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! Eidgenössische
Technische Hochschule
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Abstract Quasi-Monte Carlo (QMC) methods are applied to multi-level Finite Ele-
ment (FE) discretizations of elliptic partial differential equations (PDEs) with a ran-
dom coefficient. The representation of the random coefficient is assumed to require a
countably infinite number of terms.

The multi-level FE discretizations are combined with families of QMC meth-
ods (specifically, randomly shifted lattice rules) to estimate expected values of linear
functionals of the solution, as in [17,18,23] in the single-level setting. Here, the ex-
pected value is considered as an infinite-dimensional integral in the parameter space
corresponding to the randomness induced by the random coefficient. In this paper
we study the same model as in [23]. The error analysis of [23] is generalized to a
multi-level scheme, with the number of QMC points depending on the discretization
level, and with a level-dependent dimension truncation strategy. In some scenarios, it
is shown that the overall error of the expected value of the functionals of the solution
(i.e., the root-mean-square error averaged over all shifts) is of order O(h2), where h
is the finest FE mesh width, or O(N−1+δ ) for arbitrary δ > 0, where N denotes the
maximal number of QMC sampling points in the parameter space. For these scenar-
ios, the total work for all PDE solves in the multi-level QMC-FE method is shown
to be essentially of the order of one single PDE solve at the finest FE discretization
level, for spatial dimension d ≥ 2 with linear elements.

The analysis exploits regularity of the parametric solution with respect to both
the physical variables (the variables in the physical domain) and the parametric vari-
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ables (the parameters corresponding to randomness). As in [23], families of QMC
rules with “POD weights” (“product and order dependent weights”) which quantify
the relative importance of subsets of the variables are found to be natural for proving
convergence rates of QMC errors that are independent of the number of paramet-
ric variables. Our POD weights for the multi-level QMC-FE algorithm are different
from those for the single-level algorithm in [23]. Conditions on the data of the prob-
lem to achieve a certain rate of convergence coincide with the sufficient conditions
obtained in [6] to achieve the same convergence rates for best N-term approximations
of solutions for the parametric PDE model.

Keywords Multi-level · Quasi-Monte Carlo methods · Infinite dimensional
integration · Elliptic partial differential equations with random coefficients ·
Karhunen-Loève expansion · Finite element methods

Mathematics Subject Classification (2000) 65D30 · 65D32 · 65N30

1 Introduction

This paper is a sequel to our work [23], where we analyzed theoretically the ap-
plication of quasi-Monte Carlo (QMC) methods combined with finite element (FE)
methods for a scalar, second order elliptic partial differential equation (PDE) with
random diffusion. The diffusion is assumed to be given as an infinite series with
random coefficients. As in [23], we consider the model parametric elliptic Dirichlet
problem

−∇ · (a(xxx,yyy)∇u(xxx,yyy)) = f (xxx) in D ⊂ Rd , u(xxx,yyy) = 0 on ∂D , (1)

for D ⊂Rd a bounded domain with a Lipschitz boundary ∂D. In (1), the gradients are
understood to be with respect to the physical variable xxx which belongs to D, and the
parameter vector yyy = (y j) j≥1 consists of a countable number of parameters y j which
we assume, as in [23], to be i.i.d. uniformly distributed, with

yyy ∈ (− 1
2 ,

1
2 )

N =: U .

The parameter yyy is thus distributed on U with the uniform probability measure µ(dyyy)=⊗
j≥1 dy j = dyyy. The parametric diffusion coefficient a(xxx,yyy) in (1) is assumed to de-

pend linearly on the parameters y j as follows:

a(xxx,yyy) = ā(xxx)+ ∑
j≥1

y j ψ j(xxx) , xxx ∈ D , yyy ∈U . (2)

The ψ j can either be Karhunen-Loève eigenfunctions (see, e.g. [31]), or other suitable
function systems in L2(D). As in [23] we impose a number of assumptions on ā and
ψ j as well as on the domain D:

(A1) We have ā ∈ L∞(D) and ∑ j≥1 ‖ψ j‖L∞(D) < ∞.
(A2) There exist amax and amin such that 0 < amin ≤ a(xxx,yyy)≤ amax for all xxx ∈ D and

yyy ∈U .
(A3) There exists p ∈ (0,1) such that ∑ j≥1 ‖ψ j‖p

L∞(D) < ∞.
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(A4) With the norm ‖v‖W 1,∞(D) := max{‖v‖L∞(D),‖∇v‖L∞(D)}, we have ā ∈W 1,∞(D)
and ∑ j≥1 ‖ψ j‖W 1,∞(D) < ∞.

(A5) The sequence ψ j is ordered so that ‖ψ1‖L∞(D) ≥ ‖ψ2‖L∞(D) ≥ · · · .
(A6) The domain D is a convex and bounded polyhedron with plane faces.

We now briefly comment on each assumption. Assumption (A1) ensures that the
coefficient a(xxx,yyy) is well-defined for all parameters yyy ∈ U . Assumption (A2) yields
the strong ellipticity needed for the standard FE analysis. Assumption (A3) is stronger
than Assumption (A1). This assumption implies decay of the fluctuation coefficients
ψ j, with faster decay for smaller p. The value of p determined the convergence rate in
the previous paper [23]. Assumption (A4) guarantees that the FE solutions converge.
Assumption (A5) allows the truncation of the infinite sum in (2) to, say, s terms. This
assumption is not needed in this paper when the functions ψ j satisfy an orthogonality
property in relation to the FE spaces, see §3.3 below. Finally, Assumption (A6) only
simplifies the FE analysis and can be substantially relaxed.

Our aim in this paper is to extend the QMC-FE algorithm of [23] for the efficient
computation of expected values of continuous linear functionals of the solution of (1)
to a multi-level setting so that the overall computational cost is substantially reduced.
Suppose the linear functional is G(·) : H1

0 (D) '→ R. We are interested in approximat-
ing the integral

I(G(u)) :=
∫

U
G(u(·,yyy))dyyy (3)

:= lim
s→∞

∫

(− 1
2 ,

1
2 )

s
G(u(·,(y1, . . . ,ys,0,0, . . .)))dy1 · · ·dys .

The (single level) strategy in [23] was to (i) truncate the infinite sum in the expansion
of the coefficient to s terms, (ii) approximate the solution of the truncated PDE prob-
lem using a FE method with mesh width h, and (iii) approximate the integral using a
QMC method (an equal-weight quadrature rule) with N points in s dimensions. The
QMC-FE algorithm can therefore be expressed as

Qs,N(G(us
h)) :=

1
N

N

∑
i=1

G
(
us

h(·,yyy(i))
)
,

where us
h denotes the FE solution of the truncated PDE problem, and yyy(1), . . . ,yyy(N) are

QMC sample points which are judiciously chosen from the s-dimensional unit cube
[− 1

2 ,
1
2 ]

s. More precisely, the QMC rules considered in [23] are randomly shifted
lattice rules; more details will be given in the next section. It was established in [23]
that the root-mean-square of the error I(G(u))−Qs,N(G(us

h)) over all random shifts is
a sum of three parts: a truncation error, a QMC error, and a FE error. For example, in
the particular case where Assumption (A3) holds with p= 2/3 and f ,G(·)∈ L2(D), it
was shown that the three additive parts of the error are of orders O(s−1), O(N−1+δ ),
and O(h2) = O(M−2/d

h ), respectively, where Mh is the number of FE nodes and d is
the spatial dimension. Assuming the availability of a linear complexity FE solver in
the domain D (e.g., a multigrid method), the overall cost of the (single level) QMC-FE
algorithm is O(sN Mh). There, as in the present paper, we assume that the functions
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ψ j and their (piecewise-constant) gradients are explicitly known, and that integration
of any FE basis functions over a single element in the FE mesh is available at unit
cost.

The purpose of the present paper is the design and the error-versus-cost analysis
of a multi-level extension of the single level algorithm developed in [23]. The multi-
level algorithm takes the form

QL
∗(G(u)) :=

L

∑
!=0

Qs!,N!

(
G
(
us!

h!
−us!−1

h!−1

))
, (4)

where s! is a nondecreasing sequence of truncation dimensions, us!
h!

denotes the FE
approximation with mesh width h! of the PDE problem with parametric input (2)
truncated at s! terms, with the convention us−1

h−1
≡ 0, and Qs!,N! denotes the (randomly

shifted) QMC quadrature rule with N! points in s! dimensions. (For the practical
form of the quadrature rule, including randomization, see (20) below.) Assuming
again the availability of a linear complexity FE solver in the domain D, the overall
cost of this multi-level QMC-FE algorithm is therefore O(∑L

!=0 s! N! Mh!) operations.
Again we use randomly shifted lattice rules, and we show that s!, N!, and Mh! enter
the root-mean-square of the error I(G(u))−QL

∗(G(u)) over all random shifts in a
combined additive and multiplicative manner. Upon choosing s! and N! in relation
to h! appropriately at each level !, we arrive at a dramatically reduced overall cost
compared to the single level algorithm.

The general concept of multi-level algorithms was first introduced by Heinrich
[19] and reinvented by Giles [14,15]. Since then the concept has been applied in
many areas including high dimensional integration, stochastic differential equations,
and several types of PDEs with random coefficients. Most of these works used multi-
level Monte Carlo (MC) algorithms, while few papers considered multi-level QMC
algorithms. The multi-level QMC-FE algorithm (4) proposed and analyzed here dif-
fers in several core aspects from the abstract multi-level QMC framework proposed
in [16,26]. It also differs from the multi-level MC approach which has recently been
developed for elliptic problems with random input data of the general form (1) in [2,
3,5,30,35]. The model considered here, as in [23], is infinite-dimensional. Previous
treatments of infinite-dimensional quadrature include [16,24,26] with QMC meth-
ods, [20] with MC methods, and [29] with Smolyak (or sparse-grid) quadrature.

There is an important special case where the functions ψ j satisfy an orthogonality
property in relation to the FE spaces, see (28) ahead. In this case there is no dimen-
sion truncation error at any level, that is, with s! chosen in an appropriate way we
have us!

h!
= uh! . Furthermore, due to the special structure of the expansion of the co-

efficient a(xxx,yyy), the overall cost is only O(∑L
!=0 N! Mh! log(Mh!)) operations. To have

this orthogonality property we need multiresolution function systems; examples are
given in §3.3. We emphasize that the eigenfunction system of the covariance operator
does not have this property.

One of the main findings of the present paper is that the error analysis of the
multi-level QMC-FE algorithm requires smoothness of the parametric solution si-
multaneously with respect to the spatial variable xxx and to the parametric variable yyy.
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Another key point is that we require decay of stronger norms of the fluctuation coef-
ficients ψ j compared to Assumptions (A3) and (A4):

(A7) For p as in (A3), there exists q ∈ [p,1] such that ∑ j≥1 ‖ψ j‖q
W 1,∞(D)

< ∞.

For the multi-level QME-FE algorithm the convergence rate will be determined by
the value of q in (A7) rather than by the value of p as for the single level algorithm
in [23].

