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NUMERICAL SOLUTION OF SCALAR CONSERVATION LAWS

WITH RANDOM FLUX FUNCTIONS

SIDDHARTHA MISHRA, NILS HENRIK RISEBRO, CHRISTOPH SCHWAB,
AND SVETLANA TOKAREVA

Abstract. We consider scalar hyperbolic conservation laws in several space
dimensions, with a class of random (and parametric) flux functions. We pro-
pose a Karhunen–Loève expansion on the state space of the random flux. For
random flux functions which are Lipschitz continuous with respect to the state
variable, we prove the existence of a unique random entropy solution. Using
a Karhunen–Loève spectral decomposition of the random flux into principal
components with respect to the state variables, we introduce a family of para-
metric, deterministic entropy solutions on high-dimensional parameter spaces.
We prove bounds on the sensitivity of the parametric and of the random en-
tropy solutions on the Karhunen–Loève parameters. We also outline the con-
vergence analysis for two classes of discretization schemes, the Multi-Level
Monte-Carlo Finite-Volume Method (MLMCFVM) developed in [22, 24, 23],
and the stochastic collocation Finite Volume Method (SCFVM) of [25].

1. Introduction

Many problems in physics and engineering are modeled by hyperbolic systems
of conservation or balance laws. As examples for these equations, we mention only
the Shallow Water Equations of hydrology, the Euler Equations for inviscid, com-
pressible flow and the Magnetohydrodynamic (MHD) equations of plasma physics,
see, e.g. [7, 12].

The simplest example for a system of hyperbolic conservation laws is the scalar
(single) conservation law:

(1.1)
∂u

∂t
+

d∑

j=1

∂

∂xj
(fj(u)) = 0, x = (x1, . . . , xd) ∈ Rd, t > 0 .

Here the unknown is u : Rd "→ R and fj is the flux function in the j-th dimension.
Solutions of (1.1) develop discontinuities in finite time even when the initial data

is smooth and must be interpreted in the weak sense. Weak solutions to (1.1) are
not unique, so (1.1) is augmented with additional admissibility criteria, or entropy
conditions, [7, 30]. Well-posedness of entropy solutions in the scalar case in several
space dimensions was obtained by Kruzkhov.

Numerical methods for approximating entropy solutions of systems of conserva-
tion laws have undergone extensive development and many efficient methods are
available, see [9, 12, 13, 19] and the references therein. In particular, finite volume
methods are frequently employed to approximate systems of conservation laws.
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This classical paradigm for designing efficient numerical schemes assumes that
data i.e., initial data and flux function for the system are known exactly.

In many situations of practical interest, however, these data are not known
exactly due to inherent uncertainty in modelling and measurements of physical
parameters such as, for example, the specific heats in the equation of state for
compressible gases, resistivity in MHD etc. Often, the initial data and the flux
function are known only up to certain statistical quantities of interest like the mean,
variance, higher moments, and in some cases, the law of the stochastic initial data.
In such cases, a mathematical formulation of (1.1) is required which allows for
random problem data. The problem of random initial data was considered in [22],
and the existence and uniqueness of a random entropy solution was shown, and
a convergence analysis for MLMC FV discretizations was given. Efficient MLMC
discretization of balance laws with random source terms was investigated in [23].

We mention that the present work as well as [22, 23] considered correlated random
inputs which typically occur in engineering applications; SCLs with random inputs
have been considered before, but generally with white noise, i.e., spatially and
temporally uncorrelated random inputs in [16, 15, 8, 33, 34].

The first aim of this paper is to develop an appropriate mathematical framework
of random entropy solutions for scalar hyperbolic conservation laws with random
flux functions with correlated random perturbations. As wellposedness results in
the deterministic case are available only in scalar case, we focus on this particular
case for all our theoretical development. We define random entropy solutions and
prove an existence and uniqueness result.

Having established existence and uniqueness of random entropy solutions, we
turn to their efficient numerical approximation. The efficient numerical solution of
systems of conservation laws with random source terms by multilevel Monte-Carlo
methods has been addressed in [23].

We propose and analyze two methods to this end: first, statistical sampling
techniques of the Monte Carlo (MC) and the Multilevel Monte Carlo (MLMC)
type and, second, a “stochastic collocation Finite Volume Method” (SCFVM for
short).

Both of these methods are “non-intrusive”, very easy to code and to parallelize,
and well suited for random solutions with low spatial regularity. This situation is
typical in conservation laws where discontinuities are generic. This low regularity
poses serious challenges to the design of efficient so-called stochastic Galerkin meth-
ods which are based on generalized Polynomial Chaos (gPC for short) expansions of
the random solution. Although these methods have been extensively developed, see
[1, 4, 20, 31, 26, 32] and other references therein, they are more intrusive, generally
harder to implement and more difficult to parallelize than MC methods. Due to the
limited smoothness of parametric solutions (shocks forming in physical space will
propagate into the parameter domain), convergence rates achieved with stochastic
Galerkin approximations as proposed in [26] and references therein, are limited.

Efficient statistical sampling methods of the Multi-level Monte Carlo (MLMC)
type were proposed in [22] for SCLs with random initial data. This family of
methods was introduced by Heinrich for numerical quadrature [14] and by Giles
in the context of path simulations for stochastic ordinary differential equations
[10, 11]. More recently, MLMC finite element methods for elliptic problems with
stochastic coefficients were introduced by Barth, Schwab and Zollinger in [2]. More
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recent papers [22, 24, 23] propose MLMC algorithms for systems of conservation
laws and systems of balance laws, with uncertain initial data and with uncertain
source terms. One of the aims of the current paper is to extend and analyse the
MLMC algorithm for scalar conservation laws with random flux functions. The
existence result of random entropy solutions for SCL with bounded random flux
functions shown in the present paper is the basis for the recent convergence analysis
of Multilevel Monte-Carlo Front-tracking solvers for SCL with bounded random flux
functions in [27].

Another class of non-intrusive algorithms for random conservation laws are of
the stochastic collocation finite volume method (SCFVM) type proposed in [3],
see also [25]. We will consider discretization of SCLs with bounded random flux
functions using SCFVM in this paper. Based on a-priori sensitivity estimates in
the present paper, we propose a novel anisotropic mesh selection procedure in the
stochastic coordinates that serves to reduce the computational complexity of the
stochastic FV method considerably.

The remainder of this paper is organized as follows: in Section 2, we introduce
some preliminary notions from probability theory and functional analysis. The
concept of random entropy solutions is introduced and the scalar hyperbolic con-
servation law with random initial data and random flux function is shown to be
well-posed in Section 3. The MLMCFVM schemes are designed and analyzed in
Section 4 SCFVM schemes are presented in Section 5. Finally, illustrative numerical
experiments are discussed in Section 6.

2. Random fields

Our mathematical formulation of scalar conservation laws with random data and
fluxes will use the concept of random variables taking values in function spaces. For
the sake of completeness, we recapitulate basic concepts from Chapter 1 of [6], and
then add several remarks on spatial and on temporal correlation functions which
will become useful in the ensuing developments. The presentation follows our earlier
work [22].

Let (Ω,F) be a measurable space, with Ω denoting the set of all elementary
events, and F a σ-algebra of all possible events in our probability model. If (E,G)
denotes a second measurable space, then an E-valued random variable (or random
variable taking values in E) is any mapping X : Ω → E such that the set {ω ∈ Ω:
X(ω) ∈ A} = {X ∈ A} ∈ F for any A ∈ G, i.e., such that X is a G-measurable
mapping from Ω into E.

Assume now that E is a metric space; with the Borel σ-field B(E), (E,B(E))
is a measurable space and we shall always assume that E-valued random variables
X : Ω → E will be (F ,B(E)) measurable. If E is a separable Banach-space with
norm ‖ ◦ ‖E and (topological) dual E∗, then B(E) is the smallest σ-field of subsets
of E containing all sets

(2.1) {x ∈ E : ϕ(x) ≤ α}, ϕ ∈ E∗, α ∈ R .

Hence if E is a separable Banach space, X : Ω → E is an E-valued random variable
iff for every ϕ ∈ E∗, ω "−→ ϕ(X(ω)) ∈ R1 is an R1-valued random variable.
Moreover, we have
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Lemma 2.1. Let E be a separable Banach-space and let X : Ω → E be an E-
valued random variable on (Ω,F). Then the mapping Ω ( ω "−→ ‖X(ω)‖E ∈ R1 is
measurable.

Proof. Since E is separable, there exists a sequence {ϕn} ⊂ E∗ such that for all
x ∈ E holds

(2.2) ‖x‖E = sup
n∈N

|ϕn(x)| .

Hence we find

(2.3) ∀ω ∈ Ω : ‖X(ω)‖E = sup
n∈N

|ϕn(X(ω))|

which implies that ω "−→ ‖X(ω)‖E is an R1-valued random variable. !
The random variable X : Ω → E is called Bochner integrable if, for any proba-

bility measure P on the measurable space (Ω,F),

(2.4)

∫

Ω
‖X(ω)‖E dP(ω) < ∞ .

Here, a probability measure P on (Ω,F) is any σ-additive set function from Ω into
[0, 1] such that P(Ω) = 1, and the resulting measure space (Ω,F ,P) is a probability
space. We shall always assume, unless explicitly stated, that (Ω,F ,P) is complete.

If X : (Ω,F) → (E, E) is a random variable, L(X) denotes the law of X under
P, i.e.,
(2.5) L(X)(A) = P({ω ∈ Ω : X(ω) ∈ A}) ∀A ∈ E .

The image measure µX = L(X) on (E, E) is called law or distribution of X.
A random variable taking values in E is called simple if it can take only finitely

many values, i.e., if it has the explicit form (with χA the indicator function of
A ∈ F)

(2.6) X =
N∑

i=1

xi χAi , Ai ∈ F , xi ∈ E, N < ∞ .

We set, for simple random variables X taking values in E and for any B ∈ F ,

(2.7)

∫

B
X(ω) dP(ω) =

∫

B
XdP :=

N∑

i=1

xi P(Ai ∩B) .

By density, for such X(·), and all B ∈ F ,

(2.8)
∥∥∥
∫

B
X(ω) dP(ω)

∥∥∥
E
≤

∫

B
‖X(ω)‖E dP(ω) .

