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Abstract

The hierarchical Tucker format is a storage-efficient scheme to approximate and rep-
resent tensors of possibly high order. This paper presents a Matlab toolbox, along with
the underlying methodology and algorithms, which provides a convenient way to work
with this format. The toolbox not only allows for the efficient storage and manipulation
of tensors but also offers a set of tools for the development of higher-level algorithms.
Several examples for the use of the toolbox are given.

1 Introduction

A tensor X P Cn1ˆn2ˆ¨¨¨ˆnd with n1, . . . , nd P N is a d-dimensional array with entries Xi1i2¨¨¨id P
C. Usually, d is called the order of the tensor and the focus of this paper is on tensors of
higher order, say, d “ 5 or d “ 10 or even d “ 100. A typical scenario is that X represents a
d-variate function f : r0, 1sd Ñ C sampled on a tensor grid or approximated in a tensorized
basis.

It is in general impossible to store a higher-order tensor explicitly, simply because the
number of entries grows exponentially with d. Various data-sparse formats have been devel-
oped to address this issue. Depending on the application, these formats may allow for the
approximate representation and manipulation of a tensor under dramatically reduced storage
and computing requirements. For example, consider the approximation of X by a rank-1
tensor:

vecpX q « ud b ud´1 b ¨ ¨ ¨ b u1, u1 P Cn1 , . . . , ud P Cnd , (1)

where vec stacks the entries of a tensor in reverse lexicographical order into a long column
vector and b denotes the standard Kronecker product. Then, instead of the n1 ¨ n2 ¨ ¨ ¨nd

entries of X , only the n1 ` n2 ` ¨ ¨ ¨ ` nd entries of u1, . . . , ud need to be stored. On the
function level, this corresponds to an approximation of f by a separable function.

A typical application we have in mind is when X arises from the discretization of a high-
dimensional or parameter-dependent partial differential equation and is only given implicitly
as the solution to a typically huge (non)linear system or eigenvalue problem. There are two

1Chair of Numerical Algorithms and HPC, MATHICSE, EPF Lausanne, CH-1015 Lausanne, Switzerland.
daniel.kressner@epfl.ch

2Seminar for Applied Mathematics, D-MATH, ETH Zurich, CH-8092 Zurich. ctobler@math.ethz.ch
˚Supported by the SNF research module Preconditioned methods for large-scale model reduction within the

SNF ProDoc Efficient Numerical Methods for Partial Differential Equations.
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quite different strategies to employ a data-sparse format for the solution of such problems. The
more straightforward one is to apply a standard iterative method, e.g., a conjugate gradient
method, and approximate each iterate in the data-sparse format. For this purpose, it is
desirable to keep the approximation error negligible; otherwise the accuracy and convergence
of the method may be compromised. Examples for this strategy can be found in [4, 14,
20, 21, 25]. The second strategy is to reformulate the problem at hand as an optimization
problem with the admissible set of solutions restricted to data-sparse tensors, see [8, 16,
17, 22, 28, 29] and the references therein. Beyond these two main strategies, there exist
further approaches tailored to particularly structured problems, see, e.g., [10, 24]. While the
mathematical understanding is still somewhat limited, there is strong numerical evidence that
such data-sparse algorithms can handle a wide variety of problems that are far from tractable
by classical numerical methods. Our main goal for the development of theMatlab toolbox to
be presented in this paper is to allow for the painless experimentation with and development
of these algorithms. Existing Matlab toolboxes for other low-rank tensor formats are the
N-way toolbox by Andersson and Bro [2], the Tensor Toolbox by Bader and Kolda [3], as well
as the TT-Toolbox by Oseledets [27]. In computational physics, a number of related software
packages have been developed in the context of DMRG techniques for simulating quantum
networks, see, e.g., [5].

In most applications, it is unlikely that a rank-1 representation (1) yields a satisfactory
approximation error. This can be improved by considering the more general CP (Canonical
Polyadic) decomposition

vecpX q «
Rÿ

j“1

upjq
d b upjq

d´1 b ¨ ¨ ¨ b upjq
1 , upjq

1 P Cn1 , . . . , upjq
d P Cnd , (2)

which still requires little memory, provided that R does not become too large. Unfortunately,
developing a robust and efficient algorithm for this format, which yields an approximation to
any desirable accuracy, remains a subtle problem, see [1, 7] for recent progress. This problem
is much less subtle for the Tucker decomposition

vecpX q «
`
Ud b Ud´1 b ¨ ¨ ¨ b U1

˘
vecpCq, U1 P Cn1ˆr1 , . . . , Ud P Cndˆrd , (3)

with the so called core tensor C P Cr1ˆr2ˆ¨¨¨ˆrd . The HOSVD (Higher-Order SVD) [6] provides
a simple, nearly optimal solution to the approximation problem (3). However, the need for
storing C still results in memory requirements that grow exponentially with d.

Motivated by the limitations of the two classical decompositions (2) and (3), various other
decompositions have been developed in the numerical analysis community with the aim of
combining the advantages of both. This includes the tensor train decomposition [19] and the
closely related but somewhat more general HTD (hierarchical Tucker decomposition) [12, 15].
In the computational physics community, matrix product states and tensor networks play
a central role in DMRG (density matrix renormalization group) techniques for computing
ground states of quantum many-body systems, see [29] for an introduction.

Based on HTD, we have developed the Matlab toolbox htucker for conveniently storing
and manipulating higher-order tensors. Moreover, a set of advanced tools is provided for the
development of higher-level algorithms, in particular for the data-sparse algorithms discussed
above.

The rest of this paper is organized as follows. Section 2 introduces basic tools for work-
ing with tensors as well as the HTD. Note that we will only briefly introduce the concepts
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needed in this paper and refer the reader to the survey paper [23] for a more comprehensive
introduction to tensor computations. In Section 3, we describe the basic functionality and
data structures of our Matlab toolbox htucker. Section 4 is concerned with basic opera-
tions on tensors in HTD, such as µ-mode matrix products and orthogonalization, and their
implementation in htucker. Tensor-tensor contractions, discussed in Section 5, belong to the
most important operations with tensors and include, e.g., inner products. In Section 6, we
present several methods for approximating a tensor either given explicitly or given in HTD
by a tensor in HTD (of lower rank). Elementwise multiplication is described in Section 7 and
constitutes a fundamental building block for implementing elementwise functions on tensors.
As shown in Section 8, linear operators on tensors can also be efficiently represented with
HTD. Finally, several examples for working with htucker are given in Section 9 and a list of
the complete functionality of htucker can be found in Appendix A.

2 Preliminaries

This section summarizes the mathematical foundation of the hierarchical Tucker decomposi-
tion (HTD) and our Matlab toolbox. Necessary tensor concepts will be briefly introduced,
but we refer the reader to the survey paper [23] for a more comprehensive introduction.

2.1 Matricization and HOSVD

To understand the principles behind HTD, it is helpful to recall the matricization and HOSVD
of tensors. A tensor X P Cn1ˆn2ˆ¨¨¨ˆnd has d different modes 1, . . . , d. Consider a splitting
of these modes into two disjoint sets: t1, . . . , du “ t Y s with t “ tt1, . . . , tku and s “
ts1, . . . , sd´ku. Then the corresponding matricization of these modes is obtained by merging
the first group into row indices and the second group into column indices:

Xptq P Cpnt1 ¨¨¨ntk qˆpns1 ¨¨¨nsd´k q with
´
Xptq

¯

pit1 ,...,itk q,pis1 ,...,isd´k q
:“ Xi1,...,id

for any indices i1, . . . , id in the multi-index set t1, . . . , n1u ˆ ¨ ¨ ¨ ˆ t1, . . . , ndu. Of course,
the order in which the indices are merged is important. In the following, we assume reverse
lexicographical order but any other consistently employed order would be suitable. In the
extreme case, Xp1,...,nq corresponds to the column vector vecpX q.

As a special case, consider the so called µ-mode matricization

Xpµq P Cnµˆpn1¨¨¨nµ´1nµ`1¨¨¨ndq, µ “ 1, . . . , d.

Then the tuple pr1, . . . , rdq with rµ “ rank
`
Xpµq˘ is called the multilinear rank of X . To

obtain an approximation of lower multilinear rank prr1, . . . , rrdq, with rrµ ď rµ ď nµ, we let
Uµ P Cnµˆrrµ contain the rrµ dominant left singular vectors of Xpµq, which can be obtained,
e.g., from a truncated SVD Xpµq « UµΣµV H

µ . Then the HOSVD takes the form of a Tucker
decomposition

vecpX q « vecp rX q :“ pUd b ¨ ¨ ¨ b U1q vecpCq, (4)

with the core tensor

vecpCq :“ pUH
d b ¨ ¨ ¨ b UH

1 q vecpX q P Crr1ˆ¨¨¨ˆrrd .
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X

Xp1q

Xp1,2q

Figure 1: Illustration of an n1 ˆ 4 ˆ 3 tensor X with matricizations Xp1q and Xp1,2q.

This choice of C minimizes }X ´ rX }2 for given U1, . . . , Ud with orthonormal columns. Here and
in the following, }Y}2 denotes the Euclidean norm of the vectorization: }Y}2 “ } vecpYq}2.
An important feature of the HOSVD, it can be shown [6] that the obtained approximation is
nearly optimal among all tensors of multilinear rank prr1, . . . , rrdq or lower:

}X ´ rX }2 ď
?
d ¨ inf

!
}X ´ Y}2 : rankpY pµqq ď rrµ, µ “ 1, . . . , d

(
. (5)

2.2 The Hierarchical Tucker Decomposition (HTD)

In contrast to the Tucker decomposition, HTD employs a hierarchy of matricizations, moti-
vated by the following nestedness property.

Lemma 2.1 ([11, Lemma 17]). Let X P Cn1ˆ¨¨¨ˆnd and t “ tl Y tr for tl “ til, il ` 1, . . . , imu
and tr “ tim ` 1, . . . , iru. Then span

`
Xptq˘ Ă span

`
Xptrq b Xptlq˘.

Proof. Any column of Xptq “ Xpil,...,irq can be considered as the vectorization of a tensor
C P Cnil

ˆ¨¨¨ˆnir . The columns of the matricization Cptlq are clearly contained in span
`
Xptlq˘

and hence
Cptlq “ Xptlq`Xptlq˘`

Cptlq,

where M` denotes the Moore-Penrose pseudoinverse of a matrix M . Analogously,
`
Cptlq˘T “ Cptrq “ Xptrq`Xptrq˘`

Cptrq.

