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MONTE CARLO AND MULTI-LEVEL MONTE CARLO
FINITE VOLUME METHODS FOR UNCERTAINTY

QUANTIFICATION
IN NONLINEAR SYSTEMS OF BALANCE LAWS

S. MISHRA, CH. SCHWAB, AND J. ŠUKYS

Abstract. A mathematical formulation of conservation and of balance laws
with random input data, specifically with random initial conditions, random
source terms and random flux functions, is reviewed. The concept of random
entropy solution is specified. For scalar conservation laws in multi-dimensions,
recent results on the existence and on the uniqueness of random entropy so-
lutions with finite variances are presented. The combination of Monte Carlo
sampling with Finite Volume Method discretization in space and time for the
numerical approximation of the statistics of random entropy solutions is pro-
posed.

The finite variance of random entropy solutions is used to prove asymptotic
error estimates for combined Monte Carlo Finite Volume Method discretiza-
tions of scalar conservation laws with random inputs. A Multi-Level extension
of combined Monte Carlo Finite Volume Method (MC-FVM) discretizations
is proposed and asymptotic error bounds are presented in the case of scalar,
nonlinear hyperbolic conservation laws. Sparse tensor constructions for the
computation of compressed approximations of two- and k-point space-time
correlation functions of random entropy solutions are introduced.

Asymptotic error versus work estimates indicate superiority of Multi-Level
versions of MC-FVM over the plain MC-FVM, under comparable assump-
tions on the random input data. In particular, it is shown that these com-
pressed sparse tensor approximations converge essentially at the same rate as
the MLMC-FVM estimators for the mean solutions.

Extensions of the proposed algorithms to nonlinear, hyperbolic systems of
balance laws are outlined. Multiresolution discretizations of random source
terms which are exactly bias-free are indicated.

Implementational aspects of these Multi-Level Monte Carlo Finite Volume
methods, in particular results on large scale random number generation, scal-
ability and resilience on emerging massively parallel computing platforms, are
discussed.
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1. Introduction

1.1. Weak solutions of systems of balance laws. Systems of balance laws are
nonlinear systems of partial differential equations (PDEs) of the form:

(1.1)
Ut +

d∑

j=1

∂

∂xj
(Fj(U)) = S, x = (x1, . . . , xd) ∈ Rd, t > 0,

U(x, 0) = U0(x), x ∈ Rd.

Here, U : Rd "→ Rm is the vector of unknowns and Fj : Rm "→ Rm, j = 1, ..., d
denotes the flux vector for the j-th direction with the positive integer m denoting
the dimension of the state space, and S : Rd "→ Rm denotes the so-called source
term. If S = 0 ∈ Rm, (1.1) is termed a conservation law.

Examples of balance laws include the Euler equations of gas dynamics, the equa-
tions of MagnetoHydroDynamics, the shallow water equations of oceanography and
the Buckley-Leverett equations modeling flow of two phases in a porous medium.

It is well known that solutions of (1.1) develop discontinuities in finite time,
even when the initial data is smooth [11]. Hence, solutions of (1.1) are sought (and
computed) in the weak sense: a weak solution U ∈ (L1

loc(Rd × R+))m is required
to satisfy the integral identity
(1.2)

∫

R+

∫

Rd



U(ϕ)t +
d∑

j=1

Fj(U)ϕxj + S(U)ϕ



 dxdt +
∫

Rd

U0(x)ϕ(x, 0)dx = 0 ,

for all test functions ϕ ∈ (C1
0 (([0,∞) × Rd)m. It is classical that weak solutions

are not necessarily unique [11]. Additional admissibility criteria such as entropy
conditions are necessary to obtain uniqueness. In space dimension d > 1, rigorous
existence and uniqueness results for deterministic conservation laws and for generic
initial data are available only for the scalar case, i.e., in the case m = 1.

1.2. Numerical methods. Numerical schemes have assumed the role of being the
main tools for the study of systems of balance (conservation) laws. Many efficient
numerical schemes for approximating systems of conservation laws are currently
available. They include the Finite Volume, conservative Finite Difference and Dis-
continuous Galerkin methods, see [23, 19]. For simplicity of exposition, we present
the standard Finite Volume Method, following [23].

We consider here (again for the simplicity of exposition) a fixed, positive time
step ∆t > 0 and a triangulation T of the bounded spatial domain D ⊂ Rd of
interest. Here, the term triangulation T will be understood as a partition of the
physical domain into a finite set of disjoint open convex polyhedra K ⊂ Rd with
boundary ∂K being a finite union of closed plane faces (which are, in these notes,
polyhedra contained in d− 1 dimensional hyperplanes, understood as points in the
case d = 1). Let ∆xK := diamK = sup{|x − y| : x, y ∈ K} and by ∆x(T ) :=
max{∆xK : K ∈ T } denote the mesh width of T . For any volume K ∈ T , we
define the set N (K) of neighbouring volumes

(1.3) N (K) := {K ′ ∈ T : K ′ (= K ∧measd−1(K ∩K ′) > 0}.

Note that volumes K ′ ∈ T whose closure shares a set of d − 1 measure zero with
K is not a neighboring volume. For every K ∈ T and K ′ ∈ N (K) denote νK,K′
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to be the exterior unit normal vector, i.e. pointing outward from the volume K at
the face K ∩K ′. We set:

(1.4) λ = ∆t/ min{∆xK : K ∈ T }
by assuming a uniform discretization in time with constant time step ∆t. The
constant λ is determined by a standard CFL condition (see [19]) based on the
maximum wave speed.
Then, an explicit first-order finite volume ([19]) for approximating (1.1) is given by

(1.5) Un+1
K = Un

K − ∆t

meas(K)

∑

K′∈N (K)

F(Un
K ,Un

K′) + Sn
K ,

where
Un

K ≈ 1
meas(K)

∫

K
U(x, tn)dx

is an approximation to the cell average of the solution and F(·, ·) is a numerical
flux that is consistent with F · νK,K′ . Numerical fluxes are usually derived by
(approximately) solving Riemann problems at each cell interface resulting in the
Godunov, Roe and HLL fluxes, see e.g. [23]. The discrete source S in (1.5) can be
a straight-forward evaluation,

Sn
K =

1
meas(K)

∫

K
S(x,Un

K)dx

or something more sophisticated, for instance the well-balanced version of the bot-
tom topography source term [14] in shallow-water simulations.

Higher order spatial accuracy is obtained by reconstructing U from Un
K in non-

oscillatory piecewise polynomial functions in terms of the TVD [23], ENO [20] and
WENO [38] procedures or by the Discontinuous Galerkin method (see, e.g. [8]).
Higher order temporal accuracy is achieved by employing strong stability preserving
Runge-Kutta methods [18]. Space-time DG-discretizations can also be employed
for uniformly high-order spatio-temporal accuracy [6].

1.3. Uncertainty Quantification (UQ). Any numerical scheme approximating
(1.1) requires the initial data U0, the source term S and the flux functions Fj as
inputs. However, in practice, these inputs cannot be measured precisely. As a first
example, consider the modeling of propagation of tsunami waves with the shallow
water equations. It is not possible to measure the initial water displacement (at
tsunami source) with any precision in real time. Similarly, the bottom topography
is measured with sonar equipment and this data collection is prone to uncertainty.
Thus, the inputs (initial data and source terms) to the underlying shallow water
equations are uncertain. As a second example, consider the modeling of an oil
and gas reservoir. Water flooding is modeled by the equations of two phase flow.
However, the rock permeability as well as the relative permeabilities of each phase
with respect to the other, need to measured. Again, the measurement process is
characterized by uncertainty. Consequently, the inputs (the fluxes) to the under-
lying two-phase flow equations are uncertain. This uncertainty in the inputs for
(1.1) results in the propagation of uncertainty into the solution. The modeling and
approximation of the propagation of uncertainty in the solution due to uncertainty
in inputs constitutes the theme of uncertainty quantification (UQ).

Uncertainty in inputs and solutions of PDEs is frequently modeled in a prob-
abilistic manner. The inputs are random fields with prescribed probability laws.
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Then, the solution is also realized as a random field and its law and the (determin-
istic!) statistical moments of the solutions like the expectation and variance are the
quantities of engineering interest.

It is a non-trivial matter to develop efficient algorithms for quantifying uncer-
tainty in solutions of balance (conservation) laws with random inputs. The biggest
challenge lies in the fact that discontinuities in physical space (which inevitably
arise in solutions of hyperbolic conservation laws) may propagate into paramet-
ric representations of the probability densities (laws) of the random solutions. A
robust numerical method should be able to deal with this phenomenon. Another
challenge lies in dealing with the fact that the number of random sources driving
the uncertainty may be very large (possibly countably infinite in the case of random
field inputs parametrized by Karhunen–Loève expansions).

The design of efficient numerical schemes for quantifying uncertainty in solutions
of partial differential equations has seen a lot of activity in recent years.

Among the most popular methods (particularly for elliptic and parabolic PDEs)
are the stochastic Galerkin methods based on generalized Polynomial Chaos (gPC
for short). An incomplete list of references on gPC methods for uncertainty quan-
tification in hyperbolic conservation laws includes [3, 9, 25, 41, 34, 43] and other
references therein. Although these deterministic methods show some promise, they
suffer from the disadvantage that they are highly intrusive. Existing codes for com-
puting deterministic solutions of balance (conservation) laws need to be completely
reconfigured for implementation of the gPC based stochastic Galerkin methods. An
alternative class of methods for quantifying uncertainty in PDEs are the stochastic
collocation methods, see [46] for a general review and [28, 45] for modifications
of these methods near discontinuities. Stochastic collocation methods are non-
intrusive and easier to parallelize than the gPC based stochastic Galerkin methods.
However, the lack of regularity of the solution with respect to the stochastic vari-
ables (the solution can be discontinuous in the stochastic variables) impedes efficient
performance of both the stochastic Galerkin as well as the stochastic collocation
methods.

Another class of methods for computational uncertainty quantification in numer-
ical solutions of PDEs are statistical sampling methods, most notably Monte Carlo
(MC) sampling. In a MC method, the probability space is sampled and the under-
lying deterministic PDE is solved for each sample. The MC samples of numerical
solutions of the PDE are combined into statistical estimates of expectation and
other statistical moments of the random solution which are necessary to quantify
uncertainty. In uncertainty quantification for hyperbolic scalar conservation laws
with random initial data, MC type methods together with Finite Volume (FV)
spatio-temporal discretizations of the PDE were proposed in a recent paper [29].
The MC-FVM methods were analyzed in the context of a scalar conservation law
with random initial data and corresponding estimates of the combined discretiza-
tion and statistical sampling errors were obtained. MC methods are non-intrusive;
they can, therefore, be based on existing, deterministic CFD solvers. As it was
shown in [29], MC methods converge at rate 1/2 as the number M of MC samples
increases with each “sample” corresponding to a full, deterministic flow simulation.
The asymptotic convergence rate M−1/2 is non-improvable by the central limit the-
orem. To achieve a sampling error which is of the order of the discretization error,
MC Finite Volume Methods therefore require a large number of “samples”, with
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each sample consisting of the numerical solution of (1.1) with a given draw of initial
data (and/or random flux and random source term). This slow convergence entails
high computational costs for MC type UQ methods in CFD. In particular, accurate
quantification of uncertainty by direct MC methods combined with available solvers
for hyperbolic systems of conservation or balance laws in several space dimensions
becomes very costly, even with a moderately large number of random inputs.

One is therefore led to explore alternative approaches. In recent years, adap-
tive deterministic discretization methods of polynomial chaos type have received
substantial attention. These methods have been, in connection with elliptic and
parabolic problems, found to be able to facilitate convergence rates which are higher
than the (mean square) rate 1/2 afforded by MC sampling, under appropriate condi-
tions on the input data. While their implementation is intrusive and therefore more
involved than that of MC methods (see, e.g. [41]), potentially higher convergence
rates than MC-FVM can be achieved by these methods since they approximate
directly certain statistical moments of random solutions (in the form of polynomial
chaos expansions of random solutions) which recently have been found to exhibit
additional smoothness as compared to “pathwise” solutions which, typically, feature
discontinuities. In general, however, the lack of regularity of solutions in nonlinear
hyperbolic conservation laws and the nonstandard nature of the strongly coupled,
large hyperbolic systems (i.e. the dimension m of the state space in (1.1) is a
discretization parameter) which result from the so-called “stochastic Galerkin pro-
jection” (i.e. a mean - square projection of the conservation law onto a m-term
truncated polynomial chaos expansion) indicates at present for this approach only
a limited range of applicability (see, however, [37] for evidence of a mechanism for
smoothing through ensemble averaging in random solutions of hyperbolic conserva-
tion laws).

In order to address the slow convergence of MC methods, we proposed in [29] a
novel Multi-Level Monte Carlo Finite Volume (MLMC-FVM) algorithm for scalar
conservation laws in [29]. Multi-Level MC methods were introduced by S. Heinrich
for numerical quadrature [22] and developed by M. Giles to enhance the efficiency of
path simulations for Itô stochastic ordinary differential equations in [16, 17]. More
recently, MLMC Finite Element Methods for elliptic problems with stochastic co-
efficients were introduced by Barth, Schwab and Zollinger in [5]. The analysis in
these references, in particular in [29, 5], reveals that the MLMC is able to deliver
converged numerical approximations to statistics of uncertain solutions of partial
differential equations in computational complexity comparable to that of one nu-
merical solve of a single “path”, i.e. a single realization of the random input data,
under in a sense minimal regularity on the solution. Specifically, only finiteness
of second moments of the random solution is needed, when the size of solution is
measured in terms of a slightly stronger norm than the norm appearing in energy
bounds.

1.4. Aim of the current paper. The present paper has several objectives. First,
we will outline the concept of random entropy solutions for scalar, multi-dimensional
conservation laws with random inputs. We present a mathematical framework of
well-posedness of such problems and provide, in particular, precise statements on
the existence and the uniqueness of random entropy solutions for scalar, multi-
dimensional conservation laws with random inputs.
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To this end, we recapitulate results of our recent paper [29] on random entropy
solutions for scalar conservation laws with uncertain initial data. Furthermore, we
outline extensions of the results on wellposedness and the existence and uniqueness
of random entropy solutions for a scalar conservation law with random flux. Further
details and complete mathematical developments of these results will be given in
forthcoming papers [30], [31]. The corresponding theory will provide a rigorous
basis for the design and analysis of Multi-Level Monte Carlo Finite Volume Methods
for the efficient computational quantification of uncertainty in a scalar, hyperbolic
conservation law with random input data.