For any random variable X : Ω → E which is Bochner integrable, there exists a
sequence {Xm}m∈N of simple random variables such that, for all ω ∈ Ω, ‖X(ω) −
Xm(ω)‖E → 0 as m → ∞. Therefore, (2.7) and (2.8) extend in the usual fashion
by continuity to any E-valued random variable. We denote the integral

(2.9)

∫

Ω
X(ω) dP(ω) = lim

m→∞

∫

Ω
Xm(ω) dP(ω) ∈ E

by E[X] (“expectation” of X). !
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We shall require for 1 ≤ p ≤ ∞ Bochner spaces of p-summable random variables
X taking values in the Banach-space E. By L1(Ω,F ,P;E) we denote the set of all
(equivalence classes of) integrable, E-valued random variables X. We equip it with
the norm

(2.10) ‖X‖L1(Ω;E) =

∫

Ω
‖X(ω)‖E dP(ω) = E(‖X‖E) .

More generally, for 1 ≤ p < ∞, we define Lp(Ω,F ,P;E) as the set of p-summable
random variables taking values E and equip it with norm

(2.11) ‖X‖Lp(Ω;E) := (E(‖X‖pE))
1/p, 1 ≤ p < ∞ .

For p = ∞, we denote by L∞(Ω,F ,P;E) the set of all E-valued random variables
which are essentially bounded. This set is a Banach space equipped with the norm

(2.12) ‖X‖L∞(Ω;E) := ess sup
ω∈Ω

‖X(ω)‖E .

If T < ∞ and Ω = [0, T ], F = B([0, T ]), we write Lp([0, T ];E). Note that for any
separable Banach-space E, and for any r ≥ p ≥ 1,

(2.13) Lr(0, T ;E), C0([0, T ];E) ∈ B(Lp(0, T ;E)) .

3. Hyperbolic Conservation Laws with random flux

We review classical results on SCLs with deterministic data, and develop a theory
of random entropy solutions for SCLs with a class of random flux flunctions, proving
in particular the existence and uniqueness of a random entropy solution with finite
second moments.

We also propose a novel spectral decomposition of the random entropy solutions
which is based on a Karhunen–Loève expansion in state space.

3.1. Deterministic scalar hyperbolic conservation laws. We consider the
Cauchy problem for scalar conservation laws (SCL) (1.1). Introducing the flux
function f(u)

(3.1) f(u) = (f1(u), . . . , fd(u)) ∈ C1(R;Rd) , div f(u) =
d∑

j=1

∂

∂xj
fj(u) ,

we may rewrite (1.1) succinctly as

(3.2)
∂u

∂t
+ div (f(u)) = 0 for (x, t) ∈ Rd × R+.

We supply the SCL (3.2) with initial condition

(3.3) u(x, 0) = u0(x), x ∈ Rd .

3.2. Entropy Solution. It is well-known that the deterministic Cauchy problem
(3.2), (3.3) admits, for each u0 ∈ L1(Rd) ∩BV (R), a unique entropy solution (see,
e.g., [12, 30, 7]). Moreover, for every t > 0, u(·, t) ∈ L1(Rd) and the (nonlinear)
data-to-solution operator

(3.4) S : u0 "−→ u(·, t) = S(t)u0, t > 0

has several properties which will be crucial for our subsequent development. To
state the properties of {S(t)}t≥0, we introduce some additional notation: for a
Banach-space E with norm ‖ ◦ ‖E , and for 0 < T ≤ +∞, denote by C([0, T ];E)
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the space of bounded and continuous functions from [0, T ] with values in E, and by
Lp(0, T ;E), 1 ≤ p ≤ +∞, the space of strongly measurable functions from (0, T )
to E such that for 1 ≤ p < +∞

(3.5) ‖v‖Lp(0,T ;E) =
(∫ T

0
‖v(t)‖pE dt

) 1
p
,

respectively, if p = ∞,

(3.6) ‖v‖L∞(0,T ;E) = ess sup
0≤t≤T

‖v(t)‖E

are finite. The following result is classical (we refer to, e.g., [12, 13, 18, 9, 19]).

Theorem 3.1.

1) For every u0 ∈ L∞(Rd), (1.1) - (3.3) admits a unique entropy solution
u ∈ L∞(Rd × (0, T )) := L∞(0, T ;L∞(Rd)).

2) For every t > 0, the (nonlinear) data-to-solution map S(t) given by

u(·, t) = S(t)u0

satisfies
i) S(t) : L1(Rd) → L1(Rd) is a (contractive) Lipschitz map, i.e.,

(3.7) ‖S(t)u0 − S(t)v0‖L1(Rd) ≤ ‖u0 − v0‖L1(Rd) .

ii) S(t) maps (L1 ∩BV )(Rd) into (L1 ∩BV )(Rd) and

(3.8) TV (S(t)u0) ≤ TV (u0) ∀u0 ∈ (L1 ∩BV )(Rd) .

iii) For every u0 ∈ (L∞ ∩ L1)(Rd),

‖S(t)u0‖L∞(Rd) ≤ ‖u0‖L∞(Rd) ;(3.9)

‖S(t)u0‖L1(Rd) ≤ ‖u0‖L1(Rd) .(3.10)

iv) The mapping S(t) is a uniformly continuous mapping from L1(Rd)
into C([0,∞);L1(Rd)), and

(3.11) ‖S(·)u0‖C([0,T ];L1(Rd)) = max
0≤t≤T

‖S(t)u0‖L1(Rd) ≤ ‖u0‖L1(Rd) .

In our analysis of SCLs with random flux, we will require in particular results on
the continuous dependence of entropy solutions on the flux function. There holds
([17, Thm. 4.3]).

Theorem 3.2. Assume u0, v0 ∈ BV (Rd) ∩ L1(Rd), and f(·), g(·) ∈ Lip(R;Rd).
Then the unique entropy solutions u and v of the SCL with initial data u0, v0

and with flux functions f and g satisfy the Kružkov entropy conditions, and the
a-priori continuity estimate

(3.12) ‖u(·, t)− v(·, t)‖L1(Rd)

≤ ‖u0 − v0‖L1(Rd) + tmin{TV (u0), TV (v0)}‖f − g‖Lip(R;Rd)

for every 0 ≤ t ≤ T .
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3.3. Random Flux. We are in particular interested in the case that the initial data
u0 and the flux functions fj in (1.1) are uncertain. Since the case of random u0 was
considered in detail in [22], so that we address now in detail the case of random
flux. To avoid technicalities, we first address spatially homogeneous random flux
functions whose realizations are elements of the space E = Lip(R;Rd). This space
being separable, we define random flux functions in the usual fashion.

Definition 3.3. A (spatially homogeneous) random flux for the SCL (1.1) is a
random field taking values in the separable Banach space E = Lip(R;Rd), i.e., a
measurable mapping from (Ω,F) to (Lip(R;Rd);B(Lip(R;Rd))). A bounded ran-
dom flux is a random flux whose Lip(R1;Rd)-norm is bounded P-a.s., i.e.,
(3.13) ∃0 < B(f) < ∞ : ‖f(ω; ·)‖Lip(R1;Rd) ≤ B(f) P− a.s. .

We observe that a bounded random flux has finite statistical moments of any
order. Of particular interest will be the second moment of a bounded random flux
(i.e., its “two-point correlation in state-space”).

Lemma 3.4. Let f be a bounded random flux as in Definition 3.3 which belongs to
L2(Ω; Lip(R;Rd)). Then its covariance function, i.e., its centered second moment
defined by

(3.14) Cov[f ](v, v′) := E [(f(·; v)− E[f(·; v)])⊗ (f(·; v′)− E[f(·; v′)])]
is well-defined for all v, v′ ∈ R and there holds

(3.15) Cov[f ] ∈ Lip(R× R;Rd×d
sym)

Proof. As a bounded random flux has by definition finite second moments and is,
P-a.s. a Lipschitz continuous function on R, its expectation R ( v "→ E[f(·; v)] ∈
Lip(R;Rd) and for v, v′ ∈ R we have that

‖E[f(·; v)]− E[f(·; v′)]‖2 ≤ B(f)|v − v′| , v, v′ ∈ R .

In particular, therefore, f(ω; v) − E[f(·; v)] ∈ L2(Ω; Lip(R;Rd)). This implies, de-
noting f̄(v) = E[f(·; v)], F = Rd×d

sym, (recalling our convention that all vectors are
column vectors), that for every v, v′ ∈ R holds

‖Cov[f ](v, v′)‖2F =
∥∥∥
∫

Ω
(f(ω; v)− f̄(v))(f(ω; v′)− f̄(v′)))dP(ω)

∥∥∥
2

F

=
d∑

i,j=1

(∫

Ω
(fi − f̄i)(ω; v)(fj − f̄j)(ω; v

′)dP(ω)
)2

≤
∫

Ω

∥∥f(ω; v)− f̄(v)
∥∥2
2
dP(ω)

∫

Ω

∥∥f(ω; v′)− f̄(v′)
∥∥2
2
dP(ω).

Therefore Cov[f ](v, v′) is well-defined on R×R. Consider now arbitrary u, u′ ∈ R
and v, v′ ∈ R. Then we may write
∥∥Cov[f ](u, v)− Cov[f ](u′, v′)

∥∥
F

= ‖Cov[f ](u, v)− Cov[f ](u, v′) + Cov[f ](u, v′)− Cov[f ](u′, v′)‖F
≤ ‖Cov[f ](u, v)− Cov[f ](u, v′)‖F + ‖Cov[f ](u, v′)− Cov[f ](u′, v′)‖F .

We estimate the first term in this bound as above

‖Cov[f ](u, v)− Cov[f ](u, v′)‖2F =
(∫

Ω
(f(ω;u)− f̄(u)))(f(ω; v)− f̄(v)))
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− (f(ω;u)− f̄(u)))(f(ω; v′)− f̄(v′)))
)2

=
(∫

Ω
(f(ω;u)− f̄(u)))

×
[
f(ω; v)− f(ω; v′)− (f̄(v)− f̄(v′))

])
dP(ω)

)2

≤ 2

∫

Ω

∥∥f(ω;u)− f̄(u)
∥∥2
2
dP(ω)

×
(∫

Ω
‖f(ω; v)− f(ω; v′)‖22 dP(ω) +

∥∥f̄(v)− f̄(v′)
∥∥2
2

)

≤ 4B(f)2
∫

Ω

∥∥f(ω;u)− f̄(u)
∥∥2
2
dP(ω)|v − v′|2.

Proceeding in the same way with the second term, we obtain

‖Cov[f ](u, v)− Cov[f ](u′, v)‖2F ≤ 4B(f)2
∫

Ω

∥∥f(ω; v)− f̄(v)
∥∥2
2
dP(ω)|u− u′|2.

