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Abstract

In the year of 1620 the printing office of the University of Prague published a
58-page table containing the values a,, = (1.0001)" for 0 < n < 23027, rounded
to 9 decimal digits. This table had been devised and computed about 20 years
earlier by the Swiss-born astronomer and watchmaker Jost Biirgi in order to fa-
cilitate the multi-digit multiplications and divisions he needed for his astronomical
computations. The “Progrefl Tabulen”, as Biirgi called his tables, are considered to
be one of the two independent appearances of logarithmic tables in the history of
mathematics — the other one, due to John Napier (1550-1617), appeared in 1614.

There are only a few copies of the original printing extant: one of them is now
in the Astronomisch-Physikalisches Kabinett in Munich. Based on a copy of this
original, the terminal digits of all table entries were extracted and compared with
the exact values of a,, a matter of a split second on a modern computer.

In this presentation we give a brief account of the mathematical environment
at the end of the 16th century as well as a detailed description of Biirgi’s Progref3
Tabulen and their application to numerical computations. We will also give a sketch
of Biirgi’s remarkable life and of his numerous achievements besides his most efficient
construction of logarithmic tables.

Our main purpose, however, is to analyze the numerical errors in Biirgi’s table.
First of all, there are no systematic errors, e.g. the crux of the table, 1.000123027:0022 —
10, is correct with all 9 digits given. 91.5% of the table entries are entirely correct,
and 7.3% of the values show round-off errors between 0.5 and 1 unit of the least
significant digit. The remaining 1.17% of the table errors are mainly errors of tran-
scription and illegible digits.

Statistics of the round-off errors leads to interesting conclusions concerning
Biirgi’s algorithms of generating his table and on his handling of the round-off
errors, as well as on the computational effort involved.






1 Introduction

The origins of this report date back to 1976, when the existence of an original copy of
Jost Biirgi’s table of logarithms [2] in the Astronomisch-Physikalisches Kabinett, Munich,
was pointed out to the author by the engineer and historian Wolfthard Pohl, Ziirich. This
original had been found in 1847 by Rudolf Wolf [32], [33] in the Royal Library (Koénigliche
Bibliothek) of Munich [3].

Subsequently, W. Pohl [23] was allowed to copy the entire table, in black and white,
such that it became possible to investigate the numerical errors in Biirgi’s hand calcu-
lations for the first time. This copy is now in possession of the author. In 1994 these
results were presented to the mathematical community and commented on the occasion
of the International Congress of Mathematicians (Ziirich) in the form of a souvenir watch
displaying Biirgi’s title page as its dial [29], see Fig. 6.

In 1998 the author was invited to present a short history of the discovery of the loga-
rithms [30] at “Slide Rule ‘98", the Fourth International Meeting of Slide Rule Collectors
in Huttwil, Switzerland, organized by H. Joss [12] (October 14 to 16, 1998). Here we
present an expanded version of the proceedings article, containing more information on
the statistics of Biirgi’s round-off errors and on his algorithm for generating the table.

It is amusing to ponder about possible lines of development of 16" century math-
ematics if calculators had been available at that time. The construction of tables of
logarithms as instruments of numerical calculations would not have been necessary, and
the concept of logarithms might have arisen only centuries later, e.g. in connection with
the development of calculus by Newton, Leibnitz and Euler. Almost certainly, the slide
rule (see [12]), the leading calculating device for three centuries, would have been missed
altogether. However, as it happened, in the 16" century no efficient calculating machines
were available, and there was a strong need to develop good algorithms for the more
tedious arithmetic operations such as multiplications, divisions, and square roots.

Compared to our time, the scientific environment in the 16" century was simple.
Astronomy was by far the most advanced discipline of science, looking back onto a con-
tinuous history of at least 2000 years. With the introduction of the Gregorian Calendar
(Pope Gregory XIII) in 1582 the length of the year was defined as 365.97/400 days =
365.2425 days (the modern value of the tropical year is 365.2422 days). Obviously, the
astronomers of that time already needed to perform long arithmetic calculations, and the
precision of some of their data (as the length of the year) asked for a precision of at least
6 digits.

Nowadays, arithmetic operations with multi-digit numbers are a standard topic in
elementary schools all over the world. Paradoxically, due to the ubiquity of calculators,
the widespread proficiency in these algorithms may eventually get lost.

2 The Idea of the Logarithms

The historical process of the discovery of the logarithms extended over at least half a
century. As we understand it now, the sole purpose of the invention was to speed up
multiplications and divisions by means of tables that could be computed once for all



(with a huge effort, though). Ironically, this aspect of the logarithms is now all but
irrelevant: for modern calculators and computers multiplications pose no bigger problems
than additions. The logarithms as a tool for computing (their key role for almost 400
years) have disappeared completely within a decade.

On the other hand, about a century after its original discovery the logarithm function
was found to be the indefinite integral of ¢/x (with an appropriate value of ¢ > 0). In
this role the logarithm will always keep its importance in all of mathematics.

The idea that directly leads to the mathematical object we now refer to as logarithm
can be found already in the works of Archimedes, 287-212 BC, (see, e.g. [28]). However
Archimedes missed the final breakthrough, and unfortunately his ideas were only picked up
much later. After the French mathematician Nicolas Chuquet (1445-1488) had introduced
a good nomenclature for large integers (e.g. 10° = million, 10'? = billion), the time was
ready for a systematic treatment of large and small (real) numbers. In 1544 Michael Stifel
[27] rediscovered what had remained forgotten for 1800 years. He considered what we now
call the geometric sequence a,,, with initial element 1 and quotient 2,

(1) ap=2", n=...,-2 -1,0,1,2,...,

or written in tabular form as

n . -5 -4 -3 -2 10123 4 5 6 7
. a, = 2" Lo bbby s 9 16 32 64 128
O 32 16 8 4 2

In modern language the second row of Stifel’s table is a list of the (positive and negative)
powers of the base B = 2.

The continuation of the table to the left by fractions was a novel aspect and led directly
to the discovery of the general law of multiplying powers of the same base B:

(3) B™ . B" = Bm+n OF Gy * Ay = Qpan with a, = B™.