The second objective of this paper is to outline essentials on statistical sam-
pling methods of the Monte Carlo (MC) and Multi-Level Monte Carlo (MLMC)
type, with particular attention to their use in computational fluid dynamics. We
summarize recent results from [29, 32, 33, 30], describe the algorithms, outline the
convergence and complexity analysis and present several numerical experiments to
demonstrate the efficiency of the proposed algorithms. Systems of conservation laws
with uncertain initial data, uncertain source terms and uncertain flux functions are
considered in our numerical examples.

The rest of the paper is organized as follows: in Section 2, the mathematical
theory of random entropy solutions of scalar conservation laws with uncertain initial
data and uncertain flux functions is outlined. The MC algorithms and MLMC
algorithms are presented in Sections 3 and 4 respectively. Details of implementation
are provided in Section 5 and numerical experiments are presented in Section 6.
Sparse tensor methods to efficiently compute higher statistical moments of the
random entropy solutions are also discussed within Section 6. The paper concludes
with a description and demonstration of MLMC-FVM approximation of random
event probabilities in Section 7.

2. Random entropy solutions

In this section, we introduce the notion of random entropy solutions for conser-
vation laws with random initial data and with random flux functions. We show
that scalar conservation laws are well-posed in the sense that we have existence
and uniqueness of random entropy solutions for scalar conservation laws with, in
particular, continuous dependence of random entropy solutions on the statistical
input data of the scalar conservation laws. Since, even in the deterministic case,
rigorous results are available only for the scalar problem, in this section we will
restrict the mathematical developments to the scalar case (m = 1 in (1.1)). We
start with some mathematical preliminaries.

2.1. Random Fields. Let (Ω,F) be a measurable space, with Ω denoting the set
of all elementary events, and F a σ-algebra of all possible events in our probability
model. If (E,G) denotes a second measurable space, then an E-valued random
variable (or random variable taking values in E) is any mapping X : Ω → E such
that the set {ω ∈ Ω: X(ω) ∈ A} = {X ∈ A} ∈ F for any A ∈ G, i.e. such that X
is a G-measurable mapping from Ω into E.

Assume now that E is a metric space; with the Borel σ-field B(E), (E,B(E))
is a measurable space and we shall always assume that E-valued random variables
X : Ω → E will be (F ,B(E)) measurable. If E is a separable Banach space with
norm ‖ ◦ ‖E and (topological) dual E∗, then B(E) is the smallest σ-field of subsets
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of E containing all sets

(2.1) {x ∈ E : ϕ(x) ≤ α}, ϕ ∈ E∗, α ∈ R .

Hence if E is a separable Banach space, X : Ω → E is an E-valued random variable
if and only if for every ϕ ∈ E∗, ω "−→ ϕ(X(ω)) ∈ R1 is a R1-valued random variable.

The random variable X : Ω → E is called Bochner integrable if, for any proba-
bility measure P on the measurable space (Ω,F),

(2.2)
∫

Ω
‖X(ω)‖E P(dω) < ∞ .

A probability measure P on (Ω,F) is any σ-additive set function from Ω into [0, 1]
such that P(Ω) = 1, and the measure space (Ω,F , P) is called probability space.
We shall always assume, unless explicitly stated, that (Ω,F , P) is complete.

If X : (Ω,F) → (E, E) is a random variable, L(X) denotes the law of X under
P, i.e.

(2.3) L(X)(A) = P({ω ∈ Ω : X(ω) ∈ A}) ∀A ∈ E .

The image measure µX = L(X) on (E, E) is called law or distribution of X.
We shall require for 1 ≤ p ≤ ∞ Bochner spaces of p-summable random variables

X taking values in the Banach-space E. By L1(Ω,F , P;E) we denote the set of all
(equivalence classes of) integrable, E-valued random variables X. We equip it with
the norm

(2.4) ‖X‖L1(Ω;E) =
∫

Ω
‖X(ω)‖E P(dω) = E(‖X‖E) .

More generally, for 1 ≤ p < ∞, we define Lp(Ω,F , P;E) as the set of p-summable
random variables taking values E and equip it with norm

(2.5) ‖X‖Lp(Ω;E) := (E(‖X‖p
E))1/p, 1 ≤ p < ∞ .

For p = ∞, we denote by L∞(Ω,F , P;E) the set of all E-valued random variables
which are essentially bounded. This set is a Banach space equipped with the norm

(2.6) ‖X‖L∞(Ω;E) := ess sup
ω∈Ω

‖X(ω)‖E .

If T < ∞ and Ω = [0, T ], F = B([0, T ]), we write Lp([0, T ];E). Note that for any
separable Banach-space E, and for any r ≥ p ≥ 1,

(2.7) Lr(0, T ;E), C0([0, T ];E) ∈ B(Lp(0, T ;E)) .

2.2. k-th moments. For k ∈ N and separable Banach space X, we denote by
X(k) = X ⊗ · · ·⊗X︸ ︷︷ ︸

k times

the k-fold tensor product of k copies of X. Throughout the

following, we shall assume the k-fold tensor product of the Banach-space X with
itself, i.e. X(k), to be equipped with a cross norm ‖ ◦ ‖X(k) which satisfies

(2.8) ‖u1 ⊗ · · ·⊗ uk‖X(k) = ‖u1‖X . . . ‖uk‖X .

We refer to [29, Section 3.4] and to the references of [29] for more information
on k-fold tensor products X(k) of a Banach space X and for norms on X(k).

In particular, for X = Lp(Rd), 1 ≤ p < ∞, we get from Fubini’s theorem the
isomorphism

(2.9) Lp(Rd)(k) ∼= Lp(Rkd) .
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For k ∈ N and for u ∈ Lk(Ω; X), we consider the random field (u)(k) defined by
u(ω)⊗ · · ·⊗ u(ω)︸ ︷︷ ︸

k−times

. Then

(2.10) (u)(k) = u⊗ · · ·⊗ u ∈ L1(Ω; X(k))

and, by (2.8), we have

(2.11) ‖(u)(k)‖L1(Ω;X(k)) =
∫

Ω
‖u(·, ω)‖k

X P(dω) = ‖u‖k
Lk(Ω,X) < ∞ .

Therefore, (u)(k) ∈ L1(Ω, X(k)) and the k-th moment (or k-point correlation func-
tion of u)

(2.12) Mk(u) := E[(u)(k)] ∈ X(k)

is well-defined as a (deterministic) element of X(k) for u ∈ Lk(Ω; X).

2.3. Random initial data. Equipped with the above notions, we first model un-
certain initial data by assuming (Ω,F , P) as the underlying probability space and
realizing the uncertain initial data as a random field u0, i.e. a L1(Rd)-valued ran-
dom variable which is a L1(Rd) measurable map

(2.13) u0 : (Ω,F) "−→
(
L1(Rd), B(L1(Rd))

)
.

We assume further that

(2.14) u0(·, ω) ∈ L∞(Rd) ∩BV (Rd) P-a.s.,

which is to say that

(2.15) P({ω ∈ Ω : u0(·, ω) ∈ (L∞ ∩BV )(Rd)}) = 1 .

Since L1(Rd) and Lip(Rd; Rd) are separable, (2.13) is well defined and we may
impose for k ∈ N the k-th moment condition

(2.16) ‖u0‖Lk(Ω;L1(Rd)) < ∞ ,

where the Bochner spaces with respect to the probability measure are defined in
(2.4), (2.5) above.

2.4. Random Flux Functions for SCL. Noting that the space E = Lip(R; Rd)
is separable, we concentrate on the case of spatially homogeneous random flux
functions and follow [30]. The definition of random flux for scalar conservation
laws (i.e. for the case m = 1 in (2.1)) that we shall work with is

Definition 2.1. A (spatially homogeneous) random flux for a scalar conservation
law is a random field taking values in the separable Banach space E = Lip(R1; Rd),
i.e. a measurable mapping from (Ω,F) to (Lip(R1; Rd);B(Lip(R; Rd))). A bounded
random flux is a random flux whose Lip(R1; Rd)-norm is bounded P-a.s., i.e.

(2.17) ∃0 < B(f) < ∞ : ‖f(ω; ·)‖Lip(R1;Rd) ≤ B(f) P− a.s.

We observe that a bounded random flux has finite statistical moments of any
order. Of particular interest will be the second moment of a bounded random flux
(i.e. its “two-point correlation in state-space”). The existence of such a state-space
correlation function is addressed in the following lemma from [30], to which we refer
for the proof.
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Lemma 2.2. Let f be a bounded random flux as in Definition 2.1 which belongs
to L2(Ω, dP; Lip(R; Rd)). Then its covariance function, i.e. its centered second
moment defined by

(2.18) Cov[f ](v, v′) := E [(f(·; v)− E[f(·; v)])⊗ (f(·; v′)− E[f(·; v′)])]

is well-defined for all v, v′ ∈ R and there holds

(2.19) Cov[f ] ∈ Lip(R× R; Rd×d
sym).

The two point correlation function of a bounded random flux allows, as is well-
known in statistics, for spectral decompositions of the random flux in terms of
eigenpairs of its covariance operator, which is a compact and self-adjoint integral
operator on square-integrable flux functions with kernel function Cov[f ](v, v′) de-
fined in (2.18). We remark in passing that our assumption of Lipschitz continuity
of (realizations of) random flux functions entails linear growth of such fluxes as
the state variables tend to infinity, ie. as |v| → ∞ which, at first sight, precludes
considering the covariance operator on the space of square integrable flux func-
tions. In [30], we circumvent these integrability issues for scalar conservation laws
by truncating the state space to a bounded interval [−R,R] with sufficiently large
R > 0. By classical L∞(Rd) bounds on entropy solutions of scalar conservation
laws, for sufficiently large values of the flux cutoff R, any realization of the random
scalar conservation law will “see” only the flux function for states which (in abso-
lute value) are below the threshold values R; accordingly, it suffices to consider the
flux covariance operator only as integral operator on L2(−R,R) which is the view
taken in [30].

As a concrete example for a random flux, we have the following representation
using the Karhunen-Loeve (KL) expansion.

Example: Karhunen–Loève expansion of bounded random flux. Con-
sider a bounded random flux f(ω;u) in the sense of Definition 2.1. By Lemma 2.2,
its covariance function Cov[f ] is well-defined; for 0 < R < ∞ we denote by CR

f the
integral operator with bi-Lipschitz kernel Cov[f ](u, v), defined on L2(−R,R) by

(2.20) CR
f [Φ](u) :=

∫

|v|≤R
Cov[f ](u, v)Φ(v)dv .

As explained above, the covariance operator CR
f describes the covariance structure

of the random flux on the set [−R,R] of states. Given initial data u0 ∈ L∞(Rd)
with a-priori bound ‖u0‖L∞(Rd) ≤ R, the unique entropy solution S(t)u0 of of the
deterministic SCL will, for all t > 0, take values in [−‖u0‖L∞(Rd), ‖u0‖L∞(Rd)].
For random flux and random initial data, therefore, we will continue under the
assumption

(2.21) R > ess sup
ω∈Ω

‖u0(ω, ·)‖L∞(Rd)

will ensure that CR
f will “capture” all possible states.

For every 0 < R < ∞, the integral operator Cf is a compact, self-adjoint operator
on L2(−R,R). By the spectral theorem, it admits for every fixed value 0 < R < ∞
a sequence (λR

j ,ΦR
j )j≥1 of real eigenvalues λR

j (accumulate only at zero), which
are assumed to be enumerated in decreasing magnitude and repeated according
to multiplicity, and a corresponding set of eigenfunctions ΦR

j ; to exlude trivial
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degeneracies, we shall assume throughout that the sequence (ΦR
j )j≥1 is a complete,

orthonormal base of L2(−R,R).
It follows from the Lipschitz-continuity (2.19) of Cov[f ] and from the eigenvalue

equation

(2.22) (CR
f ΦR

j )(u) = λR
j ΦR

j (u) , |u| ≤ R ,

that ΦR
j ∈ Lip([−R,R]; Rd): for u, u′ ∈ [−R,R], there holds by Lemma 2.2 and by

the eigenvalue equation (2.22)

|ΦR
j (u)− ΦR

j (u′)| = 1
λR

j

∣∣∣∣∣

∫

|v|<R
(Cov[f ](u, v)− Cov[f ](u′, v)) ΦR

j (v)dv

∣∣∣∣∣

≤ 8RB(f)
λR

j

|u− u′| sup
|v|<R

(∫

Ω

∥∥f(ω; v)− f̄(v)
∥∥2

2
dP(ω)

)1/2 ∥∥ΦR
j

∥∥
L1(−R,R)

≤ 8R3/2B(f)
λR

j

|u− u′| sup
|v|<R

(∫

Ω

∥∥f(ω; v)− f̄(v)
∥∥2

2
dP(ω)

)1/2

.

Any bounded random flux f(ω;u) therefore admits, for every fixed 0 < R < ∞, a
Karhunen–Loève expansion

(2.23) f(ω;u) = f̄(u) +
∑

j≥1

Y R
j (ω)ΨR

j (u), |u| ≤ R ,

which converges in L2(Ω, dP;L2(−R,R)d). In (2.23), the nominal flux f̄(u) =
E[f(·;u)] and the sequence (Y R

j )j≥1 is a sequence of pairwise uncorrelated random
variables given by

(2.24) ∀j ∈ N : Y R
j (ω) :=

√
λR

j

∫

|v|<R
f(ω; v)ΦR

j (v)dv .

and the principal components of the random flux are given by

∀j ∈ N : ΨR
j (u) :=

1√
λR

j

ΦR
j (u) .

We remark that under suitable smoothness conditions on two-point correlation
function Cov[f ] of the random flux the convergence of the expansion (2.23) is a)
pointwise with respect to u and b) the convergence rates increase with increasing
smoothness of Cov[f ] (see, e.g. [30]).

2.5. Random entropy solutions of scalar conservation laws. Equipped with
the above notions of random initial data and random fluxes, we consider a random
scalar conservation law (RSCL):

(2.25)
∂tu(x, t;ω) +

d∑

j=1

∂

∂xj
fj(ω;u(x, t;ω))) = 0 ,

u(x, 0;ω) = u0(x;ω) , x ∈ Rd .

and define,

Definition 2.3. A random field u : Ω 4 ω → u(x, t;ω), i.e. a measurable mapping
from (Ω,F) to C([0, T ];L1(Rd)), is a random entropy solution of the SCL (2.25)
with random initial data u0 satisfying (2.13) - (2.16) for some k ≥ 2 and with a
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spatially homogeneous random flux f(ω;u) as in Definition 2.1 that is statistically
independent of u0, if it satisfies the following conditions:

(i.) Weak solution: for P-a.e ω ∈ Ω, u(·, ·;ω) satisfies the following integral
identity, for all test functions ϕ ∈ C1

0 (Rd × [0,∞)):
(2.26)
∞∫

0

∫

Rd



u(x, t;ω)ϕt(x, t) +
d∑

j=1

fj(ω;u(x, t;ω))
∂

∂xj
ϕ(x, t)



 dxdt+
∫

Rd

u0(x, ω)ϕ(x, 0)dx = 0 .

