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Switzerland



MULTILEVEL PRECONDITIONING AND LOW RANK TENSOR

ITERATION FOR SPACE-TIME SIMULTANEOUS

DISCRETIZATIONS OF PARABOLIC PDES

ROMAN ANDREEV AND CHRISTINE TOBLER

Abstract. This paper addresses the solution of instationary parabolic evo-
lution equations simultaneously in space and time. As a model problem we
consider the heat equation posed on the unit cube in Euclidean space of mod-
erately high dimension. An a priori stable minimal residual Petrov-Galerkin
variational formulation of the heat equation in space-time results in a general-
ized least squares problem. This formulation admits a unique, quasi-optimal
solution in the natural space-time Hilbert space and serves as a basis for the
development of space-time compressive algorithms.

The solution of the heat equation is obtained by applying the conjugate gra-
dient method to the normal equations of the generalized least squares problem.
Starting from the well-known BPX preconditioner, multilevel space-time pre-
conditioners for the normal equations are derived. The resulting “parabolic
BPX preconditioners” render the normal equations well-conditioned uniformly
in the discretization level.

In order to reduce the complexity of the full space-time problem, all compu-
tations are performed in a compressed or sparse format called the hierarchical
Tucker format supposing that the input data is available in this format. In
order to maintain sparsity, compression of the iterates within the hierarchical
Tucker format is performed in each conjugate gradient iteration. Its applica-
tion to vectors in the hierarchical Tucker format is detailed.

Finally, numerical results in up to five spatial dimensions based on the
recently developed htucker toolbox for Matlab are presented.

1. Introduction

Parabolic evolution equations arise in many applications ranging from engineering
to the social sciences. The standard and versatile numerical approach to solv-
ing such equations is the method of lines, or time stepping, which either reduces
the problem to a system of coupled ordinary differential equations by means of a
semidiscretization in space, or to a set of elliptic problems to be solved sequentially
by means of a semidiscretization in time, see e.g. [35]. However, two fundamen-
tal issues, a practical and a theoretical one, motivate a simultaneous space-time
discretization and solution of parabolic equations.
The practical issue is the parallelization of the solution process. An intrinsic limita-
tion to the exploitation of growing parallel computer architectures in time stepping
methods is the sequential dependence of the computed solution at intermediate time
points on the previous ones. Several methods have been devised to cope with this
limitation, we refer to [14] for example. Still, some applications, such as optimal
control problems with parabolic PDE constraints, may require the knowledge of
the solution to a parabolic problem over the whole time horizon. Since the storage

Date: June 27, 2012.
Research supported by the Swiss National Science Foundation grant No. PDFMP2-127034/1.
Research supported by the Swiss National Science Foundation grant No. PDFMP2-124898.
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2 R. ANDREEV AND C. TOBLER

of the full solution in space and time may quickly become prohibitive for prob-
lems posed in several dimensions, adaptivity that can be performed in parallel and
simultaneously in space and time becomes essential.
The theoretical issue is the optimality of the obtained approximate solution. While
convergence can be routinely established for time-stepping methods (and the de-
rived methods mentioned in [14]), optimality seems to be exclusive to space-time
methods. The reason may be sought in the hidden elliptic character of the parabolic
equation which is revealed once it is formulated as a well-posed operator equation
in suitable Bochner spaces, see [28, Cha. 3, Sects. 4-7]. Recent numerical methods
which build upon this fact are the adaptive wavelet method [34] and the a priori
stable (nonadaptive) minimal residual Petrov-Galerkin discretization [1].
The adaptive wavelet method of [34] adopts the abstract operator equation perspec-
tive and, after a choice of suitable Riesz bases, reformulates the parabolic equation
as an equivalent matrix-vector equation, where the vectors are elements of !2(N)
and the parabolic operator is represented by a bi-infinite matrix. If the matrix can
be suitably approximated by matrices with only finitely many nonzero entries –
this is the case for many relevant parabolic equations – then the adaptive wavelet
methods of [8, 9] yield optimal rates of convergence.
While the optimality of the adaptive wavelet method is understood, several of its
ingredients are difficult to obtain in practice. This is particularly true for parabolic
problems, cf. [7, 6]. The purpose of this paper is therefore to discuss a practical
space-time discretization algorithm based on [1] for the particular example of the
heat equation on the unit cube in several dimensions. While parallels to [34] can
be identified, the first important and distinctive feature of the present algorithm is
a pair of fixed finite-dimensional space-time trial and test spaces of tensor product
type. Unlike in the adaptive wavelet method, these are determined a priori and
are shown to be stable, i.e., the parabolic operator satisfies an inf-sup condition
on those spaces uniformly in the discretization level. A second ingredient is a
pair of numerically accessible operators on the test and trial spaces which generate
the “correct” norms. From these, a well-posed finite system of least squares type is
obtained. The solution satisfies a quasi-optimality estimate in the natural spaces for
the continuous equation (in no way dependent on the mesh), akin to the one known
as Céa’s lemma. This is the second important feature of the present algorithm.
The norm generating operators proposed and tested here are derived from the well-
known BPX preconditioner [5, 37, 38], several copies of which are combined into
one “parabolic BPX preconditioner” acting in space-time. In this way, the intricate
construction of suitable wavelets required in [34] is bypassed. This contributes to
the practicality and the novelty of the algorithm.
Adaptivity is crucial in applications with solutions featuring singularities and/or
posed in high dimension. As already indicated, we compute in spaces of tensor prod-
uct type. These are constructed by tensorization of univariate finite-dimensional
spaces and the dimension of the trial and test spaces increases rapidly as we only
consider uniform mesh refinement. However, at no point in the computation do we
require the storage or the computation of the full vector of this size. This presup-
poses that the input data and the solution may be well-approximated in a low rank
tensor format. For the solution, such an approximation is performed adaptively
during the iterative solution process. Such formats include the “classical” CP and
Tucker formats, see [25] for a review. We choose the more recently developed hi-
erarchical Tucker format [19, 17], since it admits efficient basic operations such as
addition, inner product and multiplication by a matrix, as well as approximation
of a low rank tensor by a lower-rank tensor.
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Methods for the solution of linear systems in the hierarchical Tucker format, as
well as in the special case of the Tensor Train format [29], have been the subject
of recent work [3, 12, 21, 23, 24, 26]. The first main approach is via developing
low rank variants of iterative methods for the solution of linear systems, replacing
the iterates by low rank tensors and using the basic operations described above.
As the ranks of the iterates tend to grow dramatically during such an iteration, a
recurrent approximation of the iterates by tensors of lower rank is employed. A
good preconditioner is usually critical to the performance. The second approach
are the DMRG or (M)ALS methods, which work directly within the structure of
the low rank tensor format, typically the hierarchical Tucker or the Tensor Train
format. These methods are based on repeatedly projecting the high-dimensional
linear system onto subspaces of lower dimension, and solving the resulting smaller
systems. We follow the first route: the proposed BPX preconditioner renders the
linear system well conditioned, while the system matrix does not readily lend itself
to the projections necessary in the DMRG or (M)ALS methods. In [22, Section
4.3], [15] other low rank tensor approaches for the solution of evolution equations
are proposed. These are based on time-stepping or on the explicit representation
of the solution using the exponential of the generator.
The outline of the paper is as follows. Section 2 introduces the model heat equa-
tion and the space-time variational formulation in certain Bochner spaces X and Y.
Then, a so-called minimal residual Petrov-Galerkin formulation is introduced which
allows a stable space-time discretization of the heat equation in finite dimensional
spaces. It relies on the availability of certain operators which generate equivalent
norms on X and Y. Following the methodology of operator preconditioning [20],
these operators provide preconditioners for the resulting linear system, which has
the form of generalized least squares equations, i.e., least squares with minimization
w.r.t. specific norms. An example of such operators based on the BPX operator
[5] is then constructed. Finite dimensional tensor product space-time test and trial
spaces which conform with the minimal residual Petrov-Galerkin formulation are
defined. Section 3 introduces the hierarchical Tucker format [17, 19], and describes
the Kronecker product structure of the system matrix B resulting from the minimal
residual Petrov-Galerkin discretization. The matrix B can be efficiently applied to
a vector x stored as a low rank tensor in the hierarchical Tucker format. Approx-
imate preconditioners are derived that can be applied to such a tensor efficiently.
This allows the formulation of a variant of the preconditioned conjugate gradient
method for the generalized least squares equations based on the hierarchical Tucker
format. Section 4 discusses our numerical examples which comprise isotropic and
anisotropic diffusion in the cube (−1, 1)d of dimension d = 1, . . . , 5. See Section 5
for conclusions and outlook.
Let us comment on the notation used throughout. The symbol ⊗ denotes the
tensor product of Hilbert spaces [32], as well as the Kronecker product of matrices.
A disjoint union of two sets t and s is denoted by t∪̇s. An element x ∈ Rn0×···×nd is
called a tensor. We identify x with the vector of length n0 · · ·nd where convenient.
The norm ‖x‖ of a tensor x is defined as the Euclidean norm of the corresponding
vector. As a rule, vectors are denoted by lowercase letters and matrices by uppercase
letters. For a symmetric positive definite (s.p.d.) matrix M we use the notation
M1/2 to denote a matrix such that M = M!/2M1/2, e.g. the Cholesky factor, where
(·)" denotes transposition.

