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Switzerland



Sparse MCMC gpc Finite Element Methods for

Bayesian Inverse Problems

Viet Ha Hoang1, Christoph Schwab2 and Andrew M. Stuart3

1 Division of Mathematical Sciences, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore, 637371

E-mail: vhhoang@ntu.edu.sg
2 Seminar for Applied Mathematics, ETH, 8092 Zurich, Switzerland

E-mail: christoph.schwab@sam.math.ethz.ch
3 Mathematics Institute, Warwick University, Coventry CV4 7AL, UK.

E-mail: a.m.stuart@warwick.ac.uk

Abstract. Several classes of MCMC methods for the numerical solution of Bayesian
Inverse Problems for partial differential equations (PDEs) with unknown random
field coefficients are considered. A general framework for their numerical analysis
is presented. The complexity of MCMC sampling for the unknown fields from the
posterior density, as well as the convergence of the discretization error of the PDE
of interest in the forward response map, is analyzed. Particular attention is given
to bounds on the overall work required by the MCMC algorithms for achieving a
prescribed error level ε. We show that the computational complexity of straightforward
combinations of MCMC sampling strategies with standard PDE solution methods
is generally excessive. Two computational strategies for substantially reducing the
computational complexity of MCMC methods for Bayesian inverse problems prising
in PDEs are studied: a parametric, deterministic gpc-type (generalized polynomial
chaos) representation of the forward solution map of the PDE with uncertain
coefficients, which has been proposed and implemented in the engineering literature
(e.g. [17, 15, 16]); and a new Multi-Level Monte Carlo sampling strategy of the Markov
Chain (MLMCMC) with sampling from a multilevel discretization of the posterior
and a multilevel discretization of the forward PDE. We compare the computational
complexity of these gpc-MCMC and MLMCMC methods to that of the plain MCMC
method, and provide sufficient conditions on the regularity of the unknown coefficient
for both, the gpc-MCMC and MLMCMC method, to afford substantial complexity
reductions over the plain MCMC approach.



Sparse MCMC gpc Finite Element Methods for Bayesian Inverse Problems 2

1. Introduction

Many inverse problems arising in differential equations require determination of

unknown parameters u from finite dimensional data δ which we assume to be related by

δ = G(u) + ϑ . (1)

Here u, which we assume to belong to a function space, is an unknown input to a

differential equation and G is the “forward” mapping taking one instance of the input

u into a usually finite and noisy set of observations. We model these observations

mathematically as continuous linear functionals on the solution of the governing partial
differential equation. In (1), the parameter ϑ represents noise arising when observing

and we assume that this is a single realization of a centred GaussianN(0,Σ). A Bayesian

formulation of the inverse problem then leads to the problem of probing the probability

measure ρδ given by

dρδ

dρ
(u) ∝ exp(−Φ(u; δ)) , (2)

where

Φ(u; δ) =
1

2
|δ − G(u)|2Σ (3)

and | · |Σ = |Σ− 1
2 · | with | · | the Euclidean norm, and where ρ is a prescribed prior

probability measure.

The purpose of this paper is to analyze the computational complexity of several

Markov-Chain Monte-Carlo (MCMC) approaches to probing the distribution ρδ. These

methods will incur two principal sources of error. First, the sampling error arising from
estimating expectations conditional on given data δ by sample averages ofM realizations

of the unknown u, drawn from ρδ. The error in doing so will decay asM− 1
2 as the number

M of draws of u tends to∞. Second, the discretization error arising from approximation

of the system response for each draw of u, i.e. the error of approximating G(u). For

expository purposes, and to cover a wide range of discretization techniques, we assume

the discretization error to decay as N−a
dof , where Ndof is the total number of degrees of

freedom‡ and a > 0; and we assume that the work per step scales as N b
dof as Ndof → ∞

for some power b > 0 so that the total work necessary for M draws in the MCMC scales

as MN b
dof . If (as we show in the present paper) the constant in the mean square MCMC

error bound of order O(M− 1
2 ) is independent of Ndof , then a straightforward calculation

shows that the work to obtain error ε will grow asymptotically, as ε → 0, as ε−2−b/a.

The ratio b/a is thus crucial to the overall computational complexity of the algorithm.
In this paper, we develop three ideas to speed up MCMC-based algorithms for

Bayesian inversion in systems governed by partial differential equations. The first

idea, which underlies the preceding expository calculation concerning complexity, is

that MCMC methods can be constructed whose convergence rate is independent of the

number of degrees of freedom Ndof used in the approximation of the forward map; the

‡ logarithmic corrections also occur, and will be detailed explicitly in later sections
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key idea here is to use MCMC algorithms which are defined on function spaces, as

overviewed in [23] and to use Galerkin discretizations of the forward map which employ

Riesz bases in these function spaces. The second idea is that sparse, deterministic

parametric representations of the forward map u %→ G(u), as in [3, 21, 4], can significantly

reduce b/a and allow, therefore, for reducing computational complexity, as the sparse

approximation of G can be precomputed prior to running the Markov chain, thereby
decreasing the constant b [17, 15, 16]. The third idea is that the sparse representation

of the forward map can be truncated adaptively at different discretization levels of the

physical system of interest. Then, we propose a multilevel Monte Carlo acceleration of

the MCMC method in the spirit of [9] and prove that this allows further improvement

of the computational complexity.

The paper is organized as follows. In Section 2 we discuss the Bayesian formulation
of inverse problems and describe and analyze an MCMC method which is defined on

metric spaces. Section 3 is devoted to the specific elliptic inverse problem which we study

for illustrative purposes. In section 4 we study what we term the standard MCMC

method where the forward map G(·) is computed at each step of the Markov chain.

Section 5 is concerned with showing that the complexity of MCMC can be reduced if

we precompute a parametric representation of the forward map G prior to running the
Markov chain, and simply evaluate it at each step of the chain, leading to the improved

MCMC method. Finally, in Section 6, we combine this idea to further improve the

efficiency of the MCMC algorithm. To this end, we employ the hierarchic nature of the

gpc-Finite Element Galerkin discretizations. We combine discretizations on multiple

levels % = 0, 1, ..., L and combine these judiciously with a level dependent sample size

M". We show that this leads to a multilevel MCMC-gpcFE method that can significantly

improve the overall algorithmic complexity under certain assumptions.
We will use standard notation: Bk denotes the sigma algebra of Borel subsets of

Rk. For a probability space (Ω,A, ρ) consisting of the set Ω of elementary events, a

sigma algebra A and a probability measure ρ, and a separable Hilbert space H with

norm ‖ · ‖H and for a summability exponent 0 < p ≤ ∞ we denote by Lp(Ω, ρ;H) the

Bochner space of strongly measurable mappings from Ω to H which are p-summable.

Because of the various discretizations employed, and in particular the multi-level
structure of some of these, it will be helpful to the reader to have a clear overview of the

notation used to describe the range of probability spaces which arise, both through the

Bayesian formulation of the inverse problem, and the Markov chains used to probe

it. We now give such an overview. Throughout the paper, we denote by Eµ the

expectation with respect to a probability measure µ on the subspace U containing the

unknown function u. In the following we will finite-dimensionalize both the subspace
U , in which the unknown function u lies, and the space containing the response of

the forward model. The parameter J denotes the truncation level of the coefficient

expansion (15) used for the unknown function, and the parameter l denotes the spatial

finite element discretization level introduced in section 4. The parameters N and L
denote the cardinality of the set of the chosen active gpc coefficients and the set of



Sparse MCMC gpc Finite Element Methods for Bayesian Inverse Problems 4

finite element discretization levels for these coefficients in section 5. The measure µ will

variously be chosen as the prior ρ, the posterior ρδ, and various approximations of the

posterior such as ρJ,l,δ.

We denote by Pu(0) , PJ,l
u(0) and PN,L

u(0) probability measures on the probability space

generated by the MCMC processes detailed in the following, when conditioned on the

initial point u(0). The acceptance probability for the Metropolis-Hastings Markov chain
is defined as α in (6), αJ,l in (31), and αN,L in (44) for the problems on the full

infinite dimensional space and its truncations. We then denote by Eu(0), EJ,l
u(0) and EN,L

u(0)

expectation with respect to Pu(0) , PJ,l
u(0) and PN,L

u(0) respectively.

If the initial point u(0) of these Markov chains is distributed with respect to an

initial probability measure µ on U , then we denote the probability measure on the space

that describes these Markov chains by Pµ, Pµ,J,l and Pµ,N,L, and the corresponding
expectation accordingly by Eµ, Eµ,J,l and Eµ,N,L.

Finally, in Section 6, we will work with the probability measure PL, on the space

that generates a sequence of uncorrelated Markov chains created by the multilevel-

MCMC procedure, and with EL, the expectation with respect to this probability

measure. The definition of these measures will be given at the beginning of Section

6.

2. Bayesian inverse problems in measure spaces

On a measurable space (U,Θ) where Θ is a σ-algebra consider a measurable map

G : U → (Rk,Bk). The data δ is assumed to be an observation of G subject to an

unbiased observation noise ϑ:

δ = G(u) + ϑ.

We assume that ϑ is a centred Gaussian with law N(0,Σ). Let ρ be a prior probability

measure on (U,Θ). Our purpose is to determine the conditional probability P(u|δ) on
(U,Θ). The following result holds.

Proposition 1 Assume that G : U → Rk is measurable. The posterior measure

ρδ(du) = P(du|δ) given data δ is absolutely continuous with respect to the prior measure

ρ(du) and has the Radon-Nikodym derivative (2) with Φ given by (3).

This result is established in Cotter et al.[8] and Stuart [23]. Though the setting in [8]

and [23] is in a Banach space X , the proofs of Theorem 2.1 in [8] and Theorem 6.31 of
[23] hold for any measurable spaces as long as the mapping G is measurable.

To study the well-posedness of the posterior measures, that is continuity with

respect to changes in the observed data, we use the Hellinger distance, as in Cotter

et al. [8]; see below for the definition. In that paper it is proved that when U is a

Banach space, if the prior measure ρ is Gaussian, and under the conditions that Φ

grows polynomially with respect to u, and is locally Lipschitz with respect to u fixing
y and with respect to y fixing u, in the second case with Lipschitz constant which also
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grows polynomially in u, then the posterior measure given the data δ, i.e. ρδ, is locally

Lipschitz in the Hellinger distance dHell:

dHell(ρ
δ, ρδ

′
) ≤ c|δ − δ′| ,

where (recall) | · | denotes the Euclidean distance in Rk. The Fernique theorem plays an

essential role in the proofs, exploiting the fact that polynomially growing functions are

integrable with respect to Gaussians. In this section, we extend this result to measurable

spaces under more general conditions than those in Assumption 2.4 of Cotter et al. [8];

in particular we do not assume a Gaussian prior. We make the following assumption
concerning the local boundedness, and locally Lipschitz dependence of Φ on δ.

