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SPACE-TIME VARIATIONAL SADDLE POINT FORMULATIONS
OF

STOKES AND NAVIER–STOKES EQUATIONS

RAFAELA GUBEROVIC, CHRISTOPH SCHWAB, AND ROB STEVENSON

Abstract. The instationary Stokes and Navier-Stokes equations are consid-
ered in a simultaneously space-time variational saddle point formulation, so
involving both velocities and pressure. For the instationary Stokes problem,
it is shown that the corresponding operator is a boundedly invertible linear
mapping between suitable Hilbert spaces, being Cartesian products of (inter-
sections of) Bochner spaces, or duals of those. Based on these results, for
the instationary Navier-Stokes equations local uniqueness of solutions is es-
tablished, as well as existence for sufficiently small data.

1. Introduction

1.1. Background and motivation. The classical approach to the existence of
weak solutions of the instationary, incompressible Navier-Stokes Equations views
these equations as an infinite-dimensional dynamical system (see, e.g., [Tem79] and
the references there). From this point of view, most methods for the numerical
solution of the instationary (Navier–) Stokes equations are time marching methods:
assuming that some approximate solution on time t is available, for a sufficiently
small time increment ∆t > 0, an approximate solution on time t + ∆t is computed
by solving a corresponding stationary problem.

Because of the generally lacking global smoothness of the solution, efficient nu-
merical schemes have to be adaptive. With suitable time-marching schemes, it is
possible to adapt both the spatial ‘mesh’, and the time step ∆t depending on t.
Combined space-time adaptivity, where ∆t is adapted depending on the spatial loca-
tion, are not easily accomodated by classical time stepping schemes, although some
studies on local time stepping have appeared, see e.g. [EL94, FNWW09, Sav08]. In
any case, due to the character of time marching, it seems very hard to guarantee a
kind of quasi-optimal distribution of the ‘grid-points’ over space and time, and no
results in this direction are presently known to us.

To develop an alternative for time marching schemes, in [SS09, CS11] we stud-
ied simultaneously space-time variational formulations of linear parabolic evolution
equations. The operators defined by such variational formulations were shown to
be boundedly invertible between a Hilbert space H1 and the dual of another Hilbert
space H2, both H1 and H2 being Bochner spaces or intersections of those.

Date: October 9, 2011.
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Key words and phrases. Instationary Stokes and Navier-Stokes equations, space-time varia-

tional saddle point formulation, well-posed operator equation.
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By equipping H1 and H2 with Riesz bases, being tensor products of temporal
and spatial wavelet collections, the space-time variational problem was written as
an equivalent well-posed, bi-infinite, symmetric positive definite matrix-vector sys-
tem by forming normal equations. By running on this system an adaptive wavelet
scheme, in its original form being proposed in [CDD01], a sequence of approxima-
tions is produced in linear computational complexity that converges with the best
possible nonlinear approximation rate from the basis, i.e., the rate of the so-called
best N -term approximations.

Because of the application of tensorized wavelet collections in space and time,
under mild (Besov) smoothness conditions the latter rate is equal (in some situ-
ations up to log-factors) to the best possible approximation rate for the solution
of a corresponding stationary problem from the spatial wavelet basis, i.e., there is
(hardly) no increase in the order of computational complexity as a consequence of
the additional time dimension.

Besides the computational realization of the best possible nonlinear approxima-
tion rate, the latter property is a major advantage when the approximate solution
is needed as function of simultaneously space and time, as it is the case for ex-
ample in time-dependent optimal control problems, see [GK11]. Indeed, with time
marching schemes this would require the availability of the approximate solutions
simultaneously at all discrete times, requiring a huge amount of memory.

The results mentioned so far generalize to simultaneously space-time variational
formulations of nonlinear parabolic evolution equations when they define a mapping
from H1 into H ′

2, and the Fréchet derivative at the solution is boundedly invertible
between H1 and H ′

2 (see [Ste11a]). The latter condition is satisfied for example for
a semi-linear equation with a time-independent spatial operator.

