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Abstract
We investigate the Besov regularity for solutions of elliptic PDEs. This is based on regularity results
in Babuska-Kondratiev spaces. Following the argument of Dahlke and DeVore, we first prove an
embedding of these spaces into the scale Br

τ,τ (D) of Besov spaces with 1
τ = r

d + 1
p . This scale is

known to be closely related to n-term approximation w.r.to wavelet systems. Ultimately this yields
the rate n−r/d for u ∈ Km

p,a(D) ∩Hs
p(D) for r < r∗ ≤ m.

In order to improve this rate to n−m/d we leave the scale Br
τ,τ (D) and instead consider the spaces

Bm
τ,∞(D). We determine conditions under which the space Km

p,a(D) ∩Hs(D) is embedded into some
space Bm

τ,∞(D) for some m
d + 1

p > 1
τ ≥ 1

p , which in turn indeed yields the desired n-term rate. As an
intermediate step we also prove an extension theorem for Kondratiev spaces.

1 Introduction

Ever since the emergence of (adaptive) wavelet algorithms for the numerical computation of solutions
to (elliptic) partial differential equations there was also the interest in corresponding rates for n-term
approximation rates, since these may be seen as the benchmark rates the optimal algorithm (which at
each step would calculate an optimal n-term approximation) would converge with.
Later on, this question was seen to be closely related to the membership in a certain scale of Besov spaces.
More precisely a famous result by DeVore, Jawerth and Popov [9] characterizes certain Approximation
classes for approximation with respect to Lp(D)-norms as Besov spaces Br

τ,τ (D) with 1
τ = r

d + 1
p , where

r is the rate of the best n-term approximation.
In another famous article Dahlke and DeVore [2] later used this result to determine n-term approximation
rates for the solution of Poisson’s equation on general Lipschitz domains. This was done by proving that
the solution of −∆u = f belongs to Besov spaces Br

τ,τ (D) for parameters r < r∗, where r∗ depends

on the Lipschitz-character of the bounded domain D ⊂ Rd, the dimension d and the regularity of the
right-hand side f . In subsequent years this result was extend to more general elliptic operators [3], and
for special domains more precise values for r∗ were determined [4, 5, 8].
The purpose of this paper now is two-fold. On the one hand, we shall use the ideas of these precursors
to re-prove the result for polyhedral domains in two and three space dimensions, this time based on
regularity in Babuska-Kondratiev spaces. Here we manage to give a unified treatment to the different
cases previously treated separately (polygonal domains in 2D, polyhedral and smooth cones in 3D, edge
singularities in 3D). The outcome corresponds to the previous results, which roughly can be summarized
as: If the function u admits m weak derivatives with controlled blow-up towards the boundary, then
u ∈ Br

τ,τ (D) for every r < m. For the n-term approximation this implies that every such function can
be approximated at rate r

d < m
d .

The second part of the paper then stems from investigating the limiting situation r = m. So far, all the
previous proofs (and our version as well) fail to cover this case. However, by slightly shifting the point of
view, we can close this gap: Instead, inspired by more recent results on n-term approximation for Besov
spaces [7, 10], we turn our attention to Besov spaces guaranteeing the rate n−m/d. Thus in leaving the
“adaptivity scale” Br

τ,τ (D), we prove that u belongs to Besov spaces Bm
τ,∞(D) for certain parameters

0 < τ < τ0, and we determine a condition under which we have 1
τ0

< m
d + 1

p (which in turn implies the

mentioned rate n−m/d for approximation in Lp(D)).
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2 Basic definitions and State of the art

In this section we will fix some notations corresponding to the used wavelet system, recall the definition
of Besov and Babuska-Kondratiev spaces, and formulate the regularity and n-term approximation results
used later on.

2.1 Wavelets

We are not interested in utmost generality pertaining to the used wavelet system. Instead, for simplicity
we will stick to Daubechies’ Wavelets, the generalization to compactly supported biorthogonal wavelets
constituting Riesz-bases being immediate.
Let φ be a univariate scaling function and η the associated wavelet corresponding to Daubechies’ con-
struction, where the smoothness of φ and η and the number of vanishing moments for η are assumed to
be sufficiently large. Let E denote the nontrivial vertices of [0, 1]d, and put

ψe(x1, . . . , xd) =
d∏

j=1

ψej (xj) , e ∈ E ,

where ψ0 = φ and ψ1 = η. Then the set

Ψ′ = {ψe : e ∈ E}

generates via shifts and dyadic dilates an orthonormal basis of L2(D). More precisely, denoting by
D = {I ⊂ Rd : I = 2−j([0, 1]d + k), j ∈ Z, k ∈ Zd} the set of all dydadic cubes in Rd, then

{
ψI : I ∈ D,ψ ∈ Ψ′} =

{
ψI = 2jd/2ψ(2j ·−k) : j ∈ Z , k ∈ Zd ,ψ ∈ Ψ′}

forms an orthonormal basis in L2(Rd). Denote by Q(I) some dyadic cube (of minimal size) such that
suppψI ⊂ Q(I) for every ψ ∈ Ψ′. Then we clearly have Q(I) = 2−jk + 2−jQ for some dyadic cube Q.
As usual D+ denotes the dyadic cubes with measure at most 1, and we put Λ′ = D+ ×Ψ′. Additionally,
we shall need the notation Dj = {I ∈ D : |I| = 2−jd}. Then we can write every function f ∈ L2(Rd) as

f = P0f +
∑

(I,ψ)∈Λ′

〈f,ψI〉ψI .

Therein P0f denotes the orthogonal projector onto the closed subspace S0, which is the closure in L2(Rd)
of the span of the function Φ(x) = φ(x1) · · ·φ(xd) and its integer shifts Φ(·− k), k ∈ Zd. Later on it will
be convenient to include Φ into the set of generators Ψ′ together with the notation ΦI := 0 for |I| < 1,
and ΦI = Φ(·− k) for I = k + [0, 1]d. Then we can simply write

f =
∑

(I,ψ)∈Λ

〈f,ψI〉ψI , Λ = D+ ×Ψ , Ψ = Ψ′ ∪ {Φ} .

Remark 1. If not explicitly stated otherwise convergence of wavelet expansions is always understood
in S′(Rd), the space of tempered distributions, or in L2(Rd) (since all relevant spaces will be embedded
into L2(Rd)).

2.2 Besov spaces

Besov space can be defined in a number of ways. Here we will need only their characterization in terms
of wavelet bases as presented e.g. in [15]. For more detailed information on Besov spaces and related
function spaces as well as equivalent definitions we refer to the literature, e.g. [20] and the references
given there.
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Let 0 < p, q < ∞ and r > max(0, d( 1p − 1)). Then a function v ∈ L2(Rd) belongs to the Besov space

Br
p,q(Rd) if, and only if

‖v|Br
p,q(Rd)‖ = ‖P0v|Lp(Rd)‖+

( ∞∑

j=0

2j(r+d( 1
2−

1
p ))q

( ∑

(I,ψ)∈Dj×Ψ

|〈v,ψI〉|p
)q/p

)1/q

< ∞ .

For parameters q = ∞ we shall use the usual modification (replacing the outer sum by a supremum), i.e.

‖v|Br
p,∞(Rd)‖ = ‖P0v|Lp(Rd)‖+ sup

j≥0
2j(r+d( 1

2−
1
p ))

( ∑

(I,ψ)∈Dj×Ψ

|〈v,ψI〉|p
)1/p

.