Assumption 2 Let ρ be a probability measure on the measure space (U,Θ). The

function Φ : U × Rk → R satisfies:

(i) for each r > 0, there is a constant M(r) > 0 and a set U(r) ⊂ U of positive ρ

measure such that for all u ∈ U(r) and for all δ such that |δ| ≤ r

0 ≤ Φ(u; δ) < M(r);

(ii) there is a mapping G : R×U %→ R such that for each r > 0, G(r, ·) ∈ L2(U, ρ); and

for every |δ|, |δ′| ≤ r holds

|Φ(u; δ)− Φ(u; δ′)| ≤ G(r, u)|δ − δ′| .

Under Assumption 2, the definition (2) of the posterior measure ρδ is meaningful as we

now demonstrate.

Proposition 3 Under Assumption 2, the measure ρδ depends locally Lipschitz

continuously on the data δ with respect to the Hellinger metric: for each positive constant

r there is a positive constant C(r) such that if |δ|, |δ′| ≤ r, then

dHell(ρ
δ, ρδ

′
) ≤ C(r)|δ − δ′| .

Proof Throughout this proofK(r) denotes a constant depending on r, possibly changing
from instance to instance. The normalization constant in (2) is

Z(δ) =

∫

U

exp(−Φ(u; δ))dρ(u) . (4)

We first show that for each r > 0, there is a positive constant K(r) such that
Z(δ) ≥ K(r) when |δ| ≤ r. From (4) and Assumption 2(i) it follows that, that when

|δ| ≤ r,

Z(δ) ≥ ρ(U(r)) exp(−M(r)) > 0 . (5)

Using the inequality | exp(−x)− exp(−y)| ≤ |x− y| which holds for x, y ≥ 0 we find

|Z(δ)− Z(δ′)| ≤
∫

U

|Φ(u; δ)− Φ(u; δ′)|dρ(u) .

From Assumption 2(ii),

|Φ(u; δ)− Φ(u; δ′)| ≤ G(r, u)|δ − δ′| .



Sparse MCMC gpc Finite Element Methods for Bayesian Inverse Problems 6

As G(r, u) is ρ-integrable, there is K(r) such that

|Z(δ)− Z(δ′)| ≤ K(r)|δ − δ′| .

The Hellinger distance satisfies

2dHell(ρ
δ, ρδ

′
)2 =

∫

U

(

Z(δ)−1/2 exp(−
1

2
Φ(u; δ)) − Z(δ′)−1/2 exp−

1

2
Φ(u; δ′)

)2
dρ(u)

≤ I1 + I2,

where

I1 =
2

Z(δ)

∫

U

(

exp(−
1

2
Φ(u; δ))− exp(−

1

2
Φ(u; δ′))

)2
dρ(u),

and

I2 = 2|Z(δ)−1/2 − Z(δ′)−1/2|2
∫

U

exp(−Φ(u; δ′))dρ(u).

Using again | exp(−x)− exp(−y)| ≤ |x− y|, we have, for constant K(r) > 0,

I1 ≤ K(r)

∫

X

|Φ(u; δ)− Φ(u; δ′)|2dρ(u)

≤
∫

X

(G(r, u))2dρ(u)|δ − δ′|2 ≤ K(r)|δ − δ′|2 .

Furthermore,

|Z(δ)−1/2 − Z(δ′)−1/2|2 ≤ K(r)|Z(δ)− Z(δ′)|2 ≤ K(r)|δ − δ′|2 .

The conclusion follows. !

We now introduce a Metropolis-Hastings MCMC method designed to be reversible

and ergodic with respect to the posterior measure ρδ: to this end, given data δ, we

define for any u, v ∈ U

α(u, v) = 1 ∧ exp(Φ(u, δ)− Φ(v, δ)) . (6)

The Markov chain {u(k)}∞k=1 ⊂ U is then constructed as follows: given the current state

u(k), we draw a proposal v(k) independently of u(k) from the prior measure ρ appearing in

(2). Let {w(k)}k≥1 denote an i.i.d sequence with w(1) ∼ U [0, 1] and with w(k) independent

of both u(k) and v(k). We then determine the next state u(k+1) via the formula

u(k+1) = 1(α(u(k), v(k)) ≥ w(k))v(k) +
(

1− 1(α(u(k), v(k)) ≥ w(k))
)

u(k) .(7)

Thus we choose to move from u(k) to v(k) with probability α(u(k), v(k)), and to remain

at u(k) with probability 1 − α(u(k), v(k)). We claim that (7) defines a Markov chain

{u(k)}∞k=0 which is reversible with respect to ρδ. To see this let ν(du, dv) denote the

product measure ρδ(du)⊗ ρ(dv) and ν†(du, dv) = ν(dv, du). Note that ν describes the

probability distribution of the pair (u(k), v(k)) on U ×U when u(k) is drawn from ρδ, and
ν† designates the same measure with the roles of u and v reversed. These two measures

are equivalent (as measures) if ρδ and ρ are equivalent, and then

dν†

dν
(u, v) = exp(Φ(u; δ)− Φ(v; δ)) , (u, v) ∈ U × U . (8)
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From Proposition 1 and Theorem 2 in [24] we deduce that (7) is a Metropolis-

Hastings Markov chain which is ρδ reversible, since α(u, v) given by (6) is equal to

min{1, dν†dν (u, v)}. Since v
(k) is chosen independently of the current state u(k) the Markov

chain is, in fact, an independence sampler. We now give sufficient conditions which

render the Markov chain ergodic.

Theorem 4 Let Assumption 2 hold with U(r) = U . Then ρδ is equivalent to ρ so that

the Markov chain (7) is well-defined and reversible with respect to ρδ. If p(u,A) denotes

the transition kernel for the Markov chain, and pn(u,A) its nth iterate, then for all
n ∈ N,

‖pn(u,A)− ρδ‖TV ≤ 2(1− exp(−M(r)))n .

For every bounded, continuous function g : U → R, there holds, Pu(0) almost surely,

1

M

M
∑

k=1

g(u(k)) = E
ρδ [g(u)] + cξMM− 1

2 (9)

where ξM is a sequence of random variables which converges weakly as M → ∞ to

ξ ∼ N(0, 1) and where c is a positive constant which depends only on M(r) and on

supu∈U |g(u)|. Furthermore, we have the mean square error bound

(

Eρ
[
∣

∣

∣
E
ρδ [g(u)]−

1

M

M
∑

k=1

g(u(k))
∣

∣

∣

2])1/2

≤ CM−1/2 .

Proof Equivalence of ρδ and ρ follows since the negative of the log-density is bounded

from above and below, uniformly on U :

0 ≤ Φ(u) ≤ M(r) ∀u ∈ U . (10)

Using these bounds and (6) it also follows that the proposed random draw from ρ has
probability greater than exp(−M(r)) of being accepted. Thus

p(u,A) ≥ exp(−M(r))ρ(A) ∀u ∈ U.

The first result follows from [18], Theorem 16.2.4 with X = U. The second result follows

from [18], Theorem 17.0.1. To see that c in (9) is bounded by a constant that depends

only on M(r) and supu∈U |g(u)|, we note that it is given by

c2 = Eρδ |ḡ(u(0))|2 + 2
∞
∑

n=1

Eρδ [ḡ(u(0))ḡ(u(n))] (11)

where the function ḡ is defined as ḡ = g − Eρδ(g). Now

2
∞
∑

n=0

Eρδ [ḡ(u(0))ḡ(u(n))] ≤ 2 sup
u

|ḡ(u)|Eρδ
∞
∑

n=0

|Eu(0)[ḡ(u(n))]|

≤ 2 sup
u

|ḡ(u)|Eρδ
∞
∑

n=0

|Eu(0)[g(u(n))]− E
ρδ [g]|

≤ 4 sup
u

|ḡ(u)|2
∞
∑

n=0

(1− exp(−M(r)))n .
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For the mean square approximation, using the stationarity of the Markov chain

conditioned to start in U 0 u(0) ∼ ρδ, we have

1

M
Eρδ

[
∣

∣

∣

M
∑

k=1

ḡ(u(k))
∣

∣

∣

2]

= E
ρδ [ḡ(u(0))2] + 2

1

M

M
∑

k=1

M
∑

j=k+1

Eρδ [ḡ(u(k))ḡ(uj)]

= E
ρδ [ḡ(u(0))2] + 2

1

M

M−1
∑

k=0

M−k
∑

j=1

Eρδ [ḡ(u(0))ḡ(u(j))]

= E
ρδ [ḡ(u(0))2] + 2

1

M

M−1
∑

k=0

M−k
∑

j=1

E
ρδ [ḡ(u(0))Eu(0)[ḡ(u(j))]]

≤ E
ρδ [ḡ(u(0))2]

+ 2
1

M

M−1
∑

k=0

sup
u

|ḡ(u)|
M−k
∑

j=1

E
ρδ [|Eu(0)[g(u(j))]− E

ρδ [g]|]

≤ E
ρδ [ḡ(u(0))2] + 4

1

M

M−1
∑

k=0

sup
u

|ḡ(u)|2
M−k
∑

j=1

(1− exp(−M(r)))j

≤ E
ρδ [ḡ(u(0))2] + 4 sup

u
|ḡ(u)|2

∞
∑

j=1

(1− exp(−M(r)))j,

which is clearly bounded uniformly with respect to M . Thus we have shown that there

exists C > 0 such that

Eρδ
[
∣

∣

∣

1

M

M
∑

k=1

ḡ(u(k))
∣

∣

∣

2]

≤
C

M
.

It remains to show that the expectation with respect to the unknown posterior ρδ can

be replaced by an expectation with respect to the prior measure ρ.

To this end we note that

Eρ
[
∣

∣

∣

M
∑

k=1

ḡ(u(k))
∣

∣

∣

2]

=

∫

U

Eu(0)

[
∣

∣

∣

M
∑

k=1

ḡ(u(k))
∣

∣

∣

2]

dρ(u(0))

=

∫

U

Eu(0)

[
∣

∣

∣

M
∑

k=1

ḡ(u(k))
∣

∣

∣

2] dρ

dρδ
(u(0))dρδ(u(0))

≤ Eρδ
[
∣

∣

∣

M
∑

k=1

ḡ(u(k))
∣

∣

∣

2]

Z(δ) sup
u∈U

[

exp(Φ(u; δ))
]

.

As Z(δ) ≤ 1 and Φ(·; δ) is assumed to be bounded uniformly, we deduce that

Eρ
[
∣

∣

∣

1

M

M
∑

k=1

ḡ(u(k))
∣

∣

∣

2]

≤
C

M
,

for a constant C independent of M . The conclusion then follows. !

Remark 5 A key observation in the previous theorem is that all constants depend only

on M(r) and on the supremum of g. Hence, if we can show for finite element and
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Karhúnen-Loève approximations of our forward map G in the physical domain D that

we obtain uniform upper bounds on our approximation of Φ, then the conclusions of the

preceding theorem will hold with constants that are uniformly bounded with respect to

the approximation parameters.

3. Model Elliptic Inverse Problem

In the remainder of this paper, we develop the previously outlined abstract ideas for

a specific class of model elliptic inverse problems where the unknown parameter is the

diffusion coefficient and where each realization of the observed data comprises finitely

many continuous, linear functionals of the forward solution. However we hasten to

add that a similar analysis is possible for other PDE inverse problems. For example,

for linear parabolic or second order hyperbolic PDEs, the analysis of the parametric
forward problems, central to the approach developed herein, is available in [13, 14].