Aiming at the application of space-time variational formulations to the incom-
pressible instationary (Navier–) Stokes equations, there are two possibilities. The
first one is to reduce these equations to problems for the divergence-free veloci-
ties only. Then the Stokes equations read as a linear parabolic evolution problem,
and the aforementioned results concerning well-posed space-time variational for-
mulations apply. The reduction to divergence-free velocities is also the standard
approach followed in the literature for demonstrating existence and uniqueness of
solutions (see e.g. [Tem79, DL92]).

In [Ste11b], we investigated the application of the adaptive wavelet scheme to
the space-time variational divergence-free velocities formulation of the instationary
Stokes problem. With the standard choice of the Hilbert spaces H1 and H2, it
turns out that it is necessary to construct wavelet collections on the spatial domain
Ω ⊂ Rn that are both, properly scaled, a basis for the space of divergence-free
H1(Ω)n-functions subject to essential boundary conditions, and for its dual space.
Since so far we are not able to construct such wavelets, using an H2-regularity
result for the stationary Stokes operator we showed bounded invertibility of the
instationary Stokes operator for alternative spaces H1 and H2 which are defined by
making a shift in the spatial smoothness index of the Bochner spaces. This result is
similar in spirit to the regularity result in [Tem79, Ch.III, §1, Prop. 1.2]. Wavelets
suitable for this formulation were constructed for rectangular domains and free-slip
boundary conditions.

Bounded invertibility results for scales of spaces H1 and H2 are demonstrated in
[GSSt11], together with mapping properties of the Navier-Stokes operator.
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1.2. This paper. The approach to tackle the instationary (Navier–) Stokes equa-
tions by a reduction to equations for the divergence-free velocities has the obvious
disadvantage that no results for the pressure are obtained. Moreover, the numerical
solution of these equations by an adaptive wavelet scheme requires a divergence-free
wavelet basis, which seems to be realizable in very restricted settings only.

Therefore, in this paper as the second possibility we study simultaneously space-
time variational saddle point formulations of the (Navier-) Stokes equations for the
combined pair of velocities and pressure. For both free-slip and no-slip boundary
conditions, we prove that the Stokes operator defined by this variational formula-
tion is boundedly invertible between a Hilbert space H1 and the dual of another
Hilbert space H2. In order to be able to arrive at this result, we have to assume
H2-regularity of the Poisson or of the stationary Stokes operator, which imposes
standard smoothness or convexity conditions on the spatial domain.

Both trial- and test-spaces H1 and H2 are Cartesian products of spaces for veloci-
ties and pressure. Knowing the results for the space-time variational formulations of
parabolic evolution equations, the velocity components of the test- and trial-spaces
are as expected, and so are the corresponding pressure components of either test-
or trial-space. The remaining pressure component, now being fully determined by
the instationary Stokes operator, is less standard being the dual of the intersection
of two Bochner spaces.

In any case for polytopal spatial domains, suitable wavelet bases can be con-
structed for all these spaces. Since for free-slip or no-slip boundary conditions,
either a pressure or a velocity space requires C1 wavelets, we expect on non-
rectangular spatial domains concrete wavelet constructions to be technically in-
volved.

With the spaces H1 and H2 as above, additionally it will be shown that the in-
stationary Navier–Stokes operator maps H1 into H ′

2 (for no-slip conditions on two-
and three-dimensional domains, and for free-slip conditions on two-dimensional do-
mains). Since our results for the instationary Stokes operator generalize to the
linearized instationary Navier–Stokes operator –the difference being a lower order
spatial differential operator–, we conclude that any Navier-Stokes solution is lo-
cally unique. Moreover, we can use the adaptive wavelet solver to approximate it
with the best possible nonlinear approximation rate in space-time tensorized bases.
Finally, since also Lipschitz continuity of the instationary Navier–Stokes operator
will be shown, using a fixed-point argument we conclude existence of a space-time
variational Navier–Stokes solution, albeit under a small data hypothesis.

