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Abstract

We consider a class of multilevel matrices, which arise from the discretization of
linear diffusion operators in a d-dimensional hypercube. Under certain assumptions
on the structure of the diffusion tensor (motivated by financial models), we derive an
explicit representation of such a matrix in the recently introduced Tensor Train (TT)
format with the TT ranks bounded from above by 2 +

⌊
d
2

⌋
. We also show that if the

diffusion tensor is constant and semiseparable of order r <
⌊
d
2

⌋
, the representation can

be refined and the bound on the TT ranks can be sharpened to 2+r (we do this in a more
general setting, for non-constant diffusion tensors of a certain structure). As a result,
when n degrees of freedom are used in each dimension, such a matrix is represented
in the TT format through O

(
d3n2

)
and O

(
d n2r2

)
parameters resp. instead of its n2d

entries. We also discuss the representation of such a matrix in the Quantized Tensor
Train (QTT) decomposition in terms of O

(
d3 log n

)
and O

(
d r2 log n

)
parameters resp.

Furthermore, we show that the assumption of semiseparability of order r can be
relaxed to that of quasi-separability of order r. We establish the direct relation rk = sk+2
between the d − 1 TT ranks sk of the matrix in question and the matrix ranks rk of the
d− 1 leading off-diagonal submatrices of the diffusion tensor.

Keywords: low-rank representation, diffusion operator, Tensor Train (TT), virtual lev-
els, Quantized Tensor Train (QTT), semiseparable matrices, quasi-separable matrices.
AMS Subject Classification: 15A69, 65F99.

1 Introduction

Recent surveys [1, 2] and the monograph [3] present a variety of tensor decompo-
sitions, i. e. low-parametric non-linear representations of high-dimensional arrays, which
have been recently applied to the solution of PDEs with the aim to overcome the “curse of
dimensionality” [4]. In the present paper, inspired primarily by financial market models, we
consider d-dimensional matrices of the form

Sd =
∑

1≤k≤d

akk Q1 ⊗ . . .⊗Qk−1 ⊗Sk ⊗Qk+1 ⊗ . . .⊗Qd

+
∑

1≤p<q≤d

apq Q1 ⊗ . . .⊗Qp−1 ⊗Xp ⊗Qp+1 ⊗ . . .⊗Qq−1 ⊗Yq ⊗Qq+1 ⊗ . . .⊗Qd

+
∑

1≤p<q≤d

aqp Q1 ⊗ . . .⊗Qp−1 ⊗Yp ⊗Qp+1 ⊗ . . .⊗Qq−1 ⊗Xq ⊗Qq+1 ⊗ . . .⊗Qd. (1)

∗The research was partially supported under ERC AdG Grant STAHDPDE No. 247277
†Seminar für Angewandte Mathematik, ETH Zürich. Rämistrasse 101, 8092 Zürich, Switzerland.

{vladimir.kazeev,oleg.reichmann,christoph.schwab}@sam.math.ethz.ch.
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Such a matrix arises, for example, from the discretization of a linear diffusion operator
in divergence form

L = −
d∑

p,q=1

∂q κ
pq ∂p = −∇#K∇, (2)

in the unit cube D = (0, 1)d, d ≥ 3, with homogeneous Dirichlet boundary conditions, where
K = [κ pq]dp,q=1 : D → Rd×d is a sufficiently smooth diffusion tensor.

Throughout this paper we assume that K is rank-1 separable (with respect to the
spatial variables):

κ pq = apq · κ
pq
1 ⊗ . . .⊗κ pq

d , 1 ≤ p, q ≤ d, (3)

where the matrix A = [apq ]
d
p,q=1 is a symmetric scaling factor of the diffusion tensor, and that

the coordinate factors are

κ pq
k =






κ̂k, k = p = q,

κk, k = p '= q or k = q '= p,

κk, otherwise.

(4)

We consider Galerkin finite element discretization (1) of L defined in (2). Due to the product
structure of D, we use tensor-product shape functions ψi1,...,id = ψ1

i1 ⊗ . . .⊗ψd
id
, where ψk

ik
,

1 ≤ ik ≤ nk are the shape functions corresponding to the k-th coordinate, 1 ≤ k ≤ d. Then
the stiffness matrix with the entries

(Sd) i1,...,id
j1,...,jd

= 〈Lψi1,...,id , ψj1,...,jd〉L2(D) , 1 ≤ ik, jk ≤ nk, (5)

takes the form (1), where the coordinate factors are

(Qk) ikjk =

∫
κk · ψ(k)

ik
· ψ(k)

jk
, (Sk) ikjk =

∫
κ̂k ·∇ψ(k)

ik
·∇ψ(k)

jk
,

(Xk) ikjk =

∫
κk ·∇ψ(k)

ik
· ψ(k)

jk
, (Yk) ikjk =

∫
κk · ψ(k)

ik
·∇ψ(k)

jk

for 1 ≤ ik, jk ≤ nk and 1 ≤ k ≤ d. Unlike the mass matrix, which arises in the rank-1
separable representation Md = M1 ⊗ . . .⊗Md, where (Mk) ikjk =

∫
ψ(k)
ik

ψ(k)
jk

, the stiffness

matrix Sd given in (1), due to symmetry, comprises 1
2(d+ 1)d rank-1 terms.

In the present paper we construct explicit low-rank Tensor Train [5, 6] representa-
tions of Sd. This means that we derive explicitly arrays Uk, 1 ≤ k ≤ d, referred to as TT
cores, such that the equality

(Sd) i1,...,id
j1,...,jd

=
r1∑

α1=1

. . .

rd−1∑

αd−1=1

U1 (i1, j1,α1) · U2 (α1, i2, j2,α2) · . . .

· Ud−1 (αd−2, id−1, jd−1,αd−1) · Ud (αd−1, id, jd) (6)

holds elementwise and such that the summation limits r1, . . . , rd−1, which are called TT
ranks (or just ranks) of the decomposition (6), are moderate. We give a more detailed
overview of the TT format in Section 2.

