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SPECTRAL DEFLATION IN KRYLOV SOLVERS:
A THEORY OF COORDINATE SPACE BASED METHODS∗

MARTIN H. GUTKNECHT†

Abstract. For the iterative solution of large sparse linear systems we develop a theory for a
family of augmented and deflated Krylov space solvers that are coordinate based in the sense that
the given problem is transformed into one that is formulated in terms of the coordinates with re-
spect to the augmented bases of the Krylov subspaces. Except for the augmentation, the basis is as
usual generated by an Arnoldi or Lanczos process, but now with a deflated, singular matrix. The
idea behind deflation is to explicitly annihilate certain eigenvalues of the system matrix, typically
eigenvalues of small absolute value. The deflation of the matrix is based on an either orthogonal or
oblique projection on a subspace that is complimentary to the deflated approximately invariant sub-
space. While an orthogonal projection allows us to find minimal residual norm solutions, the oblique
projections, which we favor when the matrix is non-Hermitian, allow us in the case of an exactly in-
variant subspace to correctly deflate both the right and the corresponding left (possibly generalized)
eigenspaces of the matrix, so that convergence only depends on the non-deflated eigenspaces. The
minimality of the residual is replaced by the minimality of a quasi-residual. Among the methods
that we treat are primarily deflated versions of GMRes, MinRes, and QMR, but we also extend
our approach to deflated, coordinate space based versions of other Krylov space methods including
variants of CG and BiCG. Numerical results will be published elsewhere.

Key words. Linear equations, Krylov space method, Krylov subspace method, deflation, aug-
mented basis, recycling Krylov subspaces, (singular) preconditioning, GMRes, MinRes, QMR, CG,
BiCG

1. Introduction. Krylov space solvers are the standard tool for solving very
large sparse linear systems Ax = b by iteration. But for many real-world problems
they only converge in a reasonable number of iterations if a suitable preconditioning
technique is applied. This is particularly true for problems where the matrix A has
eigenvalues of small absolute value — a situation that is very common in practice. A
complementary technique for dealing with such problems can be viewed as applying a
singular left preconditioner that deflates the matrix in the sense that small eigenvalues
are replaced by zero eigenvalues. We first have to identify an approximately invariant
subspace Z that belongs to a set of such small eigenvalues. Ways to do that have
been extensively discussed in the literature and will therefore not be a topic of this
paper; see, e.g., [2, 3, 6, 9, 12, 37, 42, 43, 44, 45, 48, 57, 62]. By using an orthogonal
projection P whose nullspace is Z the Krylov space solver is then applied only to
the orthogonal complement Z⊥ by restricting the operator A accordingly. The basis
constructed implicitly or explicitly by this restricted operator is augmented by a set
of basis vectors for Z. In some algorithms based on short recurrences Z may also
include eigenvectors that the iteration has identified well already and which in the
sequel might cause loss of orthogonality if new basis vectors were not reorthogonalized
against them. In practice, the dimension of the deflation space Z may get increased
during the solution process or the space may get adapted, in particular if a restarted
algorithm is employed. In this paper we assume for simplicity that Z is fixed.

A relevant detail of the approach discussed here is that the basis of Z is assumed
to be given as the columns of a matrix of the form Z = AU. So, the preimage of the
basis, the columns of U, are assumed to be known. In practice this means that we
choose first the matrix U, which also spans an approximately invariant subspace U

∗Version of November 30, 2011.
†Seminar for Applied Mathematics, ETH Zurich, CH-8092 Zurich, Switzerland

(mhg@math.ethz.ch). This work was started while the author was visiting the TU Berlin,
supported by the DFG Forschungszentrum MATHEON and the Mercator Visiting Professorship
Program of the DFG.
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for the chosen eigenvalues, and then compute the image Z = AU. This implies that
the restriction A|Z of A to Z can be inverted trivially: if, say, y = Zk ∈ Z, then
A−1y = A−1Zk = Uk ∈ U .

Applying a Krylov space solver to a linear system Ax = b means to construct
a sequence of approximate solutions xn that are of the form xn ∈ x0 + Kn(A, r0),
where x0 is a chosen initial approximation, r0 :≡ b − Ax0 is the corresponding
residual, and Kn(A, r0) is the nth Krylov subspace generated by A from r0. (For its
definition see Section 2.) Then, rn ∈ r0 + AKn(A, r0), and the goal is to make rn
small in some norm. Therefore, solving the linear system with a Krylov space solver
can be understood as successively approximating r0 by elements of the subspaces
AKn(A, r0).

In the methods described here first, AKn(A, r0) will be replaced by the subspace

AKn(Â, r̂0), where the deflated operator Â :≡ PAP is singular, and r̂0 :≡ Pr0 ∈ Z⊥,

so that we will have Kn(Â, r̂0) ⊆ Z⊥. Note that on Z⊥, and thus also on the
Krylov subspace, the restriction of Â is equal to the restriction of PA; thus only one
application of P is needed for applying Â. On the other hand, as search space for
approximate solutions xn, this Krylov subspace will be augmented by U , that is,

xn ∈ x0 +Kn(Â, r̂0) + U , rn ∈ r0 +AKn(Â, r̂0) + Z . (1.1)

If Z⊥ is A-invariant, AKn(Â, r̂0) ⊆ Z⊥, so we can view the approach chosen here
as splitting up r0 in its two orthogonal components r̂0 ∈ Z⊥ and r0 − r̂0 ∈ Z. The
preimage of the latter component can be computed in the trivial way outlined before,
while the preimage of r̂0 is approximately computed with a Krylov space solver for
Âx̂ = r̂0 acting only in Z⊥. However, some complications occur if Z⊥ is not A-
invariant, which is the usual case. Treating these complications suitably is the main
aim of this paper. In any case, we will see that we can first solve the restricted problem
Âx̂ = r̂0 by a standard method such as GMRes [53] and subsequently compute the
still ‘missing’ component of the solution by solving a small triangular linear system.

While we will quickly also review the ‘symmetric case’, where the linear system
is Hermitian (or real and symmetric), we are here mostly interested in the ‘non-
symmetric case’, where our main message is that it may be preferable to replace the
orthogonal decomposition of r0 by a non-orthogonal one. To this end, P must be
chosen as an oblique projection with the property that when its nullspace Z is A–
invariant, so is its range Z̃⊥. In this way, we not only can annul eigenvalues, but also
deflate the corresponding left and right invariant subspaces. This choice leads then in
a straightforward way to a ‘truly deflated’ GMRes and to deflated QMR [28]. Like in
the symmetric case, if Z is A–invariant, the convergence speed of the deflated method
is then fully determined by the nondeflated eigenvalues of A and the corresponding
invariant subspace. There is no need for deriving new convergence estimates unless
we want to estimate the influence of an inexact choice of the subspace.

Our general approach can be used to define deflated versions of any Krylov space
solver. But in this paper we concentrate on coordinate space based methods such
as GMRes, MinRes [49], and QMR, where the Arnoldi or the Lanczos method
is used to generate a series of bases of the nested Krylov subspaces. As is well
known, this allows us to reformulate a minimum residual problem as an equivalent
or approximately equivalent least squares problem in coordinate space, which can be
solved by updating the QR decomposition of a Hessenberg or tridiagonal matrix.

Orthogonal and biorthogonal residual methods such as CG [34] and BiCG [40, 23]
can also be realized in this way, but are then normally considered less attractive,
perhaps due to the possible nonexistence of some of the iterates. Here, at the end, we
only introduce related deflated quasi-(bi)orthogonal residual methods.
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A further main goal of this paper is to present all these methods in a common
framework that relies on a splitting of the space into two complementary subspaces,
which can be chosen in various ways. We favor here the above mentioned choice re-
flecting a partition of the spectrum, but in the nonsymmetric case this leads to a con-
flict with the choice imposed by residual minimization. In contrast to our treatment,
the excellent general treatment and review of augmentation methods by Eiermann,
Ernst, and Schneider [16] is mostly restricted to the application of orthogonal projec-
tions and does not capitalize upon the knowledge of bases for both U and Z assumed
here (unless they are A–invariant and thus equal). A further difference is that their
treatment is aiming for augmented minimal residual methods, in particular GMRes,
while we will drop optimality in Sections 5–9 and replace it by some near-optimality.
Another interesting discussion and review of augmentation and deflation methods is
due to Simoncini and Szyld [55, §9].

It is a well-known fact about Krylov space solvers that aiming for the smallest 2-
norm of the residual, that is, applyingGMRes without restarts, is not only excessively
memory consuming, but is often also not much faster than using alternative methods
that are suboptimal. In practice, it is not important to find the fastest solver, but to
apply an effective preconditioning or multilevel method. Augmentation and deflation
are powerful options along these lines, and there are several different ways to apply the
basic ideas. Moreover, it is no problem to combine them with other preconditioning
techniques.

Literature. Augmentation and deflation of Krylov space solvers have been pro-
posed in various forms in a large number of publications. Many of the methods differ
not only algorithmically and numerically, but also mathematically. Some keywords
associated with such methods are ‘(spectral) deflation’, ‘augmented bases’, ‘recycling
Krylov subspaces’, ‘spectral preconditioning’, and ‘singular preconditioning’. The pri-
mary goal is always to speed up the convergence of a solver, but the application to
linear systems with multiple right-hand sides and to systems with slowly changing
matrix and right-hand side is also often mentioned.

To our knowledge, the first suggestion of an augmented Krylov space method
that included both the deflation of the matrix and the corresponding projection of
the initial residual came from Nicolaides [48], who submitted on May 13, 1985, such a
deflated CG algorithms based on the three-term recursions for iterates and residuals.
Independently, Dostál [13] submitted in January 1987 a mathematically equivalent
deflated CG algorithm based on the well-known coupled two-term recursions; he even
gave an estimate for the improvement of the condition number. In June 1987 Mansfield
[41] submitted additional numerical evidence for what he referred to as Nicolaides’
method of deflation, but he was actually using a 2-term CG algorithm. The same
algorithm was more than ten years later again discovered by Erhel and Guyomarc’h
[19] (deflation of a one-dimensional space only), by Saad, Yeung, Erhel, and Guy-
omarc’h [54], and, independently, by Vuik, Segal, and Meijerink [61], who combined
it with preconditioning by incomplete Cholesky decomposition. All three papers re-
fer to Nicolaides [48], but not to Dostál [13] and Mansfield [41], whose articles are
much closer to their work. From a Google scholar search one can conclude that it
was Kolotilina [39] who ultimately promoted Dostál’s paper [13] to a larger audience.
But, his two related papers [14, 15] are not even mentioned by her. Early citations to
Mansfield, who also had two follow up papers, are by Fischer [22] and Kolotilina [39].
To achieve the optimality of the CG error vector in the A-norm an oblique projection
has to be used (see Sections 11 and 12), which can be viewed as an A-orthogonal pro-
jection however, and has nothing to do with the oblique projections promoted here.
Before, in 1992, Kharchenko and Yeremin [37], followed, in 1994, by Erhel, Burrage,
and Pohl [18] suggested GMRes algorithms with augmented basis and a correspond-
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ing nonsingular right preconditioner that moves the small eigenvalues to a multiple
large eigenvalue. Later Baglama, Calvetti, Golub, and Reichel [6] constructed a left
preconditioner with the same effect; see [16, pp. 286–289] for a brief comparison of
these three preconditioners. Also in the mid-1990s, Morgan [43] proposed GMRes
with augmented basis but no explicit deflation of the matrix, and de Sturler [11] sug-
gested an inner-outer GMRes/GCR algorithm with augmented basis and later, in
other publications, several related methods. Saad [52] put together a general anal-
ysis of Krylov space methods with augmented basis, which was further generalized
in the above mentioned survey article of Eiermann, Ernst, and Schneider [16]. Many
more publications followed; see, e.g., [2, 24, 45, 57, 63] for further references. The
starting point for the present paper has been the description of recycled MinRes or
RMinRes by Wang, de Sturler, and Paulino [62], which, after a minor modification
that does not change the mathematical properties, fits exactly into our framework.
Their orthogonal projection P and the corresponding deflated matrix Â have been
used before, e.g., in [16, 11, 12]. They are the basic tools of our approach in 2–4.
But so far the oblique projection P that is the basis of our approaches of Sections 5–9
only seems to have been used for Ahuja’s Recycling BiCG(RBiCG) [4, 5], which does
not fit into our framework; see Section 12 for how it relates to our work. In partic-
ular, the oblique projection applied by Erlangga and Nabben [20] for their version
of deflated GMRes is different from our. In fact, the projection of [20] generalizes
the one that is typical for deflated CG [48, 13, 41]. The connection to some of these
alternative choices will be explained in Section 11. Our approach is also different
from the one of Abdel-Rehim, Morgan, and Wilcox [1] for their deflated BiCGStab,
and the one of Abdel-Rehim, Stathopoulos, and Orginos [3] for their Lanczos based
combined equation and eigenvalue solver.