2. Parabolic PDEs

2.1. The model problem. In this section we introduce our model parabolic evo-
lution equation which is the instationary diffusion in a cube. Let 0 < Tfinal < ∞
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and set J := (0, Tfinal) ⊂ R1. Let D ⊂ Rd, where d ∈ N is fixed, be an open
“spatial” domain with a Lipschitz boundary. In Section 2.4.2 we will specialize to
the case D = (−1, 1)d. We consider the evolution equation

∂tx(t, ξ)− div(q(t, ξ) gradx(t, ξ)) = p(t, ξ), (t, ξ) ∈ J ×D, (2.1)

x(0, ξ) = h(ξ), ξ ∈ D, (2.2)

x(t, ξ) = 0, (t, ξ) ∈ J × ∂D, (2.3)

where q ∈ L∞(J×D) is a space- and time-dependent coefficient and the differential
operators “div” and “grad” are w.r.t. the spatial variable ξ ∈ D. We assume

0 < amin := ess inf
J×D

q ≤ ess sup
J×D

q =: amax < ∞. (2.4)

We introduce the standard Sobolev spaces V := H1
0 (D) and H := L2(D). The

norm on V is given by the H1(D) seminorm. The embedding V ↪→ H is continuous
and dense. We denote the scalar product on H by 〈·, ·〉H and the duality pairing
on V ′ ×V by 〈·, ·〉V ′×V , and similarly for other Hilbert spaces. We identify H with
its dual H ′ via the scalar product 〈·, ·〉H . Thus, one can think of 〈·, ·〉V ′×V as being
the unique continuous extension of 〈·, ·〉H : V × V → R. For (a.e.) t ∈ J we define
a(t; ·, ·) : V × V → R by

a(t; ν, ν̄) =

∫

D
q(t, ξ) grad ν(ξ) · grad ν̄(ξ)dξ for all ν, ν̄ ∈ V. (2.5)

By (2.4), the symmetric bilinear form a(t; ·, ·) is continuous and coercive with con-
stants uniform in (a.e.) t ∈ J . Further, it follows from [13, Lemma 4.4.1] that for
all ν, ν̄ ∈ V , the map J - t .→ a(t; ν, ν̄) is measurable.
In order to obtain a well-posed space-time variational formulation of (2.1)–(2.3) we
follow [34] and introduce the Bochner spaces

X := L2(J, V ) ∩H1(J, V ′) ∼= (L2(J)⊗ V ) ∩ (H1(J)⊗ V ′)

Y := Y1 × Y2 := L2(J, V )×H ∼= (L2(J)⊗ V )×H

with norms ‖·‖X and ‖·‖Y given by

‖x‖2X := ‖x‖2L2(J,V ) + ‖∂tx‖2L2(J,V ′), ‖y‖2Y := ‖y1‖2L2(J,V ) + ‖y2‖2H (2.6)

for all x ∈ X and y = (y1, y2) ∈ Y. One can view x ∈ X as either (an equivalence
class of functions) x : J ×D → R or as x : J → V ′, and we will frequently switch
between these two interpretations. Let J denote the closure of J . We note that

sup
t∈J

sup
x∈X\{0}

‖x(t)‖H
‖x‖X

< ∞, (2.7)

i.e., X ↪→ C0(J,H) continuously, and in particular, the trace map (·)|t=0 : X → H,
x .→ x|t=0 = x(0) ∈ H is well-defined and continuous [28, Chapter 1]. We define
the linear operator B : X → Y ′ by

(Bx)(y) =
∫

J
{〈∂tx(t), y1(t)〉V ′×V + a(t;x(t), y1(t))} dt+ 〈x(0), y2〉H (2.8)

for all x ∈ X and y = (y1, y2) ∈ Y, as well as the load functional b : Y → R by

b(y) =

∫

J
〈p(t), y1(t)〉V ′×V dt+ 〈h, y2〉H (2.9)

for all y = (y1, y2) ∈ Y. It is easy to check that B ∈ L(X ,Y ′) and b ∈ Y ′. The
space-time variational formulation of (2.1)–(2.3) now reads:

find x ∈ X s.t. (Bx)(y) = b(y) ∀y ∈ Y. (2.10)
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This variational formulation is well-posed by [34, Theorem 5.1], which we recall
here for future reference.

Theorem 2.1. The operator B ∈ L(X ,Y ′) is an isomorphism.

2.2. Minimal residual Petrov-Galerkin discretization. In this section we de-
rive a discrete space-time variational formulation of (2.1)–(2.3) from (2.10). It is
based on operators M and N which generate norms on X and Y, resp., and provide
preconditioners for the discrete system.
Let M ∈L (X ,X ′) be an operator inducing a scalar product 〈·, ·〉M := 〈M·, ·〉X ′×X
on X , and similarly N ∈ L(Y,Y ′) on Y. The corresponding induced norms on X
and Y are denoted by ‖·‖M and ‖·‖N . We assume the norm equivalences ‖·‖M ∼
‖·‖X and ‖·‖N ∼ ‖·‖Y . One immediate example is given by the Riesz operators,
e.g. if M is defined by 〈Mx, x̄〉X ′×X := 〈x, x̄〉X for all x, x̄ ∈ X . Another example
based on the well-known BPX operator will be given in Section 2.3 below.