The main results of the present paper are the following. First, Corollary 3.3 presents a
TT representation of Sd of ranks bounded by 2+

⌊
d
2

⌋
and, thus, generalizes the correspond-

ing result of [7, Lemma 5.1] from a diagonal diffusion tensor to that of the form (3)–(4).
Second, Corollary 3.6 suggests a reduced decomposition of ranks bounded by 2 + r, pro-
vided that A is semiseparable of order r (see, e. g., [8]). Third, Theorem 3.7 establishes the
direct relation rk = sk + 2 between the d − 1 TT ranks rk of Sd and the matrix ranks sk of
the d− 1 leading off-diagonal submatrices of A.
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In Section 3 we obtain the results listed above for a general matrix of the form (1), see
Lemma 3.2 and Lemma 3.5, and then specify them for the stiffness matrix obtained from a
self-adjoint linear diffusion operator (2). In Section 4 we discuss how the results on the TT
structure of Sd imply corresponding results on its Quantized Tensor Train (QTT) structure
(a definition of the QTT representation is given in Section 2.4).

In Section 2.1 we discuss briefly the connection between the TT structure of a ten-
sor and the low-rank structure of the unfolding matrices obtained from the tensor. The-
orem 3.7, on the other hand, relates the TT structure of matrices of the form (1) to the
quasi-separable (see, e. g., [9]) structure of A, which we regard a very interesting result.

Remark 1.1. As practical examples involving diffusion tensors satisfying (3)–(4) we may
consider high-dimensional option pricing problems under diffusion type market models.
The case of a constant diffusion tensor K = A corresponds to the Black-Scholes market
model after an appropriate change of variables. We may also consider more general market
models of the diffusion type with κ pq(x1, . . . , xd) = apq · κp(xp) · κq(xq), where the functions
κk, 1 ≤ k ≤ d, are sufficiently smooth. Financial models with such diffusion tensors are,
e. g., the multi-dimensional Black-Scholes model in real price variables, see [10, 11], the
Heston model or the multiscale stochastic volatility model, see [12]. In the case of the
Black-Scholes model in real price in (4) we have κ̂k(xk) = x2k, κk(xk) = xk and κk(xk) = 1
for 1 ≤ k ≤ d, and for stochastic volatility models these coordinate factors have a more
involved form.

Remark 1.2. Consider bead-spring chain models with FENE-type potentials, which arise
from the kinetic theory of dilute polymer solutions (see [13] and references therein). Such
models lead to high-dimensional Fokker-Planck equations with diffusion terms of the form (2)–
(4). For example, see [13, (1.9)]: there a diffusion operator with respect to the conformation
vectors of springs (which model the polymer in question) is considered. It can be decom-
posed into a diffusion operator of the form (2)–(4), which we analyze in the present paper,
and a drift term, the low-rank TT structure of which follows from [7, Lemma 5.1]. In view
of this, let us emphasize that the results of the present paper, related to the TT structure
of discretizations of diffusion operators, apply straightforwardly to the cases when the do-
main D has a more complicated structure: the coordinates of D need not be Cartesian
coordinates, and D may be a Cartesian product of spheres, tori or other manifolds.

2 The TT and QTT representations, notation

2.1 The TT decomposition

The Tensor Train (TT) decomposition of high-dimensional tensors was proposed by
Oseledets and Tyrtyshnikov, see [5, 6]. Let us recall that a d-dimensional n1 × . . . × nd-
vector z is said to be represented in the TT format with TT ranks r1, . . . , rd−1 in terms of TT
cores U1 ∈ Rn1×r1 , U2 ∈ Rr1×n2×r2 , . . . , Ud−1 ∈ Rrd−2×nd−1×rd−1 , Ud ∈ Rrd−1×nd , if

zi1,...,id =
r1∑

α1=1

. . .

rd−1∑

αd−1=1

U1 (i1,α1) · U2 (α1, i2,α2) · . . .

· Ud−1 (αd−2, id−1,αd−1) · Ud (αd−1, id) (7)

holds for 1 ≤ ik ≤ nk, where 1 ≤ k ≤ d. The TT cores are arrays with one of d mode indices
ik and two subsequent or only one of d − 1 rank indices αk. For every k = 1, . . . , d − 1
Equation (7) implies a rank-rk representation of the corresponding unfolding matrix Z(k)

with entries defined as follows:

Z(k)
i1...ik; ik+1...id = zi1...id . (8)

3



Conversely, exact or approximate low-rank structure of the unfolding matrices yields the
same TT structure of the vector, see [6, Theorem 2.1 and Theorem 2.3]. This relation
of the TT ranks to the matrix ranks of certain matrices allows for robust TT-structured
computations based on standard matrix algorithms, such as SVD and QR, see [6] for details.

The TT decomposition can be applied similarly to a d-dimensional matrix (a block
matrix with d levels) of size (m1 × . . .×md) × (n1 × . . .× nd); for instance, see (6). In this
case every mode index ik is accompanied by another mode index jk; and Tensor Train cores
and ranks, as well as unfolding matrices, are defined analogously. This particular way of
representing matrices in the TT format (instead of, say, applying the decomposition to a 2d-
dimensional vectorization of a matrix) is motivated by the desired efficiency of computations
with TT-structured matrices; for further details refer to the discussion of the matrix-vector
multiplication in [6, Section 4.3].

2.2 Core matrices and the strong Kronecker product

Following [7], we use the following notation for TT cores and operations with them.
Consider a core Uk of rank rk−1 × rk and mode size mk × nk from a TT representation

(for example, (6)) of a matrix. Assume that mk × nk-matrices Gαβ, α = 1, . . . , rk−1, β =
1, . . . , rk are TT blocks of the core Uk, i. e. Uk (α, ik, jk,β) = (Gαβ)ikjk for all values of rank
indices α,β and mode indices ik, jk. We consider the core Uk as an rk−1 × rk-matrix, which
we refer to as the core matrix of Uk:

Uk =




G11 · · · G1rk
...

...
...