(ii.) Entropy condition:
For any pair of (deterministic) entropy η and (stochastic) entropy flux

Q(ω; ·) i.e η, Qj with j = 1, 2, . . . , d are functions such that η is convex and
such that Q′

j(ω; ·) = η′f ′j(ω; ·) for all j, and for P-a.e ω ∈ Ω, u satisfies the
following integral identity,

(2.27)
∞∫

0

∫

Rd



η(u(x, t;ω))ϕt(x, t) +
d∑

j=1

Qj(ω;u(x, t;ω))
∂

∂xj
ϕ(x, t)



 dxdt ≥ 0 ,

for all deterministic test functions 0 ≤ ϕ ∈ C1
0 (Rd × (0,∞)), P-a.s.

Throughout what follows, we assume that the deterministic entropy function η(·)
in (2.27) is a Kružkov entropy, i.e. η(u) = |u− k| for some k ∈ R.

In a forthcoming paper [30], we show the following well-posedness result for
random entropy solutions of (2.25).

Theorem 2.4. Consider the RSCL (2.25) with spatially homogeneous, bounded
random flux f : Ω → Lip(R; Rd) as in Definition 2.1 and with (independent of f)
random initial data u0 : Ω → L1(Rd) satisfying (2.14), (2.15) and the k-th moment
condition (2.16) for some integer k ≥ 2. In particular, then, there exists a constant
R̄ < ∞ such that

(2.28) ‖u0(ω, ·)‖L∞(Rd) ≤ R̄ P− a.e. ω ∈ Ω .

Assume moreover that the random flux admits the representation (2.23) with (2.24)
where the Lipschitz-continuous scaled flux components ΨR

j have Lipschitz constants
BR

j such that BR := (BR
j )j≥1 ∈ )1(N) with some R ≥ R̄ as in (2.28).

Then there exists a unique random entropy solution u : Ω 4 ω → Cb(0, T ;L1(Rd))
which is “pathwise”, i.e. for P − a.e.ω ∈ Ω, described in terms of a nonlinear
mapping S(ω; t) depending only on the random flux, such that

(2.29) u(·, t;ω) = S(ω; t)u0(·, ω) , t > 0, P− a.e.ω ∈ Ω

such that for every k ≥ m ≥ 1 and for every 0 ≤ t ≤ T < ∞ holds

‖u‖Lk(Ω;C(0,T ;L1(Rd))) ≤ ‖u0‖Lk(Ω;L1(Rd)) ,(2.30)

‖S(ω; t) u0(·, ω)‖(L1∩L∞)(Rd) ≤ ‖u0(·, ω)‖(L1∩L∞)(Rd)(2.31)

and such that we have P-a.s.

(2.32) TV (S(ω; t)u0(·, ω)) ≤ TV (u0(·, ω)) .

and, with R̄ as in (2.28),

(2.33) sup
0≤t≤T

‖u(·, t;ω)‖L∞(Rd) ≤ R̄ P− a.e. ω ∈ Ω .
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Remark 2.5. The above theorem establishes that RSCLs are well-posed (in sev-
eral space dimensions) for uncertain initial data as well as for random fluxes.
It is straightforward to extend these definitions and results to include random
source terms S(u, ω) for bounded sources as well as to spatially inhomogeneous
flux functions f(ω;x, u) provided their dependence on the spatial coordinate is
Lipschitz: they are measurable mappings from (Ω,F) into (E,B(E)) where E =
Lip(Rd+1; Rd).

Remark 2.6. So far, we considered the Karhunen–Loève expansion only for RSCLs
(2.25), i.e. for the case m = 1 in (1.1). It is straightforward to extend the principal
component representation and the notion of covariance operator to flux functions for
hyperbolic systems (1.1): in this case, the covariance operator is to be interpreted
as abstract, symmetric bilinear form on the space Lip(Rm; Rm×d) whose kernel
coincides with a symmetric, fourth order tensor function on the state space Rm.
Spectral decompositions analogous to (2.23) for Rm×d matrix-valued random flux
functions which arise in (1.1) can then be defined in an analogous fashion. However,
due to the lack of bounds like (2.33), the approach of [30] can not be directly applied
for the mathematical investigation of random hyperbolic systems (1.1) at present.
Nevertheless, the spectral expansion (2.23) for (1.1) may be a useful tool to achieve
a parsimonious parametric representation of a general, given random flux also in
the numerical treatment of random hyperbolic systems (1.1).

The notions of random entropy solutions for a system of balance laws (1.1) with
uncertain initial data, fluxes and sources can be analogously defined. Currently,
there are no global well-posedness results for systems of balance laws. Hence, we are
unable to extend the well-posedness results of Theorem 2.4 to the case of systems
of balance laws such as (1.1).

3. Monte Carlo Finite Volume Method

Our aim is to approximate the random balance law (1.1). The spatio-temporal
discretization can be performed by any standard Finite Volume or DG scheme, for
instance (1.5). The probability space will be discretized using a statistical sampling
technique. The simplest sampling method is the Monte Carlo (MC) algorithm
consisting of the following three steps:

1. Sample: We draw M independent identically distributed (i.i.d.) initial
data, flux and source samples {Uk

0 ,Fk
j ,Sk} with j = 1, . . . , d and k =

1, . . . ,M from the random fields {U0,Fj ,S} and approximate these by
piece-wise constant cell averages.

2. Solve: For each realization {Uk
0 ,Fk

j ,Sk}, the underlying balance law (1.1)
is solved numerically by the Finite Volume Method (1.5). We denote the
FVM solutions by Uk,n

T , i.e. by cell averages {Uk,n
C : C ∈ T } at time tn,

Uk,n
T (x) = Uk,n

C , ∀x ∈ C, C ∈ T , k = 1, ...,M.

3. Estimate Statistics: We estimate the expectation of the random solution
field with the sample mean (sample average) of the approximate solution:

(3.1) EM [Un
T ] :=

1
M

M∑

k=1

Uk,n
T .
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Higher statistical moments can be approximated analogously under suitable
statistical regularity of the underlying random entropy solutions [29].

The above algorithm is, at first sight, straightforward to implement. We remark
that step 1 requires a (pseudo) random number generator. Here, care must be exer-
cised in ensuring good statistical properties in massively parallel implementations
(see Section 5 for details). In step 2, any standard (high-order) finite volume or
DG scheme can be used. Hence, existing (“legacy”) code for FVM (or DG) can be
(re)used and there is no need to rewrite FVM (or DG) code. However, in doing
so, particular care must be exercised that the “forward solver” thus employed is
particularly robust: MC sampling will generate equistributed samples which cover
the entire “senario space” of data, and include, in particular, also data instances
which might appear “unlikely” or “unphysical” to experts. Nevertheless, such ex-
tremal scenarios do contribute to the approximate ensemble averages and must
be resolved by the forward solver with accuracy versus CPU that is comparable
to the accuracy of so-called “benchmark problems” commonly accepted as test for
code performance in various CSE communities. “Legacy codes” whose performance
might have been optimized on “benchmark problems” may lack such robustness for
MC-generated scenarios which fall outside sets of commonly accepted benchmarks.

Furthermore, the only (data) interaction between different samples is in step 3
when ensemble averages are computed. Thus, the MC-FVM is non-intrusive as well
as easily parallelizable.

Although a rigorous error estimate for the MCFVM approximating systems of
balance laws appears to be currently out of reach, we rely on the analysis for a scalar
conservation law in [29, 30] and on our computational experience with MLMC-FVM
solution of systems of balance laws with random inputs in [32, 33] to postulate that
the following estimate holds:

(3.2) ‖E[U(·, tn)]− EM [Un
T ]‖L2(Ω;L1(Rd)) ≤ CstatM− 1

2 + Cst∆xs .

The positive constants Cstat, Cst depend only on the second order statistics of the
random initial data and of the source term in (1.1). In the above, we have assumed
that the underlying Finite Volume (or DG) scheme converges to the solutions of
the deterministic balance law (1.1) at rate s > 0. One rationale for adopting
MLMC-FVM for the numerical solution of (1.1) with random data and fluxes lies
in the fact that, in practice, even second or higher order schemes are known to
realize only convergence rates 0 < s < 1, due to the lack or regularity of the exact
solutions. Therefore, the use of deterministic sampling strategies which promise a
convergence rate that is higher than 1/2 will, in general, not substantially improve
the work versus accuracy of FVM for these problems.

Note that the error estimate for the mean requires that the random field solution
has finite second moments. Based on the error analysis of [29], we equilibrate the
discretization and the sampling errors in the a-priori estimate (3.2) and choose
[29, 32]

(3.3) M = O(∆x−2s),

in-order to equilibrate the statistical error in (3.2) with the spatio-temporal error.
With the choice (3.3), it is straightforward to deduce that the asymptotic error vs.
(computational) work estimate is then given by

(3.4) ‖E[u(·, tn)]− EM [un
T ]‖L2(Ω;L1(Rd)) ! (Work)−s/(d+1+2s).
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The above error vs. work estimate is considerably more expensive when compared
to the FVM discretization error for the corresponding deterministic problem, which
scales as (Work)−s/(d+1) [29].

4. Multi-level Monte Carlo Finite Volume Method

The low convergence rate (3.4) of MC-FVM motivates the use Multi-Level Monte
Carlo Finite Volume Method (MLMC-FVM). The key idea behind the MLMC-FVM
is to simultaneously sample a hierarchy of discretizations of the PDE with random
inputs with a level-depdent number of samples. In the present setting, this amounts
to running a deterministic FV solver on a sequence of nested grids in space with
correspondingly adapted time step sizes, so as to ensure the validity of a CFL
condition uniformly over all space-discretizations of the hierarchy [29].

4.1. MLMC-FVM Error analysis.

4.1.1. MLMC-FVM algorithm. The Multi Level Monte Carlo Finite Volume algo-
rithm (MLMC-FVM for short) consists of the following four steps:

1. Hierarchy of space-time discretizations: Consider nested triangula-
tions {T"}∞"=0 of the spatial domain D with corresponding mesh widths
∆x" that satisfy:

(4.1) ∆x" = ∆x(T") = sup{diam(K) : K ∈ T"} = O(2−"∆x0), ) ∈ N0,

where ∆x0 is the mesh width for the coarsest resolution and corresponds to
the lowest level ) = 0 and a corresponding, decreasing sequence {∆t"}"≥0

of time steps such that the CFL constant in (1.4) is bounded independently
of the level ) of mesh refinement.

2. Sample: For each level of resolution ) ∈ N0, we draw a level-dependent
number M" of independent, identically distributed (i.i.d) samples from the
input random fields {U0(ω),Fj(ω),S(ω)}. Importantly, these random field
inputs are only sampled on T" in spatially discrete form, i.e. as realizations
of cell-averages on triangulation T", to yield vectors {U0,"(ω),Fj,"(ω),S"(ω)}.
on mesh T". We index the level-dependent number M" of samples of these
vectors by k, i.e. we write for ) = 0, 1, ...

(4.2) {Uk
0,",F

k
" ,Sk

" }
M!
k=1 = {U0,"(ωk),Fj,"(ωk),S"(ωk) : k = 1, ...,M"}.

3. Solve: For each resolution level ) ∈ N0 and for each realization of the ran-
dom input data {Uk

0,",F
k
j,",S

k
" }, k = 1, ...,M", the resulting deterministic

balance law (1.1) (for this particular realization) is solved numerically by
the Finite Volume Method (1.5) with mesh width ∆x". We denote the re-
sulting ensemble of Finite Volume solutions by Uk,n

T!
, k = 1, ...,M". These

constitute vectors of approximate cell averages, i.e. Uk,n
T!

= {Uk,n
C : C ∈ T"}

of the corresponding realization of the random balance law at time level tn

and at spatial resolution level ).
4. Estimate solution statistics: Fix some positive integer L < ∞ corre-

sponding to the highest level. We estimate the expectation of the random
solution field with the following estimator:

(4.3) EL[U(·, tn)] :=
L∑

"=0

EM! [U
n
T!
−Un

T!−1
],
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with EM! being the MC estimator defined in (3.1) for the mesh level ).

Remark 4.1. In the present article, we assume (for ease of exposition only) the
sequence of triangulations {T"}∞"=0 to be nested. This assumption was also made
in the proofs of [29]. We emphasize here that an inspection of the arguments in
[29] reveals that the nestedness assumption on the meshes is not essential for the
error bounds to hold. However, in order to execute Step 4. (estimate solution
statistics), in the case that the grid hierarchy is non-nested, an efficient intergrid
transfer resp. prolongation must be available. This is often the case, when multilevel
discretizations have been employed in the deterministic solver which is used for the
discrete solutions.

Remark 4.2. Higher statistical moments (2.12) of the random entropy solution
can be approximated analogously (see, e.g., the sparse tensor discretization of [29]).
An additional, new issue arises in the efficient numerical computation of space-time
correlation functions due to the high-dimensionality of such correlation functions.

The MLMC-FVM is non-intrusive as any standard FVM (or DG) code can be
used in step 3. Furthermore, MLMC-FVM is amenable to efficient parallelization
as data from different grid resolutions and different samples only interacts in step
4. We refer to [40] and to Section 5 for details.

4.1.2. MLMC-FVM error bounds. Again, based on the rigorous estimate for scalar
conservation laws in [29, 30, 31] and on our experience for systems of balance laws
[32, 33], we postulate the following error estimate:
(4.4)

‖E[u(·, tn)]− EL[u(·, tn)]‖L2(Ω;L1(Rd)) ≤ C1∆xs
L + C2

{ L∑

"=0

M
− 1

2
" ∆xs

"

}
+ C3M

− 1
2

0 .

Here, the parameter s > 0 refers to the convergence rate of the finite volume scheme
for the deterministic problem and C1,2,3 are positive constants depending only on
the second moments of the initial data and the source term.

From the error estimate (4.4), we obtain that the number of samples to equili-
brate the statistical and spatio-temporal discretization errors in (4.3) is given by

(4.5) M" = O(22(L−")s) , ) = 0, 1, ..., L .

Notice that (4.5) implies that the largest number of MC samples is required on the
coarsest mesh level ) = 0, whereas only a small fixed number of MC samples are
needed on the finest discretization levels.