Stifel became aware of the fact that this law could be exploited for finding the product
of the elements a,,, a, of the table by looking up the element a,,., in the same table.
Hence the product of the table elements in positions m, n is the table element in position
m + n; a multiplication is reduced to 3 table-look-ups and an addition.

Example: B =2

(4) 8-16 = B* - B* = B¥ = B = 128

N

table bottom to top  addition  table top to bottom




The nomenclature still in use today may be understood from M. Stifel’s table (2), but
was introduced only much later by Napier [21]: the numbers a,, in the bottom row are
the principal entries of the table, still referred to as numers; the integers n in the top row
are merely used in order to denote the position of a, within the table: n is called the
logarithm (greek for the word, i.e. the essence, of the number) of a,, (with respect to the
base B = 2). Due to the “exposed” position of n in the upper row of the table, M. Stifel
referred to n as the exponent. We still write a,, = B™, with the exponent n in “exposed”
position.

3 Jost Biurgi

These few highlights characterize the scientific environment into which Jost Biirgi was
born. He was the son of a renowned family in the town of Lichtensteig in the Toggenburg
valley (Canton of St. Gallen, Switzerland), born on February 28, 1552. Almost nothing
is known about his youth. In his home town Jost Biirgi most likely only received the
modest education that was possible in a rural environment. It is conceivable that he
entered apprenticeship with his father Lienz Biirgi who was a locksmith. Summaries of
the known fragments of Biirgi’s early life may be found in [15], [14], [16], [19], [28]. Details
on Biirgi’s biography were also given by Ph. Schobi [25]. The most comprehensive study
on Biirgi’s life and achievements published until now has been made by Fritz Staudacher
[26], also showing new aspects of Biirgi’s connections and innovations.

Fig. 1. Jost Biirgi at the age of 67. Copper plate print from a
drawing by Aegidius Sadeler (1619), taken from Benjamin
Bramer: Bericht zu M. Jobsten Biirgi seligen geometrischen
Triangular Instruments, Kassel 1648 ([1], p. 21).

The next known date of Biirgi’s life is that in 1579 he was appointed at the court
of Duke (Landgraf) Wilhelm IV of Hessen (in the city of Kassel, Germany) as the court
watchmaker and “mechanicus”. It is not known when Biirgi (Fig. 1) left his home town
and how and where he acquired the extraordinary skills that made him eligible for the
prestigious appointment in the duke’s observatory. Rudolf Wolf [32] speculates that Jost
Biirgi might have participated in the construction of the astronomical clock in the cathe-
dral of StraBlburg, carried out 1570-1574 by the clockmakers Isaak and Josias Habrecht



from Dielenhofen (Canton of Thurgau, Switzerland). According to another hypothesis,
recently brought up by F.Staudacher [26], the young Biirgi might have acquired his skills
in Schafthausen (Switzerland), where the Habrecht family had built clocks at least until
1572, and he also might have worked with Christian Heiden (1526-1576), a constructor of
celestial globes in Niirnberg [14].

From that time on Jost Biirgi’s life is relatively well documented, mainly by the
numerous precision instruments for geometry and astronomy, and by his astronomical
clocks that soon earned world fame. Most famous up to the present day are Biirgi’s
“Celestial Globes”, celestial spheres as they would be seen by an outside observer, with
a clockwork inside (Fig.2, [15]). The fame of those masterpieces was so great that the
emperor Rudolf IT (1552-1612) invited Biirgi to his court in Prague in 1592.

Fig. 2. The little “Himmelsglobus”, completed by Biirgi in 1594, to
be seen in the Swiss National Museum in Ziirich, see [15],
[19]. It is an extraordinary piece of early astronomy and
precision craftsmanship, 142 mm in diameter and 255 mm of
total hight, accurately displaying the motion of the celestial
sphere, the sun, and giving the time.
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Fig. 3. Biirgi’s “Proportional Circkel”, a precision compass device
invented and built by Jost Biirgi, first mentioned by Levin
Hulsius in 1603 (published in 1607). It serves to reduce the
scale of an object by a constant factor (from [19], p. 130).
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Among the precision instruments we mention the “Proportional Compasses” (Fig. 3),
a device invented and built by Biirgi that can be used for proportionally changing the scale
of a drawing. Biirgi was not only a skilled watchmaker, astronomer and mathematician, he
also knew to organize his private life: when he returned to Kassel in 1593 he had become
the owner of the house he had been living in before. It is documented that Biirgi also
became a successful real estate agent and banker. One of the few authentic documents in
Biirgi’s handwriting is a letter (dated Prague, 27.7.1616, signed Jost Biirgi, Uhrmacher)
that deals, in addition to 7 other cases, with a loan in the amount of 500 guilders (Gulden)
(Fig.4).
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Fig. 4. Handwritten letter by Jost Biirgi, addressed to his attorney
“Hans Dickhaut, meinen grossgunstigen freund und paten -
Cassel”, dated “Actum Prag den 27. jullij Anno 1616” (line
22). Lines 6 and 7 refer to a loan of 500 guilders (“gulde”,
see the 4th word on line 17): “iedoch beger ich mein gebiiret
gelt 5¢”. Original in the Hessisches Staatsarchiv, Marburg
an der Lahn, transcript see A.C. von Drach [6], p. 40.

Important events in Jost Biirgi’s life as well as a few other relevant events are sum-
marized in the following chronological chart:

bt



M. Stifel Arithmetica integra
* John Napier

1 Adam Ries

1 Simon Jacob
1 Michael Stifel

* Johannes Kepler

Introduction of the
Gregorian calendar

Kepler’s Astronomia Nova
Publication of Napier’s tables
of log sin values (Latin)

Tables of log sin (English)
1 John Napier
Henry Briggs’ Chilias Prima

Kepler’s Chilias Logarithmorum

1540

1544 —
1550 —

1550

1559 —
1

1564 —
1567 —

1

1571 —

1
1582 —

1609 —
1

1614 —

1616 —
1617 —

time ¢

< 1552

60

70
+— 1571-74

— 1579
80

< 1585

< 1588
90

+— 1592-93
+— 1594

00

+— 1603

+— 1604

10

<~ 1618

<~ 1632

years A.D.