Grk−11 · · · Grk−1rk



 . (9)

In order to avoid confusion we use parentheses for ordinary matrices, whose entries are
numbers, multiplied as usual, and square brackets for cores (core matrices), whose entries
are blocks, multiplied by means of the strong Kronecker product “!"” defined below. Addi-
tion of cores is meant elementwise. Also, we may think of Gαβ or of any submatrix of the
core matrix in (9) as subcores of Uk.

Throughout the present paper we omit the indices in TT decompositions like (6) with
the help of the strong Kronecker product [14]. In order to avoid the confusion with the
Hadamard and tensor products, we denote this operation by “!"”, as in [7, Definition 2.1],
where it was introduced as follows specifically for connecting cores into “tensor trains”.

Definition 2.1 (Strong Kronecker product of TT cores). Consider cores U1 and U2 of ranks
r0 × r1 and r1 × r2 and of mode sizes m1 × n1 and m2 × n2 respectively, composed of blocks
G(1)

α0α1 and G(2)
α1α2 , 1 ≤ αk ≤ rk for 0 ≤ k ≤ 2. Let us define the strong Kronecker product

U1!"U2 of U1 and U2 as a core of rank r0 × r2 and mode size m1m2 × n1n2, consisting of
blocks

Gα0α2 =
r1∑

α1=1

G(1)
α0α1

⊗G(2)
α1α2

, 1 ≤ α0 ≤ r0, 1 ≤ α2 ≤ r2.

In other words, we define U1!"U2 as a usual matrix product of the corresponding
core matrices, their entries (blocks) being multiplied by means of the Kronecker (tensor)
product. For example,

[
G11 G12

G21 G22

]
!"
[
H11 H12

H21 H22

]
=

[
G11 ⊗H11 +G12 ⊗H21 G11 ⊗B12 +G12 ⊗H22

G21 ⊗H11 +G22 ⊗H21 G21 ⊗B12 +G22 ⊗H22

]
.

Then equation (7) can be revised as

Sd = U1!"U2!" . . .!"Ud−1!"Ud. (10)

4



If we consider two matrices P = V1!" . . .!"Vd and Q = W1!" . . .!"Wd, their tensor
product can be written as P⊗Q = V1!" . . .!"Vd!"W1!" . . .!"Wd. Once the matrices have
the same mode size, a linear combination of them reads

αP+ βQ =
[
V1 W1

]
!"diag [V2,W2]!" . . .!"diag [Vd−1,Wd−1]!"

[
αVd

βWd

]
,

where we use diag [U1, . . . , Ut] to denote a block-diagonal core composed of the cores U1, . . . , Ut

as subcores, so that

diag [Vk,Wk] =

[
Vk

Wk

]
.

Throughout the paper we leave zero blocks blank, as in the last equation.

2.3 Explicit rank reduction

In Section 2.1 we mentioned the relation between the TT ranks of a vector (matrix)
and the unfolding matrices of the vector (matrix). Due to this relation, reducing a TT
decomposition (i. e. its ranks) means removing a linear dependence from low-rank repre-
sentations of the unfolding matrices, implied by (7), (6). This can be done by the standard
transformations of rows and columns in the core matrices: the strong Kronecker product
inherits the basic properties of the matrix and Kronecker (tensor) products; for instance,

[
V11 V12

V21 V22

]
!"
[
αW11 αW12

βW11 βW12

]
=

[
V11 V12

V21 V22

]
!"
([

α
β

]
!"
[
W11 W12

])

=

([
V11 V12

V21 V22

]
!"
[
α
β

])
!"
[
W11 W12

]
=

[
αV11 + βV12

αV21 + βV22

]
!"
[
W11 W12

]
(11)

for any coefficients α,β and blocks or subcores V11, V12, V21, V22,W11,W12 of compatible
ranks and mode sizes. Equality (11) illustrates the basic decomposition technique which
we use routinely throughout the paper.

2.4 The QTT decomposition

With the aim of further reduction of the complexity, the TT format can be applied to
a “quantized” vector (matrix), which leads to the Quantized Tensor Train (QTT) format [15,
16, 17]. The idea of quantization of the k-th “physical” dimension consists in replacing it
with lk “virtual” dimensions (levels) [18], provided that the corresponding mode size nk can
be factorized as nk = nk1 · nk2 · . . . · nklk in terms of integral factors nkmk

≥ 2, mk = 1, . . . , lk.
This corresponds to reshaping the k-th mode of size nk into lk modes of sizes nk1, . . . , nklk .

Compared to the TT decomposition (without quantization), the QTT format represents
more structure in the data by splitting all the “virtual” dimensions introduced. It involves
additional rank numbers, and they can be higher. Typically, one tends to introduce as fine
(i. e. with small nkmk

) quantization as possible and wind up with as many virtual modes
as possible. This corresponds to seeking as much low-rank QTT structure in the data as
possible.

As an example of the finest possible quantization one may consider the representation
of every “physical” scalar index i = i1, . . . , il ≡ 1 +

∑l
k=1 2

l−k (ik − 1) varying from 1 to 2l

in terms of “virtual” indices i1, . . . , il taking values 1 and 2. This binary encoding reshapes
a one-dimensional 2l-component vector into an l-dimensional 2 × . . . × 2-tensor; and a d-
dimensional 2l1 × . . .× 2ld -tensor into an l1 + . . .+ ld-dimensional 2× . . .× 2-tensor.

A TT decomposition of a vector (matrix) under such a transformation is referred to
as a QTT decomposition of the vector (matrix). The TT ranks of this decomposition are
called QTT ranks. In this sense (7) and (6), with d being replaced with l, also present QTT
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decompositions of ranks r1, . . . , rl−1 of a one-dimensional vector ẑ and of a one-dimensional

matrix Ŝd with entries ẑi1,...,il = zi1,...,il and
(
Ŝd

)
i1,...,il,j1,...,jl

= (Sd) i1,...,il,j1,...,jl .

The computational efficiency of the TT, QTT and Hierarchical Tensor [19, 20] repre-
sentations has been demonstrated in many papers, including [21, 22, 23] on elliptic PDEs
and eigenvalue problems, [24, 25, 26] on parabolic PDEs, [27] on nonlinear EVPs, [28] on
multi-parametric problems, [29] on stochastic PDEs, [30] on problems in quantum molecu-
lar dynamics.