Within the scale Bα
τ,τ (Rd) with 1

τ = α
d + 1

2 due to the specific choice of τ this simplifies to

‖v|Bα
τ,τ (Rd)‖ = ‖P0v|Lτ (Rd)‖+

( ∑

(I,ψ)∈Λ

|〈v,ψI〉|τ
)1/τ

.

Additionally, we will use spaces Br,σ
p,q (Rd), characterized by the quasi-norm

‖v|Bs,σ
p,q (Rd)‖ = ‖P0v|Lp(Rd)‖+

( ∞∑

j=0

2j(r+
d
2−

d
p )q(j + 1)σq

( ∑

(I,ψ)∈Dj×Ψ

|〈v,ψI〉|p
) q

p

) 1
q

.

Therein the additional term (j + 1)σ is of logarithmic order, hence the spaces are usually referred to
as Besov spaces of logarithmic smoothness. In turn, these spaces are special cases of so-called function
spaces of generalized smoothness; we refer e.g. to [16] or the survey [12].
Apart from these spaces on Rd, for our main interest in boundary value problems for elliptic PDEs we
also need to consider function spaces on domains. The easiest way to introduce these is via restriction,
i.e.

Bs
p,q(D) =

{
f ∈ D′(D) : ∃ g ∈ Bs

p,q(Rd) , g
∣∣
D

= f
}
, ‖f |Bs

p,q(D)‖ = inf
g|D=f

‖g|Bs
p,q(Rd)‖ .

Alternative (different or equivalent) versions of this definition can be found, depending on possible addi-
tional properties for the distributions g (most often referring to their support). We refer to the monograph
[21] for details and references.
The only aspect we need of these spaces is the existence of continuous linear extension operators, i.e.
mappings E : Bs

p,q(D) −→ Bs
p,q(Rd), possibly depending on the parameters s, p, q and, of course, on

the domain D. In this respect, Rychkov [18] gave a final answer for Lipschitz domains: There exists a
universal extension operator, i.e. an operator E : Bs

p,q(D) −→ Bs
p,q(Rd) simultaneously for all parameter

triples (s, p, q). In particular, due to Bs
2,2(D) = Hs(D) this also covers extensions of Sobolev spaces. In

the sequel E will always denote such an extension operator (note that particularly for the Hs-scale there
are several more such extension operators, we only mention the one due to Stein [19, Chap. 3]).

2.3 Babuska-Kondratiev spaces

As mentioned in the introduction our interest stems from elliptic boundary value problems such as (2.1)
below. It is nowadays classical knowledge that the regularity of the solution depends not only on the
one of the cofficient a and right-hand side f , but also on the regularity/roughness of the boundary of
the considered domain. While for smooth coefficients A and smooth boundary we have u ∈ Hs+2(D) for
f ∈ Hs(D), it is well-known that this becomes false for more general domains. In particular, if we only
assume D to be a Lipschitz domain, then it was shown in [11] that in general we only have u ∈ Hs for
all s < 3/2 for the solution of the Poisson equation, even for smooth right-hand side f . This behaviour
is caused by singularities near the boundary.
To obtain similar shift theorems as for smooth domains, a possible approach is to adapt the function
spaces. To compensate possible singularities one includes appropriate weights. For polyhedral domains,
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this idea has lead to the following definition of the Babuska-Kondratiev spaces Km
p,a(D): If the function

u admits m weak derivatives, we consider the norm

‖u|Km
p,a(D)‖p =

∑

|α|≤m

∫

D
|ρ(x)|α|−a∂αu(x)|p dx ,

where a ∈ R is an additional parameter, and the weight function ρ : D −→ [0, 1] is the smooth distance
to the singular set of D. This means ρ is a smooth function, and in the vicinity of the singular set it is
equal to the distance to that set. In 2D this singular set consists exactly of the vertices of the polygon,
while in 3D it consists of the vertices and edges of the polyhedra. In case p = 2 we simply write Km

a (D).
Within this scale of function spaces, a regularity result for boundary value problems for elliptic PDEs
can be formulated as follows, see [1] and the references given there:

Proposition 1. Let D be some bounded polyhedral domain without cracks in Rd, d = 2, 3. Consider
the problem

−∇
(
A(x) ·∇u(x)

)
= f in D , u|∂D = 0 , (2.1)

where A = (ai,j)di,j=1 is symmetric and

ai,j ∈ Wm
∞ =

{
v : D −→ C : ρ|α|∂αv ∈ L∞(D) , |α| ≤ m

}
, 1 ≤ i, j ≤ d .

Let the bilinear form

B(v, w) =

∫

D

∑

i,j

ai,j(x)∂iv(x)∂jw(x)dx

satisfy
|B(v, w)| ≤ R‖v|H1(D)‖ · ‖w|H1(D)‖ and r‖v|H1(D)‖2 ≤ B(v, v)

for some constants 0 < r ≤ R < ∞. Then there exists some a > 0 such that for any m ∈ N0, any |a| < a
and any f ∈ Km−1

a−1 (D) the problem (2.1) admits a uniquely determined solution u ∈ Km+1
a+1 (D), and it

holds
‖u|Km+1

a+1 (D)‖ ≤ C ‖f |Km−1
a−1 (D)‖

for some constant C > 0 independent of f .

We restrict ourselves in this presentation to this simplified situation. In the literature there are further
results of this type, either treating different boundary conditions, or using slightly different scales of
function spaces. We particularly refer to [13, 14], where they showed that under appropriate conditions
on A the result in Proposition 1 holds for all a except for countably many values.

Remark 2. We note that in the sequel we will always have the restriction a ≥ 0. This is a natural
one, since for a < 0 the space Km

p,a(D) contains functions not belonging to Lp(D), for example functions
which behave towards a vertex singularity like ρα for some −d+a < α < −d. But this kind of function is
no longer locally integrable, and thus cannot be identified with a (tempered) distribution, whereas Besov
spaces are defined as spaces of (tempered) distributions.

We finally shall add a comment on the possible domains D: While before and also in the sequel we
will only refer to polyhedral domains, the analysis carries over without change to Lipschitz domains
with polyhedral structure. Domains with polyhedral structure were seen to be a natural relaxation of
polyhedra, for example replacing the flat faces of polyhedra by smooth surfaces. For precise definitions
we refer to [6, 17]. As we shall see in the proofs, the only fact needed about the boundary ∂D are
certain combinatorial aspects (counting the number of relevant wavelet coefficients), and these remain
unchanged so long as the boundary remains Lipschitz; moreover, also Proposition 1 holds for this more
general setting.
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2.4 n-term approximation

The (error of the) best n-term approximation is defined as

σn

(
u, Lp(D)

)
= inf

Γ⊂Λ:#Γ≤n
inf
cγ

∥∥∥∥u−
∑

γ=(I,ψ)∈Γ

cγψI

∣∣∣∣Lp(D)

∥∥∥∥ ,

i.e. as the name suggests we consider the best approximation by linear combinations of the basis functions
consisting of at most n terms. As shown in [9] the decay of this quantity is closely related to Besov spaces.
More specifically, DeVore, Jawerth and Popov proved

∞∑

n=0

(
(n+ 1)α/dσn

(
u, Lp(Rd)

))τ 1

n+ 1
< ∞ ⇐⇒ u ∈ Bα

τ,τ (Rd) ,
1

τ
=

α

d
+

1

p
.