From the above work estimate, we obtain the corresponding error vs. work
estimate for MLMC-FVM [32],

(4.6)

‖E[u(·, tn)]− EL[u(·, tn)]‖L2(Ω;L1(Rd)) ≤ C∆xs
LL ≤ C∆xs

L log(∆x−1
L )

!
{

(Work)−s/(d+1) · log(Work) if s < (d + 1)/2,

(Work)−1/2 · log (Work)3/2 if s = (d + 1)/2.

The above estimates show that the MLMC-FVM is superior to the MC-FVM since
the asymptotic computational cost for MLMC-FVM scales as Work−s/(d+1) (disre-
garding logarithmic term, see [32]); compare to Work−s/(d+1+2s) for the MC-FVM
scheme. Furthermore, if s < (d + 1)/2 then this error vs. work estimate is almost
(i.e. up to a logarithmic term) of the same order as the error vs. work of the
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deterministic finite volume scheme which implies that the total amount of work to
achieve a certain error level ε, say, in approximation of the random entropy solu-
tion’s mean field will, asymptotically, be equal to that of approximating the entropy
solution of one deterministic balance law at the same level L of resolution. Hence,
the MLMC-FVM is expected to be (asymptotically) considerably faster than the
MC-FVM for the same magnitude of error.

4.2. Sparse Tensor Approximations of k-point correlations. We now con-
sider the efficient MLMC-FVM approximation of two and of k-point correlation
functions of random entropy solutions of the system (1.1). Throughout, we con-
sider only the scalar case, i.e. m = 1 in (1.1), in order to simplyfy the notation. All
concepts and methods have (tensor) analogues in the case of hyperbolic systems.

Throughout this section, we assume that there exists a unique random entropy
solution of (1.1) which satisfies, for a given order k ≥ 1 of correlation of interest,

(4.7) u(·, t;ω) ∈ L2k(Ω; C0([0, T ];W s,1(D))) , for some 0 < s ≤ 1 .

I.e., we assume that the function is integrable to the power 2k if k ≥ 1 is the
order of the moment of interest, and admits, as a function of the spatial variable,
a fractional deriative of order s which belongs to the space L1(D) where D ⊂ Rd

denotes the computational domain.
For a mesh hierarchy {T"}∞"=0 in D, we define the space S" of simple, i.e. piecewise

constant functions on T", and the associated projector by

(4.8) S" := S(T"), P" := PT! : L1(D) "→ S", ) ≥ 0 .

Here, for a given triangulation T , PT denotes the operator which associates to a
function v ∈ L1(D) the piecewise constant function of cell-averages PT v ∈ S(T ).

Then the MC-FVM approximations of Mk(u(·, t)) are defined as statistical es-
timates from the ensemble

(4.9) {v̂i
T (·, t)}M

i=1

obtained by from samples of the RSCL: specifically, the first moment of the random
solution u(·, t;ω) at time t > 0, is estimated as

(4.10) M1(u(·, t)) ≈ EM [vT (·, t)] :=
1
M

M∑

i=1

v̂i
T (·, t) ,

and, for k > 1, the kth moment (or k point correlation function) Mk(u(·, t)) =
E[(u(·, t))(k)] defined in (2.12) is estimated by

(4.11) E(k)
M [vT (·, t)] :=

1
M

M∑

i=1

(v̂i
T ⊗ · · ·⊗ v̂i

T )︸ ︷︷ ︸
k−times

(·, t) .

More generally, for k > 1, we consider time instances t1, . . . , tk ∈ (0, T ], T < ∞,
and define the statistical FVM estimate of Mk(u)(t1, ..., tk) by

(4.12) E(k)
M [vT ] (t1, . . . , tk) :=

1
M

M∑

i=1

(v̂i
T (·, t1)⊗ · · ·⊗ v̂i

T (·, tk))︸ ︷︷ ︸
k−times

.

The work to form a single tensor product in the ensemble average (4.12) over a
finite spatial domain D ⊂ Rd grows as O(∆x−kd) which, in general, entails a
computational effort that is, for moment orders k ≥ 2, prohibitive. To reduce the
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complexity of k-th moment estimation, we introduce in the following a compressive
approximation of two- and of k-point correlation functions that is similar to the
strategy for high order moment approximation in elliptic problems with random
data in [42, 5].

4.2.1. Sparse Tensorization of FV Solutions. Since the cell-average projections P" :
L1(Rd) → S" in (4.8) are onto, we may define the linear space of increment or details
of FV functions between successive meshes in the grid hierarchy {T"}∞"=0 by

(4.13) W" := (P" − P"−1)S", ) ≥ 0,

where P−1 := 0 so that W0 = S0. Typically, this increment space is spanned by
the so-called Haar-wavelets on T"; however, in what follows we aim at retaining
the nonintrusive nature of the MLMC-FVM and therefore we will never explicitly
assume redesign of the FV solvers in terms of multiresolution analysis on the tri-
angulations T . We rather propose an algorithm which will is based only on the
piecewise constant approximations at each timestep, and on recursively identify-
ing the projections of the FV solution onto the increment or detail space W" in
(4.13) “on the fly”, by the so-called pyramid scheme. Such schemes are available
for approximations in structured meshes, but moreover can also be developed for
unstructured grids (we refer to [35, Chapter 2], [36] for details).

With (4.13), for any L ∈ N0, we have the multilevel decomposition

(4.14) SL = W0 ⊕ ...⊕WL =
L⊕

"=0

W"

and the k-point correlation functions (vL(·, t))(k) of the FV solutions on mesh TL

at time t > 0 take values in the tensor product space

(4.15) (SL)(k) := SL ⊗ ...⊗ SL︸ ︷︷ ︸
k times

=
∑

|#"|∞≤L

S"1 ⊗ ...⊗ S"k =
⊕

|#"|∞≤L

k⊗

j=1

W"j .

Then, the full tensor projections

(4.16) P (k)
L v := PL ⊗ ...⊗ PL︸ ︷︷ ︸

k times

: L1(Rkd) → (SL)(k)

are bounded, linear and onto. Here, |+)|∞ := max{)1, ..., )k} and the last sum in
(4.15) is a direct one. Obviously, if NL := dimSL < ∞ (as is the case when, e.g.,
the spaces S" are only defined on a bounded domain D ⊂ Rd) then dim((SL)(k)) =
Nk

L which is prohibitive. Sparse Tensor approximations of k-point correlations
(v(·, t))(k) will be approximations in tensor products of spaces of piecewise constant
functions on meshes on coarser levels which are defined similar to (4.15) by

(4.17) (̂SL)
(k)

:=
⊕

|#"|1≤L

k⊗

j=1

W"j

where now |+)|1 := )1 + ...+ )k. If the mesh family {T"}∞"=0 is generated by recursive
dyadic refinements of the initial triangulation T0, when NL = dimSL < ∞ (as is
the case e.g. on bounded domains D ⊂ Rd) it holds

(4.18) dim(̂SL)
(k)

= O(NL(log2 NL)k−1) .
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With (̂SL)
(k)

in (4.17), we also define the sparse tensor projection

(4.19) (̂PL)
(k)

:=
⊕

|#"|1≤L

k⊗

j=1

(P"j − P"j−1) : L1(Rkd) → (̂SL)
(k)

.

The approximation properties of the sparse tensor projection are as follows (cf. the
Appendix of [29]): for any function U(x1, ..., xk) which belongs to (W s,1(Rd))(k), it
holds

(4.20) ‖U − (̂PL)
(k)

U‖L1(Rkd) ≤ C(∆xL)s| log ∆xL|k−1‖U‖(W s,1(Rd))(k) ,

where C > 0 depends only on k, d and on the shape regularity of the family {T"}"≥0

of triangulations, but is independent of ∆x.

4.2.2. Definition of the Sparse Tensor MLMC-FVM Estimator. With the above
notions in hand, we proceed to the definition of the sparse tensor MLMC-FVM
estimator of M(k)(u(·, t)). To this end, we modify the full tensor product MLMC-
FV estimator which is based on forming the k-fold tensor products of the FV
solution in the spaces S(k)

L in (4.15), as follows (recall from (4.10) that EM [·] denotes
the MC estimate based on M samples): for a given sequence {M"}L

"=0 of MC
samples at level ), the sparse tensor MLMC estimate ofMk[u(·, t)] is, for 0 < t < ∞,
defined by

(4.21) ÊL,(k)[u(·, t)] :=
L∑

"=0

EM! [P̂"
(k)

(v"(·, t))(k) − P̂"−1

(k)
(v"−1(·, t))(k)] .

We observe that (4.21) is identical to the full tensor product formation of the Finite

Volume solution if the sparse projectors P̂ (k)
" in (4.21) are replaced by the full tensor

projections P (k)
" , except for the sparse formation of the k-point correlation functions

of the FV solutions corresponding to the initial data samples ûi
0. In bounded

domains, this reduces the work for the formation of the k-point correlation function
from Nk

L to O(NL(log2 NL)k−1) per sample at mesh level L. As our convergence
analysis ahead will show, use of sparse rather than full tensor products will not
entail any reduction in the order of convergence of the k-th moment estimates.

4.2.3. Error and Complexity Analysis of the Sparse Tensor MLMC-FVM. The fol-
lowing, basic result on the complexity of the MLMC-FVM proved in [29] shows that
MLMC-FVM estimates of two- and of k-point correlations of the random entropy
solutions are possible in log-linear complexity of one single, deterministic solve on
the finest mesh level L.

Theorem 4.3. Assume the regularity (4.7). Assume further that we are given a
FVM such that (1.4) holds and such that the deterministic FVM scheme converges
at rate s > 0 in L∞([0,∞];L1(Rd)). Then the MLMC-FVM estimate ÊL,(k)[u(·, t)]
defined in (4.21) satisfies, for every sequence {M"}L

"=0 of MC samples, the error
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bound

‖Mku(·, t)− ÊL,(k)[u(·, t;ω)]‖L2(Ω;L1(Rkd))

! (1 ∨ t)∆xs
L| log ∆xL|k−1

{
‖TV(u0(·, ω))‖k

Lk(Ω;dP) + ‖u0(· ;ω)‖k
L∞(Ω;W s,1(Rd))

}

+

{
L∑

"=0

∆xs
" | log ∆x"|k−1

M1/2
"

}{
‖u0(· ;ω)‖k

L2k(Ω;W s,1(Rd)) + t‖TV(u0(· ;ω))‖k
L2k(Ω;dP)

}
.

The total work to compute the MLMC estimates ÊL,(k)[u(· ; t)] on compact domains
D ⊂ Rd is therefore (with O(·) depending on the size of D)

(4.22) Ŵork
MLMC

L = O

(
L∑

"=0

M"∆x−(d+1)
" | log ∆x|k−1

)
.

Based on Theorem 4.3, we infer that the choice of sample sizes M" at level )
should also be used in the MLMC-FVM estimation of k-point correlation functions
of order k > 1 of the random entropy solution, provided the order s of the underlying
deterministic FVM scheme is at most 1 (see [29] for details). Due to the linear
complexity of the pyramid scheme, the conversion of the FVM approximations of
the draws ûi(· , t;ω) of the random entropy solution at time t > 0 into a multilevel
representation and the sparse tensor product formation in the MLMC estimator
(4.21) increases the work bounds for the first moments only by a logarithmic factor,
so that, in terms of the computational work, we have with the choices (4.5) of MC
samples M", the following error bound in terms of work in a bounded computational
domain D ⊂ Rd:

(4.23) ‖Mku(·, t)− ÊL,(k)[u(·, t;ω)]‖L2(Ω;L1(Dk)) ≤ C(Ŵork
MLMC

L )−s′/(d+1)

for any 0 < s′ < s with the constant depending on D and growing as 0 < s′ → s ≤ 1.

Remark 4.4. As we will show in numerical experiments in Section 6.7, in the
presence of discontinuities in the pathwise solutions such as shocks, the sparse ten-
sor approximations ÊL,(k)[u(·, t;ω)] of the k-point correlations incur an additional
compression error; this error is not due to the discretization scheme, but rather a
consequence of omitting certain fine-scale components from the full tensor product
space in the estimate for Mku(·, t). Compare (6.35) with (4.17).

5. Efficient Implementation of MLMC-FVM

As stated in the previous section, the MLMC-FVM algorithm has four stages.
We discuss implementation issues that arise in each stage below.

5.1. Step 1: Hierarchy of nested grids. We will solve systems of balance laws
(1.1) in one and two space dimensions. In the numerical results which are reported
in Section 6 ahead, in two space dimensions, we will choose Cartesian meshes for
simplicity. It is relatively straightforward to choose any hierarchy of nested grids
consisting of either triangles/ tetrahedra or quad/hexahedral volume in either one,
two or three space dimensions.
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5.2. Step 2: Sample. In this step, we have to draw M" i.i.d. samples for the initial
data and source random fields U0,Fj ,S corresponding to the underlying probabil-
ity distribution. Standard random number generators (RNG) can be readily used
to draw such samples. For the serial implementation, any reasonable RNG works
well in practice. However, random number generation becomes a very sensitive
part of Monte Carlo type algorithms on massively parallel architectures. Inconsis-
tent seeding and insufficient period length of the RNG might cause correlations in
presumably i.i.d. draws which might potentially lead to biased solutions, see [32].
We used the WELL-series of pseudo random number generators from [27, 26]. These
generators have been designed with particular attention towards large periods and
good equidistribution. To deal with the seeding issues, we injectively map the
unique rank of each core (in a parallel algorithm) to some corresponding element
in the hardcoded array of prime numbers (henceforth, the array of seeds), see [40]
for detailed explanations. In this way statistical independence is preserved. For
all numerical experiments reported here, the RNG WELL512a was used. We found
WELL512a to have a sufficiently large period 2512 − 1 and to be reasonably efficient
(33 CPU sec for 109 draws). We emphasize that there are plenty of alternatives
to WELL512a with even longer periods (which, however, use more memory than
WELL512a). To name a few: WELL1024a with period 21024 − 1, takes 34 sec and
WELLRNG44497 with period 244497 − 1 which takes 41 sec to generate 109 draws.

5.3. Step 3: Solve. For each realization of the random inputs field, we need to
solve (1.1) for each realization of the random input with a finite volume or DG
scheme.

5.3.1. General Consideration. As the solve step in the MLMC-FVM algorithm will
be repeated for a large number of data samples on different space-time resolution
levels, a robust and efficient FVM code for systems of balance laws. We recall
that the MC and MLMC methods rely on equidistribution of samples in the data
space. Therefore, in MC-FVM and MLMC-FVM, also extremal (i.e. “improbable”
or physically pratically impossible in the eyes of experts) data scenarios are gen-
erated, and care must be taken that the numerical solver for these scenarios is of
comparable efficiency as for the more standard, “benchmark” cases. Robustness of
the numerical solver is therefore a key issue in the development and deployment
of MLMC techniques for nonlinear PDEs. In our large scale numerical experi-
ments, we choose the code named ALSVID [1] that was designed by researchers at
CMA, University of Oslo and SAM, ETH Zürich. Based on this platform, we de-
veloped a version called ALSVID-UQ which is specifically tailored to UQ, and which
is publically available for download under [2]. As ALSVID is extensively used in the
examples of this paper, we describe it briefly below.