We must also mention that in a series of papers that culminates in [21, 47, 60] it
has been shown recently that deflation, domain decomposition, and multigrid can be
viewed as instances of a common algebraic framework.

Outline. We start in Section 2 by introducing the basic setting for a particular
version of augmented and deflated GMRes based on an orthogonal projection that
annuls approximate small eigenvalues, in the sense that they get moved to zero. The
possibility of breakdowns of this method and its adaptation to symmetric problems,
where GMRes turns into MinRes, are then discussed in Sections 3–4. In Sections 5–
6, we modify the basic setting by introducing an oblique projection that enables us
to deflate approximate (possibly generalized) eigenspaces and to introduce a truly
deflated GMRes method. By making use of an adjoint Krylov space generated by
ÂH we next explain in Sections 7–9 how we can adapt our approach to the nonsym-
metric Lanczos algorithm and introduce a deflated QMR method and a simplified
deflated QMR method. The latter has, e.g., a well-known application in quantum
chromodynamics. Moreover, in Section 10 we describe a different way of comput-
ing the component of the solution that lies in U , and in Section 12 we briefly point
out that our framework could in principle also be used to define coordinate space
based deflated (bi)orthogonal residual methods that are approximately equivalent to
deflated CG and BiCG methods.

Notation. We denote the range (or, the image) of a matrix M by R(M). For the
nullspace (or kernel) of M we write N (M). Sometimes we introduce the additional
notation M :≡ R(M) for the range. As usual, the first column of the n × n unit
matrix is e1; additionally, e1 ∈ Rn+1 is e1 with a extra zero component appended to
it. Likewise, Hn and Tn will be (n + 1) × n matrices whose top n × n submatrices
are Hn and Tn, respectively.



5

2. Deflation by orthogonal projection; deflated GMRES. Consider a non-
singular linear system Ax = b of size N ×N . Let U ∈ CN×k have full rank k, where
1 ≤ k < N , and set

U :≡ R(U) , Z :≡ AU , Z :≡ R(Z) = AU ,

and

E :≡ ZHZ , Q :≡ ZE−1ZH , P :≡ I−Q = I− ZE−1ZH .

The subspaces U and Z will be used to augment the search spaces for the approximate
solutions xn and the corresponding residuals rn :≡ b−Axn, respectively. Note that
Q2 = Q, P2 = P, QH = Q, and PH = P; so, Q is the orthogonal projection onto Z,
while P is the orthogonal projection onto the orthogonal complement Z⊥ of Z.

If the columns uj of U ∈ CN×k are chosen to be AHA-orthonormal, so that the
columns of Z = AU form an orthonormal basis of Z, which we will from now on
assume, then E = Ik and the formulas for Q and P simplify to

Q = ZZH , P = I−Q = I− ZZH . (2.1)

Alternatively, we could compute a QR decomposition of AU to find a matrix Z with
orthonormal columns; see Section 6, where we will temporarily apply this.

As mentioned in the introduction, the first basic idea is to restrict the Krylov space
solver to Z⊥ by projecting the initial residual r0 into this space and by replacing the
original operator A by its restriction to this space:

r̂0 :≡ Pr0 , Â :≡ PAP .

A corresponding initial approximation x̂0 is not needed. (Any x̂0 ∈ x0 + U would
satisfy r̂0 :≡ Pr0 = P(b−Ax0) = P(b−Ax̂0), and for theoretical purposes we could
even set x̂0 :≡ A−1PAx0 to achieve that r̂0 = Pb−Ax̂0, or x̂0 :≡ A−1(PAx0+Qb)

to achieve that r̂0 = b −Ax̂0.) Note that rank Â ≤ N − k since rankP = N − k, so

Â is always singular.

Given any initial guess x0, the second basic idea is to approximate the solution
x! :≡ A−1b by iterates xn from the following affine space:

xn ∈ x0 + K̂n + U , (2.2)

where

K̂n :≡ Kn(Â, r̂0) :≡ span {r̂0, Âr̂0, . . . , Â
n−1r̂0} (2.3)

is the nth Krylov subspace generated by Â from r̂0. Since r̂0 ∈ Z⊥ and R(Â) ⊆
R(P) = Z⊥, we have K̂n ⊆ Z⊥. The choice (2.2) implies that

rn :≡ b−Axn ∈ r0 +AK̂n + Z . (2.4)

If we construct a nested sequence of orthogonal bases for the Krylov subspaces K̂n

by an Arnoldi process started with v0 :≡ r̂0/β, where β :≡ ‖r̂0‖2, we can express this,

for each n, by the Arnoldi relation ÂVn = Vn+1Hn, with Vn :≡
[
v0 . . . vn−1

]

and an extended (n+1)×n upper Hessenberg matrix Hn. But since R(Vn) = K̂n ⊆
Z⊥, we have PVn = Vn, and therefore

ÂVn = PAPVn = PAVn , (2.5)
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so that the Arnoldi relation simplifies to

PAVn = Vn+1Hn . (2.6)

This means that only one projection P is needed for applying Â in Z⊥.

In view of (2.2) we can represent xn as

xn = x0 +Vnkn +Umn (2.7)

with coordinate vectors kn ∈ Cn and mn ∈ Ck. In the usual way, multiplication by A
and subtraction from b yields then for the residuals rn :≡ b−Axn the representation

rn = r0 −AVnkn − Zmn . (2.8)

Due to the Arnoldi relation (2.6) and the orthogonal decomposition r0 = r̂0 +Qr0 =
v0β +Qr0 this becomes, with Cn :≡ ZHAVn ∈ Ck×n and Q = ZZH, and in analogy
to the derivation for the symmetric case in [62]1,

rn = v0β +Qr0 − (P+Q)AVnkn − Zmn

=
[
Z Vn+1

]
q
n
, (2.9)

where

q
n
:≡

[
ZHr0
e1β

]
−
[

Ik Cn

O Hn

] [
mn

kn

]
∈ Ck+n+1 (2.10)

may be called deflated GMRes quasi-residual in analogy to the terminology of [28].
One option is to choose rn of minimal 2-norm. Then (2.9) is the key relation for
a GMRes-like approach to this problem: rn is represented in terms of the basis
consisting of the columns of Z and Vn+1. Since we assume Z to have orthonormal
columns as in (2.1),

[
Z Vn+1

]
has orthonormal columns too, and the coordinate

map is isometric in the 2-norms of Z ⊕R(Vn+1) ⊆ CN and Ck+n+1, respectively, so
that

‖rn‖2 = ‖q
n
‖2 =

∥∥∥∥

[
ZHr0
e1β

]
−

[
Ik Cn

O Hn

] [
mn

kn

]∥∥∥∥
2

. (2.11)

As in the original GMRes method [53] the minimization of ‖rn‖2 reduces in the nth
step to a least squares problem for minimizing the right-hand side of (2.11), which
can be solved recursively by updating in each iteration the QR decomposition of the
(n+ 1)× n Hessenberg matrix Hn. Note that the first k columns of the least square
problem are in diagonal form, hence, a fortiori in upper triangular form already.
Hence, the (k + n + 1) × (k + n) least squares problem in (2.11) decouples from the
beginning into an (n+1)×n least squares problem for kn and an explicit formula for
mn:

min ‖rn‖2 = min ‖q
n
‖2 = min

kn∈Cn
‖e1β −Hnkn‖2 , mn := ZHr0 −Cnkn . (2.12)

This decomposition of the problem suggests that we search first for a solution of
the reduced least squares problem, that is, determine a suitable size n, the matrices
Vn and Hn resulting from the Arnoldi process, and the corresponding solution kn

in coordinate space. This first stage can be understood as solving the singularly
preconditioned system PAx = Pb by standard GMRes, or as solving Âx̂ = r̂0 in

1To change to the notation of [62] substitute, in particular, Z ! C and Cn ! Bn.
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Z⊥ by GMRes. Subsequently, we may calculate the related mn. There is no need to
compute mn for all n since the 2-norm of the residual rn is not affected by the second
stage if mn is chosen according to (2.12).

We will call the resulting algorithm deflated GMRes though it is not equivalent
to the methods introduced by Morgan [43] and Chapman and Saad [9] under this
name.2 Our proposal also differs from those of Kharchenko and Yeremin [37] and
Erhel, Burrage, and Pohl [18], who construct nonsingular preconditioners that move
small eigenvalues away from zero. However, in Section 5 we will come up with an-
other proposal for the nonsymmetric case, which we think is better suited to deflate
approximate eigenpairs.

3. Breakdowns of deflated GMRES. Unfortunately, in general, the deflated
GMRes method of Section 2 can break down since the Arnoldi process described by
the relation ÂVn = Vn+1Hn, which is used to set up the least squares problem in
(2.12), is applied with a singular matrix Â. The least squares problem originates from

solving Âx̂ = r̂0 by GMRes for some x̂ ∈ Z⊥. Since R(Â) ⊆ Z⊥ and r̂0 ∈ Z⊥, the
linear system and the Arnoldi process are restricted to Z⊥. Hence, it is the restriction
of Â to Z⊥ which matters. This restriction is singular if and only if rank Â < N−k =
dimZ⊥. But recall that in applications the eigenvalues of this restriction are supposed
to approximate the nondeflated ‘large’ eigenvalues of A; therefore, in practice it is
very unlikely that the restriction is singular and breakdowns can occur.

If rank Â < N − k, it may happen that v0 ∈ N (Â)∩Z⊥ or that, for some n > 1,

vn−1 ∈ N (Â)∩R(Â) ⊆ N (Â)∩Z⊥. Then Âvn−1 = o and, trivially, the component
orthogonal to K̂n = R(Vn) of this vector is also zero and cannot be normalized.