3 Low-rank TT structure of the diffusion operator

3.1 Diagonal diffusion tensor

Assume first that apq = 0 for p '= q in (1). Then the stiffness matrix takes the form

Sd =
d∑

k=1

Q1 ⊗ . . .⊗Qk−1 ⊗Sk ⊗Qk+1 ⊗ . . .⊗Qd. (12)

Consider also the matrix Qd = Q1 ⊗ . . .⊗Qd, which coincides with the mass matrix in case
κk = 1 in (4). The common TT structure of Qd and Sd was studied in [7, Lemma 5.1] and
can be described as follows.

Proposition 3.1. Let d ≥ 2. Then the following TT representation of ranks 2, . . . , 2 in terms
of Qk and Sk, 1 ≤ k ≤ d, holds true:

[
Qd

Sd

]
= W1!"W2!" . . .!"Wd−1!"Vd,

where the cores are

Wk =

[
Qk

Sk Qk

]
and Vd =

[
Qd

Sd

]
.

In order to represent Sd only, one leaves out the first row in W1.

3.2 Non-diagonal diffusion tensor

In this section we generalize Proposition 3.1 to the form (1) of the matrix Sd with

a non-diagonal diffusion tensor: we show that the core

[
Qd

Sd

]
can be represented in the

TT format in terms of the matrices Qk, Sk, Xk, Yk, 1 ≤ k ≤ d, and coefficients apq , 1 ≤
p, q ≤ d, with ranks increasing linearly from 4 to 2+2

⌊
d
2

⌋
and then decreasing linearly from

2 + 2(d−
⌊
d
2

⌋
− 1) to 4 from left to right, i. e. bounded by

⌊
d
2

⌋
.

For the presentation of our calculations and results, let us introduce the following
cores: for 2 ≤ k ≤ d− 1

Fk =
[
akk+1Xk · · · akd Xk

]
and Gk =

[
ak+1
k Yk · · · adk Yk

]

are cores of rank 1 × d − k; Σk = diag [Qk, . . . , Qk] and Ωk = diag [Qk, . . . , Qk] are diagonal
cores of rank k − 1× k − 1 and d− k × d− k respectively;

Pk =




a1kYk
...

ak−1
k Yk



 and Rk =




ak1Xk
...

akk−1Xk





6



are cores of rank k − 1× 1;

Mk =




a1k+1Qk · · · a1dQk

...
...

...
ak−1
k+1Qk · · · ak−1

d Qk



 and Nk =




ak+1
1 Qk · · · ad1Qk
...

...
...

ak+1
k−1Qk · · · adk−1Qk





are cores of rank k − 1× d− k.

Lemma 3.2. For any d ≥ 3 and r such that 1 ≤ r ≤ d − 2 the following TT representation
holds true: [

Qd

Sd

]
= U1!"U2!" . . .!"Ur !"Wr+1!"Vr+2!" . . .!"Vd−1!"Vd, (13)

where the TT ranks are 4, 6, . . . , 2 + 2r, 2 + 2(d− r − 1), . . . , 6, 4. The cores involved are the
following:

U1 =

[
Q1

a11S1 Q1 X1 Y1

]
, Vd =





Qd

addSd

Yd
Xd



 , Vk =





Qk

akkSk Qk Fk Gk

Yk
Ωk

Xk

Ωk





,

Wk =





Qk

akkSk Qk Fk Gk

Pk Mk

Rk Nk



 , Uk =





Qk

akkSk Qk Xk Yk
Pk Σk

Rk Σk



 (14)

for 2 ≤ k ≤ d−1. Here Uk is of rank 2+2(k−1)×2+2k; Wk, of rank 2+2(k−1)×2+2(d−k);
Vk, of rank 4 + 2(d− k)× 2 + 2(d− k).

Proof. In order to make the proof clearer and less technical, we give it for the case of an
upper triangular matrix A, when the third sum in (1) cancels out, the cores Gk, Rk and Nk

become trivial and the cores of the decomposition (13) reduce to

U1 =

[
Q1

a11S1 Q1 X1

]
, Vd =




Qd

addSd

Yd



 , Vk =





Qk

akkSk Qk Fk

Yk
Ωk



 ,

Wk =




Qk

akkSk Qk Fk

Pk Mk



 , Uk =




Qk

akkSk Qk Xk

Pk Σk



 (15)

for 2 ≤ k ≤ d− 1. Here Uk is of rank 2 + k − 1× 2 + k; Wk, of rank 2 + k − 1× 2 + d− k; Vk,
of rank 4 + d− k × 2 + d− k.

In the general case the proof can be obtained directly in the very same way.
Backward sweep from d to 1. Let us consider the matrices Qk = Q1 ⊗ . . .⊗Qk and

Sk =
∑

1≤p≤k

app Q1 ⊗ . . .⊗Qp−1 ⊗Sp ⊗Qp+1 ⊗ . . .⊗Qp

+
∑

1≤p<q≤k

apq Q1 ⊗ . . .⊗Qp−1 ⊗Xp ⊗Qp+1 ⊗ . . .⊗Qq−1 ⊗Yq ⊗Qq+1 ⊗ . . .⊗Qk

for 1 ≤ k ≤ d. Then for 2 ≤ k ≤ d we have the recursive relations

Qk = Qk−1 ⊗Qk,

7



Sk = Sk−1 ⊗Qk +Qk−1 ⊗ akk Sk +X k
k−1 ⊗Yk, (16)

where

X q
k =

k∑

p=1

Q1 ⊗ . . .⊗Qp−1 ⊗ apq Xp ⊗Qp+1 ⊗ . . .⊗Qk (17)

for 1 ≤ k < q ≤ d. Let us now define the core

Ũk =

[
Qk

Sk Qk X k+1
k · · · X d

k

]

of rank 2 × 2 + (d − k) for 1 ≤ k ≤ d − 1. Then, in particular, (16) for k = d can be recast
with the use of the strong Kronecker product as

[
Qd

Sd

]
= Ũd−1!"Vd. (18)

The matrices defined by (17) for 2 ≤ k < q ≤ d satisfy X q
k = X q

k−1 ⊗Qk+Qk−1 ⊗ akq Xk, from
which we obtain for 2 ≤ k ≤ d that

[
X k+1

k · · · X d
k

]
=

[
Qk−1 X k+1

k−1 · · · X d
k−1

]
!"
[
Fk

Ωk

]
. (19)

Equations (16) and (19) result in the recursive TT structure of Ũk:

Ũk =

[
Qk−1

Sk−1 Qk−1 X k
k−1 Qk−1 Qk−1 X k+1

k−1 · · · X d
k−1

]

!"





