note that a Lipschitz screen, in the sense of Definition 2.1, is a multi-screen. The surfaces
represented in Figure 2 represent multi-screens that are not Lipschitz screens. Besides, the
skeleton ∪j=0...n∂Ωj of a Lipschitz partition (Ωj)j=0...n of Rd is a multi-screen.

A multi-screen is not a priori orientable which makes it more delicate to analyze compared
to a more standard surface such as the boundary of a C∞−domain. For example, a Möbius
strip is a Lipschitz screen in the sense of Buffa and Christiansen, as was pointed out in [4],
although it is not globally orientable.

Figure 3: Möbius strip

Of course, the Möbius strip fits the definition of a multi-screen: as is shown in Figure 4, one
can find a Lipshitz partition that contains the Möbius strip in its skeleton.

Remark 2.4. A multi-screen according to Definition 2.3 may contain points where three
or more ”branches” meet so that, at these points, the multi-screen is not two-sided. This
situation compounds difficulties and forces us to adopt an abstract point of view for concepts
such as trace operators and trace spaces that are more straightforward in other contexts.
Hence part of the present paper will focus on properly defining objects and results that are
already very well known in other classical situations.
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Figure 4: Lipschitz partition with Möbius strip in its skeleton

We end this section by stating precisely what we mean by ”the boundary of a multi-screen”.
If Γ is multi-screen, define int(Γ) as the set of points x ∈ Γ such that there exists a ball Bx

centered at x and a Lipschitz partition R
d = ∪n

j=0Ωj satisfying B ∩ Γ = B ∩n
j=0 ∂Ωj . We set

∂Γ = Γ \ int(Γ).

This definition matches the classical definition of ∂Γ in the case where Γ is a Lipschitz screen
(in the sense of Buffa-Christiansen).

3 Standard functional framework

A significant part of the present article is devoted to extending already well established
results related to Sobolev spaces and their traces to the case where the domain of definition
of the functions under consideration excludes objects whose geometry may be as complex
as in the previous section. Before deriving this extended functional setting though, let us
recall precisely what we regard as ”standard functional framework”, at least in the context
of integral equations for strongly elliptic operators. For further details about the content of
this section, we refer the reader to [15, Chapter 3] or [18, Chapter 2].

In this section, we consider an arbitrary open bounded Lipschitz domain Ω ⊂ R
d, and consider

any Lipschitz screen Γ ⊂ ∂Ω, see Definition 2.1.

3.1 Standard Dirichlet traces

With the conventional notation H1(Ω) = {v ∈ L2(Ω) | ‖v‖2H1(Ω) :=
´

Ω |v|2+|∇v|2 dx <∞ }, as

usual we define H1
0,Γ(Ω) as the closure of C

∞
0,Γ(Ω) := {ϕ ∈ C∞(Ω) | ϕ = 0 in a neighbourhood of Γ }

with respect to the norm ‖ ‖H1(Ω).

The point trace operator τd,Γ : v 7→ v|Γ induces a continuous map from H1(Ω) into L2(Γ),
see [18, Thm. 2.6.8] and [15, Thm. 3.37]. The following definitions of Hilbert spaces are
standard:

H
1

2 (Γ) := { u|Γ | u ∈ H1(Ω) } = Range(τd,Γ) ,

H̃
1

2 (Γ) := { u|Γ | u ∈ H1
0,∂Ω\Γ

(Ω) } ,
(2)

where H1
0,∂Ω\Γ

(Ω) is defined in the same manner as H1
0,Γ(Ω) (as ∂Ω \ Γ is a Lipschitz screen

as well). Customarily, definitions of these spaces are given based on local charts mapping
functions from their respective parameter domains [18, Def. 2.4.1]. This yields “proper
function spaces”.
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There is an alternative angle from which to view H
1

2 (Γ). It relies on the (a priori non-
trivial) result that H1

0,Γ(Ω) = Ker(τd,Γ), see [15, Chap. 3], so that the trace operator τd,Γ

induces an isomorphism from H1(Ω)/H1
0,Γ(Ω) onto H1/2(Γ). Through this isomorphism we

can identify both spaces in the sequel and write

H
1

2 (Γ) = H1(Ω)/H1
0,Γ(Ω) . (3)

In fact thanks to the Lipschitz property of Γ and Sobolev extension theorems this definition
is intrinsic in the sense that H1(R \ Ω)/H1

0,Γ(R \ Ω) yields a Hilbert space with equivalent
norm. Summing, up it is possible to introduce trace spaces as quotient spaces and this is the
approach we are going to pursue in the sequel, because it can cope with multi-screens, which
pose a challenge to chart based techniques.

3.2 Standard Neumann traces

Similar results and definitions hold for Neumann traces. We recall H(div,Ω) = {q ∈ L2(Ω)d |
‖q‖2H(div,Ω) :=

´

Ω |q|2+|div(q)|2 dx < +∞ }, and define H0,Γ(div,Ω) as the closure of C
∞
0,Γ(Ω)

d

with respect to ‖ ‖H(div,Ω).

Denoting by n the normal vector to ∂Ω pointing toward the exterior of Ω, the normal com-
ponent trace operator τn,∂Ω : q 7→ n · q|∂Ω induces a continuous and surjective mapping from
H(div,Ω) onto H−1/2(∂Ω) := H1/2(∂Ω)′ (the dual space to H1/2(∂Ω)), see [18, Thm. 2.7.7]
and [15, Thm. 4.3]. In the usual way we introduce

H− 1

2 (Γ) := { q|Γ | q ∈ H− 1

2 (∂Ω) } ,

H̃− 1

2 (Γ) := { n · p|∂Ω | p ∈ H0,∂Ω\Γ(div,Ω) }.
(4)

where the symbol ”|Γ” in the definition of H−1/2(Γ) should be understood as the restriction
operator in the sense of distributions on ∂Ω. Again, these are “proper function spaces”.

As above, quotient spaces offer an alternative, as we have H0,Γ(div,Ω) = Ker(τn,Γ), so
that the normal trace allows the following identification

H−1/2(Γ) = H(div,Ω)/H0,Γ(div,Ω) = H(div,Rd \ Ω)/H0,Γ(div,R
d \Ω) . (5)

For the remainder of this article we use the quotient space norms induced by (3) and (5) as

norms on H
1

2 (Γ) and H−1/2(Γ), respectively.

4 Domain based function spaces

We now consider the situation where the domain of definition of functions contains a multi-
screen Γ ⊂ R

d, see Definition 2.3. We aim at adapting the result of the previous section to
domains of the form R

d \ Γ. As the geometry is non-standard, we elaborate many details in
order to avoid any ambiguity. First, we focus on domain based functions.

The space H1(Rd \ Γ) will stand for the set of functions u ∈ L2(Rd) such that there exists
p ∈ L2(Rd)d satifying

ˆ

Rd\Γ
udiv(q)dx = −

ˆ

Rd\Γ
p · q dx ∀q ∈ D(Rd \ Γ)d ,
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where, for any open set ω ⊂ R
d, the space D(ω) comprises functions ϕ ∈ C∞(ω) such that

supp(ϕ) ⊂ ω. By definition, we may write p = ∇u|
Rd\Γ (in the sense of distributions on R

d\Γ).
A priori, and this is a crucial observation, we have p 6= ∇u in the sense of distributions on
R
d. We shall equip this space with the scalar product

(u, v)H1(Rd\Γ) :=

ˆ

Rd\Γ
uv dx+

ˆ

Rd\Γ
(∇u|

Rd\Γ) · (∇v|Rd\Γ) dx ∀u, v ∈ H1(Rd \ Γ) . (6)

With this scalar product, it is routine calculus to check that H1(Rd \ Γ) is a Hilbert space.
We equip this space with the norm defined by

‖u‖2
H1(Rd\Γ)

:= ‖u‖2L2(Rd) + ‖p‖2L2(Rd) where p = ∇u|
Rd\Γ .

The space H1(Rd \ Γ) strictly contains H1(Rd) as a non-trivial closed subspace. Indeed the
elements of H1(Rd \Γ) may ”jump” across Γ (a precise definition of ”jumps” will be provided
in §6.2) whereas this is not possible for elements of H1(Rd). In the sequel we shall also denote

H1
loc(R

d \ Γ) = { u ∈ L2
loc(R

d) | ϕu ∈ H1(Rd \ Γ) ∀ϕ ∈ D(Rd) } ,

equipping this space with its classical Frechet topology induced by the semi-norms ‖ ‖H1(K)

for all compact sets K ⊂ R
d, see [17, Chap. 1].

In addition, we consider similar definitions for H(div,Rd \Γ) and Hloc(div,R
d \Γ). For the

scalar product, the operator div replaces the operator ∇. Once again H(div,Rd \ Γ) contains
H(div,Rd) as a strict non-trivial closed subspace.

It is clear how to generalize the previous definitions to the case of functions defined over Ω\Γ
(instead of Rd \ Γ) where Ω is any bounded Lipschitz open set containing Γ.

Proposition 4.1 (Rellich embedding theorem).
Consider any bounded Lipschitz open set Ω ⊂ R

d such that Γ ⊂ Ω. Then H1(Ω \ Γ) is
compactly embedded into L2(Ω).

Proof:

Take a sequence un ∈ H1(Ω \ Γ), n ≥ 0 such that (‖un‖H1(Rd\Γ))n≥0 is bounded. Consider

an open neighbourhood ω0 of Γ such that Γ ⊂ ω0 ⊂ ω0 ⊂ Ω. Consider another open set
ω1 ⊂ R

d such that Γ ∩ ω1 = ∅ and R
d ⊂ ω0 ∪ ω1. Take two smooth cut-off functions ψ0, ψ1

that form a partition of unity subordinated to ω0 ∪ ω1. Clearly ψ1un ∈ H1(Ω) for all n so,
extracting a subsequence if necessary, it may be assumed that (ψ1un)n≥0 converges in L2(Ω).