We start by discussing the forward problem of elliptic PDEs with random

coefficients, enabling the construction of a prior measure on an infinite dimensional

space of unknown coefficients. We then show how this prior may be combined with

properties of the forward solution map to obtain a well-defined inverse problem.

3.1. A Class of Elliptic Problems With Random Coefficients

Let D be a bounded Lipschitz domain in Rd. For f ∈ L2(D), we consider the elliptic

problem

−∇ · (K(x,ω)∇P (x,ω)) = f(x) in D, P = 0 on ∂D . (12)

Throughout we assume that the domainD is a convex polyhedron with plane sides. The

coefficient K(x,ω) is a random field from the probability space (Ω,Ξ,P) to L∞(D). We

assume that the random coefficient K(x,ω) can be represented by a sequence of pairwise

uncorrelated independent random variables uj : Ω → [−1, 1] in the series expansion

K(x,ω) = K̄(x) +
∑

j≥1

uj(ω)ψj(x) . (13)

Here, the sum is either finite or infinite. To render (13) meaningful, we impose the

following assumptions on K̄ and ψj .

Assumption 6 The functions K̄ and ψj in (13) are in L∞(D) and there exists a

positive constant κ such that
∑

j≥1

‖ψj‖L∞(D) ≤
κ

1 + κ
K̄min,

where K̄min = essinfxK̄(x) > 0.

It follows from this assumption that there exist finite positive constants Kmin and Kmax

such that for all ω ∈ Ω

Kmin ≤ K(x,ω) ≤ Kmax, ∀ x ∈ D. (14)
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In particular we may chooseKmin = K̄min/(1+κ) andKmax = esssupxK̄(x)+κK̄min/(1+

κ).

We denote by U = [−1, 1]N the set of all sequences u = (uj)j≥1 of coordinates

uj taking values in [−1, 1] and note that this is the unit ball in %∞(N). We equip the

parameter domain U with the product sigma algebra Θ =
⊗∞

j=1 B([−1, 1]). On the

measurable space (U,Θ) thus obtained, we define the countable product probability
measure

ρ =
⊗

j≥1

duj

2
,

where duj is the Lebesgue measure on [−1, 1]. As uj are uniformly distributed on

[−1, 1], the measure ρ is the law of the random vector u = (u1, u2, . . .) in U . As random
variables uj(ω) in the sequence u were assumed independent, the probability measure

on realizations of random vectors u ∈ U is a product measure: for S =
∏

j≥1 Sj,

ρ(S) =
∏

j≥1

P({ω : uj ∈ Sj}) .

For each u ∈ U , we define the parametric, deterministic coefficient function

K(x, u) = K̄(x) +
∑

j≥1

ujψj(x) . (15)

Due to Assumption 6, for any u ∈ U the series (15) converges in L∞(D). Therefore, for

each u ∈ U , we consider the model parametric, deterministic diffusion problem in D

−∇ · (K(x, u)∇P (x, u)) = f(x) in D, P = 0 on ∂D . (16)

We let V = H1
0 (D), whilst V ∗ denotes its’ dual space. We equip V with the norm

‖P‖V = ‖∇P‖L2(D). By (13), K(x, u) is bounded below uniformly with respect to

(x, u) ∈ D × U and we infer for every u ∈ U

Kmin‖P (·, u)‖2V = Kmin(∇P (·, u),∇P (·, u)) ≤ (K(·, u)∇P (·, u),∇P (·, u))

= (f, P (·, u)) ≤
‖f‖V ∗

Kmin
‖P (·, u)‖V .

It follows that

sup
u∈U

‖P (·, u)‖V ≤
‖f‖V ∗

Kmin
. (17)

The solution P (·, u) of (16) is the law of the solution P (·,ω) of the equation (12)

as the following result shows.

Proposition 7 Under Assumption 6, the solution P : U %→ V = H1
0 (D) is Lipschitz

when viewed as a mapping from the unit ball in %∞(N) to V . It is in particular

measurable, as a mapping from the measurable space (U,Θ) to (V,B(V )).

Proof From (16), we have for every φ ∈ V
∫

D

K(x, u)(∇P (x, u)−∇P (x, u′)) ·∇φ(x)dx

=

∫

D

(K(x, u′)−K(x, u))∇P (x, u′) ·∇φ(x)dx . (18)
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Again using (14), i.e. that K(x, u) is bounded below uniformly with respect to

(x, u) ∈ D × U , it follows that there exists C > 0 such that for all u ∈ U

‖P (·, u)− P (·, u′)‖V ≤ C‖P (·, u)‖V ‖K(·, u′)−K(·, u)‖L∞(D) . (19)

Due to (17), it follows from (19) that there exists a constant C > 0 such that

∀u ∈ U : ‖P (·, u)− P (·, u′)‖V ≤ C‖K(·, u′)−K(·, u)‖L∞(D) . (20)

From (13) and Assumption 6 it follows with C > 0 as in (20) that

‖P (·, u)− P (·, u′)‖V ≤ C
∑

≥1

|uj − u′
j|‖ψj‖L∞(D)

≤ C‖u− u′‖"∞(N)

∑

j≥1

‖ψj‖L∞(D)

≤ C
κ

1 + κ
K̄min‖u− u′‖"∞(N) .

This establishes the desired Lipschitz continuity, which implies the asserted

measurability. !

3.2. Bayesian Elliptic Inverse Problem

We now define the Bayesian inverse problem. For Oi ∈ V ∗, i = 1, . . . , k, which denote

k continuous, linear “observation” functionals on V , we define a map G : U → Rk as

U 0 u %→ G(u) := (O1(P (·, u)),O2(P (·, u)), . . . ,Ok(P (·, u))) ∈ R
k .

By ϑ we denote an unbiased noise which follows a Gaussian distribution N(0,Σ) in Rk.
We consider the observed data δ for G(u) subject to the noise ϑ, i.e.

δ = G(u) + ϑ

and define Φ as in (3). We take as prior on u the measure ρ defined in the preceding

subsection. The posterior measure on u given δ can be explicitly written.

Proposition 8 The conditional probability measure ρδ(du) = P(du|δ) on U satisfies

dρδ

dρ
∝ exp(−Φ(u; δ)) .

Furthermore, for δ, δ′ ∈ Rk such that |δ|, |δ′| ≤ r there exists C = C(r) > 0 such that

dHell(ρ
δ, ρδ

′
) ≤ C(r)|δ − δ′| .

Proof We have

∀u, u′ ∈ U : |G(u)− G(u′)| ≤ cmax
i

{‖Oi‖V ∗}‖P (·, u)− P (·, u′)‖V .

From (20) there exists a constant c > 0 such that

∀u, u′ ∈ U : |G(u)− G(u′)| ≤ c‖K(·, u)−K(·, u′)‖L∞(D) .

Proceeding as in the proof of Proposition 7, we deduce that G as map from U ⊂ %∞(N)

to Rk is Lipschitz and, hence, ρ-measurable. We then apply Proposition 1 to deduce

the existence of ρδ and the formula for its Radon-Nikodym derivative with respect to ρ.
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For the well-posedness of ρδ, we verify Assumption 2. For the function G(u) we

have

|G(u)| ≤ max
i

{‖Oi‖V ∗}‖P (·, u)‖V .

From (17) sup{|G(u)| : u ∈ U} < ∞. We note that for given data δ, there holds

∀u ∈ U : |Φ(u; δ)| ≤
1

2
(|δ|Σ + |G(u)|Σ)2

and hence, since |G(u)| is uniformly bounded in U , the set U(r) in Assumption 2(i) can

be chosen as U for all r. We have, for every u ∈ U ,

|Φ(u; δ)− Φ(u; δ′)| ≤
1

2
|〈Σ−1/2(δ + δ′ − 2G(u)),Σ−1/2(δ − δ′)〉|

≤
1

2
‖Σ−1/2‖2L(Rk,Rk)(|δ|+ |δ′|+ 2|G(u)|)|δ − δ′| .

Choosing the function G(r, u) in Assumption 2(ii) as

G(r, u) =
1

2
‖Σ−1/2‖2L(Rk,Rk)(2r + c),

for a sufficiently large constant c > 0, we have shown that Assumption 2(ii) holds. From

Proposition 3, we get the conclusion. !

Remark 9 In the the preceding proof we have shown that |G(u)| is uniformly bounded

for u in U . As a consequence there exists M(r) > 0 which is a uniform bound on Φ(u; δ)

for all |δ| ≤ r and for all u ∈ U . This bound is also uniform with respect to truncation

of the infinite series (13) for K, since this corresponds to a particular choice of some of

the coefficients of u ∈ U , and with respect to finite element approximation of the solution

of (16), since the uniform upper bound on |G(u)| will hold in finite element subspaces.

4. Standard MCMC

We study computational complexity of the MCMC method defined by (7) to sample the

conditional probability measure ρδ determined in the previous section. The complexity

results will be obtained here for the model scalar, elliptic inverse problem (12). We

mention again that analogous results (with identical proofs) hold for inverse problems
for general second order elliptic problems. While the complexity analysis of the MCMC

algorithm is of independent interest, the results in the present section will be the

foundation for several accelerations of the basic MCMC algorithm presented in Sections

5 and 6 ahead. In order to obtain a constructive version of the MCMC algorithm, we

will approximate solutions of the forward problem (12) by applying the Finite Element

Method in the physical domain D to its parametric version (16) and by truncation of
the polynomial expansion of the diffusion coefficient K given by (13). To obtain error

bounds for the Finite Element discretization of the parametric forward problem (16) in

the domain D, we require differentiability of the coefficient functions ψj(x) with respect

to the spatial variable x.
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Assumption 10 The functions K̄ and ψj in (13) are in W 1,∞(D) and
∑

j≥1

‖ψj‖W 1,∞(D) < ∞ .

Furthermore, we assume that there exist positive constants C and q such that for all

J ∈ N, the sequence {ψj} in (13) satisfies
∑

j>J

‖ψj‖L∞(D) < CJ−q .

Assumption 10 shall be imposed throughout what follows. From Assumption 10 and
from (15), we deduce that K(·, u) ∈ W 1,∞(D) for all u ∈ U .

4.1. FE Approximation of the Forward Problem

We describe an approximation of the forward problem based on finite element

representation of the solution P of (16), together with truncation of the series (15).
We start by discussing the finite element approximation. Recalling that the domain D

is a bounded Lipschitz polyhedron with plane sides, we denote by {T l}∞l=1 the nested

sequence of simplices which is defined inductively as follows: first we divide D into a

regular family T 0 of simplices; the set of regular simplices T l is determined by dividing

each simplex in T l−1 into 2d subsimplices. Based on these triangulations, we define a

nested multilevel family of spaces of continuous, piecewise linear functions on T l as

V l = {u ∈ V : u|T ∈ P1(T ) ∀T ∈ T l},

where P1(T ) denotes the set of linear polynomials in the simplex T ∈ T l. Approximating

the solution of the parametric, deterministic problem (16) from the finite element

spaces V l introduces a discretization error which is well-known to be bounded by the
approximation property of the V l: there exists a positive constant C > 0 which is

independent of l such that for all P ∈ W = (H2 ∩ H1
0 )(D) and for every 0 < hl ≤ 1

holds

inf
Q∈V l

‖P −Q‖V ≤ Chl‖P‖H2(D), (21)

where hl = O(2−l) = max{diam(T ) : T ∈ T l} is the mesh width of triangulation T l and

where the constant C > 0 depends only on the shape regularity of T l.