These two relations imply

Cptlq “ Xptlq
´`

Xptlq˘`
Cptlq`Xptrq˘`T

¯

loooooooooooooooomoooooooooooooooon
“:V

`
Xptrq˘T ñ vecpCq “

`
Xptrq b Xptlq˘ vecpV q.

Given any bases Ut, Utl , Utr for the column spaces of Xptq, Xptlq, Xptrq, the result of Lemma 2.1
implies the existence of a so called transfer matrix Bt such that

Ut “ pUtr b UtlqBt, Bt P Crtlrtrˆrt , (6)
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B12

U1

U2

U3

U4

B34

B1234
pn2 ˆ r2q

pn3 ˆ r3q

pn4 ˆ r4q

pn1 ˆ r1q
pr1r2 ˆ r12qpr1r2 ˆ r12q

pr3r4 ˆ r34q

pr12r34 ˆ 1q
B1234

U3

U2

U4

B12

U1

B34

Figure 2: Illustration of the HTD (7) for d “ 4.

where rt, rtl , rtr denote the ranks of the corresponding matricizations. Applying this relation
recursively, until tl and tr become singletons, leads to the HTD.

Example 2.2. Repeated application of (6) for d “ 4:

vecpX q “ Xp1234q “ pU34 b U12qB1234

U12 “ pU2 b U1qB12

U34 “ pU4 b U3qB34

ñ vecpX q “ pU4 b U3 b U2 b U1qpB34 b B12qB1234. (7)

It is often advantageous to reshape the transfer matrices:

B1234 P Cr12r34ˆ1 ñ B1234 P Cr12ˆr34ˆ1,

B12 P Cr1r2ˆr12 ñ B12 P Cr1ˆr2ˆr12 ,

B34 P Cr3r4ˆr34 ñ B34 P Cr3ˆr4ˆr34 .

An illustration of the hierarchical structure and the data to be stored for the HTD (7) is given
in Figure 2.

The general construction of an HTD requires a hierarchical splitting of the modes 1, . . . , d.

Definition 2.3. A binary tree T with each node represented by a subset of t1, . . . , du is called
a dimension tree if the root node is t1, . . . , du, each leaf node is a singleton, and each parent
node is the disjoint union of its two children. In the following, we denote:

LpT q set of all leaf nodes;
N pT q set of all non-leaf nodes, N pT q “ T zLpT q.

Remark 2.4. For convenience of notation, we impose the following additional assumption on
the left and right children tl, tr of a node t in the dimension tree: Each element of tl is smaller
than any element of tr. Note that this assumption can always be satisfied by an appropriate
reordering of the modes.

It is not hard to see that the number of non-leaf nodes is always d ´ 1. An example of a
dimension tree is given in Figure 3.
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{1, 2} {3, 4} {5} {6, 7}

{1} {2} {3} {4} {6} {7}

{1, 2, 3, 4, 5, 6, 7}

{1, 2, 3, 4} {5, 6, 7}

Figure 3: A dimension tree for d “ 7.

Having prescribed a maximal rank kt for each node t P T , the set of hierarchical Tucker
tensors of hierarchical rank at most pktqtPT is defined as

H-Tucker
`
pktqtPT

˘
“

!
X P Cn1ˆ¨¨¨ˆnd : rank

`
Xptq˘ ď kt for all t P T

)
.

Such a hierarchical Tucker tensor X is stored in the hierarchical Tucker format as follows.
At each leaf node tµu a basis Uµ P Cnµˆrµ , where rµ :“ rank

`
Xpµq˘ ď kµ, is stored. At

each parent node t with children tl and tr, the third-order transfer tensor Bt P Crtlˆrtrˆrt

satisfying (6) with Bt ” Bp1,2q
t is stored. Equivalently, (6) can be written as

pUtq:,q “
ktlÿ

i“1

ktrÿ

j“1

´
pUtrq:,j b pUtlq:,i

¯
pBtqi,j,q, q “ 1, 2, . . . , rt. (8)

The HTD for X is obtained by recursively inserting (6) as illustrated in Example 2.2.
In summary, the hierarchical Tucker format is represented by d matrices Uµ and pd ´ 1q

transfer tensors Bt. Hence, if r “ maxtrt : t P T u and n “ maxtn1, . . . , ndu, the storage
requirements are bounded by

dnr ` pd ´ 2qr3 ` r2,

where we have used that the transfer tensor at the root can actually be considered as a matrix
of size at most r ˆ r.

3 Basic Functionality of the Toolbox

To conveniently work with tensors in HTD, we have implemented a new Matlab class
htensor, inspired by the classes ktensor (for tensors in CP decomposition) and ttensor

(for tensors in Tucker decomposition) available in the Tensor Toolbox [3]. In the following,
we describe the structure of htensor as well as its basic functionality.

3.1 Fields and properties of htensor

An instance of htensor contains two arrays specifying the dimension tree, an orthogonaliza-
tion flag, as well as the matrices and transfer tensors representing an HTD corresponding to
this dimension tree.
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Each node of the dimension tree is associated with an index i P t1, . . . , 2d ´ 1u, such that
each child node has a larger index than the parent node. Consequently, the root node has
index 1. The p2d´ 1q ˆ 2 integer array children specifies the structure of the dimension tree
as follows: children(i, 1) is the left child of node i, and children(i, 2) is the right child
of node i. Both entries are zero if node i is a leaf node. The 1 ˆ d integer array dim2ind

gives the index of the leaf node associated with each mode µ “ 1, . . . , d. The matrices Ut

and transfer tensors Bt are stored in the cell arrays U and B, respectively. Note that U{i} is
a matrix if i is a leaf node and an empty array for any other node. Finally, the boolean flag
is orthog indicates whether the HTD is orthogonalized, see Section 4.3.

htensor for d “ 4 (see also Example 2.2):

x.children: [2, 3; 4, 5; 6, 7; 0, 0; 0, 0; 0, 0; 0, 0]

x.dim2ind: [4 5 6 7]

x.U: {[] [] [] [4x4 double] [5x4 double] [6x6 double] [7x3 double]}

x.B: {[4x5 double] [4x4x4 double] [6x3x5 double] [] [] [] []}

x.is_orthog: false

Apart from the fields defining the HTD, htensor has additional fields for accessing fre-
quently required properties.

Properties of htensor:
x.nr nodes number of nodes in the dimension tree.
x.parent(i) returns the index of the parent of node i.
x.sibling(i) returns the index of the sibling of node i.
x.is leaf(i) true if node i is a leaf node.
x.is left(i) true if node i is a left child.
x.is right(i) true if node i is a right child.
x.lvl(i) level of node i (distance from root node).
x.dims{i} modes represented by node i.
x.rank(i) hierarchical rank at node i.

3.2 Constructors of htensor

There are several ways to construct an htensor instance. In the following, we only illustrate
the most common ways and refer to the documentation, e.g., help htensor/htensor, for
more details.

Examples for constructors of htensor:
x = htensor([4 5 6 7]) constructs a zero htensor of size 4 ˆ 5 ˆ 6 ˆ 7.
x = htensor([4 5 6 7], ’TT’) constructs a zero htensor of size 4 ˆ 5 ˆ 6 ˆ 7, with a
degenerate, TT-like dimension tree.
x = htensor({U1, U2, U3}) constructs an htensor from the CP tensor defined by
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X pi1, i2, i3q “ řR
j“1 U1pi1, jqU2pi2, jqU3pi3, jq.

x = htenones([4 5 6 7]) constructs an htensor of size 4 ˆ 5 ˆ 6 ˆ 7, with all entries
one.
x = htenrandn([4 5 6 7]) constructs an htensor of size 4 ˆ 5 ˆ 6 ˆ 7, with random
ranks and random entries.

By default, any htensor has a balanced dimension tree. The motivation for the option
’TT’ is to resemble the structure of the TTD (tensor train decomposition). However, it is
important to note that there is no exact correspondence between HTD and TTD, as TTD does
not require the storage of basis matrices. An arbitrary dimension tree can be generated by
supplying the fields children and dim2ind to the constructor. Users of the Tensor Toolbox
may also provide a ktensor for constructing an htensor from a CP decomposition, instead
of providing the factors in a cell array as illustrated above.

3.3 Basic functionality of htensor

Table 1 in the appendix contains all basic functions for working with htensor objects. The
following example illustrates their use for a 5ˆ 4ˆ 6ˆ 3 tensor X in HTD as in Example 2.2.

x(1, 3, 4, 2) returns the entry X1,3,4,2.
x(1, 3, :, :) returns an htensor representing the 6 ˆ 3 tensor of the slice X1,3,:,:.
full(x) returns the full tensor represented by X .
x(:) returns the vectorization of X .
size(x) returns the array of dimensions, [5, 4, 6, 3].
ndims(x) returns the order of the tensor, 4.
disp(htenrandn([5 4 6 3])) returns the tree structure and the sizes of the transfer
tensors/basis matrices as follows:
1-4 1; 6 3 1

1-2 2; 3 4 6

1 4; 5 3

2 5; 4 4

3-4 3; 3 3 3

3 6; 6 3

4 7; 3 3
disp all(x) additionally displays all transfer tensors and basis matrices.
spy(x) displays the dimension tree with spy plots of Ut and Bt, see Figure 4.
plot sv(x) displays the dimension tree with semi-log plots of the singular values of the
matricizations at each node, see Figure 4.

4 Basic operations

This section describes algorithms and implementations for a range of typically required basic
operations.
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Dim. 1, 2, 3, 4, 5, 6

Dim. 1, 2, 3

Dim. 4, 5, 6

Dim. 1

Dim. 2, 3

Dim. 4

Dim. 5, 6

Dim. 2

Dim. 3

Dim. 5

Dim. 6

Dim. 1, 2, 3

Dim. 4, 5, 6

Dim. 1

Dim. 2, 3

Dim. 4

Dim. 5, 6

Dim. 2

Dim. 3

Dim. 5

Dim. 6

Figure 4: Examples for spy and plot sv

4.1 µ-mode matrix products

Given a tensor X P Cn1ˆ¨¨¨ˆnd , the µ-mode product with a matrix A P Cmˆnµ is defined via
the µ-mode matricization:

Y “ A ˝µ X ô Y pµq “ AXpµq.