Theorem 2.2. Let U ⊆ X and V ⊆ Y be closed subspaces. Let B be given by (2.8).
Assume that the discrete inf-sup condition

γU,V := inf
u∈U\{0}

sup
v∈V\{0}

(Bu)(v)
‖u‖X ‖v‖Y

> 0 (2.11)

holds. Then there exists a unique u ∈ U satisfying

u = argmin
w∈U

sup
v∈V\{0}

|(Bw − b)(v)|
‖v‖N

. (2.12)

Moreover, with x := B−1b, the quasi-optimality estimate

‖x− u‖X ≤ C inf
w∈U

‖x− w‖X where C =
‖B‖L(X ,Y)

γU,V

CN
cN

≥ 0 (2.13)

holds, with the constants of the norm equivalence cN ‖·‖Y ≤ ‖·‖N ≤ CN ‖·‖Y .

Proof. See [1, Theorem 3.1]. !
Assume that we are given finite-dimensional subspaces U ⊆ X and V ⊆ Y, as well
as bases Φ ⊂ X for U and Ψ ⊂ Y for V. Assume further that the pair (U ,V)
satisfies the inf-sup condition (2.11). Set U := RdimU and V := RdimV . Define the
matrices N ∈ V× V, B ∈ V× U and M ∈ U× U by

N := 〈NΨ,Ψ〉Y′×Y , B := 〈BΦ,Ψ〉Y′×Y , and M := 〈MΦ,Φ〉X ′×X , (2.14)

(i.e., the component Bji is given by 〈Bφi,ψj〉Y′×Y where φi ∈ Φ, ψj ∈ Ψ) and
b ∈ V as the column load vector by b := 〈b,Ψ〉Y′×Y . Note that M and N are s.p.d.

matrices. We set B̃ := N−!/2BM−1/2 and b̃ := N−!/2b.

Theorem 2.3. With the above definitions the following hold.

(1) The condition number κ2(B̃"B̃) w.r.t. the Euclidean norm satisfies

κ2(B̃
"B̃) ≤ C (2.15)

where C ≥ 0 is a monotonic function of γ−1
U,V‖B‖L(X ,Y) and the constants

in the norm equivalences ‖·‖X ∼ ‖·‖M and ‖·‖Y ∼ ‖·‖N only.
(2) There exists a unique u ∈ U satisfying

u = argmin
w∈U

‖Bw − b‖N−1 , (2.16)

or, equivalently,

B̃"B̃ũ = B̃"b̃ with ũ := M
1/2u. (2.17)

(3) The function u := Φ"u ∈ U is characterized by (2.12).
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Proof. See [1, Proposition 3.2–3.3]. !
Motivated by the bound (2.15) on the condition number of the “system matrix”

B̃"B̃ we will apply a version of the conjugate gradient method to the preconditioned
normal equations (2.17). This will require an efficient method for the computation
of (the action of) the inverses of N and M, given in (2.14); we discuss a particular
setting where this is possible in the next section.

2.3. The parabolic BPX preconditioner. The popular BPX preconditioner [5]
was developed for second order elliptic partial differential equations, in particular
also for anisotropic problems [18], and has been put into greater perspective, see
[38, Section 5.4] and references therein. In the optimality of the preconditioner,
norm equivalences of the type

‖ν‖2V ∼
∑

!∈N0

22!‖Q!ν‖2H ∀ν ∈ V, (2.18)

where Q! : H → H, ! ∈ N0, are suitable projectors, play an important role.
Starting with such norm equivalences in the spatial domain and in the temporal
domain, the preconditioner may be adapted to the parabolic operator, which in-
volves different orders of differentiability. We briefly describe the construction of
this “parabolic BPX preconditioner” here and refer to [2] for more details. The
first set of requirements is given in the following.

(1) In the temporal domain, there exist closed nested subspaces Ek ⊆ Ek+1 ⊆
H1(J), k ∈ N0, and linear (not necessarily surjective) projectors Pk :
H1(J) → Ek, k ∈ N0, satisfying

‖e‖2L2(J) ∼
∑

k∈N0

‖Pke‖2L2(J) ∀e ∈ L2(J) (2.19)

and

‖e‖2H1(J) ∼
∑

k∈N0

22k‖Pke‖2L2(J) ∀e ∈ H1(J). (2.20)

Further, we require that PkPk′ = 0 for all nonnegative integers k 4= k′.
(2) In the spatial domain, there exist closed nested subspaces V! ⊂ V , ! ∈ N0,

with {0} =: V−1 ⊆ V! ⊆ V!+1 ⊆ V and such that
⋃

!∈N0
V! is dense in V .

Further, H-orthogonal projectors Q! : V → H are needed, with ! ∈ {!} =
a suitable index set of countable cardinality, such that

dV ‖ν‖2V ≤
∑

!∈{!}

q2!‖Q!ν‖2H ≤ DV ‖ν‖2V ∀ν ∈ V (2.21)

holds with some constants 0 < dV ≤ DV and some q! ∈ R, and furthermore,
Q!Q!′ = 0 for all ! 4= !′. We think of the indices ! as vectors. A possible
connection between Q! and the subspaces V! will be given in Section 2.4.2;
it is not needed for the theoretical considerations in this section.

For the following recall that, since the duality pairing 〈·, ·〉V ′×V and the scalar
product 〈·, ·〉H are compatible, i.e., agree on the set where both are defined, so are
〈·, ·〉X ′×X and 〈·, ·〉L2(J;H), as well as 〈·, ·〉Y′×Y and 〈·, ·〉[L2(J;H)×H].
An important observation is the fact that the norm equivalence (2.21) in V and
H-orthogonality of the projectors Q! imply a similar norm equivalence for the dual
V ′.

Lemma 2.4. With (2.21) we also have

D−1
V ‖ν‖2V ′ ≤

∑

!∈{!}

q−2
! ‖Q!ν‖2H ≤ d−1

V ‖ν‖2V ′ ∀ν ∈ V. (2.22)
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Proof. Verbatim as in [31, Lemma 1]. !
For any e⊗ ν ∈ Ek ⊗ V!, k, ! ∈ N0, we define the operators M+ and M− by

M±(e⊗ ν) :=
∑

k∈N0

∑

!∈{!}

g±1
k,!(Pke⊗Q!ν), where gk,! := q2! + 22kq−2

! , (2.23)

and their extension to
⋃

k,!∈N0
Ek ⊗ V! by linearity. Using (2.19)–(2.20) and (2.21)

it can be shown that

〈M+x, x〉X ′×X ∼ ‖x‖2X ∀x ∈
⋃

k,!∈N0

Ek ⊗ V! (2.24)

holds with constants uniform in x. Moreover, we have M−M+x = x. Since∑
k,!∈N0

Ek ⊗ V! is dense in X , where the sum is direct and orthogonal in X , the
operator M+ extends uniquely by linearity and continuity to an operator (still
denoted by) M+ ∈ L(X ,X ′), and M− extends to the inverse thereof, M− =
M−1

+ ∈ L(X ′,X ).
In order to obtain a pair of subspaces U and V satisfying (2.11), we further require
closed subspaces Fk ⊂ L2(J), k ∈ N0, such that Ek ⊆ Fk, k ∈ N0, and

inf
k∈N0

inf
e′∈E′

k\{0}
sup

f∈Fk\{0}

〈e′, f〉L2(J)