Let now

C(u, v) = min
{(∫

Ω

∥∥f(ω;u)− f̄(u)
∥∥2
2
dP(ω)

)1/2
,
(∫

Ω

∥∥f(ω; v)− f̄(v)
∥∥2
2
dP(ω)

)1/2}
.

Taking square roots and adding the bounds, we obtain

‖Cov[f ](u, v)− Cov[f ](u′, v′)‖F ≤ 2B(f)C(u, v) (|u− u′|+ |v − v′|) .

which implies (3.15). !

Remark 3.5. The previous theorem addressed the covariance function for a spa-
tially homogeneous random flux function f(ω;u). Spatially inhomogeneous flux
functions f(ω;x, u) can be defined analogously, provided their dependence on the
spatial coordinate is Lipschitz: they are measurable mappings from (Ω,F) into
(E,B(E)) where E = Lip(Rd+1;Rd). If f ∈ L2(Ω;E), its covariance function

Cov[f ](x, v;x′, v′) := E [(f(·;x, v)− E[f ](x, v))⊗ (f(·;x′, v′)− E[f ](x′, v′))]

is well-defined as an element of Lip(Rd+1 × Rd+1;Rd×d
sym) .

3.4. Parametric, deterministic flux. Often, in applications, rather than a bounded
random flux function as in Definition 3.3 one is given a deterministic, parametric
flux function f(y;u) which depends on a vector y = (yj)j≥1 of (finitely or infinitely
many) parameters in a set U of admissible parameter values.

Definition 3.6. A parametric, deterministic flux function is a function f(y;u)
which, for every parameter instance y ∈ U , belongs to Lip(R;Rd) and for which
there exists a constant B(f) < ∞ such that

(3.16) sup
y∈U

‖f(y; ·)‖Lip(R;Rd) ≤ B(f) .

We give several examples of parametric, deterministic flux functions.

Example 3.7. Consider a parametric, deterministic flux function which depends
on a parameter vector y ∈ RJ . Let y0 ∈ RJ denote a nominal parameter value and
denote, for r > 0, U = Br(y0) := {y ∈ RJ ||y − y0| < r} denote the ball in RJ of
radius r > 0 centered at the nominal parameter value y0.
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Then, for f ∈ C2(Br(y0); Lip(R;Rd)) with some r > 0 there holds, by Taylor’s
theorem, for every u ∈ R, and every y ∈ Br(y0)

(3.17) f(y;u) = f(y0;u) + (y − y0)
)(∂yf)(y0;u) +O(r2)

so that we may introduce the approximate flux function

(3.18) g(y;u) := f̄(u) + y)(∂yf)(y0;u)

with the nominal flux f̄(u) := f(y0;u)− y)0 (∂yf)(y0;u).

We remark that in Example 3.7 we did not require a structural hypothesis (apart
from differentiability at the nominal parameter vector y0) any particular functional
form for the dependence of the parametric flux f on the parameter vector y. The
approximate flux g(y;u) in (3.18), on the other hand, depends on y in an affine
fashion.

Example 3.8. (Karhunen–Loève expansion of bounded random flux) Consider a
bounded random flux f(ω;u) in the sense of Definition 3.3. By Lemma 3.4, its
covariance function Cov[f ] is well-defined; for 0 < R < ∞ we denote by CR

f the

integral operator with bi-Lipschitz kernel Cov[f ](u, v), defined on L2(−R,R) by

(3.19) CR
f [Φ](u) :=

∫

|v|≤R
Cov[f ](u, v)Φ(v)dv .

We remark that CR
f describes the covariance structure of the random flow on the set

[−R,R] of states. Given initial data u0 ∈ L∞(Rd), by the a-priori bound (3.11) the
unique entropy solution S(t)u0 of (1.1) - (3.3) will take values in [−‖u0‖L∞(Rd), ‖u0‖L∞(Rd)].
For random flux and random initial data, therefore, choosing

(3.20) R > ess sup
ω∈Ω

‖u0(ω; ·)‖L∞(Rd)

will ensure that CR
f will “capture” all possible states, P-almost shurely.

For every positive finite constant R, the integral operator Cf is a compact, self-
adjoint operator on L2(−R,R). By the spectral theorem, it admits for every fixed
value 0 < R < ∞ a sequence (λR

j ,Φ
R
j )j≥1 of real eigenvalues λR

j , which assume
enumerated in decreasing magnitude and repeated according to multiplicity, which
accumulate only at zero, and a corresponding set ΦR

j of eigenfunctions; to exlude

trivial degeneracies, we shall assume throughout that the sequence (ΦR
j )j≥1 is a

complete, orthonormal base of L2(−R,R).
It follows from the Lipschitz-continuity (3.15) of Cov[f ] and from the eigenvalue

equation

(3.21) (CR
f ΦR

j )(u) = λR
j Φ

R
j (u) , |u| ≤ R ,

that ΦR
j ∈ Lip([−R,R];Rd): for u, u′ ∈ [−R,R], there holds by Lemma 3.4 and by

the eigenvalue equation (3.21)

∣∣ΦR
j (u)− ΦR

J (u
′)
∣∣ = 1

λR
j

∣∣∣
∫ R

−R
(Cov[f ](u, v)− Cov[f ](u′, v))ΦR

j (v) dv
∣∣∣

≤ 1

λR
j

sup
|v|≤R

‖Cov[f ](u, v)− Cov[f ](u′, v)‖F
√
2R
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≤ 2B(f)
√
2R

λR
j

sup
|v|≤R

(∫

Ω

∥∥f(ω, v)− f̄(v)
∥∥2
2
dP(ω)

)1/2
|u− u′| .

Any bounded random flux f(ω;u) therefore admits, for every fixed 0 < R < ∞, a
Karhunen–Loève expansion

(3.22) f(ω;u) = f̄(u) +
∑

j≥1

Y R
j (ω)ΨR

j (u), |u| ≤ R ,

which converges in L2(Ω;L2(−R,R)d). In (3.22), the nominal flux f̄(u) = E[f(·;u)]
and the sequence (Y R

j )j≥1 is a sequence of independent random variables given by

∀j ∈ N : Y R
j (ω) :=

√
λR
j

∫

|v|<R
f(ω; v)ΦR

j (v) dv.

and

∀j ∈ N : ΨR(u) :=
1√
λR
j

ΦR
j (u).

We remark that under suitable smoothness conditions on the two-point correlation
function Cov[f ] of the random flux the convergence of the expansion (3.22) is a)
pointwise with respect to u, and b) the convergence rates increase with increasing
smoothness of Cov[f ] (see, e.g. [28]). For our ensuing numerical analysis, it will
be useful to relate the Karhunen–Loève expansion to a parametric, deterministic
representation of the random flux, in terms of the principal components of its co-
variance. To this end, let us denote by yj ∈ [−1, 1] the values of rescaled realizations

of Y R
j (ω) which we denote by Y R

j (ω). Note that |yj | ≤ 1 can always be achieved

by rescaling the functions ΨR
j in the Karhunen–Loève expansion (3.22) to functions

ΨR
j , so that (3.22) takes the form

(3.23) f(y;u) = f̄(u) +
∑

j≥1

Y R
j (ω)ΨR

j (u), |u| ≤ R , y ∈ U .

Here, we denote (by slight abuse of notation) by f(y;u) the random flux f(ω;u)
expressed in terms of the parameters yj = Y R

j , i.e.,

(3.24) f(ω;u) = f(y;u)|
yj=Y R

j (ω)
, |u| < R .

By (3.23), there holds the parametric, deterministic representation

(3.25) f(y;u) = f̄(u) +
∑

j≥1

yjΨR
j (u), |u| ≤ R , y ∈ U = [−1, 1]N .

On the parameter domain U = [−1, 1]N, we define a probability measure as follows.
Let Θ be the σ-algebra defined on U which is generated from the sets of the form∏∞

j=1 Sj where Sj are subintervals of [−1, 1] and only a finite number of them are
proper subsets of [−1, 1]. On Θ, we define the following measure

dρ(y) := ⊗j≥1dyj/2.

Then (U,Θ, ρ) is a probability space. As the random coordinates yj are by assump-
tion independent, identically uniformly distributed, for S =

∏∞
j=1 Sj ,

ρ(S) =
∞∏

j=1

P{ω : yj(ω) ∈ Sj} .
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Remark 3.9. The Karhunen–Loève expansion (3.23) has been developed for the
spatially homogeneous random flux. In the case of spatially inhomogeneous random
flux indicated in Remark 3.5, an expansion analogous to (3.23) is available. Here,

the principal components ΨR
j depend on both, the spatial coordinate x and the state

u. The parametric, deterministic expansion then takes the form

(3.26) f(y;x, u) = f̄(x, u) +
∑

j≥1

yjΨR
j (x, u), |u| ≤ R , y ∈ U = [−1, 1]N .

3.5. Random Entropy Solution. Based on Theorem 3.1, we will now formulate
(1.1) - (3.3) for random initial data u0(ω; ·) and random flux f(ω; ·). To this end,
we denote (Ω,F ,P) a probability space. We assume given a Lipschitz continuous
random flux f(ω;u) as in Definition 3.3 and random initial data u0, i.e., a L1(Rd)-
valued random variable which is a L1(Rd) measurable map

(3.27) u0 : (Ω,F) "−→
(
L1(Rd), B(L1(Rd))

)
.

We assume further that

(3.28) u0(ω; ·) ∈ L∞(Rd) ∩BV (Rd) P-a.s.,

which is to say that

(3.29) P({ω ∈ Ω : u0(ω; ·) ∈ (L∞ ∩BV )(Rd)}) = 1.

Since L1(Rd) and Lip(Rd;Rd) are separable, (3.27) is well defined and we may
impose for k ∈ N the k-th moment condition

(3.30) ‖u0‖Lk(Ω;L1(Rd)) < ∞,

where the Bochner spaces with respect to the probability measure are defined in
Section 2. Then we are interested in random solutions of the random scalar con-
servation law (RSCL)

(3.31)

{
∂tu(ω;x, t) + divx(f(ω;u(ω;x, t))) = 0, t > 0,

u(ω;x, 0) = u0(ω;x),
x ∈ Rd.