There remains to show that, up to some extraction, the sequence (ψ0un)n≥0 converges in
L2(Ω). Since ψ0 vanishes in the neighbourhood of ∂Ω, ψ0un can be considered as defined over
all of Rd. Like in Definition 2.3, there exists a Lipschitz partition R

d = ∪n
j=0Ωj such that

Γ ⊂ ∪n
j=0∂Ωj . For each j = 0 . . . n, we have ψ0un|Ωj ∈ H1(Ωj) and the sequence (ψ0un|Ωj )n≥0

admits a subsequence that converges in L2(Ωj). Since (Ωj)j=0...n is a finite family, this
concludes the proof. �

We also need to introduce spaces of functions that vanish in the neighborhood of Γ (such
functions, in particular, do not jump across Γ).

Definition 4.2.

We define H1
0,Γ(R

d) to be the closure in H1(Rd \ Γ) of the set D(Rd \ Γ). We also define

H0,Γ(div,R
d) as the closure in H(div,Rd \ Γ) of the set D(Rd \ Γ)d.
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We do not rely on any trace operator for defining H1
0,Γ(R

d) and H0,Γ(div,R
d). Indeed Γ is not

(a priori) a Lipschitz manifold, hence the trace operator has not been properly defined yet. By
construction H1

0,Γ(R
d) and H0,Γ(div,R

d) are closed subspaces of H1(Rd \Γ) and H(div,Rd \Γ)
respectively.

5 Multi-trace spaces

In the sequel, we shall introduce several types of trace spaces. The first one is a counterpart
of the trace spaces we already introduced in a previous article dedicated to boundary integral
formulations for the scattering by multi-subdomain objects, see [6]. With these spaces, traces
at the boundary of the screen may admit different values depending on which side of the
screen is considered. Taking the cue from (3) and (5), to construct such traces, we use
quotient spaces. We set

H
+ 1

2 (Γ) := H1(Rd \ Γ)/H1
0,Γ(R

d) ,

H
− 1

2 (Γ) := H(div,Rd \ Γ)/H0,Γ(div,R
d) .

(7)

The spaces H
1/2(Γ) and H

−1/2(Γ) will be called Dirichlet and Neumann multi-trace spaces,
respectively. Their elements will be tagged by ,̇ for instance u̇, ṗ, and they are equipped with
the usual quotient space norms ‖ ‖

H±1/2(Γ).

In Definition (7), it is very important to keep in mind that H1(Rd \ Γ) 6= H1(Rd). In the
sequel, we introduce “trace like” operators as the canonical surjections

πd : H1(Rd \ Γ) → H
+ 1

2 (Γ) and πn : H(div,Rd \ Γ) → H
− 1

2 (Γ).

For two elements u, v ∈ H1(Rd \ Γ) such that u and v coincide on a bounded neighbourhood
of Γ, we have πd(u) = πd(v). This allows to extend πd as a continuous map from H1

loc(R
d \Γ)

to H
1/2(Γ). Similarly πn can be extended as a continuous map from Hloc(div,R

d \ Γ) to
H

−1/2(Γ).

5.1 Duality pairing

Note that Green’s Formula in R
d does not hold for elements of H1(Rd \Γ) and H(div,Rd \Γ).

Indeed, pick any u ∈ H1(Rd \ Γ) and any p ∈ H(div,Rd \ Γ), which, in general, will yield
´

Rd\Γ p · ∇u+ udiv(p) dx 6= 0. However, note that

ˆ

Rd\Γ
(p+ q) · ∇(u+ v) + (u+ v) div(p+ q) dx =

ˆ

Rd\Γ
p · ∇u+ udiv(p) dx

∀v ∈ H1
0,Γ(R

d), ∀q ∈ H0,Γ(div,R
d).

This suggests a bilinear pairing between H
1/2(Γ) and H

−1/2(Γ). Indeed, for u̇ ∈ H
1/2(Γ)

and ṗ ∈ H
−1/2(Γ), choose u ∈ H1(Rd \ Γ) and p ∈ H(div,Rd \ Γ) such that πd(u) = u̇ and

πn(p) = ṗ, and set
ˆ

[Γ]
u̇ ṗ dσ :=

ˆ

Rd\Γ
p · ∇u+ udiv(p) dx . (8)
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Please be aware that the integral in the left hand side above should not be read as an integral
with respect to the Lebesgue measure on Γ. It is merely a notational convention hinting at
the relationship of (8) with Green’s Formula. Similarly to H±1/2(∂Ω) in the case of a smooth
boundary, see Section 3, H±1/2(Γ) are dual to each other via this pairing.

Proposition 5.1.

The pairing ≪ , ≫: H+1/2(Γ)×H
−1/2(Γ) → C defined by

≪ v̇, q̇ ≫ =

ˆ

[Γ]
q̇ v̇ dσ ∀v̇ ∈ H

1

2 (Γ), ∀q̇ ∈ H
− 1

2 (Γ) , (9)

induces an isometric duality between H
+1/2(Γ) and H

−1/2(Γ).

Proof. Pick any u̇ ∈ H
+1/2(Γ) and write ≪ u̇, · ≫ for the linear form ṗ 7→≪ u̇, ṗ ≫ on

H
−1/2(Γ). We find

‖ ≪ u̇, · ≫ ‖
H−1/2(Γ) = sup

ṗ∈H− 1
2 (Γ)

q̇ 6=0

| ≪ u̇, ṗ ≫ |

‖ṗ‖
H

− 1
2 (Γ)

= sup
p∈H(div,Rd\Γ)

p6=0

´

Rd\Γ p · ∇u+ udiv(p) dx

‖p‖H(div,Rd\Γ)

≤ ‖u‖H1(Rd\Γ) .

The above inequality holds for any u ∈ H1(Rd \ Γ) such that πd(u) = u̇. Hence, ≪ u̇, · ≫∈
(H−1/2(Γ))′. Let u ∈ H1(Rd \ Γ) be the minimal norm representative of u̇, which fulfills

ˆ

Rd\Γ

∇u · ∇v + u v dx = 0 ∀v ∈ H1
0,Γ(R

d) . (10)

This implies ‖u‖H1(Rd\Γ) = ‖u̇‖
H1/2(Γ). Set p := ∇u. Since (10) means that −∆u+ u = 0 in

R
d \ Γ, we infer p ∈ H(div,Rd \ Γ), div(p) = u, and, finally, ‖p‖H(div,Rd\Γ) = ‖u‖H1(Rd\Γ). As

a consequence

‖ ≪ u̇, · ≫ ‖
H−1/2(Γ) ≥

´

Rd\Γ p · ∇u+ udiv(p) dx

‖p‖H(div,Rd\Γ)

≥ ‖u‖H1(Rd\Γ) .

We conclude that u̇ 7→≪ u̇, · ≫ is an isometry H
+1/2(Γ) 7→ (H−1/2(Γ))′. By similar argu-

ments, one establishes that also ṗ 7→≪ ·, ṗ ≫ spawns an isometry H
−1/2(Γ) 7→ (H+1/2(Γ))′,

which concludes the proof.

As an immediate consequence of the duality between H
1

2 (Γ) and H
− 1

2 (Γ) we obtain that
H1(Rd \ Γ) and H0,Γ(div,R

d) are polar to each other, as well as H1
0,Γ(R

d) and H(div,Rd \ Γ).

Corollary 5.2.

Let u ∈ H1(Rd \ Γ) and p ∈ H(div,Rd \ Γ). We have the following characterizations,

u ∈ H1
0,Γ(R

d) ⇐⇒

ˆ

Rd\Γ
q · ∇u+ udiv(q) dx = 0 ∀q ∈ H(div,Rd \ Γ)

p ∈ H0,Γ(div,R
d) ⇐⇒

ˆ

Rd\Γ
p · ∇v + v div(p) dx = 0 ∀v ∈ H1(Rd \ Γ)
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5.2 Interpretation of multi-traces in terms of functions

In this paragraph we describe as explicitely as possible the spaces H
±1/2(Γ) for particular

situations, relating these spaces to the more standard functional framework recalled in Section
3.

The skeleton of a Lipschitz partition. We first illustrate the concepts introduced at
the beginning of Section 5 by applying them to the particular case where Γ = ∪n

j=0∂Ωj for

some Lipschitz partition (Ωj)j=0...n of Rd, see Def. 2.2. In this situation, depicted in Figure 5,
simple localization provides an isometric isomorphism

Loc : H1(Rd \ Γ) → H1(Ω0)× · · · ×H1(Ωn) .

Writing Extj : H
1

2 (∂Ωj) → H1(Ωj) for some right inverse of the point trace operator, obviously

πD ◦ Loc−1 ◦(Ext0× · · · × Extn) : H
1

2 (∂Ω1)× · · · ×H
1

2 (∂Ωn) → H
+ 1

2 (Γ) . (11)

is a well-defined isometric isomorphism. A similar isomorphism can be obtained for Neumann
traces. Casually speaking, this permits us to identify

H
+ 1

2 (Γ) ∼= H+ 1

2 (∂Ω0)× · · · ×H+ 1

2 (∂Ωn) ,

H
− 1

2 (Γ) ∼= H− 1

2 (∂Ω0)× · · · ×H− 1

2 (∂Ωn) .
(12)

There is a clear interpretation of (8) in this case: take u ∈ H1(Rd \Γ) and p ∈ H(div,Rd \Γ).
Let uj = u|Ωj and pj = p|Ωj , and set vj = uj|∂Ωj

∈ H1/2(∂Ωj) and qj = nj · pj |∂Ωj
∈

H−1/2(∂Ωj) where nj is the normal to ∂Ωj directed toward the exterior of Ωj . Identity (8)
then reads

≪ u̇, ṗ ≫=

ˆ

[Γ]
u̇ ṗ dσ =

ˆ

Rd\Γ
p · ∇u+ udiv(p) dx

=

n∑

j=0

ˆ

Ωj

pj · ∇uj + uj div(pj) dx =

n∑

j=0

ˆ

∂Ωj

vj pj dσ
(13)

Identity (13) is consistent with the usual Green formula.