5.3.2. ALSVID. This finite volume code approximates the Shallow-water, Euler
equations and MHD equations in one, two and (in the last two cases) in three space
dimensions. It is based on the following ingredients:

1. Approximate Riemann solver: The numerical fluxes in the Finite Vol-
ume Scheme (1.5) used in ALSVID are based on approximate Riemann
solvers of the HLL type for the Euler and MHD equations [15]. For shallow-
water equations with bottom topography, the energy stable well-balanced
schemes of [14] have been implemented in ALSVID-UQ.
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2. Divergence constraint. The divergence constraint in the MHD equations
[15] is handled in ALSVID by adding the Godunov-Powell source term to the
MHD equations. This source term is proportional to the divergence and
allows divergence errors to be swept out of the domain. Numerical stability
can only be ensured by a careful upwinding of the source term, see [15].

3. Non-oscillatory reconstructions. ALSVID employs a variety of piecewise
polynomial non-oscillatory reconstruction procedures for attaining high or-
der of spatial accuracy. In particular, second order ENO and WENO pro-
cedures are employed, see Section 2 of [15]. However, these procedures need
to be modified in order to preserve positivity of the density and pressure.
Such modifications are described in Section 2 of [15].

4. Time stepping. High-order accurate time stepping procedures of the SSP
Runge-Kutta [18] are employed in ALSVID.

Fluxes on the boundary of the computational domain are defined using so-called
ghost cells, see, for example, Chapter 10 in [23]. The FV solver library ALSVID uses
a modular structure in C++ with a Python front end for pre- and post-processing.
One and two dimensional visualizations are performed with MatPlotLib and three
dimensional data sets are visualized using MayaVi2. Extensive testing of ALSVID
has been performed and reported in [15].

A massively parallel version of ALSVID has already been developed for determin-
istic problems; we refer to [1] for further details. The parallelization paradigm for
ALSVID is based on domain decomposition using Message Passing Interface (MPI)
standard and its particular implementation OpenMPI.

5.4. Stable computation of sample statistics. For both MC-FVM and MLMC-
FVM algorithms, we need to combine ensembles of individual realizations of nu-
merical solutions for the statistical estimation of ensemble averages.

5.4.1. Discussion of round-off effects. It is straightforward to evaluate the sample
mean for the MC-FVM and the estimator (4.3) for MLMC-FVM. A straightforward
algorithm to compute an unbiased estimate of the variance for scalar u = u(x, t)
with fixed x, t is the following statistical estimator:

(5.1) Var[u] := E[u2]− E[u]2 ≈ VarM [u] :=
1

M − 1

M∑

i=1

(ui)2 −
(

1
M − 1

M∑

i=1

ui

)2

,

where ui are MC-FVM samples. This way, it suffices to loop over all samples only
once; unfortunately, both quantities are almost equal in regions of nearly vanishing
variance. This is typically the case in smooth regions of the flow, i.e. outside of
shocks and of viscous boundary layers. Here, we observed in our numerical ex-
periments that the straightforward use of the estimator (5.1) leads to subtractive
cancellation and loss of accuracy in finite (IEEE double) precision floating point
arithmetic. In [44], the authors propose an alternative stable ”on-line” variance
computation algorithm:

Set ū0 = 0 and Φ0 = 0; then proceed iteratively:

ūi =
i∑

j=1

uj/i,(5.2)
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Φi :=
i∑

j=1

(uj − ūi)2 = Φi−1 + (ui − ūi)(ui − ūi−1).(5.3)

Then, the unbiased mean and variance estimates are given by:

(5.4) EM [u] = ūM , VarM [u] = ΦM/(M − 1).

Although identical in exact arithmetic, the above algorithm can deal with small
cancellation errors. Note, however, that the estimators (5.1) and (5.4) will only
converge under the provision that fourth statistical moments of the random solution,
evaluated pointwise in space and time, are finite; an alternative approach which
does not require pointwise finite fourth moments proceeds via estimating the space-
time two-point correlation functions of the random entropy solutions, see [29]. For
this approach, finite fourth moments of u are also required, albeit with values in
(Cb([0, T ], L1(Rd)))m.

5.4.2. Efficient parallelization. The key issue in the parallel implementation of the
whole algorithm (the solve steps) is to distribute computational work evenly among
the cores. Without going into the details, we refer the reader to the novel static
load balancing strategy on homogeneous parallel architectures (i.e. all cores are
assumed to have identical CPUs and RAM per node, and equal bandwidth and
latency to all other cores) in recent papers [40, 32].

6. Performance Studies of the MLMC-FVM for Conservation Laws

In this section, we will test the MLMC-FVM algorithm, presented in the previ-
ous section, and demonstrate its robustness and efficiency. We run numerical tests
for five different problem sets: two of them will consider a multi-dimensional system
of conservation laws with uncertain initial data, one will consider a system of bal-
ance laws with random bottom topography (source term) and the remaining three
numerical experiments will address the performance of our Multi-Level MC-FVM
for conservation laws with random fluxes.

Recalling that the discretization of the random conservation law involves dis-
cretizing in space-time with a standard Finite Volume Method and the discretizing
the probability space with a statistical sampling method, we tabulate various com-
binations of methods that are to be tested:
MC Monte Carlo with 1st order FVM scheme M = O(∆x−1),
MC2 Monte Carlo with 2nd order FVM scheme M = O(∆x−2),
MLMC multilevel MC with 1st order FVM scheme M! = ML2(L−!),
MLMC2 multilevel MC with 2nd order FVM scheme M! = ML4(L−!).

Furthermore, we need to following parameters, which will be specified for every
simulation in the form of a table below the corresponding figure:
Parameter Description
L number of hierarchical mesh levels
ML number of samples at the finest mesh level
grid size number of cells in X and in Y directions
CFL CFL number based on the fastest wave
cores total number of cores used in the simulation
runtime clock-time (serial runs) or wall-time (parallel runs); hrs:min:sec
efficiency MPI efficiency, as defined in [40].
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As we will present numerical convergence analysis results, we need to specify the
following error estimator.
Error estimator. Since the solution is a random field, the discretization error is a
random quantity as well. For our computational convergence analysis we therefore
compute a statistical estimator by averaging estimated discretization errors from
several independent runs. We will compute the error in (3.2) by approximating
L2(Ω; L1(Rd)) norm with MC quadrature. Let Uref denote the reference solution
and {Uk}k=1,...,K be a sequence of independent approximate solutions obtained by
running MC-FVM or MLMC-FVM solver K times corresponding to K realizations
of the stochastic space. Then the L2(Ω; L1(Rd))-based relative error estimator is
defined as in [29],

(6.1) RE =

√√√√
K∑

k=1

(REk)2/K,

where:

(6.2) REk = 100×
‖Uref − Uk‖"1(T )

‖Uref‖"1(T )
.

The extensive analysis for the appropriate choice of K is conducted in [29]; unless
indicated otherwise, we choose K = 30 which was shown to be sufficient.

Equipped with the above notation and concepts, we present the following six
numerical experiments.

6.1. Euler equations with uncertain initial data. The Euler equations of gas
dynamics are

(6.3)






ρt + div(ρu) = 0,
(ρu)t + div(ρu⊗ u + pID) = 0,

Et + div((E + p)u) = 0.

Here, ρ is the density and u is the velocity field. The pressure p and total energy
E are related by the ideal gas equation of state:

(6.4) E :=
p

γ − 1
+

1
2
ρ|u|2,

with γ being the ratio of specific heats.
The MLMC-FVM algorithm is tested on a problem with a high number of un-

certainty sources. We consider the so-called cloud-shock interaction problem. The
computational domain is taken to be D = [0, 1]× [0, 1]. Let Y ∼ 1

25 + U(0, 1
50 ) and

let Y1, ..., Y7 ∼ U(0, 1) denote i.i.d. random variables independent of Y .
The initial data consists of an initial shock with uncertain amplitude and uncer-

tain location given by:
(6.5)
{ρ0(x, ω), u0(x, ω), p0(x, ω)} =

=






{
3.86859 +

1
10

Y6(ω), (11.2536, 0)*, 167.345 + Y7(ω)
}

if x1 < Y (ω),

{1, (0, 0)*, 1} if x1 > Y (ω).
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Furthermore, a high density cloud or bubble with uncertain amplitude and uncer-
tain shape of the form

(6.6)
ρ0(x, ω) = 10 +

1
2
Y1(ω) + Y2(ω) sin(4(x1 −

1
4
)) +

1
2
Y3(ω) cos(8(x2 −

1
2
))

if r ≤ 0.13 +
1
50

Y4(ω) sin θ +
1

100
Y5(ω) sin(10θ),

where

(6.7) r =
√

(x1 − 0.25)2 + (x2 − 0.5)2, θ =
x1 − 0.25

r
,

lies to the right of the shock. The mean and the variance of the initial data are
depicted in Figure 1(a). Note that there are 8 sources of uncertainty in the above
problem. A parametric representation of the initial data results in a 11 dimensional
problem consisting of two space, one time and eight stochastic dimensions. The
mean and variance of the solution at time t = 0.06 is shown in Figure 1(b). The
results are from a MLMC-WENO run with 10 nested levels of resolution (L = 9)
and the finest resolution is set to 4096×4096 mesh. The number ML of MC samples
at the finest resolution is 8 and number of cores for this run is 1023.

The physics of the flow in this case consists of the supersonic initial shock moving
to the right, interacting with the high density bubble and leading to a complex flow
pattern that consists of a leading bow shock, trailing tail shocks and a very complex
region (near the center) possessing sharp gradients as well as turbulent like smooth
features. The mean flow (for the density) consists of the bow shock, tail shocks and
a complex region with sharp gradients as well as smooth regions. The variance is
concentrated in the smooth region at the center; it is significantly smaller at the
tail shocks and almost vanishing at the bow shock. The initial uncertainty in the
shape of the bubble seems to lead to a more complex distribution of the variance.

6.2. MHD equations of plasma physics. Next, we consider the MHD equa-
tions:

(6.8)






ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u + (p +
1
2
|B|2)I −B⊗B) = 0,

Bt + div(u⊗B−B⊗ u) = 0,

Et + div((E + p +
1
2
|B|2)u− (u ·B)B) = 0,

div(B) = 0,






Here, B denotes the magnetic field and the total energy is given by the equation of
state (6.4). In this example, the random initial data is a parametric version of the
celebrated Orszag-Tang vortex which is randomly perturbed in two different ways:

(1) 2 sources of uncertainty. Let Y1, Y2 ∼ U(0, 1). The phases of the
velocities are uncertain and depend on the scaled random variables Y1, Y2:

(6.9)

{ρ0(x, ω), p0(x, ω)} = {γ2, γ},

u0(x, ω) =
(
− sin

(
πx2 +

1
20

Y1(ω)
)

, sin
(

πx1 +
1
10

Y2(ω)
))*

,

B0(x, ω) = (− sin(πx2), sin(2πx1))*.
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(a) initial data

(b) solution at t = 0.06

L ML grid size CFL cores runtime efficiency
9 8 4096x4096 0.4 1023 5:38:17 96.9%

Figure 1. Cloud shock at t = 0 and t = 0.06 using MLMC-FVM

(2) 8 sources of uncertainty. Let Yi ∼ U(−1, 1), i = 1, . . . , 8. The ampli-
tudes of the initial density and pressure are uncertain

(6.10)
ρ0(x, ω) = γ2

(
1 +

1
20

Y1(ω)
)

,

p0(x, ω) = γ

(
1 +

1
20

Y4(ω)
)

,

and, additionally, the phases of the initial velocities and the phases with
the amplitudes of the initial magnetic fields are also uncertain,

(6.11)

u0(x, ω) =
(
− sin

(
πx2 +

1
20

Y2(ω)
)

, sin
(

πx1 +
1
10

Y3(ω)
))*

,

B1(x, ω) = −
(

1 +
1
20

Y6(ω)
)

sin
(

πx2 +
1
25

Y5(ω)
)

,

B2(x, ω) =
(

1 +
1
20

Y8(ω)
)

sin
(

2πx1 +
1
20

Y7(ω)
)

.
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Here, as in the setup for cloud-shock interaction problem in Figure 1(a),
a parametric representation of the initial data results in a 11 dimensional
problem consisting of two space, one time and eight stochastic dimensions.

The MLMC-FVM solution is then considered for both versions of the initial data,
i.e. with 2 sources (6.9) and with 8 sources (6.10) of uncertainty. The mean field
and the variance (for the plasma density) of the solutions are shown in Figures 2
and 3, respectively.

L ML grid size CFL cores runtime efficiency
7 4 2048x2048 0.475 128 5:02:14 98.4%

Figure 2. Uncertain Orszag-Tang vortex solution at t = 1.0 using
MLMC-FVM (2 sources of uncertainty). Variance is very large
near discontinuities of the path-wise solutions.

L ML grid size CFL cores runtime efficiency
8 4 4096x4096 0.475 2044 3:17:18 97.0%

Figure 3. Uncertain Orszag-Tang vortex solution at t = 1.0 us-
ing MLMC-FVM (8 sources of uncertainty). Again, the largest
variances appear near discontinuities of the path-wise solutions.

The computation is performed using the MLMC-FVM scheme with second-order
WENO reconstruction, and with the HLL three wave solver of [15]. The code uses
an upwind discretization of the Godunov-Powell source term. The results shown
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in these figures are from a computation with 8 levels of refinement (L = 7) and
the finest mesh resolutions of 2048 × 2048 mesh cells and 4096 × 4096 mesh cells
for the problem with two sources of uncertainty (6.9) and with eight sources of
uncertainty (6.10), respectively. The number of MC samples at the finest resolution
for both problems is 4. The problems have more than 109 degrees of freedom
per time step and the total number of time steps is about 104 amounting to an
overall computational cost of this simulation between 1012 and 1013 FLOPS. These
numbers show that the simulations are extremely challenging and requires massively
parallel architectures. In fact, the problem with 2 sources of uncertainty took about
6 hours (wall-clock) on 128 cores (simulated on ETH’s parallel cluster Brutus [47])
and the problem with 8 sources of uncertainty took about 3.5 hours (wall-clock) on
2040 cores (simulated on Palu, CSCS [48]). We also observe that the variance for
the problem with eight sources of uncertainty is more diffused than the variance
for the problem with two sources of uncertainty.