Definition 3.10. A random field u : Ω ( ω → u(ω;x, t), i.e., a measurable mapping
from (Ω,F) to C([0, T ];L1(Rd)), is a random entropy solution of the SCL (3.31)
with random initial data u0 satisfying (3.27) - (3.30) for some k ≥ 2 and with a
spatially homogeneous random flux f(ω;u) as in Definition 3.3 that is statistically
independent of u0, if it satisfies the following,

(i.) Weak solution:
For P-a.e ω ∈ Ω, u(ω; ·, ·) satisfies the following integral identity,

(3.32)

∞∫

0

∫

Rd

(
u(ω;x, t)ϕt(x, t) +

d∑

j=1

fj(ω;u(ω;x, t))
∂

∂xj
ϕ(x, t)

)
dxdt

+

∫

Rd

u0(x,ω))ϕ(x, 0) dx = 0,

for all test functions ϕ ∈ C1
0 (Rd × [0,∞)).
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(ii.) Entropy condition:
For any pair of (deterministic) entropy η and (stochastic) entropy flux

Q(ω; ·) i.e., η, Qj with j = 1, 2, . . . , d are functions such that η is convex
and such that Q′

j(ω; ·) = η′f ′
j(ω; ·) for all j, and for P-a.e ω ∈ Ω, u satisfies

the following integral identity,

(3.33)

∞∫

0

∫

Rd

(
η(u(ω;x, t))ϕt(x, t) +

d∑

j=1

Qj(ω;u(ω;x, t))
∂

∂xj
ϕ(x, t)

)
dxdt

+

∫

Rd

η(u0(ω;x)ϕ(x, 0) dx ≥ 0,

for all deterministic test functions 0 ≤ ϕ ∈ C1
0 (Rd × [0,∞)), P-a.s.

We remark that it is equivalent to assume that (3.33) holds for all Kružkov
entropy functions η(u) = |u− k|, where k is any constant. Therefore, throughout
what follows, we assume that η(u) = |u− k|. One main result of the present paper
is

Theorem 3.11. Consider the SCL (1.1) - (3.3) with spatially homogeneous, bounded
random flux f : Ω → Lip(R;Rd) as in Definition 3.3 and with (independent of f)
random initial data u0 : Ω → L1(Rd) satisfying (3.28), (3.29) and the k-th moment
condition (3.30) for some integer k ≥ 2. In particular, then, there exists a constant
R̄ < ∞ such that

(3.34) ‖u0(ω; ·)‖L∞(Rd) ≤ R̄ P− a.e. ω ∈ Ω.

Assume moreover that the random flux admits the representation (3.24) with (3.25)

where the Lipschitz-continuous scaled flux components ΨR
j have Lipschitz constants

BR
j such that BR := (BR

j )j≥1 ∈ *1(N) with some R ≥ R̄ as in (3.34).

Then there exists a random entropy solution u : Ω ( ω → C([0, T ];L1(Rd)) which
is “pathwise” unique, i.e., for P − a.e.ω ∈ Ω, described in terms of a nonlinear
random mapping S(ω; t) which depends on ω only through the random flux, such
that

(3.35) u(ω; ·, t) = S(ω; t)u0(ω; ·), t > 0, P− a.e.ω ∈ Ω

such that for every k ≥ m ≥ 1, for every 0 ≤ t ≤ T < ∞, and for P-ae. ω ∈ Ω

‖u‖Lk(Ω;C(0,T ;L1(Rd))) ≤ ‖u0‖Lk(Ω;L1(Rd)) ,(3.36)

‖S(ω; t)u0(ω; ·)‖(L1∩L∞)(Rd) ≤ ‖u0(ω‖ ; ·)(L1∩L∞)(Rd)(3.37)

(3.38) TV (S(ω; t)u0(ω; ·)) ≤ TV (u0(ω; ·)).
and, with R̄ as in (3.34),

(3.39) sup
0≤t≤T

‖u(ω; ·, t)‖L∞(Rd) ≤ R̄ P− a.e. ω ∈ Ω .

Proof. We give the proof in several steps.
Step 1: We construct candidates for random entropy solution in a “pathwise” fash-
ion, i.e., for P-a.e. realization of the random flux f(ω; ·), and for given initial con-
dition u0(ω; ·), there exists a unique entropy solution u(ω;x, t) ∈ C([0, T ];L1(Rd))
of the Cauchy problem (3.2), (3.3) with this realization of the random flux by the
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existence and uniqueness result Theorem 3.1. By (3.34) and by (3.9), there holds
(3.39).

The parametric family of entropy solutions

{u(ω; ·, ·) : P− a.e. ω ∈ Ω}
is well-defined P-a.s. by Theorem 3.1 and satisfies (3.39) (which is basis for the
Monte-Carlo Finite-Volume approximation to be discussed in the next section). To
justify this, it remains to verify that this parametric family of entropy solutions
is measurable, i.e., is a random variable taking values in C([0, T ];L1(Rd)). To
do so, we first consider a parametric, deterministic family of SCLs obtained by
J-term truncations of the Karhunen–Loève parametrizations (3.22), (3.25) of the
random flux. Again by the deterministic existence result, the Cauchy problems
(3.2), (3.3) with these parametric, deterministic flux functions will admit unique
random entropy solutions.

Moreover, by Theorem 3.2, these parametric, deterministic families of entropy
solutions will be seen to depend Lipschitz continuously on the parameter vectors
yj ∈ [−1, 1]J , with the Lipschitz constant being uniform with respect to the number
J of parameters due to the assumption that BR ∈ *1(N) for some R ≥ R̄ with R̄
as in (3.34).
Step 2: Parametric, deterministic SCL. By assumption the bounded random flux in
(3.2) admits the representation (3.24) with the parametric, deterministc flux f(y;u)
as in (3.25). For any y ∈ U = [−1, 1]N, the series (3.25) converges in Lip(R;Rd) and
its limit is, by the completeness of Lip(R;Rd), a Lipschitz continuous flux function.
In particular, therefore, the sequence {fJ}J≥1 of partial sums, defined by

(3.40) fJ(y;u) := f̄(u) +
J∑

j=1

yjΨR
j (u), |u| ≤ R , y ∈ U

is a (uniformly w.r. to the parameter sequence y ∈ U) Cauchy sequence in
Lip(R;Rd).

By Theorem 3.1, for each J there exists a unique entropy solution uJ(y;x, t) of
the parametric, deterministic SCL (3.2), i.e., of (3.2) with the parametric, deter-
ministic flux fJ(y;u), and also for the limit f(y;u) which we denote by u(y;x, t).
With the corresponding operators SJ(y; t) and S(y; t) as in (3.4), we may write for
J ∈ N
(3.41) u(y; ·, t) = S(y; t)u0(·) , uJ(y; ·, t) = SJ(y; t)u0(·) , t > 0 , y ∈ U .

By Theorem 3.2 for every y ∈ U and every t > 0

(3.42)
∥∥u(y; t)− uJ(y; t)

∥∥
L1(Rd)

≤ Ct
∑

j>J

‖ΨR
j ‖Lip([−R,R];Rd) ≤ Ct

∑

j>J

BR
j

which tends to zero for J → ∞ due to our assumption that BR ∈ *1(N). By
Theorem 3.2 then, in particular, uJ → u in C([0, T ];L1(Rd)) as J → ∞.
Step 3: Candidate random entropy solution.

Motivated by (3.24), we define a candidate for the random entropy solution of
the SCL (3.2) with bounded random flux by setting, for every J ∈ N,
(3.43) uJ(ω;x, t) := uJ(y;x, t)|

yj=Y R
j (ω), j=1,2,...,J

and then passing to the limit J → ∞.
Step 4: Measurability.
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We verify that the mapping Ω ( ω → u(ω;x, t) defined in (3.43) is measurable
as a mapping from the probability space (U,Θ, ρ) introduced in Example 3.8 into the
(separable) space E = C([0, T ];L1(Rd)) equipped with its (natural) sigma algebra
of Borel sets B(E).

By Theorem 3.1, for every J ∈ N the parametric, deterministic SCL (3.2) with
the (Lipschitz) flux fJ(y;u) defined in (3.40) admits a unique parametric, deter-

ministic entropy solution uJ(y;x, t). Upon inserting here yj = Y R
j (ω) for j =

1, 2, . . . , J , the resulting random function uJ(ω;x, t) := uJ(y;x, t)|
yj=Y R

j (ω) j=1,2,...,J

is measurable and, by uniqueness, coincides P-a.s. with the unique entropy solu-
tion of the SCL (3.2), with the random flux fJ(ω;u) := fJ(y;u)|

yj=Y R
j (ω) j=1,2,...,J

.

Since the sequence {fJ}J≥1 of J-term truncations of the Karhunen–Loève expan-
sion (3.25) is Cauchy in Lip(R;Rd) uniformly with respect to y ∈ U = [−1, 1]N, the
continuous dependence result Theorem 3.2 implies that the corresponding sequence
{uj}J≥1 of (unique) entropy solutions is likewise Cauchy in C([0, T ];L1(Rd)). Since
C([0, T ];L1(Rd)) is complete, for each y ∈ U there exists a unique limit ū(y; ·, ·) ∈
C([0, T ];L1(Rd)), and the dependence of this limit on the parameter vector y ∈ U
is Lipschitz. We define

ū(ω;x, t) := ū(y;x, t)|yj=Y R
j (ω) , j≥1.

Since ū(y;x, t) is the uniform limit with respect to y ∈ U limit in E = C([0, T ];L1(Rd)),
the function ū(ω;x, t) is the uniform in E strong limit of a family of measurable
random variables taking values in E, therefore ū(ω;x, t) is strongly measurable as
mapping from (Ω,F) into (E,BE), hence a random function.
Step 5: Verification of the entropy condition.

Having verified measurability of ū(ω;x, t), it remains to show that it satisfies
the entropy conditions (3.32), (3.33), P-a.s. To this end, we first observe that for
every J < ∞, by construction of the approximate parametric solutions uJ(y;x, t),
these solutions satisfy the entropy conditions (3.32), (3.33) pointwise for every y ∈
[−1, 1]J . Therefore, the random functions uJ(ω;x, t) := uJ(y;x, t)|

yj=Y R
j (ω) j=1,2,...,J

satisfy (3.32), (3.33), P-a.s., for every J . Since the entropy conditions (3.32), (3.33)
are stable under strong limits in the space E = C([0, T ];L1(Rd)), it follows that the
limiting functions ū(y;x, t) and ū(ω;x, t) satisfy (3.32), (3.33) for all y ∈ U resp.
P-a.s.
Step 6: Identification ū(ω; ·, ·) = u(ω;x, t).

By the uniqueness of the entropy solution, for every J < ∞ the random function
uJ(ω;x, t) coincides, in the space E = C([0, T ];L1(Rd)), P-a.s. with the “pathwise”
entropy solutions of the SCL (3.2), (3.3) with truncated flux functions fJ(y;u) in
(3.40). The stability under passage to the limit in E and the uniqueness of entropy
solutions complete the proof. !