Γ
Ω0

Ω1Ω2

Ω3

Figure 5: Multi-screens obtained from
sub-domain boundaries

Ω1

Γ

Ω2

Figure 6: Lipschitz screen contained in the
boundary of a domain
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Standard Lipschitz screens. Next, we illustrate the concepts of this section by applying
them to another special situation shown in Figure 6. Let Ω1 be a bounded Lipschitz domain,
and let Γ ⊂ ∂Ω1 be a Lipschitz screen in the sense of Definition 2.1. Let us denote Ω2 = R

d\Ω1.
We have H1(Rd \ Γ) ⊂ H1(Rd \ ∂Ω1) which induces a natural injection

H
1

2 (Γ) = H1(Rd \ Γ)/H1
0,Γ(R

d) →֒ H1(Rd \ ∂Ω1)/H
1
0,Γ(R

d) .

From the natural identification H1(Rd \ ∂Ω1) ∼= H1(Ω1) × H1(Ω2) that associates u with
(u|Ω1

, u|Ω2
) we obtain an isomorphism that we may express as

H1(Rd \ ∂Ω1)/H
1
0,Γ(R

d) ∼=
[
H1(Ω1)/H

1
0,Γ(Ω1)

]
×

[
H1(Ω2)/H

1
0,Γ(Ω2)

]

∼= H
1

2 (Γ)×H
1

2 (Γ) .

Here, in the spirit of (3), we have linked H
1

2 (Γ) with quotient spaces. From this discussion
we can conclude an injection

H
+ 1

2 (Γ) →֒ H
1

2 (Γ)×H
1

2 (Γ) . (14)

Now let us show how the injection (14) can be constructed in detail. Consider an element
u̇ ∈ H

1/2(Γ). Take any u ∈ H1(Rd \ Γ) such that πd(u) = u̇, and make the following
identification

u̇ ↔ (u1|Γ, u2|Γ) where uj = u|Ωj , j = 1, 2 .

In this construction, the traces u1, u2 actually satisfy a compatibility condition. Indeed con-
sider a function ũ ∈ H1(Rd) such that ũ|Ω2

= u2 (which exists thanks to Sobolev extension
theorems), and set ũ1 = ũ|Ω1

. Observe that ũ1|Γ = u2|Γ, and we have

u1 − ũ1 ∈ H1
0,∂Ω\Γ

(Ω) ⇒ u1|Γ − ũ1|Γ = u1|Γ − u2|Γ ∈ H̃
1

2 (Γ) . (15)

A thorough inspection of the above arguments shows that (15) is a necessary and sufficient
condition to ensure that there exists u ∈ H1(Rd \ Γ) such that u1|Γ, u2|Γ are the traces of
u|Ω1

and u|Ω2
on Γ. Thus, localization to Ω1 and Ω2 together with local traces yield an

isomorphism

H
+ 1

2 (Γ) ∼=
{

(v1, v2) ∈ H
1

2 (Γ)×H
1

2 (Γ) | v1 − v2 ∈ H̃
1

2 (Γ)
}
. (16)

Similarly we can prove

H
− 1

2 (Γ) ∼=
{

(q1, q2) ∈ H− 1

2 (Γ)×H− 1

2 (Γ) | q1 + q2 ∈ H̃− 1

2 (Γ)
}
. (17)

The ”+” sign coming into play in Definition (17) is related to the change in the normal
direction depending on wich side of Γ is involved, see Figure 1.

In addition, it is possible to give an explicit expression of the duality pairing ≪ , ≫ defined
in (8)-(9) by means of Identifications (16) and (17). Indeed consider any u̇ ∈ H

1/2(Γ) and
ṗ ∈ H

−1/2(Γ). Pick u ∈ H1(Rd \Γ) and p ∈ H(div,Rd \Γ) such that πd(u) = u̇ and πn(p) = ṗ.

11



For j = 1, 2, set uj = u|Ωj and pj = p|Ωj , and let nj refer to the normal vector to Ωj directed
toward the exterior of Ωj. Statement (16) and (17) is based on the following identifications

u̇ ↔ (v1, v2) and ṗ ↔ (q1, q2) , where

{
v1 = u1|Γ, v2 = u2|Γ ,

q1 = n1 · p1|Γ, q2 = n2 · p2|Γ .

According to Green’s formula, we have

ˆ

[Γ]
u̇ ṗ dσ =

ˆ

Rd\Γ
p · ∇u+ udiv(p) dx =

∑

j=1,2

ˆ

Ωj

p · ∇u+ udiv(p) dx

=
∑

j=1,2

ˆ

∂Ωj

qj vj dσ .

The boundary terms in the identity above can be simplified further. Indeed, since u ∈
H1(Rd \Γ) we have v1 = v2 on ∂Ω1 \Γ. Similarly, since p ∈ H(div,Rd \Γ) and n1 = −n2, we
have q1 = −q2 on ∂Ω1 \ Γ, which leads to cancellation of terms off Γ:

≪ v̇, q̇ ≫ =

ˆ

[Γ]
u̇ ṗ dσ =

∑

j=1,2

ˆ

∂Ωj

qj vj dσ =

ˆ

Γ
v1 q1 + v2 q2 dσ . (18)

6 Single-trace and jump spaces

We return to the general case of an arbitrary multi-screen Γ ⊂ R
d according to Definition 2.1.

As regards the multi-trace spaces H
±1/2(Γ) they contain multi-valued functions: the sides

of each panel of Γ could be regarded as distinct surfaces, and traces on both sides do not
necessarily match, see Figure 1. Now we are going to single out subspaces of H±1/2(Γ) that
may be considered as standard trace spaces of single-valued functions.

6.1 Single-trace spaces

We can obtain particular subspaces of H±1/2(Γ) by simply replacing ”Rd \Γ” by ”Rd” in (7).

Definition 6.1 (Single-trace spaces).
We introduce single-trace spaces as the quotient spaces

H+ 1

2 ([Γ]) = H1(Rd)/H1
0,Γ(R

d)

H− 1

2 ([Γ]) = H(div,Rd)/H0,Γ(div,R
d) .

(19)

They owe their name to the intuitive point of view that the elements of the single-trace
spaces can be understood as multi-traces whose values on both sides of the screen either agree
(in the case of H1/2([Γ])) or have opposite sign (in the case of H−1/2([Γ])).

Corollary 6.2.

The space H+1/2([Γ]) (resp. H−1/2([Γ])) is a closed subspace of H+1/2(Γ) (resp. H
−1/2(Γ))

Proof. The assertion is immediate, since H1(Rd) (resp. H(div,Rd)) is closed in H1(Rd \ Γ)
(resp. H(div,Rd \ Γ)).

12



There is no duality relationship between H+ 1

2 ([Γ]) ⊂ H
+1/2(Γ) and H− 1

2 ([Γ]) ⊂ H
−1/2(Γ) with

respect to the pairing ≪ , ≫ between the multi-trace spaces. On the contrary, both spaces
are polar to each other, which provides a weak characterization:

Proposition 6.3.

For u̇ ∈ H
+ 1

2 (Γ) and ṗ ∈ H
− 1

2 (Γ) holds true

u̇ ∈ H+ 1

2 ([Γ]) ⇐⇒

ˆ

[Γ]
u̇ q̇ dσ = 0 ∀q̇ ∈ H− 1

2 ([Γ]) ,

ṗ ∈ H− 1

2 ([Γ]) ⇐⇒

ˆ

[Γ]
v̇ ṗ dσ = 0 ∀v̇ ∈ H+ 1

2 ([Γ]) .

(20)

Proof. We will show only the first assertion, since the proof for the second is very similar.
First, take any u ∈ H1(Rd) such that πd(u) = u̇. Then for any q̇ ∈ H− 1

2 ([Γ]), considering
q ∈ H(div,Rd) such that πn(q) = q̇, the standard Green formula over all Rd yields

ˆ

[Γ]
u̇ q̇ dσ =

ˆ

Rd\Γ
q · ∇u+ udiv(q)dx =

ˆ

Rd

q · ∇u+ udiv(q)dx = 0 .

Now consider u̇ ∈ H
1/2(Γ) such that the condition in the right hand side of (20) holds. Take a

u ∈ H1(Rd\Γ) such that πd(u) = u̇. We need to show that u ∈ H1(Rd). We already know that
there exists some p ∈ L2(Rd)d such that

´

Rd p · q + udiv(q) dx = 0 for any q ∈ D(Rd \ Γ)d.

Take any q ∈ D(Rd)d, so that πn(q) = q̇ ∈ H−1/2([Γ]). Applying Definition (8), we obtain

ˆ

Rd

p · q+ udiv(q) dx =

ˆ

[Γ]
u̇ q̇ dσ = 0 ∀q ∈ D(Rd) .

This proves that p = ∇u in the sense of distributions over Rd (and not just Rd \ Γ), so that
u ∈ H1(Rd). This concludes the proof.

6.2 Jump spaces

Another type of trace space may be obtained by considering the duals to single-trace spaces.

Definition 6.4 (Jump spaces).
We introduce jump spaces as the dual spaces

H̃+ 1

2 ([Γ]) :=
(
H− 1

2 ([Γ])
)′

and H̃− 1

2 ([Γ]) :=
(
H+ 1

2 ([Γ])
)′
.

We endow theses spaces with their natural dual norms

‖ϕ‖
H̃

1
2 ([Γ])

:= sup

q̇∈H− 1
2 ([Γ])

q̇ 6=0

|〈ϕ, q̇ 〉|

‖q̇‖
H

− 1
2 (Γ)

and ‖ψ‖
H̃− 1

2 ([Γ])
:= sup

v̇∈H
1
2 ([Γ])

v̇ 6=0

|〈ψ, v̇ 〉|

‖v̇‖
H

1
2 (Γ)

.