‖e′‖L2(J)‖f‖L2(J)
> 0, (2.25)

where E′
k := {e′ : e ∈ Ek}. For any (f ⊗ ν, h) ∈ [Fk ⊗ V!] ×H, k, ! ∈ N0, we then

define the operator N± by

N±(f ⊗ ν, h) :=



f ⊗
∑

!∈{!}

q±2
! Q!ν, h



 , (2.26)

and the extension to
⋃

k,!∈N0
[Ek ⊗ V!]× V! by linearity. As above, we have

〈N+y, y〉Y′×Y ∼ ‖y‖2Y ∀y = (y1, y2) ∈
⋃

k,!∈N0

[Ek ⊗ V!]× V! (2.27)

uniformly in y, and further, N+ extends uniquely by linearity and continuity to an
operator (still denoted by) N+ ∈ L(Y,Y ′), and N− extends to the inverse thereof,
N− = N−1

+ ∈ L(Y ′,Y).
Using the notation from Section 2.2, we define the matrices M± ∈ U × U and
N± ∈ V× V by

M± := 〈M±Φ,Φ〉X ′×X and N± := 〈N±Ψ,Ψ〉Y′×Y , (2.28)

as well as the mass matrices M0 ∈ U× U and N0 ∈ V× V by

M0 := 〈Φ,Φ〉X ′×X and N0 := 〈Ψ,Ψ〉Y′×Y . (2.29)

We will apply the results of Section 2.2 withM := M+ andN := N+; consequently,
M ≡ M+ and N ≡ N+. The following observation will therefore be important for
the efficient application of the inverse of the matrices M+ and N+ required in the
resolution of (2.17).

Proposition 2.5. It holds

M−1
+ = M−1

0 M−M
−1
0 and N−1

+ = N−1
0 N−N

−1
0 . (2.30)

Proof. We show that M0 = M−M
−1
0 M+. Indeed, observe that

x̄"M0x = 〈x̄, x〉X ′×X = 〈M−1
+ x̄,M+x〉X ′×X = 〈M−x̄,M+x〉X ′×X (2.31)

= (M−1
0 M−x̄)

"M0(M
−1
0 M+x) = x̄"M−M

−1
0 M+x (2.32)

holds for all x̄ = Φ"x̄, x = Φ"x ∈ U . Analogously for N−1
+ . !
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2.4. Space-time test and trial spaces. In order to apply the framework of Sec-
tion 2.2 we construct finite dimensional subspaces U ⊆ X and V ⊆ Y for which the
inf-sup condition (2.11) can be verified. These are constructed as a tensor product
of univariate spaces.

2.4.1. Discretization in time. We define the temporal mesh as

Tk := {i2−(k+1)Tfinal : i = 0, . . . , 2k+1}. (2.33)

The space Ek ⊂ H1(J) is defined as the space of continuous, Tk-piecewise linear
functions on J with the convention E−1 := {0}. Note that Tk ⊂ Tk+1, k ∈ N0, hence
the nestedness property Ek ⊂ Ek+1, k ∈ N0. Due to supt∈J dist(t, Tk) = O(2−k),
k → ∞, the Jackson inequality

inf
e∈Ek

‖f − e‖L2(J) " 2−kτ‖f‖Hτ (J) ∀f ∈ Hτ (J) ∀k ∈ N0 (2.34)

and the Bernstein inequality

‖e‖Hτ (J) " 2kτ‖e‖L2(J) ∀e ∈ Ek ∀k ∈ N0 (2.35)

hold for τ = 0, 1, 2 with the implied constant independent of f and k, resp. e and
k, as in the case of the uniform mesh T 1

k . Thus, [11, Theorem 3.2] implies that

(2.19)–(2.20) hold with Pk : H1(J) → Ek∩(Ek−1)
⊥L2(J) being the L2(J)-orthogonal

projector, which we assume for Pk from now on.
Starting from the sequence Ek, k ∈ N0, we define the spaces Fk, k ∈ N0, required
for the construction of the operator N in (2.27), as Fk := Ek+1. This choice is
motivated by the following result, see [1, Proposition 6.1] for the proof.

Proposition 2.6. With Ek and Fk as above, (2.25) holds.

2.4.2. Discretization in space. We specialize the discussion to the case

V := H1
0 (D) for D := (−1, 1)d, (2.36)

where d ∈ N. For each µ = 1, . . . , d and ! ∈ N0, we take V (µ)
! ⊂ H1

0 (−1, 1) as
the standard conforming finite element space defined as the space of all continuous,
piecewise linear functions w.r.t. the uniform partition of the interval (−1, 1) ⊂ R1

into 2!+1 subintervals. For !µ ∈ N0, µ = 1, . . . , d, we define V! := V (1)
!1

⊗· · ·⊗V (d)
!d

⊂
V . Further, we set VL := V(L,...,L), L ∈ N0. For each ! ∈ Nd

0 we define Q! : V → H
as the H-orthogonal projector

Q! : V → V! ∩




∑

! (=!′≤!

V!′




⊥H

,

where the sum runs over all !′µ ∈ N0, µ = 1, . . . , d, satisfying the constraint, and
an empty sum evaluates to the trivial vector space {0} ⊂ V . Since (2.21) holds for
d = 1, see [10, Theorem 5.8], from

‖ν1 ⊗ · · ·⊗ νd‖2V =
d∑

µ=1



‖νµ‖2H1
0 (−1,1)

d∏

µ (=µ′=1

‖νµ′‖2L2(−1,1)





it follows (cf. [18, Theorem 3]) that (2.21) holds for d ≥ 1 with the same constants
0 < dV ≤ DV < ∞ for

q! :=

√√√√
d∑

µ=1

22!µ . (2.37)
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2.4.3. Tensor product space-time spaces. One possible construction of finite element
spaces U ⊂ X and V ⊂ Y satisfying the inf-sup condition (2.11) can be obtained
from the following result.

Theorem 2.7. With the notation introduced above, there exists γ > 0 such that
the pair

U := EK ⊗ VL and V := (FK ⊗ VL)× VL (2.38)

satisfies γU,V ≥ γ > 0 for all K ∈ N0 and L ∈ N0.

Proof. The claim follows from (2.25) and the following corresponding property of
the spaces VL

inf
L∈N0

inf
ν′∈VL\{0}

sup
ν∈VL\{0}

〈ν′, ν〉V ′×V

‖ν′‖V ′‖ν‖V
> 0. (2.39)

For details we refer to [1, Proof of Theorem 6.3]. !