To the best of our knowledge, well-posedness, i.e., bounded invertibility of the
instationary Stokes operator for the combined pair of velocities and pressure has
not been established before. Compare the discussion at the end of [Tem79, Ch.III,
§1.5] where regularity of the pair of velocities and pressure is established only under
additional smoothness conditions on the right-hand side. This well-posedness of
the instationary Stokes operator, and more generally of the linearized instationary
Navier-Stokes operator, is an essential ingredient for any numerical solution method
that applies to the simultaneous space-time formulation of the (Navier-) Stokes
equations for the combined pair of velocities and pressure (cf. [PR94]).

This paper is organized as follows: In Section 2, necessary and sufficient condi-
tions are recalled for bounded invertibility of generalized linear saddle point prob-
lems. In Sections 3 and 4, these conditions are verified for space-time variational
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formulations of the instationary Stokes problem with free- and no-slip boundary
conditions, respectively. In Section 5, the aforementioned mapping properties of
the instationary Navier–Stokes operator with homogeneous initial datum are veri-
fied.

Throughout, with C ! D we will mean that C can be bounded by a multiple of
D, independently of parameters on which C and D may depend. Obviously, C " D
is defined as D ! C, and C ! D as C ! D and C " D.

2. Generalized saddle point problems

For Banach spaces U , V , P , and Q, and bounded bilinear forms a : U × V → R,
b : P×V → R, and c : U×Q → R, we consider the problem of finding (u, p) ∈ U×P
that, for given f ∈ V ′, g ∈ Q′, satisfy

(2.1) a(u, v) + b(p, v) + c(u, q) = f(v) + g(q) (v ∈ V, q ∈ Q).

In this section, we collect sufficient and necessary conditions for the corresponding
L : (u, p) %→ (f, g) ∈ L(U×P, V ′×Q′) to be boundedly invertible. These conditions
can already be found in [BCM88], and a Hilbert space setting, in [Nic82]. Since
some intermediate results will be used in the following sections, we have chosen to
include the short arguments.

We set B ∈ L(V, P ′), C ∈ L(U,Q′) by

(Bv)(p) = b(p, v) = (B′p)(v) and (Cu)(q) = c(u, q) = (C ′q)(u).

For a closed subspace Z of some Banach space X, the polar set Z0 ⊂ X ′ is defined
by {f ∈ X ′ : f(Z) = 0}.

Theorem 2.1. Recalling a, b and c being bounded, the variational problem (2.1)
defines boundedly invertible linear mapping U × P → V ′ × Q′ if and only if the
following three conditions are satisfied:

(i) for all f ∈ (kerB)′, there exists a unique u ∈ kerC such that a(u, v) = f(v)
(v ∈ kerB), and ‖u‖U ! ‖f‖(ker B)′ ,

(ii) for all g ∈ Q′, there exists a u ∈ U such that c(u, q) = g(q) (q ∈ Q), and
‖u‖U ! ‖g‖Q′ ,

(iii) for all f ∈ (kerB)0, there exists a unique p ∈ P such that b(p, v) = f(v)
(v ∈ V ), and ‖p‖P ! ‖f‖V ′ .