Clearly, any element ofH1/2(Γ) (resp. H−1/2(Γ)) induces an element H̃−1/2([Γ]) (resp. H̃1/2([Γ]))
via the duality pairing (8).
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Definition 6.5 (Jump operators).
We define continuous jump operators [ ] : H+1/2(Γ) → H̃1/2([Γ]) and [ ] : H−1/2(Γ) →
H̃−1/2([Γ]) as follows: For any u̇ ∈ H

+1/2(Γ) (resp. any ṗ ∈ H
−1/2(Γ)), let [u̇] (resp. [ṗ] ) be

the unique element of H̃1/2([Γ]) (resp. H̃−1/2([Γ])) satisfying

〈[u̇], q̇〉 :=

ˆ

[Γ]
u̇ q̇ dσ ∀q̇ ∈ H− 1

2 ([Γ]) ,

〈v̇, [ṗ]〉 :=

ˆ

[Γ]
v̇ṗ dσ ∀v̇ ∈ H+ 1

2 ([Γ]) ,
(21)

where 〈 , 〉 denotes the duality pairing either between H1/2([Γ]) and H̃−1/2([Γ]), or between
H̃1/2([Γ]) and H−1/2([Γ]).

An immediate consequence of Proposition 6.3 is a characterization of the kernels of the
jump operators that matches the intuition that “single-valued traces do not jump”.

Corollary 6.6 (Kernels of jump operators).
For v ∈ H

1/2(Γ) and q ∈ H
−1/2([Γ]) holds true

v ∈ H1/2([Γ]) ⇔ [v] = 0 ,

q ∈ H−1/2([Γ]) ⇔ [q] = 0 .

Proposition 6.7 (Range of jump operators).
The jump operators [ ] : H

1/2(Γ) → H̃1/2([Γ]) and [ ] : H
−1/2(Γ) → H̃−1/2([Γ]) from

Definition 6.5 are surjective.

Proof. The statement follows from Proposition 5.1, the Hahn-Banach Theorem (see [17, Thm
3.3] for example), and Corollary 6.6.

We end this section by pointing out an alternative description of jump spaces provided
by the next proposition. The proof is a direct consequence of Corollary 6.6 and Problem 9,
§3.8 in [19].

Proposition 6.8 (Quotient space characterization of jump spaces).
The jump operators induce isometric isomorphisms

H̃1/2([Γ]) ∼= H
1/2(Γ)/H1/2([Γ]) and H̃−1/2([Γ]) ∼= H

−1/2(Γ)/H−1/2([Γ]) .

6.3 Interpretation of single-traces in terms of functions

In this paragraph we will try to describe as explicitely as possible the spaces H±1/2([Γ]) and
H̃±1/2([Γ]) for the two special situations that we considered in Subsection 5.2.

The skeleton of a Lipschitz partition First, we focus on the situation where Γ =
∪n
j=0∂Ωj for some Lipschitz partition (Ωj)j=0...n of Rd, see Figure 5. Pick u̇ ∈ H1/2([Γ]).

As explained in Subsection 5.2, considering any u ∈ H1(Rd) such that πd(u) = u̇, and setting
uj = u|Ωj , we can make the identification

u̇↔ (v0, . . . , vn) ∈ H
1

2 (∂Ω0)× · · · ×H
1

2 (∂Ωn) ,

where vj = uj|∂Ωj
, j = 0 . . . n .

(22)
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The condition u̇ ∈ H1/2([Γ]) amounts to vj = vk on ∂Ωj ∩ ∂Ωk ∀j, k = 0 . . . n, and (22)
gives rise to an isomorphism

H
1

2 ([Γ]) ∼=
{
(vj)0≤j≤n ∈

n
Π
j=0

H
1

2 (∂Ωj)
∣∣ vj − vk = 0 on ∂Ωj ∩ ∂Ωk ∀j, k

}
.

Similarly, we find an isomorphism

H− 1

2 ([Γ]) ∼=
{
(qj)0≤j≤n ∈

n
Π
j=0

H− 1

2 (∂Ωj)
∣∣ qj + qk = 0 on ∂Ωj ∩ ∂Ωk ∀j, k

}

The spaces H±1/2([Γ]) have been considered in [5, 6] (where they were noted X
±1/2(Γ)), and

Proposition 6.3 above is a generalization of Proposition 2.1 in [5].
It seems to us that it is not possible to develop any explicit description of H̃±1/2([Γ]) for

the case where Γ is the skeleton of some Lipschitz partition except if, in this partition, each
interface separates at most two subdomains. The latter case is covered in the next paragraph.

Standard Lipschitz screens Now we consider the case where Γ ⊂ ∂Ω is a Lipschitz screen
in the sense of Definition 2.1, where Ω is a bounded Lipschitz open set, as in Figure 6. Pick
u̇ ∈ H1/2([Γ]) and set Ω1 = Ω and Ω2 = R

d \ Ω. In accordance with the discussion in
Subsection 5.2, for any u ∈ H1(Rd \ Γ) we have the identification

u̇ ↔ (v1, v2) ∈ H
1

2 (Γ)×H
1

2 (Γ)

where vj = uj|Γ and uj = u|Ωj , j = 1, 2 .

Since u̇ ∈ H1/2([Γ]) we actually have u ∈ H1(Rd) which implies v1 = v2. This leads to the
conclusion that (compare with (16))

H
1

2 ([Γ]) ∼=
{
(v1, v2) ∈ H

1

2 (Γ)×H
1

2 (Γ) | v1 − v2 = 0 on Γ
}
,

i.e. H
1

2 ([Γ]) ∼= φ+

(
H

1

2 (Γ)
)

∼= H
1

2 (Γ) , where φ+(x) := (x, x).
(23)

Similar results hold for the Neumann single-trace space. A slight adaptation of the above
arguments shows that

H− 1

2 ([Γ]) ∼=
{
(q1, q2) ∈ H− 1

2 (Γ)×H− 1

2 (Γ) | q1 + q2 = 0 on Γ
}
,

i.e. H− 1

2 ([Γ]) ∼= φ−

(
H− 1

2 (Γ)
)

∼= H− 1

2 (Γ) , where φ−(x) := (x,−x).
(24)

Remark 6.9. This discussion confirms the agreement of the new functional framework we
have introduced with standard Sobolev trace spaces on surfaces and screens. Such a simple
and explicit description does not seem to be possible for more complicated screens that are
multi-screens but not standard Lipschitz screens. In this sense, our new functional framework
is a genuine generalization of standard Sobolev trace spaces.

Let us now look for some explicit description of H̃±1/2([Γ]), still considering the case where
Γ ⊂ ∂Ω1 is a standard Lipshitz screen. We make use of the isomorphism

ι : H1/2(Γ) →
{
(v1, v2) ∈ H

1

2 (Γ)×H
1

2 (Γ) | v1 − v2 ∈ H̃
1

2 (Γ)
}
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that underlies (16). Pick any v ∈ H̃1/2(Γ), see (2). Following the discussion of Subsection 5.2,
if (v1, v2) = (v,−v) = φ−(v), we have v1 − v2 = 2v ∈ H̃1/2(Γ), so that ι−1(φ−(v)) ∈ H

1/2(Γ)
in the sense of (16), and the linear mapping

[ι−1φ−] := [ ] ◦ ι−1 ◦ φ− : H̃
1

2 (Γ) → H̃
1

2 ([Γ]) (25)

is well defined and continuous.

Theorem 6.10 (Isomorphism connecting H̃
1

2 (Γ) and H̃
1

2 ([Γ])).
In the special situation of a Lipschitz screen Γ the mapping from (25) is an isomorphism.

Proof.
(i) Injectivity: Assume that [ι−1φ−(v)] = 0 for some v ∈ H̃

1

2 (Γ). Above in (24) we have
seen that any element q̇ ∈ H−1/2([Γ]) takes the form q̇ = θ−1(φ−(q)) = θ−1(q,−q) for some
q ∈ H−1/2(Γ), where θ designates the isomorphism underlying (24). As a consequence of (18),
[ι−1(φ−(v))] = 0 implies

0 = 〈 [ι−1φ−(v)], θ
−1(φ−(q)) 〉 =

ˆ

[Γ]
ι−1(φ−(v)) θ

−1(φ−(q)) dσ = 2

ˆ

Γ
v q dσ ∀q ∈ H−1/2(Γ).

(26)
Since H̃1/2(Γ) = H−1/2(Γ)′, Identity (26) implies that v = 0.

(ii) Surjectivity: Pick some ϕ ∈ H̃1/2([Γ]). According to the Hahn-Banach Theorem (see [17,
Thm 3.3]) and Proposition 5.1, there exists v̇ ∈ H

1/2(Γ) such that ‖v̇‖
H1/2(Γ) = ‖ϕ‖H̃1/2([Γ])

and

〈ϕ, q̇ 〉 =

ˆ

[Γ]
v̇ q̇ dσ ∀q̇ ∈ H−1/2([Γ]).

Moreover, by (16) there exists v1, v2 ∈ H1/2(Γ) such that v1−v2 ∈ H̃1/2(Γ), and v̇ = ι−1(v1, v2).
Any q̇ ∈ H−1/2([Γ]) can be written as q̇ = θ−1(φ−(q)) = θ−1(q,−q) in the sense of (24) for
some q ∈ H−1/2(Γ). Setting v = 1

2(v1 − v2), we have

〈ϕ, q̇ 〉 =

ˆ

[Γ]
v̇ q̇ dσ =

ˆ

Γ
v1 q − v2 q dσ =

ˆ

Γ
v q + (−v) (−q) dσ =

ˆ

[Γ]
ι−1(φ−(v)) q̇ dσ

Since q̇ ∈ H−1/2([Γ]) is arbitrary, this proves that ϕ = [ι−1(φ−(v))], and bears out the
surjectivity of the map (25).

To summarize, the mapping (25) induces an isomorphism

H̃
1

2 ([Γ]) ∼= H̃
1

2 (Γ) .

We can also find an analogous isomorphism

H̃− 1

2 ([Γ]) ∼= H̃− 1

2 (Γ) .

Let us end this paragraph by mentionning that the inclusion ”H̃1/2([Γ]) ⊂ H1/2([Γ])” does
not hold. This inclusion has to be replaced with some injection relation, as can be readily
seen from

H̃1/2([Γ]) ∼= H̃1/2(Γ) ⊂ H1/2(Γ) ∼= H1/2([Γ]) .
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7 Boundary value problems

Once again, we come back to general multi-screens, and continue the construction of our
framework, introducing concepts better adapted to boundary value problems set in the exte-
rior of such objects. We first need to introduce generalizations of usual trace operators.