3. Tensor format

With the space-time discretization proposed in Section 2.4, the solution to the
parabolic equation is approximated by a vector x, which can be interpreted as a
high-dimensional array, or a tensor. The tensor x ∈ RNt×Nξ×···×Nξ is of order d+1,
where Nt represents the number of basis functions in time, and Nξ the number of
basis functions in space. Hence, the storage cost for x increases exponentially in
d. We reduce this cost by approximating x in a low rank tensor format, described
in Section 3.1. We show in Section 3.3 that the matrices B, M−1

+ and N−1
+ can be

efficiently applied to a tensor in such a format. Using a variant of the conjugate
gradient method, an approximation of x in the low rank tensor format can be
computed as discussed in Section 3.4.
We now consider a general tensor x ∈ Rn1×···×nd of order d ∈ N. Low rank formats
provide an approximation of x, similar to the truncated SVD for d = 2. Consider
the case of a matrix x ∈ Rn1×n2 . If the matrix x has a steep singular value decay,
it can be approximated by a low rank matrix UV " ≈ x with U ∈ Rn1×r and
V ∈ Rn2×r. Basic operations such as addition, multiplication by a matrix or a
scalar and inner product of two low rank matrices x = UxV "

x and y = UyV "
y can

be performed efficiently while preserving the low rank structure:

x+ y = UxV
"
x + UyV

"
y = [Ux Uy][Vx Vy]

" (3.1)

Ax = A(UV ") = (AU)V ", xB" = UV "B" = U(BV )" (3.2)

〈x,y〉 :=
n1∑

i1=1

n2∑

i2=1

xi1,i2yi1,i2 = 〈UxV
"
x , UyV

"
y 〉 = 〈U"

x Uy, V
"
x Vy〉. (3.3)

Moreover, for a matrix UV " of rank r, an approximation with lower rank r̃ ≤ r
can be efficiently computed using the truncated SVD:

U = QURU , V = QV RV ⇒ UV " = QU (RUR
"
V )Q

"
V = (QUX)Σ(QV Y )",

where the singular value decomposition RUR"
V = XΣY " was used in the last

equation. The best approximation at rank r̃ ≤ r w.r.t. the Frobenius norm is
obtained by setting the diagonal entries of Σ at the locations r̃ + 1, . . . , r to zero.
These operations allow for iterative solution algorithms, such as the Richardson or
the conjugate gradient method, to be performed in low rank formats (see Section
3.4).
Let us now consider the general case d ≥ 2, that is, approximating a tensor x ∈
Rn1×···×nd in a low rank format. The CP and Tucker decompositions are well-
known low rank tensor formats, see [25] for a review. Neither of these formats
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is well suited for our setting. For example, in the Tucker decomposition storage
requirements grow exponentially with the order d of the tensor. Therefore, we
choose the H-Tucker format [17, 19]. A special case of this format, called Tensor
Train format, was independently proposed in [29].

3.1. The hierarchical Tucker format. Here we give a brief overview of the hi-
erarchical Tucker (H-Tucker) format, and refer the reader to [17, 19] for a more
detailed explanation.
In order to describe the H-Tucker format, we introduce the concept of matricization
of a tensor. Consider a splitting of the dimensions into two disjoint sets: t ∪̇ s =
{1, . . . , d} with t = {t1, . . . , tk} and s = {s1, . . . , sd−k}. The matricization X(t) of
a tensor x with respect to t is obtained by merging the first set t of modes into row
indices and the second set s into column indices:

X(t) ∈ R(nt1 ···ntk
)×(ns1 ···nsd−k

) with (X(t))(it1 ,...,itk ),(is1 ,...,isd−k
) := xi1,...,id

for any multiindex (i1, . . . , id) ∈ {1, . . . , n1} × · · · × {1, . . . , nd}. In this notation,
the vectorization vec(x) is just the matricization with t = {1, . . . , d} and s =
∅. Consider a collection T ⊆ 2{1,...,d} of subsets t ⊂ {1, . . . , d}. We define the
hierarchical rank rt ∈ N0 for all t ∈ T , and the corresponding set of H-Tucker
tensors as

H-Tucker((rt)t∈T ) :=
{
x ∈ Rn1×···×nd : rank(X(t)) ≤ rt ∀t ∈ T

}
. (3.4)

For each set t ∈ T , there exist matrices Ut ∈ R(nt1 ···ntk
)×rt and Vt ∈ R(ns1 ···nsd−k

)×rt

such that X(t) = UtV "
t . The nestedness property Range(Ut) ⊆ Range(Utr ⊗ Utl)

holds for each disjoint splitting tl ∪̇ tr = t [16, Lemma 17], which implies that there
exists a matrix Bt such that Ut = (Utr ⊗ Utl)Bt. Consequently, it is sufficient to
store Utl , Utr and Bt to be able to represent Ut. This property, applied recursively,
allows a storage-efficient representation of H-Tucker tensors. Consider the example
of d = 4:

vec(x) = X(1234) = (U34 ⊗ U12)B1234 (3.5)

U12 = (U2 ⊗ U1)B12 (3.6)

U34 = (U4 ⊗ U3)B34 (3.7)

⇒ vec(x) = (U4 ⊗ U3 ⊗ U2 ⊗ U1)(B34 ⊗B12)B1234. (3.8)

In the H-Tucker format, T is allowed to be any binary tree with the root node
troot = {1, . . . , d}, leaf nodes tleaf containing only one element, and all other nodes
t having exactly two children tl, tr with tl ∪̇ tr = t.
The storage requirements are O(dnr + dr3), for n := maxµ=1,...,d nµ and r :=
maxt∈T rt. Addition, multiplication by a matrix and inner product of two tensors
in H-Tucker format can be performed efficiently, we refer the reader to [27, 36] for
details on the implementation. The truncation of a tensor x in H-Tucker format is
the approximation by a tensor x̃ with given lower hierarchical ranks (r̃t)t∈T , where
r̃t ≤ rt, t ∈ T . An implementation of this operation that requires O(dnr2 + dr4)
floating point operations, and satisfies the quasi-optimality property [17]

‖x− x̃‖ ≤
√
2d− 3 inf{‖x− y‖ : y ∈ H-Tucker((r̃t)t∈T )}, (3.9)

is possible. Given two parameters, a relative truncation accuracy rel eps > 0 and a
maximal truncation rank max rank ∈ N, we define the truncation T which chooses
the ranks (r̃t)t∈T adaptively such that ‖x− x̃‖ ≤ rel eps‖x‖ if this is possible with
r̃t ≤ max rank for all t ∈ T ; otherwise, some of the ranks are set to max rank,
and the relative accuracy requirement may not be satisfied. For details we refer to
[17, 27, 36]. The numerical experiments below are based on the publicly available
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htucker toolbox [27, 36] in Matlab which provides a representation of a tensor in
H-Tucker format, as well as the operations described above.

3.2. Discretized generalized linear least squares problem. We assume that
the functions q, p, h are separable, with

q(t, ξ) = q0(t)
d∏

µ=1

qµ(ξµ), p(t, ξ) = p0(t)
d∏

µ=1

pµ(ξµ) and h(ξ) =
d∏

µ=1

hµ(ξµ).

The extension to finite sums of separable functions is straightforward. Let K ∈ N0

and L ∈ N0 be fixed and consider the spaces U and V defined in (2.38). Let

bµi , i = 1, . . . , 2L − 1, be the standard hat functions spanning the space V (µ)
L ,

µ = 1, . . . , d. Let ei, i = 1, . . . , 2K + 1, be the standard hat functions spanning
the space EK , and similarly fj , j = 1, . . . , 2K+1 + 1 for FK . Then the basis
Φ for U is given by the functions e0i0 ⊗ b1i1 ⊗ · · · ⊗ bdid , and the basis Ψ for V
consists of f0

j0 ⊗ b1i1 ⊗ · · · ⊗ bdid , where i0 = 1, . . . , 2K + 1, j0 = 1, . . . , 2K+1 + 1

and iµ = 1, . . . , 2L − 1, µ = 1, . . . , d. As described above in Section 2.2, space-
time minimal residual Petrov-Galerkin discretization w.r.t. those bases leads to the
generalized linear least-squares problem argminu ‖Bu − b‖N−1 , where the matrix
B has the form

(
C(0) ⊗M (1) ⊗ · · ·⊗M (d) +

∑d
µ=1 M̂

(0) ⊗ M̂ (1) ⊗ · · ·⊗A(µ) ⊗ · · ·⊗ M̂ (d)

(c(0))" ⊗M (1) ⊗ · · ·⊗M (d)

)

and

b =

(
p(0) ⊗ p(1) ⊗ · · ·⊗ p(d)

1⊗ h(1) ⊗ · · ·⊗ h(d)

)
.