This operation can easily be performed if X is in HTD: The µth basis matrix Uµ is simply
replaced by AUµ. The function ttm implementing this operation allows to perform several
mode multiplications at the same time. Moreover, the matrix A can be provided implicitly
as a handle to a function that returns the product of A with the input matrix.

y = ttm(x, A, 2) applies the matrix A to an htensor in mode 2.
y = ttm(x, {A, B, C}, [2, 3, 4]) successively applies A,B,C to X in modes 2, 3, 4.
y = ttm(x, @(x)(fft(x)), 2) applies the fast Fourier transformation to X in mode 2.
y = ttm(x, {A, B, C}, [2, 3, 4], ’h’) successively applies AH , BH , CH to X in
modes 2, 3, 4.

In the special case of µ-mode multiplication with a row vector, the µth mode becomes
a singleton dimension. The function ttv treats this case differently by eliminating the µth
mode after performing the product vT ˝µ X for a vector v P Cnµ . The following example
illustrates the difference.

x = htenrandn([5, 4, 6, 3]); u = randn(4, 1);
y = ttm(x, u.’, 2) results in an htensor Y of size 5 ˆ 1 ˆ 6 ˆ 3
y = ttv(x, u, 2) results in an htensor Y of size 5 ˆ 6 ˆ 3

Note that there is also a function squeeze for eliminating singleton dimensions.

4.2 Addition

The addition of tensors in HTD can be performed at no arithmetic cost by a simple embedding.
The underlying principle can easily be seen for two factorized matrices A “ UAΣAV H

A and
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U r4s
1

U r4s
2

U r4s
3

U r4s
4

Br1s
12

Br2s
12

Br3s
12

Br4s
12

Br1s
34

Br2s
34

Br3s
34

Br4s
34

Br1s
1234

Br2s
1234

Br3s
1234

Br4s
1234

U r3s
1U r2s

1U r1s
1

U r3s
3

U r3s
2U r2s

2

U r2s
3U r1s

3

U r1s
2

U r3s
4U r2s

4U r1s
4

Figure 5: Addition of four tensors X1 ` X2 ` X3 ` X4 in HTD.

B “ UBΣBV H
B :

A ` B “
“
UA UB

‰ „
ΣA 0
0 ΣB

 “
VA VB

‰H
.

This embedding is performed similarly for the addition of two or more tensors in HTD, by
concatenation of the leaf matrices and a block diagonal embedding of the transfer tensors.
We refrain from giving a technical description and refer to Figure 5 for an illustration. It
is important to note that the storage requirements grow cubically in the number of tensors
to be added if the block diagonal structure of the transfer tensors is not exploited. Such an
alternative method is discussed in Section 6.3.

Addition is implemented in the command plus, which overloads the binary operator + for
htucker objects. Subtraction is implemented in the command minus, which overloads the
binary operator -.

4.3 Orthogonalization

Starting from the basis matrices Ut in the leaf nodes of a tensor X in HTD, we can recursively
define Ut “ pUtr b UtlqBt for every node t P T . In the special case when t is a root node, Ut

becomes the vectorization of X .

Definition 4.1. An HTD of a tensor X is called orthogonalized if the columns of Ut form
an orthonormal basis for each node t except for the root node.

As will be seen later, orthogonalized HTDs simplify some important operations related to
tensor contraction. Moreover, they reduce the risk of numerical cancellation. Unfortunately,
this property is destroyed by most operations, such as addition and µ-mode matrix products.
Therefore repeated orthogonalization is required, which often constitutes the computationally
most expensive part of an algorithm.
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We illustrate the process of orthogonalization for the tensor in standard HTD from Ex-
ample 2.2:

vecpX q “ pU4 b U3 b U2 b U1qpB34 b B12qB1234.

In the first step, QR decompositions of the basis matrices are performed: Ut “ rUtRt for
t “ 1, . . . , 4. Here and in the following, “economic” QR decompositions [9] are performed,
i.e., Ut and rUt have the same number of columns. Propagating the factors Rt into the transfer
matrices results in

vecpX q “ p rU4 b rU3 b rU2 b rU1qp pB34 b pB12qB1234

with pB34 :“ pR4 b R3qB34, pB12 :“ pR2 b R1qB12. In the next step, QR decompositions
pB34 “ rB34R34, pB12 “ rB12R12 are performed, resulting in

vecpX q “ p rU4 b rU3 b rU2 b rU1qp rB34 b rB12q rB1234 (9)

with rB1234 :“ pR34 b R12qB1234. Clearly, (9) constitutes an orthogonalized HTD, completing
the orthogonalization procedure.

This procedure easily extends to the general case, see Algorithm 1. Properly implemented,
orthogonalization requires Opdnr2 ` dr4q operations. Unless r is very small, the factor dr4,
caused by the QR decompositions of the transfer matrices, will be dominant.

Algorithm 1 Orthogonalization of a tensor in HTD
Input: Basis matrices Ut and transfer tensors Bt defining a general HTD of a tensor X .
Output: Basis matrices rUt and transfer tensors rBt defining an orthogonalized HTD of X .

for t P LpT q: Compute QR decomposition Ut “: rUtRt.
for t P N pT q (visiting both child nodes before the parent node) do

Form pBt “ pRtr b RtlqBt.
if t is root node then

Set rBt “ pBt.
else

Compute QR decomposition pBt “: rBtRt.
end if

end for

In the htucker toolbox, Algorithm 1 is performed by calling the function x = orthog(x).
On return, the flag is orthog of the htensor object x is set to true. This prevents unnecessary
orthogonalization in subsequent calls to orthog.

5 Tensor-Tensor Contraction

Given two tensors X P Cm1ˆ¨¨¨ˆmc and Y P Cn1ˆ¨¨¨ˆnd and p selected modes s “ ti1, . . . , ipu Ă
t1, . . . , cu and t “ tj1, . . . , jpu Ă t1, . . . , du, respectively, the corresponding contraction of
X and Y is defined by taking inner products with respect to pairs of selected modes. This
implicitly assumes that the sizes of the selected modes match, i.e., niµ “ mjµ for µ “ 1, . . . , p.
Contraction results in a tensor Z whose order equals the number of non-selected modes. For
example, for c “ 4, d “ 3, and s “ p3, 1q, t “ p2, 3q, the contracted tensor Z P Cm2ˆm4ˆn1 is
given by

Zi1,i2,i3 “ xX ,Yyp3,1q,p2,3q :“
n3ÿ

j“1

n1ÿ

k“1

X̄k,i1,j,i2Yi3,j,k.

11
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Figure 6: Tensor network diagrams representing (i) a vector, (ii) a matrix, (iii) a matrix-
matrix multiplication, (iv) a tensor in Tucker decomposition, and (v) a tensor in HTD.

A matrix-matrix multiplication XHY for X P Cn1ˆn2 , Y P Cm1ˆm2 with n1 “ m1 can be
seen as the contraction corresponding to s “ p1q, t “ p1q. Conversely, a general tensor-tensor
contraction of X P Cm1ˆ¨¨¨ˆmc and Y P Cn1ˆ¨¨¨ˆnd along p selected modes pairs of nodes can
be defined via matrix-matrix multiplication:

Zpt̄q “
´

xX ,Yypt;sq
¯pt̄q

:“ pXptqqHY psq, with t̄ “ p1, 2, . . . , c ´ pq. (10)

5.1 Tensor Network Diagrams

In the following, we briefly introduce tensor network diagrams (also called Penrose diagrams)
to conveniently describe algorithms for contractions of tensors in HTD, see also [16, 17]. Such
a diagram represents a tensor in terms of contractions of other tensors. Each node in the
diagram represents a tensor and each edge represents a mode. An edge connecting two nodes
corresponds to the contraction of these tensors in the associated pair of modes. In contrast to
a graph, an edge may be connected to only one node. Each such dangling edge corresponds
to a mode that is not contracted and, hence, the order of the tensor is given by the number
of dangling edges.

Some examples of tensor network diagrams are given in Figure 6. Note that we will only
indicate the precise mode(s) belonging to an edge when necessary. In the case of HTD, each
edge connecting two nodes corresponds to a matricization Xptq for some t P T .

5.2 Inner Product and Norm for Tensors in HTD

The inner product of two tensors X ,Y P Cn1ˆ¨¨¨ˆnd is an important special case of contraction:

xX ,Yy “
n1ÿ

i1“1

¨ ¨ ¨
ndÿ

id“1

X̄i1,...,idYi1,...,id

or, equivalently, xX ,Yy “ xvecpX q, vecpYqy. In terms of tensor network diagrams, this oper-
ation corresponds to a pairwise connection of the dangling edges of X̄ and Y.

To illustrate how to evaluate inner products of tensors in HTD efficiently, we first consider
two tensors of order 4:

xX ,Yy “ pBx
1234qHpBx

34 bBx
12qHpUx

4 bUx
3 bUx

2 bUx
1 qHpUy

4 bUy
3 bUy

2 bUy
1 qpBy

34 bBy
12qBy

1234.

12



Step 1 Step 2 Step 3

M1 M2 M3 M4

M12 M34

Figure 7: Inner product of two tensors of order 4 in HTD.

This product is evaluated from inside to outside or, when considering the hierarchical tree,
from the leafs to the root node. In a first step, the matrices

Mt “
`
Ux
t

˘H
Uy
t , t “ 1, . . . , 4,

are computed. Then the product

Mt “ pUx
t qHUy

t “ pBx
t qH

´
Mtr b Mtl

¯
By

t (11)

is computed for t “ t1, 2u and t “ t3, 4u. Note that the matrix Mtr b Mtl is not formed
explicitly but applied to one of the factors exploiting well-known relations between Kronecker
products and matrix multiplication [23]. The product (11) then requires 6k4 operations if
both X and Y have constant hierarchical rank k. In the last step, xX ,Yy is obtained by
evaluating (11) for t “ t1, 2, 3, 4u. Figure 7 illustrates the described procedure with tensor
network diagrams.