Moreover, VH
nÂvn−1 = VH

no = o, so the last column of Hn is zero except for its
undetermined (n+1, n)–element, which we may set equal to 0 too. In particular, the
top square part Hn of Hn is singular. Hence, the Arnoldi process terminates after
detecting the invariant subspace R(Vn) = K̂n, and GMRes breaks down. Note that

dim (ÂK̂n) = rank (ÂVn) = rank (VnHn) = n− 1 since rankHn = n− 1. Is this the
only type of breakdown?

The application of Krylov space methods to singular systems has been investi-
gated in detail by Freund and Hochbruck [27, §§ 3-4] and others. In particular, the
application of GMRes to such systems has been analyzed by Brown and Walker [8].
Lemma 2.1 of [8] adapted to our situation reads as follows.

Lemma 1. If GMRes is applied to Âx̂ = r̂0 and if dim K̂n = n holds for some
n ≥ 1, then exactly one of the following three statements holds:

(i) dim(ÂK̂n) = n− 1 and Âx̂ += r̂0 for every x̂ ∈ K̂n;

(ii) dim(ÂK̂n) = dim K̂n+1 = n, x̂n :≡ Vnkn is uniquely defined, and Âx̂n = r̂0;

(iii) dim(ÂK̂n) = n, dim K̂n+1 = n+ 1, x̂n is uniquely defined, but Âx̂n += r̂0.

We call Case (i) a breakdown of GMRes, Case (ii) the termination of GMRes,
and Case (iii) the continuation of GMRes. (In contrast, Brown and Walker [8] and
other authors also call Case (ii) a breakdown, although in this case the aim of finding
a solution of the linear system has been achieved.) Note that Case (i) implies that
dim K̂n+1 = n, hence also in this case the Krylov space is exhausted.

In the situation where Âvn−1 = o discussed before, we have obviously Case (i)

2In both [9] and [43] a cycle of deflated GMRes consists in first applying a fixed number ofGMRes

steps with A starting from x0 (instead of using Â and x̂0), and then adding k orthogonalization
steps to the vectors Auj . This yields at the end an (m+ k+1)× (m+ k) least squares problem. So
the orthogonal projection P is only applied at the end of each cycle. For an alternative interpretation
and realization of Morgan’s method see [16, §4.3] and [44].
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since Arnoldi terminates, but the resulting equation e1β = Hnkn has no solution.

That this is more generally a consequence of dim(ÂK̂n) = n − 1 can be seen as
follows: if we had chosen for K̂n the so-called Krylov basis, that is

V(K)
n :≡

[
r̂0 Ar̂0 . . . An−1r̂0

]
,

then, in Case (i), the Hessenberg relation resulting after n steps would be ÂV(K)
n =

V(K)
n H(K)

n , with a companion matrix H(K)
n that has a zero element in its upper right

corner, so that e1 +∈ R(H(K)
n ). This just reflects the fact that the restriction of Â

to K̂n has a zero eigenvalue: the last column of H(K)
n contains the coefficients of the

characteristic polynomial. Note also that the basis transformation from Vn to V(K)
n

is represented by a triangular matrix and leaves the direction of the first basis vector
invariant.

Clearly, dim(ÂK̂n) = n − 1 (i.e., Case (i)) holds if and only if N (Â) ∩ K̂n +=
{o}. Conversely, if this breakdown condition does not occur for any n, GMRes will

ultimately terminate with Case (ii), where the unique solution of Âx̂ = r̂0 is found.
At intermediate steps, where Case (iii) occurs, x̂n = Vnkn is the best least squares
solution out of K̂n.

In summary we obtain for deflated GMRes applied to Ax = b the following
theorem.

Theorem 2. If r̂0 +∈ N (Â), then as long as N (Â)∩K̂n = {o}, the deflated GM-
Res method defined by (2.6)–(2.7) and (2.12) yields in the nth step the approximate
solution xn ∈ x0 + K̂n + U whose residual rn has minimal 2-norm.

However, if N (Â) ∩ Z⊥ += {o} and if x0 is chosen such that r̂0 ∈ N (Â), then
(and only then) deflated GMRes breaks down in the first step where n = 1. Moreover,

at step n > 1, if (and only if ) N (Â) ∩ K̂n += {o}, the method breaks down when
attempting to construct vn. In case of a breakdown, the search space x0 + K̂n + U
does not contain the exact solution x!.

If Z⊥ is A–invariant, breakdowns cannot happen, Cn = O, and the Arnoldi
relation (2.6) can be replaced by

AVn = Vn+1Hn . (3.1)

Proof. It remains to prove the last two sentences. Firstly, for a proof by contra-
diction, assume that the search space contains x!, so x! :≡ A−1b = x0 + x̂! + u!,
where x̂! ∈ K̂n and u! ∈ U . Then, since PAu! = o and PAx̂! = Âx̂!,

o = b−A(x0 + x̂! + u!)

= Pr0 −PAx̂! −PAu! + (I−P)(r0 −Ax̂! −Au!)

= (r̂0 − Âx̂!) +Q(r0 −Ax̂! −Au!) .

Since the first parenthesis is in Z⊥, while the second term is in Z, both must be zero.
In particular, we must have r̂0 = Âx̂!. However, this contradicts case (i) of Lemma 1,
which applies when deflated GMRes breaks down and says that x̂! +∈ K̂n.

Secondly, if Z⊥ is A–invariant, we have in extension of (2.5) at the nth step

ÂVn = PAPVn = PAVn = AVn . (3.2)

This implies that solving the system Âx̂ = r̂0 with GMRes (and starting vector
x̂0 = o) is equivalent to solving Ax̂ = r̂0 with GMRes. Since A is nonsingular, there
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are no breakdowns (described by Case (i) of Lemma 1), and ultimately the solution
will be found (i.e., Case (ii) will occur).

Finally, since R(Vn) ⊆ Z⊥ and the latter set is assumed to be A–invariant, we
have R(AVn) ⊆ AZ⊥ = Z⊥, so that Cn = ZHAVn = O.

Eqs. (3.1) and (3.2) suggest that in the case where Z⊥ is A–invariant we might
apply GMRes with A instead of PA. But in some cases this might be risky due
to round-off effects: round-off components in Z may grow fast since A−1 has large
eigenvalues there.

Note that for n = 0 the breakdown condition r̂0 ∈ N (Â) can be written as

N (Â) ∩ K̂0 += {o}, in accordance with the breakdown condition for the nth step.

The following simple 2 × 2 example taken from [31] exemplifies a breakdown in
the first step:

A :≡
[

0 1
1 0

]
, P :≡

[
1 0
0 0

]
, PA =

[
0 1
0 0

]
, r0 :≡

[
1
0

]
, (3.3)

where Â = PAP = O and v0 = r̂0 = r0, hence Âv0 = o. So, Z = N (P) = span {e2},
Z⊥ = span {e1}, v0 ∈ N (Â) ∩ Z⊥ here, and we have a breakdown in the first step.

We will generalize this example in the Appendix, where we will show that break-
downs are also possible at any later step up to n = N − 1.

Based on Theorem 2 we may formulate conditions that characterize the possibility
of breakdowns in case of an unlucky choice of x0, that is, an unlucky r̂0 ∈ Z⊥.

Corollary 3. Deflated GMRes can break down in the first Arnoldi step (for
determining v1) if and only if the following four equivalent conditions hold:

(1) N (Â) ∩ Z⊥ += {o} ,
(2) AZ⊥ ∩ Z += {o} ,
(3) AZ⊥ + Z += CN ,
(4) rank Â < n− k .

If these conditions are fulfilled for some given A and Z, then we can choose x0 (if b
is given), so that GMRes breaks down in the first step.

The equivalent Conditions (1)–(4) are also necessary for deflated GMRes to break
down in a later step.

Conversely, a breakdown cannot occur in any step if equality holds in Condi-
tions (1)–(4), or, equivalently, if N (Â) = Z, that is, if AZ⊥ ⊕ Z = CN .

Proof. According to Theorem 2, Condition (1) characterizes the possibility of
a breakdown in the first step. It says that breakdowns are possible if and only if
there exists y = Py ∈ Z⊥\{o} with PAy = PAPy = Ây = o, that is, with
o += Ay ∈ N (P) = Z. This is equivalent to Condition (2). Moreover, since dimZ = k
and dimAZ⊥ = dimZ⊥ = N − k, the second condition is equivalent to the third one.
Finally, Z = N (P) ⊆ N (Â) and therefore Condition (1) implies that dimN (Â) >

dimZ = k , that is, rank Â < n− k, and vice versa.

For a breakdown at step n > 1 we need, by Theorem 2, N (Â)∩ K̂n += {o}. Since
K̂n ⊆ span {r̂0}+R(Â) ⊆ Z⊥, Condition (1) must hold.

Conditions for the impossibility of breakdowns are obtained by negating the Con-
ditions (1)–(4), noting that always N (Â) ⊇ Z, and observing the dimension state-
ments given above.

Finally, we point out the following fact.
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Corollary 4. The assumption that Z⊥ is A-invariant is sufficient, but not
necessary for guaranteeing that no breakdown can occur.

Proof. Since A is nonsingular, Z⊥ is A-invariant if and only if AZ⊥ = Z⊥. This
condition means that on the left-hand side of the negated Condition (3) of Corollary 3
we have an orthogonal direct sum:

AZ⊥ ⊕ Z = Z⊥ ⊕ Z = CN .

However, AZ⊥ ⊕ Z = CN will hold whenever AZ⊥ ∩ Z = {o}; hence, the condition
that Z⊥ be A-invariant appears not to be necessary for guaranteeing no breakdowns.
The following example proves this claim.

Example. We slightly modify the example of (3.3) by choosing

A :≡
[

1 1
1 0

]
, P :≡

[
1 0
0 0

]
, PA =

[
1 1
0 0

]
, Â =

[
1 0
0 0

]
= P .

As before, Z = span {e2}, but now AZ⊥ = A span {e1} = span {e1 + e2} += Z⊥.
Hence, AZ⊥ ⊕ Z = C2. Consequently, for any r̂0 = Pr0 += o there will be no
breakdown.

Remarks. (i) Note that when A is not Hermitian, then the property that Z⊥ is
A–invariant does not imply that Z is A–invariant, and vice versa.

(ii) In case of a breakdown we might restart deflated GMRES with a new column
zk+1 := vn appended to Z. Repeating this measure if needed we will ultimately find a
least square problem of type (2.11) with residual ‖rn‖2 = 0 and with, say, the original
k replaced by k+ ". However, we cannot find the approximate solution xn from (2.7)
unless we know the preimages uk+i satisfying vk+i = Auk+i, i = 1, . . . , ".

(iii) Some further results on breakdowns of deflated GMRes and on how to avoid
them in deflated MinRes are given in [31].3

4. Spectral deflation for symmetric problems. If A is Hermitian, then so
is Â, and therefore the Arnoldi process can be replaced by a three-term symmetric
Lanczos process, and the extended Hessenberg matrixHn of the previous section turns
into an extended tridiagonal matrix Tn, for which a symmetric Lanczos relation

PAVn = Vn+1Tn (4.1)

holds and whose upper square part Tn is Hermitian. A deflated MinRes algorithm
called RMinRes for the so simplified setting has been described in detail by Wang,
de Sturler, and Paulino [62]. The same update procedure as in the original MinRes
method [49] can be applied to find the QR decomposition of Tn. Wang et al. [62] also
show that the approximate solutions xn can still be updated by short recurrences.
This is also seen from the fact stressed here and in [31] that the results of RMinRes

can be found by solving first the projected problem Âx̂ = r̂0 in Z⊥ by MinRes and
then adding to the solution a correction term in Z; see Section 10.