7.1 Dirichlet and Neumann trace operators

Let H1(∆,Rd \ Γ) = {u ∈ H1(Rd \ Γ) | ∇u ∈ H(div,Rd \ Γ) } and denote H1
loc(∆,R

d \ Γ) =
{u ∈ L2

loc(R
d) | ϕ u ∈ H1(∆,Rd \ Γ) ∀ϕ ∈ D(Rd \ Γ) }. For any element of this space we can

define its Dirichlet and Neumann traces on Γ in the following manner

γd(u) = πd(u) and γn(u) = πn(∇u). (27)

Clearly γd : H1
loc(∆,R

d \ Γ) → H
1/2(Γ) and γn : H1

loc(∆,R
d \ Γ) → H

−1/2(Γ) are continuous
maps. Besides, if u ∈ H1

loc(∆,R
d \ Γ) and v ∈ H1

loc(∆,R
d \ Γ) coincide in a neighbourhood of

Γ, then γd(u) = γd(v) and γn(u) = γn(v).

Lemma 7.1.

The trace operators γd, γn both admit a continuous right-inverse.

Proof. For any u̇ ∈ H
1/2(Γ), define Sd(u̇) as the unique element of H1(Rd \ Γ) satisfying

πd
(
Sd(u̇)

)
= u̇ and ‖Sd(u̇)‖H1(Rd\Γ) = ‖u̇‖H1/2(Γ). As pointed out in the proof of Proposition

5.1, we have −∆Sd(u̇)+Sd(u̇) = 0 in R
d\Γ. As a consequence, Sd : H1/2(Γ) → H1

loc(∆,R
d\Γ)

is a continuous right-inverse for γd.
Similarly, for ṗ ∈ H

−1/2(Γ), define Sn(ṗ) as the unique element of H(div,Rd \Γ) satisfying
πn

(
Sn(ṗ)

)
= ṗ and ‖Sn(ṗ)‖H(div,Rd\Γ) = ‖ṗ‖H−1/2(Γ). We have −∇div

(
Sn(ṗ)

)
+ Sn(ṗ) = 0

in R
d \ Γ, and we see v := div

(
Sn(ṗ)

)
∈ H1

loc(∆,R
d \ Γ). Obviously, ṗ = γn(v), so that

div
(
Sn(·)

)
: H−1/2(Γ) → H1

loc(∆,R
d \ Γ) is a continuous right-inverse for γn.

Note that we may also consider the operator [γd] : H
1
loc(∆,R

d \ Γ) → H̃1/2([Γ]) as well as

[γn] : H
1
loc(∆,R

d \Γ) → H̃−1/2([Γ]) obtained by composing the Dirichlet and Neumann traces
with the jump operators described at §6.2.

An interesting identity is obtained by applying twice Formula (8). This yields a generalization
of the second Green Formula,

ˆ

Rd

u∆v − v∆u dx =

ˆ

[Γ]
γd(u)γn(v)− γd(v)γn(u)dσ ∀u, v ∈ H1(∆,Rd \ Γ). (28)

It is possible to consider boundary value problems with Dirichlet or Neumann condition on
Γ prescribed by means of γd and γn.

Proposition 7.2 (Exterior Dirichlet problem).
Suppose that Γ is multi-screen in the sense of Definition 2.3, and that Rd \ Γ is connected.
Take g ∈ H

1/2(Γ) and κ ∈ R+ \{0}. Then there exists a unique u ∈ H1
loc(∆,R

d \Γ) satisfying
the following equations

−∆u− κ2u = 0 in Rd \ Γ γd(u) = g and u is outgoing. (29)

Moreover, if we denote S : H1/2(Γ) → H1
loc(∆,R

d \ Γ) the operator mapping any g ∈ H
1/2(Γ)

to the unique solution to (29), then S is continuous.
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Proof. Let Ω be an open ball with radius large enough to guarantee Γ ⊂ Ω. Let T :
H1/2(∂Ω) → H−1/2(∂Ω) be the exterior Steklov-Poincaré map associated to the homoge-
neous Helmholtz equation in R

d \ Ω. Let ug ∈ H1(Rd \ Γ) satisfy γd(ug) = g. This element
ug can be chosen so as to guarantee that g 7→ ug is continuous from H

1/2(Γ) to H1(Rd \ Γ)
according to Lemma 7.1. Using Green’s formula, Problem (29) can be reformulated as

Find u ∈ H1
0,Γ(Ω) such that (Au, v)H1(Ωd\Γ) = −(Aug, v)H1(Ωd\Γ) ∀v ∈ H1

0,Γ(Ω)

where (Au, v)H1(Ωd\Γ) =

ˆ

Ω\Γ
∇u · ∇v − κ2u v dx+

ˆ

∂Ω
vTu dσ

To prove the desired result, it suffices to show that A is a continuous isomorphism. Using the
compactness result of Proposition (4.1), one can check by means of classical arguments that
A is a Fredholm operator with index 0. As a consequence, proving that A is a continuous
isomorphism boils down to showing that, when g = 0, the only solution to (29) is u = 0.

Now assume that u ∈ H1
loc(R

d \Γ) satisfies (29) with g = 0. For any ρ > 0, let Bρ refer to
the ball centered at 0 with radius ρ, and denote nρ the unit normal vector to ∂Bρ directed
toward the exterior of Bρ. Applying (8) in Bρ \Γ with p = ∇u, and taking into account that
γd(u) = 0, we obtain

ˆ

∂Bρ

u nρ · ∇u dσρ =

ˆ

Bρ\Γ
|∇u|2 − κ2|u|2dx

where dσρ refers to the surface Lebesgue-measure on ∂Bρ. Since the right hand side in the
identity above is real, and according to Sommerfeld’s radiation condition, we have

κ

ˆ

∂Bρ

|u|2 dσρ = ℑm
{ˆ

∂Bρ

u (iκ u− nρ · ∇u) dσρ
}

=⇒ lim
ρ→∞

‖u‖2L2(∂Bρ)
≤

1

κ2
lim
ρ→∞

‖ iκu − nρ · ∇u ‖
2
L2(∂Bρ)

= 0.

It follows by Rellich’s Theorem (see e.g. Müller [16]) that u vanishes on a neighbourhood of
infinity. Using an analytic continuation theorem, since R

d \ Γ is connected, we obtain that
u = 0 in R

d \ Γ.

7.2 Density results

Generalizing results by M. Costabel [7], in this subsection we will prove density theorem that
will be useful for the study of boundary integral operators in the next section.

Proposition 7.3.

Consider the continuous operator γ : H1
loc(∆,R

d\Γ) → H
+1/2(Γ)×H

−1/2(Γ) defined by γ(ϕ) =
(γd(ϕ), γn(ϕ)) for all ϕ ∈ H1

loc(∆,R
d \ Γ). The range of γ is dense in H

+1/2(Γ)×H
−1/2(Γ).

Proof. Note that (γd, γn) induce a map from H1(∆,Rd \ Γ) × H1(∆,Rd \ Γ) to H1/2(Γ) ×
H

−1/2(Γ) that is continuous. Consider the pairing defined by

(
(u, p), (v, q)

)
7→

ˆ

[Γ]
uq dσ −

ˆ

[Γ]
vp dσ ∀u, v ∈ H

1

2 (Γ) ∀p, q ∈ H
− 1

2 (Γ) . (30)
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According to Proposition 5.1, the space H1/2(Γ)×H
−1/2(Γ) is dual to itself under the pairing

(30). Hence, according to Hahn-Banach’s Theorem, it suffices to show that

ˆ

[Γ]
uγn(v)dσ =

ˆ

[Γ]
p γd(v)dσ ∀v ∈ H1(∆,Rd \ Γ) ⇒ u = 0, p = 0 . (31)

Take (u, p) ∈ H
1/2(Γ)×H

−1/2(Γ) satisfying the condition in the left-hand side of (31). For any
f ∈ L2(Rd) with compact support, denote S(f) the unique element of H1(∆,Rd \Γ) satisfying
the equations

−∆S(f) + S(f) = f in R
d \ Γ, γd

(
S(f)

)
= 0 on Γ.

Using Proposition 7.2, it is straightforward to check that S(f) is properly defined. Denote
also Sd(u) the unique element of H1(Rd \ Γ) satisfying πd

(
Sd(u)

)
= γd

(
Sd(u)

)
= u and

‖Sd(u)‖H1(Rd\Γ) = ‖u‖H1/2(Γ). As was pointed out in the proof of Proposition 5.1, we have

−∆Sd(u) + Sd(u) = 0 in R
d \ Γ. Hence

0 =

ˆ

[Γ]
p γd

(
S(f)

)
dσ =

ˆ

[Γ]
γd

(
Sd(u)

)
γn

(
S(f)

)
dσ

=

ˆ

[Γ]
γd

(
Sd(u)

)
γn

(
S(f)

)
− γn

(
Sd(u)

)
γd

(
S(f)

)
dσ

=

ˆ

Rd\Γ
Sd(u)∆S(f)− S(f)∆Sd(u) dσ = −

ˆ

Rd\Γ
f Sd(u) dx

Since this holds for any f ∈ L2(Rd) with compact support, this implies that Sd(u) = 0. Hence
u = γd(Sd(u)) = 0. As a consequence

´

[Γ] p γd(v)dσ = 0 for any v ∈ H1(∆,Rd \ Γ), and since

γd : H1(∆,Rd \ Γ) → H
1/2(Γ) is onto, this finally implies p = 0.

One may wonder if a result comparable to the previous proposition holds for single-trace
spaces. The answer is positive but, to prove it, we first need an intermediary result.

Lemma 7.4.

Assume that Γ = ∪j=0...n∂Ωj is the skeleton of some Lipschitz partition (Ωj)j=0...n of R
d.

Consider the operator γ : H1
loc(∆,R

d \ Γ) → H
+1/2(Γ)× H

−1/2(Γ). The range of γ restricted
to H1

loc(∆,R
d) is dense in H+1/2([Γ]) ×H−1/2([Γ]).