The generalization to tensors of arbitrary order is straightforward and summarized in
Algorithm 2. Note that the algorithm assumes that X and Y have the same dimension tree.
This requirement can be slightly relaxed as discussed in the next section for a more general
setting. In total, forming the inner product of two tensors with constant hierarchical rank
k requires 6pd ´ 1qk4 ` řd

µ“1 2nµk2 operations. Algorithm 2 is implemented in the htucker

function innerprod.
In principle, the Euclidean norm of a tensor X in HTD can be calculated from }X }2 “a

xX ,X y using Algorithm 2 . However, it is well known that such an approach suffers from
numerical instabilities and may introduce an error proportional to the square root of machine
precision. A usually more accurate alternative is to first orthogonalize the HTD of X and then
compute the norm. Note that the second part is trivial; it is easy to see that }X }2 “ }B1,2,...,d}F
in the case of an orthogonalized HTD. The orthogonalization step makes the second approach
slightly more expensive. The accuracy difference between the two approaches is illustrated in
the following Matlab example.
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Algorithm 2 Inner product of two tensors in HTD
Input: Tensors X ,Y in HTD, of equal dimension tree T and equal size n1 ˆ ¨ ¨ ¨ ˆnd, defined by basis

matrices Ux
t , U

y
t and transfer tensors Bx

t ,B
y
t .

Output: Inner product xX ,Yy.
for t P LpT q do

Form Mt “ pUx
t qHUy

t .
end for
for t P N pT q (visiting both child nodes before the parent node) do

Form Mt “ pBx
t qH

`
Mtr b Mtl

˘
pBy

t q.
end for
Return xX ,Yy “ Mtroot .

Step 1 Step 2 Step 3

Figure 8: Example for which the elimination of a cycle creates a temporary node of larger
degree.

x = htenrandn([5, 4, 6, 3]);

norm(x - x)/norm(x)

1.5355e-08

norm(orthog(x - x))/norm(x)

5.6998e-16

5.3 General Contraction of Tensors in HTD

In tensor network diagrams, a general contraction of two tensors in HTD is performed by
connecting the corresponding pairs of dangling edges. This will create a tensor network with
cycles, which need to be eliminated. This elimination is performed by successive contraction
of tensors, similarly as above, until the network becomes a tree. This can only be organized
efficiently if the maximum degree of all intermediate tensor networks does not become too
large. Figure 8 provides a simple example where the maximum degree inevitably grows. To
avoid this effect, we assume that the maximum degree remains at most 3. This also ensures
that the eventually obtained tensor network corresponds to an HTD. In fact, the super node
containing the aggregation of all cycles can be shown to have degree 2. Hence, it is natural
to use this node as the root node in the HTD of the contraction.

Under the conditions mentioned above, the algorithm for performing a general contraction
is a direct, but rather technical extension of Algorithm 2. For implementation details, we
refer to the source code of the function ttt in the htucker toolbox, which provides an
implementation of the sketched algorithm.

14
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Ut

Gt

t

Ut

Figure 9: Reduced Gramian of a tensor of order 8. The reduced Gramian Gt corresponds to
the left subnetwork encircled by a dashed line.

x = htenrandn([4, 2, 3]); y = htenrandn([3, 4, 2]);

z = ttt(x, y,[1 3],[2 1]); Contracted product, connecting mode 1 of X with mode
2 of Y, and mode 2 of X with mode 1 of Y. Results in Z P R2ˆ2.
ttt(x, x, 1:3); Inner product, identical with innerprod(x, x).
z = ttt(x, y); Outer product Z P R4ˆ2ˆ3ˆ3ˆ4ˆ2.

5.4 Reduced Gramians of a Tensor in HTD

An important application of contractions is the calculation of reduced Gramians, which are
defined as follows. For every t P T , the matrix Ut defined in (6) contains a basis for the
column span of the matricization Xptq. Hence, there is a matrix Vt such that Xptq “ UtV H

t .
The reduced Gramian at t is then defined as the Hermitian positive semi-definite matrix
Gt “ V H

t Vt P Cktˆkt .
Reduced Gramians are a central tool in the truncation of tensors. For example, they

provide an efficient way to compute the singular values of Xptq, see also Figure 4. From

XptqpXptqqH “ UtV
H
t VtU

H
t “ UtGtU

H
t (12)

it follows that the singular values of Xptq are the square roots of the eigenvalues of the reduced
Gramian Gt, provided that UH

t Ut “ Ikt . This condition is always satisfied after the HTD has
been orthogonalized.

In the following, we discuss the computation of a reduced Gramian Gt via contraction.
The standard, unreduced Gramian corresponds to the contracted product of X with itself
along the modes tc “ t1, . . . , duzt: xX ,X ytc , for which the matricization is given by (12), see
also Figure 9 for an illustration. It can be seen from the figure, and it is true in general,
that Gt happens to be the super node C from Section 5.3, containing the aggregation of all
cycles. This relation to contraction also implies that Gt can be calculated by a sequence of
matrix-tensor and tensor-tensor products, similar to Algorithm 2.

Typically, not the reduced Gramian at one node t is required, but reduced Gramians Gt

for all nodes t P T . These can be computed simultaneously by exploiting relations between
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Figure 10: How to calculate Gtr from Gt, Utl and Bt, where t is a general non-leaf node. The
gray lines represent arbitrary subtrees.

different reduced Gramians. The relationship between the reduced Gramians Gt and Gtr ,
where tr is the right child node of t, is illustrated in Figure 10 for the case of a general
non-leaf node t. From the tensor network diagram, it can be seen that

Gtr “ pBp3,1q
t qHpUH

tl Utl b GtqBp3,1q
t ,

Gtl “ pBp3,2q
t qHpUH

tr Utr b GtqBp3,2q
t .

(13)

Formally setting Gtroot “ 1, this defines a recursive algorithm for the calculation of all reduced
Gramians, see Algorithm 3. Note that an efficient algorithm for calculating Mt “ UH

t Ut is
already given in Algorithm 2. However, it is in some cases preferable to orthogonalize a given
tensor, in which case all Mt are identity matrices.

For a general HTD, Algorithm 3 requires Opdnk2 ` pd ´ 2qk4q operations. For an orthog-
onalized HTD, this reduces to Oppd ´ 2qk4q operations (but orthogonalization itself requires
Opdnk2 ` pd ´ 2qk4q operations).

G = gramians(x); Reduced Gramians of X in cell array G, orthogonalizing the HTD of
X if necessary.
G = gramians nonorthog(x); Reduced Gramians of X in cell array G, without orthog-
onalizing.
sv = singular values(x); Singular values of X in cell array sv.
plot sv(x); Plot tree of singular values at every node.

6 Truncation of tensors

Truncation of tensors to HTD is one of the most important and most frequently used opera-
tions in htucker.
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Algorithm 3 Reduced Gramians of a tensor in HTD
Input: Basis matrices Ut and transfer tensors Bt defining a general HTD of a tensor X .
Output: Reduced Gramians Gt for all t P T .

for t P LpT q do
Form Mt “ pUtqHUt.

end for
for t P N pT q (visiting both child nodes before the parent node) do

Form Mt “ pBtqH
`
Mtr b Mtl

˘
pBtq.

end for
Set Gtroot “ 1.
for t P N pT q (visiting parent nodes before their children) do

Form Gtr “ pBp3,1q
t qHpMtl b GtqBp3,1q

t .

Form Gtl “ pBp3,2q
t qHpMtr b GtqBp3,2q

t .
end for

6.1 Truncation of explicit tensors

We start with the truncation of an explicitly given tensor X P Cn1ˆ¨¨¨ˆnd . Although this
situation is limited to small dimensions/sizes, it provides a gentle introduction and illustration
of the general concepts. Truncation to HTD is done by successive projections to the subspaces
spanpWtq, which typically represent approximations to the column spaces of Xptq P Cntˆntc .
For a subset t P t1, . . . , du, we define nt :“ ś

µPt nµ. We require Wt P Cntˆkt to have
orthonormal columns and define the orthogonal projections

πt :“ WtW
H
t . (14)

In the following, we use the shorthand notation πtX for πt˝tX . As shown in [12, Lemma 3.15],
applying these projections in the correct order leads to a tensor in HTD, with hierarchical
ranks bounded by kt.

6.1.1 Root-to-leafs truncation

The simplest way to construct the projections πt in (14) is to let each matrix Wt contain the
kt dominant left singular vectors of the corresponding matricization Xptq. To obtain a tensor
in HTD, rX P H-Tucker

`
pktqtPT

˘
, the projections need to be applied from the root node to

the leafs. This is illustrated by the following example for order 4:

vecp rX q “ pW4W
H
4 b W3W

H
3 b W2W

H
2 b W1W

H
1 qpW34W

H
34 b W12W

H
12q vecpX q (15)

“ pW4 b W3 b W2 b W1qprWH
4 b WH

3 sW34looooooooomooooooooon
“:B34

b rWH
2 b WH

1 sW12looooooooomooooooooon
“:B12

q prWH
34 b WH

12s vecpX qqlooooooooooooomooooooooooooon
“:B1234

.

The computation for the general case is described in Algorithm 4. Note that the HTD of the
resulting tensor is not orthogonalized, only the matrices in the leaf nodes have orthonormal
columns. Setting n “ maxt nt, the computational complexity of Algorithm 4 is of order dn3d{2

in the case of a balanced tree. An efficient way to calculate Wt is through an eigenvalue
decomposition of the Gramian: XptqpXptqqH “ WtΣ2WH

t . The resulting tensor rX satisfies
the following error bound [12, Theorem 3.11]:

››X ´ rX
››
2

ď
d ÿ

tPT 1
δktpXptqq2 ď

?
2d ´ 3

››X ´ Xbest

››
2
, (16)
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Algorithm 4 Root-to-leafs truncation of a tensor
Input: Tensor X P Cn1ˆ¨¨¨ˆnd , dimension tree T and desired hierarchical ranks pktqtPT of the trun-

cated tensor.
Output: Tensor rX in HTD, with rankp rXptqq ď kt for all t P T .

for t P T (visiting both child nodes before the parent node) do
if t P LpT q then

Compute singular value decomposition Xptq “: pUt
pΣt

pV H
t .

Set Ut :“ pUtp:, 1 : ktq.
else if t is the root node then

Form Bt :“ pUH
tr b UH

tl q vecpX q.
else

Compute singular value decomposition Xptq “: pUt
pΣt

pV H
t .