In the Hermitian case the properties of deflated GMRes given in Theorem 2 and
Corollary 3 persist and also hold for deflated MinRes. In particular, the possibility
of a breakdown in the first step is still illustrated by the 2 × 2 example in (3.3).
The possibility of a breakdown at a later step is still proven by the example in the
Appendix, since the matrix A there is real symmetric.

We can reformulate the first part of Theorem 2 for deflated MinRes as follows.

3Note, however, that Â is defined differently in [31].
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Theorem 5. Let A be Hermitian; then so is Â. If r̂0 +∈ N (Â) = R(Â)⊥,

then as long as N (Â)∩ K̂n = {o}, the deflated MinRes method obtained by adapting
deflated GMRes to the symmetric case yields in the nth step the approximate solution
xn ∈ x0 + K̂n + U whose residual rn has minimal 2-norm.

Conversely, if N (Â) ∩ K̂n += {o} for some n ≥ 1 then (and only then) deflated
MinRes breaks down in the nth step.

Again, breakdowns cannot occur if Z⊥ is A–invariant, and in this case the pro-
jected Lanczos relation (4.1) can be replaced by the Lanczos relation

AVn = Vn+1Tn . (4.2)

A special feature of the symmetric case is that Z⊥ is A–invariant if and only
if Z is A–invariant. This is due to the fact that eigenspaces belonging to different
eigenvalues are mutually orthogonal, and higher dimensional eigenspaces can be split
up in mutually orthogonal ones if needed. The definition Â = PAP and the fact that
P is the orthogonal projection onto Z⊥ yield then the following result on the spectral
deflation of A.

Theorem 6. Let A be Hermitian. If Z is A–invariant, then Z⊥ is also A–
invariant and the restrictions of A, Â, and O to Z and Z⊥ satisfy

Â
∣∣
Z = O

∣∣
Z , Â

∣∣
Z⊥ = A

∣∣
Z⊥ . (4.3)

Of course, (4.3) holds also if A is non-Hermitian, and, by chance, both Z and Z⊥

are A-invariant.

5. Deflation by oblique projection: basic setting. So far we have based
deflated GMRes and MinRes on orthogonal projections Q and P :≡ I−Q, but for
GMRes and other solvers for nonsymmetric linear systems of equations it is more
appropriate to consider oblique projections since the eigenspaces ofA are typically not
mutually orthogonal. Our approach is based on the natural splitting of CN into the
direct sum of twoA–invariant subspaces. In general, the corresponding decomposition
of the residual search space will no longer be an orthogonal one. We therefore modify
the setting of Section 2 as follows.

Let U ∈ CN×k and Z̃ ∈ CN×k have full rank k, and assume they are chosen such
that the matrix E defined by

Z :≡ AU , E :≡ Z̃HZ

is nonsingular. Then set

U :≡ R(U) , Z :≡ R(Z) = AU , Z̃ :≡ R(Z̃) ,

and

Q :≡ ZE−1Z̃H , P :≡ I−Q = I− ZE−1Z̃H . (5.1)

Note that still Q2 = Q and P2 = P, but now

QZ = Z , QZ̃⊥ = {o} , PZ = {o} , PZ̃⊥ = Z̃⊥ , (5.2)

where, as before, Z̃⊥ denotes the orthogonal complement of Z̃. So, Q is the oblique
projection onto Z along Z̃⊥, while P is the oblique projection onto Z̃⊥ along Z. In
particular, N (P) = Z, R(P) = Z̃⊥. Again, the subspaces U and Z will be used to
augment the search spaces for the approximate solutions xn and the corresponding
residuals rn, respectively.
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If the k columns z̃j of Z̃ are chosen biorthogonal to the k columns zj of Z, which

means that these two sets of columns form dual bases of Z̃ and Z, then E = Z̃HZ = Ik
and the formulas for Q and P simplify as before:

Q = ZZ̃H , P = I−Q = I− ZZ̃H . (5.3)

Note that this is automatically true if we choose the columns of Z as (right-hand

side) eigenvectors of A and the columns of Z̃ as the corresponding left eigenvectors.
This property even generalizes to multiple eigenvalues and defective matrices if the
eigenvectors are suitably chosen.

As in Section 2 we further let

r̂0 :≡ Pr0 , Â :≡ PAP .

Note that still

N (Â) ⊇ N (P) = Z , R(Â) ⊆ R(P) = Z̃⊥ , (5.4)

so that Â
∣∣
Z̃⊥ , the restriction of Â to Z̃⊥, is a possibly singular endomorphism of Z̃⊥.

Consequently, the Krylov subspaces K̂n defined in (2.3) are all subsets of Z̃⊥ since
r̂0 ∈ Z̃⊥. Therefore, we will be able to restrict a Krylov space solver to Z̃⊥.

The reason for choosing this subspace lies in the following generalization of Theo-
rem 6. Recall that a simple A–invariant subspace is an A–invariant subspace with the
property that for any eigenvector it contains, it also contains all the other eigenvectors
and generalized eigenvectors that belong to the same eigenvalue; see [58]. In other
words, choosing a simple A–invariant subspace induces a splitting of the characteris-
tic polynomial into two co-prime factors and a related decomposition of the Jordan
canonical form.

Theorem 7. Assume that Z is a simple k-dimensional A–invariant subspace
and Z̃ is the corresponding AH–invariant subspace, that is, for any Z, Z̃ ∈ CN×k with
Z = R(Z) and Z̃ = R(Z̃) there are G, G̃ ∈ Ck×k such that, with E :≡ Z̃HZ,

AZ = ZG , AHZ̃ = Z̃G̃ , G̃ = E−HGHEH . (5.5)

Then Z̃⊥ is also A–invariant and Z ⊕ Z̃⊥ = CN . Moreover, the restrictions of A,
Â, and O to Z and Z̃⊥ satisfy

Â
∣∣
Z = O

∣∣
Z , Â

∣∣
Z̃⊥ = A

∣∣
Z̃⊥ . (5.6)

Proof. To fix our mind, let us first choose a special basis for Z and assume that
A has a Jordan decomposition

A
[
Z Z̃⊥

]
=

[
Z Z̃⊥

] [ J O
O J⊥

]
, (5.7)

where despite our notation Z̃⊥ is at this point not yet known to be related to Z̃⊥.
Eqn. (5.7) just reflects the fact that Z is A–invariant in the assumed sense, that J is
the Jordan canonical form of A

∣∣
Z , and that Z contains the corresponding eigenvectors

and generalized eigenvectors, while J⊥ is the Jordan canonical form of A
∣∣
R(Z̃⊥)

and

the columns of Z̃⊥ are the corresponding eigenvectors and generalized eigenvectors.
So, Z̃⊥ just consists of the ‘remaining’ eigenvectors and generalized eigenvectors and
J⊥ consists of the ‘remaining’ Jordan blocks. Clearly, R(Z̃⊥) is also an A–invariant
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subspace, and Z ⊕ R(Z̃⊥) is a direct sum, but in general not an orthogonal one.
(Actually we could weaken the assumption: we need the separation of the Jordan
blocks ofA into two sets, but we need not that the eigenvalues are necessarily different
in the two sets.)

As is well-known, the rows of the inverse of [ Z Z̃⊥ ] are the complex conjugate
of the left-hand side eigenvectors and generalized eigenvectors of A, or, equivalently,
the right-hand side eigenvectors and generalized eigenvectors of AH. To allow for
another pair of bases for the induced pair of invariant subspaces of AH, we let, for
some nonsingular E and E⊥ ∈ Ck×k,

[
Z̃H

ZH
⊥

]
:≡

[
E O
O E⊥

] [
Z Z̃⊥

]−1
, (5.8)

so that E :≡ Z̃HZ as before, and, in addition,

E⊥ :≡ ZH
⊥Z̃⊥ , Z̃HZ̃⊥ = Ok×(N−k) , ZH

⊥Z = O(N−k)×k .

From the last two equations it follows that indeed R(Z⊥) = Z⊥ and R(Z̃⊥) = Z̃⊥,
and by (5.7) the latter space was seen to be A–invariant. Moreover, multiplying (5.7)
from both sides with the inverse of [ Z Z̃⊥ ] and inserting (5.8) yields

[
Z̃H

ZH
⊥

]
A =

[
E O
O E⊥

] [
J O
O J⊥

] [
E−1 O
O E−1

⊥

] [
Z̃H

ZH
⊥

]
. (5.9)

So, the complex-conjugate of the columns of Z̃ and Z⊥ span left-invariant subspaces.
Finally, taking the Hermitian transpose leads to

AH
[
Z̃ Z⊥

]
=

[
Z̃ Z⊥

] [ E−H O
O E−H

⊥

] [
JH O
O JH

⊥

] [
EH O
O EH

⊥

]
, (5.10)

which implies in particular that AHZ̃ = Z̃E−HJHEH. This establishes (5.5) in the

case where G = J and G̃ = E−HJHEH. The general case of G and G̃ follows by
noting that we did nowhere make any use of the Jordan structure of J and J⊥, but
only of the 2× 2 block diagonal structure in (5.7), that is, we referred to the Jordan
structure just to ease the discussion.

On the other hand, when indeed starting from a Jordan decomposition (5.7) of A

and choosing Z̃ and Z⊥ so that E = Ik and E⊥ = IN−k, we turn (5.10) into a Jordan
decomposition (with lower bidiagonal Jordan blocks) of AH.

Finally, it follows from (5.7) and the properties of P that

Â
[
Z Z̃⊥

]
= PAP

[
Z Z̃⊥

]
= PA

[
O Z̃⊥

]

= P
[
O Z̃⊥J⊥

]
=

[
O Z̃⊥J⊥

]
. (5.11)

So, ÂZ = O, and by comparison with (5.7) we find ÂZ̃⊥ = Z̃⊥J⊥ = AZ̃⊥, which
proves (5.6).

But also in the typical situation where Z and Z̃⊥ are not A–invariant this pair
of spaces is well chosen, as the following simple fact underlines.

Lemma 8. Let Z, Z̃ ∈ CN×k be given such that E :≡ Z̃HZ is nonsingular, let
Z :≡ R(Z) and Z̃ :≡ R(Z̃), and choose Z⊥, Z̃⊥ ∈ CN×(N−k) such that their columns
consist of bases of the orthogonal complements Z⊥ and Z̃⊥, respectively. Then

[
Z̃H

ZH
⊥

] [
Z Z̃⊥

]
=

[
E O
O E⊥

]
, (5.12)
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where all three matrices are nonsingular. In particular, E⊥ is nonsingular too, and

Z ⊕ Z̃⊥ = Z̃ ⊕ Z⊥ = CN (5.13)

are both decompositions of CN into (in general nonorthogonal) complements.