Theorem 3.11 generalizes the existence result of [22] where the flux function in
(3.2) was assumed to be deterministic. It ensures the existence of a unique random
entropy solution u(ω;x, t) with finite k-th moments for bounded random flux and
for independent random initial data u0 provided that u0 ∈ Lk(Ω,F ,P;L1(Rd)).
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4. Multilevel Monte Carlo Finite Volume Method

4.1. Monte-Carlo Method. The Monte-Carlo Method is a “discretization” of
the SCL random data f(ω;u), u0(ω;x) as in (3.27) - (3.29) with respect to ω. We
also assume (3.30), i.e., the existence of k-th moments of u0 for some k ∈ N, to be
specified later. We shall be interested in the statistical estimation of the first and
higher moments of u, ie., of Mk(u) ∈ (L1(Rd))(k). For k = 1 we obtain the mean
field M1(u) = E[u]. The MC approximation of E[u] is defined as follows: given M
independent, identically distributed samples ûi

0, i = 1, . . . ,M , of initial data, the
MC estimate of E[u(·; ·, t)] at time t is given by

(4.1) EM [u(·, t)] := 1

M

M∑

i=1

ûi(·, t)

where ûi(·, t) denotes the M unique entropy solutions of the M Cauchy Problems

(1.1) - (3.3) with initial data ûi
0 and flux samples f̂ i(·). We observe that by

(4.2) ûi(·, t) = Ŝi(t) ûi
0

we have from (3.8) - (3.10) for every M and for every 0 < t < ∞, by (3.10),

(4.3)

‖EM [u(ω; ·, t)]‖L1(Rd) =
∥∥∥
1

M

M∑

i=1

Ŝi(t)ûi
0(·;ω)

∥∥∥
L1(Rd)

≤ 1

M

M∑

i=1

∥∥∥Ŝi(t) ûi
0(ω; ·)

∥∥∥
L1(Rd)

≤ 1

M

M∑

i=1

∥∥ûi
0(ω; ·)

∥∥
L1(Rd)

.

Using the i.i.d. property of the samples {ûi
0}Mi=1 of the random initial data u0,

Lemma 2.1 and the linearity of the expectation E[·], we obtain the bound

(4.4) E
[
‖EM [u(·; ·, t)]‖L1(Rd)

]
≤ E

[
‖u0‖L1(Rd)

]
= ‖u0‖L1(Ω;L1(Rd)) < ∞.

As M → ∞, the MC estimates (4.1) converge and the convergence result from [22]
holds as well.

Theorem 4.1. Assume that in the SCL (1.1) - (3.3) the random initial data u0

satisfies

(4.5) u0 ∈ L2(Ω;L1(Rd))

and that the flux f(ω;u) is a random flux in the sense of Definition 3.3. Assume
further that (3.28), (3.29) hold.

Then the MC estimates EM [u(·, t)] in (4.1) converge as M → ∞, to M1(u(·, t)) =
E[u(·, t)] and, for any M ∈ N, 0 < t < ∞, we obtain the error bound

(4.6) ‖E[u(·, t)]− EM [u(·, t)]‖L2(Ω;L1(Rd)) ≤ 2M−1/2 ‖u0‖L2(Ω;L1(Rd)) .



16 S. MISHRA, N. H. RISEBRO, C. SCHWAB, AND S. TOKAREVA

4.2. Finite Volume Method. So far, we considered the MCM under the assump-
tion that the entropy solutions ûi(ω;x, t) = S(ω; t) ûi

0(ω;x) for the Cauchy prob-
lem (1.1) - (3.3) with the random flux samples f(ωi;u) and initial data samples
ûi
0 = u0(ωi;x) are available exactly. In practice, however, numerical approxima-

tions of S(t)ûi
0 must be computed by FVM. In [22], we analyzed the error of the

combined MC-FVM approximations. We recapitulate the classical Kuznetsov type
error bounds for first order FVM for the deterministic SCL (3.2); these will be
required for the convergence statement of the MLMC FVM and also for parametric
collocation FVM in the subsequent chapters.

The FVM is based on a time step ∆t > 0 and a triangulation T of the spatial
domain D ⊂ Rd of interest. Here, a triangulation T will be understood as a set of
open, convex polyhedra K ⊂ Rd with plane faces such that the following conditions
hold: the triangulation T is shape regular: if K ∈ T denotes a generic volume, we
define the volume parameter

(4.7) ρK = ρ(K) = max{diam(Br) : Br ⊂ K}
i.e., the maximum diameter of balls Br of radius r > 0 that can be inscribed into
volume K for K ∈ T and define, in addition, for a generic mesh T , the shape
regularity constants (where ∆xK := diamK)

(4.8) κ(T ) := sup{∆xK/ρ(K) : K ∈ T }, T ∈ M .

We also denote by ∆x(T ) := max{∆xK : K ∈ T } the mesh width of T . For any
volume K ∈ T , we define the set N (K) of neighboring volumes

(4.9) N (K) := {K ′ ∈ T : K ′ 2= K ∧measd−1(K ∩K ′) > 0} .

We assume that the triangulation T are regular in the sense that there exists an
absolute constant B > 0 independent of ∆x(T ) such that the support size of the
FV “stencil” at element K ∈ T is uniformly bounded

(4.10) σ(T ) := sup
K∈T

#(N (K)) ≤ B .

We introduce the CFL-number

(4.11) λ = ∆t/∆x(T ) .

where we implied a uniform discretization in time with constant time step ∆t. The
CFL constant λ is determined by a standard CFL condition (see e.g. [12]) based
on the maximum wave speed.

To approximate (1.1), we use a time-explicit, first order FV scheme on T . It has
the general form

(4.12) vn+1
K = H({vnK′ : K ′ ∈ N (K) ∪K}), K ∈ T

where H : R(2k+1)d → R is continuous and where vnK denotes an approximation to
the cell average of u at time tn = n∆t).

In our subsequent developments, we write the FVM in operator form. To this
end, we introduce the operator HT (v) which maps a sequence v = (vK)K∈T into
HT ((vK)K∈T ). Then the FVM (4.12) takes the abstract form

(4.13) vn+1 = HT (v
n), n = 0, 1, 2, . . . .

For the ensuing convergence analysis, we shall assume and use several properties of
the FV scheme (4.13); these properties are satisfied by many commonly used FVM
of the form (4.13), on regular or irregular meshes T in Rd.
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To state the assumptions, we introduce further notation: for any initial data
u0(x) ∈ L1(Rd), we define the FVM approximation (v0K)K∈T by the cell averages

(4.14) v0K =
1

|K|

∫

K
u0(x) dx, where K ∈ T .

With a vector v = (vK)K∈T ∈ R#T , we associate the piecewise constant function
vT (x, t) defined a.e. in Rd × (0,∞) by

(4.15) vT (x, t)
∣∣
K

:= vK , K ∈ T .

We denote space of all piecewise constant functions on T (i.e., the “simple” or “step”
functions on T ) by S(T ). Given any vT ∈ S(T ), we define the (mesh-dependent)
norms:

‖v‖L1(T ) =
∑

K∈T
|K| |vK | = ‖vT ‖L1(Rd) ,(4.16)

‖v‖L∞(T ) = sup
K∈T

|vK | = ‖vT ‖L∞(Rd) .(4.17)

We denote the meshwidth of triangulation T by

(4.18) ∆x(T ) = sup{diam(K) : K ∈ T } .

We shall assume the following properties of the FVM schemes used in the MC-FVM
algorithms.

Assumption 4.2. We shall assume that the abstract FV scheme (4.13) satisfies

1. Stability: ∀t ≥ 0

‖vT (·, t)‖L∞(Rd) ≤ ‖vT (·, 0)‖L∞(Rd) ,(4.19)

‖vT (·, t)‖L1(Rd) ≤ ‖vT (·, 0)‖L1(Rd) ,(4.20)

TV (vT (·, t)) ≤ TV (vT (·, 0)),(4.21)

2. Lipschitz continuity: For any two sequences v = (vK)K∈T , w = (wK)K∈T
we have

(4.22) ‖HT (v)−HT (w)‖L1(T ) ≤ ‖v − w‖L1(T )

or, equivalently,

(4.23) ‖HT (vT )−HT (wT )‖L1(Rd) ≤ ‖vT − wT ‖L1(Rd) .

3. Convergence: If the CFL bound λ = ∆t/∆x(T ) is kept constant as ∆x(T ) →
0, the approximate solution v∆(x, t) generated by (4.12) - (4.15) converges to the
unique entropy solution u of the scalar conservation laws (1.1) - (3.3) at rate 0 <
s ≤ 1, i.e., there exists C > 0 independent of ∆x such that, as ∆x → 0, for every
t such that, for (∆t)s ≤ t ≤ T , it holds

(4.24) ‖u(·, t)− vT (·, t)‖L1(Rd) ≤ ‖u0 − v0T ‖L1(Rd) + C tTV (u0)∆ts .

Let us mention that (4.19), (4.20) and (4.21) do hold for monotone schemes
on Cartesian meshes, see [12, 18]. Furthermore, the analysis of Kuzsnetsov, see
e.g. [9], implies that the optimal convergence rate is s = 1/2 in (4.24). In case of
monotone schemes on general finite volume meshes, one might lose control of the
total variation of the approximations, and the convergence rate, i.e., the s in (4.24)
drops accordingly, see [5].
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Let us also mention that the work for the realization of scheme (4.12) - (4.15)
on a bounded domain D ⊂ Rd as (using the CFL stability condition (4.11), i.e.,
∆t/∆x(T ) ≤ λ = const.)

(4.25) WorkT = O
(
∆t−1 ∆x−d

)
= O

(
∆x−(d+1)

)
.

4.3. MC-FVM. In the Monte Carlo Finite Volume Methods (MC-FVMs), we
combine MC sampling of the random initial data with the FVM (4.13). In the
convergence analysis of these schemes, we shall require the application of the FVM
(4.13) to random initial data u0 ∈ L∞(Ω;L1(Rd)). Given a draw u0(x;ω) of u0,
the FVM (4.13) - (4.15) defines a family vT (x, t;ω) of random grid functions.

Proposition 4.3. Consider the FVM (4.13) - (4.15) for the approximation of the
entropy solution corresponding to a draw u0(ω;x) of the random initial data and a
draw f(ω;u) of the random flux.