Proof. First of all, according to Proposition 5.1, and the Hahn-Banach theorem, it suffices to
show that if (u̇, ṗ) ∈ H

1/2(Γ)×H
−1/2(Γ) satisfies

´

[Γ] u̇ γn(ϕ)−ṗ γd(ϕ) dσ = 0 ∀ϕ ∈ H1(∆,Rd),
then

ˆ

[Γ]
u̇ q̇ − ṗ v̇ dσ = 0 ∀(v̇, q̇) ∈ H1/2([Γ])×H−1/2([Γ]) (32)

which is equivalent to (u̇, ṗ) ∈ H1/2([Γ])×H−1/2([Γ]) according to Proposition 6.3. Hence, let
us consider such a pair (u̇, ṗ) ∈ H

1/2(Γ)×H
−1/2(Γ).

For each Ωj, let us denote γjd(ϕ) = ϕ|∂Ωj
and γjn(ϕ) = nj · ∇ϕ|∂Ωj

, ∀ϕ ∈ H1(∆,Ωj), where
the traces are taken from the interior of Ωj, and nj refers to the normal vector to ∂Ωj

directed toward the exterior of Ωj. According to (19), the space H+1/2([Γ]) ×H−1/2([Γ]) can
be identified with the space

X(Γ) = { (γj
d
(v), γj

n
(q))j=0...n | (v, q) ∈ H1(∆,Rd)2 }.
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Setting γj(ϕ) = (γjd(ϕ), γ
j
n(ϕ)), we also consider the space C(Γ) = {(γj(ϕ))j=0...n | ϕ ∈

H1(∆,Rd \ Γ) and − ∆ϕ + ϕ = 0 in Ωj, j = 0 . . . n }. Then according to [6, Prop. 6.1],
we have X(Γ)⊕ C(Γ) = H

1/2(Γ) ×H
−1/2(Γ). As a consequence there exists u, p ∈ H1(∆,Rd)

and functions ψj ∈ H1(∆,Ωj) with ∆ψj = ψj , such that u̇ = (γj
d
(u) + γj

d
(ψj))j=0...n and

ṗ = (γj
n
(p) + γj

n
(ψj))j=0...n. To finish the proof, it suffices to show that ψj = 0, j = 0 . . . n.

According to [5, Prop. 2.1] (that admits Proposition 6.3 as a generalization), we have

0 =

ˆ

[Γ]
u̇γn(ϕ)− ṗγd(ϕ) dσ =

n∑

j=0

ˆ

∂Ωj

γd(u+ ψj)γn(ϕ)− γn(p+ ψj)γd(ϕ) dσ

=

n∑

j=0

ˆ

∂Ωj

γd(ψj)γn(ϕ)− γn(ψj)γd(ϕ) dσ =

n∑

j=0

ˆ

Ωj

ψj∆ϕ− ϕ∆ψj dx

=

n∑

j=0

ˆ

Ωj

ψj(∆ϕ− ϕ) dx =

ˆ

Rd

ψ(∆ϕ− ϕ) dx ∀ϕ ∈ H1(∆,Rd)

where we define ψ ∈ L2(Rd) by ψ|Ωj = ψj . Now, for any f ∈ D(Rd), there exists ϕ ∈

H1(∆,Rd) such that −∆ϕ + ϕ = f in R
d. From this we deduce that

´

Rd ψfdx = 0 for all
f ∈ D(Rd), which implies that ψ = 0.

Proposition 7.5.

In the case where Γ is any multi-screen (not necessarily the skeleton of some Lipschitz par-
tition), consider the continuous operator γ : H1

loc(∆,R
d \ Γ) → H

+1/2([Γ]) ×H
−1/2([Γ]). The

range of γ restricted to H1
loc(∆,R

d) is dense in the space H+1/2([Γ]) ×H−1/2([Γ]).

Proof. Take a u̇ ∈ H1/2([Γ]) and ṗ ∈ H−1/2([Γ]) such that u̇ = πn(u) and ṗ = πn(p) for some
u ∈ H1

⋆(R
d) = {v ∈ H1(Rd) | v = 0 in a neighbourhood of ∂Γ} and some p ∈ H⋆(div,R

d) =
{s ∈ H(div,Rd) | s = 0 in a neighbourhood of ∂Γ}. Take a Lipschitz partition R

d = ∪K
k=0Ωk

like in Definition 2.3, and set Σ = ∪K
k=0∂Ωk. Since u and p vanish in a neighbourhood of

∂Γ, it may be assumed that u and p vanish on Σ \ Γ, using some adapted cut-off function if
necessary.

Since Γ ⊂ Σ, using extension by 0, the traces u̇ and ṗ can be considered as single-traces
on Σ i.e. u̇ ∈ H1/2([Σ]) and ṗ ∈ H−1/2([Σ]). Let us denote γΣ

d
, γΣ

n
the trace operators on Σ,

as defined by (27) but considering Σ instead of Γ. According to Proposition 7.4, there exists
a sequence ξn ∈ H1

loc(∆,R
d) such that

lim
n→+∞

(
‖u̇− γΣ

d
(ξn)‖

2

H
+1

2 (Σ)
+ ‖ṗ− γΣ

n
(ξn)‖

2

H
− 1

2 (Σ)

)
= 0 . (33)

Using a cut-off function if necessary, we can assume that supp(ξn) ∩ (Σ \ Γ) = ∅, so that the
traces of ξn on Σ and Γ coincide. As a consequence, (33) actually holds with Σ replaced by Γ,
and γΣ

d
, γΣ

n
replaced by γd, γn. This concludes the proof for the case where u̇ ∈ πd

(
H1

⋆(R
d)

)

and ṗ ∈ πn
(
H⋆(div,R

d)
)
. It only remains to observe that H1

⋆(R
d) and H⋆(div,R

d) are dense
in H1(Rd) and H(div,Rd) according to Proposition 8.11 below. So the proof is complete.

8 Potential operators

As we have an adapted functional framework at hand, we can now build potential operators
for scattering by multi-screens. We will adapt proofs contained in [7], relying on the trace
spaces and operators that we introduced before.
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In the sequel, we will study boundary integral formulations to scalar wave propagation
problems around a screen Γ. To simplify our presentation, in the remaining of this document,
we make the following assumption

Assumption: Γ ⊂ R
d is a Lipschitz multi-screen such that Rd \ Γ is connected

Note that this assumption rules out the case where Γ would be the skeleton fo some Lipschitz
partition of Rd.

The forthcoming analysis could be carried out without this connectedness assumption.
However this hypothesis will help making the presentation clearer. Moreover, the results that
we present below could be generalized to any strongly elliptic partial diferential operator,
following a presentation similar to [15]. However we focus on Helmholtz equation for the sake
of simplicity.

Let Gκ(x) refer to the outgoing Green kernel for the Helmholtz operator, i.e. it satisfies
(−∆− κ2)Gκ = δ0 in R

d in the sense of distributions. Consider some x ∈ R
d \Γ, and observe

that the function Gκ,x : y 7→ Gκ(x−y) is C∞ in the neighbourhood of Γ. Thus, using a cut-off
function if necessary (so as to remove the singularity of Gκ,x(y) at y = x) we may consider
the following operators, named respectively single layer and double layer potential,

SLκ(q̇)(x) :=

ˆ

[Γ]
γd(Gκ,x) q̇ dσ ∀q̇ ∈ H

− 1

2 (Γ)

DLκ(v̇)(x) := −

ˆ

[Γ]
γn(Gκ,x) v̇ dσ ∀v̇ ∈ H

+ 1

2 (Γ) .

(34)

Clearly SLκ : H−1/2(Γ) → C∞(Rd \ Γ) and DLκ : H1/2(Γ) → C∞(Rd \ Γ) since, if U, V ⊂ R
d

are two bounded open sets such that Γ ⊂ V and U ∩ V = ∅, the function x 7→ Gκ,x, x ∈ U , is
a smooth function valued in H1(∆, V \ Γ).

8.1 Representation formula

Following [7, 15], we may write the expression of the potential operators (34) in a manner that
is more convenient for calculus in the sense of distributions. Denote Gκ∗ : C∞(Rd)′ → D(Rd)′

the operation of convolution (in the sense of distribution if necessary) with kernel Gκ. Let
γ ′
d
: H−1/2(Γ) → H1

loc(R
d \ Γ)′ and γ ′

n
: H+1/2(Γ) → H1

loc(∆,R
d \ Γ)′ refer to the adjoints of

γd and γn. Then we have

SLκ = Gκ ∗ γ
′
d

and DLκ = −Gκ ∗ γ
′
n
. (35)

Take a function u ∈ H1(Rd \ Γ) and assume in addition that supp(u) is bounded. Consider
identity (28). Choosing v in D(Rd), we can interpret this identity in the sense of distibutions,
using the adjoint of the trace operators, which yields

(∆u)|Rd = (∆u)|
Rd\Γ + γ ′

n
· γd(u)− γ ′

d
· γn(u)

where γ ′
n
·γd(u) and γ

′
d
·γn(u) are distributions supported in Γ. Now, since supp(u) is bounded,

we can convolve the previous identity with the Green kernel, which yields the following result.

21



Lemma 8.1.

For any u ∈ H1(∆,Rd\Γ) with bounded support, if f = −∆u−κ2u in the sense of distributions
in R

d \ Γ, we have the following formula

u = Gκ ∗ f + SLκ · γn(u) + DLκ · γd(u) in R
d \ Γ. (36)

Identity (36) is a representation formula, in the parlance of boundary integral equations.
Although we have established it in the case where supp(u) is bounded, it actually also holds
in the case where u is outgoing radiating.

Proposition 8.2.

Assume that u ∈ H1
loc(∆,R

d \ Γ) satisfies Sommerfeld’s radiation condition. Define f ∈
L2
loc(R

d) by f = −∆u− κ2u in the sense of distributions in R
d \ Γ, and suppose in addition

that f has bounded support. Then formula (36) still holds.

