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ENTROPY CONSERVATIVE AND ENTROPY STABLE

FINITE VOLUME SCHEMES FOR MULTI-DIMENSIONAL

CONSERVATION LAWS ON UNSTRUCTURED MESHES

AZIZ MADRANE, ULRIK S. FJORDHOLM, SIDDHARTHA MISHRA,
AND EITAN TADMOR

Abstract. We present entropy stable schemes for the two-dimensional Eu-
ler equations on unstructured grids. We develop a novel energy conservative
scheme that is very simple to implement, is computationally cheap and is stable
compared to other existing energy conservative schemes. To allow for a correct
dissipation of energy in the vicinity of shocks, a novel numerical diffusion op-
erator of the Roe type is designed. The energy conservative scheme, together
with this diffusion operator, gives an energy stable scheme for Euler equation
on unstructured grids. Numerical experiments are presented to demonstrate
the robustness of the proposed schemes. Numerical experiments include the
Sod shock tube problem, vortex advection and flow past a NACA0012 airfoil.

1. Introduction

We deal with systems of conservation laws in several space dimensions. For
simplicity of exposition, we consider the two-dimensional case in this paper. The
generic form of systems of conservation laws in two space dimensions is

(1.1) Ut + f1(U)x + f2(U)y = 0

with U : Ω × R+ → Rm for some Ω ⊂ R2. Defining f(U) = (f1(U), f2(U)), we
say that (1.1) is hyperbolic if the matrix d

dU
(f(U) ·n) has m real eigenvalues for all

nonzero n ∈ R2. A prototypical example for (1.1) are the Euler equations of gas
dynamics:
(1.2)

U =





ρ
ρu
ρv
ρE



 , f1(U) =





ρu
ρu2 + p

ρuv
(ρE + p)u



 , f2(U) =





ρv
ρuv

ρv2 + p
(ρE + p)v



 .

Here m = ρu, n = ρv and l = ρE, Let ρ, u, v, p, E, c and M denote the density,
velocity components, pressure, total energy, speed of sound and Mach number. For
a perfect gas the pressure the speed of sound and the Mach number are given by

(1.3) p = (γ − 1)(ρE − 1

2
ρ(u2 + v2)), c =

√
γp

ρ
, M =

√
u2 + v2

c
.

We denote u = (u, v).

Date: May 11, 2012.
1991 Mathematics Subject Classification. 65M06,35L65.
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1.1. Entropy framework. The solutions of (1.1) may develop discontinuities in
finite time when even the initial data is smooth. Hence, solutions of (1.1) are sought
in the sense of distributions. Additional admissibility criteria need to be imposed
to single out unique solutions. Such criteria, called entropy conditions, rely on
the existence of a convex function η and functions q1, q2 such that the following
compatibility conditions hold:

(1.4) q′1(U)" = η′(U)"f ′1(U), q′2(U)" = η′(U)"f ′2(U).

It is straightforward to check using (1.4) that smooth solutions of (1.1) satisfy an
additional conservation, the entropy identity

(1.5) η(U)t + q1(U)x + q2(U)y = 0.

However, entropy needs to be dissipated at shocks. Hence, the entropy identity
(1.5) is replaced by an entropy inequality,

(1.6) η(U)t + q1(U)x + q2(U)y ≤ 0,

that holds in the sense of distributions. The vector V = η′(U) is termed as the
vector of entropy variables. The entropy inequality (1.6) is integrated in space to
yield the stability estimate

(1.7)
d

dt

∫

R2

η(U(x, y, t))dxdy ≤ 0.

Thus, the entropy framework provides an a priori stability estimate for the mult-
dimensional system (1.1).

We illustrate the entropy framework for the Euler equations (1.2). Define the
standard logarithmic entropy s := log(p)−γ log(ρ). Then the entropy function and
entropy fluxes for the Euler equations are given by

(1.8) η(U) = − ρs

γ − 1
, q1(U) = − ρus

γ − 1
, q2(U) = − ρvs

γ − 1
.

The entropy variables are

(1.9) V =

(
γ − s

γ − 1
− ρ|u|2

p
,

ρu

p
,

ρv

p
, −ρ

p

)"

.