To bound the cost of the Finite Element discretization, we assume in the following

that the union of all Finite Element basis functions wl
j of the spaces V l = span{wl

j : j =
1, ..., Nl}, l = 0, 1, 2, ..., constitutes a Riesz basis in V . We remark that such bases are

available in two and three dimensional polyhedral domains (see, e.g., [20]) (the following

assumption of availability of V -stable Riesz bases is made for convenience, and may also

be replaced by the availability of a linear complexity, optimal preconditioning, such as

a BPX preconditioner).

Assumption 11 (Riesz Basis Property in V ) For each l ∈ N0 there exists a set of

indices I l ⊂ Nd of cardinality Nl = O(2ld) and a family of basis functions wl
k ∈ H1

0 (D)
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indexed by a multi-index k ∈ I l such that V l = span{wl
k : k ∈ I l}, and there exist

constants c1 and c2 which are independent of the discretization level l such that if w ∈ V l

is written as w =
∑

k∈Il c
l
kw

l
k ∈ V l, then

c1
∑

k∈Il

|clk|2 ≤ ‖w‖2V ≤ c2
∑

k∈Il

|clk|2 .

Multiscale Finite Element bases entail, in general, larger supports than the standard,

single scale basis functions which are commonly used in the Finite Element Method,

which implies that the stiffness matrices in these bases have additional nonzero entries,

as compared to O(dimV l) = O(2dl) many nonzero entries of the stiffness matrices that
result when one-scale bases, such as the hat functions, are used.

To bound the number of nonzero entries, we shall work under

Assumption 12 (Support overlap) For all l ∈ N0 and for every k ∈ I l, for every

l′ ∈ N0 the support intersection supp(wl
k) ∩ supp(wl′

k′) has positive measure for at most

O(max(1, 2l
′−l)) values of k′.

We now discuss the effect of dimensional truncation, ie. of truncating the infinite series

for the coefficient K of problem (16) after J terms, as

KJ(x, u) = K̄(x) +
J

∑

j=1

ujψj(x) . (22)

To this end, we consider the approximating diffusion problem

−∇ · (KJ (x, u)∇P J(x, u)) = f(x), P J = 0 on ∂D . (23)

From (19), there exists a constant C > 0 such that J ∈ N and all u ∈ U

supu∈U ‖P (·, u)− P J(·, u)‖V ≤ C‖P (·, u)‖V ‖K(·, u)−KJ(·, u)‖L∞(D)

≤ C‖P (·, u)‖V J−q ≤ C
Kmin

J−q‖f‖V ∗ .
(24)

To bound the error incurred by Finite Element discretization, we require regularity of

P (·, u). Assumption 10 implies the following regularity results.

Proposition 13 If D is convex and f ∈ L2(D), and if Assumption 10 holds, then, for

every u ∈ U , the solution P J(·, u) of (23) belongs to the space W := H2(D) ∩ H1
0 (D)

and there exists a positive constant C > 0 such that

sup
J∈N

sup
u∈U

‖P J(·, u)‖W ≤ C‖f‖L2(D) .

Proof By (14), KJ(x, u) ≥ Kmin > 0 and we may rewrite the PDE in (23) as

−∆P J(x, u) =
1

KJ(x, u)
(f(x) +∇KJ(x, u) ·∇P J(x, u)).

By our assumptions, the right hand side is uniformly bounded with respect to u ∈ U in

the space L2(D). As the domain D is convex, we deduce that P J are uniformly bounded

with respect to J and u ∈ U in the space W : it holds

supu∈U ‖∆P J(·, u)‖L2(D) ≤
1

Kmin
sup
u∈U

sup
J≥1

[

‖f‖L2(D) + ‖KJ(·, u)‖W 1,∞(D)‖P J(·, u)‖V
]

≤ C < ∞ .
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The desired, uniform (w.r. to J and l) bound in the W norm then follows from the

W 1,∞(D)-summability of the ψj implied by Assumption 10, the L2 bound on ∆u and

(17). !

Finally, we consider the finite element approximation of the truncated problem (23):

given J, l ∈ N, find P J,l(·, u) ∈ V l such that
∫

D

KJ(x, u)∇P J,l(x, u) ·∇φ(x)dx =

∫

D

f(x)φ(x)dx, ∀φ ∈ V l . (25)

By the uniform positivity (14) of KJ(x, u), the following error estimate holds:

‖P J(·, u)− P J,l(·, u)‖V ≤ C2−l‖P J(·, u)‖W . (26)

Therefore combining (24) and (26) and repeating the argument in the proof of (17),

we obtain:

Proposition 14 Consider the approximation of the elliptic problem (12) via the gpc

finite element solution of the truncated problem (23), under Assumptions 6, 10 and 11.

Then there exists a constant C > 0 such that for every J, l ∈ N and for every u ∈ U it
holds that

sup
u∈U

‖P (·, u)− P J,l(·, u)‖V ≤ C(2−l‖P J(·, u)‖W + J−q‖P (·, u)‖V ) . (27)

Moreover, the Finite Element solutions P J,l(·, u) are V -stable in the sense that

sup
J,l∈N

sup
u∈U

‖P J,l(·, u)‖V ≤
C

Kmin
‖f‖V ∗ . (28)

4.2. FE Approximation of the Posterior Measure

We denote the vector of observables from the discretized parametric system’s forward

solution map by

GJ,l(u) = (O1(P
J,l(u)), . . . ,Ok(P

J,l(u))) : U %→ R
k

and define the function

ΦJ,l(u; δ) =
1

2
|δ − GJ,l(u)|2Σ . (29)

We define an approximate conditional posterior probability measure ρJ,l,δ on the

measurable space (U,Θ) as

dρJ,l,δ

dρ
∝ exp(−ΦJ,l(u; δ)) .

The measure ρJ,l,δ is an approximation of ρδ, with error in the Hellinger metric which

scales with J and l as the forward error in Proposition 14. We show this in the following
Proposition whose proof generalizes the method introduced in [8].

Proposition 15 If the domain D is convex and if f ∈ L2(D), there exists a positive

constant c depending only on the data δ such that

dHell(ρ
δ, ρJ,l,δ) ≤ c(δ)(J−q + 2−l)‖f‖L2(D) .
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Proof We denote the normalizing constants as

Z(δ) =

∫

U

exp(−Φ(u; δ))dρ(u), ZJ,l(δ) =

∫

U

exp(−ΦJ,l(u; δ))dρ(u) .

We then estimate

2dHell(ρ
δ, ρJ,l,δ)2

=

∫

U

(

Z(δ)−1/2 exp
(

−
1

2
Φ(u; δ)

)

− (ZJ,l(δ))−1/2 exp
(

−
1

2
ΦJ,l(u; δ)

))2
dρ(u)

≤ I1 + I2,

where we defined

I1 :=
2

Z(δ)

∫

U

(

exp
(

−
1

2
Φ(u; δ)

)

− exp
(

−
1

2
ΦJ,l(u; δ)

))2
dρ(u),

I2 := 2|Z(δ)−1/2 − ZJ,l(δ)−1/2|2
∫

U

exp(−ΦJ,l(u; δ))dρ(u) .

We estimate I1 and I2. To bound I1, given data δ, for every u ∈ U holds
∣

∣

∣
exp

(

−
1

2
Φ(u; δ)

)

− exp
(

−
1

2
ΦJ,l(u; δ)

)
∣

∣

∣
≤

1

2
|Φ(u; δ)− ΦJ,l(u; δ)|

≤ c(2|δ|+ |G(u)|+ |GJ,l(u)|)|G(u)− GJ,l(u)| . (30)

Moreover, by Proposition (14), there exists a constant C > 0 independent of J and of l
such that, for all u ∈ U , there holds

|G(u)− GJ,l(u)| ≤ Cmax{‖Oi‖V ∗}‖P (·, u)− P J,l(·, u)‖V
≤ C(2−l‖P J(·, u)‖W + J−q‖P (·, u)‖V ) .

By (17) and Proposition 13, ‖P (·, u)‖V and ‖P J(·, u)‖W are uniformly bounded with

respect to u ∈ U , so that

I1 ≤ c(δ)Eρ(2−l‖P J(·, u)‖W + J−q‖P (·, u)‖V )2

≤ c(δ)(J−2q‖f‖2V ∗ + 2−2l‖f‖2L2(D)) .

To estimate term I2, we observe that there is a positive constant c > 0 such that for

every J, l ∈ N holds

|Z(δ)−1/2 − ZJ,l(δ)−1/2|2 ≤ c(Z(δ)−3 ∨ ZJ,l(δ)−3)|Z(δ)− ZJ,l(δ)|2 .

We note that

|Z(δ)− ZJ,l(δ)| ≤
∫

U

| exp(−Φ(u; δ))− exp(−ΦJ,l(u; δ))|dρ(u)

≤
∫

U

|Φ(u; δ)− ΦJ,l(u; δ)|dρ(u) .

Therefore, as Z(δ) and ZJ,l(δ) are uniformly bounded below for all δ, analysis similar

to that for I1 shows that

I2 ≤ c(2−2l + J−2q)‖f‖2L2(D).

Thus

dHell(ρ
δ, ρJ,l,δ) ≤ c(δ)(2−l + J−q)‖f‖L2(D) .

!
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4.3. Computational Complexity of Standard MCMC

Given J, l ∈ N, and data δ, we use the MCMC method (7) to sample the probability
measure ρJ,l,δ. In so doing we create a method for approximating integrals of functions

g : U → R with respect to ρδ. We use the following notation for the empirical measure

generated by the Markov chain designed to sample ρJ,l,δ:

EρJ,l,δ

M [g] :=
1

M

M
∑

k=1

g(u(k)),

where the Markov chain (u(k))k∈N is generated from the process (7) with the acceptance

probability being replaced by

αJ,l(u, v) = 1 ∧ exp(ΦJ,l(u; δ)− ΦJ,l(v; δ)) , (u, v) ∈ U × U . (31)

Given M ∈ N we wish to estimate the MC sampling error

E
ρδ [g]− EρJ,l,δ

M [g] . (32)

We develop in the following two types of error bounds asM → ∞ for (32): a probabilistic
error bound for PJ,l

u(0) almost every realization of the Markov chain and a mean square

bound.

Proposition 16 Let g : U → R be a bounded continuous function on U with respect to

the supremum norm. Then, for every initial condition u(0) and for PJ,l
u(0)-almost every

realization of the Markov chain holds the error bound
∣

∣

∣
E
ρδg(u)−EρJ,l,δ

M [g]
∣

∣

∣
≤ c1M

− 1
2 + c2(J

−q + 2−l)

where c1 ≤ c3|ξM |, ξM is a random variable (on the probability space generating the

randomness within the Markov chain) which converges weakly as M → ∞ to ξ ∼ N(0, 1)

and c2 is a non-random constant independent of M,J and l.