Proof. We give the proof in the case d = 3. The proof for the case d = 2 follows the same
lines. Consider a C∞ cut-off function χ : R → R+ such that χ(ρ) = 1 for ρ ≤ 1 and χ(ρ) = 0
for ρ ≥ 2. Define χα(x) = χ(|x|/α) where α > 0 is some parameter that will tend to +∞.
The function uχα has compact support so we can apply Lemma 8.1,

χαu = Gκ ∗ f + SLκ · γn(u) + DLκ · γd(u)− Gκ ∗ (u∆χα + 2∇u · ∇χα) (37)

where α is supposed large enough to have χαf = f . We have χαu→ u pointwise as α→ ∞.
Hence, to finish the proof, it remains to show that the last two terms in (37) tend to 0
pointwise as α → +∞. Take any x ∈ R

d \ Γ and assume that α > |x|. Observing that
α ≤ |y| ≤ 2α if y ∈ supp(∇χα) or y ∈ supp(∆χα), and applying Greens’s formula on
{y ∈ R

d | α ≤ |y| ≤ 2α } we obtain

∣∣∣Gκ ∗ (u∆χα + 2∇u · ∇χα) (x)
∣∣∣ =

∣∣∣
ˆ 2α

α

ˆ

Sρ

Gκ,x ∂ρχα · ∂ρu− u∂ρχα · ∂ρGκ,x dσρ dρ
∣∣∣

≤

ˆ 2α

α

ˆ

Sρ

|Gκ,x∂ρχα| · |∂ρu− iκu| dσρ dρ+

ˆ 2α

α

ˆ

Sρ

|u∂ρχα| · |∂ρGκ,x − iκGκ,x| dσρ dρ ,

(38)
where ρ is the radial coordinate in the spherical system, and Sρ, dσρ refer to the sphere
centered at zero with radius ρ and its surface measure. For the first term in the right hand
side above, we have

ˆ 2α

α

ˆ

Sρ

|Gκ,x ∂ρχα| · |∂ρu− iκu| dσρdρ

≤

ˆ 2α

α
|∂ρχα| ‖Gκ,x‖L2(Sρ)‖∂ρu− iκu‖L2(Sρ) dρ

≤ ‖ρ∂ρχ‖L∞(R)

(
sup
ρ≥α

‖Gκ,x‖L2(Sρ)

)(
sup
ρ≥α

‖∂ρu− iκu‖L2(Sρ)

) ˆ 2α

α

dρ

ρ
.

Observe that ‖ρ∂ρχ‖L∞(R) and
´ 2α
α dρ/ρ = ln 2 do not depend on α. Since both u and

Gκ,x satisfy Sommerfeld’s radiation condition, ‖Gκ,x‖L2(Sρ) remains bounded as ρ → ∞ and
limρ→∞ ‖∂ρu − iκu‖L2(Sρ) = 0 (see for example Definition 9.5, Theorem 9.6 and Equation
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(9.17) in [15]). This proves that the first term in (38) tends to 0 as α→ ∞. We prove in the
same manner that the second term in the right hand side of (38) tends to 0, which ends the
proof.

Proposition 8.2 extends [15, Thm 6.10] to problems set in domains containing multi-
screens. Now let us study the continuity properties of the potential operators SLκ and DLκ.

Proposition 8.3 (Continuity of single layer potential).
The potential operator SLκ continuously maps H

−1/2(Γ) into H1
loc(∆,R

d \ Γ) ∩H1
loc(R

d).

Proof. First of all, since H1
loc(R

d) ⊂ H1
loc(R

d \ Γ), the space H1
loc(R

d \ Γ)′ is continuously
embedded into H1

loc(R
d)′. Hence γ ′

d
: H−1/2(Γ) → H1

loc(R
d)′ is continuous. Besides Gκ∗ is a

pseudodifferential operator of order −2 on R
d, mapping H1

loc(R
d)′ → H1

loc(R
d) continuously.

Finally, observe that ∆SLκ(p) + κ2SLκ(p) = 0 in R
d \Γ, in the sense of distributions, for any

p ∈ H
−1/2(Γ). Hence if f = (∆SLκ(p))|Rd\Γ, then

‖f‖L2(K) ≤ κ2‖SLκ(p)‖L2(K) ≤ CK‖p‖
H−1/2(Γ)

for any compact subset K ⊂ R
d and some CK > 0 independent of p. This concludes the

proof.

Proposition 8.4 (Continuity of double layer potential).
The potential operator DLκ continuously maps H

+1/2(Γ) into H1
loc(∆,R

d \ Γ).

Proof. First of all, consider S : H1/2(Γ) → H1
loc(R

d \ Γ) as the solution operator such that for
any g ∈ H

1/2(Γ) the function S(g) is the unique solution to Problem (29). In particular we
have γd ·S(v) = v for any v ∈ H

1/2(Γ). Since S(v) is a solution to the homogeneous Helmholtz
equation in R

d \ Γ, we can apply identity (36) which yields

DLκ(v) = S(v)− SLκ · γn · S(v) ∀v ∈ H
1

2 (Γ) .

The continuity result that we want to prove is then a clear consequence of the continuity of
S,SLκ and γn, see Proposition 8.3 and Proposition 7.2.

8.2 Jump relations

As predictible, functions of the form DLκ(v) do not belong to H1
loc(R

d). Their Neumann
traces, though, admit no jump across the screen Γ. The following result summarizes the
behaviour of both the single layer and double layer potentials across the screen Γ.

Proposition 8.5 (Jump relations).

[γd] ·DLκ(u̇) = [u̇], [γn] ·DLκ(u̇) = 0 ∀u̇ ∈ H
+ 1

2 (Γ),

[γd] · SLκ(ṗ) = 0, [γn] · SLκ(ṗ) = [ṗ] ∀ṗ ∈ H
− 1

2 (Γ).

Proof. We will focus on the proof of the identities concerning the double layer potential. The
identities concerning the single layer potential may be proved in a similar manner. Consider
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any u̇ ∈ H
1/2(Γ), set ψ(x) = DLκ(u̇)(x). According to Relation (35), we have ∆ψ + κ2ψ =

γ′
n
(u̇) in the sense of distributions over Rd. As a consequence we have

ˆ

Rd

ψ (∆ϕ+ κ2ϕ)dx = −〈γ′
n
(u̇), ϕ〉 =

ˆ

[Γ]
u̇ γn(ϕ) dx ∀ϕ ∈ D(Rd). (39)

where 〈 , 〉 must be understood as the duality pairing between D(Rd) and D(Rd)′. On the
other hand consider the integral in the left hand side above, and apply the generalized 2nd
Green Formula (28). Since ∆ψ + κ2ψ = 0 in R

d \ Γ, this yields

ˆ

Rd

ψ (∆ϕ+ κ2ϕ)dx =

ˆ

Rd\Γ
ψ (∆ϕ+ κ2ϕ)dx =

ˆ

[Γ]
γd(ψ)γn(ϕ)− γn(ψ)γd(ϕ)dσ (40)

and this has to hold for any ϕ ∈ D(Rd) as well. Now take the difference between Equation
(39) and (40), and observe that γn(ϕ) ∈ H−1/2([Γ]) whenever ϕ ∈ D(Rd). This yields

ˆ

[Γ]
γn(ψ)γd(ϕ) dσ −

ˆ

[Γ]

(
γd(ψ)− u̇

)
γn(ϕ) dσ = 0 ∀ϕ ∈ D(Rd). (41)

Using the density of D(Rd) in H1
loc(∆,R

d), as well as Proposition 7.5, we see that (41) implies
that

´

[Γ] γn(ψ)v̇dσ = 0 for all v̇ ∈ H+1/2([Γ]), and
´

[Γ](γd(ψ)−u̇)q̇ dσ = 0 for all q̇ ∈ H−1/2([Γ]).
According to Proposition 6.3, and the definition of the jump operators given in §6.2, this
concludes the proof.

In spite of a clear parallel, there is also a remarkable difference between Proposition
8.5 above, and the usual jump relations, e.g., from Lemma 4.1 in [7]. Indeed, in the right
hand sides of the identities of Proposition 8.5, what appears is [u̇] and [ṗ], and not just u̇
and ṗ. This is a specific feature of screen’s geometries. In the present case, the operators
γd · SLκ : H−1/2(Γ) → H

+1/2(Γ) and γn · DLκ : H+1/2(Γ) → H
−1/2(Γ) are not onto. As

exhibited by the next result, they are not injective neither.

Lemma 8.6 (Kernels of potentials).
We have SLκ(ṗ) = 0 ∀ṗ ∈ H−1/2([Γ]) and DLκ(u̇) = 0 ∀u̇ ∈ H+1/2([Γ]).

Proof. We prove the result only for the single layer potential, since for the double layer
potential, the proof is very similar. For any ṗ ∈ H−1/2([Γ]), set ψ = SLκ(ṗ). The function ψ
belongs to H1

loc(∆,R
d\Γ), and since [γd(ψ)] = 0 and [γn(ψ)] = [ṗ] = 0 according to Proposition

8.5, we deduce that γd(ψ) ∈ H1/2([Γ]) and γn(ψ) ∈ H−1/2([Γ]), so that ψ ∈ H1
loc(∆,R

d). Since
∆ψ + κ2ψ = 0 in the sense of distributions in R

d \ Γ, we deduce that actually ∆ψ + κ2ψ = 0
in R

d. To summarize, ∆ψ + κ2ψ = 0 in R
d and ψ is outgoing, which implies that ψ = 0.

This lemma combined with Proposition 6.8 shows that SLκ induces a continuous map
from H̃−1/2([Γ]) to H1

loc(∆,R
d \Γ). Similarly DLκ induces a continuous map from H̃+1/2([Γ])

to H1
loc(∆,R

d \ Γ). For both induced maps, we keep the same notations SLκ,DLκ so that

SLκ : H̃− 1

2 ([Γ]) → H1
loc(∆,R

d \ Γ) and DLκ : H̃+ 1

2 ([Γ]) → H1
loc(∆,R

d \ Γ)

are continuous operators. We will now examine the invertibility property of the integral
operators γd · SLκ and γn · DLκ.
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Proposition 8.7.