It is well known (see [15]) that stable computation of numerical solutions of the
Orszag-Tang problem on highly refined meshes (which, by the CFL condition (1.4)
entails a correspondingly large number of timesteps) is quite challenging. Since our
spatial resolution at mesh level L = 7 is very fine, we need an extremely robust
code like ALSVID for the solve step in MLMC-FVM in order to resolve this problem.

The mean density is quite complicated with shocks along the diagonals of the
domain as well a (smooth) current sheet at the center of the domain. The solution
consists of discontinuities interspersed within interesting smooth features. Our
simulations show that the variance is concentrated at shocks as well as at the current
sheets and other interesting smooth regions. From this problem as well as the results
of the previous section, we observe that the variance is a very good indicator of
where the discontinuities and sharp gradients of the solution are concentrated and
would serve as a good a posteriori error indicator for adaptive mesh refinement.

6.2.1. Numerical convergence analysis. We analyze these particular two dimen-
sional numerical experiments (Orszag-Tang vortex with 2 and 8 sources of un-
certainty) in greater detail. Again, we use the high-resolution MLMC-FVM simu-
lations from Figures 2 and 3 as the reference solutions, respectively. We investigate
convergence of error vs. work in Figure 4 and Figure 6 for 2 sources of uncer-
tainty and in Figure 5 and Figure 7 for 8 sources of uncertainty. The error in the
mean field converges at expected rates. At comparable numerical resolution and
accuracy, the MLMC(2) is about two orders of magnitude faster than the MC(2)
method for both problems. We observe a slight deterioration in the estimated con-
vergence rates for the variance. This could well be a pre-asymptotic effect. As seen
in Figures 6 and 7, the curves are steepening which seems to indicate better rates
with further refinement. Again, the MLMC(2) appears considerably faster than
the corresponding MC(2) method in delivering variance estimates of comparable
numerical accuracy.
Remark 6.1. Our aim in computing the Orszag-Tang vortex with two and with
eight sources of uncertainty in the initial data is to compare the robustness of the
MLMC method with respect of an increase in the number of sources of uncertainty.
To this end, we plot the error vs. resolution and the error vs. runtime for the
MLMC(2) FVM with both two and with eight sources of uncertainty in Figure 8.
The results in this figure show that the runtime for a fixed level of error is nearly
identical whether there are two or eight sources of uncertainty in the initial data.
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Figure 4. Convergence of mean in the uncertain Orszag-Tang
vortex simulation (2 sources of uncertainty).

Figure 5. Convergence of mean in the uncertain Orszag-Tang
vortex simulation (8 sources of uncertainty).

Figure 6. Convergence of variance in the uncertain Orszag-Tang
vortex simulation (2 sources of uncertainty).

This shows that the MLMC method is quite robust with respect to large number of
sources of uncertainty in the data: an increase in the number of sources of uncer-
tainty does not appear to lead to a deterioration in the computational efficiency.
Thus, the MLMC method can be used for computing uncertainty in problems with
very large number of sources of randomness.

6.2.2. Efficiency of parallelization. We test the efficiency of static load balancing
for the parallelization procedure described in [40] in this two-dimensional example.
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Figure 7. Convergence of variance in the uncertain Orszag-Tang
vortex simulation (8 sources of uncertainty).

Figure 8. Error convergence sensitivity to the number of sources
of uncertainty. For both 2 and 8 sources of uncertainty, the con-
vergence of error vs. computational work is almost identical.

Here, the parallelization efficiency is defined as
(6.12)

efficiency :=
(cumulative wall-time)− (cumulative wall-time of MPI calls)

cumulative wall-time
.

It separates the amount of time spent in computing from the amount of time spent
in communicating (the latter is indicated with dashed lines in runtime plots). In
Figure 9, we show the parallelization efficiency of the MLMC-FVM and see that
the algorithm is quite efficient and most of the time is spent computing rather than
communicating or waiting.

The strong scaling (fixed discretization and sampling parameters while increasing
#cores) for this problem is shown in Figure 10. We see that the algorithm scales
linearly up to around 4000 cores. Similarly, Figure 11 shows a weak scaling (problem
size is equivalent to #cores) up to a similar number of processors. We have not
tested the algorithm for a larger number of processors since we are limited by the
size of the machine [48], but we expect it to scale upto a much larger number of
cores. The results in both one and two space dimensions indicate that our static
load balancing algorithm is quite efficient.
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Figure 9. MPI overhead.

Figure 10. Strong scaling. The inferior scalability of DDM has
no significant influence on the overall strong scaling for d = 2.

Figure 11. Weak scaling. The inferior scalability of DDM has no
significant influence on the overall weak scaling for d = 2.

6.3. Shallow-water equations with uncertain bottom topography. In this
section, we consider the shallow-water equations (in two space dimensions):

(6.13)






ht + (hu)x + (hv)y = 0,

(hu)t +
(

hu2 +
1
2
gh2

)

x

+ (huv)y = −ghbx,

(hv)t + (huv)x +
(

hv2 +
1
2
gh2

)

y

= −ghby.
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Here, h is the height of the fluid column above the bottom topography b = b(x, y)
over which the fluid flows and (u, v) is the vertically averaged horizontal fluid ve-
locity field. The constant g denotes the acceleration due to gravity.

6.3.1. Multi-level representation of the bottom topography. An approximation to
the exact bottom topography b(x) ∈ W 1,∞(D) is often obtained from the mea-
surements. For instance [7, 13], in the two-dimensional case, nodal measurements
bi+ 1

2 ,j+ 1
2

:= b(xi+ 1
2 ,j+ 1

2
) are obtained at locations xi+ 1

2 ,j+ 1
2

= (xi+ 1
2
, yj+ 1

2
), i.e. at

vertices of an axiparallel quadrilateral topography mesh T̄ (possibly different from
FVM mesh T ) on the rectangular two-dimensional domain D. Since each mea-
surement bi+ 1

2 ,j+ 1
2

is prone to uncertainty [13], all measured values are treated as
random variables with some prescribed probability distribution; we choose

(6.14) bi+ 1
2 ,j+ 1

2
(ω) := b(xi+ 1

2 ,j+ 1
2
) + Yi,j(ω), Yi,j ∼ U(−εi,j , εi,j), εi,j > 0,

i.e. bi+ 1
2 ,j+ 1

2
(ω) ∈ L2(Ω, R) are random variables (not necessarily independent),

which deviate from the measurements bi+ 1
2 ,j+ 1

2
by±εi+ 1

2 ,j+ 1
2
. Thus, (6.14) provides

an approximation to the uncertain topography b(x, ω) ∈ L2(Ω, W 1,∞(D)).
It is shown in a recent paper [33] that the uncertain bottom topography needs to

be represented in a multi-level framework in-order to accelerate the MLMC-FVM
algorithm. To introduce the multi-level topography representation, we recall some
notation: levels ) = 0, . . . , L enumerate nested grids T0, . . . , TL that are used in the
MLMC-FVM solver. Apart from T0, . . . , TL, we consider an additional hierarchical
structure, that will be used in the multi-level representation of the bottom topogra-
phy. More precisely, assume a nested sequence {T̄"̄ = T̄ 1

"̄
× · · ·× T̄ d

"̄
, )̄ = 0, . . . , L̄}

of isotropic regular d-dimensional axiparallel quadrilateral meshes for the physical
bounded domain D = I1 × · · ·× Id ⊂ Rd, Ir ⊂ R, d = 1, 2, each of them obtained
by )̄ uniform refinements of some initial, regular mesh T̄0 (of domain D) consisting
of the cells C0

k , k = 1, . . . ,#T̄0. Note, that a-priori we do not assume any relation
between L̄ and L. However, for the sake of consistency, we assume

T̄"̄ = T", provided )̄ = ).

For p ∈ N0, define Qp(D, T̄ ) to be the space of piece-wise multivariate tensor
product polynomials of degree p on a mesh T̄ of a bounded domain D having
essentially bounded weak derivatives up to order p, i.e.

(6.15) Qp(D, T̄ ) := {f ∈ W p,∞(D) : f |C ∈ Qp(C), ∀C = C1 × · · ·× Cd ∈ T̄ },

where Qp(C) is the space of multivariate tensor product polynomials on cell C,

Qp(C) := {x "→ p1(x1) · · · · · pd(xd) : pr ∈ Pd(Cr), ∀r = 1, . . . , d}.

We assume that uncertain measurements bi+ 1
2 ,j+ 1

2
(ω) := b(xi+ 1

2
, yj+ 1

2
, ω) of the

exact bottom topography b(x, y) are available, as in (6.14). Then bi+ 1
2 ,j+ 1

2
(ω) are

treated as nodal values and are linearly interpolated in each dimension using the
bilinear hierarchical interpolation operator,

(6.16)
IL̄b(x, y,ω) =

L̄∑

"̄=0

L̄∑

"̄′=0

b"̄,"̄′(x, y,ω),

b"̄,"̄′ : = I"̄,"̄′b− I"̄−1,"̄′b− I"̄,"̄′−1b, I−1,· ≡ I·,−1 ≡ 0,
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where I"̄,"̄′ denotes bilinear nodal interpolation operator on the quadrilateral mesh
T̄ 1

"̄
× T̄ 2

"̄′
.

Each b"̄,"̄′(x, y,ω) ∈ L2(Ω,Q1(I1 × I2, T̄ 1
"̄
× T̄ 2

"̄′
)) is a linear combination of the

multivariate tensor products of two hierarchical “hat” (“Schauder”) basis functions,

(6.17) b"̄,"̄′(x, y, ω) =
N̂!̄∑

k=1

N̂!̄′∑

k′=1

b"̄,"̄′

k,k′(ω)ϕ"̄
k(x)ϕ"̄′

k′(y), b"̄,"̄′

k,k′ ∈ L2(Ω, R).

The interpolated bottom topography belongs to the space

IL̄b(x, ω) ∈ L2(Ω,Q1(I1 × I2, T̄L̄)).

6.3.2. 2-D numerical experiments: Random perturbation of lake at rest. We con-
sider the shallow-water equations in the computational domain D = [0, 2] × [0, 2],
and investigate the evolution of a random perturbation of the lake at rest coupled
with outflow boundary conditions.

The uncertain bottom topography b(x, ω) is represented in terms of the nodal,
bivariate hierarchical basis (6.16) - (6.17) with random amplitudes. Notice that,
formally, this bilinear basis can be obtained by tensorizing the univariate Schauder
basis of C0([0, 2]). Notice also that we used in the present study only isotropically
supported product functions. The bottom topography was resolved to 6 levels (i.e.
L̄ = 5, )̄, )̄′ = 0, . . . , 5) where coefficients b"̄,"̄′

k,k′(ω) are given by mean values b̄"̄,"̄′

k,k′

that are perturbed by independent uniformly distributed centered random variables
with decaying variances,

(6.18) b"̄,"̄′

k,k′(ω) = b̄"̄,"̄′

k,k′ + Y "̄,"̄′

k,k′(ω) ∼ 2
5
U(−ε"̄,"̄′ , ε"̄,"̄′),

where all coefficients b̄"̄,"̄′

k,k′ are zero except

(6.19) b̄3,3
2,2 = 0.4, b̄4,4

6,6 = −0.32, b̄5,5
11,11 = 0.12,

and

(6.20) ε0,· = ε·,0 = 0, ε"̄,"̄′ = 2−max{"̄,"̄′}, ∀)̄ ≥ 1.

A realization of the uncertain bottom topography and the corresponding mean and
variance are shown in Figure 12.

Next, we consider the initial data U0 to be a random perturbation of a lake-at-
rest. Let Y ∼ 1

50 + 1
100U(−1, 1) be a random variable independent of {Y "̄,"̄′

k,k′}. An
initial perturbation around x0 = (x0, y0) = (1.0, 0.7) with a radius r = 1

10 reads

(6.21) h0(x, y,ω) =

{
1.0 + Y (ω)− b(x, y,ω) if |x− x0| < r,

1.0− b(x, y,ω) if |x− x0| > r,

with b(x, ω) as defined in (6.18) and the initial layer velocities set to zero, i.e.

(6.22) {u0(x, y,ω), v0(x, y,ω)} = {0.0, 0.0}.
Note, that here we have a very large number of sources of uncertainty ((25−1)2−1 =
962).

Reference solutions, computed with the second-order entropy stable scheme [14]
at time T = 0.1 is depicted in Figure 13. The results are computed on 9 nested levels
of resolution (L = 8) with the finest resolution being on a 4096 × 4096 mesh and
with time steps reduced accordingly in order to maintain the same CFL constant
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(a) one realization for some fixed ω ∈ Ω (b) mean and variance of b(x, ω)

Figure 12. Uncertain bottom topography (6.18) with 9 hierar-
chical levels (L̄ = 8).

L ML grid size CFL cores runtime efficiency
8 16 4096x4096 0.45 2044 2:13:51 97.5%

Figure 13. Reference solution for perturbed steadystate (6.21)
using MLMC-FVM . Initial perturbation evolves into asymmetric
ribbon wave with uncertain amplitude.

over all discretization levels. The simulation is run on 2044 cores and 16 samples
are taken for the finest mesh resolution.

The above problem is quite involved due to large number of sources of uncertainty
as well as the underlying difficulty of simulating small perturbations of steady
states. The reference solution show that the wave (in mean) spreads out of the
initial source. The variance is distributed in a non-linear and complicated manner
with large amount of variance corresponding to the uncertainties in the bottom
topography.

6.3.3. Numerical convergence analysis. We investigate convergence of error vs. work
in Figure 14 and Figure 15. Here we use the MLMC-FVM simulation from Figure 13
with 9 levels of resolution with the finest resolution being on a 2048 × 2048 mesh
as the reference solution Uref. The error in the mean field converges at expected
rates. At comparable numerical resolution and accuracy, the MLMC2 is about two
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orders of magnitude faster than the MC2 method for this problem. We observe a
slight deterioration in the estimated convergence rates for the variance. This could
well be a pre-asymptotic effect. Again, the MLMC2 appears to be slightly faster
than the corresponding MC2 method in delivering variance estimates of comparable
numerical accuracy.

Figure 14. Convergence of estimated mean in the 2-D simulation
(6.21). MLMC methods are 3 orders of magnitude faster than MC.

Figure 15. Convergence of estimated variance in the 2-D simu-
lation (6.21). MLMC methods are asymptotically faster than MC.