Proof. The block diagonal structure of the right-hand side of (5.12) holds by

definition of Z⊥ and Z̃⊥, but we need to show that on the left-hand side the ma-

trices
[
Z̃ Z⊥

]
and

[
Z Z̃⊥

]
are nonsingular, i.e., their columns are linearly

independent.

Let z⊥ be any nonzero element of Z⊥. So, ZHz⊥ = o and z⊥ += o. For a proof
by contradiction, let us assume that z⊥ is a linear combination of columns of Z̃, i.e.,
z⊥ = Z̃k for some k ∈ CN−k. Then,

o = ZHz⊥ = ZHZ̃k = EHk ,

which implies that k = o, and thus z⊥ = o in contrast to our assumption. It follows
that Z̃ ∩ Z⊥ = {o}. An analogue argument shows that Z ∩ Z̃⊥ = {o}.

Remark. Note that, by definition, Z ⊕ Z⊥ = Z̃ ⊕ Z̃⊥ = CN are two other
decompositions of CN , and they even feature orthogonal complements. In contrast,
in general, the decompositions in (5.13) are not orthogonal, but they are adapted to
the operator A if Z is exactly or nearly A–invariant. In (5.7) we assumed that Z and

Z̃⊥ contain eigenvectors and generalized eigenvectors, which, in general, is not true
in the setting of this and the following sections. In general, we will have

A
[
Z Z̃⊥

]
=

[
Z Z̃⊥

] [ G11 G12

G21 G22

]
, (5.14)

where the blocks G12 and G21 can be expected to contain only small elements if Z
and Z̃⊥ are nearly A–invariant.

6. Deflation by oblique projection: truly deflated GMRES. Let us now
come to the details of a correctly deflated GMRes based on the observations of the
previous section. Given an initial guess x0, we choose as in Section 2 iterates xn from

xn ∈ x0 + K̂n + U , (6.1)

where the Krylov subspaces K̂n are still defined by (2.3). This implies that

rn :≡ b−Ax0 ∈ r0 +AK̂n + Z . (6.2)

We again construct a nested sequence of orthogonal bases for the Krylov subspaces
K̂n by an Arnoldi process started with v0 :≡ r̂0/β, where now r̂0 :≡ Pr0 ∈ Z̃⊥ and

β :≡ ‖r̂0‖2. As before, this is expressed by the Arnoldi relation ÂVn = Vn+1Hn.
Since R(Vn) = K̂n ⊆ Z̃⊥, we have PVn = Vn, and therefore again

ÂVn = PAPVn = PAVn , (6.3)

so that the Arnoldi relation still simplifies to

PAVn = Vn+1Hn . (6.4)

However, recall that P and, hence, Â are now defined differently.

In view of (6.1) we represent xn again as

xn = x0 +Vnkn +Umn (6.5)
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with coordinate vectors kn ∈ Cn and mn ∈ Ck. Regarding the residuals, where we
prefer a representation in terms of an orthonormal basis, we note that Z cannot be
expected to have such columns, whence we propose to QR-decompose Z first:

Z = ZoRQR , ZH
oZo = Ik . (6.6)

Then, after inserting AU = Z = ZoRQR, we get

rn = r0 −AVnkn − ZoRQRmn . (6.7)

Due to the Arnoldi relation (6.4) and the decomposition r0 = r̂0 +Qr0 = v0β +Qr0
this becomes now, with Q = ZZ̃H = ZoRQRZ̃H and Cn :≡ Z̃HAVn,

rn = v0β +Qr0 − (P+Q)AVnkn − ZoRQRmn

= v0β + ZoRQRZ̃
Hr0 −Vn+1Hnkn − ZoRQRZ̃

HAVnkn − ZoRQRmn

=
[
Zo Vn+1

]
q
n
, (6.8)

where

q
n
:≡

[
q◦
n

q⊥
n

]
:≡

[
RQRZ̃Hr0

e1β

]
−
[

RQR RQRCn

O Hn

] [
mn

kn

]
∈ Ck+n+1 (6.9)

is the truly deflated GMRes quasi-residual.

The columns of each Zo and Vn+1 are still orthonormal, but those of Zo need no
longer be orthogonal to those of Vn+1. So, in general, ‖rn‖2 += ‖q

n
‖2, but since

rn = Zoq
◦
n +Vn+1q

⊥
n

with Zoq
◦
n = Qrn ∈ Z , Vn+1q

⊥
n
= Prn ∈ Z̃⊥ (6.10)

we have at least

‖q
n
‖22 = ‖q◦

n‖22 + ‖q⊥
n
‖22 = ‖Qrn‖22 + ‖Prn‖22 . (6.11)

It is therefore tempting to minimize ‖q
n
‖2 instead of ‖rn‖2, and as in Section 2 this

amounts to solving an n×(n+1) least squares problem with the extended Hessenberg
matrix Hn for minimizing ‖q⊥

n ‖2, that is, for finding kn and subsequently choosing
mn such that q◦

n = o:

min ‖q
n
‖2 = min ‖q⊥

n
‖2 = min

kn∈Cn
‖e1β −Hnkn‖2 , mn := Z̃Hr0−Cnkn . (6.12)

At this point we see that the QR decomposition of Z is actually not needed since we
can achieve that q◦

n = o and thus Zoq◦
n = o. In other words, we can represent rn as

rn =
[
Z Vn+1

]
q̂
n

(6.13)

with

q̂
n
:≡

[
qZ
n

q⊥
n

]
:≡

[
Z̃Hr0
e1β

]
−
[

I Cn

O Hn

] [
mn

kn

]
∈ Ck+n+1 (6.14)

and are then lead to the same solution as given by (6.12). Formally there is very little
difference between this algorithm and the one of Section 2, but there is an essential
mathematical improvement regarding the deflation of A. In view of Theorem 7 we
call the new algorithm truly deflated GMRes.

In practice, this algorithm will be applied with restarts, and the matrices Z and
Z̃ with the approximate right and left eigenvectors may be updated at each restart.
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Truly deflated GMRes can break down in the same way as deflated GMRes.
Here is the adaptation of Theorem 2, which only requires very small changes.

Theorem 9. If r̂0 +∈ N (Â), then as long as N (Â)∩ K̂n = {o}, the truly deflated
GMRes method defined by (6.4)–(6.5), (6.9), and (6.12) yields in the nth step the
approximate solution xn ∈ x0 + K̂n + U whose quasi-residual q

n
defined by (6.9) has

minimal 2-norm.

However, if N (Â) ∩ Z̃⊥ += {o} and if x0 is chosen such that r̂0 ∈ N (Â), then
(and only then) truly deflated GMRes breaks down in the first step where n = 1.

Moreover, at step n > 1, if (and only if ) N (Â) ∩ K̂n += {o}, the method breaks down
when attempting to construct vn. In case of a breakdown, the search space x0+K̂n+U
does not contain the exact solution x!.

If Z̃⊥ is A–invariant, breakdowns cannot happen, Cn = O, and the Arnoldi
relation (6.4) can be replaced by

AVn = Vn+1Hn . (6.15)

Proof. Essentially we just have to replace in the proof of Theorem 2 every oc-
currence of Z⊥ by Z̃⊥. This applies also to the last sentence, including (6.15). In
that proof we only made use of Z and Z⊥ being complimentary subspaces, but not
of their orthogonality.

Corollaries 3 and 4 can also be adapted easily.

7. Deflation by oblique projection: the adjoint Krylov space. Some very
efficient, computing time and memory space reducing alternatives to GMRes are
based on the nonsymmetric Lanczos biorthogonalization process. Our aim of the next
two sections is to adapt the approach of the previous two sections to these alternatives,
in particular to the quasi-minimal residual (QMR) method of Freund and Nachtigal
[28], which is fully analogous to GMRes. To this end, we first need to look at the
adjoints of the projections Q and P of (5.1) and the adjoint of our restricted operator

Â :≡ PAP.

The adjoint projections are defined by

QH :≡ Z̃E−HZH , PH :≡ I−QH = I− Z̃E−HZH , (7.1)

from which we see that the properties (5.2) of Q and P are supplemented as follows:

QZ = Z , QZ̃⊥ = {o} , PZ = {o} , PZ̃⊥ = Z̃⊥ , (7.2a)

QHZ̃ = Z̃ , QHZ⊥ = {o} , PHZ̃ = {o} , PHZ⊥ = Z⊥ . (7.2b)

So, QH is the oblique projection onto Z̃ along Z⊥, while PH is the oblique projection
onto Z⊥ along Z̃. In particular,

N (P) = Z , N (PH) = Z̃ , R(P) = Z̃⊥ , R(PH) = Z⊥ . (7.3)

For the adjoint operator ÂH = PHAHPH this means that

N (ÂH) ⊇ N (PH) = Z̃ , R(ÂH) ⊆ R(PH) = Z⊥ , (7.4)

We define the dual Krylov subspaces (sometimes called the shadow spaces) started
from ṽ0 ∈ Z⊥ by

L̂n :≡ Kn(Â
H, ṽ0) :≡ span {ṽ0, Â

Hṽ0, . . . , (Â
H)n−1ṽ0} ⊆ Z⊥ . (7.5)
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Methods based on implicitly or explicitly constructing for each n a pair of biorthogonal
bases should choose the right and left bases, respectively, such that

R
([

Z Vn

])
= Z ⊕ K̂n+1 ⊆ Z ⊕ Z̃⊥ = CN , (7.6a)

R
([

Z̃ Ṽn

])
= Z̃ ⊕ L̂n+1 ⊆ Z̃ ⊕ Z⊥ = CN . (7.6b)

In the rest of this section let us again consider the case where Z is A–invariant,
which led to Theorem 7 and motivated using deflated solvers in the first place. The-
orem 7 translates to the adjoint operator as follows.

Theorem 10. Under the assumptions of Theorem 7, Z̃ and Z⊥ are AH–invari-
ant, and the restrictions of AH, ÂH, and O to Z̃ and Z⊥ satisfy

ÂH
∣∣
Z̃ = O

∣∣
Z̃ , ÂH

∣∣
Z⊥ = AH

∣∣
Z⊥ . (7.7)

Proof. We take Z and Z̃⊥ as given by the Jordan decomposition (5.7), and
choose Z̃ and Z⊥, as towards the end of the proof of Theorem 7, such that E = Ik
and E⊥ = IN−k. Then, (5.9) simplifies to

[
Z̃H

ZH
⊥

]
A =

[
J O
O J⊥

] [
Z̃H

ZH
⊥

]
, (7.8)

while (5.10) becomes

AH
[
Z̃ Z⊥

]
=

[
Z̃ Z⊥

] [ JH O
O JH

⊥

]
. (7.9)

From the proof of Theorem 7 we know already that Z̃ and Z⊥ contain in their columns
bases of Z̃ and Z⊥, respectively; so these two spaces are AH–invariant. Finally, in
analogy to (5.11) we have

ÂH
[
Z̃ Z⊥

]
= PHAHPH

[
Z̃ Z⊥

]
= PHAH

[
O Z⊥

]

= PH
[
O Z⊥JH

⊥
]
=

[
O Z⊥JH

⊥
]
, (7.10)

from which, by comparison with (7.9), we find the result (7.7).