Proof. For completeness we give the proof.
Suppose (i)–(iii) are satisfied, and let f ∈ V ′, g ∈ Q′. Condition (ii) shows that

there exists a ū ∈ U with

(2.2) c(ū, q) = g(q) (q ∈ Q),

with ‖ū‖U ! ‖g‖Q′ . Condition (i) shows that there exist a unique u0 ∈ kerC that
solves

a(u0, v) = f(v)− a(ū, v) (v ∈ kerB),
with ‖u0‖U ! ‖f‖V ′ + ‖ū‖U . With u := ū + u0, Condition (iii) now shows that
there exists a unique p ∈ P that solves

(2.3) b(p, v) = f(v)− a(u, v) (v ∈ V, q ∈ Q),

with ‖p‖P ! ‖f‖V ′ + ‖u‖U . From (2.2), (2.3), and u0 ∈ kerC, we conclude that
there exists a unique solution (u, p) ∈ V ×Q of (2.1) with ‖u‖U + ‖p‖P ! ‖f‖V ′ +
‖g‖Q′ .



SPACE-TIME VARIATIONAL FORMULATIONS OF (NAVIER–) STOKES 5

Conversely, let (2.1) define a boundedly invertible linear mapping. Choose g =
0 and f ∈ (kerB)′ and extend f to an element of V ′ with equal norm. Then
necessarily u ∈ kerC and it solves a(u, v) = f(v) (v ∈ kerB), which shows (i).

By taking f = 0, one infers (ii).
By taking f ∈ (kerB)0 and g = 0, (i) shows that u = 0, and (iii) follows. #

Proposition 2.2. Recalling b and c being bounded, conditions equivalent to (ii)
and (iii) are

(ii)′ inf0 "=q∈Q sup0 "=u∈U
c(u,q)

‖q‖Q‖u‖U
> 0,

(iii)′ inf0 "=p∈P sup0 "=v∈V
b(p,v)

‖p‖P ‖v‖V
> 0,

respectively.

The equivalence of (ii) and (ii)′ follows from the equivalence of (a) and (e)
in Lemma 2.3 stated below. Another application of Lemma 2.3 shows that (iii)′

implies that B′ ∈ L(P, V ′) is a homeomorphism onto (kerB)0, which means (iii).
Conversely, since ranB′ ⊂ (kerB)0 by definition, (iii) implies that (kerB)0 = ranB′

and that B′ is injective, and so, by Lemma 2.3, that (iii)′ is valid.

Lemma 2.3. For two separable Banach spaces X and Y , let T ∈ L(X, Y ′). Then
the following are equivalent:

(a) inf0 "=y∈Y sup0 "=x∈X
(Tx)(y)
‖x‖X‖y‖Y

> 0,
(b) T ′ ∈ L(Y, X ′) is a homeomorphism onto its range,
(c) T ′ injective and ranT ′ is closed,
(d) T ′ injective and ranT ′ = (kerT )0,
(e) T has a bounded right-inverse,
(f) T is surjective.

Proof. (a)⇔(b) and (b)⇒(c) follow easily.
(c)⇒(b) is a consequence of the open mapping theorem.
(c)⇔(d) follows from the closed range theorem.
(f)⇒(e) follows from T ∈ L(X \ kerT, Y ′) being bijective, and so by the open

mapping theorem, being boundedly invertible.
(e)⇒(f) is obvious.
(f)⇒(c): Since ranT is closed, the closed range theorem shows that ranT ′ is

closed, and that (kerT ′)0 = ranT = Y ′, so that, by an application of the Hahn-
Banach theorem, kerT ′ = ∅.

(c)⇒(f): Since ranT ′ is closed, the closed range theorem shows that ranT =
(kerT ′)0 = Y ′ because T ′ is injective. #

3. The instationary Stokes problem with free-slip boundary
conditions, as a well-posed operator equation

Let Ω ⊂ Rn be a bounded Lipschitz domain. Later in this section, we will have
to add the condition that Ω is such that the Poisson problem is H2(Ω)-regular.