As in most modern analyses of QMC integration in high dimensions, we use pa-
rameters γu, known as weights, to describe the relative importance of the subset of the
variables with labels in the finite subset u⊂N. (These weights are to be distinguished
from quadrature weights in, e.g., Gaussian quadrature formulas.) In [23] the weights
were chosen to minimize a certain upper bound on the product of the worst case error
and the norm in the function space, yielding a special form of weights called “POD
weights”, which stand for “product and order dependent weights”:

γu = Γ|u| ∏
j∈u

γ j , (5)

where |u| denotes the cardinality (or the “order”) of the set u. These weights are then
determined by the two sequences: by Γ0 = 1, Γ1,Γ2,Γ3, . . . and by γ1,γ2,γ3, . . .. The
error bound obtained in the present paper is more complicated than the result in [23]
due to the multi-level nature of the algorithm, but we follow the same general prin-
ciple for choosing weights. It turns out that the “optimal” weights (in the sense of
minimizing an upper bound on the overall error) for the multi-level QMC-FE algo-
rithm are again POD weights (5), but they are different from the POD weights for
the single level algorithm in [23]. In any case, fast CBC construction algorithms for
randomly shifted lattice rules are available for POD weights, see [22] for a recent
survey, as well as [32,21,9,27,28,7,11].

The outline of this paper is as follows. In §2 we introduce the function spaces
used for the analysis and summarize those results from [23] that are needed for this
paper. In §3 we prove the main results required for the error analysis and combine
them to obtain an error bound for the multi-level QMC-FE algorithm. Finally in §4
we give conclusions.

2 Problem Formulation and Summary of Relevant Results

2.1 Function Spaces

First we introduce the function spaces from [23] which will be used in what follows.
Our variational setting of (1) is based on the Sobolev space V = H1

0 (D) and its dual
space V ∗ = H−1(D), with pivot space L2(D), and with the norm in V given by

‖v‖V := ‖∇v‖L2(D) .

We also consider the Hilbert space with additional regularity with respect to xxx,

Zt := {v ∈V : ∆v ∈ H−1+t(D)} , 0 ≤ t ≤ 1 , (6)
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with the norm

‖v‖Zt :=
(
‖v‖2

L2(D) +‖∆v‖2
H−1+t (D)

)1/2
, (7)

where, for −1≤ r ≤ 2, the Hr(D) norm denotes the homogeneous Hr(D)-norm which
is defined in terms of the L2(D) orthonormalized eigenfunctions ϕλ ∈ V and the
eigenvalues λ in the corresponding spectrum Σ of the Dirichlet Laplacian in D by

‖v‖2
Hr(D) := ∑

λ∈Σ
λ r |(v,ϕλ )|2 .

Here, and in the following, we denote by (·, ·) the bilinear form corresponding to the
L2(D) innerproduct, extended by continuity to the duality pairing Hr(D)×H−r(D).
Standard elliptic regularity theory (see, e.g. [13]) yields the inclusion Zt ⊂ H1+t

loc (D),
and for convex domains D and for t = 1 we have Z1 = H2(D)∩H1

0 (D). As already
seen in §1, we will also make use of the norm

‖v‖W 1,∞(D) := max{‖v‖L∞(D),‖∇v‖L∞(D)} .

The integrand in (3) is F(yyy) := G(u(·,yyy)). To analyze QMC integration for such
integrands, we shall need a function space defined with respect to yyy, namely, the
weighted and anchored Sobolev space Wγγγ , which is a Hilbert space containing func-
tions defined over U , with square integrable mixed first derivatives. More precisely,
the norm is given by

‖F‖Wγγγ :=



 ∑
|u|<∞

1
γu

∫

[− 1
2 ,

1
2 ]

|u|

∣∣∣∣∣
∂ |u|F
∂yyyu

(yyyu;0)

∣∣∣∣∣

2

dyyyu




1/2

, (8)

where the sum is over all subsets u ⊂ N with finite cardinality |u|, ∂ |u|F
∂yyyu

denotes the
mixed first derivative with respect to the variables y j with j ∈ u, and (yyyu;0) denotes
the vector whose jth component is y j if j ∈ u and 0 if j /∈ u. The “anchor” in this case
is (0,0, . . .), the center of the cube U .

Since our multi-level QMC-FE algorithm makes use of the FE solution of the
truncated PDE problem to, say, s terms, we will consider also an s-dimensional vari-
ant of the space Wγγγ , denoted by Ws,γγγ , whose norm ‖ · ‖Ws,γγγ is defined by replacing
the sum over all finite subsets u in (8) by a sum over all subsets of the first s indices
(i.e., |u| < ∞ becomes u ⊆ {1, . . . ,s}). For a function F that depends on infinitely
many variables, if we define Fs(y1, . . . ,ys) := F(y1, . . . ,ys,0,0, · · ·) by anchoring the
components beyond dimension s at 0, then we have ‖Fs‖Ws,γγγ = ‖Fs‖Wγγγ ≤ ‖F‖Wγγγ .

Weighted spaces were first introduced by Sloan and Woźniakowski in [33], and
by now there are many variants, see e.g. [12,34]. As in [23], we have taken the cube
to be centered at the origin (rather than the standard unit cube [0,1]s), and the anchor
is at the centre of the cube (rather than at a corner of the cube). Moreover, we have
adopted “general weights”: there is a weight parameter γu associated with each group
of variables yyyu = (y j) j∈u with indices belonging to the set u, with the convention that
γ /0 = 1. Later we will focus on “POD weights”, see (5). As in [23], these POD weights
arise naturally from our analysis for the PDE application.
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2.2 Parametric Weak Formulation

As in [23], we consider the following parameter-dependent weak formulation of the
parametric deterministic problem (1): for f ∈V ∗ and yyy ∈U , find

u(·,yyy) ∈V : b(yyy;u(·,yyy),v) = ( f ,v) ∀v ∈V , (9)

where the parametric bilinear form b(yyy;w,v) is given by

b(yyy;w,v) :=
∫

D
a(xxx,yyy)∇w(xxx) ·∇v(xxx)dxxx , ∀w,v ∈V ,

It follows from Assumption (A2) that the bilinear form is continuous and coercive
on V ×V , and we may infer from the Lax-Milgram Lemma the existence of a unique
solution to (9) satisfying the standard a-priori estimate. Moreover, additional regu-
larity of the solution with respect to xxx can be obtained under additional regularity
assumptions on f and the coefficients a(·,yyy).

Theorem 1 ([23, Theorems 3.1 and 4.1]) Under Assumptions (A1) and (A2), for
every f ∈V ∗ and every yyy ∈U, there exists a unique solution u(·,yyy) ∈V of the para-
metric weak problem (9), which satisfies

‖u(·,yyy)‖V ≤ ‖ f‖V ∗

amin
. (10)

If, in addition, f ∈ H−1+t(D) for some 0 ≤ t ≤ 1, and if Assumption (A4) holds, then
there exists a constant C > 0 such that for every yyy ∈U,

‖u(·,yyy)‖Zt ≤ C‖ f‖H−1+t (D) , (11)

with the norm in Zt defined by (7).

2.3 Dimension Truncation

Next we summarize a result from [23] needed for estimating the dimension truncation
error. Given s∈N and yyy∈U , we observe that truncating the sum in (2) at s terms is the
same as anchoring or setting y j = 0 for j > s. With {1 : s} standing for {1, . . . ,s}, we
denote by us(xxx,yyy) := u(xxx,(yyy{1:s};0)) the solution of the parametric weak problem (9)
corresponding to the parametric diffusion coefficient (2) when the sum is truncated
after s terms. As observed in [23], it will be convenient for the regularity analysis of
(1) and for the QMC error analysis to introduce

b j :=
‖ψ j‖L∞(D)

amin
, j ≥ 1 . (12)



8 Frances Y. Kuo et al.

Theorem 2 ([23, Theorem 5.1]) Under Assumptions (A1) and (A2), for every f ∈
V ∗, every G ∈V ∗, every yyy ∈U and every s ∈ N, the solution us(·,yyy) = u(·,(yyy{1:s};0))
of the truncated parametric weak problem (9) satisfies, with b j as defined in (12),

‖u(·,yyy)−us(·,yyy)‖V ≤ C
‖ f‖V ∗

amin
∑

j≥s+1
b j

and

|I(G(u))− Is(G(u))| ≤ C̃
‖ f‖V ∗‖G(·)‖V ∗

amin

(
∑

j≥s+1
b j

)2
(13)

for some constants C,C̃ > 0 independent of s, f and G(·). In addition, if Assump-
tions (A3) and (A5) hold, then

∑
j≥s+1

b j ≤ min
(

1
1/p−1

,1
)(

∑
j≥1

bp
j

)1/p

s−(1/p−1) . (14)

2.4 Finite Element Discretization

Let us denote by {Vh}h a one-parameter family of subspaces Vh ⊂ V of dimensions
Mh < ∞. Under Assumption (A6), we think of the spaces Vh as spaces of continuous,
piecewise-linear finite elements on a sequence of regular, simplicial meshes Th in D
obtained from an initial, regular triangulation T0 of D by recursive, uniform bisection
of simplices. Then it is well known (see, e.g., [4]) that there exists a constant C > 0
such that, as h → 0, with the norm in Zt defined by (7),

inf
vh∈Vh

‖v− vh‖V ≤ C ht ‖v‖Zt for all v ∈ Zt , 0 ≤ t ≤ 1 .

For any yyy ∈U , we define the parametric FE approximation uh(·,yyy) as the FE solution
of the parametric deterministic problem: for f ∈V ∗ and yyy ∈U , find

uh(·,yyy) ∈Vh : b(yyy;uh(·,yyy),vh) = ( f ,vh) ∀vh ∈Vh .

Below we summarize the results from [23] regarding the FE error. We remark that,
by considering the error in approximating a bounded linear functional, O(h2) con-
vergence for f ,G(·) ∈ L2(D) follows from an Aubin-Nitsche duality argument.
Theorem 3 ([23, Theorems 7.1 and 7.2]) Under Assumptions (A1), (A2), (A4), and
(A6), for every f ∈V ∗ and every yyy ∈U, the FE approximations uh(·,yyy) are stable in
the sense that

‖uh(·,yyy)‖V ≤ ‖ f‖V ∗

amin
.

Moreover, for every f ∈H−1+t(D) with 0≤ t ≤ 1, every G(·)∈H−1+t ′ with 0≤ t ′ ≤ 1,
and for every yyy ∈U, there hold the asymptotic convergence estimates as h → 0

‖u(·,yyy)−uh(·,yyy)‖V ≤ C ht ‖u(·,yyy)‖Zt ≤ C ht ‖ f‖H−1+t (D) (15)

and
|G(u(·,yyy))−G(uh(·,yyy))| ≤ C̃ hτ ‖ f‖H−1+t (D) ‖G(·)‖H−1+t′ (D) , (16)

where 0 ≤ τ := t + t ′ ≤ 2, and where C,C̃ > 0 are independent of h and yyy.
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2.5 QMC Approximation

As in [23], in this paper we will focus on a family of QMC rules known as randomly
shifted lattice rules. For an integral over the s-dimensional unit cube [− 1

2 ,
1
2 ]

s,

Is(F) :=
∫

[− 1
2 ,

1
2 ]

s
F(yyy)dyyy ,

a realization of an N-point randomly shifted lattice rule takes the form

Qs,N(∆∆∆ ;F) :=
1
N

N

∑
i=1

F
(

frac
(

izzz
N
+∆∆∆

)
−
( 1

2 , . . . ,
1
2
))

,

where zzz ∈Zs is known as the generating vector, which is deterministic, while ∆∆∆ is the
random shift to be drawn from the uniform distribution on [0,1]s, and frac(·) means
to take the fractional part of each component in the vector. The subtraction by the
vector ( 1

2 , . . . ,
1
2 ) describes the translation from the usual unit cube [0,1]s to [− 1

2 ,
1
2 ]

s.
Good generating vectors zzz for POD weights can be constructed using a component-
by-component algorithm, at the cost of O(N logN s+N s2) operations, such that the
“shift averaged” worst case error in the weighted Sobolev space Ws,γγγ achieves a
dimension-independent convergence rate close to O(N−1). Moreover, the implied
constant in the big-O bound can be independent of s under appropriate conditions
on the weights γu. A short summary of these results, together with references, can be
found in [23, Section 2]. A more detailed survey can be found in [22]. For the purpose
of this paper, we only need the following bound on the root-mean-square error.