Moreover, there exists a constant c4 (which is deterministic and depends only on
the data δ, and which is, in particular, independent of J ,l) such that

(

Eρ,J,l
[
∣

∣

∣
E
ρδ [g]− EρJ,l,δ

M [g]
∣

∣

∣

2 ])1/2

≤ c4(M
−1/2 + J−q + 2−l) (33)

Here, the constant q > 0 is as in Assumption 10.

Proof As g is bounded, we have from Proposition 15 and properties of the Hellinger

metric (specifically, from (2.7) in [8]) for every u ∈ U that

|Eρδg(u)− E
ρJ,l,δg(u)| ≤ c̄(g)dHell(ρ

δ, ρJ,l,δ) ≤ c̄(g)c(δ)(J−q + 2−l) . (34)

Here, c(δ) is as in Proposition 15 and c̄(g) depends on the supremum of g(u) over U , but

is independent of J, l. By Theorem 4 (and Remarks 5 and 9) we deduce the existence

of a constant C > 0, independent of M,J and l, such that

|EρJ,l,δg −
1

M

M
∑

k=1

g(u(k))| ≤ C|ξM |M−1/2
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where ξM converges weakly as M → ∞ to ξ ∼ N(0, 1). Combining this with (34) gives

the first assertion.

To prove the mean square error bound (33), we define

ḡ(u) := g(u)− E
ρJ,l,δ [g] .

Due to the invariance of the stationary measures ρJ,l,δ, we may write

1

M
EρJ,l,δ,J,l

[
∣

∣

∣

M
∑

k=1

ḡ(u(k))
∣

∣

∣

2]

= E
ρJ,l,δ [ḡ(u(0))2] + 2

1

M

M
∑

k=1

M
∑

j=k+1

EρJ,l,δ,J,l[ḡ(u(k))ḡ(uj)]

= E
ρJ,l,δ [ḡ(u(0))2] + 2

1

M

M−1
∑

k=0

M−k
∑

j=1

EρJ,l,δ,J,l[ḡ(u(0))ḡ(u(j))]

= E
ρJ,l,δ [ḡ(u(0))2] + 2

1

M

M−1
∑

k=0

M−k
∑

j=1

E
ρJ,l,δ [ḡ(u(0))EJ,l

u(0)[ḡ(u
(j))]]

≤ E
ρJ,l,δ [ḡ(u(0))2]

+ 2
1

M

M−1
∑

k=0

sup |ḡ|
M−k
∑

j=1

E
ρJ,l,δ [|EJ,l

u(0)g(u
(j))− E

ρJ,l,δ [g]|]

≤ E
ρJ,l,δ [ḡ(u(0))2] + 4

1

M

M−1
∑

k=0

sup |ḡ|2
M−k
∑

j=1

(1− R)j,

where, as in Remark 5, due to supu∈U ‖P J,l(u)‖V being bounded uniformly with respect

to the (discretization) parameters J and l, the constant 0 < R < 1 is independent of
the parameters J and l. Since supJ,l E

ρJ,l,δ [ḡ(u(0))2] is bounded independently of J and

of l, we deduce that

sup
J,l,M∈N

M EρJ,l,δ,J,l
[
∣

∣

∣

1

M

M
∑

k=1

ḡ(u(k))
∣

∣

∣

2]

< ∞ .

As

Eρ,J,l
[
∣

∣

∣

M
∑

k=1

ḡ(u(k))
∣

∣

∣

2]

=

∫

U

EJ,l
u(0)

[
∣

∣

∣

M
∑

k=1

ḡ(u(k))
∣

∣

∣

2]

dρ(u(0))

=

∫

U

EJ,l
u(0)

[
∣

∣

∣

M
∑

k=1

ḡ(u(k))
∣

∣

∣

2] dρ

dρJ,l,δ
(u(0))dρJ,l,δ(u(0))

≤ EρJ,l,δ,J,l
[
∣

∣

∣

M
∑

k=1

ḡ(u(k))
∣

∣

∣

2]

ZJ,l(δ) sup
u∈U

exp(ΦJ,l(u; δ)) .

As ZJ,l(δ) ≤ 1 and as supu∈U |ΦJ,l(u; δ)| is bounded uniformly with respect to J and

l, we get the conclusion after using the bound from Proposition 15 on the Hellinger

distance between ρδ and ρJ,l,δ. !

We consider the case where g(u) = %(P (u)) with % being a bounded linear functional

in V ∗. As

|Eρδ [%(P (u))]− E
ρδ [%(P J,l(u))]| ≤ c(J−q + 2−l)
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and

|Eρδ [%(P J,l(u))]− E
ρJ,l,δ [%(P J,l(u))]| ≤ c(J−q + 2−l),

we have

|Eρδ [%(P (u))]− E
ρJ,l,δ [%(P J,l(u))]| ≤ c(J−q + 2−l).

We therefore perform an MCMC algorithm to approximate EρJ,l,δ [%(P J,l(u))]. As

%(P J,l(u)) and ΦJ,l(u; δ) depend only on the finite set of coordinates {u1, . . . , uJ} in
expansion (15), we perform the Metropolis-Hastings MCMC method on this set with

proposals being drawn from the restriction of the prior measure ρ to this finite set.

Proposition 17 Let g(u) = %(P (u)) where % is a bounded linear functional in V ∗. The

approximate evaluation of the sample average 1
M

∑M
k=1 %(P

J,l(u(k))) by the Markov Chain
Monte Carlo Finite Element Method (MCMC-FEM for short) with M realizations of the

chain, with Finite Element discretization in the domain D at mesh level l as described

above, and with J-term truncated coefficient representation (22), requires O(ld−12dlMJ)

floating point operations.

Proof From Assumption 12, we deduce that the total number of non-zero entries of the
stiffness matrix for solving the Finite Element equation (25) is O(ld−12dl). To compute

each of these entries, we requireO(J) operations for computing the coefficientsKJ at the

quadrature points. Therefore the cost of constructing the stiffness matrix is O(ld−12dlJ).

From Assumption 11, the Riesz basis property of the Finite Element basis implies that

the condition number of the stiffness matrix is bounded uniformly for all l. Hence, the

conjugate gradient method for the approximate solution of the linear system resulting
from the Finite Element discretization with an accuracy comparable to the order of the

discretization error requires O(ld−12dl) float point operations. The total cost for solving

the approximated forward problem at each step of the Markov chain requires at most

O(ld−12dlJ) floating point operations. Computing %(P J,l(u(k))) requires O(2dl) floating

point operations. Since we draw M samples of the chain, the assertion follows. !

We have the following result.

Theorem 18 Let Assumptions 6, 10 and 11 hold. For g(u) = %(P (u)) where % is

a bounded linear functional in V ∗, with probability pNdof
(t) the conditional expectation

Eρδg(u) can be approximated using Ndof degrees of freedom to approximate the forward

PDE and t2N2/d
dof MCMC steps (with a total of t2N1+2/d

dof degrees of freedom), incurring
an error of O(N−1/d

dof ), and using not more than

ct2 log(Ndof)
d−1N1+(2+1/q)/d

dof

floating point operations, where

lim
Ndof→∞

pNdof
(t) →

∫ c′t

−c′t

1√
2π

exp(−x2/2)dx ,

for some positive constants c, c′ independent of Ndof .
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In mean square with respect to the measure Pρ,J,l, Eρδ [g(u)] can be approximated

with an error O(N−1/d
dof ), using not more than N1+2/d

dof number of degrees of freedom in

total, and not more than O(log(Ndof)d−1N1+(2+1/q)/d
dof floating point operations. Here, the

constant q > 0 is as in Assumption 10.

Proof We invoke the error estimate in Proposition 16, and choose the parameters M ,

J and l so as to balance the bounds M−1/2, J−q and 2−l, taking into account the fact

that the coefficient of M− 1
2 is only known through its asymptotic normality. We select

J = 2l/q and M = t2N2/d
dof where t = c3|ξM |, with Ndof denoting the number of degrees

of freedom at each step being Ndof = O(2dl); the constant c3 and the random variable

ξM is as in Proposition 16. Then the total number of floating point operations required
as l → ∞ is not larger than O(t2ld−12(d+2+1/q)l).

We then arrive at the conclusion. !

5. Sparse gpc-MCMC

We again study computational complexity of the MCMC method defined by (7) to

sample the conditional probability measure ρδ determined in the previous section.
However we study a computational method which effects a reduction in computational

cost by precomputing the parametric dependence of the forward model, which enters

the likelihood. This method is introduced, and used in practice, in the series of

papers [17, 15, 16]. The major cost in MCMC methods is the repeated solution of

the forward equations, with varying coefficients from the MCMC sampler of ρδ. The

complexity of these repeated forward solves can be drastically reduced by precomputing
an approximate, deterministic parametric representation of the system’s response which

is valid for all possible realizations of u ∈ U . Specifically, we precompute a sparse tensor

finite element approximation of the parametric, deterministic forward problem, by an

approximate polynomial chaos representation of the solution’s dependence on u and by

discretization of the forward solutions’ spatial dependence from a multilevel hierarchy

of Finite Element spaces in D. As we shall show, this strategy is particularly effective,
if only linear functionals %(·) of the system’s response are of interest: in this case, only

scalar coefficients of the gpc expansion need to be stored and evaluated. We use this to

reduce the cost per step of the MCMC method. We again work under Assumption 10

and, furthermore, we make the following assumptions throughout this section:

5.1. Sparse Tensor gpc-Finite Element Approximation of the Parametric Forward

Problem

5.1.1. Best N term parametric approximation By (17), the solution P (·, u) of problem
(16) is uniformly bounded in V by ‖f‖V ∗/Kmin. Therefore, from Proposition 7,

we deduce that P (·, ·) ∈ L2(U, ρ;V ). Therefore, the parametric solution admits a

polynomial chaos type representation in L2(U, ρ;V ). To define it, we denote by Ln(un)
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the Legendre polynomial of degree n, normalized such that

1

2

∫ 1

−1

|Ln(ξ)|2dξ = 1 .

By F we denote the set of all sequences ν = (ν1, ν2, . . .) of nonnegative integers such

that νj are integers for all j and only a finite numbers of them are non-zero. We define

Lν(u) =
∏

j≥1

Lνj (uj) . (35)

Since L0 ≡ 1, for each ν ∈ F the products contain only finitely many nontrivial factors.

The set {Lν : ν ∈ F} forms an orthonormal basis for L2(U, ρ). We can therefore expand

P (·, u) into the Legendre expansion

P (·, u) =
∑

ν∈F

Pν(·)Lν(u),

where Pν :=
∫

U P (·, u)Lν(u)dρ(u) ∈ V . By the L2(U, ρ) orthonormality of the set

{Lν : ν ∈ F}, Parseval’s equation in the Bochner space L2(U, ρ;V ) takes the form

∀P ∈ L2(U, ρ;V ) : ‖P‖2L2(U,ρ;V ) =
∑

ν∈F

‖Pν‖2V .