1640

* Jost Biirgi, February 28,
in Lichtensteig (St. Gallen, Switzerland)

Construction of the astronomical clock
in the cathedral of Stralburg by
Isaak and Josias Habrecht, Dieflenhofen

Jost Biirgi Watchmaker of
Duke Wilhelm IV of Hessen

Biirgi’s new metal sextant, worlds first
observation watch indicating the second

Raimarus Ursus Dithmarus
mentions Biirgi’s calculations

Jost Biirgi’s stay in Prague
Biirgi develops and builds small celestial sphere

Biirgi’s “Proportional compasses”
Kepler confidentially edits Biirgi’s Arithmetica
Kepler mentions Biirgi’s calculating techniques

Biirgi promoted to Emperor’s watchmaker
on the Hradschin in Prague

Window throwing in Prague. Begin of 30-year war

Publication of Biirgi’s
“Progrefl Tabulen” in Prague

1 Jost Biirgi, January 31,
in Kassel (age 79 years and 11 months)

Fig. 5. Chronological chart 1544-1632.



Not only by his scientific achievements, but also according to reports by contemporaries,
mainly Kepler [13] and Bramer [1], Biirgi must have been a mathematician of remarkable
stature. This is even more astounding since Biirgi did not have much of a formal education
and must have discovered or rediscovered many relations on his own. Unfortunately, only
a small number of Biirgi’s theoretical results are documented; most of the evidence is
of an indirect nature. As Staudacher [26] discovered in 2012, Biirgi and Kepler were
restricted in publishing their knowledge about Biirgi’s mathematical innovations by a
mutual confidence agreement. A similar agreement existed between Brahe and Kepler
[13].

As an example, Kepler [13] quotes a theorem of Cardano and mentions that Jost Biirgi
has announced to be in possession of a proof.

“The secant of 89° plus the tangent of 89° equals the
sum of the sines of all degrees of the semicircle”.

Slightly generalized, and reformulated in modern notation with N = 180, 6 = w/N this

means N
= Z sin(kd) = sec (g — (5) -+ tan (g - (5) )

k=0

This is by no means an obvious relation, and Kepler’s statement sheds some light onto
Biirgi’s mathematical skills, although, unfortunately, Biirgi’s alleged proof has never been
found. Using geometric series and the technique of complex numbers, involving i := /—1,
fully developed only much later by Euler (1707-1783) and others, the proof would look as
follows (taking advantage of sin(N¢§) = 0, eV = —1):

- 1 iké 71k6 1 ( 2 2 >
_22 Z T\l 1
k=0
14¢ e fe

p— T p— - p— t —_ .
i(I—c)  1(ef_e ) 3

Note that Cardano, Kepler, and probably Biirgi missed the simpler form of S(N) =
tan(89.5°) found above; in fact:

T 0\ 0 1l4cosd T ™
tan(g—i)—co‘cani— " —sec(2 5)+tan( (5)

Note also that the modern proof heavily uses the exponential function which Biirgi was
about to discover (in real numbers only, though).



4 The Progref3 Tabulen

There is no question that Biirgi’s diversified work in astronomy, triangulation, geometry,
clockmaking etc. required extended calculations with multi-digit numbers. It is not known
to what extent Biirgi was familiar with M. Stifel’s geometric sequence (“progression”)
a, = B™ with B = 2. However, in his instructions (“Griindlicher Unterricht”) [10], p.
27, [18], Biirgi refers to Simon Jacob (1510 - 1564), who himself had summarized Michael
Stifel’s ideas. In any case, Biirgi must have had the clear insight how the power law (3)
could be exploited for speeding up multiplications. At the same time he came up with
a surprisingly simple and effective means for overcoming the obvious drawback of Stifel’s
table: the scarcity of the table entries a,,. Biirgi simply chose the base B as an appropriate
number close to 1, namely

1
B=1+-——=1.0001
(5) * To000 =~ 000

and tabulated the exponential function with base B,
(6) a, :=B", n=0,1,...,23027,

in 9-digit precision [2], [3], [4]. The use of the table for multiplying is exactly the same as
in the example of Equ. (4).

In this section we briefly describe the table and comment on the old dispute about
the priority between Jost Biirgi and John Napier for the invention of the logarithms.
Mathematical considerations on Biirgi’s table will be collected in Section 5.

In Biirgi’s table the sequences (“progressions”) are arranged in columns with 50 entries
per column and 8 columns per page. The index n (i.e. the logarithm) is printed in red (die
Rote Zahl) as 10n = 0, 10, 20, ..., 500,510, ..., see Fig. 7. The corresponding table entry
a, = 1.0001" is printed in black (die Schwartze Zahl) by omitting the decimal point, i.e.
as the integer 10® - a,. The entire table consisting of 23028 entries thus extends over 58
pages, covering the entire range from a, = 1.0000 0000 to aszper = 9.9999 9779 (see Fig.
7, Fig. 8). In [17] and [20] the question of the base of the exponential function tabulated
by Biirgi is discussed. Biirgi’s base B can be identified unambiguously as B = 1.0001,
the constant quotient of two consecutive table entries. Therefore it is natural to consider
the entry a, as the nth power of B, which implies ag = 1. The natural choice for the
“red number” corresponding to the table entry a, = B" is the exponent n. It can only
be speculated why Biirgi used the 10-fold exponents, 10n, instead, e.g. 0,10,20,... for
the beginning of the table (Fig. 7). A possible explanation for Biirgi’s increase of the
precision of n by one decimal digit is that he wanted to suggest (linear) interpolation in
the accuracy of one digit (see Section 5). The difference of two consecutive table entries,
apy1 — Gp = a,/10000, needed for this operation is readily available. A skilled user like
Biirgi can do this division and the subsequent proportionality computation in his head.

In the following, we take the liberty to refer to the table arguments and entries by
means of numbers n and a,, lying in the intervals

0.0 <n <23027.0 and 1.00000000 < a,, < 10.00000000,

adopting the modern usage of the decimal point.
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Biirgi concluded that the table should ideally terminate at the N'* entry where
ay = 10.0000 0000 .

By two refinements of the table on the last page (Fig. 8) he correctly finds the fractional
value

N = 23027.0022,
referred to as the “whole Red Number”. A more precise value is

log(10)

7 =" =1 10) = 23027.00220 32997 .