Here, and in the following, the superscript in vectors and matrices refers to the
mode µ = 0, . . . , d. These equations can be combined into one Kronecker product
structure by using concatenation in the first mode:

B = C̃(0) ⊗M (1) ⊗ · · ·⊗M (d) +
d∑

µ=1

M̃ (0) ⊗ M̂ (1) ⊗ · · ·⊗A(µ) ⊗ · · ·⊗ M̂ (d)

(3.10)

b = p̃(0) ⊗ p(1) ⊗ · · ·⊗ p(d) + h̃(0) ⊗ h(1) ⊗ · · ·⊗ h(d), (3.11)

with block matrices C̃(0), M̃ (0) and block vectors p̃(0), h̃(0), given by

C̃(0) =

(
C(0)

(c(0))"

)
, M̃ (0) =

(
M̂ (0)

0

)
, p̃(0) =

(
p(0)

0

)
, h̃(0) =

(
0
1

)
.

The matrices for the spatial domain are defined as follows for µ = 1, . . . , d:

A(µ)
ij =

∫ 1

−1
q(µ)(ξµ) grad ν

(µ)
i (ξµ) · grad ν(µ)j (ξµ)dξµ, (3.12)

M (µ)
ij =

∫ 1

−1
ν(µ)i (ξµ)ν

(µ)
j (ξµ)dξµ, M̂ (µ)

ij =

∫ 1

−1
qµ(ξµ)ν

(µ)
i (ξµ)ν

(µ)
j (ξµ)dξµ, (3.13)

p(µ)i =

∫ 1

−1
pµ(ξµ)ν

(µ)
i (ξµ)dξµ, h(µ)

i =

∫ 1

−1
hµ(ξµ)ν

(µ)
i (ξµ)dξµ. (3.14)
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For the temporal domain, the following matrices are needed:

C(0)
ij =

∫ T

0
fi(t)

dej
dt

(t)dt, M̂ (0)
ij =

∫ T

0
q(0)(t)fi(t)ej(t)dt, (3.15)

c(0)j = ej(0), p(0)i =

∫ T

0
p(0)(t)fi(t)dt (3.16)

(M (0)
e )ij =

∫ T

0
ei(t)ej(t)dt, (M (0)

f )ij =

∫ T

0
fi(t)fj(t)dt. (3.17)

Observe that there are 2K+1+1 rows, and 2K +1 columns in C̃(0) and M̃ (0). With
this notation, the mass matrices M0 and N0 are given by:

M0 = M (0)
e ⊗M (1) ⊗ · · ·⊗M (d), (3.18)

N0 =

(
M (0)

f 0
0 1

)
⊗M (1) ⊗ · · ·⊗M (d) =:

(
N0,1 0
0 N0,2

)
. (3.19)

3.3. Application of matrices to a tensor in low rank format. Note that the
application of A0 ⊗ A1 ⊗ · · · ⊗ Ad to a tensor x in H-Tucker format preserves its
hierarchical ranks. Therefore, given a tensor x inH-Tucker format with hierarchical
rank rt, a straightforward application of B as defined in (3.10) to x will result in a
tensor with hierarchical ranks at most (d+1)rt. This increases the storage cost by
a factor of (d + 1)3. However, this problem can be alleviated by writing B in the
following form (as proposed for the TT format in [29]):

J0∑

j0=1

· · ·
Jd∑

jd=1

hj0,...,jd

(
A(0)

j0
⊗ · · ·⊗A(d)

jd

)
(3.20)

where h is a tensor in H-Tucker format with hierarchical ranks st. The application
of such a matrix to the tensor x results in a tensor of ranks kt ≤ rtst, t ∈ T [27].
A matrix of “Laplacian” structure, such as the second term in (3.10), can be rep-
resented as in (3.20) with hierarchical ranks st = 2 [29]. Therefore, we can apply B
to x in such a way that the hierarchical ranks increase only by a factor of 3. Inci-
dentally, if the coefficient q(t, ξ) is independent of ξ, i.e., q(t, ξ) = q(t), the matrices

M̂ (µ) and M (µ) are equal for all µ. It follows that B as a whole has “Laplacian”
structure, and can thus be represented with ranks st = 2.
It is an important observation that the parabolic BPX preconditioners can be writ-
ten in the form (3.20). To show this, in the following we write L0 := K and Lµ := L
for µ = 1, . . . , d. We focus on M, as it is the more involved case. All considerations
will apply similarly to N. For s ∈ R, let us first define

Ms =
L0∑

!0=0

· · ·
Ld∑

!d=0

(g!0,...,!d)
s
(
P (0)
!0

⊗ · · ·⊗ P (d)
!d

)
, (3.21)

where the tensor g is given by

g!0,...,!d :=

(
d∑

µ=1

22!µ

)
+ 22!0

(
d∑

µ=1

22!µ

)−1

, (3.22)

and the projection matrix P (µ)
! is defined for each µ = 0, . . . , d, ! = 1, . . . , Lµ by

(we omit the superscripts (·)(µ) on matrices in the right hand side)

P (µ)
! := MLµ

(
SLµ!!M

−1
! S!"Lµ − SLµ!!−1M

−1
!−1S!−1"Lµ

)
MLµ , (3.23)

P (µ)
0 := MLµ

(
SLµ!0M

−1
0 S0"Lµ

)
MLµ . (3.24)
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Here, S(µ)
!2!!1

denotes the prolongation from level !1 to level !2 if !1 ≤ !2, and

S(µ)
!1"!2

:= (S(µ)
!2!!1

)" the reverse operation of restriction, and, furthermore,

M (µ)
! := S(µ)

!"Lµ
M (µ)S(µ)

Lµ!! µ = 0, . . . , d, ! = 0, 1, . . . , Lµ, (3.25)

where M (µ) stands for M (0)
e in the case µ = 0. Note that, by definition, for each

µ, the symmetric matrices P (µ)
! satisfy

P (µ)
!′

(
M (µ)

Lµ

)−1
P (µ)
! = δ!′!P

(µ)
! for all !′, ! = 0, . . . , Lµ (3.26)

and
Lµ∑

!=0

P (µ)
! = M (µ)

Lµ
. (3.27)

Consequently, owing to (2.23) we have M± = M±1 and, moreover, the space-time
mass matrix M0 defined in (3.21) coincides with Ms for s = 0.
The block diagonal matrix N− is defined analogously, where the first block has the
form

L1∑

!1=0

· · ·
Ld∑

!d=0

(
d∑

µ=1

22!µ

)
Id⊗P (1)

!1
⊗ · · ·⊗ P (d)

!d
, (3.28)

and the second block is given by N−1
0,2.