For the ensuing analysis, we shall impose the following assumption on the summability

of the gpc expansion of P :

Assumption 19 There exists a constant 0 < p < 1 such that the coefficients Pν of the

gpc expansion of P satisfy (‖Pν‖V )ν ∈ %p(F).

This assumption is valid under the provision of suitable decay of the coefficient functions

ψj such as Assumption 10. We refer to [5, 6] for details. By a classical argument

(“Stechkin’s Lemma”), this implies the following, so-called “bestN -term approximation

property”.

Proposition 20 Under Assumption 19, there exists a nondecreasing sequence

{ΛN}N∈N ⊂ F of subsets ΛN whose cardinality does not exceed N , such that
∥

∥

∥

∥

∥

P −
∑

ν∈ΛN

Pν(u)Lν

∥

∥

∥

∥

∥

2

L2(U,ρ;V )

=
∑

ν∈F\ΛN

‖Pν‖2V ≤ CN−2r, (36)

where the convergence rate r = 1/p − 1/2 > 1/2 and where the constant C =
‖(‖Pν‖V )ν∈F‖2"p(F) is independent of N .

5.1.2. Finite element approximation The best N -term approximations

uΛN :=
∑

ν∈ΛN

Pν(u)Lν (37)

in Proposition 20 indicate that sampling the parametric forward map with evaluation

of N solutions Pν(u), ν ∈ ΛN of the parametric, elliptic problem with accuracy N−r is

possible; since r > 1/2, this is superior to what can be expected from N MC samples.
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There are, however, two obstacles which obstruct the practicality of this idea: first, the

proof of Proposition 20 is nonconstructive, and does not provide concrete choices for

the sets ΛN of “active” gpc coefficients which realize (36) and, second, even if ΛN were

available, the “coefficients” Pν ∈ V can not be obtained exactly, in general, but must

be approximated for example by a Finite Element discretization in D.

As u ∈ L2(U, ρ;V ), we consider the variational form “in the mean” of (16) as
∫

U

∫

D

K(x, u)∇P (x, u) ·∇Q(x, u)dxdρ(u) =

∫

U

∫

D

f(x)Q(x, u)dxdρ(u), (38)

for all Q ∈ L2(U, ρ;V ). For each set ΛN ⊂ F of cardinality not more than N that

satisfies Proposition 20, and each vector L = (lν)ν∈ΛN of nonnegative integers, we define

finite dimensional approximation spaces as

XN,L = {PN,L =
∑

ν∈ΛN

Pν,L(x)Lν(u); Pν,L ∈ V lν} . (39)

Evidently, XN,L ⊂ L2(U, ρ;V ) is a finite-dimensional (hence closed) subspace for any N
and any selection L of the discretization levels.

The total number of degrees of freedom, Ndof = dim(XN,L), necessary for the sparse

representation of the parametric forward map is given by

Ndof = O

(

∑

ν∈ΛN

2dlν

)

as N, lν → ∞ . (40)

The stochastic, sparse tensor Galerkin approximation of the parametric forward problem

(16), based on the index sets ΛN ⊂ F , and L = {lν : ν ∈ ΛN}, reads: find PN,L ∈ XN,L

such that for all QN,L ∈ XN,L holds

b(PN,L, QN,L) :=

∫

U

∫

D

K(x, u)∇PN,L ·∇QN,Ldxdρ(u)

=

∫

U

∫

D

f(x)QN,L(x, u)dxdρ(u) .
(41)

The coercivity of the bilinear form b(·, ·) ensures the existence and uniqueness of PN,L

as well as their quasioptimality in L2(U, ρ;V ): by Cea’s lemma, for a constant C > 0
which is independent of Λ and of L,

‖P − PN,L‖L2(U,ρ;V ) ≤ C inf
Qν,L∈V lν

‖P −
∑

ν∈Λ

Qν,LLν‖L2(U,ρ;V ) .

We obtain the following error bound which consists of the error in the best N -term

truncation for the gpc expansion and of the Finite Element approximation error for the

“active” gpc coefficients.

‖P − PN,L‖2L2(U,ρ;V ) ≤ C(N−2r +
∑

ν∈ΛN

inf
Qν,L∈V lν

‖Pν −Qν,L‖2V ) . (42)

The following assumption is, therefore, a stronger requirement than the mere p-

summability of the gpc coefficient sequence {‖Pν‖V }ν∈F .
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Assumption 21 There are positive constants τ , α and β such that with a total budget

of Ndof degrees of freedom, and with at most N = N τ/r
dof active gpc modes ν, an active

set of gpc modes ΛN such that |ν| = O(logN) ∀ ν ∈ ΛN , and a combined gpc-Finite

Element approximation PN,L ∈ XN,L with rate of convergence

‖P − PN,L‖L2(U,ρ;V ) ≤ CN−τ
dof ,

can be found in O(Nα
dof(logNdof)β) float point operations.

Note that the constant C > 0 in Assumption 21 could, in general be considerably larger

that the best possible constant in the N -term approximation result Proposition 20.

Let us indicate sufficient conditions that ensure Assumptions 19, 21. The first
condition is quantitative decay rate of the coefficient functions ψj in the parametric

representation (13) of the random input.

Assumption 22 The coefficients ψj are arranged in decreasing order of magnitude of

‖ψj‖L∞(D) and there is a constant s > 1 and C > 0 such that

∀j ∈ N : ‖ψj‖L∞(D) ≤ Cj−s .

To obtain convergence rates for the FE-discretization in the domain D, i.e. of the

term ‖Pν−Qν,L‖V in (42), it is also necessary to ensure spatial regularity of the solution

P (x, u) of the parametric problem (16). To this end, we require

Assumption 23 For all j ∈ N, ψj ∈ W 1,∞(D) and there exists a constant C > 0 such

that

∀j ∈ N : ‖∇ψj‖W 1,∞(D) ≤ Cj−s′ for some 1 < s′ ≤ s .

We remark that Assumptions 22 and 23 imply Assumption 10 with q = s − 1 > 0.

Under these assumptions, the following proposition holds.

Proposition 24 Under Assumptions 22, 23, if, moreover, the domain D is convex and

f ∈ L2(D), the solution P (·, u) of the parametric, deterministic problem (16) belongs

to the space L2(U, ρ;W ).

From estimate (42), we get with Proposition 24 and standard approximation properties

of continuous, piecewise linear FEM the error bound

‖P − PN,L‖2L2(U,ρ;V ) ≤ C(N−2r +
∑

ν∈ΛN

2−2lν‖Pν‖2H2(D)) . (43)

In order to obtain an error bound in terms of Ndof defined in (40) which is uniform in
terms of N , we select, for ν ∈ ΛN the discretization levels lν of the active gpc coefficient

Pν so that both terms in the upper bound (43) are of equal order of magnitude. This

constrained optimization problem was solved, for example, in [5], under the assumption

that (‖Pν‖H2(D))ν ∈ %p(F).

In recent years, several algorithms have appeared or are under current development

which satisfy Assumption 21 with various exponents α ≥ 1 and β ≥ 0. We mention
only the references [3, 21, 11, 2, 4]
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5.2. Approximation of the Posterior Measure

For the solution PN,L in Assumption 21, we define

GN,L(u) = (O1(PN,L(u)), . . . ,Od(PN,L(u))),

and the function

ΦN,L(u; δ) =
1

2
|δ − GN,L(u)|2Σ .

The conditional measure ρN,L,δ on the measurable space (U,Θ) is defined as

dρN,L,δ

dρ
∝ exp(−ΦN,L(u; δ)) .

We then have the following approximation result.

Proposition 25 Let Assumptions 19, 21 hold. Then there is a constant c = c(δ) which

only depends on the data δ such that

dHell(ρ
δ, ρN,L,δ) ≤ c(δ)N−τ

dof .

Proof The proof for this proposition is similar to that for Proposition 15, differing only

in a few details; hence we highlight only the differences. These are due to estimates on
the forward error from Assumptions 21 being valid only in the mean square sense whilst

Proposition 14 holds pointwise for u ∈ U . Nonetheless, at the point in the estimation of

I1 and I2 where the forward error estimate is used, it is possible to use a mean square

forward error estimate instead of a pointwise forward error estimate. From Assumption

21, we deduce that there is a positive constant c such that:

ρ{u : |G(u)− GN,L(u)| > 1} ≤ cN−2τ
dof .

As ‖P (u)‖V is uniformly bounded for all u, there is a constant c1(δ) > 0 such that

|δ − G(u)|Σ < c1(δ). Choose a constant c2(δ) > 0 sufficiently large. If |δ − GN,L(u)|Σ >

c2(δ), then

|GN,L(u)− G(u)|Σ ≥ |δ − GN,L(u)|Σ − |δ − G(u)|Σ > c2(δ)− c1(δ) > 1 .

Let U1 ⊂ U be the set of u ∈ U such that |δ − GN,L(u)|Σ > c2(δ). We have that

ρ(U1) ≤ cN−2τ
dof . Thus,

1

Z(δ)

∫

U1

∣

∣

∣
exp

(

−
1

2
Φ(u; δ)

)

− exp
(

−
1

2
ΦN,L(u; δ)

)
∣

∣

∣
dρ(u) ≤ c(δ)N−2τ

dof .

When u /∈ U1, |δ−GN,L(u)|Σ ≤ c2(δ) so there is a constant c3(δ) so that |GN,L(u)| ≤ c3(δ).

An argument similar to that for (30) shows that
∣

∣

∣
exp

(

−
1

2
Φ(u; δ)

)

− exp

(

−
1

2
ΦN,L(u; δ)

)

∣

∣

∣
≤

c(2|δ|+ |G(u)|+ |GN,L(u)|)|G(u)− GN,L(u)|.
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Therefore

I1 =
1

Z(δ)

∫

U

∣

∣

∣
exp

(

−
1

2
Φ(u; δ)

)

− exp
(

−
1

2
ΦN,L(u; δ)

)
∣

∣

∣

2
dρ(u)

≤ c(δ)N−2τ
dof +

c

∫

U

(2|δ|+ |G(u)|+ c3(δ))
2|G(u)− GN,L(u)|2dρ(u)

≤ c(δ)N−2τ
dof + c(δ)

∫

U

‖P (·, u)− PN,L(·, u)‖2V dρ(u)

≤ c(δ)N−2τ
dof .

To show that I2 < c(δ)N−2τ
dof we still need to verify that

ZN,L(δ) =

∫

U

exp(−ΦN,L(u; δ))dρ(u)

is uniformly bounded from below by a positive bound for all N and L. As PN,L is

uniformly bounded in L2(U, ρ;V ),
∫

U

|GN,L(u)|dρ(u) ≤ c

∫

U

‖PN,L(u)‖V dρ(u) ≤ c.

Fixing r > 0 sufficiently large, the ρ measure of the set u ∈ U such that |GN,L(u)| > r
is bounded by c/r. Therefore the measure of the set of u ∈ U such that |GN,L(u)| ≤ r

is bounded from below by 1− c/r. Thus we have proved

ZN,L(δ) ≥
∫

U

exp(−
1

2
(|δ|Σ + |GN,L(u)|Σ)2)dρ(u) > c(δ) > 0 .