The title page (Fig. 6) summarizes the table by listing each 500th entry, as well as the
whole Red Number N. In accordance with tabulating the index as 10n, the “whole red

number” N is given as 230270022 with the superimposed ° marking the digit with unit
value, which corresponds to 10 N with N from Equ. (7) (see also the final sentence of the
legend of Fig. 8).

The arrangement of the entries in a circular dial clearly shows Biirgi’s genius since it
documents his insight that the next decade, e.g., [10,100) is a mere repetition in 10-fold
size of the current one, e.g., [1,10). A modern mathematician unwillingly is reminded
of Eulers’s famous relationship exp(ix) = cosx + isin x between exponential and circular
functions, discovered over 100 years later.

Example of the use of Biirgi’s table (cf. Fig. 6, 8)

In order to illustrate the use of Biirgi’s table for multidigit arithmetic we give a (con-
structed) example merely using the title page (Fig. 6) and later page 1 (reproduced as
Fig. 7): Compute the 5th power of 6.35923131. The arrows mark the direction from
red to black in Biirgi’s table.

black (numerus) red (logarithm)
c=6.35923131 given data n = 18500.0
=7 to be computed 5n = 92500.0

10.00000000 the whole red number
10000.00000 104

N = 23027.0022
4 N = 92108.0088

IR

05

1ot 5n —4N = 391.9912

scaled result

I

The scaling factor 10* had to be chosen such that the scaled result is in the range of the
table. A crude answer may now be read off page 1 directly: Approximate the logarithm
5n — 4 N of the scaled result as 5n — 4 N =~ 392.0 = 350.0 + 42.0. Then page 1 yields
/10" = aszgy = 1.03997647. Due to the illegible digits we have to be satisfied with
¢® ~ 10399.
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Fig. 6. Title page of Biirgi’s Progrefl Tabulen, Prague, 1620, as re-
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Copy. It summarizes the table by listing every 500" table
entry and states the logarithm N of 10, the “gantze Rote
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Fig. 7. First page of Biirgi’s Progrefi Tabulen as reproduced in [10],
[28] from the Danzig Copy. Most illegible digits are no better
in the original. The Munich Copy (see Section 5) is in much
better condition. E.g., the illegible entry for 102.0 (3rd entry
in the 3rd column) clearly reads as 1.010 25168 (= 1.0001192)
in the Munich Copy. The last entry of the page, 1.040 80816,
is erroneous by a transmission error. The (supposedly iden-
tical) leading entry of the following page, a490 = 1.040 80869,
is entirely correct.
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Fig. 8. Last page (p. 58) of Biirgi’s Progrel Tabulen reproduced in
black and white from the Munich Copy [3] (Astronomisch-
Physikalisches Kabinett). The last column is supplemented

by an additional column of “red numbers”

, indicating a grad-

ual decrease of the table interval in order to interpolate to
the final value of 10.0000 0000 (or 9.99999999). The loga-
rithm NV of 10 is stated in the final comment as lying in the
interval 23027.0022 < N < 23027.0023, cf. Equ. (7).
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Owing to the transparent structure of Biirgi’s table, the illegible digits can easily be
reconstructed from agg; = 1.03987243:

@391

=1. 42
10000 039976

Q392 = G391 +

For linear interpolation (see also Fig. 15) this value is not even needed:

red black
391.0 asogy
391.0912 <
' ot
392.0 391
391+ 15000

Simple proportionality yields

5
c @391

— = aggy + 0.9912 -

= 1.03987243 + 0.00010400 — 0.00000092 = 1.03997551 .
104 10000 *

The result ¢® = 10399.7551 is correct with all digits given.

Presently, the existence of two originals of Biirgi’s table has been confirmed. Besides
the Munich copy [3], which is the basis of this work, an original had been found 1985
in the library of Paul Guldin (1577 - 1643); it is now in the library of the University of
Graz, Austria [4] (see Gerlinde Faustmann [7], [8], [9]). Unfortunately, the Danzig original
(found 1855 by H. R. Gieswald [10]), which is the source of the well-known reproductions
in [13], [28] (Fig. 7, Fig. 8) is lost since Word War II. Rumours that it is in Prague now,
and that a fourth original exists in the Vatican have not been confirmed so far. The
quality of the printing in all known copies is less than perfect. The abundant illegible
digits are not due to imperfections of the facsimile reproductions. The Munich Copy
seems to be of better quality than the Danzig copy.

Biirgi was very reluctant in publishing his table. It appeared in print as late as 1620
(Fig. 6), only after Johannes Kepler (1571-1630) had been urging him for a long time
to publish it. The reason for the scarcity of the original copies may be that only a few
preliminary copies were printed. Wars or financial problems might have interrupted the
publishing process.

Kepler reported in 1603 (1609 at latest according to different sources) that Biirgi was
in possession of an efficient method to carry out multiplications and divisions. Even
earlier, in 1588, the astronomer Raimarus Ursus Dithmarus (quoted by Rudolf Wolf [33])
reported that Biirgi was using a method to greatly simplify his calculations. It cannot be
excluded that these statements mean that Biirgi’s tables were operational as early as 1588.
It is conceivable, however, that Kepler and Dithmarus refer to the use of trigonometric
identities such as

cos(z) - cos(y) = % (cos(z + y) + cos(z — y))

for reducing multiplications to additions and table-look-ups. According to many docu-
ments, this technique, referred to as prosthapheresis (“auxiliary separation”), was quite
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common among human calculators in the 16" century, [10], [16]. In any case, it seems
possible for a single human calculator to generate the Biirgi table within a few months,
as will be explained in Section 5.

While Biirgi could well have been a daily user of his own tables, similar ideas developed
on the other side of the channel and approached their completion. In 1614, John Napier
published tables of log-sin values, combining his concept of logarithms with trigonometric
functions, [21] (Fig. 9). Clearly, the generation of these tables was more involved than
Biirgi’s tabulation of an exponential function; it took Napier more than 20 years of tedious
calculations. In his tables Napier managed to grasp many advanced aspects of the modern
natural logarithms. In this respect he was ahead of his contemporaries, but with the
laborious computations he paid a high price for it. Neither Napier’s nor Biirgi’s table was
free of errors.