Qk

Qk

akkSk

Yk
Qk

Fk

Ωk





=

[
Qk−1

Sk−1 Qk−1 X k
k−1 X k+1

k−1 · · · X d
k−1

]
!"





Qk

akkSk Qk Fk

Yk
Ωk



 ,

i. e. Ũk = Ũk−1!"Vk for 2 ≤ k ≤ d− 1. By expanding this recursion leftwards, we obtain the
TT representation [

Qd

Sd

]
= Ũ1!"V2!" . . .!"Vd−1!"Vd (20)

of ranks d+ 1, d, . . . , 4, 3.
Direct sweep from 1 to r. The first factor of the decomposition (20) contains many

linearly dependent columns. Indeed, as long as X q
1 = a1qX1 for 1 < q ≤ d, we have

Ũ1 = U1!"T1 with T1 =




1

1
a12 · · · a1d



 , (21)

where T1 is a core of rank 2 + 1× 2 + d− 1. Now for 1 ≤ k ≤ r + 1 we compose the cores

Θk =




a1k+1 · · · a1d
...

...
...

akk+1 · · · akd



 and Tk =




1

1
Θk





8



of rank k × d− k and 2 + k × 2 + d− k respectively. Note that for 2 ≤ k ≤ r + 1

Θk−1!"




Yk



 = Pk, Θk−1!"
[

Ωk

]
= Mk,

which allows us to conclude that

Tk−1!"Vk =




1

1
Θk−1



!"





Qk

akkSk Qk Fk

Yk
Ωk

Xk




=




Qk

akkSk Qk Fk

Pk Mk



 = Wk (22)

for 2 ≤ k ≤ r + 1. Also, for the same range of k we may see that

[
Fk

Mk

]
=





akk+1Xk · · · akdXk

a1k+1Qk · · · a1dQk
...

...
...

ak−1
k+1Qk · · · ak−1

d Qk




=





Xk

Qk
. . .

Qk




!"Θk

=

[
Xk

Σk

]
!"Θk, (23)

so that we may extract Tk as a factor on the right:

Wk =




Qk

akkSk Qk Xk

Pk Σk



!"




1

1
Θk



 = Uk !"Tk, (24)

which holds for 2 ≤ k ≤ d − 1. Ultimately, by applying (21) and the successive transforma-
tions (22), (24) for 2 ≤ k ≤ r + 1 to (20), we obtain the decomposition

[
Qd

Sd

]
= U1!"U2!" . . .!"Ur !"Wr+1!"Vr+2!" . . .!"Vd−1!"Vd.

Let us now consider the particular case when A is symmetric and Yk = ωXk for
1 ≤ k ≤ d with some ω ∈ R. This holds true with ω = −1 if the coordinate factors κk in (4)
are constant.

Corollary 3.3. Assume that d ≥ 3, A is symmetric and, for some ω ∈ R, Yk = ωXk for
1 ≤ k ≤ d in (1). Then for any r such that 1 ≤ r ≤ d − 2 the following TT representation
holds true: [

Qd

Sd

]
= U1!"U2!" . . .!"Ur !"Wr+1!"Vr+2!" . . .!"Vd−1!"Vd, (25)

where the TT ranks are 3, 4, . . . , 2 + r, 2 + (d − r − 1), . . . , 4, 3. The cores involved are the
following:

U1 =

[
Q1

a11S1 Q1 X1

]
, Vd =




Qd

addSd

Xd



 , Vk =





Qk

akkSk Qk 2ωFk

Xk

Ωk



 ,

Wk =




Qk

akkSk Qk 2ωFk

2ωRk 2ωMk



 , Uk =




Qk

akkSk Qk Xk

2ωRk Σk



 (26)

for 2 ≤ k ≤ d− 1. Here Uk is of rank 2 + k − 1× 2 + k; Wk, of rank 2 + k − 1× 2 + d− k; Vk,
of rank 4 + d− k × 2 + d− k.
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Proof. From (1) we see that, under the assumptions of the corollary, Sd does not change
if we replace Yk with Xk and apq , with 2ωapq for p < q and 0 for p > q. By doing so we
reduce the statement to the case of an upper triangular matrix A, considered in detail in
Lemma 3.2.

The representation suggested by Lemma 3.2 has the lowest ranks when r =
⌊
d
2

⌋
: if

d = 2r + 1, where r ≥ 1, then it is of ranks 4, 6, . . . , 2r + 2, 2r + 2, . . . , 6, 4; if d = 2r, where
r ≥ 2, then its ranks are 4, 6, . . . , 2r + 2, 2r, . . . , 6, 4. In both the cases the TT ranks of the
decomposition proven are bounded by 2 + 2

⌊
d
2

⌋
. A similar remark resulting in the upper

bound 2 +
⌊
d
2

⌋
applies to Corollary 3.3.

3.3 Non-diagonal diffusion tensor with low-rank structure

When the scaling factor A of the diffusion tensor has a certain low-rank structure,
the results of Lemma 3.2 and Corollary 3.3 may be remarkably refined. To start with, we
assume the following.