1.1.1. Symmetrization: The results of Godunov and Mock show that a hyperbolic
system (1.1) is symmetrizable if and only if it has an entropy framework. A par-
ticularly revealing form of this symmetrization is due to Barth [1]. The key to this
symmetrized form is a theorem of [1] showing that for every nonzero n ∈ R2, there
exist suitably scaled matrix of eigenvectors Rn of the matrix d

dU
(f(U) ·n) such that

(1.10) RnR"
n = UV,

with UV = U′(V) being the change-of-variables matrix from the conserved vari-
ables U to the entropy variables V. This identity is independent of the direction
n, thus providing a natural scaling for the eigenvectors. Denote Rk = Rek

, with
ek being the unit vector in direction k, and let Λk be the corresponding diagonal
matrix of eigenvalues. Using (1.10), we obtain

Ut + f1(U)x + f2(U)y = Ut + f ′1(U)Ux + f ′2(U)Uy ,

= UVVt + R1Λ1R
−1
1 UVVx + R2Λ2R

−1
2 UVVy,

= UVVt + R1Λ1R
"
1 Vx + R2Λ2R

"
2 Vy .
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As η is a convex function, UV is a symmetric positive definite matrix. Clearly
the coefficient matrices RkΛkR"

k for k = 1, 2 are symmetric, implying that the
conservation law (1.1) has the symmetrized form

(1.11) UVVt + R1Λ1R
"
1 Vx + R2Λ2R

"
2 Vy = 0.

For the Euler equations with the aforementioned entropy function, the change
of variables matrix is given by

UV =




ρ ρu" E
ρu ρuu" + pI ρHu

E ρHu" ρH2 − c2p
γ−1





where the specific enthalpy is H = c2

γ−1 + |u|2

2 . The resulting scaled eigenvectors
are

(1.12)

r1
n =

√
ρ(γ − 1)

γ

(
n1, un1, vn1,

(u2 + v2)n1

2

)"

,

r2
n =

√
ρ(γ − 1)

γ

(
0, − cn2√

γ − 1
,

cn1√
γ − 1

, − (vn1 − un2)c√
γ − 1

)"

,

r3
n =

√
ρ

2γ
(1, u + cn1, v + cn2, H + c(un1 + vn2))

" ,

r4
n =

√
ρ

2γ
(1, u − cn1, v − cn2, H − c(un1 + vn2))

"
.

The diagonal matrix of eigenvalues is given by

(1.13) Λn = diag
(
un1 + vn2, un1 + vn2, un1 + vn2 + c, un1 + vn2 − c

)
.

2. Discretization

2.1. Mesh description. We assume that Ω is a bounded polyhedral domain of
R2. We introduce a conforming triangulation Th in R2, where h is the maximal
length of the edges in Th. For the primary grid (see Figure 1(a)), the nodes are
the vertices ai, indexed over i ∈ V , of the triangles K ∈ Th. The finite volume
cells are the barycentric cells Ci, obtained by joining the midpoints Mij of the sides
originating at node ai to the centroids Gij of the triangles of Th which meet at ai

(see Figure 1(b)). In the sequel we use the following notation.

Notation 2.1. Let ai, aj , ak be the three nodes defining a triangle K ∈ Th. Then

• ai is the ith vertex
• Mij is the midpoint of side aiaj

• Ni is the set of vertices that are neighbors of node ai

• |Ni| is the number of neighboring vertices to ai

• Gij (j = 1, . . . , |Ni|) is the centroid of a triangle of which ai is a vertex
• Ci is the barycentric cell constructed around ai

• eij = ∂Ci ∩ ∂Cj is the common face of neighboring cells Ci and Cj

• ni = (nix , niy ) is the outward normal vector to ∂Ci

• n1
ij ,n

2
ij are the normals of the two components of eij (see Figure 2(a))

• Un
i
∼= U(ai, t

n) is the nodal cell average values at time t = tn.
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The union of all the barycentric cells constitutes a partition of the computational
domain Ωh:

Ωh =
nv⋃

i=1

Ci

where nv is the number of vertices of the original finite element triangulation Th.
For complete details of the domain of computation for the NACA0012 airfoil in the
2D see Figure 3.

Let

nij =

∫

∂Ci∩∂Cj

n dσ = n1
ij + n2

ij

be the unit normal on the face eij = GijGi,j+1 pointing out of the control volume
Ci. The normal vectors n1

ij and n2
ij are depicted in Figure 2(a) and nij in Figure

2(b). Note that we have

(2.1)
∑

j∈Ni

nij = 0.