Given vector fields f̃ on [0, T ]×Ω and u0 on Ω, and functions g on [0, T ]×Ω, and
gi (1 ≤ i ≤ n−1) on [0, T ]×∂Ω, we consider the instationary inhomogeneous Stokes
problem with free-slip boundary conditions of finding for some ν > 0 a velocity field
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u and corresponding pressure p that satisfy

(3.1)






∂u
∂t − ν∆xu +∇x p = f̃ on [0, T ]× Ω,

divx u = g on [0, T ]× Ω,
u · n = 0 on [0, T ]× ∂Ω,

∂u
∂n · τi = gi on [0, T ]× ∂Ω, 1 ≤ i ≤ n− 1,
u(0, ·) = u0 on Ω,

where τ1, . . . , τn−1 is an orthonormal set of tangent vectors.
By taking the canonical scalar product of the first equation with smooth test

functions v, that as function of x have vanishing normals at ∂Ω, and that as
function of t vanish at t = T , and by applying integration by parts in space and
time, and by multiplying the second equation by smooth functions q, we arrive at
a variational problem of the form (2.1), where

(3.2)






a(u,v) = −
∫ T

0

∫

Ω
u · ∂v

∂t dxdt +
∫ T

0

∫

Ω
ν∇xu : ∇xv dxdt,

b(p,v) = −
∫ T

0

∫

Ω
p div v dxdt,

c(u, q) =
∫ T

0

∫

Ω
q div u dxdt,

f(v) =
∫ T

0

∫

Ω
f̃ · v dxdt +

∫ T

0

∫

∂Ω

n−1∑

i=1

(v · τi)gidxdt +
∫

Ω
u0 · v(0, ·) dx,

g(q) =
∫ T

0

∫

Ω
g q dxdt.

Theorem 3.1. With L2,0(Ω) := L2(Ω)/R, H̃2(Ω) := {p ∈ H2(Ω) : ∂p
∂n = 0 on ∂Ω}/R,

H1(Ω) := {w ∈ H1(Ω)n : w · n = 0 on ∂Ω} and

U := L2((0, T );H1(Ω)),

P :=
(
L2((0, T );L2,0(Ω)) ∩H1

0,{T}
(
(0, T ); H̃2(Ω)′

))′
,

V := L2((0, T );H1(Ω)) ∩H1
0,{T}((0, T );H1(Ω)′),

Q := L2((0, T );L2,0(Ω)),

the mapping L : (u, p) %→ (f , g) as in (2.1) with bilinear forms from (3.2) defines
a boundedly invertible linear mapping U × P → V′ × Q′. (Here, as usual, dual
spaces should be interpreted with respect to the identifications L2(Ω)′ . L2(Ω),
L2,0(Ω)′ . L2,0(Ω), or L2((0, T );L2,0(Ω))′ . L2((0, T );L2,0(Ω)), respectively.)

To prove this theorem, in the following, we will verify the conditions of the
abstract existence and uniqueness result, Theorem 2.1.

The bilinear forms a : U × V → R, b : P × V → R, and c : U × Q →
R are bounded. For b, this follows from div ∈ L(H1(Ω), L2,0(Ω)) and div ∈
L(H1(Ω)′, H̃2(Ω)′), the latter, because of the density of D(Ω) in H1(Ω)′, being
equivalent to ∇ ∈ L(H̃2(Ω),H1(Ω)). We conclude that I ⊗ divx ∈ L(V, P ′), being
equivalent to b : V × P → R is bounded.

For u ∈ U, q ∈ Q, one has c(u, q) = −
∫ T
0

∫
Ω∇xq · u dxdt. Since Ω is a bounded

Lipschitz domain,

(3.3) ∇ ∈ L(L2,0(Ω), (H1
0 (Ω)n)′) is a homeomorphism onto its range
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([Neč67], cf. [Tem79, Ch.1, Remark 1.4(ii)]). By an application of Lemma 2.3, this
means that inf0 "=q∈L2,0(Ω) sup0 "=u∈H1

0 (Ω)

R
Ω q div udx

‖q‖L2,0(Ω)‖u‖H1(Ω)n
> 0, and so also that

inf0 "=q∈L2,0(Ω) sup0 "=u∈H1(Ω)

R
Ω q div u dx

‖q‖L2,0(Ω)‖u‖H1(Ω)n
> 0. Since, additionally, (u, q) %→

∫
Ω q div u dx is bounded on H1(Ω)×L2,0(Ω), one has that ∇ ∈ L(L2,0(Ω),H1(Ω)′),

and so I ⊗∇x ∈ L(Q,U′) are a homeomorphisms onto their ranges by Lemma 2.3.
Knowing the boundedness of c : U×Q → R, the latter is equivalent to Condition (ii)
of Theorem 2.1.