Then, if the FVM satisfies Assumption 4.2, the random grid functions Ω ( ω "→
vT (ω;x, t) defined by (4.11) - (4.15) satisfy, for every 0 < t < ∞, 0 < ∆x < 1, and
every k ∈ N ∪ {∞}, P-as. the stability bounds:

∥∥vT (·; ·, t)
∥∥
Lk(Ω;L∞(Rd))

≤ ‖u0‖Lk(Ω;L∞(Rd)) ,(4.26)
∥∥vT (·; ·, t)

∥∥
Lk(Ω;L1(Rd))

≤ ‖u0‖Lk(Ω;L1(Rd)) .(4.27)

We also have the P-as. error bound

(4.28)
∥∥u(ω; ·, t)− vT (ω; ·, t)

∥∥
Lk(Ω;L1(Rd))

≤
∥∥u0(ω; ·)− v0T (ω; ·)

∥∥
Lk(Ω;L1(Rd))

+ Ct∆ts ‖TV (u0(ω; ·))‖Lk(Ω) .

We next define and analyze the MC-FVM scheme. It is based on the straight-
forward idea of generating, possibly in parallel, independent samples of the random
initial data and then, for each sample of the random initial data, to perform one
FV simulation. The error of this procedure is bound by two contributions: a (sta-
tistical) sampling error and a (deterministic) discretization error. We express the
asymptotic efficiency of this approach (in terms of overall error versus work). It
will be seen that the efficiency of the MC-FVM is, in general, inferior to that of
the deterministic scheme (4.13). The present analysis will constitute a key tech-
nical tool in our subsequent development and analysis of the multilevel MC-FVM
(“MLMC-FVM” for short) which does not suffer from this drawback.

4.3.1. Definition of the MC-FVM Scheme. We consider once more the initial value
problem (1.1) - (3.3) with random initial data u0 satisfying (3.27) - (3.30) for
sufficiently large k ∈ N (to be specified in the convergence analysis). The MC-
FVM scheme for the MC estimation of the mean of the random entropy solutions
then consists in the following:

Definition 4.4. (MC-FVM Scheme) Given M ∈ N, generate M i.i.d. samples
{ûi

0}Mi=1 of initial data. Let {ûi(·, t)}Mi=1 denote the unique entropy solutions of the
scalar conservation lawse(1.1) - (3.3) for these data samples, i.e.,

(4.29) ûi(·, t) = S(t)ûi
0(·), i = 1, . . . ,M.

Let HT (·) be a FVM scheme (4.12) - (4.15) satisfying Assumption 4.2. Then the
MC-FVM approximations of Mk(u(·, t)) are defined as statistical estimates from



SCL RANDOM FLUX 19

the ensemble

(4.30) {v̂iT (·, t)}Mi=1

obtained by (4.13) from the FV approximations v̂iT (·, 0) of the initial data {ûi
0(x)}Mi=1

samples by (4.14): specifically, the first moment of the random solution u(ω; ·, t) at
time t > 0, is estimated as

(4.31) M1(u(·, t)) ≈ EM [vT (·, t)] :=
1

M

M∑

i=1

v̂iT (·, t).

4.3.2. Convergence Analysis of MC-FVM. We next address the convergence of
EM [vT ] to the mean E(u) .

Theorem 4.5. Assume that

(4.32) u0 ∈ L∞(Ω, L1(Rd))

and that (3.27) - (3.29) hold. Assume further that we are given a FVM (4.12)
- (4.15) such that (4.11) holds and such that Assumption 4.2 is satisfied; in par-
ticular, assume that the deterministic FVM scheme converges at rate s > 0 in
L∞([0, T ];L1(Rd)) for every 0 < T < ∞. Then the MC estimate EM [vT (·, t)]
defined in (4.31) satisfies, for every M , the error bound

(4.33)

‖E[u(·, t)]− EM [vT (ω; ·, t)]‖L2(Ω;L1(Rd))

≤ C
[
M− 1

2 ‖u0‖L2(Ω;L1(Rd))

+
∥∥u0 − v0T

∥∥
L∞(Ω;L1(Rd))

+ t∆ts ‖TV (u0(ω; ·))‖L∞(Ω)

]

where C > 0 is independent of M and of ∆t as M → ∞ and as λ∆x = ∆t ↓ 0.
The convergence rate ∆xs > 0 is as in (4.24).

Theorem 4.5 was proved (for deterministic flux functions) in [21]. The proof
for random flux functions is a straightforward modification of the corresponding
arguments presented in [21].

4.3.3. Work estimates. For computational purposes, we have to assume that the
computational domain D ⊂ Rd is bounded and suitable boundary conditions are
specified on ∂D. Noting that in a bounded domain D, the work for one time step
(4.12), (4.13) is of order O

(
∆x−d

)
(with O (·) depending on the size of the domain),

we find from the CFL condition (4.11) that the total computational work to obtain
{vT (·, t)}0<t≤T in D is by (4.25)

(4.34) Work(T ) = O
(
∆x−d−1

)
, as λ∆x = ∆t ↓ 0,

which implies that the work for the computation of the MC estimate EM [vT (·, t)]
is

(4.35) Work(M, T ) = O
(
M∆x−d−1

)
, as ∆t = λ∆x ↓ 0,

so that we obtain from (4.33) the convergence order in terms of work: to this end
we equilibrate in (4.33) the two bounds by choosingM−1/2 ∼ ∆ts, i.e., M = ∆t−2s.
Inserting in (4.35) yields

(4.36) Work(T ) = O
(
∆t−2s ∆x−(d+1)

)
(4.11)
= O

(
∆x−(d+1)−2s

)
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so that we obtain from (4.33)

(4.37) ‖E[u(·, t)]− EM [vT (·, t)]‖L2(Ω;L1(Rd)) ≤ C∆ts ≤ C(Work(T ))−s/(d+1+2s) .

We sum up the foregoing considerations.

Remark 4.6. (Work vs. accuracy of MC-FVM) Let us add some comments on the
exponent in (4.37). In the deterministic FV scheme, we obtain

Work(T ) = O
(
∆t−1 ∆x−d

) (4.11)
= O

(
∆x−(d+1)

)
,

and the error in terms of work bound (4.24) becomes

(4.38)
∥∥u(·, t)− vT (·, t)

∥∥
L1(Rd)

≤
∥∥u0 − v0T

∥∥
L1(Rd)

+ CtTV (u0) (Work(T ))−s/(d+1) .

Assuming exact representation of the initial data, we obtain the exponent−s/(d+1)
for the deterministic FVM as compared to −s/(d + 1 + 2s) for the MC-FVM. We
see in particular in the (typical) situation of low order s of convergence and space
dimension d = 2, 3 a considerably reduced rate of convergence of the MC-FVM, in
terms of accuracy vs. work, is obtained. On the other hand, for high order schemes
(i.e., when s 8 d + 1) the MC error dominates and we recover in (4.38) the rate
1/2 in terms of work which is typical of MC methods.

4.4. Multilevel MC-FVM. Next, we present and analyze a scheme that allows us
to achieve almost the accuracy versus work bound (4.38) of the deterministic FVM
also for the stochastic initial data u0 and stochastic flux function f , rather than
the single level MC-FVM error bound (4.37). The key ingredient in the Multilevel
Monte Carlo Finite Volume (MLMC-FVM) scheme is simultaneous MC sampling
on different levels of resolution of the FVM, with level dependent numbers M" of
MC samples. To define these, we introduce some notation.

4.4.1. Notation. The MLMC-FVM is defined as a multilevel discretization in x and
t with level dependent numbers M" of samples. To this end, we assume we are
given a family {T"}∞"=0 of nested triangulations of Rd such that the mesh width

(4.39) ∆x" = ∆x(T") = sup{diam(K) : K ∈ T"} = O
(
2−"∆x0

)
, * ∈ N0,

where K denotes a generic finite volume cell K ∈ T . We also assume the family
M = {T"}∞"=0 of meshes to be shape regular; if K ∈ T" denotes a generic cell, we
recall, for a generic mesh T ∈ M, the shape regularity constants κ(T ) defined in
(4.8). We say that the family M of meshes is κ-shape regular, if there exists a
constant κ(M) < ∞ such that with ρK denoting the diameter of the largest ball
insribed into K

(4.40) κ(M) = sup
T ∈M

κ(T ) = sup
T ∈M

sup
K∈T

diam(K)

ρK
.

For a mesh hierarchy M = {T"}∞"=0, we denote

(4.41) S" := S(T"), ∆x" := ∆x(T"), T" ∈ M, * = 0, 1, . . . .
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4.4.2. Derivation of MLMC-FVM. As in plain MC-FVM, our aim is to estimate,
for 0 < t < ∞, the expectation (or “ensemble average”) E[u(·, t)] of the random
entropy solution of the SCL (1.1) - (3.3) with random initial data u0(ω; ·), ω ∈ Ω,
satisfying (3.27) - 3.30 for sufficiently large values of k (to be specified in the sequel).
As in the previous section, E[u(·, t)] will be estimated by replacing u(·, t) by a FVM
approximation. For * ∈ N0, we denote in the present section the FV approximation
vT by v"(·, t) on mesh T" ∈ M, where we assume that the CFL condition (4.11)
takes the form

(4.42) ∆t" ≤ λ∆x", * = 0, 1, 2, . . . ,

with a constant λ > 0 which is independent of *.
By the stability of the FVM scheme, we generate a sequence {v"(·, t)}∞"=0 of

stable FV approximations on triangulation T" for time steps of sizes ∆t" which
satisfy the CFL condition (4.42) with respect to grid T" ∈ M. We set in what
follows v−1(·, t) := 0. Then, given a target level L ∈ N of spatial resolution, we
may use the linearity of the expectation operator to write

(4.43) E[vL(·, t)] = E
[ L∑

"=0

(v"(·, t)− v"−1(·, t))
]
.

We next estimate each term in (4.43) statistically by a MCM with a level-dependent
number of samples, M"; this gives the MLMC-FVM estimator

(4.44) EL[u(·, t)] =
L∑

"=0

EM! [v"(·, t)− v"−1(·, t)]

where EM [v∆(·, t)] is as in (4.31), and where v"(·, t) is computed on T" assuming
(4.42), i.e., that the time steps ∆t" are chosen subject to the CFL constraint (4.11).