We denote the average and difference of U across the edge eij as

Uij :=
1

2
(Ui + Uj) , [[U]]ij := Uj − Ui,

i j
a a

a
k

(a) Primary grid

i jij
a aM

G
ij

G
ij+1

(b) Barycentric cells around nodes ai, aj

Figure 1. Primary and dual grid

i jij

ij

ij

a aM

n

n

1

2

G ij

G
ij+1

(a) Part of a boundary of Ci, eij = ∂Ci ∩

∂Cj and the normal vectors n
1
ij and n

2
ij

i jij

ij ij
+

a aM

n n
1 2

G
ij

G
ij+1

(b) Part of a boundary of Ci, eij = ∂Ci ∩

∂Cj and the normal vector nij

Figure 2. Triangle boundary and normals
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Figure 3. NACA0012 airfoil, Primary grid and barycentric cell Ci

and remark that Uij = Uji and [[U]]ij = −[[U]]ji.

2.2. Semi-discrete finite volume scheme: The space discretization method
considered here is a vertex centered finite volume formulation. In order to set
the appropriate frame for the discrete problem which will be solved to approximate
the solution of the original problem, we introduce the following discrete spaces
(IS THIS NECESSARY?)

Vh = {vh|vh ∈ L2(Ω), vh|Ci = vi = const; i = 1, · · · , nv}(2.2)

A conservative and consistant finite volume approximation of (1.1) is written

(2.3)
∂Uh

∂t
+

1

|Ci|
∑

j∈K(i)

F(Ui,Uj ,nij) = 0.

The numerical flux Fij = F (Ui,Uj ,nij) is assumed to have the following proper-
ties:

(i) Consistency:

F(U,U,n) = f(U) · n

(ii) Conservation:

Fij = −Fji

for all j ∈ Ni.

3. Entropy conservative schemes

We aim to design a numerical flux such that the resulting numerical scheme (2.3)
is entropy conservative i.e, it satisfies a discrete version of the entropy identity (1.5).
The concept of entropy conservative schemes for systems of conservation laws was
introduced by Tadmor in [8] for Cartesian meshes. In this section we extend the
notion of entropy conservative schemes to unstructured meshes.
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Definition 3.1. A numerical flux F̃ij = F(Ui,Uj ,nij) is entropy conservative if

it is of the form F̃ij = F̃1
ijn

1
ij + F̃2

ijn
2
ij and the components satisfy the relations

(3.1) [[V]]"ijF̃
k
ij = [[ψk]]ij k = 1, 2,

where ψk(U) = V(U)"fk(U) − qk(U) denotes the entropy potential.

Theorem 3.2. Let F̃ be an entropy conservative flux. Then the approximate solu-

tions Ui computed by the finite volume scheme (2.3) with numerical flux F̃ satisfies
the discrete entropy identity

(3.2)
d

dt
η(Ui) +

1

|Ci|
∑

j∈Ni

Q̃ij = 0

with numerical entropy flux

(3.3) Q̃ij :=
2∑

k=1

nk
ij

(
V

"
ijF̃

k
ij − ψk

ij

)
.

Proof. Multiplying (2.3) by the entropy variables Vi, we get

d

dt
η(Ui) = −

∑

j∈Ni

1

|Ci|

2∑

k=1

nk
ijV

"
i F̃k

ij

= −
∑

j∈Ni

1

|Ci|

2∑

k=1

nk
ij

(
V

"
ijF̃

k
ij −

1

2
[[V]]"ijF̃

k
ij

)

= −
∑

j∈Ni

1

|Ci|

2∑

k=1

nk
ij

(
V

"
ijF̃

k
ij −

1

2
[[ψk]]ij

)

= −
∑

j∈Ni

1

|Ci|

2∑

k=1

nk
ij

(
V

"
ijF̃

k
ij − ψk

ij

)
,

where we have used the identity (2.1) and added
∑

j∈Ni

∑2
k=1

1
|Ci|

nk
ijψ

k
i = 0. !

We note that the condition (3.1) provides a single algebraic equation for m
unknowns. In general, it is not clear whether a solution of (3.1) exists. Furthermore,
the solutions of (3.1) will not be unique except for scalar equations. In [8], Tadmor
showed the existence of at least one solution of (3.1) for any system of conservation
laws. Explicit solutions were constructed in [9]. However, the entropy conservative
fluxes of [9] are computationally expensive; see [2]. Instead, we follow recent papers
[2, 7] to obtain algebraically simple and computational inexpensive solution of (3.1).
For concreteness we consider the Euler equations of gas dynamics (1.2).