Assumption 3.4. The strictly upper and lower triangular parts of the matrix A involved
in (1) have the following rank-r representations for some r ≤

⌊
d
2

⌋
:

apq =
r∑

α=1

ξpαη
α
q for p < q and apq =

r∑

α=1

χp
αζ

α
q for p > q

with ξpα, ηαq ,χ
p
α, ζαq ∈ R, i. e. A is semiseparable of order r (see, e. g., [8])

Below we show that under this assumption we may modify the TT decomposition (13)
and cut the TT ranks at 2 + 2r, so that they still increase linearly from 4 to 2 + 2r from
both the ends towards the middle of the decomposition, but then remain equal to 2 + 2r in
the middle part. The same applies to Corollary 3.3, which results in a TT decomposition of
ranks bounded by 2 + r.

Let us introduce the cores

←−
M r+1 =




ξ11Qr+1 · · · ξ1rQr+1

...
...

...
ξr1Qr+1 · · · ξrrQr+1



 ,
←−
N r+1 =




χ1
1Qr+1 · · · χr

1Qr+1
...

...
...

χ1
rQr+1 · · · χr

rQr+1





of rank r × r and, for r + 1 ≤ k ≤ d− r, the following cores:

Λk =




Qk

. . .

Qk



 , P k =




η1kYk
...

ηrkYk



 and Rk =




ζk1Xk
...

ζkrXk





of rank r × r, r × 1 and r × 1 respectively;

F k =
[
ξk1Xk · · · ξkrXk

]
and Gk =

[
χ1
kYk · · · χr

kYk
]

of rank 1× r;

−→
Mk =




η1k+1Qk · · · η1dQk

...
...

...
ηrk+1Qk · · · ηrdQk



 ,
−→
N k =




ζk+1
1 Qk · · · ζd1Qk
...

...
...

ζk+1
r Qk · · · ζdrQk





of rank r × d− k.
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Lemma 3.5. Let d ≥ 5 and Assumption 3.4 be valid. Then the following TT representation
holds true:

[
Qd

Sd

]
= U1!"U2!" . . .!"Ur !"

←−
W r+1!"W r+2

!" . . .!"W d−r−1!"
−→
W d−r !"Vd−r+1!" . . .!"Vd−1!"Vd, (27)

where the TT ranks are 4, 6, . . . , 2 + 2r, . . . 2 + 2r . . . , 2 + 2r, . . . , 6, 4. The cores involved are
the following: Uk and Vk are the same as in (14),

←−
W r+1 =





Qr+1

ar+1
r+1Sr+1 Qr+1 F r+1 Gr+1

Pr+1
←−
M r+1

Rr+1
←−
N r+1




(28)

is a core of rank 2 + 2r × 2 + 2r and, for r + 2 ≤ k ≤ d− r,

W k =





Qk

akkSk Qk F k Gk

P k Λk

Rk Λk



 and
−→
W k =





Qk

akkSk Qk Fk Gk

P k
−→
Mk

Rk
−→
N k




(29)

are cores of rank 2 + 2r × 2 + 2r and 2 + 2r × 2 + 2(d− k) respectively.

Proof. As we do with Lemma 3.2, we give the proof for the case of an upper triangular
matrix A. Then the third sum in (1) cancels out; the cores

←−
N r+1 and all Gk, Rk and

−→
N k, as

well as Gk, Rk and Nk, become trivial. As a consequence, the decomposition (27) involves
Uk and Vk from (15) and the following cores:

←−
W r+1 =




Qr+1

ar+1
r+1Sr+1 Qr+1 F r+1

Pr+1
←−
M r+1



 (30)

is a core of rank 2 + r × 2 + r and, for r + 2 ≤ k ≤ d− r,

W k =




Qk

akkSk Qk F k

P k Λk



 and
−→
W k =




Qk

akkSk Qk Fk

P k
−→
Mk



 (31)

are cores of rank 2 + r × 2 + r and 2 + r × 2 + d− k respectively.
We start with the decomposition suggested by Lemma 3.2 for the value of r given by

Assumption 3.4.
Reduction of the r + 1-th rank. First, we define the cores

Θ̃r+1 =




ξ11 · · · ξ1r
...

...
...

ξr+1
1 · · · ξr+1

r



 , Θk =




η1k+1 · · · η1d
...

...
...

ηrk+1 · · · ηrd





and T k = diag
[
1, 1,Θk

]
of rank r + 1 × r, r × d − k and 2 + r × 2 + d − k respectively,

where r + 1 ≤ k ≤ d − r − 1. According to Assumption 3.4, Θr+1 = Θ̃r+1!"Θr+1. Then, by
following (23), we obtain

[
Fr+1

Mr+1

]
=

[
Xr+1

Σr+1

]
!"Θr+1 =

[
F r+1←−
M r+1

]
!"Θr+1,
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where we use the relations F k =
[

Xk

]
!" Θ̃k and

←−
Mk =

[

Σk

]
!" Θ̃k. Therefore we have

Wr+1 =
←−
W r+1!"T r+1. (32)

Direct sweep from r+1 to d− r. Similarly to (22), for r+2 ≤ k ≤ d− r we may write

T k−1!"Vk =




Qk

akkSk Qk Fk

P k
−→
Mk



 =
−→
W k, (33)

since Θk−1!"




Yk



 = P k and Θk−1!"
[

Ωk

]
=

−→
Mk. Let us note now that, similarly to (23),

[
Fk−→
Mk

]
=





akk+1Xk · · · akdXk

η1k+1Qk · · · η1dQk+1
...

...
...

ηrk+1Qk · · · ηrdQk+1




=

[
Xk

Λk

]
!"





η1k+1 · · · η1d
...

...
...

ηrk+1 · · · ηrd
akk+1 · · · akd




.

The rank in the latter core product can be reduced: indeed, by Assumption 3.4, we have




η1k+1 · · · η1d
...

...
...

ηrk+1 · · · ηrd
akk+1 · · · akd




=





1
. . .

1
ξk1 · · · ξkr




!"




η1k+1 · · · η1d
...

...
...

ηrk+1 · · · ηrd



 , (34)

therefore

[
Fk−→
Mk

]
=

[
F k

Λk

]
!"Θk. Thus,

−→
W k = W k !"T k (35)

for r + 2 ≤ k ≤ d − r − 2. Finally, (32) and the successive application of the relations (33)
and (35) complete the proof.