However, when discussing the optimal convergence rate for adaptive algorithms this result is slightly
stronger than required. We are rather interested in conditions on u that simply guarantee a certain decay
rate, i.e. we only need to have

sup
n≥0

(n+ 1)α/dσn

(
u, Lp(Rd)

)
< ∞ .

This implies that the “adaptivity scale” Bα
τ,τ (Rd) considered so far might not be the optimal choice.

Moreover, this result neglects the additional knowledge that the functions of interest belong to function
spaces related to the bounded domain D. In [7, 10] the rates for approximation of functions from the full
scale of Besov spaces Bs

τ,q(D) and Bs
τ,q(Rd) were calculated. For our purposes, we only need the following

result from [7, Theorem 7]: If s > d( 1τ − 1
p ) for 0 < τ ≤ p, then

σn

(
u, Lp(D)

)
! n−s/d‖u|Bs

τ,q(D)‖ , u ∈ Bs
τ,q(D) , (2.2)

independent of the microscopic parameter q. A similar estimate is true for approximation in the energy
norm, i.e. in the norm of the space H1(D), and more generally in the norm of W 1

p (D),

σn

(
u,W 1

p (D)
)
! n−(s−1)/d‖u|Bs

τ,q(D)‖ , u ∈ Bs
τ,q(D) . (2.3)

3 Regularity in the adaptivity scale Br
τ,τ(D)

As previously mentioned, we now adapt the arguments first given in [2]. The result itself is decoupled
from the regularity results for elliptic PDEs, thus we formulate it as an embedding theorem.

Theorem 1. Let D be some bounded polyhedral domain in Rd. Then we have a continuous embedding

Km
p,a(D) ∩Bs

p,p(D) ↪→ Br
τ,τ (D) ,

1

τ
=

r

d
+

1

p
, 1 < p < ∞ ,

for all 0 ≤ r < min(m, sd
d−1 ) and a > δ

dr. Therein δ denotes the dimension of the singular set (i.e. δ = 0
if there are only vertex singularities, δ = 1 if there are edge and vertex singularities etc.).

Proof . Clearly, for r = 0 the result is trivial, thus we always assume r > 0 and hence 0 < τ < p.

Step 1: To start with we note that since a polyhedral domain D in particular is Lipschitz we can
extend every u ∈ Hs

p(D) to some function ũ = Eu ∈ Hs
p(Rd). Consider first the term P0ũ. This can be

represented as

P0ũ =
∑

k∈Zd

〈ũ,Φ(·− k)〉Φ(·− k) .
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Since Φ shares the same smoothness and support properties, the coefficients 〈ũ,Φ(·− k)〉 can be treated
exactly like any of the coefficients 〈ũ,ψI〉 for |I| = 1 in Step 2 (note that below the vanishing moments
of ψe only become relevant for |I| < 1). Thus the claim can be formulated as

( ∑

(I,ψ)∈Λ

|I|(
1
p−

1
2 )τ |〈ũ,ψI〉|τ

)1/τ

≤ c max
{
‖u|Km

p,a(D)‖ , ‖u|Bs
p,p(D)‖

}
.

Step 2: Now put
ρI = inf

x∈Q(I)
ρ(x) ,

and consider first the situation ρI > 0. We recall the following classical approximation result: For every
I there exists a polynomial PI of degree less than m, such that

‖ũ− PI |Lp(Q(I))‖ ≤ c0|Q(I)|m/d|ũ|Wm
p (Q(I)) ≤ c1|I|m/d|ũ|Wm

p (Q(I))

for some constant c1 independent of I and u. Now recall that ψI satisfies moment conditions of order up
to m, i.e. it is orthogonal to any polynomial of degree up to m− 1. Thus we can estimate, using Hölder’s
inequality,

|〈ũ,ψI〉| = |〈ũ− PI ,ψI〉| ≤ ‖ũ− PI |Lp(Q(I))‖ · ‖ψI |Lp′(Q(I))‖ ≤ c1|I|m/d|ũ|Wm
p (Q(I))|I|

1
2−

1
p

≤ c1|I|
m
d + 1

2−
1
p ρ−m+a

I

( ∑

|α|=m

∫

Q(I)
|ρ(x)m−a∂αũ(x)|pdx

)1/p

=: c1|I|
m
d + 1

2−
1
p ρ−m+a

I µI .

Now we shall split the index set Λ: For j ≥ 0 let Λj ⊂ Λ be the set of all pairs (I,ψ) with |I| = 2−jd,
and for k ≥ 0 let Λj,k ⊂ Λj contain those (I,ψ) such that

k2−j ≤ ρI < (k + 1)2−j .

For k > 0 we additionally require Q(I) ⊂ D. Furthermore, we put Λ0
j = ∪k≥1Λj,k. Then we find using

Hölder’s inequality
∑

(I,ψ)∈Λ0
j

|I|(
1
p−

1
2 )τ |〈ũ,ψI〉|τ ≤ c1

∑

(I,ψ)∈Λ0
j

(
|I|m/dρ−m+a

I µI

)τ

≤ c1

( ∑

(I,ψ)∈Λ0
j

(
|I|m τ

d ρ(a−m)τ
I

) p
p−τ

) p−τ
p

( ∑

(I,ψ)∈Λ0
j

µp
I

) τ
p

.

Since there is a controlled overlap between the cubes Q(I) (i.e. every x ∈ Ω is contained in a finite number
of cubes Q(I), and this number is bounded by some constant cp2 independent of x), we can estimate the
second factor

( ∑

(I,ψ)∈Λ0
j

µp
I

) 1
p

=

( ∑

(I,ψ)∈Λ0
j

∑

|α|=m

∫

Q(I)
|ρ(x)m−a∂αũ(x)|pdx

)1/p

≤ c2

( ∑

|α|=m

∫

D
|ρ(x)m−a∂αũ(x)|pdx

)1/p

≤ c2‖u|Km
p,a(D)‖ .

For the first factor we note that by choice of ρ we always have ρI ≤ 1, hence the index k is at most 2j

for the sets Λj,k to be non-empty, and the number of elements in each of these sets can be bounded by
c3kd−1−δ2jδ (where c3 depends only on D, particularly on the number and precise shape of the singular
vertices, edges etc.; this estimate further uses k ≤ 2j). Then we find

( ∑

(I,ψ)∈Λ0
j

(
|I|m τ

d ρ(a−m)τ
I

) p
p−τ

) p−τ
p

≤
( ∑

(I,ψ)∈Λ0
j

(
|I|m τ

d k(a−m)τ2−j(a−m)τ
) p

p−τ

) p−τ
p

6



≤
( 2j∑

k=1

∑

(I,ψ)∈Λj,k

(
2−jaτk(a−m)τ

) p
p−τ

) p−τ
p

≤
(
c32

−ja pτ
p−τ

2j∑

k=1

k(a−m) pτ
p−τ kd−1−δ2jδ

) p−τ
p

.

For this last sum we have to distinguish three cases, according to the value of the exponent (greater,
equal or less than −1). We note that

(a−m)
pτ

p− τ
+ d− 1− δ =

pτ

p− τ

(
a−m+ (d− 1− δ)

(1
τ
− 1

p

))
=

pτ

p− τ

(
a−m+ r

d− 1− δ

d

)
> −1

⇐⇒ a−m+ r
d− 1− δ

d
> −1

τ
+

1

p
= − r

d
⇐⇒ a−m+ r

d− δ

d
> 0 ,

hence we find

( ∑

(I,ψ)∈Λ0
j

(
|I|m τ

d ρ(a−m)τ
I

) p
p−τ

) p−τ
p

≤ c42
−jaτ2jδ

p−τ
p






2j(a−m)τ+j(d−δ) p−τ
p , a−m+ r d−δ

d > 0 ,

(j + 1)
p−τ
p , a−m+ r d−δ

d = 0 ,

1 , a−m+ r d−δ
d < 0 .