Theorem 4 ([23, Theorem 2.1]) Let s,N ∈ N be given, and assume F ∈ Ws,γγγ for
a particular choice of weights γγγ = (γu). Then a randomly shifted lattice rule can
be constructed using a component-by-component algorithm such that the root-mean-
square error satisfies, for all λ ∈ (1/2,1],

√
E [|Is(F)−Qs,N(·;F)|2] ≤

(

∑
/00=u⊆{1:s}

γλ
u [ρ(λ )]|u|

)1/(2λ )

[ϕ(N)]−1/(2λ ) ‖F‖Ws,γγγ ,

where E[·] denotes the expectation with respect to the random shift which is uniformly
distributed over [0,1]s, ϕ(N) = |{1 ≤ z ≤ N − 1 : gcd(z,N) = 1}| denotes the Euler
totient function,

ρ(λ ) :=
2ζ (2λ )
(2π2)λ +

1
12λ , (17)

and ζ (x) = ∑∞
k=1 k−x denotes the Riemann zeta function.

A rate of convergence arbitrarily close to O(N−1) comes from taking λ in the
theorem close to 1/2. However, note that ρ(λ ) → ∞ as λ → (1/2)+, making the
convergence of the sum over u more and more problematic as λ comes closer to 1/2.
For that reason we shall leave λ as a free parameter in the subsequent discussion.
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3 Multi-level QMC-FE Algorithm

3.1 Formulation of the Multi-level QMC-FE Algorithm

We are now ready to formulate our multi-level QMC-FE algorithm for approximating
the integral (3). Let

h! = 2−! h0 for != 0,1,2, . . . .

We suppose that we are given a nested sequence {Vh!}!≥0 of finite-dimensional sub-
spaces of V of increasing dimension,

Mh0 < Mh1 < · · ·< Mh! := dim(Vh!) 1 2d! → ∞ as !→ ∞ ,

where an 1 bn means there exist c1,c2 > 0 such that c1bn ≤ an ≤ c2bn. In the multi-
level method we specify a maximum level L, and with each level != 0, . . . ,L of (uni-
form) mesh refinement Th! we associate a randomly shifted lattice rule Qs!,N! which
uses N! points in s! dimensions. We assume moreover that the sequence {s!}!=0,...,L
of active dimensions is nondecreasing, i.e.,

s0 ≤ s1 ≤ · · ·≤ s! ≤ sL , (18)

which implies that the corresponding sets of active coordinates are nested. To simplify
the ensuing presentation, we write (with slight abuse of notation)

V! ≡Vh! , T! ≡ Th! , Q! ≡ Qs!,N! , I! ≡ Is! , u! ≡ us!
h!
, M! ≡ Mh! .

Here by us!
h!

we mean the FE solution of the truncated problem with s! terms in the
expansion, which is the same as uh!(yyy{1:s!};0). For convenience we define u−1 := 0.
Each lattice rule Q! depends on a deterministic generating vector zzz! ∈ Zs! , but we
shall suppress this dependence in our notation. A realization of the lattice rule Q! for
a draw of the shift ∆∆∆ ! ∈ [0,1]s! applied to a function F will be denoted by Q!(∆∆∆ !;F).
The random shifts ∆∆∆ 0, . . . ,∆∆∆ L are drawn independently from the uniform distribution
on unit cubes of the appropriate dimension. With these notations, a single realization
of our multi-level QMC-FE approximation of I(G(u)) is given by

QL
∗(∆∆∆ ∗;G(u)) :=

L

∑
!=0

Q!(∆∆∆ !;G(u!−u!−1)) , (19)

where ∆∆∆ ∗ := (∆∆∆ 0, . . . ,∆∆∆ L) will be referred to as the “compound shift”: it comprises
all s∗ := ∑L

!=0 s! components of the random shifts ∆∆∆ !. Equivalently, ∆∆∆ ∗ is drawn from
the uniform distribution over [0,1]s∗ .

The randomly shifted version of (19) that we use in practice makes use of m! i.i.d.
realizations of the level-! shift ∆∆∆ !, thus takes the form

QL(G(u)) :=
L

∑
!=0

1
m!

m!

∑
i=1

Q!(∆∆∆
(i)
! ;G(u!−u!−1)) . (20)

In the subsequent analysis we work with exact expectations of (19), but in the final
section we return to (20), and there justify choosing m! to be a fixed number inde-
pendent of !.
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3.2 Error Analysis of the Multi-level QMC-FE Algorithm

Using linearity of I, I!, Q! and G, we can express the error as

I(G(u))−QL
∗(∆∆∆ ∗;G(u)) = I(G(u))−

L

∑
!=0

Q!(∆∆∆ !;G(u!−u!−1)) = T1 +T2(∆∆∆ ∗) ,

where

T1 := I(G(u))−
L

∑
!=0

I!(G(u!−u!−1)) , (21)

T2(∆∆∆ ∗) :=
L

∑
!=0

(I!−Q!(∆∆∆ !))(G(u!−u!−1)) ,

where we introduced the operator notation Q(∆)(F) := Q(∆ ;F). Since a randomly
shifted lattice rule is an unbiased estimator of the original integral, it follows that the
mean-square error for our multi-level QMC-FE method, i.e., the expectation of the
square error with respect to ∆∆∆ ∗ ∈ [0,1]s∗ , simplifies to

E[|I(G(u))−QL
∗(·;G(u))|2] = T 2

1 +E[T 2
2 ] , (22)

where the cross term vanishes due to E[T2] = 0, and we have

E[T 2
2 ] =

L

∑
!=0

E[|(I!−Q!(·))(G(u!−u!−1))|2] , (23)

where the expectation inside the sum over index ! is with respect to the random shift
∆∆∆ ! ∈ [0,1]s! .

First we estimate T1 given by (21). Since u! − u!−1 only depends on the first
s! dimensions, we can replace I!(G(u! − u!−1)) by I(G(u! − u!−1)), and hence the
expression (21) simplifies to

T1 = I(G(u−uL)) = I(G(u−uhL))+ I(G(uhL −usL
hL
)) .

Here uhL − usL
hL

is the error that we incur in the FE approximation by omitting in the
coefficient expansion (2) all terms with indices j > sL. As we will show in Theorem 5
below, this dimension truncation error vanishes for certain types of (multiresolution)
coefficient expansion (2). To allow for this, we introduce a parameter θL ∈ {0,1}, and
arrive at the estimate

|T1| ≤ sup
yyy∈U

|G(u(·,yyy)−uhL(·,yyy))| + θL |I(G(uhL −usL
hL
))|

≤ C hτ
L ‖ f‖H−1+t (D) ‖G(·)‖H−1+t′ (D) + θL C̃

‖ f‖V ∗ ‖G(·)‖V ∗

amin

(
∑

j≥sL+1
b j

)2
,

(24)

where for the first term we applied (16) from Theorem 3, and for the second term we
used (13) from Theorem 2 but adapted to the FE solution uhL instead of u.
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Next we estimate E[T 2
2 ] given by (23). We have from Theorem 4 that

E[T 2
2 ] ≤

L

∑
!=0

(

∑
/00=u⊆{1:s!}

γλ
u [ρ(λ )]|u|

)1/λ

[ϕ(N!)]
−1/λ ‖G(us!

h!
−us!−1

h!−1
)‖2

Ws!,γγγ
. (25)

To estimate each term in (25) for ! 0= 0, we write

‖G(us!
h!
−us!−1

h!−1
)‖Ws! ,γγγ

≤ ‖G(us!
h!
−us!

h!−1
)‖Ws!,γγγ

+‖G(us!
h!−1

−us!−1
h!−1

)‖Ws!,γγγ
. (26)

In §3.4 ahead, we bound the two terms in (26) separately, and then return to complete
the error analysis in §3.5. Note that the second term in (26) vanishes if s! = s!−1. It
also vanishes in the special case when, for all ! ≥ 1 and an appropriately chosen in-
creasing sequence s!, we have us!−1

h!−1
= us!

h!−1
= uh!−1 . This can happen when there is a

special orthogonality property between the functions ψ j in the representation (2) and
the FE spaces V!. We discuss this very important special case in the next subsection.

3.3 A Special Case with an Orthogonality Property

In this subsection we suppose that the sequence ψ j has properties usually associ-
ated with a multiresolution analysis of L2(D), as shown in the Haar wavelet example
below. For this purpose it is useful to relabel the basis set with a double index, as

{ψ j : j ≥ 1} = {ψn
m : n ≥ 0, m ∈ Jn} , (27)

where the first index n indicates the (multiresolution) level, and the second index
m ∈ Jn indicates the location of a level-n basis function within D, with Jn denoting
the set of all location indices at level n. We suppose that all basis functions ψn

m at
level n are piecewise polynomial functions on the triangulation Tn, and have isotropic
support whose diameter is of exact order hn, implying |Jn|1 2dn.

Definition 1 Let S0(D,T ) and S1(D,T ) be the subspaces defined by

S0(D,T ) := {v ∈ L2(D) : v|K ∈ P0(K) for all K ∈ T } ,
S1(D,T ) := {v ∈ H1

0 (D) : v|K ∈ P1(K) for all K ∈ T } ,

where Pr(K) denotes the space of polynomials of degree less than or equal to r on
the element K. We say that the set {ψn

m}n≥0,m∈Jn has the k-orthogonality property, for
k ∈ {1,2}, with respect to the triangulations {T! : !≥ 0} if for all !≥ 0 we have

∫

D
ψn

m(xxx)z!(xxx)dxxx = 0 for all n ≥ !+ k , m ∈ Jn , and z! ∈ S0(D,T!) , (28)

and ψn
m ∈ Sk−1(D,T!+k−1) for all n ≤ !+ k−1, m ∈ Jn, and diam(supp(ψn

m))1 hn.

A necessary condition for (28) to hold is that the functions ψn
m for n ≥ k have the

vanishing mean property, that is
∫

D
ψn

m(xxx)dxxx = 0 for all n ≥ k and all m ∈ Jn .
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Example 1 (Haar Wavelets) We describe here the simplest case, of Haar wavelets for
a one-dimensional domain D = [0,a], with a some positive integer greater than or
equal to 2. In the Haar wavelet case we may take, for m = 0, . . . ,a−1,

ψ0
m(x) :=

{
1 for x ∈ [m,m+1) ,
0 otherwise ,

and for n ≥ 1,

ψn
m(x) := dn

m ψ(2nx−2m), m = 0, . . . ,2n−1a−1,

where dn
m is a sequence of nonnegative scaling parameters, ψ(x) is 1 for x ∈ [0,1),

−1 for x ∈ [1,2), and 0 otherwise. The family {ψn
m} forms an orthogonal basis of

L2([0,a]) if dn
m > 0. We remark that the choice dn

m = 2(n−1)/2 which is well-known to
imply orthonormality of the ψn

m in L2([0,a]) is inconsistent with (A1), and is therefore
excluded.