Both authors saw simplification of multiplications and divisions as their main goal.
Biirgi’s table was designed for general arithmetics, whereas Napier’s was specialized for
trigonometric calculations needed in astronomy. The choice of the basis (Biirgi: 1.0001,
Napier: the reciprocal of the Euler number, e~! = 0.367879...) is irrelevant for this goal.
Since applications involve reading the tables in both directions, Napier’s approach (equal
steps in the angles, tabulation of a logarithm function) is no better and no worse than
Biirgi’s (equal steps in the logarithms, tabulation of an exponential function).

oG- @@ O A e~
N Sl

Logarithmorum
Canonss deferiptio,

Ejufque ulus, in utraque || i

T rigonometria ; ut etiam in
oami Logiftica Machemarica,
Arplifitmi, Facill:mi | ¢

expiditsfims expliearss,

Authore ac Inventore,

IOANNENEPERO,
Bacane Merchiflonii,
oec. Scoto.

comm s N,

":’T

CEDINEVRYS,
Exchicina AN-DRLEE HART
Hilhogole,c13. we. x1v,

Fig. 9. Copper plate on the title page of John Napier’s table of log-
sin values, Edinburgh 1614, from [19], p. 28. An English
version, [22], of the Latin original appeared in 1616.
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Some authors, e.g. Lutstorf [16], [17], Wolf [32], [33] suspect that Biirgi’s tables might
have been operational earlier than Napier’s. In this article, we see the inventor/discoverer
of logarithms as the one who first made a practical table based on the exponents property,
for the purpose of simplifying multiplications. Denis Roegel [24], on the other hand, con-
siders the invention of the abstract notion of logarithm, independently of the construction
of tables, and therefore does not come to the same conclusion. Almost certainly, neither of
the human calculators knew about the work of the other. It seems to be fair, therefore, to
consider Jost Biirgi and John Napier as the two simultaneous and independent discoverers
of the logarithms, see also Clark and Montelle [5], Weiss [31], and Gronau [11].

5 Mathematical aspects of Biirgi’s Progref3 Tabulen

With Biirgi’s choice B = 1.0001 according to (5) as the base, the obvious algorithm for
generating the table is

(8) ap=1, apy1=B-a,=a n=20,1,...,23027,

+
" 10000’
as follows from (6). The single step is as simple as it could possibly be: in order to

calculate the next table entry, augment the current one by its 10000*" part (right-shift by
4 digits). Just do this 23000 times, and you're done.

5.1 Checks

Leading a formidable task like this to a reliable result necessarily requires careful checks
for computational errors. The multiplication rule for powers, Equ. (3), provides a simple
and effective tool for detecting computational errors.

Biirgi must have taken care of this perfectly; otherwise the ”whole red number” N of
Equ. (7) could not have been correctly determined to lie in the interval 23027.0022 <
N < 23027.0023 (Fig. 8). Since Biirgi’s method of checking is not known, we may ponder
about possible checks.

Assume that the final entry of the first page, asoo = 1.04080869, has been confirmed,
e.g. by checking agy = a%yy, as00 = a3y, €tc., or, as we would do it now, by the binomial
formula

K

400

(1+5)400:Z( L )5’“ + Ry, e=10"".
k=0

With K =5, the result a40o = 1.04080869271 (all 12 digits correct) may be obtained with
negligible computational effort, using paper and pencil only.

Then, every subsequent page can be checked by one long-hand multiplication as fol-
lows. Let a; be the initial entry of any page. Then the final entry, ay = a;4400, must satisfy
ay = a; - aspo. If the check fails, one needs to locate the error by testing a;4q = a; - a4 for
some values d < 400, e.g. for d = 200, 100, etc., and redo (part of) the page.

Another possibility is to take advantage of the entry
ay31 — 1044040044101,
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a rather unlikely curiosity. Checking the relation a,y431 = 1.044040044101 - a,, may be
done by one long-hand multiplication by a43; which reduces to one quadrupling and a
sum of 6 quickly decreasing terms.

5.2 Guard Digits

Besides erroneous calculation, the slow accumulation of round-off errors may be a problem.
Here the only remedy is introducing additional digits of precision, called guard digits.

Example:

2 guard digits no guard digits

12345 = 3.4364 4765 40 3.4364 4765
34364 48 34364

12346 = 3.4367 9129 88 3.43679129

It is seen that guard digits must be carried along in order to avoid accumulation of
round-off errors. Without this precaution (e.g. by strictly rounding the 8" digits after
the decimal point) the erroneously rounded value 3.4367 9129 would have been found for
a12346 from the correct value for ajg345. Fig. 10 shows the accumulated round-off error if
the table is computed according to (8) using g guard digits.

We first define our notion of guard digits and describe the modification of the algorithm
(8) for simulating rounded calculation with g guard digits. Then, conclusions on the
number of guard digits necessary for guaranteeing an accurate table will be drawn.

As before, we denote the exact powers of B by a, := B"; furthermore, a, is the
correctly rounded table entry satisfying |a, — a,| < %5, 5 = 1078, Recall that Biirgi
tabulated the integer values fa, with f =1/6 = 108.

Attaching g guard digits to the table entry a, increases its resolution to 1/(f G) where
G := 109, resulting in the new approximation

1
An:5n+f_Gca |C|§§a

where ¢ stands for the (positive or negative) integer formed by the guard digits. Now the
algorithm (8) becomes

(9) fG A, 1 =round(1.0001 f G A,),

where round(z) stands for the integer closest to x. The rounded table values are then

obtained as a, = round(A, f)/f.