Step 3: We now put Λ0 =
⋃

j≥0 Λ
0
j . Summing the first line of the last estimate over all j we obtain

∑

(I,ψ)∈Λ0

|I|(
1
p−

1
2 )τ |〈ũ,ψI〉|τ ≤ c4

∑

j≥0

2−jmτ2jd
p−τ
p ‖u|Km

p,a(D)‖τ ≤ c5‖u|Km
p,a(D)‖τ < ∞

provided the geometric series converges, thus in the case a−m+ r d−δ
d > 0 we find the condition

mτ > d
p− τ

p
⇐⇒ m > d

p− τ

pτ
= d

(1
τ
− 1

p

)
= d · r

d
= r .

Similarly, in case a−m+ r d−δ
d = 0 the resulting estimate is

∑

(I,ψ)∈Λ0

|I|(
1
p−

1
2 )τ |〈ũ,ψI〉|τ ≤ c4

∑

j≥0

2−jaτ2jδ
p−τ
p (j + 1)

p−τ
p ‖u|Km

p,a(D)‖τ ≤ c′5‖u|Km
p,a(D)‖τ < ∞ ,

where the series converges if, and only if

aτ > δ
p− τ

p
⇐⇒ a > δ

(1
τ
− 1

p

)
⇐⇒ a >

δ

d
r ⇐⇒ m > r

d− δ

d
+

δ

d
r = r ,

which is exactly the same condition as before. Finally, in case a−m+ r d−δ
d < 0 we find

∑

(I,ψ)∈Λ0

|I|(
1
p−

1
2 )τ |〈ũ,ψI〉|τ ≤ c4

∑

j≥0

2−jaτ2jδ
p−τ
p ‖u|Km

p,a(D)‖τ ≤ c′′5‖u|Km
p,a(D)‖τ < ∞ ,

where now we obtain the condition

aτ > δ
p− τ

p
⇐⇒ a > δ

p− τ

pτ
= δ

(1
τ
− 1

p

)
= δ · r

d
.

Step 4: Next, we need to consider the sets Λj,0. Here the assumption ũ ∈ Bs
p,p(Rd) comes into play once

more. We note that #Λj,0 ≤ c72jδ, thus we can estimate using Hölder’s inequality

∑

(I,ψ)∈Λj,0

|I|(
1
p−

1
2 )τ |〈ũ,ψI〉|τ ≤ c

p−τ
p

7 2jδ
p−τ
p 2−jd( 1

p−
1
2 )τ

( ∑

(I,ψ)∈Λj,0

|〈ũ,ψI〉|p
) τ

p

7



= c
p−τ
p

7 2jδ
p−τ
p 2−jsτ

( ∑

(I,ψ)∈Λj,0

2j(s+
d
2−

d
p )p|〈ũ,ψI〉|p

) τ
p

.

Now summing over j and once more using Hölder’s inequality gives

∑

j≥0

∑

(I,ψ)∈Λj,0

|I|(
1
p−

1
2 )τ |〈ũ,ψI〉|τ ≤ c

p−τ
p

7

∑

j≥0

2−jsτ2jδ
p−τ
p

( ∑

(I,ψ)∈Λj,0

2j(s+
d
2−

d
p )p|〈ũ,ψI〉|p

) τ
p

≤ c
p−τ
p

7

(∑

j≥0

2−j spτ
p−τ 2jδ

) p−τ
p

(∑

j≥0

∑

(I,ψ)∈Λj,0

2j(s+
d
2−

d
p )p|〈ũ,ψI〉|p

) τ
p

≤ c8‖ũ|Bs
p,p(Rd)‖τ ! ‖u|Bs

p,p(D)‖τ ,

under the condition

δ <
spτ

p− τ
⇐⇒ s

δ
>

1

τ
− 1

p
⇐⇒ r <

sd

δ
.

Step 5: Finally, we need to consider those ψI whose support intersects ∂D. Then we can estimate similar
to Step 4, with δ replaced by d− 1. This results in the condition

∑

(I,ψ)∈Λ:suppψI∩∂D +=∅

|I|(
1
p−

1
2 )τ |〈ũ,ψI〉|τ ≤ c9‖ũ|Bs

p,p(Rd)‖τ ! ‖u|Bs
p,p(D)‖τ if r <

sd

d− 1
.

Summarily we have proved

‖u|Br
τ,τ (D)‖ ≤ ‖ũ|Br

τ,τ (Rd)‖ ! ‖u|Bs
p,p(D)‖+ ‖u|Km

p,a(D)‖ ,

with constants independent of u.

Remark 3. The conditions m > r and a > δ
dr and the cases considered in Steps 2 and 3 (depending

on the sign of a −m + r d−δ
d ) are not completely independent, though it seems not clear at first glance

whether there is potential for improvement.
However, we find that these steps of the argument indeed exclude parameters r ≥ m or a ≤ δ

dr. In detail:
Assuming r ≥ m we either have a −m + r d−δ

d ≥ 0 which as before leads to the contradicting condition
m > r, or we have a−m+ r d−δ

d < 0, which immediately implies

0 > a−m+ r
d− δ

d
≥ a− r + r

d− δ

d
= a− δ

d
r ,

thus contradicting the condition a > δ
dr obtained in Step 3. Thus r < m indeed is necessary for our

argument to work.
In a similar way, assuming a ≤ δ

dr, again we either have a−m+ r d−δ
d ≥ 0, which implies

δ

d
r ≥ a ≥ m− r

d− δ

d
=⇒ 0 ≥ m− r ,

and thus contradicts the condition obtained in Step 3, or a −m + r d−δ
d < 0 which obviously once more

gives a contradiction to Step 3. Hence we conclude a > δ
dr to be necessary for our argument.

Whether these restrictions are due to the chosen argument, or the result becomes false otherwise, is not
clear.

Remark 4. The result remains true if D is an unbounded domain, but u is a priori known to have
compact support. In particular, this refers to D being an infinite cone or some dihedral angle D = Dα =
{x ∈ R3 : 0 < ϑ < α}, (ρ,ϑ, z) being the cylindrical coordinates in R3. Since Besov spaces are compatible
with localization arguments (i.e. decomposing a domain by using partitions of unity, a function belongs
to a Besov space on the original domain if, and only if, every piece belongs to Besov spaces corresponding
to the respective subdomains), the respective localization arguments for polyhedral domains carry over
to this kind of consideration for Besov regularity.
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Remark 5. The above results correspond well to the ones obtained by Dahlke and Dahlke/Sickel:
In case d = 2 every solution of −∆u = f with f ∈ Hs(D) can be decomposed into a regular part
uR ∈ Hs+2(D) and a singular part uS with lower Sobolev regularity, but with a special structure (a
finite linear combination of special singularity functions which are known explicitly depending on the
respective interior angles. In 3D such a decomposition exists only in special cases of the domain D.
Dahlke investigated the Besov regularity of the singular part, which in general is significantly higher
than its Sobolev regularity, and also much higher than the regularity of the regular part. For the last
observation we note that for a bounded Lipschitz domain D we have Hs(D) = Bs

2,2(D) ↪→ Br
τ,τ (D) for

every r < s, and the result becomes false for r = s (where as before 1
τ = r

d + 1
2 ). Hence, though the

singular part might have a higher regularity, the Besov regularity of u = uR + uS can in general not
exceed s + 2. Since f ∈ Km−1

a−1 implies u ∈ Km+1
a+1 and Km

m(D) ↪→ Hm(D), choosing a = m (whenever
this choice is admissible for the regularity result in Kondratiev spaces) shows that both our and Dahlke’s
results yield the same Besov regularity for u.
Moreover, the estimates of Steps 3 and 4 essentially reproduce the regularity estimates for the singular
functions: Away from the singularities, these functions are smooth (arbitrary high Sobolev regularity),
and near the vertex/edge we have a much greater Besov-regularity (Dahlke’s 2D-result corresponds to
the observation that for only vertex singularities (i.e. δ = 0) in Step 4 we may choose r to be arbitrarily
large).
A similar observation is true for the result of Dahlke/Sickel, who investigated polyhedral cones in d = 3:
Here we obtain exactly the same conditions on the parameters since the spaces V l

p,β used therein essentially

coincide with the spaces Kl
p,l−β .