For the finite element space V0 we take the piecewise-linear functions vanishing
at 0 and a. This space is spanned by the hat functions centered at 1,2, . . . ,a − 1.
The spaces V! are then the piecewise-linear functions on [0,a] vanishing at 0 and a,
spanned by the hat functions centered at multiples of 2−!. Correspondingly, T! is
the mesh consisting of the multiples of 2−!, and the elements K! are the intervals of
length 2−! between the mesh points.

With this definition of T!, the multiresolution sequence {ψn
m} has the k-orthogonality

property with respect to T! with k = 1, for all ! ≥ 0. For example, for ! = 0 and
n = 1,m = 0 we have, with z0 ∈ S0([0,a],T0) and c := z0|[0,1],

∫ a

0
ψ1

0 (x)z0(x)dx = c
∫ 1

0
ψ1

0 (x)dx = cd1
0

∫ 1

0
ψ(2x)dx = 0 .

Haar wavelets do not satisfy Assumption (A4), since for (A4) to hold the basis func-
tions ψn

m need to be Lipschitz continuous. A piecewise-linear k-orthogonal basis set
with k = 2 in dimension d = 1 is constructed, for example, in [8]. For detailed con-
structions of k-orthogonality basis sets with k = 2 and d > 1, see [8,25]; for the case
k = 1 and d > 1 see [2, Section 5].

In the following theorem, we show that there is no truncation error at any level
for our multi-level algorithm under k-orthogonality if the dimension for truncation
s! is chosen appropriately at each level. To achieve this, we employ a one-to-one
mapping of the indices between the functions ψ j and ψn

m in (27): instead of ordering
the functions as in Assumption (A5), we index j according to a level-wise grouping
so that the functions {ψ0

m}m∈J0 come before the functions {ψ1
m}m∈J1 , followed by the

functions {ψ2
m}m∈J2 , and so on. Correspondingly, we employ the same index mapping

between y j and yn
m for the components of yyy.

Theorem 5 Let {ψn
m : n ≥ 0,m ∈ Jn} be a multiresolution basis set for the domain D,

with |Jn|1 2dn, which has the k-orthogonality property with k ∈ {1,2} with respect to
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the triangulations {T! : !≥ 0}. Let {y j : j ≥ 1}= {yn
m : n≥ 0,m∈ Jn} denote the cor-

responding parameters under the level-wise relabelling (27) so that the parametric
coefficient in (2) can be represented in the form

a(xxx,yyy) = ā(xxx)+
∞

∑
n=0

∑
m∈Jn

yn
mψn

m(xxx) .

Let

s! :=
!+k−1

∑
n=0

|Jn| . (29)

Then s! 1 2d! 1 Mh! , and for all !≥ 0 we have

uh! = us!
h!
. (30)

Moreover, the cost for exact evaluation of the Finite Element stiffness matrix for the
parametric coefficient a(xxx,yyy) at meshlevel !≥ 0 for any given yyy∈U is O(Mh! log(Mh!))
operations.

Proof There holds ∇V! ⊆ S0(D,T!)d for all ! ≥ 0. Thus, for all ! ≥ 0 and for ev-
ery v!,w! ∈ V!, we have ∇w! ·∇v! ∈ S0(D,T!). The k-orthogonality property (28)
therefore implies for all !≥ 0 and for all v!,w! ∈V!

b(yyy;w!,v!) =
∫

D

(
ā(xxx)+

∞

∑
n=0

∑
m∈In

yn
mψn

m(xxx)

)
∇w! ·∇v! dxxx

=
∫

D

(
ā(xxx)+

!+k−1

∑
n=0

∑
m∈In

yn
mψn

m(xxx)

)
∇w! ·∇v! dxxx (31)

= b(yyy{1:s!};w!,v!) .

The assertion (30) then follows from the uniqueness of the FE solutions.
To show the assertion on the cost, for given yyy we denote by BBB!(yyy) the M!×M! stiff-

ness matrix of the parametric bilinear form b(yyy; ·, ·), restricted to V!×V!, where V! =
span{φ !

i : 1 ≤ i ≤ M!}, with φ !
i denoting the nodal hat basis functions of S1(D,TL).

By k-orthogonality of the ψn
m, we have (31), and for each 1 ≤ i, i′ ≤ M! = dim(V!) =

O(2d!) there holds

BBB!(yyy)ii′ = b(yyy{1:s!};φ !
i ,φ !

i′) =
∫

D
(P!+k−1a(xxx,yyy))∇φ !

i ·∇φ !
i′ dxxx , (32)

where P!+k−1a(xxx,yyy) denotes the truncated expression for a(xxx,yyy) appearing in (31).
The matrix BBB!(yyy) is sparse: it has, due to the local support of the hat functions φ !

i and
due to the construction of the sequence {T!}!≥0 of meshes, at most O(M!) nonvan-
ishing entries (32).

Now consider the cost for the exact evaluation of any matrix entry (BBB!(yyy))ii′ 0= 0.
Given !, i, i′, and for a given n ≤ !+ k− 1, it follows from the assumption on the
support of ψn

m that there are only O(1) many functions ψn
m such that

∫
D ψn

m(xxx)∇φ !
i ·

∇φ !
i′ dxxx 0= 0. Thus the cost for evaluating (BBB!(yyy))ii′ 0= 0 is O(!+ k−1), which yields

that the total cost for evaluating the sparse matrix is O(M! !) = O(M! log(M!)) oper-
ations. 23
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3.4 Key Results

In the error analysis of the (single level) QMC-FE method, we established in [23]
regularity results for the parametric solutions. In the present multi-level QMC-FE er-
ror analysis, we first establish stronger regularity of the PDE solution simultaneously
with respect to both xxx and yyy. The result shown is actually more general than required
in this paper: our result covers partial derivatives of arbitrary order. To state the result,
we introduce further notation: for ννν = (ν j) j≥1 ∈NN

0 , where N0 =N∪{0}, we define
|ννν | := ν1+ν2+ · · · , and we refer to ννν as a “multi-index” and |ννν | as the “length” of ννν .
By

F := {ννν ∈ NN
0 : |ννν |< ∞}

we denote the (countable) set of all “finitely supported” multi-indices (i.e., sequences
of nonnegative integers for which only finitely many entries are nonzero). For ννν ∈ F
we denote the partial derivative of order ννν ∈ F of u with respect to yyy by

∂ννν
yyy u :=

∂ |ννν|

∂ ν1
y1 ∂ ν2

y2 · · ·
u .

Theorem 6 Under Assumptions (A1) and (A2), for every f ∈ V ∗, every yyy ∈ U and
every ννν ∈ F, the solution u(·,yyy) of the parametric weak problem (9) satisfies

∥∥∂ννν
yyy u(·,yyy)

∥∥
V ≤ |ννν |!

(
∏
j≥1

bν j
j

)
‖ f‖V ∗

amin
, (33)

where b j is as defined in (12). If, in addition, f ∈ H−1+t(D) for some 0 ≤ t ≤ 1, and
if Assumption (A4) holds, then for every κ ∈ (0,1] there holds

∥∥∂ννν
yyy u(·,yyy)

∥∥
Zt ≤ C |ννν |!

(
∏
j≥1

b̄ν j
j

)
‖ f‖H−1+t (D) , (34)

where
b̄ j := b j +κ Ct

(
‖∇ψ j‖L∞(D) +B‖ψ j‖L∞(D)

)
, j ≥ 1 , (35)

and the constants B and Ct are, for 0 ≤ t ≤ 1, defined by

B :=
1

amin
sup
zzz∈U

‖∇a(·,zzz)‖L∞(D) < ∞ , Ct := sup
w∈L2(D)

‖w‖H−1+t (D)

‖w‖L2(D)
< ∞ . (36)

In (34) we have C ≤ C̄κ−1 with C̄ > 0 independent of κ .

Proof Assertion (33) was proved in [6, Theorem 4.3]. The proof there was based on
the observation that, for every v ∈ V , yyy ∈ U and ννν ∈ F with |ννν | 0= 0, (9) implies the
recurrence

(
a(·,yyy)∇(∂ννν

yyy u(·,yyy)) , ∇v
)
+ ∑

j∈supp(ννν)
ν j

(
ψ j ∇(∂ννν−eee j

yyy u(·,yyy)) , ∇v
)
= 0 , (37)
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where eee j ∈ F denotes the multiindex with entry 1 in position j and zeros elsewhere,
and where supp(ννν) := { j ∈ N : ν j 0= 0} denotes the “support” of ννν . Taking v(xxx) =
∂ννν

yyy u(xxx,yyy) ∈V in (37) leads to

‖∂ννν
yyy u(·,yyy)‖V ≤ ∑

j∈supp(ννν)
ν j b j ‖∂ννν−eee j

yyy u(·,yyy)‖V , (38)

from which (33) follows by induction.
Assertion (34) was proved in [6, Theorem 8.2] for the case t = 1. For complete-

ness we provide a proof for general t here. We proceed once more by induction. The
case |ννν | = 0 is precisely (11) and is already proved in [23, Theorem 4.1]. To obtain
the bounds for |ννν | 0= 0, we observe that, trivially, for every ννν ∈ F and for every yyy ∈U ,
the function ∂ννν

yyy u(·,yyy) is the solution of the Dirichlet problem

−∇ ·
(
a(·,yyy)∇(∂ννν

yyy u(·,yyy))
)
= −gννν(·,yyy) in D , ∂ννν

yyy u(·,yyy)|∂D = 0 , (39)

with

gννν(·,yyy) := ∇ ·
(
a(·,yyy)∇(∂ννν

yyy u(·,yyy))
)
= ∇a(·,yyy) ·∇(∂ννν

yyy u(·,yyy))+a(·,yyy)∆(∂ννν
yyy u(·,yyy)) .

Here, we used the identity

∇ · (α(xxx)∇w(xxx)) = α(xxx)∆w(xxx)+∇α(xxx) ·∇w(xxx) , (40)

which is valid for α ∈W 1,∞(D) and for any w ∈V such that ∆w ∈ L2(D).
The assertion (34) will follow from (11), which implies for the solution of prob-

lem (39) the bound

‖∂ννν
yyy u(·,yyy)‖Zt ≤ C‖gννν(·,yyy)‖H−1+t (D) . (41)

It remains to establish bounds for ‖gννν(·,yyy)‖H−1+t (D). We recast (37) in strong form
and obtain from (39), for every yyy ∈U and for every v ∈ H1−t(D),

|(gννν(·,yyy) , v)| =
∣∣(∇ ·

(
a(·,yyy)∇(∂ννν

yyy u(·,yyy))
)
, v

)∣∣

=

∣∣∣∣∣ ∑
j∈supp(ννν)

ν j

(
∇ψ j ·∇(∂ννν−eee j

yyy u(·,yyy))+ψ j∆(∂ννν−eee j
yyy u(·,yyy)) , v

)∣∣∣∣∣

≤ ∑
j∈supp(ννν)

ν j

∥∥∥∇ψ j(·) ·∇(∂ννν−eee j
yyy u(·,yyy))+ψ j(·)∆(∂ννν−eee j

yyy u(·,yyy))
∥∥∥

H−1+t (D)
‖v‖H1−t (D) .