8. Deflation by oblique projection: deflated QMR. Now we are ready to
introduce a deflated QMR method that is analogous to our truly deflated GMRes,
but replaces the Arnoldi process by the nonsymmetric Lanczos process. The latter
has the important feature that it can provide approximations of both right and left
eigenvectors. For details about the QMR method, see Freund and Nachtigal [28]; for
a presentation in the notation used here4, see [32]. Deflated QMR is started with the
pair

v0 :≡ r̂0/β = Pr0/β , β :≡ ‖r̂0‖ , (8.1)

ṽ0 :≡ r̃0/β̃ , β̃ :≡ ‖r̃0‖ , (8.2)

where r̃0 must be chosen such that r̃0 ∈ Z⊥ and r̃H0 r̂0 += 0. The Arnoldi relation (6.4)
is then replaced by a pair of Lanczos relations

PAVn = Vn+1Tn , PHAHṼn = Ṽn+1T̃n , (8.3)

4Except that in [32] vk and ṽk were called yk and ỹk, respectively.



18

where we may enforce that all columns of Vn+1 and Ṽn+1 have 2-norm one, and
where

Dn+1 :≡ ṼH
n+1Vn+1

is nonsingular diagonal or, if look-ahead steps [26] are needed, block-diagonal. With
this choice (7.6a) and (7.6b) hold.

So, if we start again from the ansatz (6.5) for the approximate solutions xn,
which implies the representation (6.7) for the residuals, and if we again QR-decompose
AU = Z = ZoRQR as in (6.6), we obtain exactly as in (6.8)

rn =
[
Zo Vn+1

]
q
n
, (8.4)

where

q
n
:≡

[
q◦
n

q⊥
n

]
:≡

[
RQRZ̃Hr0

e1β

]
−
[

RQR RQRCn

O Tn

] [
mn

kn

]
∈ Ck+n+1 (8.5)

is now the deflated QMR quasi-residual. Note that formally the only change is the
replacement of the extended Hessenberg matrixHn by an extended tridiagonal matrix
Tn (or a block tridiagonal one if look-ahead steps are needed). This means short
recurrences (except for the very unlikely special situation of a long look-ahead step)

and thus no need to store the columns of Vn and Ṽn since, in fact, the component
Vnkn of the approximate solutions xn can be updated step by step, as in MinRes.

Since we have chosen to QR-decompose Z — assuming that the number k of its
columns is small — we still have ‖q◦

n‖2 = ‖Qrn‖2 as in (6.11). However, the other
essential change is that the columns of Vn+1 are no longer orthogonal, so, in general,
‖q⊥

n
‖2 += ‖Prn‖2, unlike in (6.11). And, since Vn has changed, so has Cn :≡ Z̃HAVn.

Nevertheless, as in QMR, we may choose to minimize ‖q
n
‖2 instead of ‖rn‖2, and

as in Section 2 this amounts to solving first an n× (n+1) least squares problem with
the extended tridiagonal matrix Tn for minimizing ‖q⊥

n ‖2 and for finding kn. Next,
mn is chosen such that q◦

n = o:

min ‖q
n
‖2 = min ‖q⊥

n
‖2 = min

kn∈Cn
‖e1β −Tnkn‖2 , mn := Z̃Hr0 −Cnkn . (8.6)

As in Section 6, the QR decomposition of Z is seen to be unnecessary. Updating the
least squares problem (8.6) by updating the QR decomposition of Tn is done as in
MinRes and QMR.

Also deflated QMR can break down in the same way as deflated GMRes. The
corresponding adaptation of the first part of Theorem 2 again requires only minor
changes. But additionally, QMR may break down due to a serious breakdown of the
nonsymmetric Lanczos process; see, e.g., [26, 32] for a discussion of these breakdowns.
They can nearly always be circumnavigated by look-ahead.

Theorem 11. If r̂0 +∈ N (Â), then as long as N (Â) ∩ K̂n = {o} and as long as
there are no serious Lanczos breakdowns, the deflated QMR method defined by (6.5)
and (8.3)–(8.6) yields in the nth step the approximate solution xn ∈ x0 + K̂n + U
whose quasi-residual q

n
defined by (8.5) has minimal 2-norm.

However, apart from Lanczos breakdowns, if N (Â) ∩ Z̃⊥ += {o} and if x0 is

chosen such that r̂0 ∈ N (Â), then (and only then) deflated QMR breaks down in the

first step where n = 1. Moreover, at step n > 1, if (and only if ) N (Â) ∩ K̂n += {o},
the method breaks down when attempting to construct vn. In case of these two latter
types of breakdown, the search space x0 + K̂n +U does not contain the exact solution.
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Proof. Here, we have to replace in the proof of Theorem 2 not only every oc-
currence of Z⊥ by Z̃⊥, but also VH

n by ṼH
n , Hn by Tn, ‘orthogonality to K̂n ’ by

‘orthogonality to L̂n ’, and ‘Arnoldi’ by ‘Lanczos’. Then the arguments remain the
same as in the proof of Theorem 9.

9. Deflation by oblique projection: deflated simplified QMR. If A is
Hermitian and the Lanczos biorthogonalization algorithm is started with ṽ0 = v0,
then it simplifies to the symmetric Lanczos algorithm since Ṽn = Vn and T̃n =
Tn = Tn. Consequently, QMR just simplifies to MinRes, where, in particular,
only one matrix-vector product is needed per step. As pointed out by Freund [25]
there are other situations where one can profit from a similar simplification. In fact,
Rutishauser [50] made the point that, in theory, the matrix-vector product by AH in
the nonsymmetric Lanczos algorithm can be avoided since, for every square matrix
A there exists a nonsingular matrix S such that AT = SAS−1, that is, AT is always
similar to A; see, e.g., [35, p. 134] for a proof of this result. Choosing ṽ0 = Sv0 yields
then ṽn = Svn for n > 0; therefore, the multiplication by AH can be replaced by a
multiplication by S followed by complex conjugation. The vectors ṽn are temporarily
needed to compute the recursion coefficients stored in Tn.

However, in general, the spectral decomposition ofA is needed to construct S, and
this makes this idea normally unfeasible. But there are some interesting situations,
where the matrix S is known and simple to multiply with. Freund [25] lists several
classes of S-symmetric and S-Hermitian matrices satisfying by definition ATS = SA,
S = ST and AHS = SA, S = SH, respectively. But we note that the symmetry
conditions S = ST or S = SH are not needed for the simplification.

In one popular application of deflated Krylov space methods, the Wilson formu-
lation of the lattice Dirac operator in lattice Quantum Chromodynamics (QCD), the
Wilson matrix A has the form A = I− κW, where κ ∈ R and W is S-Hermitian for
a diagonal matrix S with diagonal elements ±1. See [7, 10, 29] for early contributions
making use of this feature and [1, 2, 46, 57] for some samples of the many publications
that make use of deflation in lattice QCD.

So, compared to QMR, simplified QMR reduces the cost in both time and memory.
Regarding modifications for the deflated version, there is not much change before one
gets to the details of an implementation. In particular, (8.4)–(8.6) remain unchanged.

10. An alternative interpretation of the augmentation component. We
have seen that in each of the deflated Krylov space methods presented here and based
on the ansatz xn = x0 +Vnkn +Umn, the solution can be found in two steps: first,
an (n+1)×n least-square problem with an extended Hessenberg or tridiagonal matrix
is solved for kn, then an explicit formula for mn is evaluated in order to determine the
augmentation component Umn of the approximate solution and the corresponding
augmentation component −Zmn of the residual. As mentioned, the first part can be
viewed as applying the corresponding standard Krylov space method to the singular
linear system Âx̂ = r̂0. For example, in deflated GMRes, checking the derivation of
the least-square problem in (2.12),

min ‖qn‖2 = min
kn∈Cn

‖e1β −Hnkn‖2 ,

we readily see that it is the coordinate space equivalent of the least squares problem

‖Vn+1 (e1β −Hnkn) ‖2 = ‖r̂0 −PAVnkn‖2 = ‖r̂0 − ÂVnkn‖2 = min! (10.1)

in the space Z⊥. On the other hand, mn := ZHr0 −Cnkn yields in residual space

Zmn = ZZHr0 − ZCnkn = Qr0 −QAVnkn , (10.2)
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a formula relating three vectors in Z. The corresponding correction for the iterates is

Umn = UZHr0 −UCnkn = UZHb−UZHA(x0 +Vnkn) . (10.3)

Now, let us define, with the optimal kn,

x̂n :≡ Vnkn , x̃n :≡ x0 +Vnkn = x0 + x̂n ,

so that xn = x0 + x̂n +Umn = x̃n +Umn. Then (10.1)–(10.3) take the form
∥∥∥r̂0 − Âx̂n

∥∥∥
2
= min

x̂∈K̂n

∥∥∥r̂0 − Âx̂
∥∥∥
2
, (10.4)

‖P(b−Ax̃n)‖2 = min
x̃∈x0+K̂n

‖P(b−Ax̃)‖2 , (10.5)

Zmn = Q(r0 −Ax̂n) = Q(b−Ax̃n) , (10.6)

Umn = UZH(r0 −Ax̂n) = UZH(b−Ax̃n) . (10.7)

This clarifies for deflatedGMRes the relationship between the problems in coordinate
space and those in the Krylov subspace Kn ⊆ Z⊥, in the affine space x0 + Kn ⊆
x0 + Z⊥, and in the augmented space x0 +Kn + U .

Likewise, with differently defined matrices Vn+1, Hn, Q, P, Cn, and the new

matrix Z̃, and thus also with different Â, r̂0, and K̂n, the least squares problem of truly
deflated GMRes in (6.12) corresponds to one in Z̃⊥ that is formally identical with

(10.1) and can be recast as (10.4) or (10.5). Moreover, the formulamn := Z̃Hr0−Cnkn

yields in the residual space still (10.6), while in the search space of the approximants
we get analogously to (10.7)

Umn = UZ̃H(r0 −Ax̂n) = UZ̃H(b−Ax̃n) . (10.8)

The property that (10.4) and (10.5) remain valid can be understood from the fact that
in (6.11) the term ‖q◦

n‖ = ‖Qrn‖ vanishes for the optimal choice of xn, while for the
other term ‖q⊥

n
‖ = ‖Prn‖ ∈ K̂n+1 the coordinate map is still isometric because the

basis of K̂n+1, which consists of the columns of Vn+1, is orthonormal. But, in general,
even if Z̃⊥ is A–invariant, rn is no longer the minimal residual from r0 +AK̂n + Z,
since Z and K̂n ⊆ Z̃⊥ need not be orthogonal to each other.

For deflated QMR, the restricted minimal norm properties (10.4) – (10.5) are no
longer valid, but the derivations of (10.6) and (10.8) remain unchanged, although the
matrices Vn+1, Tn, and Cn have again new meanings.