4 Regularity result for spaces Bm
τ,∞(D)

We shall begin this section with reformulations of some estimates in the proof of Theorem 1, as we
actually showed a little more than claimed.
Using the notations of that proof, we define an operator Pint on Km

p,a(D) by defining

Pintu =
∑

(I,ψ)∈Λ0

〈ũ,ψI〉ψI . (4.1)

Then Step 3 can be reformulated as

Pint : Km
p,a(D) −→ Br

τ,τ (D) , ‖Pintu|Br
τ,τ (D)‖ ! ‖u|Km

p,a(D)‖ . (4.2)

With the same arguments, only replacing the summation over j by a supremum, we also find

Pint : Km
p,a(D) −→ Bm

τ,∞(D) , ‖Pintu|Bm
τ,∞(D)‖ ! ‖u|Km

p,a(D)‖ . (4.3)

(observe that the condition a − m + r d−δ
d > 0 then simply becomes a − m δ

d > 0, which exactly is the
assumption on a in case m = r). This observation motivated to have a closer look at the case r = m and
spaces Bm

τ,∞(D) (for general τ , i.e. we will not require the relation 1
τ = m

d + 1
p ).

In a similar way, we can reformulate Steps 4 and 5: Defining

Pbdu =
∑

(I,ψ)∈Λ\Λ0

〈ũ,ψI〉ψI , (4.4)

we so far proved

Pbd : Bs
p,p(D) −→ Br

τ,τ (Rd) , ‖Pbdu|Br
τ,τ (Rd)‖ ! ‖ũ|Bs

p,p(Rd)‖ ! ‖u|Bs
p,p(D)‖ , (4.5)

as long as r < d
d−1s. Also here we can be a little more precise: By summing over j without using Hölder’s

inequality the second time it follows

∞∑

j=0

( ∑

(I,ψ)∈Λj,0

|I|(
1
p−

1
2 )τ |〈ũ,ψI〉|τ

) p
τ

! ‖ũ|B
(d−1)r

d
p,p (Rd)‖p , thus Pbd : B

(d−1)r
d

p,p (D) −→ Br
τ,p(Rd) ,
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recall δ p−τ
p = τδ( 1τ − 1

p ) = τ δ
dr. The second application of Hölder’s inequality in Step 4 then simply

corresponds to the standard embedding Br+ε
τ,p (Rd) ↪→ Br

τ,τ (Rd), ε > 0. In other words: The boundary
terms are completely covered by the assumed Besov regularity in Bs

p,p(D) respectively Sobolev regularity
in Hs(D) (in case p = 2).
In the next theorem, we shall have a closer look at the operators Pint and Pbd, the considered function
spaces being motivated by the reformulations and observations above.

Theorem 2. Let D be some bounded polyhedral domain in Rd and 0 < τ < p, 1 < p < ∞. Then we
have

Pint : Km
p,a(D) −→






Bm
τ,∞(D) , m < a+ (d− δ)( 1τ − 1

p ) ,

B
m,− 1

τ + 1
p

τ,∞ (D) , m = a+ (d− δ)( 1τ − 1
p ) ,

B
a+(d−δ)( 1

τ − 1
p )

τ,∞ (D) , m > a+ (d− δ)( 1τ − 1
p ) ,

as well as

Pbd : Bs
p,q(D) −→ B

s+ 1
τ − 1

p
τ,q (Rd) , 0 < q ≤ ∞ ,

both mappings being bounded linear operators.

Proof . We only show the necessary modifications of the proof of Theorem 1.
Step 2’: Using the same notations, we then find using Hölder’s inequality

∑

(I,ψ)∈Λ0
j

|〈ũ,ψI〉|τ ≤ c1
∑

(I,ψ)∈Λ0
j

(
|I|

m
d + 1

2−
1
p ρ−m+a

I µI

)τ

≤ c1

( ∑

(I,ψ)∈Λ0
j

(
|I|(

m
d + 1

2−
1
p )τρ(a−m)τ

I

) p
p−τ

) p−τ
p

( ∑

(I,ψ)∈Λ0
j

µp
I

) τ
p

︸ ︷︷ ︸
!‖u|Km

p,a(D)‖τ

.

For the first factor we proceed as before,

( ∑

(I,ψ)∈Λ0
j

(
|I|

m
d + 1

2−
1
p ρa−m

I

) pτ
p−τ

) p−τ
p

≤
(
c32

−j(a+ d
2−

d
p )

pτ
p−τ

2j∑

k=1

k(a−m) pτ
p−τ kd−1−δ2jδ

) p−τ
p

≤ c42
−j(a+ d

2−
d
p )τ2jδ

p−τ
p






2j(a−m)τ+j(d−δ) p−τ
p , m− a < (d− δ)p−τ

pτ ,

(j + 1)
p−τ
p , m− a = (d− δ)p−τ

pτ ,

1 , m− a > (d− δ)p−τ
pτ .

Step 3’: Taking the supremum over j ≥ 0 we obtain from the first line of the last estimate

sup
j≥0

2j(m+ d
2−

d
τ )τ

∑

(I,ψ)∈Λ0
j

|〈ũ,ψI〉|τ ≤ c4 sup
j≥0

2j(m+ d
p−

d
τ )τ2−jmτ2jd

p−τ
p ‖u|Km

p,a(D)‖τ

= c4 sup
j≥0

‖u|Km
p,a(D)‖τ = c4‖u|Km

p,a(D)‖τ ,

without any additional condition on τ . Similarly, in case m− a = (d− δ)( 1τ − 1
p ) the resulting estimate is

sup
j≥0

2j(m+ d
2−

d
τ )τ (j + 1)−

p−τ
pτ τ

∑

(I,ψ)∈Λ0
j

|〈ũ,ψI〉|τ ≤ c4 sup
j≥0

2j(m−a+(d−δ)( 1
p−

1
τ ))τ‖u|Km

p,a(D)‖τ

= c4 sup
j≥0

‖u|Km
p,a(D)‖τ = c4‖u|Km

p,a(D)‖τ .

Finally, in case m− a > (d− δ)( 1τ − 1
p ) we find

sup
j≥0

2j(a+(d−δ)( 1
τ − 1

p )+
d
2−

d
τ )τ

∑

(I,ψ)∈Λ0
j

|〈ũ,ψI〉|τ ≤ c4 sup
j≥0

2j(a−δ( 1
τ − 1

p )τ2−jaτ2jδ
p−τ
pτ τ‖u|Km

p,a(D)‖τ
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= c4 sup
j≥0

‖u|Km
p,a(D)‖τ = c4‖u|Km

p,a(D)‖τ < ∞ .