Dividing by ‖v‖H1−t (D) and taking the supremum over all v ∈ H1−t(D) yields

‖gννν(·,yyy)‖H−1+t (D) ≤ ∑
j∈supp(ννν)

ν j

(
‖∇ψ j‖L∞(D)

∥∥∥∇(∂ννν−eee j
yyy u(·,yyy))

∥∥∥
H−1+t (D)

+‖ψ j‖L∞(D)‖∆(∂ννν−eee j
yyy u(·,yyy))‖H−1+t (D)

)
. (42)
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To bound the second term on the right-hand side of (42), we write (39) with ννν−eee j
in place of ννν , for every yyy ∈U , in the form

−a(·,yyy)∆(∂ννν−eee j
yyy u(·,yyy)) = ∇a(·,yyy) ·∇(∂ννν−eee j

yyy u(·,yyy))−gννν−eee j(·,yyy) , (43)

using again (40). This implies, for every yyy ∈U , the estimate

‖∆(∂ννν−eee j
yyy u(·,yyy))‖H−1+t (D) ≤

1
amin

‖RHS of (43)‖H−1+t (D)

≤ 1
amin

[(
sup
zzz∈U

‖∇a(·,zzz)‖L∞(D)

)
‖∇(∂ννν−eee j

yyy u(·,yyy))‖H−1+t (D) +‖gννν−eee j(·,yyy)‖H−1+t (D)

]

≤ BCt ‖∂ννν−eee j
yyy u(·,yyy)‖V +

1
amin

‖gννν−eee j(·,yyy)‖H−1+t (D) ,

where B and Ct are as in (36). We insert this bound into (42) to obtain

‖gννν(·,yyy)‖H−1+t (D) ≤ ∑
j∈supp(ννν)

ν j

[
Ct
(
‖∇ψ j‖L∞(D) +B‖ψ j‖L∞(D)

)
‖∂ννν−eee j

yyy u(·,yyy)‖V

+b j ‖gννν−eee j(·,yyy)‖H−1+t (D)

]
. (44)

This recursive estimate for ‖gννν(·,yyy)‖H−1+t (D) has structure which is similar to the
bound (38) for ‖∂ννν

yyy u(·,yyy)‖V . We therefore multiply (44) by κ > 0 and add it to (38)
to obtain

‖∂ννν
yyy u(·,yyy)‖V +κ‖gννν(·,yyy)‖H−1+t (D)

≤ ∑
j∈supp(ννν)

ν j b j

[
‖∂ννν−eee j

yyy u(·,yyy)‖V +κ‖gννν−eee j(·,yyy)‖H−1+t (D)

]

+ ∑
j∈supp(ννν)

ν j κ Ct
(
‖∇ψ j‖L∞(D) +B‖ψ j‖L∞(D)

)
‖∂ννν−eee j

yyy u(·,yyy)‖V

≤ ∑
j∈supp(ννν)

ν j b̄ j

[
‖∂ννν−eee j

yyy u(·,yyy)‖V +κ‖gννν−eee j(·,yyy)‖H−1+t (D)

]
, (45)

where b̄ j is as in (35). By Assumption (A4), we have ∑ j≥1 b̄ j < ∞ for any choice of
κ > 0 and for any B.

To establish (34) it remains to observe that the estimate (45) has the same structure
as (38), with the sequence {b̄ j} in place of {b j}. For |ννν | = 0, we find using (10) of
Theorem 1 and g000 =− f that

‖u(·,yyy)‖V +κ ‖g000‖H−1+t (D) ≤
1

amin
‖ f‖V ∗ +κ ‖ f‖H−1+t (D) .

The same induction argument used to establish (33) applied to the recursive estimate
(45) implies for all ννν ∈ F, for every yyy ∈U and for every κ ∈ (0,1]

κ ‖gννν(·,yyy)‖H−1+t (D) ≤ ‖∂ννν
yyy u(·,yyy)‖V +κ ‖gννν(·,yyy)‖H−1+t (D)

≤ |ννν |!
(

∏
j≥1

b̄ν j
j

) (
C̃t

amin
+κ

)
‖ f‖H−1+t (D) ,
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where C̃t := supw∈H−1+t (D)(‖w‖H−1(D)/‖w‖H−1+t (D)) < ∞. Now (34) follows from
(41). 23

To bound the first term in (26) we need the following result.

Theorem 7 Under Assumptions (A1), (A2), (A4), and (A6), for every f ∈ H−1+t(D)
with 0 ≤ t ≤ 1, every G(·) ∈ H−1+t ′(D) with 0 ≤ t ′ ≤ 1, every κ ∈ (0,1], and every
s ∈ N, we have

‖G(us −us
h)‖Ws,γγγ

≤ C hτ amax ‖ f‖H−1+t (D) ‖G(·)‖H−1+t′ (D)

(

∑
u⊆{1:s}

[(|u|+1)!]2 ∏ j∈u b̄2
j

γu

)1/2

,

where 0 ≤ τ := t + t ′ ≤ 2, where b̄ j is defined in (35), and where the constant C > 0
is independent of s.

Proof Let g ∈ H−1+t ′(D) denote the representer of G(·) ∈ H−1+t ′(D). For all yyy ∈U ,
we define vg(·,yyy) ∈V and vg

h(·,yyy) ∈Vh by

b(yyy;w,vg(·,yyy)) = (g,w) ∀w ∈V , (46)
b(yyy;wh,v

g
h(·,yyy)) = (g,wh) ∀wh ∈Vh . (47)

Taking w = u(·,yyy)−uh(·,yyy), we have

G(u(·,yyy)−uh(·,yyy)) = (g,u(·,yyy)−uh(·,yyy)) = b(yyy;u(·,yyy)−uh(·,yyy),vg(·,yyy))
= b(yyy;u(·,yyy)−uh(·,yyy),vg(·,yyy)− vg

h) ,

where in the last step we used Galerkin orthogonality b(yyy;u(·,yyy)−uh(·,yyy),vg
h) = 0.

Using the definitions of the bilinear form b(yyy; ·, ·) and the norm ‖ ·‖Ws,γγγ , we obtain

‖G(us −us
h)‖Ws,γγγ =

(

∑
u⊆{1:s}

γ−1
u

∫

[− 1
2 ,

1
2 ]

|u|

∣∣∣∣
∫

D
ru(xxx,(yyyu;0))dxxx

∣∣∣∣
2

dyyyu

)1/2

, (48)

where

ru(xxx,yyy) :=
∂ |u|

∂yyyu

(
a(xxx,yyy)∇(u−uh)(xxx,yyy) ·∇(vg − vg

h)(xxx,yyy)
)
.

For the remainder of this proof, we will use the short-hand notation ∂u for the mixed
first partial derivatives with respect to the variables y j for j ∈ u. We will also omit xxx
and yyy in many places. From the special form of a(xxx,yyy) we see that

ru(xxx,yyy) = a(xxx,yyy)∂u
(

∇(u−uh) ·∇(vg − vg
h)
)

+ ∑
k∈u

ψk(xxx)∂u\{k}

(
∇(u−uh) ·∇(vg − vg

h)
)

= a(xxx,yyy) ∑
v⊆u

∇∂v(u−uh) ·∇∂u\v(vg − vg
h)

+ ∑
k∈u

ψk(xxx) ∑
v⊆u\{k}

∇∂v(u−uh) ·∇∂(u\{k})\v(vg − vg
h) ,
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where in both terms we used the product rule ∂u(AB) = ∑v⊆u(∂vA)(∂u\vB). Thus
∣∣∣∣
∫

D
ru(xxx,yyy)dxxx

∣∣∣∣ ≤ amax ∑
v⊆u

‖∂v(u−uh)‖V ‖∂u\v(vg − vg
h)‖V (49)

+ ∑
k∈u

‖ψk‖L∞(D) ∑
v⊆u\{k}

‖∂v(u−uh)‖V ‖∂(u\{k})\v(vg − vg
h)‖V .

Denoting by I : V →V the identity operator and by Ph : V →Vh the correspond-
ing FE projection, we can write

‖∂v(u−uh)‖V = ‖∂v(I −Ph)u‖V = ‖(I −Ph)(∂vu)‖V

≤ C ht ‖∂vu‖Zt ≤ C ht ‖ f‖H−1+t (D) |v|! ∏
j∈v

b̄ j , (50)

where the first inequality follows from (15) in Theorem 3, and the second inequal-
ity follows from (34) in Theorem 6. Throughout, C > 0 denotes a generic constant.
Similarly, it follows from (46) and (47) that

‖∂u\v(vg − vg
h)‖V = ‖∂u\v(I −Ph)vg‖V = ‖(I −Ph)(∂u\vvg)‖V

≤ C ht ′ ‖∂u\vvg‖Zt′ ≤ C ht ′ ‖g‖H−1+t′ (D) |u\v|! ∏
j∈u\v

b̄ j . (51)

Using (50) and (51), together with the identity ∑v⊆u |v|! |u\v|!=(|u|+1)!, we obtain
from (49)
∣∣∣∣
∫

D
ru(xxx,yyy)dxxx

∣∣∣∣ ≤ C ht+t ′ amax ‖ f‖H−1+t (D) ‖g‖H−1+t′ (D) (|u|+1)! ∏
j∈u

b̄ j

+C ht+t ′ ‖ f‖H−1+t (D) ‖g‖H−1+t′ (D) ∑
k∈u

‖ψk‖L∞(D) |u|! ∏
j∈u\{k}

b̄ j

≤ C ht+t ′ amax ‖ f‖H−1+t (D) ‖G(·)‖H−1+t′ (D) (|u|+1)! ∏
j∈u

b̄ j ,

where we used the estimate ‖ψk‖L∞(D) = amin bk ≤ amax b̄k. Substituting this estimate
into (48) completes the proof. 23

As we remarked earlier, if k-orthogonality (28) does not hold and if s! > s!−1, the
second term in (26) is generally nonzero. We estimate it in the following result.

Theorem 8 Under Assumptions (A1) and (A2), for every f ∈ V ∗, every G(·) ∈ V ∗,
every h > 0, and every !≥ 1,

‖G(us!
h −us!−1

h )‖Ws! ,γγγ

≤ amax ‖ f‖V ∗ ‖G(·)‖V ∗

a2
min

( s!

∑
j=s!−1+1

b j

)(

∑
u⊆{1:s!}

[(|u|+1)!]2 ∏ j∈u b2
j

γu

)1/2

,

where b j is defined in (12).
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Note that if Assumptions (A3) and (A5) hold, then from (14) we have ∑s!
j=s!−1+1 b j =

O(s−(1/p−1)
!−1 ).

Proof We follow a similar line of argument to the proof of Theorem 7. Let g ∈ V ∗

denote the representer of G(·) ∈ V . For all yyy ∈ U , we define vg
h(·,yyy) ∈ Vh as in (47).

Taking wh = us!
h (·,yyy)−us!−1

h (·,yyy) in (47), we have

G(us!
h (·,yyy)−us!−1

h (·,yyy)) = (g,us!
h (·,yyy)−us!−1

h (·,yyy))
= b(yyy;us!

h (·,yyy)−us!−1
h (·,yyy),vg

h(·,yyy)) .