Yet another interpretation of the augmentation component Umn is found as
follows. Let us consider the oblique projection framework of Sections 5–8 first, with
E :≡ Z̃HZ = Ik as in our presentation of truly deflated GMRes and deflated QMR.
We further define

MA :≡ UZ̃H , QA :≡ I−MAA = I−UZ̃HA , (10.9)

noting that both MAA and QA are projections. Inserting them into (10.8) we obtain

Umn = MA(b−Ax̃n) = MAb− (I−QA)x̃n ,

and we end up with

xn = x̃n +Umn = x̃n +MAb− (I−QA)x̃n = QAx̃n +MAb . (10.10)

This formula holds for truly deflated GMRes and for deflated QMR. An analogous
formula holds in the situation of Sections 2–4, that is, for GMRes and MinRes
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definition null space range range if B = A

PB I−AMB Z (BHŨ)⊥ Z̃⊥

QB I−MBA U (AHBHŨ)⊥ (AHZ̃)⊥

ÂB PBA = PBAQB = AQB U (BHŨ)⊥ Z̃⊥

Table 11.1
The projections PB and QB and the projected operator ÂB for a generalization of the situation

of Sections 5–8 .

deflated with orthogonal projections. We have to replace Z̃ by Z and the pair MA,
QA by

MAH :≡ UZH , QAH :≡ I−MAHA = I−UZHA (10.11)

to obtain likewise

xn = x̃n +Umn = QAH x̃n +MAHb . (10.12)

The last formula is the ‘correction formula’ of Theorem 2.2 in [31] for the case where
B = A there and our normalization E = Ik holds. Both (10.10) and (10.12) relate the
approximate solutions xn of the augmented and deflated method to the approximate
solutions x̃n of a deflated but not augmented method: x̃n ∈ x0 + K̂n. The term
Umn = MA(b − Ax̃n) or Umn = MAH(b − Ax̃n), respectively, is the ‘correction’
due to augmentation.

11. Other projections used in augmentation and deflation methods.
Many publications on particular augmentation and deflation methods apply projec-
tions that are different from the projections P that are the basis of our approach.
In this section we introduce two parameter-dependant projections PB and QB that
cover many of published proposals, the parameter B being a nonsingular matrix of
the same size as A. The most relevant choices for B are

1. B = I for deflated CG, BiCG, and FOM [51],
2. B = AH for deflated CR, GCR [17], MinRes, and GMRes,
3. B = A for deflated BiCR [56].

We start here from a setting suitable for deflated BiCG and BiCR that will be treated
fully in [30]. Then we specialize it to the setting for CG, FOM, CR, GCR, MinRes,
and GMRes considered in [30], which covers most of the published approaches.

Similar to the situation in our Sections 5–8 we let

U :≡ R(U) , Z :≡ AU , Z :≡ R(Z) ,

Ũ :≡ R(Ũ) , Z̃ :≡ AHŨ , Z̃ :≡ R(Z̃) ,

but now we exchange E by a more general EB ∈ Ck×k and introduce a matrix
M ∈ CN×N that replaces our Q:

EB :≡ ŨHBAU , M :≡ UE−1
B ŨH .

Of course, we assume that EB is nonsingular. Finally, we introduce two projections
PB and QB as well as a corresponding projection ÂB of A, all defined in Table 11.1,
which also lists kernels and ranges of these three operators. In the case where B = I
these operators have been used by Erlangga and Nabben [20].

In contrast, by comparing EB with E we see that in Section 5 the choice was
B = A. In this case we have

EA = E , AMA = ZE−1Z̃H = Q , PA = P , QA = I−MA2 , ÂA = PA .
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definition null space range range if B = AH

PB I−AMB Z (BHU)⊥ Z⊥

QB I−MBA U (AHBHU)⊥ (AHZ)⊥

ÂB PBA = PBAQB = AQB U (BHU)⊥ Z⊥

Table 11.2
The projections PB and QB and the projected operator ÂB for a generalization of the situation

of Sections 2–4.

Note that QA is the same as in (10.9) if E = Ik since MA :≡ UE−1
A ŨHA =

UE−1Z̃H = UZ̃H = MA. However, Â += ÂA in general. But the following holds:

Theorem 12. For the projected operators Â of Sections 5–8 and ÂB of Table 11.1
with B = A holds

Â
∣∣
Z = O

∣∣
Z , Â

∣∣
Z̃⊥ = ÂA

∣∣
Z̃⊥ . (11.1)

Moreover, under the assumptions of Theorem 7, where Z ⊕ Z̃⊥ = CN ,

Â
∣∣
Z = ÂA

∣∣
Z = O

∣∣
Z , Â

∣∣
Z̃⊥ = ÂA

∣∣
Z̃⊥ = A

∣∣
Z̃⊥ , (11.2)

and therefore Â = ÂA on CN .

Proof. By definition, Â = PAP, where P is a projection with N (P) = Z and

R(P) = Z̃⊥. Consequently, Â
∣∣
Z = O

∣∣
Z and

Â
∣∣
Z̃⊥ = PAP

∣∣
Z̃⊥ = PA

∣∣
Z̃⊥ = PAA

∣∣
Z̃⊥ = ÂA

∣∣
Z̃⊥ .

Moreover, if Z is A–invariant,

ÂA(Z) = PA(Z) ⊆ P(Z) = {o}.

Finally, under the assumptions of Theorem 7, also Z̃⊥ is A–invariant and, by (5.6),

Â
∣∣
Z̃⊥ = A

∣∣
Z̃⊥ .

Altogether, we obtain (11.2) and, since Z⊕ Z̃⊥ = CN under these assumptions, there

holds Â = ÂA on CN .

An analogous result holds in the situation of Sections 2–4. There is no dual space
there, so we redefine

EB :≡ UHBAU , M :≡ UE−1
B UH .

PB, QB, and ÂB can be defined as before, but their ranges slightly differ; see Ta-
ble 11.2. This is the situations considered in [31]. (But note that our B is defined
differently and equals BH in the notation of [31].) The case where B = I covers
deflated CG [48, 13, 41, 61, 19, 54] and is also a topic of study in [21, 47, 60] and
related work.

Comparing EB with E of Section 2 we see that B = AH here. Then we have

EAH = E , AMAH = ZE−1ZH = Q , PAH = P , QAH = I−MAHA , ÂAH = PA .

NowQAH is the same as in (10.11) if E = Ik sinceMAH :≡ UE−1
AHUHAH = UE−1ZH =

UZH = MAH . The following analog of Theorem 12 holds:
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Theorem 13. For the projected operators Â of Sections 2–4 and ÂB of Table 11.2
with B = AH holds

Â
∣∣
Z = O

∣∣
Z , Â

∣∣
Z⊥ = ÂA

∣∣
Z⊥ . (11.3)

Moreover, if Z and Z⊥ are A–invariant, then

Â
∣∣
Z = ÂAH

∣∣
Z = O

∣∣
Z , Â

∣∣
Z⊥ = ÂAH

∣∣
Z⊥ = A

∣∣
Z⊥ , (11.4)

and therefore Â = ÂA on CN .

Proof. The proof is fully analogous to the one of Theorem 12 and is left out here.

In summary, the two slightly different projections P used here in Sections 2–4
and in Sections 5–8 coincide with the projections PAH and PA defined in Table 11.2
(for B = AH) and Table 11.1 (for B = A), respectively, but they differ from the
projections PI defined there when B = I. The latter projections are those used in
deflated CG [48, 13, 41] and deflated BiCG [30]. Moreover, even when P = PAH

or P = PA our deflated operator Â = PAP differs in general from the deflated
operators ÂAH and ÂA, respectively, unless Z and Z⊥ or Z̃⊥ are exactly right and
left A–invariant subspaces.

12. Deflated quasi-(bi)orthogonal residual methods. The GMRes algo-
rithm of Saad and Schultz [53] is just one incidence of a so-called minimal residual
(MR) method: a Krylov space solver whose iterates and residuals restricted by

xn ∈ x0 +Kn(A, r0) , rn ∈ r0 +AKn(A, r0) (12.1)

have the minimal norm property ‖rn‖2 = min! , which is equivalent to the Galerkin
condition

rn ⊥ AKn(A, r0) . (12.2)

Other methods with the same mathematical properties are the Generalized Minimum
Residual (GCR) method [17], the MinRes algorithm of Paige and Saunders [49] for
Hermitian matrices, and, the Conjugate Residual (CR) method of Stiefel [59] for Hpd
matrices. While MinRes and GMRes transplant the problem into coordinate space,
CG and GCR use directly recursions for xn and rn.

There is an analogue family of so-called orthogonal residual (OR) methods, where
(12.2) is replaced by another Galerkin condition,

rn ⊥ Kn(A, r0) , (12.3)

which implies that the residuals are mutually orthogonal. This family includes the
ubiquitous conjugate gradient (CG) method of Hestenes and Stiefel [34] for Hpd
matrices, which has the property that the residuals have minimal A−1–norm, or,
equivalently, the error vectors have minimal A–norm. Another one is the Full Or-
thogonalization Method (FOM) of Saad [51]. Of course, if A is not Hpd, there is no
A−1–norm, and therefore no minimal norm property. Moreover, for some n an iterate
characterized by (12.1) and (12.3) need not exist. Therefore there is little interest in
this method.

Of much greater importance is the biconjugate gradient (BiCG) method of Lanc-
zos [40] and Fletcher [23], where the Galerkin condition (12.3) is replaced by the
Petrov-Galerkin condition

rn ⊥ Kn(A
H, r̃0) , (12.4)
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with a freely selectable r̃0. There is still the drawback that iterates may not exist
and further breakdown problems lurk (see, e.g., [32]), but this is balanced by the
enormous advantage of short recurrences for iterates and residuals. Eq. (12.4) implies
that the residuals rn and the so-called shadow residuals r̃n of the fictitious linear
system AHx̃ = r̃0 (with initial approximation x̃0 := o) are mutually biorthogonal.

If we consider a transplantation of an OR method to coordinate space, it follows
immediately that rn = r0 + AVnkn is a scalar multiple of vn, the (n + 1)th basis
vector generated by the Arnoldi or the nonsymmetric Lanczos process, respectively.
Moreover, inserting the Arnoldi relation AVn = Vn+1Hn or the Lanczos relation
AVn = Vn+1Tn we see that the coordinate vector kn satisfies

Hnkn = e1β or Tnkn = e1β , (12.5)

respectively, with the n × n matrices Hn and Tn that are the ‘upper parts’ of the
matrices Hn and Tn used in the coordinate space based MR methods. Solving re-
cursively these linear systems by LR or QR factorization we obtain coordinate based
OR methods. In the case of the tridiagonal matrices Tn it is possible to derive short
recurrences for the iterates and residuals, but this means essentially that we apply a
CG-like or BiCG-like algorithm.

In this section we want to point out that we can define augmented and deflated
methods that are not quite (bi)orthogonal residual methods, but might be called
deflated quasi-(bi)orthogonal residual methods and have the property that they turn
into deflated (bi)orthogonal residual methods if K is A–invariant. We start again
from

xn = x0 +Vnkn +Umn , rn = r0 −AVnkn − Zmn . (12.6)

and a representation of rn in terms of the basis of Kn+1 ⊕Z given by
[
Vn+1 Z

]
.

Deflated CG [48, 13, 41, 61, 19, 54] and deflated FOM are normally characterized by

rn ⊥ K̂n ⊕ U . (12.7)

For CG, i.e., for Hpd A, it has been implicitly shown in various ways [13, 36, 48]
(see also [19, Thm. 4.1] and [54, Thm 4.2]) that this implies the following optimality
result, for which we provide the sketch of a straightforward proof.

Theorem 14. Assume A is Hpd, define Kn and U as in Section 2, and let again
x! :≡ A−1b. Then the condition (12.7) implies that xn is optimal in the sense that
‖xn − x!‖A is minimal under the restriction xn ∈ x0 + K̂n ⊕ U .