!

Let (u(k))k be the Markov chain generated by the sampling process (7) with the

acceptance probability being replaced by

αN,L(u, v) = 1 ∧ exp(ΦN,L(u, δ)− ΦN,L(v, δ)) . (44)

We denote by

EρN,L,δ

M [g] =
1

M

M
∑

k=1

g(u(k)) .

We then have:

Proposition 26 Let g be a bounded continuous function from U to R. Then

|Eρδ [g]−EρN,L,δ

M [g]| ≤ c6M
−1/2 + c7N

−τ
dof , (45)

PρN,L,δ,N,L almost surely, where c6 ≤ c8|ξM | where ξM is a random variable which
converges weakly as M → ∞ to ξ ∼ N(0, 1); the constants c7 and c8 are deterministic

and do not depend on M , N and Ndof .

There exists a deterministic positive constant c9 such that the gpc-MCMC converges

in the mean square with the same rate of convergence
(

Eρ,N,L
[
∣

∣

∣
E
ρδ [g]− EρN,L,δ

M [g]
∣

∣

∣

2 ])1/2
≤ c9(M

−1/2 +N−τ
dof ) .
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Proof Using (44), the probability that a random draw from ρ has probability larger

than exp(−ΦN,L(v; δ)) of being accepted. Therefore the transition kernel of the Markov

chain generated by (7) with the acceptance probability (44) satisfies

p(u,A) ≥
∫

A

exp(−ΦN,L(v; δ))dρ(v).

Using Theorem 16.2.4 of [18], we deduce that the nth iteration of the transition kernel

satisfies

‖pn(u, ·)− ρN,L,δ‖TV ≤ 2

(

1−
∫

U

exp(−ΦN,L(v; δ))dρ(v)

)n

.

From the proof of Proposition 25, we have
∫

U

exp(−ΦN,L(v; δ))dρ(v) ≥ exp(−c2(δ)
2/2) + cN−2τ

dof .

Thus, we can choose a constant R < 1 independent of the approximating parameters N

and L so that for all n ∈ N holds

‖pn(u, ·)− ρN,L,δ‖TV ≤ 2(1− R)n .

In a similar manner as for Proposition 16, we deduce the probabilistic bound. For the

mean square bound, similar to the proof of Proposition 16, we have

EρN,L,N,L
[
∣

∣

∣
E
ρδ [g]−EρN,L,δ

M [g]
∣

∣

∣

2 ]

≤ C(M−1/2 +N−τ
dof )

2 .

Let U ′ := {u ∈ U : |GN,L(u)−G(u)| > 1}. We deduce that there exists a constant c > 0

independent of L, Ndof , N such that ρ(U ′) ≤ cN−2τ
dof and such that we may estimate

Eρ,N,L
[
∣

∣

∣
E
ρδ [g]−EρN,L,δ

M [g]
∣

∣

∣

2 ]

=

∫

U ′

EN,L
u(0)

[
∣

∣

∣
E
ρδ [g]− EρN,L,δ

M [g]
∣

∣

∣

2 ]

dρ(u(0))

+

∫

U\U ′

EN,L
u(0)

[
∣

∣

∣
E
ρδ [g]− EρN,L,δ

M [g]
∣

∣

∣

2 ]

dρ(u(0))

≤ CN−2τ
dof +

∫

U\U ′

EN,L
u(0)

[
∣

∣

∣
E
ρδ [g]− EρN,L,δ

M [g]
∣

∣

∣

2 ]

dρ(u(0))

≤ CN−2τ
dof +

∫

U\U ′

EN,L
u(0)

[
∣

∣

∣
E
ρδ [g]− EρN,L,δ

M [g]
∣

∣

∣

2 ]

ZN,L(δ) exp(ΦN,L(u; δ))dρN,L,δ(u(0)) .

On U \ U ′, supu∈U |GN,L(u)| is uniformly bounded with respect to all N and L. From

this, we get the conclusion. !

Remark 27 In Proposition 26, g is assumed to be a bounded continuous function from

U to R. The sparse-MCMC is of particular interest in the case where g is given by % ◦P
where % is a linear functional on V , i.e. % ∈ V ∗. From Assumption 21 and the fact that

dρδ

dρ
(u) =

1

Z(δ)
exp(−Φ(u; δ)) ,

we deduce that

|Eρδ [%(P (u))]− E
ρδ [%(PN,L(u))]| ≤ c(δ, %)N−τ

dof .
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On the other hand, from Proposition 25, we have (cf. [8, Eq. (2.7)])

|Eρδ [%(PN,L(u))]− E
ρN,L,δ

[%(PN,L(u))]| ≤ c(δ, %)N−τ
dof .

Therefore, by the triangle inequality,

|Eρδ [%(P (u))]− E
ρN,L,δ

[%(PN,L(u))]| ≤ c(δ, %)N−τ
dof .

We wish to approximate EρN,L,δ
[%(PN,L(u))] with a Markov Chain-Monte Carlo

algorithm. In doing so, the following difficulty may arise: although %(P (u)) is uniformly

bounded with respect to u ∈ U , supu∈U %(PN,L(u)) may not be uniformly bounded with

respect to N and L. However, we can still apply Proposition 26 by using a cut-off

argument: to this end, we define the continuous bounded function g̃(u) : U → R by

truncation, i.e.

g̃(u) :=















%(PN,L(u)) if |%(PN,L(u))| ≤ supu∈U |%(P (u))|+ 1 ,

sup
u∈U

|%(P (u))|+ 1 if %(PN,L(u)) > supu∈U |%(P (u))|+ 1 ,

− sup
u∈U

|%(P (u))|− 1 if %(PN,L(u)) < − supu∈U |%(P (u))|− 1 .

Define U ′ := {u ∈ U : |%(P (u))− %(PN,L(u))| > 1}. From Assumption 21, we find that

ρ(U ′) < c(%, δ)N−2τ
dof . It follows then that there exists a constant c > 0 depending on the

data δ, but independent of N and of L such that

|EρN,L,δ
[%(PN,L(u))− g̃(u)]| ≤

∫

U ′

|%(PN,L(u))− g̃(u)|dρN,L,δ(y)

≤ c(δ)

∫

U

IU ′(u)(|%(PN,L(u))|+ c)dρ(y)

≤ c(δ)ρ(U ′)1/2(‖%(PN,L(u)‖L2(U,ρ;R) + c) ≤ c(δ)N−τ
dof .

Therefore, we may run the MCMC algorithm on EρN,L,δ
[g̃(u)].

At each step of the MCMC algorithm, we need to compute %(PN,L(u(k))) which,

for linear functionals %(·), is equal to
∑

ν∈Λ %(Pν,L)Lν(u(k)). Because the parametric

solution of the elliptic problem can be precomputed before the MCMC is run, and then
needs only to be evaluated at each state of the MCMC method, significant savings can

be obtained. We illustrate this, using the ideas of the previous Remark 27, to guide the

choice of test functions.

Proposition 28 Let g(u) = %(P (u)) where % is a bounded linear functional in V ∗.

Under Assumption 21, the total number of floating point operations required for
performing M steps in the Metropolis-Hastings method as N,M → ∞ is bounded by

O(Nα
dof(logNdof)β +MN logN).

Proof Under Assumption 21, the cost of solving one instance of problem (41) is bounded

by O(Nα
dof(logNdof)β). At each MCMC step, we need to evaluate the observation

functionals

Oi(PN,L(u
(k))) =

∑

ν∈ΛN

Oi(Pν,L)Lν(u
(k)) . (46)
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We note in passing that the storage of the parametric gpc-type representation of the

forward map (46) requires only one real per gpc mode, provided that only functionals of

the forward solution are of interest. We now estimate the complexity of computing one

draw of the forward map (46). For ν ∈ F , each multivariate Legendre polynomial

Lν(uk) can be evaluated with O(|ν|) float point operations. As |ν| = O(logN),

computing the observation functionals Oi(PN,L) requires O(N logN) floating point
operations. Thus we need O(Nα

dof(logNdof)β + MN logN) floating point operations

to perform M steps of the Metropolis-Hastings method with sampling of the surrogate,

sparse gpc-Finite Element representation of the forward map.

!

Theorem 29 For g(u) = %(P (u)) where % is a bounded linear functional % ∈ V ∗, under
Assumptions 6, 11 and 22, with probability pNdof

(t) the conditional expectation Eρδ [g(u)]

can be approximated with Ndof degrees of freedom, incurring an error of O(N−τ
dof ) using

not more than

cNα
dof(logNdof)

β + ct2N2τ+τ/r
dof log(Ndof)

many floating point operations, where

lim
Ndof→∞

pNdof
(t) →

∫ c′t

−c′t

1√
2π

exp(−x2/2)dx,

for some constants c, c′ independent of Ndof .

In the mean square with respect to the measure Pρ,N,L, Eρδ [g(u)] can be approximated
with Ndof degrees of freedom, with an error N−τ

dof using not more than

O(Nα
dof(logNdof)

β +N2τ+τ/r
dof log(Ndof))

floating point operations.

Proof We relate the number of MCMC realizations M with the total number of degrees

of freedom Ndof by equating the terms in the error bound (45). To this end, we choose

M = t2N2τ
dof where t = c8|ξM |; the constant c8 and the random variable ξM are as in

Proposition 26 . With N = N τ/r
dof , the number of floating point operations required in

Proposition 28 is bounded by

cNα
dof(logNdof)

β + ct2N2τ+τ/r
dof logNdof .

As ξM converges weakly to the normal Gaussian variable, we deduce the limit for the

probability density pNdof
(t) of the random variable t. The proof for the mean square

approximation is similar. !

Remark 30 In the previous section, the parametric PDE (16) is to be solved once at
every step of the MCMC process, using Ndof degrees of freedom, with O(Ndof

2/d) steps

required (the multiplying constant depends on a random variable when we consider the

realization-wise error). Ignoring log factors, the resulting error can be expressed in

terms of the total number of floating points operations Nfp as O(N−1/(d+2+1/q)
fp ). Here,
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the forward PDE is solved for every realization before running the MCMC process. The

rate of convergence of the MCMC process in terms of the total number of floating point

operations used is O(N−min(τ/α,1/(2+1/r))
fp ). This can be significantly smaller than the rate

of convergence in Theorem 18 when α is close to 1. For example, with the decay rate

of ‖ψj‖∞ in Assumption 22, the summability constant p in Assumption 19 can be any

constant that is greater than 1/s. Therefore the constant r in Proposition 20 can be any
psitive constant smaller than s− 1/2. On the other hand, the constant q in Assumption

10 is bounded by s− 1. As

2 +
1

s− 1/2
< d+ 2 +

1

s− 1
,

we therefore can choose r so that
1

2 + 1/r
>

1

d+ 2 + 1/q
.

As shown in [5], when (‖Pν‖H2(D))ν ∈ %p(F), τ can be chosen as 1/d. Thus, when α is
sufficiently close to 1, the complexity of the sparse gpc-MCMC approach is superior to

that of the plain MCMC approach in the previous section.