Using the definitions of the bilinear form b(yyy; ·, ·) and the norm ‖ ·‖Ws! ,γγγ
, we obtain

‖G(us!
h −us!−1

h )‖Ws!,γγγ
=

(

∑
u⊆{1,...,s!}

γ−1
u

∫

[− 1
2 ,

1
2 ]

|u|

∣∣∣∣
∫

D
r̃u(xxx,(yyyu;0))dxxx

∣∣∣∣
2

dyyyu

)1/2

,

(52)
where

r̃u(xxx,yyy) :=
∂ |u|

∂yyyu

(
a(xxx,yyy)∇(us!

h −us!−1
h )(xxx,yyy) ·∇vg

h(xxx,yyy)
)
.

As in the proof of Theorem 7, we will use the short-hand notation ∂u for the mixed
first partial derivatives with respect to the variables y j for j ∈ u, and we will also omit
xxx and yyy in many places below. From the special form of a(xxx,yyy) we see that

r̃u(xxx,yyy) = a(xxx,yyy)∂u
(

∇(us!
h −us!−1

h ) ·∇vg
h

)
+ ∑

k∈u
ψk(xxx)∂u\{k}

(
∇(us!

h −us!−1
h ) ·∇vg

h

)

= a(xxx,yyy) ∑
v⊆u

∇∂v(us!
h −us!−1

h ) ·∇∂u\vvg
h

+ ∑
k∈u

ψk(xxx) ∑
v⊆u\{k}

∇∂v(us!
h −us!−1

h ) ·∇∂(u\{k})\vvg
h .

Thus
∣∣∣∣
∫

D
r̃u(xxx,yyy)dxxx

∣∣∣∣ ≤ amax ∑
v⊆u

‖∂v(us!
h −us!−1

h )‖V ‖∂u\vvg
h‖V (53)

+ ∑
k∈u

‖ψk‖L∞(D) ∑
v⊆u\{k}

‖∂v(us!
h −us!−1

h )‖V ‖∂(u\{k})\vvg
h‖V .

For any yyy∈U , us!
h (·,yyy) and us!−1

h (·,yyy) are the solutions of the variational problems:

(as!(·,yyy)∇us!
h (·,yyy),∇v) = ( f ,v) ∀v ∈Vh ,

(as!−1(·,yyy)∇us!−1
h (·,yyy),∇v) = ( f ,v) ∀v ∈Vh .

Subtracting, we get (as!(·,yyy)∇us!
h (·,yyy)−as!−1(·,yyy)∇us!−1

h (·,yyy),∇v) = 0 for all v ∈Vh,
or equivalently,

(as!(·,yyy)∇(us!
h (·,yyy)−us!−1

h (·,yyy)),∇v)

= −((as!(·,yyy)−as!−1(·,yyy))∇us!−1
h (·,yyy),∇v) ∀v ∈Vh .
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We interpret this as a weak problem for us!
h (·,yyy)−us!−1

h (·,yyy), with the forcing term

f̃ := ∇ ·
(
(as!(·,yyy)−as!−1(·,yyy))∇us!−1

h (·,yyy)
)
∈ V ∗ .

Hence we conclude from (33) of Theorem 6, adapted to the finite element solutions,
that

‖∂v(us!
h −us!−1

h )‖V ≤ |v|!
(

∏
j∈v

b j

)
‖ f̃‖V ∗

amin
.

For any v ∈V , we obtain with integration by parts and the Cauchy-Schwarz inequal-
ity, and Theorem 3

|( f̃ ,v)| =
∣∣∣∣
∫

D
∇ ·

(
(as!(xxx,yyy)−as!−1(xxx,yyy))∇us!−1

h (xxx,yyy)
)

v(xxx)dxxx
∣∣∣∣

=

∣∣∣∣
∫

D
(as!(xxx,yyy)−as!−1(xxx,yyy))∇us!−1

h (xxx,yyy) ·∇v(xxx)dxxx
∣∣∣∣

≤
(

1
2

s!

∑
j=s!−1+1

‖ψ j‖L∞(D)

)
‖us!−1

h (·,yyy)‖V ‖v‖V

≤
(

amin

2

s!

∑
j=s!−1+1

b j

)
‖ f‖V ∗

amin
‖v‖V =

(
1
2

s!

∑
j=s!−1+1

b j

)
‖ f‖V ∗ ‖v‖V ,

which yields a bound on ‖ f̃‖V ∗ , and in turn this gives

‖∂v(us!
h −us!−1

h )‖V ≤ |v|!
(

∏
j∈v

b j

)(
1
2

s!

∑
j=s!−1+1

b j

)
‖ f‖V ∗

amin
. (54)

Next, from (47) we can interpret vg
h as the solution of the weak problem (9) with

the forcing term g. Thus we can apply (33) of Theorem 6 again to obtain

‖∂u\vvg
h‖V ≤ |u\v|!

(
∏

j∈u\v
b j

)
‖g‖V ∗

amin
= |v|!

(
∏

j∈u\v
b j

)
‖G(·)‖V ∗

amin
. (55)

Using (54), (55), and again ∑v⊆u |v|! |u\v|! = (|u|+1)!, we obtain from (53)
∣∣∣∣
∫

D
r̃u(xxx,yyy)dxxx

∣∣∣∣

≤
(

1
2

s!

∑
j=s!−1+1

b j

)
‖ f‖V ∗ ‖G(·)‖V ∗

a2
min

[
amax ∑

v⊆u

|v|!
(

∏
j∈v

b j

)
|u\v|!

(
∏

j∈u\v
b j

)

+amin ∑
k∈u

bk ∑
v⊆u\{k}

|v|!
(

∏
j∈v

b j

)
|(u\{k})\v|!

(
∏

j∈(u\{k})\v
b j

)]

=

(
1
2

s!

∑
j=s!−1+1

b j

)(
∏
j∈u

b j

)
‖ f‖V ∗ ‖G(·)‖V ∗

a2
min

[
amax (|u|+1)!+amin|u||u|!

]

≤
( s!

∑
j=s!−1+1

b j

)(
∏
j∈u

b j

)
‖ f‖V ∗ ‖G(·)‖V ∗

a2
min

amax (|u|+1)! .

Substituting this estimate into (52) completes the proof. 23
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3.5 Error Analysis of the Multi-level QMC-FE Algorithm (Continued)

We are now ready to estimate the two terms in (26) for ! 0= 0. To bound the first term,
we use the triangle inequality

‖G(us!
h!
−us!

h!−1
)‖Ws! ,γγγ

≤ ‖G(us! −us!
h!
)‖Ws!,γγγ

+‖G(us! −us!
h!−1)‖Ws!,γγγ

,

and then apply Theorem 7 to both terms on the right-hand side. If k-orthogonality (28)
does not hold and if s! 0= s!−1, we bound the second term in (26) using Theorem 8.
For the != 0 term in (25), we use the estimate

‖G(us0
h0
)‖Ws0 ,γγγ

≤



 ∑
u⊆{1:s0}

1
γu

∫

[− 1
2 ,

1
2 ]

|u|
‖G(·)‖2

V ∗

∥∥∥∥∥
∂ |u|uh0

∂yyyu
(·,(yyyu;0))

∥∥∥∥∥

2

V

dyyyu




1/2

≤ ‖ f‖V ∗ ‖G(·)‖V ∗

amin

(

∑
u⊆{1:s0}

(|u|!)2 ∏ j∈u b2
j

γu

)1/2

,

which follows from an adaptation of (33) from Theorem 6. Combining these esti-
mates with (22), (24), (25), and (26), we obtain

E[|I(G(u))−QL
∗(·;G(u))|2]

≤C

([
hτ

L ‖ f‖H−1+t (D) ‖G(·)‖H−1+t′ (D) + θL ‖ f‖V ∗ ‖G(·)‖V ∗

(
∑

j≥sL+1
b j

)2
]2

+

(

∑
/00=u⊆{1:s0}

γλ
u [ρ(λ )]|u|

)1/λ

[ϕ(N0)]
−1/λ ‖ f‖2

V ∗ ‖G(·)‖2
V ∗ ∑

u⊆{1:s0}

(|u|!)2 ∏ j∈u b2
j

γu

+
L

∑
!=1

(

∑
/00=u⊆{1:s!}

γλ
u [ρ(λ )]|u|

)1/λ

[ϕ(N!)]
−1/λ

·
[

hτ
!−1 ‖ f‖H−1+t (D) ‖G(·)‖H−1+t′ (D)

(

∑
u⊆{1:s!}

[(|u|+1)!]2 ∏ j∈u b̄2
j

γu

)1/2

+θ!−1‖ f‖V ∗ ‖G(·)‖V ∗

(
s!

∑
j=s!−1+1

b j

)(

∑
u⊆{1:s!}

[(|u|+1)!]2 ∏ j∈u b2
j

γu

)1/2]2)
,

where we introduced the parameters θ!−1 ∈ {0,1} for each level, analogously to (24),
to handle the case where k-orthogonality (28) holds or when s! = s!−1.

When k-orthogonality (28) does not hold, we further impose Assumptions (A3)
and (A5) to make use of (14) for estimating the tail sums of b j. These together with
some further estimations lead to the following simplified mean-square error bound.

Theorem 9 Under Assumptions (A1)–(A6), for every f ∈ H−1+t(D) with 0 ≤ t ≤ 1
and every G(·) ∈ H−1+t ′(D) with 0 ≤ t ′ ≤ 1, the mean-square error of the multi-level
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QMC-FE algorithm defined by (19) can be estimated as follows

E[|I(G(u))−QL
∗(·;G(u))|2] ≤ C Dγγγ(λ )‖ f‖2

H−1+t (D) ‖G(·)‖2
H−1+t′ (D)

·
[(

hτ
L +θL s−2(1/p−1)

L

)2
+

L

∑
!=0

[ϕ(N!)]
−1/λ

(
hτ
!−1 +θ!−1 s−(1/p−1)

!−1

)2
]
, (56)

where

Dγγγ(λ ) :=

(

∑
|u|<∞

γλ
u [ρ(λ )]|u|

)1/λ (

∑
|u|<∞

[(|u|+1)!]2 ∏ j∈u b̄2
j

γu

)
, (57)

with 0 ≤ τ := t + t ′ ≤ 2, h−1 ≡ θ−1 ≡ s−1 ≡ 0, ρ(λ ) as in (17), and b̄ j as in (35). In
general we have θ! = 1 for all != 0, . . . ,L. If s! = s!−1 for some !≥ 1 then θ!−1 = 0.
When k-orthogonality (28) holds we have θ! = 0 for all ! = 0, . . . ,L. Assumptions
(A3) and (A5) are not required when θ! = 0 for all !. The expectation E[·] is with
respect to the random compound shift which is drawn from the uniform distribution
over [0,1]s∗ . The error bound (56) is meaningful only if Dγγγ(λ ) is finite.

3.6 Choosing the Parameter λ and the Weights γu

Following [23], we now choose the weights γu to minimize Dγγγ(λ ). We also specify
the value of λ to get the best convergence rate possible. Note that our goal is to have
λ as small as possible, since a smaller value of λ yields a better convergence rate
with respect to the number of QMC points. In the following theorem, the assumption
(58) is implied by Assumption (A7).