In the above form the algorithm is not restricted to natural numbers g; any value of
G > 1 is allowed. In Fig. 10 we have used G = 1, 3,10, 30, 100, 300 (approximately)
corresponding to g = 0, 0.5, 1, 1.5, 2, 2.5 guard digits. E.g. 1.5 guard digits means that
the values of A,, are always rounded to a precision of %, not practical for hand calculations,
though.
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Error in Jost Buergi‘s table, simulated with g guard digits
2

o
o
o
s
@

in units of last digit 1078
I
=

-8 05
-20 -10
200 400 600 800 0 1000 2000 3000
n n
c
8
s 2 6
5 5
S 4
o
e 3 ‘
=
g 2 25
Qo
< 1
0
3 -1 . . . . .
0 2000 4000 6000 8000 o 05 1 15 2 25

Colors for g: black 0, cyan 0.5, red 1, blue 1.5, magenta 2, green 2.5 x 10*

Fig. 10. Plots of A, — a,, in units of the least significant digit, 1078,
in four intervals of n, as an illustration of the effect of g

guard digits. Colours for g: black 0, cyan 0.5, red 1, blue
1.5, magenta 2, green 2.5.

It is seen that guard digits are an absolute necessity: g = 0 results in the loss of 1 digit
already after 100 steps, just as the theory of random walks predicts. If checks are made
after every page, 1 guard digit suffices in the lower part of the table. However, since in
the upper part of the table the accuracy requirements are up to 10-fold, two guard digits
are needed there in order to guarantee 9-digit accuracy. Two guard digits suffice to keep
the accumulated round-off error below 3 units of the last digit. To guarantee an accurate
table free of errors occasional checks according to Section 5.1 must be carried out.

5.3 Table errors

In 1976 the Astronomisch-Physikalisches Kabinett in Munich allowed W. Pohl [23] to
copy their Progrefl Tabula entirely. Based on this excellent material the Biirgi table was
analyzed subsequently, see the Internal Note [29].

First, it was established that the table contains no systematic errors by checking the
“whole Red Number” N, see Equ. (7). Also, the numbers given on the title page (Fig. 6),
were found to be correct in every digit, except for the entries at 12000.0, 16000.0, 19000.0
which have a round-off error of slightly more than a half-unit of the least significant digit.

Assuming that the table contains no large systematic errors, the actually given (and
possibly erroneous) table values @, may be reconstructed from the index n and the ter-
minal digit (TD). In this way it was possible to check the entire table by computer after
having keyed in the 23028 terminal digits, which is the workload of about a week, including
attempts to decypher barely legible digits.
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The following counts of table errors A,, := 10%(a,, — B") were obtained:

Type counts %
0  correctly rounded (|A,| < 0.5) 21081 91.54
1 TD rounded to wrong side (0.5 < |A,| < 1) 1679 7.29
2 TD erroneous (|A,| > 1) 87 .38
3 TD illegible 181 .79
23028 100

The distribution of the 87 large errors (Type 2) is shown in the upper histogram of Fig. 11.
Clearly, large errors are more abundant in the upper part of the table, where its relative
accuracy is higher (up to 1 more digit of relative accuracy). The distribution of the 181
illegible terminal digits (Type 3) in the lower histogram of Fig. 11 is more or less uniform.

Histograms versus position n in the table
20 T

Number of cases

0 0.5 1 1.5 2 2.5
87 large errors, 1<lerrorl<6, versus n x 10"
14
12 B
[2]
3 101 ]
©
(&) sl |
©
g of 1
E 4 1
b4
2 .
0
0 0.5 1 1.5 2 25
181 illegible terminal digits, versus n x 10*

Fig. 11. Histograms of table errors (in units of the least significant
digit) versus position n.
Upper plot: 87 large errors, Type 2, 1 to 6 units.
Lower plot: 181 illegible terminal digits, Type 3.
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Among the 87 large errors (Type 2) about 25 seem to be errors of transcription (such as
n = 12870: @, = 3.62167184 instead of the correct value B,, = 3.62167148), see Appendix
A. For the other 62 cases we have 1 < |A,,| < 2.64. The longest interval of systematically
erroneous values is 19890 < n < 19904 with 1.73 < A,, < 2.64 (Appendix B). For the
22759 errors of Types 0 and 1 the histogram given below is also plotted in Fig. 12.

A, ‘—1 -09 -08 -07 -06 -05 -04 -03 -02 =01 0

cases 10 8 14 45 195 1145 2036 2231 2158 2343
272 9913

A,] 0 01 02 03 04 05 06 07 08 09 1

2314 2343 2263 2153 2095, 1126 196 48 19 17,
11168 1406

cases

Histogram of 22759 rounding errors, lerrorl< 1

1400 -

1200 -

1000 -

800

600

Number of cases

400 -

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
error in units of the least significant digit

Fig. 12. Histogram of the 22759 rounding errors of Types 0 and 1.

The bias of the small rounding errors towards the positive side seen in Fig. 12 may be a
consequence of permanent upwards rounding of the single guard digit 5. This hypothesis
may be corroborated by simulations of various rounding algorithms for generating Biirgi’s
table. The third histogram of Fig. 13, generated by permanent upwards rounding of
the single guard digit 5, is an ideal form of the histogram of Biirgi’s rounding errors
(Fig. 12). In contrast, the symmetric rounding (half-integers to nearest even) produces
the symmetric fourth histogram of Fig. 13.
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Simulation of the rounding of one or two guard digits

1500 1500
%] [

@ 1000 @ 1000
o o
S ks
o] o}
Qo o

£ s00 £ s00
z z

0 0

-1 -0.5 0 0.5 1 -0.1 -0.05 0 0.05 0.1
Correct rounding ... in first guard digit

1500 1500
8 8

% 1000 % 1000
(] (]
© B
o] o}
o Qo

€ s00 E 500
z z

0

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
Round first guard digit: .5 goes up ... symmetric rounding: .5 to nearest even

Fig. 13. Histograms of the errors in four simulated rounding models for
the entire table (rounding to 9 significant digits).
(1) Direct rounding of the exact values.
(2) Rounding in the first guard digit, absolute errors < 0.05.
(3) Rounding of the first guard digit: 0.5 goes up.
(4) Symmetric rounding of first guard digit: 0.5 to nearest even.

In Appendix B the only three sequences of consecutive seriously erroneous entries are
listed. The comment “correct transition” expresses the hypothesis that the transition
from @, to @, = round(1.0001 - @, ;) was done correctly; presumably, these errors
were caused by erroneous transmissions. Appendix C lists a few sequences of consecutive
roundings to the wrong side.