6.3.4. Speed up due to hierarchical topology representation. We test the gain in
efficiency due to the multi-level hierarchical representation of the uncertain bottom
topography (6.16) by comparing with a simulation that uses the standard MLMC
algorithm. In other words, the MLMC2 (full) simulation uses the underlying bottom
topography (at the resolution of the underlying topography mesh) for all shallow
water samples. In particular, simulations at the coarsest level of the FVM mesh use
the topography at the finest level of the underlying topography mesh. We compare
MLMC2 (full) with MLMC2 (truncated) which uses the representation (6.16) on
the perturbations of lake at rest steady state problem in Figure 16. As suggested
by the theory of [33], the two methods should lead to an identical order of the
error for a given space-time resolution. We verify this in Figure 16. On the other
hand, the MLMC2 (truncated) is at least an order of magnitude faster than the
MLMC2 (full) showing that the multi-level representation of the uncertain bottom
topography really provides a significant gain in efficiency.
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Figure 16. Convergence of estimated mean for 2-D steadystate
(6.21) with full (L̄ = 8) and truncated () + 1) number of levels in
the hierarchical representation (6.18) of bottom topography. For
a given mesh resolution, both estimators coincide. The implemen-
tation with the truncated number of levels is more than 10 times
faster on a mesh of 256× 256 cells.

6.4. Burgers’ equation with random flux. The deterministic Burgers’ equation
is the simplest example of the non-linear scalar conservation law. It is given by

(6.23) ut + f(u)x = 0, f(u) =
u2

2
.

The solutions to (6.23) are well posed provided initial data u0(·) = u(·, 0) is given.
We consider deterministic initial data of the form

(6.24) u0(x) = sin(πx).

Notice that ‖u0‖L∞(R) = 1, hence one can choose R̄ = 1 in (2.28) of Theorem 2.4.

6.4.1. Uniformly perturbed flux. We consider a random version of the Burgers’ equa-
tion (6.23) with the random flux

(6.25) f(u, ω) =
up(ω)

p(ω)
, p ∼ U(1.5, 2.5).

It is straightforward to verify that the random flux f defined above is a bounded
random flux with each realization f(ω) ∈ Lip(−R,R) with R = R̄.

The initial data (6.24) and the reference solution (obtaind by MLMC-FVM) at
time t = 4 are depicted in Figure 17. There are 13 levels (L = 12) of FVM mesh
resolution with the finest resolution (at the finest level ) = L) being 32768 cells.
The Rusanov numerical flux with a second order accurate WENO reconstruction
was used. At every point x ∈ [0, 2] the solid line represents the mean and the dashed
lines represent the mean ± standard deviation of the (random) solution. For each
sample (realization) of the random flux (6.25), the smooth initial data evolves into
(as expected) discontinuity in the physical space and a shock forms at x1 = 1.0.
Given the fact that the flux function is random, the variance is high over the entire
physical domain and is not just concentrated at the discontinuity.

Next, we use this high-resolution MLMC-FVM simulation from Figure 17 as the
reference solution. We investigate the convergence of error vs. work in Figure 18.
The error in the mean field converges at expected rates; furthermore, the MLMC2
method is almost two orders of magnitude faster than the MC2 method (for the
same numerical accuracy).
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L ML grid size CFL cores runtime efficiency
12 16 32768 0.475 104 6:31:48 99.3%

Figure 17. MLMC-FVM solution of the Burgers’ equation with
uniformly perturbed flux (6.25).

Figure 18. Convergence of mean for MLMC-FVM solution of the
Burgers’ equation with uniformly perturbed flux (6.25).

6.5. Two phase flows in a porous medium with uncertain permeabilities.
Many interesting phenomena (such as water flooding) in an oil and gas reservoir
can be modeled by using two phase flows in a porous medium. For simplicity,
we consider the flow of two phases (oil and water) in a one dimensional reservoir
[4]. The model reduces to a one dimensional scalar conservation law (with the
Buckley-Leverett flux):

(6.26)
St + f(S)x = 0,

f(S) =
qKλo(S)

λw(S) + λo(S)
.

Here, the variable S represents the saturation of oil, q is total flow rate, K the rock
permeability and λw, λo : [0, 1] "→ R are the relative permeabilities of the water and
oil phases, respectively. In practice, the rock permeability needs to be measured
and is prone to uncertainty. Similarly, the relative permeabilities are measured in
laboratory experiments and are characterized by uncertainty. In this example, we
focus on the case of uncertain relative permeabilities, which are frequently taken to
be of the form

λo = S2, λw(S) = (1− S)2.
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We add random perturbations to λo and λw, i.e.

(6.27)
λo(S) = S2 + εoYo(ω)S2(1− S),

λw(S) = (1− S)2 + εwYw(ω)(1− S)2S,

with
εo = 0.3, εw = 0.2, Yo, Yw ∼ U [−1, 1].

Uncertain relative permeabilities defined in (6.27) are depicted in Figure 19.

Figure 19. The mean and the upper/lower bounds for the uncer-
tain relative oil and water permeabilities as defined in (6.27).

We set K = 1.0 and q = 1.0. The initial data is given by a deterministic shock,

(6.28) So =
{0.25 if x1 < 1.0,

0.85 if x1 > 1.0.

Notice that ‖u0‖L∞(R) = 0.85, hence one can choose R̄ = 0.85 in (2.28) of
Theorem 2.4. Furthermore, the random flux defined in (6.26) with random perme-
abilities (6.27) is a bounded random flux with each realization f(ω) ∈ Lip(−R,R)
with R = R̄.

The initial data (6.28) and the reference solution at time t = 0.4 are depicted
in Figure 20. There are 13 levels (L = 12) of FVM mesh resolution with the finest
resolution (at the finest level ) = L) being 32768 cells. At every point x ∈ [0, 2], the
solid line represents the mean and the dashed lines represent the mean ± standard
deviation of the (random) solution. For each sample of the random permeabilities
λo, λw, the initial shock splits into a compound shock, consisting of right going
rarefaction that is immediately followed by a right moving shock wave. Notice
the improvement of the regularity in the stochastic solution: deterministic path-
wise solutions for each sample are discontinuous due to formation of the shock;
nevertheless, the mean of the solution appears to be continuous. Furthermore, the
uncertainty seems to be concentrated on the compound shock in this case.

Next, we use the high-resolution MLMC-FVM simulation from Figure 20 as the
reference solution. We investigate convergence of error vs. work in Figure 21 and
Figure 22. The error in the mean field converges at expected rates. If we compare
the MC2 method (for the same numerical accuracy) with the MLMC2, the latter
is approximately an order of magnitude faster for the approximation of the mean
field and approximately two orders of magnitude faster for the approximation of
variance.
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L ML grid size CFL cores runtime efficiency
12 16 32768 0.475 104 1:12:27 99.0%

Figure 20. MLMC-FVM solution of the Buckley-Leverett equa-
tion (6.26) with uncertain permeabilities (6.27) and deterministic
initial shock (6.28).

Figure 21. Convergence of mean in the Buckley-Leverett equa-
tion (6.26) with uncertain permeabilities (6.27).

Figure 22. Convergence of variance in the Buckley-Leverett
equation (6.26) with uncertain permeabilities (6.27).

6.6. Euler equations with uncertain equation of state. Next we consider a
random version of the Euler equations (6.3) from subsection 6.1 with the random
constant of specific heats in (6.4)

(6.29) γ = γ(ω), γ ∼ U(5/3− ε, 5/3 + ε), ε = 0.1.
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6.6.1. Uniformly perturbed specific heats in 1d: Sod shock tube. We consider one
dimensional version of the Euler equations (6.3) with (6.29) in the domain D =
[0, 2]. The initial data consists of the shock at x = 1:

(6.30) U0(x, ω) = {ρ0(x, ω), u0(x, ω), p0(x, ω)} =

{
{3.0, 0.0, 3.0} if x < 1,

{1.0, 0.0, 1.0} if x > 1.

The initial data (6.30) and the reference solution at time t = 0.5 are depicted in
Figure 23. There are 9 levels (L = 8) of FVM mesh resolution with the finest
resolution (at the finest level ) = L) being 2048 cells. Rusanov flux with second
order accurate positivity preserving WENO reconstruction was used. At every
point x ∈ [0, 2] the solid line represents the mean and the dashed lines represent
the mean ± standard deviation of the (random) solution. For each sample the
random constant γ of specific heats, the initial shock splits into three waves: a
left going rarefaction wave, a right going contact discontinuity and a right going
shock wave. The variances are relatively small (compared to the mean) with a
concentration of the variance near the shock.

L ML grid size CFL cores runtime efficiency
8 16 2048 0.475 36 0:00:39 99.1%

Figure 23. MLMC-FVM solution of the Sod shock tube (6.30)
with random specific heats constant (6.29).

6.6.2. Uniformly perturbed specific heats in 2d: cloud-shock. The MLMC-FVM al-
gorithm is tested on a problem that is analogous to the one presented in sub-
section 6.1. The computational domain is again taken to be D = [0, 1] × [0, 1].
Compared to subsection 6.1, we assume a random constant of specific heats (6.29)
and we consider the deterministic initial data for cloud shock problem:

(6.31)

{ρ0(x, ω), u0(x, ω), p0(x, ω)} =

=

{{
3.86859, (11.2536, 0)*, 167.345

}
if x1 < 0.05,

{1, (0, 0)*, 1} if x1 > 0.05,

with a high density cloud (or bubble) lying to the right of the shock

(6.32) ρ0(x, ω) = 10, if
√

(x1 − 0.25)2 + (x2 − 0.5)2 ≤ 0.15.

The mean and variance of the solution at time t = 0.06 obtained by the numeri-
cal simulation using MLMC-FVM are given in Figure 24. The results are from a
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MLMC-WENO run with 9 nested levels of resolution (L = 8) and the finest resolu-
tion is set to 2048×2048 mesh. Rusanov flux with second order accurate positivity
preserving WENO reconstruction was used. The number ML of MC samples at
the finest resolution is 8 and number of cores for this run is 128. Although the flow
and uncertainty appear to be similar to the one discussed in subsection 6.1, there
are important differences. In particular, the variance near the bow and tail shocks
appears to be spread over a larger region compared to the case of random initial
data. Furthermore, the smooth regions after the bow shock have a very different
distribution of uncertainty in this case.

L ML grid size CFL cores runtime efficiency
8 8 2048x2048 0.475 128 6:06:48 86.3%

Figure 24. MLMC-FVM solution of the cloud-shock (6.31) -
(6.32) with random specific heats constant (6.29).

6.7. Sparse Tensor MLMC estimation of two-point correlations. So far,
we presented numerical experiments which addressed the MLMC-FVM estimation
of mean fields and of variances of random entropy solutions as functions of space
and time. In Section 4.2, we also addressed theoretically the efficient computation
of two- and of k-point correlation functions. Theorem 4.3 stated that in parallel
to any MLMC-FVM simulation, MLMC estimates of two- and k-point correlation
functions in the entire domain can be obtained by sparse tensorization of Finite
Volume solutions in complexity which equals, up to logarithmic terms, that of the
MLMC-FVM estimate of the mean field. The computational realization of the
sparse tensor product projects is based on a multilevel splitting of the space of
piecewise constant functions (and, therefore, of a multilevel decomposition of the
Finite Volume solutions) on the mesh hierarchy {T"}∞"=0.

6.7.1. Multiresolution Basis. For the efficient numerical realization of the sparse
projectors P̂ (k)

L defined in (4.19), a Multiresolution basis of the spaces SL containing
the FV approximations of the (pathwise) entropy solutions must be chosen. We
assume here, for simplicity of exposition, that we are given a FV solver which is
based on cell averages, so that the spaces S" are the space of simple (or step)
functions on the triangulation T".

In the following numerical experiments in one space dimension, which are based
on the cartesian grid FV solver ALSVID (see [1], [2]), this will always be the
following:
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Definition 6.2. The hierarchical basis

ψ̂l
k(x) =






1, x ∈
[
2k · 2−l, (2k + 1)2−l

)

−1, x ∈
[
(2k + 1)2−l, (2k + 2)2−l

)

0, otherwise

(6.33)

is called Haar-wavelet basis.

We remark that Haar (multi-) wavelets are also available on two- and three-
dimensional meshes consisting either of triangles/ tetrahedra or of quadrilaterals
/ hexahedra (see, e.g. [5] for constructions of any polynomial degree on triangles
in two space dimensions). The MLMC and MC require that sparse tensors can be
added and multiplied by scalars. By writing a sparse tensor as a linear combination
of its basis

û(k) =
∑

|#l|1≤L

∑

#j

α
#l
#j
(ψl1

j1
⊗ · · ·⊗ ψlk

jk
)

=
L∑

l=0

∑

j

ψl
j ⊗




∑

|#l′|1≤L−l

∑

#j′

ψ
l′1
j′1
⊗ · · ·⊗ α

#l′

#j′
ψ

l′k−1
j′k−1





=:
L∑

l=0

∑

j

ψl
j ⊗ ul

j

it becomes clear that one can store a sparse tensor by mimicking the hierarchical
structure, i.e. u[l][k] = ul

k, with the ’pointwise’ operations

(u+v)[l][k] = u[l][k] + v[l][k]
(alpha*u)[l][k] = alpha*u[l][k].

The conversion of a numerical solution based on the (piecewise constant) cell av-
erages to the hierarchic, multiresolution representation can be effected on triangu-
lation T" in O(#T") operations by the so-called pyramid scheme (see, e.g., [12]) for
which efficient implementations are available in image compression, for example.

We emphasize that these concepts are not restricted to cartesian grids: for un-
structured, triangular or tetrahedral meshes in complex geometries, subspace split-
tings (4.14) and L2(D)-stable bases for the detail spaces W" in (4.14) also exist
but are, naturally, triangulation dependent and must be generated be recursive ag-
glomeration of cells and recursive SVD’s of the corresponding mass matrices. We
refer to [36] and [35, Chap. 2] for details.

6.7.2. Numerical Experiments. The number of samples Ml and size of the mesh Nl

on level l is given by M0, N0 and the maximal level L through

(6.34) NlN0 2l , MlM0 2L−l l = 1, . . . , L .

If the MC-Estimator is described in these terms this means M = N = NL. In the
following numerical experiments M0 = N0 = 8, L = 6 and the PDE is evolved until
time T = 0.4.

All PDEs are solved with the first order FVM using a Rusanov flux and explicit
timestepping with the CFL condition |f ′| ≤ C ∆x

∆t with CFL number C = 0.45.
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A sparse tensor product with reduced sparsity defined by

(6.35) S̃(k)
L =

⊕

|#l|1≤L+3

k⊗

j=1

Wlj (lj ∈ {0, . . . , L})

is also studied along with the full and sparse tensor products defined through (4.15),
(4.17), respectively. With N0 = 23 the reduced sparsity tensor product is, in fact, a
full tensor on the coarsest level and realizes the sparse tensor product construction
on a higher level of mesh refinement. Evidently, however, its formation out of Finite
Volume solutions is of the same asymptotic complexity as forming the standard
sparse tensor product.