Proof. Assume xn and rn are represented as in (12.6), and let

Ψ(kn,mn) :≡ 1
2 ‖xn − x!‖2A = 1

2 ‖x0 +Vnkn +Umn − x!‖2A .

Then straightforward differentiation shows that

∂Ψ

∂kn
= − rHnVn ,

∂Ψ

∂mn
= − rHnU ,

and

∂2Ψ

(∂kn)2
= VH

nAVn ,
∂2Ψ

∂kn ∂mn
= O ,

∂2Ψ

(∂mn)2
= UHAU .

Any stationary point is characterized by zero gradients, that is, by rn ⊥ R(Vn) = Kn

and rn ⊥ R(U) = U . Moreover, we have there a minimum since VH
nAVn and UHAU

are Hpd.
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The deflated CG algorithms of [48, 13, 41, 61, 19, 54] fulfill condition (12.7),
and thus maintain global optimality. For deflation they implicitly or explicitly apply
oblique projections, namely PI or QI of Table 11.2 (with B = I and AT = A, so that
PI = QT

I ). Dostál [13] calls MA a conjugate projection. Moreover, these algorithms
are all based on recurrences for iterates and residuals, so they are not coordinate space
based. But unless Z is exactly A–invariant, the approach promoted in this paper
which leads to the decomposition K̂n ⊕ Z is in conflict with a global optimization
criteria valid for K̂n ⊕ U . To obtain simple coordinate space based methods we may
drop global optimality and replace (12.7) by

rn ⊥ K̂n ⊕ Z . (12.8)

We will call a method with this property a deflated quasi-orthogonal residual (DQOR)
method. For such a method we have the following trivial corollary.

Corollary 15. Under the assumptions of Theorem 14, if Z is A–invariant, the
condition (12.8) implies that xn is optimal in the sense that ‖xn − x!‖A is minimal
under the restriction (12.1).

Proof. If Z is A–invariant, U = A−1Z = Z. So, (12.8) implies (12.7) here.

With the quasi-residual q
n
of (2.10), the condition (12.8) transforms into

q
n
⊥ Ck+n (12.9)

if we consider Ck+n as the subspace of Ck+n+1 characterized by a zero last component.
This means that the first k + n components of q

n
must be zero, that is,

[
Ik Cn

O Hn

] [
mn

kn

]
=

[
ZHr0
e1β

]
. (12.10)

This system is upper block triangular with a unit (1, 1) block, and therefore it reduces
to a linear system with the (2, 2) block for computing kn and an explicit formula for
mn, in complete analogy to the least squares problem (2.11) that we solved before:

Hnkn = e1β , mn := ZHr0 −Cnkn . (12.11)

In the setting of deflated GMRes of Section 2 these two formulas define a corre-
sponding particular DQOR method. If A is Hermitian, we can replace Hn by the
tridiagonal Tn and profit from short recurrences for updating xn.

In the setting of truly deflated GMRes of Section 6, where q
n
is defined by (6.9),

the conditions (12.8) and (12.9) are no longer equivalent. For simplicity we may just

fulfil the latter, which yields (12.10), except that ZH is replaced by Z̃H, so that (12.11)
turns into

Hnkn = e1β , mn := Z̃Hr0 −Cnkn . (12.12)

This defines another particular DQOR method.

Finally, in the setting of deflated QMR of Section 8 condition (12.9) leads to

Tnkn = e1β , mn := Z̃Hr0 −Cnkn . (12.13)

As can be readily verified, in this setting condition (12.9) is equivalent to

rn ⊥ L̂n ⊕ Z̃ , (12.14)

which characterizes a deflated quasi-biorthogonal residual (DQBiOR) method. The
Recycling BiCG (RBiCG) method of Ahuja [4, 5] seems to be of this type.
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DQOR and DQBiOR methods are in general not optimal. But we think that
this is a minor disadvantage. It is shared by the class of orthogonal residual methods,
whose residual norms depend in a well-known way discovered by Paige and Saunders
[49] from those of the corresponding MR method; see, e.g., [16] and [33].

Conclusions. We have described several augmented and deflated Krylov meth-
ods for solving Ax = b that all fit into a common theoretical framework. They are
coordinate space based in the sense that we generate recursively bases for the aug-
mented search spaces K̂n⊕U and K̂n+1⊕Z for the iterates xn and the corresponding
residual rn, respectively, and determine the coordinates of xn. Here, Z = AU . The
typical examples are deflated MinRes, GMRes, and QMR. Details differ from the
proposals in the literature: for MinRes a little, for GMRes much more.

We assume that a basis for U is given, and that typically, but not necessarily, this
subspace is close to anA–invariant subspace belonging to eigenvalues of small absolute
value. Deflation replaces these by zero. We point out that the deflated operator Â :≡
PAP and the corresponding Krylov subspaces K̂n :≡ Kn(Â, r̂0) generated from r̂0 :≡
Pr0 can be chosen in different ways. For deflated MinRes an orthogonal projection P
on Z⊥ is appropriate. The same projection is also the standard for deflated GMRes.
We suggest for non-Hermitian A another choice: an oblique projection onto Z̃⊥ along
Z. Here Z̃ is an approximately left A–invariant subspace corresponding to the same
eigenvalues as U and Z. This choice has the major advantage that in the case of
exact A–invariance, these eigenspaces are really deflated in the sense that the kernel
of Â contains U = Z, while on Z̃⊥ the operators Â and A coincide. The so deflated
methods are based on the nonorthogonal decomposition Z ⊕ K̂n+1 ⊆ Z ⊕ Z̃⊥ =
CN , which needs to be complimented by an analogous nonorthogonal decomposition
Z̃ ⊕ L̂n+1 ⊆ Z̃ ⊕Z⊥ = CN for the shadow residual search space if the nonsymmetric
Lanczos algorithm is applied to generate the bases. These decompositions lead to
truly deflated GMRes and deflated QMR.

As further alternatives we suggest deflated quasi-orthogonal residual (DQOR)
methods and deflated quasi-biorthogonal residual (DQBiOR) methods that are sim-
ple analogs of the deflated MR and QMR methods discussed before.

While the deflated operators Â we promote are defined differently from those in
most of the literature (except for the one in, e.g., [62], which coincides in the symmet-
ric case), we can show that in the case where Z is exactly A–invariant our deflated
operators are equivalent with those (for Hermitian and non-Hermitian problems, re-
spectively) that are discussed in two companion papers [31, 30] and have the widely
used standard form, but are geared towards different Petrov-Galerkin conditions.

Finally, we need to admit that there are many important aspects we have missed to
discuss here. First of all, the determination and choice of the approximately invariant
subspaces U and Ũ or Z̃. This topic has been often treated in the literature; see, in
particular, [2, 3, 6, 9, 12, 37, 42, 43, 44, 45, 48, 57, 62]; of special importance for us are
[1, 3, 20] as they also determine left eigenspaces, though apply them differently later.
Harmonic Ritz values (see, e.g., [42, 43]) are mostly recommended for MR methods,
while ordinary Ritz values are more appropriate for OR methods [16, pp. 285-286].
The technique we should apply also depends on the type of problem we have. Do
we need to solve just one very large systems of linear equations? Are there several
right-hand sides? Or even a sequence of related systems? Do we apply a method that
is restarted at regular intervals? Is multiplication by AH possible?

A further topic we skipped is residual estimates and condition number estimates
for the new methods we proposed. But, as we mentioned, due to Theorem 7 such
estimates are trivial for the methods of Sections 5–9 if Z is exactly A–invariant.
Finally, we do neither present any numerical results, nor do we discuss cost and
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implementation issues: how to optimize memory usage and reduce computational
cost, while keeping numerical stability under control. For example, it is well known
[44] that applying the implicitly restarted Arnoldi or Lanczos algorithms can reduce
the computational cost of deflated solvers that apply the Arnoldi or Lanczos processes.
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of the TU Berlin to bring up this topic and to share with him their insight. He would
also like to thank André Gaul, Daniel Kressner, and Jens-Peter Zemke for discussing
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Appendix: An example where deflated MinRes and GMRes break down
after any given number of steps. Let us consider examples of size N × N that
are of the following form:

A :=




0 1 oT

1 0 oT

o o M



 , P :=




1 0 oT

0 0 oT

o o IN−2



 ,

where M is a symmetric nonsingular (N−2)× (N−2) matrix whose minimal polyno-
mial is of degree κ, where 1 ≤ κ ≤ N−2. Clearly, A is real symmetric and nonsingular
too. We obtain

PA =




0 1 oT

0 0 oT

o o M



 , Â = PAP =




0 0 o
0 0 o
o o M



 ,

so that in the notation of Section 2 we have in particular

Z = N (P) = span {e2} ,
Z⊥ = R(P) = CN . span {e2} ,

AZ⊥ = R(AP) = CN . span {e1} ,

N (Â) = span {e1, e2} ,

N (Â) ∩ Z⊥ = span {e1} .

We can choose b and x0 such that r0 = r̂0 = Pr0 =
[
1 0 wT

]T
, where w satisfies

w =
κ∑

i=1

βi M
i w . (12.15)

with βκ += 0. Here, 1 −
∑κ

i=1 βiζi is a comonic representation of the minimal poly-
nomial of M. Relation (12.15) is achieved by choosing w in general position with
respect to the eigenvectors of M. For example, we could choose

M = diag {1, 1, . . . , 1︸ ︷︷ ︸
N−κ−1

, 2, . . . ,κ}

and w as a vector of ones.

The first κ+ 1 Krylov vectors r̂0, Â r̂0, . . . , (Â)κ r̂0 are




1
0
w



 ,




0
0

Mw



 ,




0
0

M2w



 , . . . ,




0
0

Mκw



 .
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They are linearly independent, hence a basis of K̂κ+1. In view of (12.15) they satisfy

r̂0 −
κ∑

i=1

βi (Â)i r̂0 = e1 ∈ span {e1} = N (Â) ∩ Z⊥ .

Consequently, N (Â) ∩ K̂κ+1 += {o}, whence according to Theorems 2 and 5 deflated
GMRes and deflated MinRes (and thus also RMinRes of [62]) break down when
attempting to construct vκ+1, while, obviously, they do not break down before. To
understand this better consider the image of the Krylov basis under the mapping Â,
which spans ÂK̂κ+1:




0
0

Mw



 ,




0
0

M2w



 , . . . ,




0
0

Mκw



 ,




0
0

Mκ+1w



 .

Due to (12.15) these κ + 1 vectors are linearly dependent, so dim ÂK̂κ+1 = κ only,
which shows that we have Case (i) of Lemma 1, namely a breakdown during step κ+1
of the Arnoldi process. Here, 2 ≤ κ+ 1 < N .

For a breakdown in the first step we could, for example, consider the same type of
A with an arbitrary M combined with P = e1eT1 and an arbitrary w. Then Â = O,
and the method will fail for any initial r̂0 += o.

However, as we mentioned in the beginning of Section 3, a breakdown is very
unlikely if Z is chosen such that an approximately invariant subspace is deflated and
the deflated eigenvalues are well separated from the not deflated ones. In our example
AZ = span {Ae2} = span {e1}, so Z is not at all approximately invariant.
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