5.4 Linear interpolation

Linear interpolation was suggested by Biirgi himself, and the “user’s manual” that was
to go with the table does in fact contain instructions for accurate or approximate linear
interpolation. Unfortunately, those instructions, announced on the title page (Fig. 6)
by the words sambt grindlichem Unterricht, “with thorough instruction”, have not been
published with the table. Only much later, Gieswald rediscovered their manuscript in the
archives of Danzig und published it in 1856 [10], [16].
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Fig. 14 shows an excerpt from Biirgi’s instructions as reproduced in [18]. In the
example Biirgi explains how to find the accurate red number (in modern language: the
logarithm to base 1.0001) of a given number a,,

n = 10g; 901 (an)-

He therefore shows how to cheaply find logarithms from his table of an exponential func-
tion.

Rurtser S.ni.ebt'bcr Progress Tabulen, Wie diefelbigen
nuglich in ollerley MNechuungen u gebrauchen.

) I]. Dlann {oll jum Erempel die wahre rothe Bahl von 36 judyen, {o feget man nedy &i fitr
bamit id 9 Biffern befomme, benn alle jdwarze Rablenw haben di)n quxfei L$'1'abula nid(?t tcvl:nbi:;r:roallx;}z
369(_)00000 Darnad) judt man in ver Tabul unter den jdprarzen Bab{ Die 2 nedsit Heiner und nedft
gréper ift bann 360000000 bif finbe id) am 33 blat in der columma 1950y und auf ber linfen feite
uun felt miv pie {dwavze alf 360000000 wijden '

o) biefie Dat fdmar; 359964763 biefe ift su Hein
10 bie Timeviny 35996 bie Diffeveny
biefle hat {dhwars 360000759 bif it ju grof

biefe Heinere Rahl von 359964763 Eubtrabire
von meiner gegebenen Bahl 360000000

) 000035237
Wie {idh belt bie ] Differents [ At der ] rothen | alfo Belt fid bie 3 sur &
| 859%6 | | 1o | 35237 al8 9759

Difse Biert BVierte addier gu dev Heinen rothen Jakl

Die Heine vothe Bahl it 99
Die Babl tcr columns 123000
Dief ift ber Scywarzen Babl von 360000000 ifr rote 195035733

ZVed

€5 fol gleidwol fo verditand worden 36 Haben ifr rothe 1‘2:_.%% -—38&—-

S T

unp werben alle Beit Bif unter bie ® gange verjtanden wib die folgen der Brud).6n

Fig. 14. In the example Biirgi explains backwards reading of the
table, i.e. given a black number a,,, find the corresponding
red number n = log; ggg; an = log(ay)/log(1.0001). In
particular a, = 3.6 yields n = 12809.97891087. Biirgi
gives 9 correct digits (third line from bottom).

For generally discussing linear interpolation in this context, let x be a real variable,
and consider the exponential function

(10) f(z) = B® with B=1+¢, £=0.0001

in the range 0 < z < log 10/ log(1 + ¢). Since the table interval is 1, define n := floor(z),
t := x—n. Then linear interpolation in the interval n < x < n+1 yields the approximation

(11) fr=tfln+1)+(1—=1) f(n)

of f(x). Due to the convex curvature of the graph of f the relative interpolation error is
nonnegative and roughly bounded by &2/8,

(12) 0 < (f* = f(x)/fz) <°/8.
This implies 0 < f* — f(z) < 1.25-107% if 1< f(z) < 10.

21



The conclusion is that Biirgi’s choice of tabulating the values f(n) with 9 significant
digits is optimal in the sense that the error due to linear interpolation is never more than
1.25 units at the least significant digit. This error bound is reached near the upper end
of the table, whereas near the lower end of the table the error is bounded by 0.125- 1078,

The linear interpolation process of the exponential function (10) in the interval
n < x < n+ 1 is sketched in Fig. 15. The tickmarks on the vertical lines indicate
the grid of the table entries. fdenotes the exact interpolant of the rounded table entries.
In the upper half of the table the positive bias of the interpolation error may almost be
compensated by always rounding fvdownwards.

710

BCL

W‘—>\

exact interpolant f
of table values

| fmy | 2 I
i N

1§ i 1 down-rounded |
interpolant

n—+1 N

o
S
8]

Fig. 15. Linear interpolation.
Solid curve: graph of f(x) := B*, 0 <x < N (Equ. (10)).
Dashed line: linear interpolation polynomial of exact func-
tion values for n < x < n + 1, with exact interpolant f*.
Black dots: rounded table entries to be interpolated.
Solid line: linear interpolation polynomial of rounded ta-
ble entries. The down-rounded approximation of f~' is also
marked by a black dot.

This is exemplified in Fig. 16, where we plot the interpolation error in the interval
23000 < z < 23025 near the upper end of the table. The correctly roundgd table values
of f(z) were used as input data. Three rounding strategies were used: (1) f exact (black),

(2) f rounded to nearest integer (cyan), (3) f down-rounded (red). In the upper half of
the table Strategy 3 is preferable (still with a slightly positive bias), in the lower half
Strategy 2 is better.
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Interpolation error near the upper end of the table versus x
251

I/ fl “ M 1’\"\' h m 'fmt'l M Il

u), { \( HH '.![

1

Units of the least significant digit

1 1 1 1 J
2.3 2.3005 2.301 2.3015 2.302 2.3025
f~: exact black, rounded cyan, down-rounded red x10*

Fig. 16. Interpolation error near the upper end of the table versus .
Black line (Strategy 1): error of the interpolant f of the val-
ues f(n) = round(B™). Cyan/Red (Strategies 2/3): errors
of correctly rounded/down-rounded interpolants of rounded
table entries.
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Appendix A: Summary of isolated large errors

25 computational errors or transcription errors with |error| > 1078
a, = 1.0001™, “Biirgi”: 4 terminal digits, “Bii-ex”: units of last digit

2363

4531

6299

8795
12869
12870
12952
13017
13335
13516
14422
14950
15198
16350
18504
18713
18925
19414
19464
19574
19822
20997
21255
21389
22544

ex=10%-a,

126653925.6
157314585.9
187736370.3
240958860.1
362130935.0
362167148.1
365148978.4
367530057.8
379404726.6
386334127.6
422968657.6
445900325.2
457096350.4
512903870.9
636177538.0
649612887.1
663530995.1
696782369.0
700274830.1
708019986.3
725797523.4
816286346.3
837619481.6
848918552.4
952849980.9