Theorem 10 With b̄ j defined as in (35) for fixed κ ∈ (0,1], suppose that

∑
j≥1

b̄q
j < ∞ for some 0 < q ≤ 1 , (58)

and when q = 1 assume additionally that

∑
j≥1

b̄ j < 2 . (59)

For a given λ ∈ (1/2,1], the choice of weights

γu = γ∗u(λ ) :=

(
(|u|+1)! ∏

j∈u

b̄ j√
ρ(λ )

)2/(1+λ )

(60)

minimizes Dγγγ(λ ) given in (57), if a finite minimum exists. Moreover, the choice of λ
given by

λ = λq :=






1
2−2δ for some δ ∈ (0,1/2) when q ∈ (0,2/3] ,

q
2−q

when q ∈ (2/3,1) ,

1 when q = 1 ,

(61)
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together with γu = γ∗u(λq), ensures that Dγγγ(λ )< ∞, and thus justifies the error bound
(56).

If we maintain the definition (61) of λ but instead of (60) define the weights by

γu :=

(
(|u|+1)! ∏

j∈u
(2 b̄ j)

)2−q

, (62)

then Dγγγ(λ ) is no longer minimized by this choice of weights, but Dγγγ(λ ) < ∞ still
holds provided that δ < q/2 when q ∈ (0,2/3].

We remark that the weight (62) has a practical advantage over (60), that with (62) it
is not necessary to make a prior choice of λ .

Proof This proof follows closely the proofs of [23, Theorems 6.4 and 6.5]. Apart
from the simple replacement of b j by b̄ j and of p by q, the main difference is that we
now have to handle a sum containing the factor (|u|+1)! instead of |u|!. For this we
make use of [23, Lemma 6.3] with n = 1 instead of n = 0.

Using [23, Lemma 6.2], we see that Dγγγ(λ ) is minimized by choosing γu as in (60)
for |u| < ∞, provided that a finite minimum exists. The relative scaling of weights
does not affect the minimization argument. Our choice of scaling here is consistent
with the convention that γ /0 = 1.

In the course of our derivation below we eventually choose the value of λ de-
pending on the value of q, but until then λ and q will be independent. For the weights
given by (60), we have

∑
|u|<∞

(γ∗u)λ [ρ(λ )]|u| = ∑
|u|<∞

[(|u|+1)!]2λ/(1+λ ) ∏
j∈u

(
b̄2λ

j ρ(λ )
)1/(1+λ )

=: Aλ ,

∑
|u|<∞

[(|u|+1)!]2 ∏ j∈u b̄2
j

γ∗u
= Aλ ,

and thus Dγγγ∗(λ ) = A1/λ+1
λ .

For λ ∈ (1/2,1), we have 2λ/(1+λ )< 1 and we further estimate Aλ as follows:
we multiply and divide each term in the expression by ∏ j∈u α2λ/(1+λ )

j , with α j > 0
to be specified later, and then apply Hölder’s inequality with conjugate exponents
(1+λ )/(2λ ) and (1+λ )/(1−λ ), to obtain

Aλ = ∑
|u|<∞

[(|u|+1)!]2λ/(1+λ ) ∏
j∈u

α2λ/(1+λ )
j ∏

j∈u

(
b̄2λ

j ρ(λ )
α2λ

j

)1/(1+λ )

≤
(

∑
|u|<∞

(|u|+1)! ∏
j∈u

α j

)2λ/(1+λ )


 ∑
|u|<∞

∏
j∈u

(
b̄2λ

j ρ(λ )
α2λ

j

)1/(1−λ )



(1−λ )/(1+λ )

≤
(

1
1−∑ j≥1 α j

)4λ/(1+λ )
exp

(
1−λ
1+λ [ρ(λ )]1/(1−λ ) ∑

j≥1

(
b̄ j

α j

)2λ/(1−λ ))
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which holds and Aλ is finite, see [23, Lemma 6.3], provided that

∑
j≥1

α j < 1 and ∑
j≥1

(
b̄ j

α j

)2λ/(1−λ )
< ∞ . (63)

We now choose

α j :=
b̄q

j

ϖ for some parameter ϖ > ∑
j≥1

b̄q
j . (64)

Then the first sum in (63) is less than 1 due to the assumption (58). Noting that (58)
implies that ∑ j≥1 b̄q′

j < ∞ for all q′ ≥ q, we conclude that the second sum in (63)
converges for

2λ
1−λ (1−q) ≥ q ⇐⇒ q ≤ 2λ

1+λ ⇐⇒ λ ≥ q
2−q

.

Since λ must be strictly between 1/2 and 1, when q∈ (0,2/3] we choose λq = 1/(2−
2δ ) for some δ ∈ (0,1/2), and when q ∈ (2/3,1) we set λq = q/(2−q).

For the case q = 1 we take λq = 1, and we use ρ(1) = 1/4. Then using [23,
Lemma 6.3] and the assumption (59) we obtain

A1 = ∑
|u|<∞

(|u|+1)! ∏
j∈u

(
b̄ j

2

)
≤

(
1

1−∑ j≥1(b̄ j/2)

)2

< ∞ .

Finally we show that Dγγγ(λ ) < ∞ for λ given by (61) and weights given by (62).
For the case q = 1 and λ = 1, the weights (60) and (62) are the same, so we need
to consider only the cases q ∈ (0,2/3] and q ∈ (2/3,1). To simplify the presentation
below we introduce q′ := λ (2− q). Then, with λ given by (61), with the additional
restriction that δ < q/2, it is easy to verify that q′ = q for q ∈ (2/3,1) and q < q′ < 1
for q ∈ (0,2/3]. In both cases, we have

Dγγγ(λ ) =
(

∑
|u|<∞

[(|u|+1)!]q
′ ∏

j∈u

(
(2b̄ j)

q′ρ(λ )
))

2−q
q′

(

∑
|u|<∞

[(|u|+1)!]q ∏
j∈u

b̄q
j

22−q

)
.

For the first sum, we multiply and divide the terms by ∏ j∈u αq′
j , with α j > 0 to be

specified later, and we apply Hölder’s inequality with conjugate exponents 1/q′ and
1/(1− q′). For the second sum, we multiply and divide the terms by ∏ j∈u αq

j , with
the same α j, and we apply Hölder’s inequality with conjugate exponents 1/q and
1/(1−q). We obtain

Dγγγ(λ )≤
(

∑
|u|<∞

(|u|+1)! ∏
j∈u

α j

)2−q


 ∑
|u|<∞

∏
j∈u

(
(2b̄ j)q′ρ(λ )

αq′
j

) 1
1−q′





(1−q′)(2−q)
q′

×
(

∑
|u|<∞

(|u|+1)! ∏
j∈u

α j

)q


 ∑
|u|<∞

∏
j∈u

(
b̄q

j

22−qαq
j

) 1
1−q




1−q

,
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which is finite as above provided that

∑
j≥1

α j < 1 , ∑
j≥1

(
b̄ j

α j

) q′
1−q′

< ∞ , and ∑
j≥1

(
b̄ j

α j

) q
1−q

< ∞ ,

and this can be achieved by choosing α j as in (64), since q′/(1− q′) ≥ q/(1− q).
This completes the proof. 23

3.7 Summary of Overall Cost Versus Error

Recall that

h! 1 2−! and Mh! 1 h−d
! 1 2!d for != 0, . . . ,L . (65)

Based on the mean square error bound (56), we now specify s! and N! for each level.
We consider two scenarios depending on whether or not k-orthogonality (28) holds.

For our cost model we assume the availability of a linear complexity FE solver.
The cost for assembling the stiffness matrix at level ! is O(s! Mh!) in general, and is
O(Mh! log(Mh!)) if k-orthogonality (28) holds (see the second part of Theorem 5).
Moreover, we assume that the functions ψ j are explicitly known, and that integration
of any basis functions in the FE method against any ψ j is available at unit cost. Thus

cost = O

(
L

∑
!=0

N! K!

)
, K! :=

{
h−d
! log(h−d

! ) if k-orthogonality (28) holds ,
h−d
! s! otherwise .

Clearly, changing the cost model may change the definition of K!. (Some cost models
in the literature do not include s! as part of K!.) Note that our cost model does not
include the pre-computation cost for the CBC construction of randomly shifted lattice
rules, which requires O(N! logN! s!+N! s2

!) operations on level !.

Scenario 1. In the special case where k-orthogonality (28) holds, the values of s! are
given by (29), and we have θ! = 0 for all ! in the error bound (56), giving the mean
square error bound (denoted in this subsection by error2 for simplicity)

error2 = O

(
h2τ

L +
L

∑
!=0

[ϕ(N!)]
−1/λ h2τ

!−1

)
. (66)

Scenario 2. When k-orthogonality (28) does not hold, we have θL = 1 in the er-
ror bound (56). To balance the error contribution within the highest discretization
level, we impose the condition s−2(1/p−1)

L = O(hτ
L), which is equivalent to sL =

Ω(2Lτ p/(2−2p)). Then, to minimize the error within each level, one choice for s! is to
set s! = sL for all !< L, leading to θ!−1 = 0 for all != 1, . . . ,L in (56). Alternatively,
since s! should be as small as possible from the point of view of reducing the cost at
each level, we can impose the condition s−(1/p−1)

!−1 = O(hτ
!−1) for != 1, . . . ,L, which
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is equivalent to s! = Ω(2!τ p/(1−p)) for != 0, . . . ,L−1. Combining both approaches,
while taking into account the monotonicity condition (18), we choose

s! := min
(⌈

2!τ p/(1−p)⌉,
⌈
2Lτ p/(2−2p)⌉

)
for != 0, . . . ,L . (67)

Thus we have s! strictly increasing for != 0, . . . ,7L/28, and the remaining half of s!
are all identical. Our choice of s! leads again to the error bound (66).

We remark that for all N ∈ N, the Euler totient function ϕ(N) takes values close
to N. Specifically, if N is prime then 1/ϕ(N) = 1/(N−1)≤ 2/N. If N is a power of 2
then 1/ϕ(N)= 2/N. It is known from [1, Theorem 8.8.7] that 1/ϕ(N)< (eϒ log logN+
3/ log logN)/N for all N ≥ 3, where eϒ = 1.781 . . .. Thus it can be verified that for
all computationally realistic values of N, say, N ≤ 1030, we have 1/ϕ(N) < 9/N.
Treating this factor 9 as a constant and using h!−1 1 h!, we obtain for both scenarios
the simpler mean square error expression

error2 = O

(
h2τ

L +
L

∑
!=0

N−1/λ
! h2τ

!

)
.

To minimize the mean square error for a fixed cost, we consider the Lagrange
multiplier function

g(µ) := h2τ
L +

L

∑
!=0

N−1/λ
! h2τ

!

︸ ︷︷ ︸
mean square error

+ µ
L

∑
!=0

N! K!

︸ ︷︷ ︸
cost

.

We look for the stationary point of g(µ) with respect to N!, thus demanding that

∂g(µ)
∂N!

= − 1
λ N−1/λ−1

! h2τ
! +µ K! = 0 for != 0, . . . ,L .

This prompts us to define

N! :=
⌈

N0
(
h−2τ

0 K0 h2τ
! K−1

!

)λ/(λ+1)
⌉

for != 1, . . . ,L . (68)

Leaving N0 to be specified later and treating h0 and K0 as constants, we conclude that

error2 = O

(
h2τ

L + N−1/λ
0

L

∑
!=0

E!