Corollary 3.6. Assume that d ≥ 5, A is symmetric and, for some ω ∈ R, Yk = ωXk for
1 ≤ k ≤ d in (1). Let Assumption 3.4 hold true with ζαp = ξpα and χq

α = ηαq for 1 ≤ p < q ≤ d
and 1 ≤ α ≤ r. Then the following TT representation holds true:

[
Qd

Sd

]
= U1!"U2!" . . .!"Ur !"

←−
W r+1!"W r+2

!" . . .!"W d−r−1!"
−→
W d−r !"Vd−r+1!" . . .!"Vd−1!"Vd,

where the TT ranks are 3, 4, . . . , 2+r, . . . , 2+r, . . . , 4, 3. The cores involved are the following:
Uk and Vk are the same as in Corollary 3.3,

←−
W r+1 =




Qr+1

ar+1
r+1Sr+1 Qr+1 2ωF r+1

2ωRr+1 2ω
←−
M r+1



 ,

is a core of rank 2 + r × 2 + r and, for r + 2 ≤ k ≤ d− r,

W k =




Qk

akkSk Qk 2ωF k

Rk Λk



 and
−→
W k =




Qk

akkSk Qk 2ωFk

2ωRk
−→
Mk





are of rank 2 + r × 2 + r and 2 + r × 2 + d− k respectively.
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Proof. Follows from Lemma 3.5 in the very same way as Corollary 3.3 from Lemma 3.2.

Note that Assumption 3.4 required by Lemma 3.5, which implies the semiseparability
of A, can be substantially relaxed: actually, in the proof of Lemma 3.5 we need only that all
the submatrices

Bk =




a1k+1 · · · a1d
...

...
...

akk+1 · · · akd



 and Ck =




ak+1
1 · · · ad1
...

...
...

ak+1
k · · · adk



 (36)

of the strictly upper and lower triangular parts of A are of rank not greater than r. This
condition is well-known in the theory of quasi-separable matrices (see, e. g., [9]) and means
that the matrix A is quasi-separable of order r.

Once for 1 ≤ k ≤ d − 1 there exist a rank-rk representation of Bk and a rank-sk
representation of Ck, it is possible to construct an explicit TT decomposition, similar to the
one suggested by Lemma 3.5, of the TT ranks 2+ r1 + s1, . . . , 2+ rd−1 + sd−1. The technique
remains the same for this generalization, the only difference is that Assumption 3.4 required
by Lemma 3.5 provides a common basis for the low-rank representation of all matrices Bk,
1 ≤ k ≤ d− 1, and similarly for Ck. In particular, this is the reason why we have the identity
subcore in (34). However, if A is only quasi-separable, it is not the case: the equation
analogous to (34) contains a non-diagonal subcore accounting for the relation between the
bases of low-rank representations of Bk−1 and Bk. This results in non-diagonal subcores
(composed of Qk) instead of diagonal Λk in every middle core W k. This leads us to the
following theorem relating the order of quasi-separability of A and the TT ranks of Sd. The
proof is similar and likewise constructive, so that the corresponding decompositions can be
obtained explicitly in the same way as under Assumption 3.4 in Lemma 3.5 and Corollary 3.6
with some extra technical calculations.

Theorem 3.7. Let rankBk = rk and rankCk = sk for 1 ≤ k ≤ d − 1, where Bk and Ck

are submatrices of A, defined by (36). Then the stiffness matrix Sd defined by (1) has a
TT decomposition of ranks 2 + r1 + s1, . . . , 2 + rd−1 + sd−1 in terms of the diagonal of the
diffusion tensor A, factors of corresponding rank-rk and rank-sk decompositions of Bk and
Ck respectively, and coordinate factors Qk, Sk, Xk, Yk.

If we assume additionally that A is symmetric and, for some ω ∈ R, Yk = ωXk for
1 ≤ k ≤ d, then Sd admits such a decomposition of ranks 2 + r1, . . . , 2 + rd−1.

To verify the sharpness of the rank estimates obtained in Section 2.1 above, we used
the TT Toolbox (publicly available at http://spring.inm.ras.ru/osel). We verified nu-
merically that the TT decompositions given by Proposition 3.1, Lemma 3.2, Corollary 3.3 are
of the smallest possible ranks for arbitrary coordinate factors Qk, Sk, Xk and Yk, 1 ≤ k ≤ d,
and the scaling factor A of the diffusion tensor. The same holds for Lemma 3.5 and Corol-
lary 3.6, provided that additionally r in Assumption 3.4 is the exact rank of both strictly
triangular parts of A. The more general estimates of the minimal TT ranks of Sd given in
Theorem 3.7 also prove numerically to be sharp.

4 Low-rank QTT structure of the diffusion operator

In Section 3 we studied the TT structure of the matrix Sd defined in (1). This structure
is related to the separation of d “physical” dimensions and the representation of the matrix
in terms of its coordinate factors. In this section we consider Sd after “quantization” (see
Section 2.4). We outline how, similarly to [7, Lemma 5.2], the results on the TT structure
of Sd, obtained above, lead to similar conclusions on its QTT structure, provided that the
coordinate factors themselves possess a low-rank QTT structure.
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Let us focus on the k-th “physical” dimension for some 1 ≤ k ≤ d and consider the
core Uk defined in (15). From now on, when possible, we omit the index k for the sake
of brevity. Let us assume that coordinate factor Q is given in a QTT representation Q =
Q1!"Q2!" . . .!"Ql−1!"Ql, where the QTT ranks are ρ1Q, . . . , ρ

l−1
Q , and so are S, X and Y . Let

us define a core P 1 =




a1kY

1

...
ak−1
k Y 1



 of rank k− 1× ρ1Y . Then for the core P of rank k− 1× 1 we

may write a QTT decomposition P = P 1!"Y 2!" . . .!"Y l−1!"Y l of ranks k− 1, ρ1Y , . . . , ρ
l−1
Y ,1