Set Ut :“ pUtp:, 1 : ktq.
Form Bt :“ pUH

tr b UH
tl qUt.

end if
end for

where Xbest represents the best approximation of X inH-TuckerppktqtPT q, T 1 :“ T zttroot, tchildu
where tchild is a child of the root node troot, and

δktpXptqq2 :“
ntÿ

j“kt`1

σjpXptqq2. (17)

Remark 6.1. The error bound (16) allows us to choose the hierarchical ranks pktqtPT such
that a certain error bound is satisfied:

››X ´ rX
››
2

ď εabs, choose kt s.t. δktpXptqq ď εabs?
2d ´ 3

@t P T zttrootu,
››X ´ rX

››
2

ď εrel }X }2, choose kt s.t. δktpXptqq ď εrel }X }2?
2d ´ 3

@t P T zttrootu.

Similar adaptive choices of the hierarchical ranks are possible for all other truncation methods
discussed in the following.

opts.max rank = 10; maximal rank at truncation, mandatory argument.
opts.rel eps = 1e-6; maximal relative truncation error, optional argument.
opts.abs eps = 1e-6; maximal absolute truncation error, optional argument.
Condition max rank takes precedence over rel eps and abs eps.
y = htensor.truncate rtl(x, opts); takes a Matlab multidimensional array and
returns the truncation to lower rank HTD.

6.1.2 Leafs-to-root truncation

Root-to-leafs truncation is very costly, the most expensive part being the computation of the
singular value decomposition of every Xptq P Cntˆntc , where both nt and ntc can become
very large. Leafs-to-root truncation, as briefly discussed in the following, can be considerably
faster.
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To illustrate the idea, consider a fourth order tensor. For each leaf node t, we define Wt

to contain the kt dominant left singular vectors of Xptq and set

vecpC1q :“ pWH
4 b WH

3 b WH
2 b WH

1 q vecpX q, C1 P Ck1ˆk2ˆk3ˆk4 .

In the next step, we consider the nodes t “ t1, 2u, t “ t3, 4u, and define St to contain the kt
dominant left singular vectors of Cptq

1 :

vecpC0q “ pSH
34 b SH

12q vecpC1q, C0 P Ck12ˆk34 .

The resulting tensor is in HTD:

vecp rX q “ pW4 b W3 b W2 b W1qpS34 b S12q vecpC0q.
For the case of a general tensor, see Algorithm 5. Note that hpT q denotes the height of T ,
and the set of all nodes with distance % (% “ 0, . . . , hpT q) to the root node is denoted by T!.

Algorithm 5 can be interpreted in terms of projections WtWH
t , with the definition Wt “

pWtr bWtlqSt. As the subspaces defined by Wt are nested, it can be seen that all projections
πt commute, see also Lemma B.1. Combined with [12, Lemma 3.15], this shows that the
resulting tensor is in H-TuckerppktqtPT q.

Algorithm 5 Leafs-to-root truncation of a tensor
Input: Tensor X P Cn1ˆ¨¨¨ˆnd , dimension tree T and desired hierarchical ranks pktqtPT of the trun-

cated tensor.
Output: Tensor rX in HTD, with rankp rXptqq ď kt for all t P T .

for t P LpT q do
Compute singular value decomposition Xptq “: pUt

pΣt
pV H
t .

Set rUt :“ pUtp:, 1 : ktq.
end for
Form CL´1 :“ p rUH

d b ¨ ¨ ¨ b rUH
1 qX .

for % “ hpT q ´ 1, . . . , 1 do
for t P T!zLpT q do

Compute singular value decomposition Cptq
! “: pSt

pΣt
pV H
t .

Set Bt :“ pStp:, 1 : ktq.
end for
Form C!´1 :“

´ ś
tPT!

BH
t ˝t

¯
C!.

end for
Set Btroot :“ vecpC0q.

The computational complexity of Algorithm 5 is Opdnd`1q, which is a significant reduction
compared to the root-to-leafs method, while the error bound (16) still holds, see Lemma B.2.
Moreover, the resulting tensor rX is in orthogonalized HTD.

x = htensor.truncate ltr(x, opts); takes a Matlab multidimensional array and
returns the truncation to lower rank HTD.

6.2 Truncation of H-Tucker decomposition to lower rank

The truncation of a tensor which is already given in HTD to a tensor in HTD of lower rank is
an essential operation in most algorithms based on this format. In Section 6.2.1, we describe
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an efficient method for performing such a truncation. This will be the method of choice for
general tensors. However, for structured tensors resulting, e.g., from the addition of several
tensors in HTD, a different approach described in Section 6.2.2 is preferable.

6.2.1 Truncation of a tensor in HTD

Truncation of a tensor X in HTD can be performed by a fairly straightforward adaptation of
the root-to-leafs method. For this purpose, we recall that Section 5.4 describes an efficient
method for computing the reduced Gramians Gt in the decomposition

XptqpXptqqH “ UtGtU
H
t ,

where Ut has orthonormal columns and is implicitly represented as illustrated in Figure 10.
After orthogonalizing the HTD of X P H-Tucker

`
prtqtPT

˘
and calculating the reduced Grami-

ans, we compute an orthonormal basis St P Crtˆkt for the kt dominant eigenvectors of the
symmetric matrix Gt. As above, we define Wt :“ UtSt and obtain the truncated tensor rX
from subsequent application of the projections πt “ WtWH

t .
To illustrate how these projections can be applied to a tensor in HTD, let us consider the

example of a tensor X of order 4:

vecp rX q “ pW4W
H
4 b W3W

H
3 b W2W

H
2 b W1W

H
1 qpW34W

H
34 b W12W

H
12q vecpX q

“ pU4S4 b U3S3 b U2S2 b U1S1q ¨ ¨ ¨
¨ ¨ ¨ ppSH

4 b SH
3 qB34S34loooooooooomoooooooooon

“: rB34

b pSH
2 b SH

1 qB12S12loooooooooomoooooooooon
“: rB12

q pSH
34 b SH

12qB1234looooooooomooooooooon
“: rB1234

.

Hence, an HTD for rX is obtained by updating the leaf matrices rU1 :“ U1S1, . . ., rU4 :“ U4S4,
and the transfer matrices. Note that the matrices Wt are never calculated explicitly.

This update can be extended to the general case in a direct way:

rUt :“ UtSt @t P LpT q,
rBt :“ pSH

tr b SH
tl qBtSt @t P N pT q.

Note that the update for the root node t ” troot simplifies to rBt :“ pSH
tr b SH

tl qBt.

Algorithm 6 Truncation of a tensor in HTD
Input: Tensor X in HTD and desired hierarchical ranks pktqtPT of the truncated tensor.
Output: Tensor rX in HTD, with rankp rXptqq ď kt @t P T .

Orthogonalize X (as described in Algorithm 1).
Calculate reduced Gramians Gt (as described in Algorithm 3).
for t P T zttrootu do

Compute symmetric eigenvalue decomposition Gt “: pSt
pΣ2
t

pSH
t .

Set St :“ pStp:, 1 : ktq.
end for
Stroot “ 1
for t P LpT q: Set rUt :“ UtSt.
for t P N pT q: Set rBt :“ pSH

tr b SH
tl qBtSt.

Algorithm 6, which implements the described procedure, requires Opdnk2 ` dk4q opera-
tions. As this algorithm is mathematically identical to the explicit root-to-leafs algorithm
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described in Section 6.1.1, the error bound (16) holds. Note that the resulting tensor rX is
not in orthogonalized HTD.

xt = truncate std(x, opts); takes an htensor X and returns a truncated htensor
rX .

6.2.2 Truncation of a tensor in HTD without initial orthogonalization

Algorithm 6 introduced in the last section represents the default method for truncating a
tensor in HTD. However, in certain situations, it can be beneficial to exploit additional
structure in the HTD. For example, a tensor resulting from addition of tensors in HTD has
block diagonal transfer tensors. In Algorithm 6, such structures are immediately destroyed
by the initial orthogonalization step. In the following, we discuss a method that avoids this
step.

In a first step, the reduced Gramians Gt in the decomposition

XptqpXptqqH “ UtGtU
H
t

are calculated without the initial orthogonalization. Note, however, that the singular value
decomposition of Xptq cannot be computed directly from Gt, as the columns of Ut are not
orthonormal.

In a second step, the proposed method successively orthonormalizes the matrices Ut. Let
us first consider the leaf nodes t, for which we compute the kt dominant left singular vectors
of Xptq as follows: Compute the QR decomposition Ut “: QtRt, and determine the matrix St

containing the kt dominant eigenvectors of RtGtRH
t . Then the projection πt “ WtWH

t , with
Wt “ QtSt, is applied to X . Note that the updated leaf nodes rUt :“ QtSt are orthonormal.

Non-leaf nodes are processed in a similar manner with a recursive algorithm, traversing
the tree such that every parent node is visited after its child nodes. Assume we are at node
t, and let rUt account for all updates from previous operations on the descendants of t. Based

on the original decomposition Xptq “ UtV H
t , we set rXptq

t :“ rUtV H
t and observe that the

corresponding Gramian takes the form

rXptq
t p rXptq

t qH “ rUtGt
rUH
t .

To orthogonalize rUt “ p rUtr b rUtlq rBt, it is sufficient to calculate the QR decomposition of
rBt “ pSH

tr Rtr bSH
tl RtlqBt, as the columns of rUtl and

rUtr are orthonormal. Then, we calculate

the kt dominant left singular vectors of rXptq
t as in the case of the leaf nodes.

A more detailed description of truncation to HTD without initial orthogonalization can
be found in Algorithm 7. The result of this algorithm satisfies practically the same error
bound as in (16), see also Lemma B.3.

The computational complexities of Algorithm 6 and Algorithm 7 are the same, but the
latter requires more operations.

xt = truncate nonorthog(x, opts); takes an htensor X and returns a truncated
htensor rX .
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Algorithm 7 Truncation of a tensor in HTD without initial orthogonalization
Input: Tensor X in HTD and desired hierarchical ranks pktqtPT of the truncated tensor.
Output: Tensor rX in HTD, with rankp rXptqq ď kt.

Calculate reduced Gramians Gt (as described in Algorithm 3).
for t P LpT q do

Compute QR decomposition Ut “: QtRt.
Compute symmetric eigenvalue decomposition RtGtRH

t “: pSt
pΣ2
t

pSH
t .

Set St :“ pStp:, 1 : ktq.
Form Ut :“ QtSt.

end for
for t P N pT qzttrootu (visiting both child nodes before the parent node) do

Compute QR decomposition pSH
trRtr b SH

tl RtlqBt “: QtRt.