Assume that κ = ı (imaginary unit). There exists a constant C > 0 such that

ℜe
{ ˆ

[Γ]
q γd · SLı( q ) dσ

}
≥ C ‖q‖2

H̃− 1
2 ([Γ])

∀q ∈ H̃− 1

2 ([Γ]) ,

ℜe
{ ˆ

[Γ]
v γn · DLı( v ) dσ

}
≥ C ‖v‖2

H̃
1
2 ([Γ])

∀v ∈ H̃
1

2 ([Γ]) .

Proof. Once again we only prove the statement for SLı since the statement concerning DLı

is very similar. Take any q ∈ H̃−1/2([Γ]) and denote ψ = SLκ(q) so that −∆ψ + ψ = 0 in
the sense of distributions in R

d \ Γ, and [γn(ψ)] = q. By definition of the jump operator
introduced in §6.2, we have

ˆ

[Γ]
q γd · SLı(q) dσ =

ˆ

[Γ]
γn(ψ)γd(ψ) dσ =

ˆ

Rd\Γ
|∇ψ|2 + ψ∆ψ dx

=

ˆ

Rd\Γ
|∇ψ|2 + |ψ|2 dx ≥

1

2
‖ψ‖2

H1(∆,Rd\Γ)

In the calculus above we used the generalized Green formula (28), as well as the fact that
∆ψ = ψ. Now since [γn(ψ)] = q and since γn : H1(∆,Rd\Γ) → H

−1/2(Γ) and [ ] : H−1/2(Γ) →
H̃−1/2([Γ]) are continuous, we deduce that there exists C > 0, independent of q such that

‖q‖
H̃− 1

2 ([Γ])
≤ C ‖ψ‖H1(∆,Rd\Γ) ,

which concludes the proof.

Proposition 8.8 (Coercivity of boundary integral operators).
For any wave number κ ∈ C\{0} such that ℑm{κ} ≥ 0, define the operators V : H̃−1/2([Γ]) →
H+1/2([Γ]) and W : H̃1/2(Γ) → H−1/2([Γ]) by

V = γd · SLκ and W = γn · DLκ .

Then there exists compact operators KV : H̃−1/2([Γ]) → H1/2([Γ]) and KW : H̃1/2([Γ]) →
H−1/2([Γ]) such that the following generalized G̊arding identities are satisfied

ℜe
{ ˆ

[Γ]
q (V + KV) q dσ

}
≥ C ‖q‖2

H̃− 1
2 ([Γ])

∀q ∈ H̃− 1

2 ([Γ]),

ℜe
{ ˆ

[Γ]
v (W +KW) v dσ

}
≥ C ‖v‖2

H̃
1
2 ([Γ])

∀v ∈ H̃
1

2 ([Γ]).

Proof. Denote by Gı and SLı,DLı the outgoing Green kernel and the single and double layer
potentials associated to the value ı for the wave number, so that Proposition 8.7 applies to
SLı and DLı. Besides, following Remark 3.1.3 in [18], the operator (Gı − Gκ)∗ is pseudo-
differential operator of order −4 mapping H1

loc(R
d)′ to H3

loc(R
d) which implies that both

KV := γd · (SLı − SLκ) and KW := γn · (DLı − DLκ) are compact as operators mapping
respectively H̃−1/2([Γ]) to H

1/2(Γ) and H̃1/2([Γ]) to H
−1/2(Γ). We finally obtain coercivity of

both V + KV and W+KW by application of Proposition 8.7.
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The previous result implies that both V : H̃−1/2([Γ]) → H1/2([Γ]) and W : H̃1/2([Γ]) →
H−1/2([Γ]) are Fredholm operators with index 0. As one may expect by analogy with a more
standard problem, they are actually isomorphisms.

Proposition 8.9.

The operators V : H̃−1/2([Γ]) → H1/2([Γ]) and W : H̃1/2([Γ]) → H−1/2([Γ]) are isomorphisms.

Proof. According to Fredholm alternative, all we need to prove is that these operators are
one-to-one. We prove this only for V, since the proof for W is analogue. Consider any
q̇ ∈ H̃−1/2([Γ]) such that V(q̇) = 0. Take any ṗ ∈ H

−1/2(Γ) such that [ṗ] = q̇. Injectivity will
be proved if we show that ṗ ∈ H−1/2([Γ]) which is equivalent to [ṗ] = q̇ = 0. Set ψ = SLκ(ṗ).
Then γd(ψ) = V(ṗ) = V(q̇) = 0 and ψ is an outgoing solution to the homogeneous Helmholtz
equation in R

d \ Γ. Hence according to Proposition 7.2, ψ = 0 i.e. SLκ(ṗ) = 0. We conclude
with the jump formula [ṗ] = [γn] · SLκ(ṗ) = 0 provided by Proposition 8.5.

Appendix

Quotient spaces As this is a concept constantly used across this article, in the first part of
this appendix we recall elementary results concerning quotient spaces and their norms. For a
full justification of these results, we refer to [17, chapter 1 & 4],

Assume here that (H, ‖ ‖H) is some Banach space, and that X is a closed sub-space of H.
Then we define the quotient space H/X as the set

H/X := { x+X | x ∈ H }.

The quotient space H/X is the set of equivalence classes associated to the equivalence relation
x ∼ y ⇐⇒ x−y ∈ X. The addition and multiplication by scalars induce natural counterparts
in H/X, so that H/X inherits a structure of vector space from H. We equip this space with
the norm

‖ ẏ ‖H/X = inf
x∈X

‖y + x‖H for any y ∈ ẏ. (42)

Recall that if (H, ‖ ‖H) is a Banach space, then H/X equipped with ‖ ‖H/X is a Banach space
as well. Finally, we would like to remind the reader that the canonical surjection π : H → H/X
is an open mapping.

Observe that, for the topology induced by (42), a set U ⊂ H/X is open if and only if π−1(U)
is an open set of H. Using this obervation, it is easy to prove the following result.

Lemma 8.10.

Let (H, ‖ ‖) and (Y, ‖ ‖Y) be two Banach spaces, and assume that X is a closed subspace
of H. Consider a continuous linear map Θ : H → Y. If X ⊂ Ker(Θ), then Θ induces a
continuous linear map θ : H/X → Y that is uniquely determined by the identity Θ = θ ◦ π.

Density result In this part of the appendix, we recall a density result proved in [8, Lemma
2.4]. We need this result when exploiting the local structure of screens. We provide a proof
for the sake of completeness.

Proposition 8.11.

For H being one of the spaces H1(Rd) or H(div,Rd), denote H⋆ the space of v ∈ H that vanish
in a neighbourhood of ∂Γ. Then H⋆ is dense in H.
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Proof:

We prove this result for H = H1(Rd). The case where H = H(div,Rd) follows the same
lines. Since C∞(Rd) is dense in H1(Rd), it suffices to show that any u ∈ C∞(Rd) is the limit
of some sequence u1, u2, u3, . . . of H1

⋆(R
d).

According to Definition 2.3, there exists a Lipschitz partition (Ωj)j=0...Q such that Γ∩ ∂Ωj =
Γj where Γj is a Lipschitz screen in the sense of Definition 2.1. Set Σj = ∂Γj , and observe

that ∂Γ ⊂ ∪Q
j=0Σj. Considering a partition of unity, the proof can be reduced to the case

where u is supported in some ball B centered at a point x ∈ ∂Γ. Considering a smaller radius
for B if necessary, one may consider that each Σj can be described like in (1). This implies
in particular that there exist Lipschitz diffeomorphisms Ψj : B → Ψj(B) ⊂ R

d such that

Ψj(B ∩ Σj) ⊂ Σ̂ := { (0, 0, z) | z ∈ R }.

Assume first that we have constructed functions τj,k ∈ H1(B) ∩ L∞(B) such that τj,k = 0 in
some neighbourhood of B ∩ Σj and limk→∞ ‖1− τj,k‖H1(B) = 0. Setting

τk(x) = τ0,k(x)τ1,k(x) · · · τ1,Q(x)

we obtain τk ∈ H1(B)∩L∞(B) such that τk = 0 in a neighbourhood of B∩(∪Q
j=0Σj) ⊃ B∩∂Γ,

and such that limk→∞ ‖1− τk‖H1(B) = 0. Set uk(x) := τk(x)u(x). Since supp(u) ⊂ B and

u ∈ L∞(B) and ∇u ∈ L∞(B), we obtain that uk ∈ H1
⋆(R

d) and

‖uk − u‖H1(Rd) ≤ 2 ‖1− τk‖H1(B)

(
‖u‖L∞(B) + ‖∇u‖L∞(B)

)
−→
k→∞

0 .

To conclude the proof, there only remains to construct the cut-off functions τj,k(x). Consider a

subset Σ ⊂ B such that Ψ(B∩Σ) ⊂ Σ̂ := { (0, 0, z) | z ∈ R } for some Lipschitz diffeomorphism
Ψ : B → B̂ = Ψ(B). We consider τ̂k ∈ H1

loc(R
d) ∩ L∞(Rd) defined by

τ̂k(r, θ, z) =





0 if r ≤ 1/k

ln(kr)/ ln(k) if 1/k ≤ r ≤ 1

1 if 1 ≤ r

Straightforward calculus yields limk→∞ ‖1− τk‖H1(B̂)
= 0. Now we can define τk(x) =

τ̂k(Ψ(x)). Clearly τk ∈ L∞(B). According to Theorem 3.23, Chapter 3 in [15], we also
have τk ∈ H1(B), and

‖1− τk‖
2
H1(B) ≤ (1 + ‖DΨ‖2L∞(B))

∥∥Jac(Ψ)−1
∥∥2
L∞(B)

‖1− τ̂k‖
2
H1(B̂)

−→
k→∞

0

with Jac(Ψ)(x) := det(Ψ(x)). Finally it is clear, according to this construction, that τk = 0
in a neighbourhood of B ∩ Σ. This concludes the proof. �
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