Step 4’: To estimate the boundary part Pbdu, as before we only need to modify the summation over
j ≥ 0:

∑

(I,ψ)∈Λj,0

|〈ũ,ψI〉|τ ≤ c
p−τ
p

7 2j(d−1) p−τ
p

( ∑

(I,ψ)∈Λj,0

|〈ũ,ψI〉|p
) τ

p

,

and further for q < ∞

∑

j≥0

2j(s+
1
τ − 1

p+d( 1
2−

1
τ ))q

( ∑

(I,ψ)∈Λj,0

|〈ũ,ψI〉|τ
) q

τ

≤ c
p−τ
pτ q

7

∑

j≥0

2j(s+
1
τ − 1

p+d( 1
2−

1
τ ))q2j(d−1) p−τ

pτ q

( ∑

(I,ψ)∈Λj,0

|〈ũ,ψI〉|p
) q

p

= c
p−τ
pτ q

7

∑

j≥0

2j(s+d( 1
2−

1
p ))q

( ∑

(I,ψ)∈Λj,0

|〈ũ,ψI〉|p
) q

p

≤ c
p−τ
pτ q

7 ‖ũ|Bs
p,q(Rd)‖q ∼ ‖ũ|Bs

p,q(Rd)‖q ! ‖u|Bs
p,q(D)‖q ,

which proves Pbdu ∈ B
s+ 1

τ − 1
p

τ,q (Rd). The result for q = ∞ follows by standard modifications.

Corollary 1. Let u ∈ Km
p,a(D) ∩ Bs

p,∞(D) for some bounded polyhedral domain D ⊂ Rd. Suppose

s > d−1
d m and a > δ

dm. Then there exists some 0 < τ0 ≤ p such that

u ∈ Bm
τ,∞(D) ↪→ Lp(D)

for all τ∗ < τ < τ0, where
1
τ∗

= m
d + 1

p .

Note: While it also holds u ∈ Bm
τ,∞(D) for τ ≤ τ∗, these spaces are no longer embedded into Lp(D).

From the point of view of n-term approximation, the result then becomes useless (the mere knowledge
of this Besov regularity no longer yields any approximation rate). We further note that we always have
Hs

p(D) ↪→ Bs
p,∞(D).

Proof . We can decompose u according to u = Pintu + Pbdu|D. Then we can consider both terms
separately.
First we need to have a closer look at the condition m− a < (d− δ)p−τ

pτ :

m− a < (d− δ)
p− τ

pτ
= (d− δ)

(1
τ
− 1

p

)
< (d− δ)

( 1

τ∗
− 1

p

)
= (d− δ)

m

d
.

Clearly, the inequality m− a < (d− δ)md is equivalent to the assumption a > δ
dm. Thus for τ sufficiently

close to τ∗, the required condition m− a < (d− δ)p−τ
pτ for Pintu ∈ Bm

τ,∞(D) can be satisfied, and we find
1
τ0

= m−a
d−δ + 1

p (in case a ≥ m we just choose τ0 = p).

Similarly s > d−1
d m implies s+ 1

τ∗
− 1

p > d−1
d m+ 1

τ∗
− 1

p = m, thus for τ sufficiently close to τ∗ we still have

s+ 1
τ − 1

p ≥ m. Hence we have B
s+ 1

τ − 1
p

τ,∞ (Rd) ↪→ Bm
τ,∞(Rd), which in turn yields Pbdu|D ∈ Bm

τ,∞(D).

5 An extension argument for Kondratiev spaces

In this section we seek to relax the required Sobolev regularity in Corollary 1. This will be done by
modifying the splitting u = Pintu + Pbdu. In what follows we denote by S ⊂ ∂D the singularity set of
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D. Then we recall that the distance function ρ is bounded away from zero on any closed subset of D not
containing S.
As a first step, instead of Pbd we consider the operator P̃sing,

P̃singu =
∑

j≥0

∑

(I,ψ)∈Λj,0

〈ũ,ψI〉ψI ,

i.e. we take only those terms of wavelets touching the singular set S. Then with the same estimates
leading to the properties of Pbd in Theorem 2 we obtain

P̃sing : Bs
p,p(D) −→ B

s+(d−δ)( 1
τ − 1

p )
τ,p (D) , 0 < τ < p ,

as a bounded linear operator. Ultimately, the embedding B
s+(d−δ)( 1

τ − 1
p )

τ,p (D) ↪→ Bm
τ,∞(D) for some τ > τ∗

then leads to the condition s > δ
dm.

For the other part P̃regu = u − P̃singu we once more want to use the regularity of u in the Kondratiev-
scale. However, inspecting the previous proofs yields that this requires modifying the index sets Λj,k to
include also those wavelets touching the boundary, and extending the corresponding estimates for wavelet
coefficients. This can be done by extending the functions from Km

p,a(D) to Rd in a suitable way.

In particular, we first have to define a counterpart of the scale Km
p,a(D) for functions on Rd. We start

with a function η, which is defined on Rd and smooth on Rd \S, and it is assumed to mimic the distance
function ρ, i.e. in a (sufficiently small) neighbourhood of the singularity set S the function η shall be
equivalent to the distance to S. Moreover, we suppose that η has values only in the interval [0, 1]. Then
we put

Km
p,a(S) :=

{
u measurable : η|α|−a∂αu ∈ Lp(Rd) , |α| ≤ m

}
.

One possible approach now consists in retracing the steps of Stein’s original proof in [19] in order to
determine whether his extension operator is also bounded with respect to the Km

a -norms:

Lemma 5.1. For a < 3/2 the extension operator E defined in [19, Section 3.2-3.3] is bounded as a
mapping E : Km

p,a(D) −→ Km
p,a(S).

Proof . For the most part Stein’s proof carries over without change, hence we shall mostly be concerned
with some necessary modifications.
The first step consists in reducing the problem to smooth functions. It is easily seen that the set C∞(D) is
dense in Km

a (D) for all parameters: Given a function u ∈ Km
p,a(D) we can multiply it with a smooth cut-off

function, hence we may assume u to have compact support. With standard mollification arguments we
see that such a function (and simultaneously its partial derivatives) can be approximated in the L2-sense
by C∞-functions. Clearly this immediately extends also to approximation w.r.to the Km

a (D)-norm.
Stein then shows first that the extension operator applied to a smooth function u ∈ C∞(D) yields again
a smooth function Eu ∈ C∞(Rd). It now remains to check the corresponding norm estimates. Below we
shall use Stein’s notation.