The same numerical experiments are performed for three different equations,
the few differing parameters will be mentioned accordingly. The first experiment
compares MC- and MLMC-Estimates of E[u(2)], E[û(2)] and E[ũ(2)], these are maps
from R2 to R and their graph is plotted as a heat map.

The second map compares different methods for computing the variance. Four
distinct methods are presented. The first is direct estimation. The other three
are obtained by observing that E[u(2)](x, x)−E[u]2 is an estimate of the variance.
Analogous results hold for sparse and reduced sparsity tensor products instead of
a full tensor product.

6.7.3. Burgers’ Equation: Initial Data with Random Amplitude. The stochastic
PDE is the Burgers’ equation (6.23) with sinusoidal initial conditions where the
amplitude is uncertain. More precisely

u0(x, ω) = X(ω) sin(2π(x− α)), X ∼ U(0, 1)(6.36)

where α is some fixed parameter. As seen in Figure 25–27, the quality of the sparse
second moment depends on α. In the two cases where the sparse approximation is
acceptable the discontinuity in the second moment coincides with a cell boundary.
This is not the case for α = 0.078, where one can observe some artefacts.

Figure 25. Estimated second moment of Burgers’ equation(6.36)
for α = 0.
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Figure 26. Estimated second moment of Burgers’ equation 6.36)
for α = 0.078.

Figure 27. Estimated second moment of Burgers’ equation (6.36)
for α = 0.125.

6.7.4. Burgers’ Equation: Initial Data with Random Phase. Next we study the
Burgers’ equation with sinusoidal initial data which has uncertain initial phase.

u0(x, ω) = sin(2π(x− 0.1 ·X(ω))), X ∼ U(0, 1)(6.37)

The corresponding results for the two-point correlation function with α = 0.125
are shown in Figure 29.

6.7.5. Sparse Tensor Bubble Test. The next experiment will show that the sparse
approximation of a deterministic bubble function

f(x) = max(0,−500(x− α)2 + 1), α ∈ [0.3, 0.7]
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Figure 28. Comparison of different variance estimators for the
Burgers’ equation (6.36) : sparse, reduced sparsity, full and direct
computation.

Figure 29. Estimated second moment of Burgers’ equation (6.37)
for α = 0.125.

has similar errors as the sparse variance estimate of Burgers’ equation with random
phase. In particular, therefore, we conclude that the errors in sparse tensor esti-
mates of the two point correlation functions shown in Figures 25 - 27 are not due to
amplifications of Finite Volume discretization errors in the sparse tensor product
construction, but occur generically: they are, indeed, due to the compression of
data in the sparse tensor product formation itself.

Let u be the piecewise constant map obtained from f by taking cell averages on a
uniform mesh with N cells, û(2) and ũ(2) the approximations based on sparse tensor
product and reduced sparsity tensor products, as defined above. The cell averages
are computed using the midpoint rule on each cell. Figure 31 shows u2, û(2)(x, x)
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Figure 30. Comparison of different variance estimators: sparse,
reduced sparsity, full and direct computation.

and ũ(2)(x, x) in a single plot. For all mesh sizes N = 2l, l = 5, . . . , 10 one can
see negative spikes in both sparse second moment approximations, furthermore the
positive peak in the sparse approximation can be way too weak. While the reduced
sparsity tensor product approximation also has negative spikes, it is considerably
more accurate than the regular sparse tensor product approximation, while still
preserving the asymptotic complexity scaling of the sparse tensor product estimate.
We also observe in Figure 31 that the use of sparse tensor approximations introduces
significant errors which, in the specific example of variance computation, even lead
to meaningless outputs such as negative values of the estimated variance.

Figure 31. Diagonal of the sparse and reduced sparsity tensor
product estimates along with the exact value, for different meshes
and values for α.
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7. MLMC approximation of probabilities

7.1. MLMC Estimation of Probabilities. So far, in these notes, we addressed
the analysis and implementation of MLMC-FVM solvers for the efficient solution of
conservation laws with random inputs, and we focused on the efficient computation
of first and higher order statistical moments of the random solution(s), such as
mean field and variances.

Often, in applications, one is interested in probabilities of certain extremal events
E ∈ F , rather than statistical moments, conditioned on the given random input
data. Denoting by χE(ω) the indicator function of E ∈ F , the probability of
interest is

(7.1) P(E) =
∫

ω∈Ω
χE(ω)dP(ω) .

One of the problems of interest (in order to assess the risk) would be the following:
given a fixed sub-domain C ⊂ D ⊂ Rd, for a fixed time t ≥ 0, find the probability
p(U) ∈ [0, 1] that a certain event E ∈ F will occur. Here, we assume that the event
E takes the generic form E = {ω ∈ Ω : χ(U(·, t;ω)) = 1}, where χ(·) : Rm → {0, 1}
is a measurable function.

(7.2) p(U) := P ({χE = 1}) = E[χ(U(·, t,ω))] .

Rather than developing a general theory for the multlilevel MC computation of
such probabilities, we exemplify the main ideas for the Shallow Water Equations
with uncertain bottom topography, i.e. (6.13). Here, one is often interested in the
event “average water level 1

|C|
∫

x∈C h(x, t,ω) at time t in subdomain C ⊂ D exceeds
some given threshold hmax”. Then

χE(U(·, t,ω)) := χ(hmax,∞)

(
1
|C|

∫

x∈C
h(x, t,ω)dx

)

and P(E) is given by

(7.3) P(E) = E[χ(U(·, t,ω))] =
∫

Ω
χ(hmax,∞)

(
1
|C|

∫

x∈C
h(x, t,ω)dx

)
dP(ω) .

The probability of interest P(E) in (7.3) is an integral w.r.t. the probability measure
P. Hence, the integral in (7.3) could be approximated numerically by a Monte-Carlo
FVM estimator, i.e. by Monte-Carlo integration of an approximate Finite Volume
solution at mesh level ), denoted by U". The single-level Monte-Carlo Finite Volume
estimator for P(E) with M i.i.d. input data samples based on the FVM on mesh
level ) is given by

(7.4) pM (U") :=
1
M

M∑

i=1

χ(Ui
"(·, t)) =

1
M

M∑

i=1

χ(hmax,∞)

(
1
|C|

∫

x∈C
hi

"(x, t)dx

)
,

where hi
"(·, t), i = 1, . . . ,M are the MC samples approximated using the FVM

scheme at mesh level ). The MLMC-FVM estimator combines MC-FVM estimators
(7.4) on the nested family {T"}"≥0 of FVM meshes, as before, and is given by:

(7.5) pL(UL) := pM0(U0) +
L∑

"=1

(
pM!(U")− pM!(U"−1)

)
.
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7.2. Shallow Water equation in 2d: perturbation of a steady-state. We
consider the setup as in subsubsection 6.3.2, i.e. we are interested in the two-
dimensional shallow water equations where the uncertain initial perturbation (6.21)
of the water surface is propagating over the uncertain bottom topography described
in (6.16) - (6.17) and in (6.18). Our aim is to numerically approximate the prob-
abilities as in (7.3) that the cell averaged water level h + b will exceed the preset
threshold hmax = 1.002 in a subdomain C where C ∈ TL denotes a Finite Volume
cell.

The results of the numerical simulation using the MLMC-FVM estimator (7.5)
for the probability integral (7.3) are given in Figure 32. There are 9 levels (L = 8)
of FVM mesh resolution with the finest resolution (at the finest level ) = L) being
2048 cells. Rusanov flux with second order accurate well-balanced TECNO [14]
reconstruction was used.

L ML grid size CFL cores runtime efficiency
8 16 2048x2048 0.45 128 1:42:33 94.7%

Figure 32. MLMC-FVM approximation of the probabilities (7.3)
that the random water level h(·, t,ω) + b(·, ω) will exceed (at time
t = 0.1) the preset maximal threshold hmax = 1.002.

Remark 7.1. Firstly, we observe that χE(Ui
"(·, t)) can only attain values in {0, 1}.

Then, since the MC approximation pM (U") of p(U") from (7.4) is a convex com-
bination (with equal weights) of values from {0, 1}, pM (U") attains values in the
interval [0, 1], which is consistent with the fact that pM (U") is approximation of the
exact probability. However, such bounded range of values is no longer valid for the
Multi-Level MC approximation pL(UL) in (7.5).

As a counter-example to prove this claim, consider only two levels, i.e. L = 1,
one sample on the level ) = 0, i.e. M0 = 1, and two samples on the finer level
) = 1, i.e. M1 = 2. The coarsest (one-dimensional) mesh level is assumed to have
only one cell, i.e. T0 = {C0

1}, and the finer mesh level is assumed to have two equal
cells, i.e. T1 = {C1

1 , C1
2}. Then, assume we have random samples ω0

1 , ω1
1 , ω1

2 for
random input data. Furthermore, we assume that the event values for these samples
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on different mesh resolutions are given by:
χE(U0(C0

1 , ω0
1)) = 1,

χE(U1(C1
1 , ω1

1)) = 1, χE(U1(C1
1 , ω1

2)) = 1,

χE(U1(C1
2 , ω1

1)) = 1, χE(U1(C1
2 , ω1

2)) = 0,

χE(U0(C1
2 , ω1

1)) = 1, χE(U0(C1
2 , ω1

2)) = 0.

Then, the corresponding MC estimates pM0(U0), pM1(U1) and pM1(U0) are

pM0(U0) = 1, pM1(U0(C1
1 )) = 1, pM1(U0(C1

2 )) =
1
2
, pM1(U0) =

1
2
1 =

1
2
,

which lead to the following MLMC estimate (7.5) for each cell C1
1 , C1

2

(7.6) pL(U(C1
1 )) = 1 + 1− 1

2
= 1

1
2
, pL(U(C1

2 )) = 1 +
1
2
− 1

2
= 1.

Clearly pL(U(C1
1 )) > 1. The counter-example resulting in pL(U(C1

1 )) < 0 can be
obtained analogously. Notice, that even if we reuse samples from the coarsest mesh
level ) = 0 in the finer mesh level ) = 1, i.e. we set ω1

1 = ω0
1, the counter-example

is still consistent, since ω1
1 (= ω1

2.
The above considerations do not mean that the MLMC approximation of p(U")

is wrong or inconsistent with the exact value; the MLMC approximation pL(UL)
still converges to the exact value p(UL). In order to avoid confusion, in Figure 32
the approximated values of pL(UL) were clipped to the interval [0, 1]. Analogously,
in variance plots throughout this manuscript, the variance was clipped to [0,∞).

8. Conclusion

The issue of uncertainty quantification for physical and engineering applications,
that are modeled by hyperbolic systems of balance laws, has gained tremendous
attention in recent years. The inputs to hyperbolic systems of balance laws such
as initial data, boundary conditions, source terms as well as fluxes are in general,
prone to measurement errors and are uncertain. This uncertainty propagates into
the solution, making the design of efficient and robust methods for quantifying
uncertainty, of utmost significance.

In these notes, we have presented recent results about the design, analysis and
implementation of efficient statistical sampling methods of the Monte Carlo (MC)
and Multi-Level Monte Carlo (MLMC) type for quantifying uncertainty in the
solutions of systems of random balance laws. The main points of these notes are
summarized below:

• Uncertain inputs such as random initial data, sources and fluxes were mod-
eled in a probabilistic manner. The corresponding notion of random en-
tropy solutions was introduced and shown to be wellposed for scalar multi-
dimensional conservation laws with random initial data and with random
fluxes. Furthermore, statistical regularity of the random entropy solutions
was also described.

• The MC-FVM and MLMC-FVM algorithms for systems of balance laws
were presented. Efficient high-resolution finite volume schemes were used
for the spatio-temporal discretizations of the balance laws and were com-
bined with the MC and MLMC algorithms. The convergence and com-
plexity analysis of the resulting schemes (in scalar case) were presented. In
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particular, we showed that the MLMC Finite Volume Method had the same
asymptotic complexity (up to a logarithmic term) as a single deterministic
finite volume solve.

• Details of implementation of the MC and MLMC Finite Volume Methods
for systems of balance laws were described briefly. A static load balancing
algorithm was presented. This load balancing algorithm allows us to scale
the MLMC Finite Volume Methods to thousands of parallel processors.

• A large number of numerical experiments were presented to illustrate the
efficiency of the MLMC-FVM method. These experiments included Euler
and MHD equations with uncertain initial data, shallow water equations
with uncertain initial data and uncertain bottom topography, Buckley Lev-
erette equations with uncertain relative permeabilities and Euler equations
with uncertain equations of state.

• A sparse tensor discretization framework was introduced to efficiently com-
pute k-point correlation functions of the random entropy solutions. Pre-
liminary numerical results illustrating this method were presented.

• We introduced a novel non-intrusive technique to use the MLMC algorithm
for computing approximate probabilities of interesting statistical events,
based on the random entropy solutions.

The main purpose of these notes was to demonstrate that the MLMC statistical
sampling method is a very powerful tool in the context of uncertainty quantification
for hyperbolic systems of balance laws. Its advantages include:

• The method is completely non-intrusive. It can be readily used in conjunc-
tion with any spatio-temporal discretization of the underlying conservation
(balance) laws. Here, we combined the MLMC method with high-resolution
Finite Volume Methods. However, DG (discontinuous Galerkin) discretiza-
tions can also be used as spatio-temporal solvers.

• The method is very flexible and can be used for different types of uncertain
inputs such as random initial data, source terms or flux functions.

• The method is robust with respect to very low regularity (presence of dis-
continuities) of the underlying random entropy solutions.

• The method can deal with a very large number of sources of uncertainty.
For instance, the computation for shallow water equations with uncertain
bottom topography involved approximately 1000 sources of uncertainty.
To the best of our knowledge, no other method (particularly deterministic
methods such as stochastic Galerkin or stochastic collocation) can handle
such very large number of sources of uncertainty (stochastic dimensions).

• The method is several orders of magnitude more efficient that the standard
Monte Carlo (MC) method.

• When coupled with efficient implementation on massively parallel hardware
architectures, the MLMC method can handle complex flow problems.

Given these advantages, we strongly recommend the use of MLMC method as a
powerful technique for quantifying uncertainty in solutions of random systems of
balance laws.
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[32] S. Mishra, Ch. Schwab and J. Šukys. Multi-level Monte Carlo finite volume methods for
nonlinear systems of conservation laws in multi-dimensions. J. Comp. Phys., 231(8):3365–
3388, 2011.
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