Denote by Z the so-called Roe parameter vector

Z =

√
ρ

p





1
u
v
p



 .

It is readily verified that

ρ = Z1Z4, p =
Z4

Z1
, u =

Z2

Z1
, v =

Z3

Z1
, m1 = ρu = Z2Z4, m2 = ρv = Z3Z4
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Denoting by s = log(p) − γ log(ρ) the standard logarithmic entropy, we have

s = ln

(
Z

(1−γ)
4

Z
(1+γ)
1

)

, η(U) =
−Z1Z4s

γ − 1
.

The entropy variables are

V =





γ−S
γ−1 − m2

1+m2
2

2pρ
m1

p
m2

p

− ρ
p




=





γ
γ−1 + ln(Z4) + (1+γ

1−γ
) lnZ1 − Z2

2+Z2
3

2

Z1Z2

Z1Z3

−Z2
1



 ,

the entropy fluxes are

q1(U) =
−m1S

γ − 1
=

−Z2Z4S

γ − 1
, q2(U) =

−m2S

γ − 1
=

−Z3Z4S

γ − 1

and the entropy potentials are

ψ1(U) = m1, ψ2(U) = m2.

Upon solving (3.1) we get the entropy conservative fluxes

F̃1 =





F̃1
1

F̃2
1

F̃3
1

F̃4
1




=





Z̄2Z
ln
4

Z̄4+ eF 1,1Z̄2

Z̄1

Z̄2Z̄3Zln
2

Z̄1
γ+1
γ−1

1

Zln
1

eF 1
1 +Z̄2

eF 2
1 +Z̄3

eF 3
1

2Z̄1





and

F̃2 =





F̃1
2

F̃2
2

F̃3
2

F̃4
2




=





Z̄3Z
ln
4

Z̄2
eF 1
2

Z̄1

Z̄4+ eF 1
2 Z̄3

Z̄1
γ+1
γ−1

1

Zln
1

eF 1
2 +Z̄2

eF 2
2 +Z̄3

eF 3
2

2Z̄1




.

Here, aln is the logarithmic mean defined as

aln =
[[a]]

[[log(a)]]

See [7] for further details.

4. Entropy stable schemes for Euler equations

4.1. Numerical diffusion operators. The entropy conservative schemes lead to
unphysical oscillations near shocks. We need to add numerical diffusion to elimi-
nate these oscillations. Following the procedure of [2], we consider numerical flux
functions

(4.1) Fij = F̃ij −
1

2
Dij [[V]]ij .

Here, F̃ is an entropy conservative flux and D is any symmetric positive definite
matrix with Dij = Dji. The flux Fij is consistent because Ui = Uj implies

that Fij = F̃ij − 0 = f(Ui) · nij , and it is conservative because Fji = F̃ji −
1
2Dji

(
−[[V]]ij

)
= −

(
F̃ij − 1

2Dij [[V]]ij

)
= −Fij .
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The scheme with numerical flux (4.1) is entropy stable by the following lemma.

Lemma 4.1. Let the numerical flux in the finite volume scheme (2.3) be defined
by (4.1). Then the approximate solutions Ui computed by the scheme (2.3) satisfy
the discrete entropy inequality

(4.2)
d

dt
η(Ui) +

∑

j∈Ni

1

|Ci|
Qij ≤ 0,

with numerical entropy flux Q given by

Qij = Q̃ij −
1

2
V

"
ijDij [[V]]ij ,

where Q̃ is defined in (3.3). Summing over i ∈ V, we obtain the entropy bound

(4.3)
d

dt

∑

i∈V

η(Ui) ≤ 0.

Proof. Multiplying the finite volume formulation (2.3) by Vi we get

d

dt
η(Ui) = −

∑

j∈Ni

1

|Ci|

(
V"

i F̃ij −
1

2
V"

i Dij [[V]]ij

)

= −
∑

j∈Ni

1

|Ci|

(
Q̃ij −

1

2

(
V

"
ij −

1

2
[[V]]"ij

)
Dij [[V]]ij

)

= −
∑

j∈Ni

1

|Ci|
Qij −

1

4

∑

j∈Ni

1

|Ci|
[[V]]"ijDij [[V]]ij

≤ −
∑

j∈Ni

1

|Ci|
Qij ,

thus proving (4.2). !