Step 1: Stein defined the operator E on special Lipschitz domains by

E(x, y) =

∫ ∞

1
f
(
x, y + λδ∗(x, y)

)
ψ(λ)dλ , x ∈ Rd, y ∈ R ,

where δ∗ is a scaled version of the regularized distance to the boundary, and ψ : [1,∞) −→ R is a rapidly
decaying continuous function such that

∫∞
1 ψ(λ)dλ = 1 and

∫∞
1 λkψ(λ)dλ = 0 for all k ∈ N. Moreover,

D = {(x, y) ∈ Rd+1 : y > ϕ(x)} with ϕ : Rd −→ R being Lipschitz continuous.
Now assume y < 0, and let x0 be a point with ϕ(x0) = 0. The scaling and further properties of δ∗ ensure
2|y| ≤ δ(x0, y) ≤ c |y|, and it follows

|Ef(x0, y)| !
∫ ∞

1
|f(x0, y + λδ∗)|dλ

λp
= δ∗

∫ ∞

y+δ∗
|f(x0, s)|(s− y)−p ds ! |y|

∫ ∞

|y|
|f(x0, s)|s−p ds .
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The essential step now lies in applying Hardy’s inequality,

∫ ∞

0

(∫ ∞

x
g(y)dy

)q

xr−1dx ≤
(q
r

)q
∫ ∞

0

(
yg(y)

)q
yr−1dy ,

where g is non-negative, q ≥ 1 and r > 0. This shall be applied with g(s) = f(x0, s)s−2; we obtain

∫ 0

−∞
|y|−pa|Ef(x0, y)|pdy !

∫ 0

−∞
|y|p−pa

(∫ ∞

|y|
|f(x0, s)|s−2 ds

)p

dy

=

∫ ∞

0
yp−pa

(∫ ∞

y
|f(x0, s)|s−2 ds

)p

dy

!
∫ ∞

0

(
s−1|f(x0, s)|

)p
sp−pads =

∫ ∞

0
|f(x0, s)|ps−pads .

Therein the assumption r > 0 for Hardy’s inequality corresponds to a < 3/2. We observe that in the
last integral the term s−pa can again be replaced by |y|−pa. Moreover, note that with simple translation
arguments, we then obtain for general x ∈ Rd

∫ ϕ(x)

−∞
|y − ϕ(x)|−pa|Ef(x, y)|pdy !

∫ ∞

ϕ(x)
|f(x, y)|p|y − ϕ(x)|−pady .

Since Ef(x, y) = f(x, y) for all y > ϕ(x), we can extend the integration domain on the left-hand side to
R. Moreover, if we extend δ∗(x, y) for y < ϕ(x) as the scaled regularized distance for the special Lipschitz
domain Dc = Rd+1 \D, then this choice guarantees δ∗(x, y) ∼ |y−ϕ(x)| for all x and y. Now integration
w.r.to x ∈ Rd yields the desired estimate

‖δ−aEf |Lp(Rd+1)‖ ! ‖δ−af |Lp(D)‖

for arbitrary special Lipschitz domains D ⊂ Rd+1 with constants only depending on a and D, with δ
being the (regularized) distance to ∂D.
For partial derivatives of f similar arguments can be used (as explained in [19]), and no additional
restrictions on a occur. Exemplary we show it for some second-order partial derivative, w.l.o.g. ∂2

jEf . It
holds

∂jEf =

∫ ∞

1
∂jf(· · · )ψ(λ) dλ+

∫ ∞

1
∂yf(· · · )λ∂jδ∗ψ(λ) dλ

and hence

∂2
jEf =

∫ ∞

1
∂2
j f(· · · )ψ(λ) dλ+ 2

∫ ∞

1
∂j∂yf(· · · )λ∂jδ∗ψ(λ) dλ

+

∫ ∞

1
∂2
yf(· · · )(λ∂jδ∗)2ψ(λ) dλ+

∫ ∞

1
∂2
yf(· · · )λ∂2

j δ
∗ψ(λ) dλ . (5.1)

We first note ∂αδ∗ ≤ cα(δ∗)1−|α| for all multiindices α and |ψ(λ)| ≤ Akλ−k. For the first term we then
find as above for y < 0 and ϕ(x0) = 0

∣∣∣∣
∫ ∞

1
∂2
j f(· · · )ψ(λ) dλ

∣∣∣∣ ≤
∫ ∞

1

∣∣∂2
j f(· · · )ψ(λ)

∣∣ dλ ≤ A2

∫ ∞

1

∣∣∂2
j f(· · · )

∣∣ dλ
λ2

! |y|
∫ ∞

|y|
|∂2

j f(x
0, s)|s−2 ds ,

(5.2)
and similarly ∣∣∣∣

∫ ∞

1
∂j∂yf(· · · )λ∂jδ∗ψ(λ) dλ

∣∣∣∣ ≤ cjA3|y|
∫ ∞

1

∣∣∂j∂yf(· · · )
∣∣ s−2 ds (5.3)

as well as ∣∣∣∣
∫ ∞

1
∂2
yf(· · · )(λ∂jδ∗)2ψ(λ) dλ

∣∣∣∣ ≤ c2jA4|y|
∫ ∞

1

∣∣∂2
yf(· · · )

∣∣ s−2 ds . (5.4)
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It remains the last integral in (5.1). We re-write ∂yf as

∂yf(x
0, y + λδ∗) = ∂yf(x

0, y + δ∗) +

∫ y+λδ∗

y+δ∗
∂2
yf(x

0, t) dt .

Due to the choice of ψ, i.e.
∫∞
1 λψ(λ) dλ = 0, we then have

∫ ∞

1
∂2
yf(· · · )λ∂2

j δ
∗ψ(λ) dλ =

∫ ∞

1
λ∂2

j δ
∗ψ(λ)

∫ y+λδ∗

y+δ∗
∂2
yf(x

0, t) dt dλ .

This can be estimated by
∣∣∣∣
∫ ∞

1
∂2
yf(· · · )λ∂2

j δ
∗ψ(λ) dλ

∣∣∣∣ ! |y|−1A4

∫ ∞

1

(∫ y+λδ∗

y+δ∗

∣∣∂2
yf(x

0, t)
∣∣ dt

)
λ−3 dλ

= |y|−1A4

∫ ∞

y+δ∗

(∫ ∞

t−y
δ∗

λ−3 dλ

)∣∣∂2
yf(x

0, t)
∣∣ dt

∼ |y|−1

∫ ∞

y+δ∗
(δ∗)2

∣∣∂2
yf(x

0, t)
∣∣ dt

(t− y)2
! |y|

∫ ∞

1

∣∣∂2
yf(· · · )

∣∣s−2 ds .

For the last integral as well as those in (5.2)–(5.4) we can use analogous arguments as above, we only
have to replace |y|−pa by |y|(2−a)p. Since the assumption r > 0 for Hardy’s inequality now transfers to
a < 7/2, as announced no additional restrictions on a occur.
Similarly for all other partial derivatives of Ef : After differentiation under the integral every term can
be treated separately, and for terms involving lower order derivatives of f we use Taylor expansion and
the moment conditions for ψ.

Step 2: The result for special Lipschitz domains in Step 1 now can be used to derive the estimate for
general Lipschitz polyhedral domains. For this we only note that the singularity set can be covered by
finitely many open sets U1, . . . , UN such that on any of these open sets the distance to ∂D is equivalent to
the distance to S. This cover of S can be extended with additional finitely many open sets UN+1, . . . , UM

to an open cover of D. On these sets UN+1, . . . , UM the distance function η shall be bounded from
below. Finally, we assume that we can associate with every Ui a special Lipschitz domain Di such that
Ui ∩D = Ui ∩Di. With these sets Ui and Di in hand we are back in the situation of [19, Section 3.3],
where it is described how to glue together the extension operators Ei (w.r.to the domains Di) to finally
obtain E (essentially it is a partition of unity argument for some partition adapted to the domains Di

and the neighbourhoods Ui).
The norm estimates for E carry over to our situation without change, we only note that the estimates in
Step 1 due to the assumptions on the Ui exactly correspond to estimates for the ‖ · |Km

a (S)‖-norm.