Biirgi

3929
4583
6375
8867
0938
7184
8975
0053
4724
4125
8460
5740
6354
3817
7535
2883
0999
2362
4839
9988
7537
6341
9480
8554
9976

Biu-ex

3.38
-2.92
4.70
-6.90
3.02

-3.40
-4.83
-2.57
-2.57

2.40

3.60

-2.98
-4.14
3.85
-7.04
8.86
1.71

-5.30
-1.56

1.62
-4.87

658—460

24

error

6—9
6 — 3
0—5

55— 8
48—84
8 =5
8 — 3
7T—4
8—=5

50.4—54
71—17
8—=5
8—3
5—9
9—2
30—39
6 — 8
23—37
6 —1
2—0
2—4
81—76

comments

last digit upside down
3 clear

5 clear but distorted
previous entry 240934767
8 clear

two digits interchanged
5 clear

3 clear

4 clear

5 clear

460 clear

previous entry 445855740
4 clear, guard digit?
two digits interchanged
5 clear

3 clear

9 clear

2 clear

39 clear

8 clear

37 clear

1 clear

0 clear

4 clear

76 clear



Appendix B: Sequences of consecutive seriously erroneous entries

3 sequences with 29 serious errors, |error| > 1078
a, = 1.0001™, “Biirgi”: 4 terminal digits, “Bii-ex”: units of last digit

n ex=10%-a, Birgi Biex error comments
16387 514805035.1 5034 -1.14 1 unit low
16388 514856515.6 6516 0.35 correctly rounded

16389 514908001.3 7981  -20.30 8001—7981 20 units low
16390  514959492.1 9392 -100.10 9492—9392 100 units low

16391 515010988.0 8888 0888—8888 after transition

16392 515062489.1 0390 correct transition
16393 515113995.4 1897 correct transition
16394 515165506.8 3409 correct transition
16395 515217023.3 7023 -0.35 recovered

16396 515268545.0 8545 -0.05 recovered

16397 515320071.9 0702 0.10 0072—0702 digits 0,7 interchanged
19245 685106271.7 6272 0.30 correctly rounded

19246 685174782.3 4790 7.67 82—90 8 units high

19247 685243299.8 3308 8.19 00—08 correct transition
19248 685311824.1 1832 7.86 24—32 correct transition
19249 685380355.3 0365 9.68 0363—0365 after correct transition

19250 685448893.3 8893 -0.36 recovered, 3 distorted
19251 685517438.2 7438 -0.25 recovered, corr.rounded
19887  730530335.7 0335 -0.68 1 unit low

19888  730603388.7 3388 -0.72 1 unit low

19889 730676449.1 6449 -0.06 correctly rounded
19890 730749516.7 9519 2.30 2 units high

19891 730822591.7 2594 2.35 2 units high

19892 730895673.9 5676 2.09 2 units high

19893 730968763.5 8766 2.52 3 units high

19894 731041860.4 1863 2.64 3 units high

19895 731114964.5 4967 2.46 2 units high

19896 731188076.0 8078 1.96 2 units high

19897 731261194.8 1197 2.15 2 units high

19898 731334321.0 4323 2.03 2 units high

19899 731407454.4 7457 2.60 3 units high

19900 731480595.1 0597 1.86 2 units high

19901 731553743.2 3745 1.80 2 units high

19902 731626898.6 6901 2.42 2 units high

19903 731700061.3 0063 1.73 2 units high

19904 731773231.3 3233 1.73 2 units high

19905 731846408.6 6409 0.40 recovered, corr.rounded
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Appendix C: Sequences of consecutive erroneous roundings

5 sequences with 37 harmless errors, |error| < 1.6 - 1078
a, = 1.0001™, “Biirgi”: 4 terminal digits, “Bii-ex”: units of last digit

n ex=10% - a, Biirgi Bii-ex error comments
3501 141918462.1 8463 0.89 1 unit high
3502  141932654.0 2655 1.05 1 unit high
3503  141946847.2 6848 0.78 1 unit high
3504 141961041.9 1043 1.10 1 unit high
3505  141975238.0 5239 0.99 1 unit high
3506 141989435.5 9437 1.47 1 unit high
3507  142003634.5 3635 0.53 1 unit high
3508 142017834.8 7836 1.16 1 unit high
3509  142032036.6 2038 1.38 1 unit high
3510 142046239.8 6240 0.18 recovered

13415  382451984.8 1984  -0.80 1 unit low

13416  382490230.0 0229 -1.00 1 unit low

13417  382528479.0 8478  -1.02 1 unit low

13418 382566731.9 6731 -0.87 1 unit low

13419  382604988.5 4988  -0.55 1 unit low

13420 382643249.0 3248  -1.04 1 unit low

13421 382681513.4 1512 -1.37 1 unit low

13422  382719781.5 9781  -0.52 1 unit low

13423  382758053.5 8053  -0.50 correctly rounded
13424  382796329.3 6328 -1.30 1 unit low

14786  438647557.8 7559 1.25 1 unit high
14787 438691422.5 1423 0.49 correctly rounded
14788  438735291.7 7835293 1.35 87—78 digits 8,7 interchanged
14789  438779165.2 9166 0.82 1 unit high

17389  569058503.4 8505 1.59 1 unit high

17390 569115409.3 5410 0.74 1 unit high

17391 569172320.8 2322 1.20 1 unit high

17392  569229238.0 9239 0.97 1 unit high

17393 569286161.0 6162 1.04 1 unit high

17394  569343089.6 3091 1.43 1 unit high

17395  569400023.9 0025 1.12 1 unit high

17396  569456963.9 6965 1.12 1 unit high

17397  569513909.6 3911 1.42 1 unit high

17398  569570861.0 0862 1.03 1 unit high

17399 569627818.1 7819 0.94 1 unit high

19525  704559346.9 9348 1.13 1 unit high

19526  704629802.8 9804 1.19 1 unit high
19527  704700265.8 0267 1.21 1 unit high

19528 704770735.8 0737 1.19 1 unit high

19529 704841212.9 1214 1.11 1 unit high
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