Compute symmetric eigenvalue decomposition RtGtRH
t “: pSt

pΣ2
t

pSH
t .

Set St :“ pStp:, 1 : ktq.
Form Bt :“ QtSt.

end for
Form Btroot :“ pSH

trRtr b SH
tl RtlqBtroot with child nodes tl and tr of troot.

6.3 Combined Addition and Truncation

As explained in Section 4.2, the addition of tensors in HTD leads to a significant growth of the
hierarchical ranks. For example, the sum of s tensors of hierarchical ranks k has hierarchical
ranks sk. Truncation of this tensor back to hierarchical rank k requires Opdns2k2 ` ds4k4q
operations, which is too expensive unless s is very small.

A cheaper alternative is to add the s tensors successively and truncate immediately after
each addition. After setting rY1 :“ X1, we compute for j “ 1, . . . , s ´ 1:

Form Yj`1 :“ rYj ` Xj .

Truncate Yj`1 to rYj`1 using Algorithm 6.
(18)

However, one can easily construct examples for which this scheme suffers from severe cancel-
lation (see example cancellation.m in the toolbox).

To avoid cancellation and still increase efficiency, we propose to apply Algorithm 7 directly
to the sum of tensors and exploit the block diagonal structures illustrated in Figure 5. This
results in significant savings when calculating the reduced Gramians. Algorithm 3 for the
computation of the matricesGt,Mt at a non-leaf node requires onlyOps2k4q instead ofOps4k4q
operations. Hence, the computational cost of the whole addition and truncation process
reduces to Opdns2k2 ` ds2k4 ` ds3k3q.

With a numerical experiment we examine the execution time required for the addition
and truncation of s random tensors of order d “ 5, with size n “ 500 and rank k “ 20. The
number of summands s varies between 2 and 10 (see Figure 11). This numerical experiment
was performed in Matlab, version 7.7.0.471, on an Intel Xeon DP X5450 with 3 GHz and
2 ˆ 6MB L2 Cache. The execution time of the new method increases proportionally with s2,
indicating that the term s3k3 does not dominate the cost for this rather typical setting. Note
that the execution time of the new method is relatively high for small s. However, this only
reflects the additional overhead of this method in a Matlab implementation; the operation
count of the new method is always smaller compared to truncating the sum with Algorithm 6,
even for s “ 2.
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Figure 11: Execution times for truncating a sum of tensors in HTD. Blue: Truncation of
the sum with Algorithm 6. Red: Truncation of the sum with Algorithm 7, as described in
Section 6.3. Green: Subsequent addition and truncation, see (18).

xt = truncate sum({x1, x2, x3}, opts); takes htensor objects X1,X2,X3 and re-
turns a truncated htensor rX « X1 ` X2 ` X3.

7 Elementwise multiplication

The elementwise multiplication of two tensors is an important operation in connection with
function-related tensors and can be performed efficiently for tensors in HTD.

For illustration, we first consider the elementwise multiplication of two low-rank matrices
X “ UxSxpV xqH and Y “ UySypV yqH , with Sx, Sy P Ckˆk. Then the elementwise product
(also called Hadamard product) can be written as

pX ‹ Y qi,j :“ XijYij “
ÿ

α,β,γ,δ

Ux
i,αU

y
i,γS

x
α,βS

y
γ,δV

x
j,βV

y
j,δ

“ pUx dT UyqpSx b SyqpV x dT V yqH ,

where dT denotes a transposed variant of the Khatri-Rao product [23]. More specifically, for
a matrix A P Cnˆk with rows aTj and a matrix B P Cnˆr with rows bTj , we define

A dT B “

»

———–

aT1
aT2
...
aTn

fi

ffiffiffifl dT

»

———–

bT1
bT2
...
bTn

fi

ffiffiffifl :“

»

———–

aT1 b bT1
aT2 b bT2

...
aTn b bTn

fi

ffiffiffifl P Cnˆkr.

Note that A dT B “ pAT d BT qT , where d is the usual Khatri-Rao product.
For the elementwise multiplication of two tensors X ,Y in HTD, the same technique can

be used to construct the leaf matrices Ut and transfer tensors Bt for an HTD of X ‹ Y:

Ut “ Ux
t dT Uy

t for leaf nodes t and Bt “ Bx
t b By

t for non-leaf nodes t,
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where b represents a direct generalization of the Kronecker product to tensors: For two
tensors X P Cn1ˆ¨¨¨ˆnd , pX P Cpn1ˆ¨¨¨ˆpnd we define pX b pX qJ1,...,Jd :“ Xi1,...,id

pXj1,...,jd , with
Jµ “ piµ ´ 1qpnµ ` jµ. As a consequence, the hierarchical rank rt of X ‹Y is the product kxt k

y
t

of the hierarchical ranks of X and Y.
It would be useful to avoid the rank growth of X ‹ Y and directly calculate a truncated

version, similarly as for the sum of s tensors in Section 6.3. Unfortunately, it is not clear how
to transfer the ideas from Section 6.3 to the elementwise product; the Kronecker structure
of the transfer tensors does not lead in an obvious way to a reduction of computational or
storage cost. However, we can exploit the fact that the elementwise product is contained in the
Kronecker product. More specifically, there is a p0, 1q-matrix Jn P Rn2ˆn with orthonormal
columns such that

a ‹ b “ JH
n pa b bq,

for any two vectors a, b P Cn. This extends in a direct fashion to tensors:

JHpX b Yq :“ pJH
nd

b ¨ ¨ ¨ b JH
n1

qpX b Yq “ X ‹ Y. (19)

Hence, we can implicitly form the Kronecker product X bY in HTD and extract the elemen-
twise product after truncation.

The HTD of the Kronecker product X b Y of two tensors X ,Y in HTD is particularly
simple:

Ut :“ Ux
t b Uy

t @t P LpT q,
Bt :“ Bx

t b By
t @t P N pT q.

This implies that the reduced Gramians have Kronecker structure, Gt “ Gx
t b Gy

t , as well
as their singular value decompositions used in Algorithm 6. Consequently, this allows for a
particularly efficient HTD truncation Z of X b Y. Using (19), the extracted tensor JHZ
represents an approximation of X ‹ Y satisfying the error bound

››X ‹ Y ´ JHZ
››
2

“
››JHpX b Y ´ Zq

››
2

ď
››X b Y ´ Z

››
2

ď εabs.

Although the hierarchical ranks of JHZ are typically much smaller compared to X ‹ Y, the
error bound above is far from being sharp. It is therefore recommended to truncate JHZ
again after the extraction.

z = x .* y elementwise product of X and Y.
z = elem mult(x, y, opts) approximate elementwise product, with opts defined as in
truncate.

8 HTD of linear operators on tensors

The use of tensors in PDE-related applications often requires the efficient storage and appli-
cation of a linear operator to tensors. In many cases, such a linear operator can be written
as a short sum of Kronecker products:

vecpApX qq “
Rÿ

j“1

´
Apdq

j b ¨ ¨ ¨ b Ap1q
j

¯
vecpX q, with Apµq

j P Cmµˆnµ . (20)
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For example, a discretized Laplace operator in d dimensions takes this form with R “ d,
see Example 8.1 below. The operation (20) can be implemented by first applying µ-mode
matrix products (ttm) and then using an algorithm for computing a sum of tensors in HTD,
see Section 6.3. In general, this is a reasonable approach. However, for particular linear
operators, a much more efficient scheme can be devised.

This scheme is based on interpreting a linear operator as a tensor, an idea which goes
back to the computational physics community [29]. For example, the operator in (20) can be
vectorized into

rA “
Rÿ

j“1

vec
´
Apdq

j

¯
b ¨ ¨ ¨ b vec

´
Ap1q

j

¯
.

Note that this format is a CP decomposition. More generally, there is an isomorphism

Ψ : L
`
Cn1ˆ¨¨¨ˆnd ,Cm1ˆ¨¨¨ˆmd

˘
Ñ Cn1m1ˆ¨¨¨ndmd ,

which takes the matrix representation AM P Cpm1¨¨¨mdqˆpn1¨¨¨ndq of a linear operator A, and
permutes and reshapes its entries into a tensor rA “ ΨpAq of order d.

The tensor rA “ ΨpAq can now be approximated in HTD by the methods described in
this paper. When applying a linear operator implicitly represented as a tensor in HTD with
leaf bases UA

t P Cmtntˆkt and transfer tensors BA
t , it is convenient to reinterpret the columns

of the leaf bases as matrices Apjq
t :

UA
t p:, jq “ vec

`
Apjq

t

˘
.

Then the application of A to a tensor X of conforming size in HTD with hierarchical ranks
rt again results in an HTD with

Ut “
”
Ap1q

t Ux
t , . . . , A

pktq
t Ux

t

ı
, Bt “ BA

t b BX
t .

Hence, the hierarchical ranks grow to ktrt, which illustrates the importance of keeping the
hierarchical ranks kt of A low.

The sesquilinear product xX ,YyA can be computed without applying A to one of the
tensors, by interpreting the product as a tensor network and contracting the network. This
amounts to a computational complexity of Opdpsn2k ` snk2 ` 3s2k4 ` s3k2qq, where X ,Y are
in HTD with sizes n and hierarchical ranks k, while rA is in HTD with hierarchical ranks s.

The composition of two linear operators (i.e., the multiplication of the corresponding
matrix representations) in HTD can be calculated in a similar way as the application of a
linear operator in HTD.

y = apply mat to vec(A, x) returns Y “ ApX q for a linear operator A in HTD.
s = innerprod mat(x, y, A) returns s “ xX ,YyA.
C = apply mat to mat(A, B, p) returns C “ A ˝ B for two linear operators A P
L

`
Cp1ˆ¨¨¨ˆpd ,Cn1ˆ¨¨¨ˆnd

˘
and B P L

`
Cm1ˆ¨¨¨ˆmd ,Cp1ˆ¨¨¨ˆpd

˘
.