4.4.3. Convergence Analysis. The MLMC-FVM mean field error

(4.45)
∥∥E[u(·, t)]− EL[u(·, t)]

∥∥
L2(Ω;L1(Rd))

for 0 < t < ∞ and L ∈ N was analyzed in [22] for the SCL (3.2) with random
initial data and deterministic flux. Analogous results hold for the more general
SCL with random flux (3.31): The choice of the sample sizes {M"}∞"=0 such that,
for every L ∈ N, the MLMC error (4.45) is of order (∆tL)s, where s is the order of
convergence in the Kuznetsov type error bound (4.24). The principal issue in the
design of MLMC-FVM is the optimal choice of {M"}∞"=0 such that, for each L, an
error (4.45) is achieved with minimal total work given by (based on (4.35))

(4.46) WorkL =
L∑

"=0

M"O
(
∆x−d−1

"

)
= O

( L∑

"=0

M"∆x−d−1
"

)
.

As in [21], we arrive at the error bound

‖(v"(·, t)− v"−1)(·, t)‖L2(Ω;L1(Rd)) ≤ C
{
t ‖TV (u0)‖L2(Ω) +∆xs

" ‖u0‖L2(Ω;W s,1(Rd))

}
.

Summing this error bound over all discretization levels * = 0, . . . , L, we obtain

Theorem 4.7. Assume (1.1) - (3.3), (3.27) - (3.30) and (4.40) - (4.42). Then, for
any sequence {M"}∞"=0 of sample sizes at mesh level *, we have for the MLMC-FVM
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estimate EL[u(·, t)] in (4.44) the error bound

(4.47)

∥∥E[u(·, t)]− EL[u(·, t)]
∥∥
L2(Ω;L1(Rd))

≤ C
{
t∆xs

L ‖TV (u0)‖L1(Ω) +∆xs
L ‖u0‖L∞(Ω;W s,1(Rd))

}

+ C
{ L∑

"=0

M
− 1

2
" ∆xs

"

}{
‖u0‖L2(Ω;W s,1(Rd)) + t ‖TV (u0)‖L2(Ω)

}
,

where C is a constant independent of L and s.

Theorem 4.7 was proved (for deterministic flux functions) in [21]. The proof
for random flux functions is a straightforward modification of the corresponding
arguments presented in [21]. It is the basis for an optimization of the numbers M"

of MC samples across the mesh levels which yields the same result for random flux
and random initial data, as for the case of deterministic flux and random initial
data considered in [21]. The level dependent selection of the Monte Carlo sample
sizes M" proposed in [21] is based on the last term in the error bound (4.47): we
select in (4.47) the M" such that as ∆t ↓ 0, all terms equal the Kusznetsov bound
∆tsL in (4.24) at the finest level L resulting in

(4.48) M
− 1

2
" ∆xs

l
!
= Ĉ∆xs

L, * = 0, . . . , L− 1.

Here, Ĉ is some positive integer constant that is independent of l and of L.
As in [21] and under the assumption that s < d+1

2 , we obtain the following error
estimate in terms of work
(4.49)∥∥E[u(·, t)]− EL[u(·, t)]

∥∥
L1(Rd)

≤ C (Work(ML; TL))−s/(d+1) log (Work(ML; TL))

5. Stochastic Collocation FVM

We now describe an alternative, deterministic approach to the numerical solution
of the SCL with random flux. It is based on deterministic collocation approximation
of the parametric, deterministic SCL

(5.1) ∂tu(y;x, t) + divx(f(y;u(y;x, t))) = 0 for (x, t) ∈ Rd × [0, T ] and y ∈ U ,

where the parametric flux function f(y;u) is as in (3.25). We note that the pa-
rameter space U = [−1, 1]N is, in general, infinite-dimensional. Moreover, by The-
orem 3.11 the parametric SCL (5.1) admits, for every y ∈ U , a unique random
entropy solution u(y;x, t). The parametric SCL (5.1) is equivalent to the RSCL
(3.31) via the identification

(5.2) u(ω;x, t) = u(y;x, t)|yj=Y R
j (ω).

5.1. Regularity of the random entropy solution. Given J ∈ N and t > 0, the
random entropy solution uJ(·, t;ω) can, according to (3.43), be determined by the
numerical solution of the deterministic, parametric SCL

(5.3)
∂uJ

∂t
+ divxf

J(y;u) = 0 in Rd × R+ and y ∈ U .

To quantify the parameter dependence of uJ we fix y ∈ U and denote, for 1 ≤ j ≤
J < ∞, by ỹ(j) a perturbation of y in the jth component only, i.e., y(j)i = yi for all
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i 2= j. Then

∀u ∈ Rd : fJ(ỹ(j);u)− fJ(y;u) = (ỹj − yj)ΨR
j

and by Theorem 3.2 we find the a-priori bound

∀t > 0, y ∈ U :
∥∥∥uJ(ỹ(j); ·, t)− uJ(y; ·, t)

∥∥∥
L1(Rd)

≤ Ct |yj − ỹj |BR
j

which implies that the random entropy solution depends Lipschitz-continuously on
the parameter yj and that

(5.4) ∀t > 0 :
∥∥∂yju

J(·; ·, t)
∥∥
L∞([−1,1]J ;L1(Rd))

≤ CtBR
j , j = 1, 2, . . . , J .

Here C > 0 depends only on u0 and the Lipschitz constant of the random flux, but
is independent of j, J, t.

We remark that estimate (5.4) could be used to scale the meshwidths in coor-
dinate yj in the sFVM, in terms of the (bounds on) principal components of the
flux.

5.2. Stochastic Collocation. We now propose a collocation type approximation
of the parametric SCL (5.3). Since we work under mere Lipschitz continuity of
the random flux, the dependence of the entropy solution of (5.3) on the parameter
vector y is, in general, not better than Lipschitz; in particular, under the Lipschitz
assumptions on the random flux, we do not have at our disposal in general a so-
called “mixed regularity” of the parametric entropy solution which is necessary for
high convergence rates of sparse tensor collocation approximations. We therefore
now propose and analyze an anisotropic, full-tensor collocation approximation in
the parameter domain [−1, 1]J for Lipschitz functions with a sequence B = (Bj)j≥1

of known Lipschitz constants Bj which we assume to be enumerated in decreasing
magnitude, i.e.,

(5.5) 1 = B1 ≥ B2 ≥ · · · . , B = (Bj)j≥1 ∈ *1(N).

We start the construction of our interpolation in one dimension. Consider a stepsize
h > 0 and a function g ∈ Lip([(−h, h]). Then the constant “interpolant” Ih[g] =
g(0) of g satisfies for every x ∈ [−h, h]:

|g(x)− Ih[g]| = |g(x)− g(0)| ≤ 2hLip(g).

Here, Lip(g) denotes the Lipschitz constant of g. Taking the supremum over x ∈
[−h, h] in this inequality, we find

(5.6) ‖g − Ih[g]‖L∞(−h,h) ≤ 2Lip(g)h.

Translation of this estimate implies

Lemma 5.1. Assume that g ∈ Lip([−1, 1]). For h = 1/N with N ∈ N denote by
Ih[g] the step-function approximation of g obtained by collocating g at the midpoints
of the N subintervals of [−1, 1] of length 2h, i.e., at −1+(2j−1)h, j = 1, 2, . . . , N .
The operator Ih[·] is bounded

(5.7) ∀g ∈ Lip([−1, 1]) ∀h : ‖Ih[g]‖L∞(−1,1) ≤ ‖g‖L∞(−1,1) ,

and we have the error estimate

(5.8) ‖g − Ih[g]‖L∞(−1,1) ≤ h ‖g′‖L∞(−11) .
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In the multivariate domain [−1, 1]J with J > 1, we interpolate analogously, but
in an anisotropic fashion: to this end, we denote by Ij the univariate interpolation
operator Ih from Lemma 5.1, applied to a function g(y) ∈ Lip([−1, 1]J) with respect
to coordinate yj , for 1 ≤ j ≤ J and with stepsize hj . We can and will assume in the
following that the stepsizes hj can differ between coordinate directions. We also
denote by h = (h1, .., hJ) the vector of coordinate-wise stepsizes, and by

(5.9) Ih =
⊗

1≤j≤J

Ij

the interpolation operator on the rectangular grid with stepsizes h in [−1, 1]J . It
will be convenient at times to interpolate functions g(y) of countably many variables
y = (yj)j≥1. In this case, we assume that only finitely many stepsizes hj in h are
strictly less than 1, say h1, h2, .., hJ for some J ∈ N, and that hj = 1 for all j > J .
Note that then the number of interpolation points is still finite and given by

(5.10) N(h) =
∏

j≥1

h−1
j

where the infinite product is well-defined as

(5.11) ∀j > J : hj = 1 ⇒ ∀j > J : yj = 0 .

We now present an error bound for Ih.

Lemma 5.2. Assume that g ∈ Lip(U) , U = [−1, 1]N, and that the sequence B =
(Bj)j≥1 of coordinate-wise Lipschitz constants of g is summable and monotonically
decreasing, i.e., it satisfies 1 = B1 ≥ B2 ≥ · · · and B ∈ *1(N).

Then for any vector h of stepsizes hj ∈ (0, 1] with hj = 1 for all j > J for some
J ∈ N there holds the error bound

‖g − Ih[g]‖L∞(U) ≤
∑

j≥1

hjBj .

This is proved by using the univariate error bound (5.8) and induction on the
number of dimensions.

The stochastic collocation approximation of the random SCL (3.31) will be based
on applying the interpolation operator Ih to the (or equivalently by (5.2)) paramet-
ric SCL (5.3). Note that (5.3) is formally obtained by truncating the parametric
random flux f(y;u) in (3.25) to J terms. However, it is easily verified that the
interpolation Ih achieves the J-term truncation by (5.11). Application of Ih to the
parametric SCL (5.3) is effected by solving it numerically with the FVM from Sec-
tion 4.2 such that (4.11) - (4.15) hold, with the same mesh T and identical timestep
∆t for each collocation point (y1, . . . , yJ , 0, 0, . . .).

Under Assumption 4.2, this results in a discretization error bound (4.24) which
is uniform for all collocation points and in work O(∆x−d−1) per collocation point.
To estimate the total complexity of this procedure, it remains to multiply by the
number N(h) in (5.10) of collocation points. We next estimate N(h). To do so,
we recall (5.4) and fix a tolerance 0 < h ≤ 1. We equilibrate the coordinate
contributions to the error bound by choosing Bj = CtBR

j and by requiring

∀j ≥ 1 : h = hjBj = CtBR
j hj .