Recall that we need to compute the action of M−1
+ = M−1

0 M−M
−1
0 and N−1

+ =
N−1

0 N−N
−1
0 for preconditioning. In order to approximate the action of M−, we sub-

stitute the entrywise reciprocal tensor h of g by a tensor ĥ in H-Tucker format, i.e.,
ĥ!0,...,!d ≈ h!0,...,!d := g−1

!0,...,!d
. In our implementation we obtain ĥ by truncating

the full tensor h of size (K + 1)(L + 1)d. This results in the operators M̂− and

N̂−. Let us write M̂+ := M−1
0 M̂−M

−1
0 , and analogously for N̂+. As in the case

of B, the hierarchical ranks st of ĥ determine the computational cost of applying
these matrices to x in H-Tucker format. Using the variational characterization of
the singular values (see (3.13)–(3.14) in [1]), it is easy to check that the operators

B̃ := N−!/2
+ BM−1/2

+ and B̂ := N̂−!/2
+ BM̂−1/2

+ satisfy

κ2(B̂
"B̂) ≤ κ2(M̂

−!/2
+ M+M̂

−1/2
+ ) κ2(N̂

−!/2
+ N+N̂

−1/2
+ ) κ2(B̃

"B̃). (3.29)

Recall from (2.15) that κ2(B̃"B̃) is bounded independently of K and L, hence it is

enough to choose M̂−1
+ , N̂−1

+ to be good approximations of M−1
+ , N−1

+ , respectively.
One can show that

J(h, ĥ) :=
max!0,...,!d h!0,...,!d/ĥ!0,...,!d

min!0,...,!d h!0,...,!d/ĥ!0,...,!d

= κ2(M̂
−!/2
+ M+M̂

−1/2
+ ), (3.30)

thus we need to find a tensor ĥ in H-Tucker format of small hierarchical ranks
st such that J(h, ĥ) is small. Unfortunately, we only have access to the quasi-

best approximation in Euclidean norm, i.e., ‖h− ĥ‖, which typically leads to large
relative error in entries that are small in absolute value. This is due to the fact
that the relative difference in absolute value of the entries is quite pronounced, and
grows exponentially in L. Table 3.1 displays the smallest ranks st of ĥ at which we
achieved J(h, ĥ) ≤ 100, for different choices of d and L. Note that these are not
the minimal ranks needed, but only the minimal ranks available to us while using
the quasi-best approximation in the norm ‖ · ‖. The ranks go up to 13, which is
unacceptably large for our purpose.
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L
1 2 3 4 5 6 7 8 9 10

1 1 1 2 3 5 5 5 5 5 5
2 1 3 3 6 7 7 7 7 8 8

d 3 1 2 6 7 9 8 8 8 9 10
4 2 2 5 8 9 8 10 10 10 11
5 1 2 7 8 8 10 9 11 12 13

Table 3.1. Hierarchical rank of H-Tucker approximation M̂− to
the parabolic BPX preconditioner M− found to yield J(h, ĥ) ≤
100, for discretization levels L and spatial dimensions d.

L
1 2 3 4 5 6 7 8 9 10

1 1 1 2 2 3 3 3 3 3 3
2 1 1 2 3 3 3 3 3 3 4

d 3 1 1 2 3 3 3 3 3 4 4
4 1 1 2 3 3 3 4 4 4 4
5 1 1 2 3 3 3 4 4 4 4

Table 3.2. Hierarchical rank of H-Tucker approximation M̂−1/n

to the parabolic BPX preconditioner M−1/n found to yield

J(h1/n, ĥ1/n)n ≤ 100, for discretization levels L and spatial dimen-
sions d with n = 4.

In order to alleviate this problem we resort to the approximation

M− = M0

(
M−1

0 M−1/n

)n ≈ M0

(
T ◦M−1

0 M−1/n

)n ≈ M0

(
T ◦M−1

0 M̂−1/n

)n
, (3.31)

where T represents the truncation to lower hierarchical ranks and M̂−1/n results

from replacing the full tensor h1/n = g−1/n (entrywise power) by a suitable H-

Tucker approximation ĥ1/n. The matrix M̂−1/n thus depends on the H-Tucker ap-

proximation of h1/n, which now has a less pronounced relative difference in entry
sizes. Indeed, Table 3.2 shows the hierarchical ranks as described for Table 3.1,

for the condition J(h1/n, ĥ1/n)n ≤ 100, for n = 4. The hierarchical ranks st are
now significantly smaller. Since these enter as n(st)4 into the computation cost,
this is a dramatic improvement. Numerical experiments in Section 4 show that this
approach is indeed profitable.

3.4. The preconditioned conjugate gradient method. Low-rank tensor vari-
ants of classical iterative methods for linear systems have been recently proposed
in [3, 24, 26]. A classical iterative method (e.g. Richardson, conjugate gradient)
is formulated with low rank tensors as its iterates. Due to repeated addition and
application of matrices to the iterates, the ranks will grow rapidly throughout the
iteration. This growth is limited by truncation T : u .→ ũ of the iterates with
certain relative accuracy rel eps and maximal truncation rank max rank.
We apply the conjugate gradient (CG) method to B"N−1Bu = B"N−1b with
the preconditioner M−1. We reformulate the CG method for the preconditioned
normal equations to resemble the CGNR method [33]. The matrices N−1, M−1

in Algorithm 3.4 denote the (approximate) preconditioners described in Section
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3.4. We monitor the following residuals of the k-th iterate: the CG residual
‖B"N−1Buk − B"N−1b‖M−1 and the least squares residual ‖Buk − b‖N−1 .
Typically, the hierarchical ranks grow in the transient phase of the iteration, and
decrease as the iterates approach the least squares minimizer. It has been observed
in [26] that a good preconditioner is essential for such low rank variants of classi-
cal iterative solvers, in order to keep the ranks of the iterates moderate without
significant loss of accuracy.

Algorithm 1 Variant of low rank CGNR method in H-Tucker format

Input: Functions applying T ◦ B, T ◦ M−1, T ◦ N−1 to a tensor in H-Tucker format,
right-hand side b in H-Tucker format. Truncation operator T with rel. accuracy εrel.

Output: Tensor u fulfilling ‖Bu− b‖N−1 ≤ tol.
u0 = 0, r0 = b, s0 = B"N−1r0, p0 = s0, γ0 = 〈Bp0,Bp0〉N−1 , k = 0
while ‖rk‖N−1 > tol do

αk = 〈sk,pk〉/γk
uk+1 = uk + αkpk uk+1 ← T (uk+1)
rk+1 = b− Buk+1 rk+1 ← T (rk+1)
sk+1 = B"N−1rk+1

zk+1 = M−1sk+1

βk+1 = −〈Bzk+1,Bpk〉N−1/γk
pk+1 = zk+1 + βk+1pk pk+1 ← T (pk+1)
γk+1 = 〈Bpk+1,Bpk+1〉N−1

k = k + 1
end while
u = uk

4. Numerical experiments

In our numerical experiments, we set K = 8 and L = 8 for the discretizaion levels
in time and space, resp., cf. Section 2.4, unless specified otherwise. Hence, the trial
space is spanned by 513 × 511d functions which are tensor products of standard
univariate hat functions. In addition to the isotropic case q : J ×D → R discussed
so far, we investigate the anisotropic case q : J ×D → Rd×d with q taking values in
the set of diagonal and positive definite matrices such that 0 < amin ≤ qii(t, ξ) ≤
amax < ∞ still holds, cf. (2.4). We set Tfinal = 2, D = (−1, 1)d with d = 1, . . . , 5,
as well as h ≡ 0 and

p(t, ξ) =

(
1 + sin

πt

2

) d∏

j=1

(1− ξ2j )e
ξj , t ∈ J, ξ ∈ D.