Note that a truncation of a linear operator A to HTD produces a quasi-optimal approxi-
mation in the Frobenius norm. Therefore, its effect on the smallest eigenvalues of A is likely
to be significant and its use for the direct solution of linear systems questionable. However,
this approximation may still be useful in the construction of preconditioners, and there are
some notable cases for which an exact representation in HTD of low rank is possible.
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Example 8.1. A discretized Laplace-like operator of the form

Apdq b I b ¨ ¨ ¨ b I ` I b Apd´1q b I b ¨ ¨ ¨ b I ` ¨ ¨ ¨ ` I b ¨ ¨ ¨ b I b Ap1q (21)

can be represented exactly in HTD with hierarchical rank 2 for any dimension tree T :

Ut “
“
vecpIq, vecpAptqq

‰
@t P LpT q

Bt “

»

——–

1 0
0 1
0 1
0 0

fi

ffiffifl @t P N pT qzttrootu, Btroot “

»

——–

0
1
1
0

fi

ffiffifl .

A similar decomposition has been proposed for the TT decomposition in [18].

9 Examples

In the following, we will show two examples for the use of the described htucker toolbox.
One relatively simple example is concerned with a tensor containing function samples, and
another example is concerned with a tensor containing solutions to a parameter-dependent
partial differential equation.

Example 9.1. The tensor X is defined to contain all function values of the d-variate function

fpξ1, . . . , ξdq “ 1

ξ1 ` ¨ ¨ ¨ ` ξd

on a uniform tensor grid in r1, 10sd. The following commands create this tensor as a standard
Matlab multidimensional array:

n = 50; d = 4;
xi = linspace(1, 10, n)’;
xil = xi*ones(1, n^(d-1)); xil = reshape(xil, n*ones(1, d));
xisum = xil;
for ii=2:d
xisum = xisum + permute(xil, [ii, 2:ii-1, 1, ii+1:d]);

end
x = 1./xisum;

We then truncate this full tensor X to HTD:

opts.max_rank = 10; opts.rel_eps = 1e-5;
x_ht = truncate(x, opts);
rel_err = norm_nd(x - full(x_ht))/norm_nd(x)
> 1.3403e-06

Note that this approach is limited to small values of d, as X is constructed explicitly. An
alternative approach relies on the following identity

1

ξ1 ` ¨ ¨ ¨ ` ξd
“

ż 8

0
expp´t ¨ pξ1 ` ¨ ¨ ¨ ` ξdqqdt «

Mÿ

j“´M

ωj

dź

µ“1

e´αjξµ .
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Suitable coefficients αj ,ωj are described in [10, 13]. Sampling the function on the right-hand
side directly results in a CP decomposition of rank 2M ` 1. This can then be converted to
the HTD format, where it can be truncated further, resulting in much smaller ranks; from
tensor rank 51 to hierarchical rank 5 in our example:

M = 25; j = (-M:M);
xMin = d*min(xi);
hst = pi/sqrt(M);
alpha = -2*log(exp(j*hst)+sqrt(1+exp(2*j*hst)))/xMin;
omega = 2*hst./sqrt(1+exp(-2*j*hst))/xMin;

x_cp = cell(1, d);
for ii=1:d, x_cp{ii} = exp(xi*alpha); end
x_cp{1} = x_cp{1}*diag(omega);
x_cp = htensor(x_cp);
rel_err = norm_nd(x - full(x_cp))/norm_nd(x)
> 1.4848e-06
x_trunc_cp = truncate(x_cp, opts);
rel_err = norm_nd(x - full(x_trunc_cp))/norm_nd(x)
> 2.0001e-06

The approach above is limited to functions of a very specific structure. A more generally
applicable method relies on a Newton-Schultz iteration for finding the elementwise reciprocal
of a tensor in HTD, see examples/elem reciprocal.m in the htucker toolbox. In the context
of low-rank tensors, such an iteration was already proposed by Oseledets in [26].

Construction of X using Newton-Schulz iteration

xisum_cp = cell(1, d);
for ii=1:d
xisum_cp{ii} = ones(n, d); xisum_cp{ii}(:, ii) = xi;

end

opts.elem_mult_max_rank = 50; opts.elem_mult_abs_eps = 1e-2;
opts.max_rank = 50; opts.rel_eps = 1e-5;
x0 = htenones(size(x)) / ( d*max(xi) );
x_rec = elem_reciprocal(htensor(xisum_cp), opts, x0 );
rel_err = norm_nd(x - full(x_rec))/norm_nd(x)
> 1.3595e-06

Note that, independent of the choice of the three methods above, the obtained htensor

objects x ht, x trunc cp, x rec all have hierarchical ranks 5, and very similar singular value
decay (see Fi gure 12). Having obtained an approximation of the sampled tensor through any
of the methods described above, we will now show how to use this approximation to evaluate
an integral of the form ż 10

1
¨ ¨ ¨

ż 10

1

1

ξ1 ` ¨ ¨ ¨ ` ξd
dξ1 ¨ ¨ ¨dξd.

We use Simpson’s rule in each variable to perform numerical quadrature on the tensor grid.
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Figure 12: Singular value tree of tensors x ht, x trunc cp, x rec in HTD (Example 9.1).

Quadrature using approximation in HTD

% Construction of quadrature weights
h = 9/(n-1);
w = 4*ones(n, 1); w(3:2:end-2) = 2; w(1) = 1; w(end) = 1;
w = h/3*w;

% Inner product between weights and function values by repeated contraction
for ii=1:d, w_cell{ii} = w; end
ttv(x_ht, w_cell)

˛

Example 9.2. In the following, we consider an example from [25] concerning the solution
of parameter-dependent linear systems. More specifically, let xpαq with α “ pα1,α2,α3,α4q
denote the solution of ˜

A0 `
4ÿ

µ“1

αµAµ

¸
xpαq “ b. (22)

Then we take m samples tαpµq
1 , . . . ,αpµq

m u for each parameter αµ and stack the sampled solu-
tions into a “snapshot” tensor X P Rnˆmˆmˆmˆm as follows:

X p:, i1, i2, i3, i4q “ x
´
αp1q
i1

,αp2q
i2

,αp3q
i3

,αp4q
i4

¯
, iµ “ 1, . . . ,m.

As explained in [25], this tensor can be interpreted as the solution of a (huge) symmetric
positive definite linear system ApX q “ B. This allows us to approximate the solution in
HTD by applying a low-rank variant of the preconditioned CG method to ApX q “ B, see
examples/cg tensor.m.
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Our specific example from [25, Sec. 4] is the stationary heat equation on a square do-
main with Dirichlet boundary conditions. The heat conductivity coefficient σpξq is piecewise
constant and depends on the four parameters as follows:

σpξq “
"

1 ` αµ for ξ P Ωµ, µ “ 1, . . . , 4,
1 for ξ R Ť4

µ“1Ωµ,

where Ω1, . . . ,Ω4 are mutually disjoint discs inside the domain. A finite element discretization
results in a parameter-dependent linear system (22) of size n “ 1580. We choose the samples

tαpµq
1 , . . . ,αpµq

m u “ t0, 1, . . . , 100u and hence m “ 101. The matrices A0, . . . , A4 as well as the
vector b are contained in the file examples/cookies matrices 2x2.mat.

load cookies_matrices_2x2
A_handle = handle_lin_mat(A, {[], 0:100, 0:100, 0:100, 0:100});
M_handle = handle_inv_mat(A{1});
e = ones(101, 1); b_cell = {b, e, e, e, e};
b_tensor = htensor(b_cell);

opts.max_rank = 30; opts.rel_eps = 1e-10;
opts.maxit = 50; opts.tol = 0;
[x, norm_r] = cg_tensor(A_handle, M_handle, b_tensor, opts);

From the resulting tensor X P R1580ˆ101ˆ101ˆ101ˆ101, we calculate the sample mean and
variance of x, see also Figure 13.

x_mean = full(ttv(x, {e,e,e,e}, [2 3 4 5])) / 101^4;
x_diff = x - htensor({x_mean,e,e,e,e});
x_var = diag(full(ttt(x_diff, x_diff, [2 3 4 5]))) / ( 101^4 - 1 );

˛

10 Conclusions

The main purpose of this paper was to provide a convenient framework for the development
and implementation of algorithms based on the hierarchical Tucker format introduced in [12,
15]. Moreover, this work contains a number of new results:

• A new variant of truncation to HTD without initial orthogonalization has been presented
in Section 6.2.2 and demonstrated to result in an efficient and numerically robust way
for adding tensors in Section 6.3.

• Various bounds for the truncation error have been given, partly new and partly improv-
ing an existing one.

• New algorithms for exact and approximate elementwise multiplication of tensors in HTD
have been presented in Section 7.
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Figure 13: Sample mean and variance of the parameter-dependent stationary heat equation
(Example 9.2).

• A framework for representing linear operators in HTD has been presented in Section 8
and an explicit representation for a discretized Laplace operator has been given.

All our algorithms are mainly based on calls to level 3 BLAS and LAPACK functionality.
Nevertheless, in order to address challenging applications that feature high ranks, there is
clearly a need for an implementation fine-tuned to modern high-performance and parallel
machines.
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[15] W. Hackbusch and S. Kühn. A new scheme for the tensor representation. J. Fourier
Anal. Appl., 15(5):706–722, 2009.

[16] S. Holtz, T. Rohwedder, and R. Schneider. The alternating linear scheme for tensor op-
timisation in the TT format. Preprint 71, DFG-Schwerpunktprogramm 1324, December
2010.

[17] T. Huckle, K. Waldherr, and T. Schulte-Herbrüggen. Computations in quantum tensor
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A List of Matlab functions

Tables 1, 2, and 3 give an overview of the complete functionality of our Matlab toolbox
htucker. More details for the use of each function can be obtained using the command help.

Construction of htensor objects.
htensor Construct a tensor in HTD and return htensor object.
define tree Define dimension tree.

Basic functionality
cat Concatenate two htensor objects.
change dimtree Change dimension tree of htensor.
change root Change root of the dimension tree.
check htensor Check internal consistency of htensor.
conj Complex conjugate of htensor.
disp Command window display of dimension tree of htensor.
display Command window display of dimension tree of htensor.
disp all Command window display of htensor.
end Last index in one mode of htensor.
equal dimtree Compare dimension trees of two htensor objects.
full Convert htensor to a (full) tensor.
full block Return subblock of htensor as a (full) tensor.
full leafs Convert leaf matrices Ut to dense matrices.
ipermute Inverse permute dimensions of htensor.
isequal Check whether two htensors are equal.
mrdivide (/) Scalar division for htensor.
mtimes (*) Scalar multiplication for htensor.
ndims Order (number of dimensions) of htensor.
ndofs Number of degrees of freedom in htensor.
norm Norm of htensor.
norm diff Norm of difference between htensor and full tensor.
nvecs Dominant left singular vectors for matricization of htensor.
permute Permute dimensions of htensor.
plot sv Plot singular value tree of htensor.
rank Hierarchical ranks of htensor.
singular values Singular values for matricizations of htensor.
size Size of htensor.
sparse leafs Convert leaf matrices Ut to sparse matrices.
spy Plot sparsity pattern of the nodes of htensor.
squeeze Remove singleton dimensions from htensor.
subsasgn Subscripted assignment for htensor.
subsref Subscripted reference for htensor.
subtree Return all nodes in the subtree of a node.
uminus Unary minus (-) of htensor.
uplus Unary plus for htensor.