4.2. Specifying the numerical diffusion matrix. Following [2, 3], we choose
the following numerical diffusion matrix:

(4.4) Dij = Rnij |Λnij |R"
nij

.

Here, Λn and Rn are the matrix of eigenvalues and eigenvectors as defined in (1.10).
The matrices can be evaluated at the average state Uij .

5. Numerical experiments

5.1. Vortex advection. We start testing the scheme on a smooth test case for
the two-dimensional Euler equations. This test case involves long time simulation.
The initial data is set in terms of velocity u and v, the temperature θ = p

ρ
and

entropy s = log p − γ log ρ:

u = 1 − (y − yc)ϕ(r), v = 1 − (x − xc)ϕ(r), θ = 1 − γ − 1

2γ
ϕ(r)2

where r =
√

(x − xc)2 + (y − yc)2 with (xc, yc) being the initial center of the vortex,
and

ϕ(r) = εeα(1−τ2), τ =
r

rc
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We set the free parameters, ε = 5
2π

, α = 1
2 , rc = 1 and (xc, yc) = (5, 5). The

exact solution of this initial value problem is simply U(x, y, t) = U(x − t, y − t, 0).
In other words, the initial vortex centered at (xc, yc) is advected diagonally with
a velocity of 1 in the x- and y-directions. The computational domain and initial

Y

X

Z

4.947e-01

6.210e-01

7.473e-01

8.737e-01

1.000e+00

density

Figure 4. Computational domain with initial data, with slices in
z-direction

data is shown in Figure 4. We compute up to T = 30 on a mesh with 40836
vertices. Figure 5 shows the computed density at the time t = 30 using the entropy
conservative scheme and the Roe scheme. Figure 6 shows that there is a significant
gain in accuracy using the entropy conservative scheme.

Y

X

Z

4.942e-01
6.253e-01
7.565e-01
8.876e-01
1.019e+00

density

(a) Entropy conservative scheme

Y

X

Z

4.942e-01
6.253e-01
7.565e-01
8.876e-01
1.019e+00

density

(b) Roe scheme

Figure 5. ρ at t = 30 with slices in z-direction.

5.2. Sod shock tube in two dimensions. We consider the Euler Equations in
the computational domain Ω = [0, 1] × [0, 0.1] with Riemann initial data

(ρ, m1, m2, l) =

{
(1, 0, 0, 2.5) 0 < x < 0.5

(0.125, 0, 0, 0.25) 0.5 < x < 1.

The initial discontinuity breaks into a left-going rarefaction wave, a right-going
shock and a right-going contact discontinuity. The computed solution at time
T = 1, 4 (IS THIS SUPPOSED TO BE 1.4???) on a mesh of 20136 points, shown
in Figure 7, has noticeable oscillations. On the other hand, the entropy stable
scheme and the Roe scheme are quite good at resolving the waves; see Figure 8.
The total entropy

∑
i∈V |Ci|η(U)i versus time is shown in Figure 9.
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exact solution

x
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40 45 50 55

0.4

0.6

0.8

1

1.2 Entropy conservative scheme

Roe scheme

Figure 6. Entropy stable conservative scheme vs Roe scheme, ρ
at t = 30. Exact solution in red line.
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Figure 8. CAPTION

5.3. Simulation of transonic flows around a NACA 0012 airofoil. We con-
sider a transonic flow around a NACA0012 at angle of attack α = 1o and Mach
number at infinity M∞ = 0.85. We have selected this problem since it is a quite
classical and significant test problem for Euler solvers [5]. Figure 10 shows the final
adapted triangulation near the profile used to solve the test problem. The mesh
contains 14930 points. Figures 11(a), 11(b) show the pressure and density lines
for the entropy stable scheme and Roe scheme. We can observe the similar shocks
locations obtained with the two schemes implying a small difference in pressure
distributions shown in Figure 12.
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Figure 9. Total entropy vs. time

Figure 10. Adapted mesh

6. Conclusion

We have presented in this paper a new formulation of entropy stable conservative
schemes on unstructured grids for the accurate numerical solution of Euler equations
modelling transonic, supersonic and hypersonic flows. With these methods we can
simulate 3-D flows around complex geometries such as complete space aircraft.

Variants of these methods can be extended to more complicated situations such
as the coupling of two mathematical modellings using the Euler and Navier-Stokes
equations.
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