(we emphasize in boldface the TT ranks, i. e. the ranks of the separation of “physical”
dimensions, and do not omit the terminal ranks equal to 1). Similarly, the core Σ of rank
k − 1 × k − 1 can be represented in the QTT format as Σ = Σ1!"Σ2!" . . .!"Σl−1!"Σl with
ranks k− 1, (k − 1)ρ1Q, . . . , (k − 1)ρl−1

Q ,k− 1 through Σm = diag [Qm, . . . , Qm], 1 ≤ m ≤ l.
Then for the core U of rank 2 + k − 1 × 2 + k we may write the representation U =

U1!"U2!" . . .!"U l−1!"U l with the following QTT cores:

U1 =




Q1

akkS
1 Q1 X1

P 1 Σ1



 ,

U l =





Ql

Sl

Y l

Ql

Σl

X l





and Um =





Qm

Sm

Y m

Qm

Σm

Xm





for 2 ≤ m ≤ l − 1. The ranks of this QTT representation are 2+ k− 1, r1U , . . . , r
l−1
U ,2+ k

with rmU = ρmQ + ρmS + ρmY + ρmQ + (k − 1)ρmQ + ρmX for 1 ≤ m ≤ l.
If ρmQ , ρ

m
S , ρ

m
X , ρ

m
Y are bounded from above by ρ for all m = 1, . . . , l, then rmU ≤ (k+ 4)ρ.

Similarly, for the cores V = Vk and W = Wk QTT decompositions of ranks bounded by
rmV ≤ (d − k + 5)ρ and rmW ≤ (max {k − 1, d− k} + 5)ρ respectively can be constructed.
Then the ranks of the decomposition given by (15) with r =

⌊
d
2

⌋
are bounded from above

by
(⌊

d
2

⌋
+ 4

)
ρ = O (dρ). Generally, the TT decompositions obtained in Section 4 with

ranks bounded by O (d) and O (r) give rise to corresponding QTT decompositions of ranks
bounded by O (dρ) and O (rρ).

Theorem 4.1. Assume that in (1) all coordinate factors Sk, Qk, Xk and Yk, 1 ≤ k ≤ d, can
be represented in the QTT format with ranks bounded from above by ρ. Then the matrix Sd

defined in (1) can be represented in the QTT format with ranks bounded from above by:

(a)
(
2
⌊
d
2

⌋
+ 7

)
ρ;

(b) (2r + 7) ρ, if A is quasi-separable of order r;

(c)
(⌊

d
2

⌋
+ 5

)
ρ, if A is triangular or if A is symmetric and, for some ω ∈ R, Yk = ωXk for

1 ≤ k ≤ d;

(d) (r + 5) ρ, if A is quasi-separable of order r and triangular or if A is quasi-separable of
order r and symmetric and, for some ω ∈ R, Yk = ωXk for 1 ≤ k ≤ d.

In every particular case the corresponding explicit QTT decomposition and the exact
expression for an upper bound on each of its ranks can be obtained as we described in this
section.

Remark 4.2. Assume that the diffusion tensor is constant, i. e. K = A, and the standard
“hat” functions are used to construct the finite element subspace. Then, according to [7,
Lemma 3.1], the main assumption of Theorem 4.1 holds with ρ = 3.
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5 Conclusion

Above we have analyzed explicitly the TT and QTT structure of the matrices of the
form (1). The efficient numerical solution of problems with anisotropic, possibly non-
homogeneous diffusion (2) requires the low-rank representation of the corresponding stiff-
ness matrix. Therefore the results of Section 2.1 and Section 2.4 contribute to the mathe-
matical foundation of the TT- and QTT-based approaches to such problems. The localization
to a hypercube is typical for financial market models, see, e. g. [31, Theorem 4.14] and [10].

Note that Lemma 3.2 proves the observation made in [5, Section 7.3 and Table 7.2],
the rank estimate discussed in [6, Section 3.1] and the conjecture of [30, Hypothesis 4.9,
1.]

As we mentioned in Introduction, we consider important the relation between the
quasi-separable structure of A and the TT and QTT structure of Sd, established in Theo-
rem 3.7 and Theorem 4.1 (b,d) respectively. In [10] so-called “ε-aggregation” was used to
reduce the dimensionality of a high-dimensional diffusion model, and the corresponding
error estimates were obtained [10, Theorem 2.3]. In that paper it is assumed that for some
ε . 1 only r . d eigenvalues of the rescaled volatility covariance matrix (i. e. the diffu-
sion tensor) exceed the ε-threshold, then the d-dimensional dynamics appears to be mainly
driven by r ε-aggregate diffusion processes. The diffusion tensor is approximated with rank
r, and the corresponding Kolmogorov PDE was shown to reduce from d to r dimensions.

In the present paper we propose, in some sense, to reduce the effective dimension of
discretized diffusion problems Lu = f by considering them in the TT or QTT format. Our
result affirms such a reduction to be possible under a milder condition: diffusion tensor is
kept full-rank, but is assumed to have, exactly or approximately, only low-rank submatrices
in the off-diagonal part. The exploration of this in the context of [10] is the subject of
ongoing research.

The conclusions of the paper can be trivially generalized to linear elliptic second-
order differential operators: a convection term, under an assumption on the convection
coefficient, analogous to (4), has a Laplace-like structure similar to (12) and can be rep-
resented in the TT format with the help of Proposition 3.1. Then its QTT decomposition
can be constructed as it is done for the diffusion operator in Section 4. The reaction term
inherits the TT and QTT structure immediately from the reaction coefficient.

The assumption of the rank-1 separability of the diffusion tensor can be relaxed: we
may consider diffusion tensors represented with moderate ranks in the (functional) TT for-
mat (see [32]), i. e. satisfying (3) with “!"” instead of “⊗” and the TT cores of the form (4).
Equation (1) and all our proofs and conclusions can be generalized to this case by formally
replacing “⊗” with “!"” and scaling all the rank estimates by the factors of the correspond-
ing (functional) TT ranks of the diffusion tensor.

Let us also note that the results on the TT and QTT structure can be applied straight-
forwardly to the Hierarchical Tensor representation by Hackbusch and Kühn (see [19, 20])
with degenerate trees and its tensorized version [33], the counterpart of QTT.
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