In all cases, the preconditioners are approximated with n = 4 and st = 3, see
Section 3.3. All numerical experiments have been performed in Matlab version
7.7.0.471, on an Intel Xeon DP X5450 with 3 GHz and 2× 6MB L2 Cache.

4.1. Isotropic diffusion. Throughout this section we set q ≡ 1. Figure 4.1 shows
the typical convergence behavior of the CG method. Here, d = 2, K = L = 5,
max rank = 50 and we compare relative truncation accuracy rel eps = 10−2 and
rel eps = 10−6. Evidently, for rel eps = 10−2, the hierarchical ranks remain very low
(below 5), and the truncation error does not allow the CG residual to decrease below
10−4. Therefore, the least squares residual also stagnates. For rel eps = 10−6, the
convergence follows the typical pattern: the least squares residual clearly stagnates
while the CG residual still decreases; the stagnation is therefore not caused by
the truncation (but rather by the insufficiently exact discretization). The ranks
(depicted is maxt∈T rt of the iterate uk) grow in the transient phase of the CG
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d 1 2 3 4 5
full 2 MB 1 GB 510 GB 254 TB 127 PB

sparse 32 KB 152 KB 524 KB 1.5 MB 3.8 MB
Table 4.1. Storage space required for full and sparse grid approx-
imation with K = L = 8 and d = 1, . . . , 5.
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Figure 4.1. Convergence plot of CG for d = 2, L = 5. Truncation
tolerance: 10−2 (left), 10−6 (right).

method but eventually decrease to about 8. A good preconditioner is therefore
required to limit the number of iterations and consequently the intermediate ranks
and the computational effort.
Now we set K = L = 8. Figure 4.2 shows the convergence history of the least
squares residual as a function of the iteration count and of the computation time.
We use rel eps = 10−5 and max rank = 30 for d = 1, . . . , 5. The CG convergence
rate deteriorates with the number of dimensions d. Figure 4.3 shows the (wall-
clock) time until the least squares residual falls below 2 × 10−3 and the average
time per iteration as a function of the dimension d = 1, . . . , 5.
Figure 4.4 shows the approximate storage space in kilobytes needed for the result
of the above iteration with different values of rel eps between 10−1 and 10−10,
and max rank = 30. For each run, the prolongation of the solution u onto level
K = L = 11, denoted by û, and the least squares residual ‖Bû − b‖N−1 are
computed. The latter is plotted against the storage requirements (computed as
8*ndofs with the htucker toolbox). For comparison purposes, Table 4.1 gives the
storage requirements for the full, resp. sparse grid for K = L = 8. More precisely,
these numbers are the dimensions of the subspaces

EK ⊗ VL and
∑

k+!1+...+!d≤L

Ek ⊗ V (1)
!1

⊗ · · ·⊗ V (d)
!d

, (4.1)

respectively, times 8, which is the byte length of the double precision floating point
number. The matrix N−1 is approximated using n = 4 and st ≡ 5, rel eps = 10−8

and max rank = 40 (see Section 3.3). For each d = 1, . . . , 5, the result of the
iteration with rel eps = 10−10 is truncated to different hierarchical ranks rt =
1, . . . , 6 for all t ∈ T . The least squares residual of the prolongation onto level
K = L = 11 is again plotted against the storage requirements. Comparison of the
two plots suggests a quasi-optimality property: the solution produced by the CG
method is close to the exact solution truncated to the same hierarchical ranks.

4.2. Anisotropic diffusion. Let γ1 := 1, γ2 := 10−1, γ3 := 10−2, etc. Let
q : J × D → Rd×d be the constant function equal to the diagonal matrix q ≡
diag(γ1, . . . , γd). Consider now (2.1)–(2.3) with q so defined. In order to take the
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anisotropy into account, we modify g!0,...,!d in the definition (3.21) of the parabolic
BPX preconditioner as follows,

g!0,...,!d =

(
d∑

µ=1

γµ2
2!µ

)
+ 22!0

(
d∑

µ=1

γµ2
2!µ

)−1

, (4.2)

and similarly for N. Note that this implies a modification of the norms that are
used to measure the residuals. The following experiments are identical to the ones
in the last section, and the conclusions for Figure 4.6–4.7 correspond to those of
Figure 4.3–4.4. The convergence rate, however, now deteriorates only moderately
in dependence on the dimension d, as opposed to the isotropic case. In fact, we
observe close to linear scaling in the dimension d = 1, . . . , 5 for the computation
time (total, as well as per iteration).

5. Conclusions

This paper merges a priori stable minimal residual Petrov-Galerkin space-time dis-
cretizations and adaptive low rank approximation of high-dimensional tensors in
the hierarchical Tucker format for the solution of parabolic evolution equations.
The minimal residual Petrov-Galerkin discretization of the model diffusion equation
yields a linear system of the form B"N−1Bu = B"N−1b along with a preconditioner
M. The matrices N and M are based on an extension of the BPX preconditioner into
the space-time setting and render the linear system well-conditioned uniformly in
the discretization level. This is crucial for the performance of the low rank variant
of the conjugate gradient method: a well-conditioned system is required to main-
tain moderate ranks of the iterates, and consequently, low requirements on both,
storage and computational time. The tensor structure of the system matrix (in the
case of separable input data) and of the “parabolic BPX preconditioners” proposed
here is very convenient: they can be approximated by means of the hierarchical
Tucker format and applied to tensors in this format, in particular exploiting par-
allel architectures. Our numerical experiments demonstrate the potential of this
combined approach. In particular, for the anisotropic diffusion, where the conduc-
tivity coefficient along the dimension µ decays exponentially in µ, linear scaling
of the computational time in the number of spatial dimensions d = 1, . . . , 5 was
achieved.
An interesting pending question is the approximation of the tensor h, which is the
entrywise inverse of the tensor g defined in (3.22), in the hierarchical Tucker format.
This is essential for the BPX-based preconditioner in higher dimensions: since the
size of the full tensor h scales like (L + 1)d, where L is the level of the spatial
discretization, it quickly becomes prohibitive to assemble it before obtaining a low
rank approximation. This currently sets the limit in our computations to essentially
d = 5. A possible solution may be the adaptive cross approximation proposed in
[4, 30].
The authors acknowledge the support and the useful suggestions of D. Kressner
and Ch. Schwab.
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Figure 4.2. Convergence curves of the CG method for different
dimensions d. Isotropic case of Section 4.1.
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Figure 4.3. Timings for the CG method until a least squares
residual of 2× 10−3 is reached. Isotropic case of Section 4.1.
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Figure 4.4. Error against storage cost: result of the CG method
for different rel eps (left) and of the best approximant truncated
to ranks 1, . . . , 6 (right). Isotropic case of Section 4.1.
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Figure 4.5. Convergence curves of the CG method for different
dimensions d. Anisotropic case of Section 4.2.
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Figure 4.6. Timings for the CG method until a least squares
residual of 2× 10−3 is reached. Anisotropic case of Section 4.2.
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Figure 4.7. Error against storage cost: result of the CG method
for different rel eps (left) and of the best approximant truncated
to ranks 1, . . . , 6 (right). Anisotropic case of Section 4.2.
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