Table 1: List of functions in htucker toolbox (part 1).
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Operations with htensor objects.
elem mult Approximate element-by-element multiplication for htensor.
innerprod Inner product for htensor.
minus (-) Binary subtraction for htensor.
plus (+) Binary addition for htensor.
power (.^2) Element-by-element square for htensor.
times (.*) Element-by-element multiplication for htensor.
ttm N -mode multiplication of htensor with matrix.
ttt Tensor-times-tensor for htensor.
ttv Tensor-times-vector for htensor.

Orthogonalization and truncation.
gramians Reduced Gramians of htensor in orthogonalized HTD.
gramians cp Reduced Gramians of CP tensor.
gramians nonorthog Reduced Gramians of htensor.
gramians sum Reduced Gramians for sum of htensor objects.
left svd gramian Left singular vectors and values from Gramian.
left svd qr Left singular vectors and values.
orthog Orthogonalize HTD of htensor.
trunc rank Return rank according to user-specified parameters.
truncate Truncate full tensor/htensor/CP to htensor.
truncate cp Truncate CP tensor to lower-rank htensor.
truncate ltr Truncate full tensor to htensor, leafs-to-root.
truncate nonorthog Truncate htensor to lower-rank htensor.
truncate rtl Truncate full tensor to htensor, root-to-leafs.
truncate std Truncate htensor to lower-rank htensor.
truncate sum Truncate sum of htensor objects to lower-rank htensor. .

Linear Operators.
apply mat to mat Applies an operator in HTD to another operator in HTD.
apply mat to vec Applies an operator in HTD to htensor.
full mat Full matrix represented by an operator in HTD.
innerprod mat Weighted inner product for htensor.

Interface with Tensor Toolbox.
ktensor approx Approximation of htensor by ktensor.
mttkrp Building block for approximating htensor by ktensor.
ttensor Convert htensor to a Tensor Toolbox ttensor.

Table 2: List of functions in htucker toolbox (part 2).
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Auxiliary functions for full tensors.
dematricize Determine (full) tensor from matricization.
diag3d Return third-order diagonal tensor.
isindexvector Check whether input is index vector.
khatrirao aux Khatri-Rao product.
khatrirao t Transposed Khatri-Rao product.
matricize Matricization of (full) tensor.
norm nd Norm of (full) tensor.
spy3 Plot sparsity pattern of order-3 tensor.
ttm N -mode multiplication of (full) tensor with matrix.
ttt Tensor times tensor (full tensors).

Example tensors.
gen invlaplace htensor for approx. inverse of Laplace-like matrix.
gen laplace htensor for Laplace-like matrix.
gen sin cos Function-valued htensor for sine and cosine.
htenones htensor with all elements one.
htenrandn Random htensor.
laplace core Core tensor for Laplace operator.
reciproc sum Function-valued tensor for 1{pξ1 ` ¨ ¨ ¨ ` ξdq.

Examples
cg tensor Truncated Conjugate Gradient method for htensor.
demo basics Demonstration of basic htensor functionality.
demo constructor Demonstration of htensor constructors.
demo elem reciprocal Demonstration of element-wise reciprocal.
demo function Demonstration of htensor function approximation.
demo invlaplace Demonstration of approximate inverse Laplace.
demo operator Demonstration of operator-HTD format.
elem reciprocal Iterative computation of elementwise reciprocal for htensor.
example cancellation Cancellation in tanpxq ` 1{x ´ tanpxq.
example cancellation2 Cancellation in expp´x2q ` sinpxq2 ` cospxq2.
example cg Apply CG method to a parametric PDE.
example maxest Example for computing element of maximal absolute value.
example spins Demonstration of operator-HTD for 1D spin system.
example truncation Comparison of speed for different truncation methods.
handle inv mat Function handle for applying operator to htensor.
handle lin mat Function handle for applying operator to htensor.
maxest Approximate element of maximal absolute value.

Table 3: List of functions in htucker toolbox (part 3).
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B Proofs of approximation results

In this appendix, we provide and prove bounds on the approximation error of the leafs-
to-root method (Section 6.1.2) and of truncation in HTD without initial orthogonalization
(Section 6.2.2). The proofs will be based on the following basic result.

Lemma B.1. Consider a dimension tree T and orthogonal projections πt “ WtWH
t for t P T .

If the projections are nested:

spanpWtq Ă spanpWtr b Wtlq for all t P N pT q,

then all projections πs and πt commute.

Proof. Any two nodes s, t P T are either disjoint (s X t “ H) or nested (w.l.o.g., s Ă t):

1. s X t “ H: In this case, the statement of the lemma follows directly from

WsW
H
s ˝s WtW

H
t ˝t X “ WtW

H
t ˝t WsW

H
s ˝s X ,

for any tensor X .

2. s Ă t: Without loss of generality, we may assume that the modes contained in node
s are the leading modes of t. Then spanpWtq Ă spanpI b Wsq and the statement is
an immediate consequence of the obvious fact that projections onto nested subspaces
commute.

To simplify the presentation, we require some additional notation. All truncation methods
involve a sequence of projections to some subspaces RpWtq for nodes t P T . Note that
there is no projection associated with the root node. Moreover, the truncations for both
children tl, tr of the root node arise from essentially the same singular value decomposition,
as Xptlq “ pXptrqqT . Thus, it is sufficient to consider only one of them for the error bound.
We therefore define the set T 1 to contain all nodes of T , except for the root node and one of
its children.

The leafs-to-root method described in Algorithm 5 can be written recursively in terms of
projections as

rXL :“ X , rX!´1 “
ź

tPT 1
!

πt rX!, rX :“ rX0,

with T 1
L “ LpT q X T 1 and T 1

! “ pT! X T 1qzLpT q, % “ 1, . . . , L ´ 1. Defining the matrix Wt

to contain the kt dominant left singular vectors of rXptq
! for t P T 1

! and % P t1, . . . , Lu, we set
πt “ WtWH

t .

Lemma B.2. The truncation error of the leafs-to-root method described in Algorithm 5 sat-
isfies

}X ´ rX }2 ď
gffe

Lÿ

!“1

ÿ

tPT 1
!

δktp rXptq
! q2 ď

?
2d ´ 3 }X ´ Xbest}2,

where Xbest is a best approximation of X in H-TuckerppktqtPT q, and the low-rank approxima-
tion error δkt is defined as in (17).
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Proof. We expand X ´ rX into a sum:

X ´ rX “
Lÿ

!“1

rX! ´ rX!´1 “
Lÿ

!“1

pI ´ π!qπ!`1 ¨ ¨ ¨πLX , with π! :“
ź

tPT 1
!

πt.

As the projections πt commute, each summand is orthogonal to all subsequent summands
and therefore }X ´ rX }22 “ řL

!“1 } rX! ´π! rX!}22. A similar reasoning for the projections on level

% leads to } rX! ´ π! rX!}22 ď ř
tPT 1

!
} rX! ´ πt rX!}22, showing the first inequality of the lemma.

For the second inequality, we will prove that } rX! ´ πt rX!}2 ď }X ´ Xbest}2 for all nodes
t. We start by defining Xt,best to be a best approximation of X under the condition that
the rank of the t-matricization is not larger than kt. Clearly,

››X ´ Xt,best

››
2

ď
››X ´ Xbest

››
2
.

Furthermore, we define the set

St :“
!
Y P Cn1ˆ¨¨¨ˆnd

ˇ̌
rankpY ptqq ď kt and spanpY psqq Ă spanpWsq @s P

Lď

j“!`1

T 1
j

(
.

Note that πt rX! is a minimizer of } rX! ´ Y}2 on St, as πt is based on the SVD of rXptq
! . Fur-

thermore, π!`1 ¨ ¨ ¨πLXt,best is a member of St (from [12, Lemma 3.15]). In conclusion,
›› rX! ´ πt rX!

››
2

ď
››π!`1 ¨ ¨ ¨πLX ´ π!`1 ¨ ¨ ¨πLXt,best

››
2

ď
››X ´ Xt,best

››
2

ď
››X ´ Xbest

››
2
.

Truncation in HTD without initial orthogonalization is described in Algorithm 7 and can also
be written recursively in terms of projections: rX :“ ś

tPT 1 πtX , where πt is the orthogonal
projection onto the subspace spanned by the kt dominant left singular vectors of

rUtV
H
t “

´ ź

sPT 1,sĹt

πs
¯
Xptq “: rXptq

t . (23)

Thus, we can equivalently define rX “ rXtroot .

Lemma B.3. The truncation error of HTD without initial orthogonalization described in
Algorithm 7 satisfies:

}X ´ rX }2 ď
d ÿ

tPT 1
δktp rXptq

t q2 ď
?
2d ´ 3 }X ´ Xbest}2,

where Xbest is a best approximation of X in H-TuckerppktqtPT q.
Proof. We define the projections rπt by the recursion

rπt “
"

πt if t is a leaf node,
rπtlrπtrπt otherwise,

where we have formally set πtroot to the identity. Note that the projections rπt commute. Let
us now consider rXt “ rπtlrπtrX for a non-leaf node t:

}X ´ rπtX }22 “ }X ´ rπtlX ` rπtlX ´ rπtlrπtrX ` rπtlrπtrX ´ πtrπtlrπtrX }22
ď }X ´ rπtlX }22 ` }X ´ rπtrX }22 ` } rXt ´ πt rXt}22.
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Successive application of this inequality shows the first inequality of the lemma:

}X ´ rX }22 “ }X ´ rπtrootX }22 ď
ÿ

tPT 1
} rXt ´ πt rXt}22.

For the second inequality, the proof is analogous to the one of Lemma B.2.
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