)
and cost = O

(
N0

L

∑
!=0

E!

)
, (69)

where

E! := (h2λτ
! K!)

1/(λ+1) =

{
(h2λτ−d

! log(h−d
! ))1/(λ+1) if k-orthogonality (28) holds ,

(h2λτ−d
! s!)1/(λ+1) otherwise .

We see that the mean square error is not necessarily minimized by balancing the
error terms between the levels. For example, when k-orthogonality (28) holds, we
observe that
– For d > 2λτ , the quantity E! (and thus the mean square error and cost at level !)

increases with increasing !.
– For d < 2λτ , the quantity E! decreases with increasing !.
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Scenario 1 (continued). Substituting h!1 2−!, we obtain for the case where k-orthogonality
holds that

L

∑
!=0

E! = O

(
L

∑
!=0

2−!(2λτ−d)/(λ+1)(!+1)1/(λ+1)

)

=






O
(
1
)

if d < 2λτ ,
O
(
L(λ+2)/(λ+1)) if d = 2λτ ,

O
(
2−L(2λτ−d)/(λ+1)L1/(λ+1)) if d > 2λτ .

In light of the error bound in (69), we choose N0 to satisfy

N−1/λ
0

L

∑
!=0

E! = O(h2τ
L ) , (70)

which is equivalent to N0 = Ω(h−2τλ
L (∑L

!=0 E!)λ ). This yields the choice

N0 :=






⌈
2Lτ(2λ )⌉ if d < 2τλ ,⌈
2Lτ(2λ )Lλ (λ+2)/(λ+1)⌉ if d = 2τλ ,⌈
2Lτ(d/τ+2)λ/(λ+1)Lλ/(λ+1)⌉ if d > 2τλ .

(71)

Then we have error2 = O
(
h2τ

L
)
. Upon substituting (70) into the cost bound in (69)

and using (71), we obtain

cost = O
(
N(λ+1)/λ

0 h2τ
L
)
=






O
(
2Lτ(2λ )) if d < 2λτ ,

O
(
2Lτ(2λ )Lλ+2) if d = 2λτ ,

O
(
2Lτ(d/τ)L

)
if d > 2λτ .

Scenario 2 (continued). When k-orthogonality does not hold, we use the definition
(67) for s! and denote for simplicity

α :=
p

1− p
,

to obtain

L

∑
!=0

E! = O

(
7L/28

∑
!=0

2−!τ(2λ−d/τ−α)/(λ+1) +2(L/2)τα/(λ+1)
L

∑
!=7L/28+1

2−!τ(2λ−d/τ)/(λ+1)

)

=






O
(
1
)

if d/τ < 2λ −α ,

O
(
L
)

if d/τ = 2λ −α ,

O
(
2Lτ(α/2+d/(2τ)−λ )/(λ +1)

)
if 2λ −α < d/τ < 2λ ,

O
(
2Lτ(α/2)/(λ+1)L

)
, if d/τ = 2λ ,

O
(
2Lτ(α/2+d/τ−2λ )/(λ +1)

)
if d/τ > 2λ .
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As in Scenario 1 we choose N0 to satisfy (70), i.e., N0 = Ω(h−2τλ
L (∑L

!=0 E!)λ ), and
this yields

N0 :=






⌈
2Lτ(2λ )⌉ if d/τ < 2λ −α ,⌈
2Lτ(2λ )Lλ⌉ if d/τ = 2λ −α ,⌈
2Lτ(α/2+d/(2τ)+λ+2)λ/(λ+1)⌉ if 2λ −α < d/τ < 2λ ,⌈
2Lτ(α/2+d/τ+2)λ/(λ +1)Lλ⌉ if d/τ = 2λ ,⌈
2Lτ(α/2+d/τ+2)λ/(λ+1)⌉ if d/τ > 2λ .

(72)

Then we have error2 = O(h2τ
L ) as before, but now

cost = O
(
N(λ+1)/λ

0 h2τ
L
)
=






O
(
2Lτ(2λ )) if d/τ < 2λ −α ,

O
(
2Lτ(2λ )Lλ+1) if d/τ = 2λ −α ,

O
(
2Lτ(α/2+d/(2τ)+λ )) if 2λ −α < d/τ < 2λ ,

O
(
2Lτ(α/2+d/τ)Lλ+1) if d/τ = 2λ ,

O
(
2Lτ(α/2+d/τ)) if d/τ > 2λ .

In both scenarios, for given ε > 0, we choose L such that

hτ
L 1 2−Lτ 1 ε . (73)

We can then express the total cost of the algorithm in terms of ε . This is summarized
in Theorem 11 below.

Theorem 11 Under Assumptions (A1)–(A7), leaving out (A5) if k-orthogonality (28)
holds, for f ∈ H−1+t(D) and G(·) ∈ H−1+t ′(D) with 0 ≤ t, t ′ ≤ 1 and τ := t + t ′ > 0,
we consider the multi-level QMC-FE algorithm defined by (19). Given ε > 0, with L
given by (73), h! given by (65), s! given by (67) (or (29) under k-orthogonality), N!

given by (68), N0 given by (72) (or (71) under k-orthogonality), and with randomly
shifted lattice rules constructed based on POD weights γu given by (60) or (62), we
obtain √

E[|I(G(u))−QL
∗(·;G(u))|2] = O (ε) ,

and
cost(QL

∗) = O
(
ε−aML

(logε−1)bML)
,

with

aML =






max
(

2λq,
d
τ

)
if k-orthogonality (28) holds ,

2λq if
d
τ ≤ 2λq −

p
1− p

,

p
2−2p

+
d
2τ +max

(
λq,

d
2τ

)
if

d
τ > 2λq −

p
1− p

,

where λq is as defined in (61). The value of bML can be obtained from the cost bounds
in Scenarios 1 and 2 in a similar way.
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In comparison, for the single level QMC-FE algorithm in [23] to achieve O(ε)
error, its overall cost in the case of p < 1 is O(ε−aSL

), with

aSL =
p

2−2p
+2λp +

d
τ ,

see [23, Theorem 8.1], where λp is defined analogously to λq as follows

λp :=






1
2−2δ for some δ ∈ (0,1/2) when p ∈ (0,2/3] ,

p
2− p

when p ∈ (2/3,1) .

Note that aML is much smaller than aSL in most cases. This is clearly seen when
λq ≈ λp. However, in the extreme case where λq and λp are furthest apart, i.e, λq = 1
and λp ≈ 1/2, it is possible to come up with an example where aSL < aML: indeed,
we could take d = 1, τ = 2, q= 1 and p= 1/3, which yield aSL ≈ 1.75 while aML = 2
under k-orthogonality.

Now we compare with some multi-level MC and QMC works in the literature.
Sometimes “finite-dimensional noise” is assumed, a feature we can mimic by setting
p = q = 0 in our analysis, leading to aML = max(1/(1−δ ),d/τ). In [3,5,35], multi-
level MC FE methods for elliptic PDEs (1) were analyzed, however with the random
coefficient (2) being lognormal, i.e., the exponential of a stationary, Gaussian process.

In [26] a class of abstract multi-level QMC algorithms for infinite-dimensional
integration was introduced, with a general cost model for the evaluation of the inte-
grand function. The multi-level structure in that paper is different from ours: the key
difference being that our multi-level scheme must also incorporate the multi-level
structure of the FE discretizations. Also new is the necessity of considering ‘mixed’
regularity (in weighted reproducing kernel Hilbert spaces with respect to the param-
eter sequence yyy and in the smoothness scale Zt with respect to the spatial variable xxx).

In [2] a multi-level MC FE method with finite dimensional noise was analyzed.
It was shown there that in domains D ⊂ R2, a FE approximation of the expectation
of the random solution with the convergence rate O(hL) in the norm of V (rather than
for linear functionals of the solution) can be computed in O(MhL) = O(h−2

L ) work
and memory, i.e., with the same cost as one multi-level solution of the deterministic
problem.

4 Conclusion

This paper introduces a multi-level QMC FE method, applied to functionals of the
solution of the same PDE with random coefficient problem as considered by [6]. The
same problem was studied by the present authors in [23], where we developed a single
level QMC analysis which yielded the same error bounds as in [6] within the range
of convergence rates relevant to QMC. The aim of the present multi-level version
of the QMC approach is to develop a method which significantly reduces the costs,
while maintaining the fast convergence (compared to MC) associated with QMC. We
emphasize that the multi-level version requires a new analysis, and in particular leads
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to a new prescription for the POD weights (different from that in [23]) that determine
the QMC rule. Another difference is that the regularity requirements on the functions
ψ j are also more stringent than in the single level case.

The principal results for dimension d = 2 are as follows. In Scenario 1 where
k-orthogonality (28) holds, if we can choose t = t ′ = 1 so that τ = 2, and can choose
λ = 1/(2− 2δ ) for some δ ∈ (0,1/2), then the cost of the multi-level QMC FE al-
gorithm for computing the expectation of G(u) is O(22L/(1−δ )) =O(h2/(1−δ )

L ), while
the convergence rate is the (best possible) second order O(2−2L) = O(h2

L). This cor-
responds to optimal accuracy versus work bounds for the computation of solution
functionals in first order FE methods applied to deterministic, H2 regular, second
order elliptic problems (see, e.g. [4]). In contrast, multi-level MC FE methods such
as those analyzed in [3,5] cannot achieve optimal complexity for output functionals
for general, sufficiently regular covariances of the random field a(xxx,yyy), due to the
maximal convergence rate 1/2 of standard MC methods.

As noted earlier, our cost model does not include the pre-computation cost for
the CBC construction of lattice rules. This is justified because the same lattice rules
can be used for the PDE problem with different forcing terms f . However, as we are
tailoring the choice of weights to the problem, the cost of the CBC construction may
be a significant issue.

The present analysis was performed under Lipschitz assumptions on ψ j and ā
in (A4) and (A7) which, together with (A6) and the assumption that G(·) ∈ L2(D),
ensure in (6) that Z = (H1

0 ∩H2)(D) and, in turn, implies O(h2) convergence in (16).
The present convergence analysis extends directly to weaker assumptions: if in (A4)
and (A7) we have only Hölder continuity C0,r(D) for some 0 < r < 1 instead of
W 1,∞(D) regularity, or if D is not convex, then b̄ j in (35), (60) and (62) will depend
on ‖ψ j‖C0,r(D) rather than on ‖ψ j‖W 1,∞(D).

In Theorems 7 and 8 we considered only the weighted Sobolev space norm in-
volving mixed first derivatives with respect to yyy, but Theorem 6 holds for higher order
mixed derivatives. The results here can be extended by considering higher order QMC
methods, see e.g. [10, Chapter 15].

Finally, in our multi-level scheme we assumed that exact expectations E[·] with
respect to random shifts ∆∆∆ ! ∈ [0,1]s! are available. In practical realizations, these
expectations must be approximated by MC estimates Em! [·] based on a finite number
m! of i.i.d. realizations of the shift ∆∆∆ ! at discretization level != 0,1, ...,L. This leads
to a further error (E−Em!)[·] in term ! of (23) of order O(m−1

! ). We can maintain
our error-versus cost estimates in §3.7, with the same choices of paremters s! and
N!, by taking m! = m∗ independent of !, that is, a level-independent, fixed number of
random shifts ∆∆∆ ! for each level !.
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