The restriction a < 3/2 of the above lemma is merely of technical nature. For values a ≥ 3/2 we can
easily define extension operators Ea by tracing it back to some fixed valued a < 3/2.

Lemma 5.2. Let ω be a smooth non-negative function with ω(x) = 1 for all x ∈ D and suppω ⊂ D̃
for some arbitrary bounded domain D̃. Then the operator Ea, defined by

Eau = ηaωE
(
η−a|Du

)
,

is a bounded linear mapping from Km
p,a(D) into Km

p,a(S).

Proof . It is easily checked that Eau indeed defines a function on Rd with Eau
∣∣
D

= u. We next observe

u ∈ Km
p,a(D) ⇐⇒ ρ−au ∈ Km

p,0(D) .

This is a consequence of the assumed smoothness of ρ. Note that exactly the same reasoning applies to
the spaces Km

p,a(S). Then the boundedness of Ea follows from Lemma 5.1:
∥∥ηaωE

(
η−a|Du

)∣∣Km
p,a(S)

∥∥ ∼
∥∥ωE

(
η−a|Du

)∣∣Km
p,0(S)

∥∥ !
∥∥E

(
η−a|Du

)∣∣Km
p,0(S)

∥∥
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!
∥∥η−a|Du

∣∣Km
p,0(D)

∥∥ ! ‖u|Km
p,a(D)‖ .

This proves the claim.

Below we shall use the notation Ea, where Ea = E for a < 3/2 and Ea = Ea otherwise. With this definition
at hand, we now put

Pregu =
∑

j≥0

∑

k>0

∑

(I,ψ)∈Λη
j,k

〈Eau,ψI〉ψI , Λη
j,k = {(i,ψ) ∈ Λ : 2−jk ≤ ηI < (k + 1)2−j} .

We note that we no longer require Q(I) ⊂ D in the definition of Λη
j,k. Moreover, we define

Psingu =
∑

j≥0

∑

(I,ψ)∈Λη
j,0

〈Eau,ψI〉ψI .

This implies
u = Eau

∣∣
D

= Pregu
∣∣
D
+ Psingu

∣∣
D
.

The wavelet coefficients corresponding to terms with (I,ψ) ∈ Λη
j,k for k > 0 can now be estimated in

exactly the same way as in the proof of Theorems 1 and 2, in particular

∑

k>0

∑

(I,ψ)∈Λη
j,k

µp
I !

∑

|α|=m

∫

Rd

∣∣η(x)m−a∂α(Eau)(x)
∣∣pdx ≤ ‖Eau|Km

p,a(S)‖p ! ‖u|Km
p,a(D)‖p .

Corresponding the singular part Psingu we either need to prove boundedness of Ea as an extension operator
on Bs

p,∞(D); or we use the embedding Hs
p(Rd) ↪→ Bs

p,∞(Rd) together with the boundedness of Ea on
Hs

p(D) (which in turn is easily seen once more retracing the steps of Stein’s proof). Altogether, we have
proved

Theorem 3. Let u ∈ Km
p,a(D) ∩ Hs

p(D) for some bounded polyhedral domain D ⊂ Rd. Suppose

min(s, a) > δ
dm. Then there exists some 0 < τ0 ≤ p such that

u ∈ Bm
τ,∞(D) ↪→ Lp(D)

for all τ∗ < τ < τ0, where
1
τ∗

= m
d + 1

p .

Remark 6. We specialize the above result to the cases d = 2 and d = 3 and p = 2: In case d = 2 we
always have δ = 0, hence there is no restriction on the parameters except for the (almost) trivial ones
s > 0 and a > 0. In particular, concerning the Sobolev regularity the trivial result u ∈ H1(D) whenever
f ∈ H−1(D) is already sufficient.
The case d = 3 is a little more diverse: Except for special right-hand sides we now have δ = 1, hence
there is an upper bound for m, which corresponds to the limited Besov regularity of the corresponding
singularity functions proved in [5].
In case of smooth cones or smooth domains except for conical points at the boundary there are analogous
regularity results in weighted Sobolev spaces (see [13]), and our argument for the Besov regularity can be
transferred (cf. [8]). Then we again have arbitrary Besov regularity for the singular part, and no upper
bound for m.

6 Approximation rates for solutions of elliptic boundary value
problems

In this final section we shall combine the embedding from Theorem 3 with the n-term approximation
rates from (2.2) and (2.3).
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Theorem 4. Let D be some bounded polyhedral domain in Rd. Suppose min(s, a) > δ
dm. Then every

function u ∈ Km
p,a(D) ∩Hs

p(D) satisfies

σn

(
u;Lp(D)

)
! n−m/d‖u|Bm

τ,∞(D)‖ ! n−m/d max
(
‖u|Km

p,a(D)‖, ‖u|Hs
p(D)‖

)

as well as
σn

(
u;W 1

p (D)
)
! n−(m−1)/d max

(
‖u|Km

p,a(D)‖, ‖u|Hs
p(D)‖

)

with constants independent of u and n.

As a final step, we now assume u to be the solution of some elliptic boundary value problem.

Theorem 5. LetD be some bounded polyhedral domain without cracks in Rd, and consider the problem

−∇
(
A(x) ·∇u(x)

)
= f in D , u|∂D = 0 .

Under the assumptions of Proposition 1, for a right-hand side f ∈ Hm−1(D) the uniquely determined
solution u ∈ Km+1

a+1 (D) can be approximated at the rate

σn

(
u;H1(D)

)
! n−m/d‖f |Hm−1(D)‖ ,

where
a ≤ m < min

(
d
δ (a+ 1)− 1 , d

δ s0 − 1
)
.

Therein s0 denotes the Sobolev-regularity of u.

Proof . We just need to check, under which conditions the assumptions of the previous theorem are
fulfilled. We have Hm−1(D) ↪→ Km−1

a−1 (D) whenever a ≤ m. On the other hand, we have the restriction
δ
d (m+ 1) < a+ 1, which gives the right part of the condition on m.

Note that often Sobolev regularity statements are of the form: u belongs to Sobolev spaces Hs(D) for
all s < s0, and in general u 3∈ Hs0(D). Then we still have the condition m + 1 < d

δ s0 in the previous
theorem.

Corollary 2. LetD ⊂ R2 be a polygon (or more generally a Lipschitz domain with polygonal structure).
Let ai,j ∈ Wm

∞(D), i, j = 1, 2, A = (ai,j)i,j=1,2, and consider the problem

−∇
(
A(x) ·∇u(x)

)
= f in D , u|∂D = 0 , (6.1)

for f ∈ Km
a ∩H−1(D). Then it holds

σn

(
u,H1(D)

)
! n−m/2 max

(
{f |H−1(D)‖ , ‖f |Km−1

a−1 (D)‖
)

whenever a > −1 is a parameter such that (6.1) is uniquely solvable.

Thus in this situation, apart from the basic existence result in H1(D) we do not need any information
about the Sobolev regularity, and similarly, also for the parameter a the only restriction is the availability
of an existence result for f ∈ Km−1

a−1 (D).
Similar results hold for other types of boundary conditions, and also for bounded domains D ⊂ R3 with
smooth boundary except for conical points. More general polyhedral domains in R3 require additional
conditions: On the one hand we need more specific knowledge of the Sobolev-regularity of the solution,
and on the other hand we need a to be large enough (which in turn might require more sophisticated
existence results than Proposition 1). Nevertheless the resulting conditions improve the ones available so
far by replacing the usual factor d

d−1 by d
δ .
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