Based on Assumption 4.2 we choose h = ∆xs. This implies

(5.12) hj := h/BR
j ∧ 1 ⇒ h−1

j = 1 ∧ h−1BR
j , j ≥ 1.
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Since the sequence (BR
j )j≥1 is related to the covariance function of the random flux,

it is decreasing to zero with rate which depends on the smoothness of this covariance
as a function of the states u, u′. We analyze complexity under two scenarios: i)
exponential decay: BR

j = exp(−b̄j) and ii) algebraic decay: BR
j = j−β for j ≥ 1

and some β > 1. In case i) we find from (5.12) that

hj = 1 for j > J(h;B) = |log h| /b̄ .
Inserting this into (5.10) we find that

N(h) =
∏

1≤j≤J

h−1 exp
(
−b̄j

)
= h−J exp

(
−b̄

J∑

j=1

j
)
∼ exp

(
J |log h|− b̄J2/2

)
.

Using J = |log h| /b̄ we find in case i) (exponential Karhunen–Loève eigenvalue
decay)

N(h) ∼ exp
(
| log h|2/2b̄

)
.

In case ii), a similar analysis using Stirling’s formula yields

N(h) ∼ exp
(
βh−1/β

)
.

These bounds indicate that in both cases the curse of dimensionality is present, but
also that large parameters b̄ and β indicate a weak dependence on the dimension
as the discretization parameter h ↓ 0.

6. Numerical Experiments

In this section, we will present numerical experiments for scalar conservation
laws with random flux functions. We start with the following random flux,

Karhunen-Loève flux expansion. Consider the following scalar conservation
law:

∂u

∂t
+

∂f(ω;u)

∂x
= 0, x ∈ (0, L), t > 0;(6.1)

u(x, 0) = u0(x),(6.2)

with

(6.3) f(ω;u) =
u2

2
+ δ

(∑

j≥1

Yj(ω)
√

λjΦj(u)
)
,

where Φj(u) and λj are the eigenfunctions and eigenvalues of the integral operator
with covariance kernel: ∫

D

CY (u1, u2)Φ(u1) du1 = λΦ(u2).

Note that the random flux f(ω;u) is convex provided the coefficient δ is sufficiently
small since the average flux u2/2 is strictly convex. In this paper we assume δ = 0.2.

The typical path-wise flux function is plotted in Fig. 1.
We choose the random sequence y = (y1, y2, . . . ) = Y(ω) =

(
Y1(ω), Y2(ω), . . .

)

to parametrize the stochastic conservation law. Then

f(ω;u) = f(y;u)
∣∣∣
y=Y(ω)

=
u2

2
+ δ

(∑

j≥1

yj
√
λjΦj(u)

)
,
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Figure 1. Typical realization of the random flux

If the deviation from the Burgers nominal flux u2/2 in the random flux f(ω, u) is
a Gaussian process with exponential covariance

CY (u1, u2) = σ2
Y e

−|u1−u2|/η,

then

λj =
2ησ2

Y

η2w2
j + 1

, Φj(u) =
1√

(η2w2
j + 1)L/2 + η

[ηwj cos(wju) + sin(wju)],

where wj are the roots of

(η2w2 − 1) sin(wL) = 2ηw cos(wL)

and
Yj ∼ N (0, 1), E[Yj Yk] = δjk

Note that in this case the coefficients λj decay quickly w.r.t. j as λj ∼ j−k with
k ≈ 2.5 (see Figure 2).
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Figure 2. Eigenvalues in linear (left) and doubly logarithmic
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Therefore the KL expansion can be truncated at moderate number of terms
(q = 2, 3) without losing too much information about the stochastic process, namely

f(y;u) =
u2

2
+ 0.2

( q∑

j=1

yj
√

λjΦj(u)
)
.

We set the deterministic initial condition

u0(x) = 1 + sin(πx)

and periodic boundary conditions.
The Stochastic Collocation method applied to this problem produces the follow-

ing results. Fig. 3 illustrates one typical configuration of the path-wise solution and
the solution mean at time t = 0.2. For this computation, we have used a 5-th order
WENO solver in the spatial variable and a third-order strong stability preserving
(SSP) Runge-Kutta solver for time integration, on a uniform mesh of 64 cells. Note
that the time step is determined by the standard CFL condition. The figure shows
a pathwise solution that is still smooth. The initial sinus wave is steeping but has
not yet steepened into a shock wave. The figure clearly illustrates that the stochas-
tic collocation finite volume method is able to resolve pathwise solutions as well
as statistical quantities of interest quite well. Fig. 4 demonstrates the convergence
results for the solution mean. We plot the error vs. resolution as well as the error
vs. computational time in this figure. The spatial discretizations considered are of
the first order finite volume, second order ENO and third and fifth order WENO
types. The results clearly show that increasing the order of the underlying spa-
tial discretization increases the efficieny (by lowering the computational time while
essentially maintaining accuracy) of the numerical method.
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Figure 3. Typical sample path of the random solution (left) and
mean and mean ± standard deviation of the random solution
(right) at t = 0.2

Fig. 5 illustrates a discontinuous path-wise solution and the solution mean at
t = 0.5, i.e. after shock formation. Note that the solution mean in this case is a
smooth function according to the results of [29].

Next, we illustrate the anisotropic mesh selection procedure that was presented
in the last section. To this end, we will repeat the same numerical experiment as
before but with a KL-based anisotropic a priori mesh selection procedure as outlined
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Figure 5. Typical sample path of the random solution (left) and
mean and mean ± standard deviation of the random solution
(right) at t = 0.5

in the previous section. The results are presented in Figures. 6 and 7. The time
of comparison in Figure 6 is t = 0.1. At this time, most of the pathwise solutions
are smooth and the shock is yet to be formed. The same spatial and temporal
solvers are used for both calculations– the only difference being the comparison
between the anisotropic mesh (selected by the KL expansion of the flux) and an
isotropic mesh. As predicted by the theory, the anisotropic mesh selection increases
efficiency considerably by reducing the computational time (to compute a similar
error level) by at least one order of magnitude, when compared with the isotropic
mesh. Furthermore, in Figure 7, we show the convergence results at time t = 0.5
(well after shock formation) and demonstrate that the presence of shocks does not
impede the efficiency gained by using the anisotropic mesh selection procedure.
Even at this later time, anisotropic mesh selection offers an order of magnitude
speedup over the isotropic mesh.
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So far, we have presented numerical results only with stochastic collocation Fi-
nite Volume (FV) method. Next, we compare this method with the Multi-level
Monte Carlo (MLMC) FV method that was proposed in section 4. Again the same
initial data and flux function are used as in the previous numerical experiment. The
following four schemes are compared: i) a MLMC approximation with first order
spatio-temporal discrectization, ii) a MLMC approximation with a second order
spatio-temporal discretization, iii) a stochastic collocation approximation with first
order finite volume spatio-temporal discrectization, iv) a stochastic collocation ap-
proximation with a second order finite volume spatio-temporal discretization. All
the four schemes are compared with respect to error vs. resolution as well as er-
ror vs. computational time at t = 0.1 (time before shock formation) in Figure 8.
The figure shows that the second order spatio-temporal discretizations have better
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resolution than the first-order discretizations. Furthermore, the MLMC FV approx-
imation is more accurate at the resolutions that we consider. However, given the
empirical convergence rates one can expect at that finer mesh resolutions the sto-
chastic collocation approximation will be more accurate. We emphasize that these
findings are based on the anisotropic mesh version of the stochastic collocation
method. The MLMC FV method is clearly more efficient in terms of computa-
tional time when compared with the stochastic collocation FV method. While
some of this efficiency gain can be attributed to the fact that different codes are
used for different methods with the MLMC code being optimized, the very nature
of Multi level Monte Carlo type methods do suggest that they are computationally
efficient for problems with low spatial regularity. Similar efficiency gains are also
observed with the MLMC FV method when the approximate solutions are com-
pared at a later time t = 0.5 (well past shock formation). These results are shown
in Figure 9. In the CPU-time versus error comparisons of the MLMC FV in these
figures it is to be borne in mind that these results were obtained with two different
implementations, and also on different computing hardware.
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Figure 8. Convergence of stochastic collocation FV and MLMC
methods at t = 0.1: L1(Ω;L1(R))-error vs. number of cells in space
(left) and vs. CPU time (right)

Two-dimensional scalar conservation law. We consider the two-dimensional
scalar conservation law with random fluxes and deterministic initial data:

∂u

∂t
+

∂f(ω;u)

∂x1
+

∂g(ω;u)

∂x2
= 0, (x1, x2) ∈ (0, L1)× (0, L2), t > 0;(6.4)

u(x1, x2, 0) = u0(x1, x2),(6.5)

where the fluxes are

f(ω;u) =
|u|p1(ω)

p1(ω)

with p1(ω) ∼ U [1, 3] and

g(ω;u) =
|u|p2(ω)

p2(ω)

with p2(ω) ∼ U [1, 3].
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We choose u0(x1, x2) as follows:

u0(x1, x2) =






1, if |x1 − xs
1| < 0.4, |x2 − xs

2| < Rs;

−1, if (x1 − xc
2)

2 + (x2 − xc
2)

2 < R2
c ;

0, otherwise.

We apply the stochastic collocation FV method based on 5th order WENO
solver in the physical space to solve (6.4)–(6.5) with L1 = L2 = 2.0, xs

1 = xs
2 = 0.5,

Rs = 0.4, xc
1 = xc

2 = 1.5 and R2
c = 0.4 on the 64 × 64 Cartesian grid. The

computational results for t = 1.0 are presented in Fig. 10 and show that the SCFVM
approximates the pathwise solution as well as statistical moments of the random
solution in a robust manner.

7. Conclusion

Scalar conservation laws with random initial data as well as random flux func-
tions are considered in this paper. An appropriate notion of random entropy solu-
tions is proposed and these solutions are shown to exist under the assumption that
the random flux function is (almost surely in the probability space) bounded as well
as Lipschitz continuous. A novel Karhunen–Loève expansion on the state space is
proposed and used to generate approximate (parametric, deterministic) solutions
for the random conservation law. Two sets of numerical methods are analysed i) a
Multi-level Monte Carlo finite volume method (MLMCFVM) and ii) a stochastic
collocation finite volume method (SCFVM). Both methods are shown to converge
and numerical experiments demonstrating them are presented. In particular, the
sensitivity analysis of the solution for the random conservation law suggests a novel
anistropic mesh selection strategy that improves the complexity of the SCFVM. Ex-
tensions of these numerical methods to systems of conservation laws with random
fluxes will be carried out in a forthcoming paper.
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Figure 10. Computed sample path (upper left), mean (upper
right) and variance (bottom) of the random solution to (6.4)–(6.5)
at t = 0.5
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