6. Multilevel MCMC

We showed that substantial complexity reduction is possible in the “plain” MCMC FE

sampling of the posterior measure ρδ introduced in Section 4 provided that all samples

are computed from one precomputed sparse tensor gpc-representation of the forward

map of the parametric, deterministic problem (16). We proved, in particular, that the
forward map G(u) is obtained from continuous, linear functionals Oi(·) on the forward

solution U 0 u %→ P (·, u) ∈ V allowing for a sparse approximate representation of gpc-

type. Lower efficiency results if, for example, the rate of convergence of the procedure

for computing the solution of the sparse tensor finite element solution in (41) is slow

with respect to the total number of degrees of freedom, and/or if the complexity grows

superlinearly with respect to the number of degrees of freedom.
Although an increasing number of algorithms for the efficient computation of

approximate responses of the forward problem on the entire parameter space U are

available (e.g. [3, 21, 11, 2, 4]) and therefore the gpc-MCMC is feasible, many systems

of engineering interest do not readily admit gpc-based representations of the parametric

forwards maps. Finding other non-gpc based methods for reducing complexity of ‘direct’

MCMC sampling under ρδ is therefore of interest. In this section, we give sufficient
conditions on the data and on the ψj such that complexity reduction is possible by

performing a multilevel sampling procedure where a number of samples depending on

the discretization parameters are used for problem (12).

6.1. Derivation of the MLMCMC

Consider % ∈ V ∗, i.e. a bounded linear functional on V . We aim at estimating

Eρδ [%(P (u))] where P is the solution of problem (12). For each level l = 9L/2:, 9L/2:+
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1, . . . , L, we assume that problem (12) is discretized with the truncation of the

Karhúnen-Loève expansion after J terms with J = Jl as defined in (22) and with a

finite element discretization mesh of width hl. The multilevel FE-discretization of the

forward problem (12) and the truncation (22) induces a corresponding hierarchy of

approximations ρJ,l,δ of the posterior measure ρδ.

Following [9, 1, 19, 10] the MLMCMC will be based on sampling a telescopic
expansion of the discretization error with a level-dependent sample size.

We continue to work under Assumptions 6, 10, 11. We recall the sequence of

discretization levels in the FE discretizations inD in Assumption 11, and the gpc input’s

truncation dimension J in Assumption 10. We then derive the Multilevel MCMC-FEM

as follows. First, we note that there exists C > 0 independent of L such that

|Eρδ [%(P (u))]− E
ρδ [%(P JL,L(u))]| ≤ C sup

u∈U
‖P (u)− P JL,L(u)‖V ≤ C2−L . (47)

We then write

E
ρδ [%(P JL,L)] = E

ρδ [%(P J$L/2%,(L/2))] +
L
∑

l=(L/2)+1

E
ρδ [%(P Jl,l)− %(P Jl−1,l−1)] . (48)

For l = 9L/2:, 9L/2: + 1, . . . , L, let

GJl,l(u) = {O1(P
Jl,l(u)),O2(P

Jl,l(u)), . . . ,Od(P
Jl,l(u))}

and

ΦJl,l =
1

2
|δ − GJl,l(u)|2.

We introduce, for each l ∈ N, the Markov chains Cl = (u(k))k which are generated by

(7) with the acceptance probability α(u, v) in (6) being replaced by

αJl,l(u, v) = 1 ∧ exp(ΦJl,l(u; δ)− ΦJl,l(v; δ)) , (u, v) ∈ U × U . (49)

Then the chains Cl are pairwise uncorrelated.

For Ml ∈ N, % ∈ V ∗ and for a function Q : U → V , we define the sample average

with respect to the multilevel approximation of the Markov chain thus defined by

EρJl,l,δ

Ml
%(Q) =

1

Ml

Ml
∑

k=1

%(Q(u(k))) .

We denote by CL = {C(L/2), C(L/2)+1, . . . , CL}; and denote by PL the product probability
measure on the probability space that describes the law of CL:

PL := Pρ,J$L/2%,(L/2) ⊗ Pρ,J$L/2%+1,(L/2)+1 ⊗ . . .⊗ Pρ,JL,L .

Let EL be the expectation with respect to CL under the probability PL. We then

approximate the right hand side of (48) by

T := Eρ
J$L/2%,$L/2%,δ

M [%(P J$L/2%,(L/2))] +
L
∑

l=(L/2)+1

EρJl,l,δ

Ml
[%(P Jl,l − P Jl−1,l−1)] , (50)

where the number of samples Ml and M are to be determined.
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Remark 31 As shown below, our bound on the error of the approximation of

Eρδ [%(P Jl,l)− %(P Jl−1,l−1)] by EρJl,l,δ [%(P Jl,l)− %(P Jl−1,l−1)] involves the term 2−2l. Thus,

to achieve an approximation error of O(2−L) (ie. of the order of the discretization error

in one instance of the forward problem) in the estimated expectation, we only perform

the telescoping process from 9L/2:.

6.2. Complexity Analysis of the MLMCMC-FEM

From Proposition 15 we deduce that there exists C(δ) > 0 such that for all l ∈ N
∣

∣

∣
E
ρδ [%(P Jl,l)− %(P Jl−1,l−1)]− E

ρJl,l,δ [%(P Jl,l)− %(P Jl−1,l−1)]
∣

∣

∣

≤ C(δ)(J−q
l + 2−l) sup

u∈U
|%(P Jl,l(u))− %(P Jl−1,l−1(u))|

≤ C(δ)(J−q
l + 2−l)2−l .

(51)

Following the procedure in the proof of Proposition 16, we have

Eρ,Jl,l
[
∣

∣

∣
E
ρJl,l,δ [%(P Jl,l)− %(P Jl−1,l−1)]−EρJl,l,δ

Ml
[%(P Jl,l)− %(P Jl−1,l−1)]

∣

∣

∣

2]

≤ M−1
l sup

u
|%(P Jl,l)− %(P Jl−1,l−1)|2

≤ CM−1
l 2−2l .

(52)

Similarly, we have that
∣

∣

∣
E
ρδ [%(P J$L/2%,(L/2))]− E

ρ
J$L/2%,$L/2%,δ

[%(P J$L/2%,(L/2))]
∣

∣

∣
≤ C(δ)(J−q

(L/2) + 2−L/2)2−L/2, (53)

and

Eρ,J$L/2%,(L/2)
[
∣

∣

∣
E
ρ
J$L/2%,$L/2%,δ

[%(P J$L/2%,(L/2))]− Eρ
J$L/2%,$L/2%,δ

M [%(P J$L/2%,(L/2))]
∣

∣

∣

2]

≤ CM−1 .
(54)

From equations (47), (48), (51), (52), (53) and (54) with the Cauchy Schwartz

inequality that there exists a constant C > 0 such that, for any L ∈ N, and for any

choice {Jl}Ll=0 and M ∈ N, there holds
(

EL[|Eρδ [%(P )]− T |2]
)1/2

≤ C2−L + C(δ)(J−q
[L/2] + 2−L/2)2−L/2 + CM−1/2

+ CL1/2
L
∑

l=(L/2)+1

(J−q
l + 2−l +M−1/2

l )2−l .

Choosing here Jl = 92l/q:, Ml = 22(L−l), J(L/2) = 2L/(2q) and M = 22L, we then find
(

EL[|Eρδ [%(P )]− T |2]
)1/2

≤ C(δ)L3/22−L .

As l → ∞, the number of degrees of freedom used for computing P Jl,l − P Jl−1,l−1 is

O(2dl) for a single sample of u.

The total number of degrees of freedom for computing EρJl,l,δ

Ml
[%(P Jl,l)− %(P Jl−1,l−1)]

behaves, asymptotically, as l → ∞, asO(Ml2dl). Likewise, the total number of degrees of
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freedom required for computing Eρ
J$L/2%,$L/2%,δ

M [%(P J$L/2%,(L/2))] is O(M2dL/2) as L → ∞.

The total number of degrees of freedom is therefore not larger than

L
∑

l=(L/2)+1

Ml2
dl +M2dL/2 "

L
∑

l=(L/2)+1

22(L−l)2dl + 22L2dL/2 " 2(2+d/2)L . (55)

As in Section 4, to form the stiffness matrix to compute the Finite Element
approximation P Jl,l of P requires, for each realization of u, not more than O(2dlld−1)Jl =

O(ld−12dl+l/q) float point operations. The number of floating point operations required

for the computation of the Finite Element approximation P J$L/2%,(L/2) is not larger

than O(Ld−12(dL/2+L/(2q))). The total number of floating point operations required is

asymptotically, as L → ∞, bounded by

L
∑

l=(L/2)+1

22(L−l)ld−12dl+l/q + 22LLd−12(dL/2+L/(2q)) ; Ld−1(2dL+L/q + 2(d/2+1/(2q)+2)L) .

Setting N = 2dL, we have thus shown the following result.

Theorem 32 The expectation Eρδ [%(P )] can be approximated by Multi-Level MCMC

FEM based on a continuous, piecewise linear FEM on a family of quasiuniform,

shape-regular triangulations of meshwidth h in D to a mean-square error O(h) =
O(N−1/d(logN)3/2) using a total of O(N1/2+2/d) degrees of freedom and a total of

O((logN)d−1Nmax(1/2+1/(2dq)+2/d,1+1/(dq)) floating point operations.

Remark 33 For the gpc-MLMCMC method, when using Nfp floating point operations

and ignoring logarithmic terms in the cost estimates, the error can be written as

O(N−min{1/(d+1/q),1/(d/2+2+1/(2q))
fp ) .

This rate is always superior to the rate N1/(d+2+1/q)
fp for the plain MCMC method which

we found in Section 4.
Comparing to the sparse gpc-MCMC method in section 5, assuming that we have

the optimal rate N−1/d
dof i.e. τ = 1/d in Assumption 21, when α > 1/2+2/d (assumming

that q ∼ s − 1 is large), the method presented in this section is superior in terms of

accuracy versus complexity.

Although we only presented the MLMCMC approach for the particular elliptic

problem (12) with a special distribution (13), it is expected that for other distributions of
the coefficient K, when Assumption 21 does not hold, or hold with a constant α that is

not close to 1, the MLMCMC approach is a superior alternative method than the plain

MCMC to compute the expectation of a function g(u) = %(P (u)) where % ∈ V ∗.

7. Conclusions

We note that in [22] an entirely deterministic approach to the solution of the Bayesian
inverse problem is presented. However it is to be expected that the methods presented

herein will be superior in practice, for some problems, because of the ability of MCMC
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based methods to sample measures which concentrate on small parts of the space. A

detailed comparison of the computational performance of the gpc-accelerated MLMCMC

methods of this paper with the deterministic approach in [22] will provide useful

information about their relative merits.

We also observe that we have concentrated on a very special MCMC method,

namely the independence sampler. This will work well when the negative log likelihood
Φ does not vary too much, but will be inefficient in general. More appropriate MCMC

methods may be found in [7]. However for these more general methods the analysis of the

Markov chain based on the methods of [18] are not appropriate and more sophisticated

arguments are required, as presented in [12].
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