To show Condition (i) of Theorem 2.1, we set

H1(Ω) := {u ∈ H1(Ω) : div u = 0},
define H0(Ω) as the closure of H1(Ω) in L2(Ω)n, and set

H−1(Ω) := H1(Ω)′

(to be interpreted with respect to the identification H0(Ω)′ . H0(Ω).)
Since divH1(Ω) ⊂ L2,0(Ω), it holds that

(3.4) ker(div ∈ L(U, Q′)) = L2((0, T );H1(Ω)).

Lemma 3.2. With H̃−1
(Ω) denoting the closure of H1(Ω)) in H1(Ω)′, it holds

that

ker(I ⊗ div ∈ L(V, P ′)) = L2((0, T );H1(Ω)) ∩H1
0,{T}((0, T ); H̃−1

(Ω)).

Proof. In view of (3.4) and the definitions of V and P ′, it suffices to show that
N := ker(div ∈ L(H1(Ω)′, H̃2(Ω)′)) = H̃−1

(Ω). By div ∈ L(H1(Ω)′, H̃2(Ω)′), N
contains H̃−1

(Ω).
To prove that N ⊂ H̃−1

(Ω), it suffices to show the reversed inclusion for their
polar sets

{u ∈ H1(Ω) : 〈u,w〉L2(Ω) = 0, w ∈ N }

⊃ {u ∈ H1(Ω) : 〈u,w〉L2(Ω) = 0, w ∈ H̃−1
(Ω)}.

(3.5)

The set on the right is contained in {u∈H1(Ω) :〈u,w〉L2(Ω) =0, w ∈ D(Ω), div w =
0}. As shown by De Rham ([dR84], cf. [Tem79, Ch. 1, Prop. 1.1]), a distribu-
tion u that vanishes on all divergence-free test functions is a gradient of another
distribution. If, additionally u ∈ H1(Ω), then necessarily u ∈ ∇H̃2(Ω).

The adjoint of div ∈ L(H1(Ω)′, H̃2(Ω)′) is −∇ ∈ L(H̃2(Ω),H1(Ω)). The latter
operator is bounded and so closed. The closed range theorem now tells us that the
space on the left in (3.5) is equal to ∇H̃2(Ω), which completes the proof. #

Lemma 3.3. If the L2(Ω)n-orthogonal projector onto H0(Ω) is bounded on H1(Ω),
then H̃−1

(Ω) = H−1(Ω).

Proof. As shown in, e.g., [Tem79, Ch.1, Th. 1.4], the closure of the divergence-free
test functions in L2(Ω)n is {u ∈ L2(Ω)n : div u = 0, u · n = 0 on ∂Ω}, and so this
space is contained in H0(Ω). On the other hand, if for (uk)k ⊂ H1(Ω), uk → u in
L2(Ω)n, and so in D(Ω)′, then divu = 0, and so uk → u in H(div;Ω), in particular
meaning that u · n = limk→∞ uk · n = 0 on ∂Ω. We conclude that

H0(Ω) = {u ∈ L2(Ω)n : div u = 0, u · n = 0 on ∂Ω}.
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Let Π denote the L2(Ω)n-orthogonal projector onto H0(Ω). From H1(Ω) ⊂
H0(Ω) ∩H1(Ω), we have H1(Ω) ⊂ 3Π|H1(Ω). On the other hand, if Π is bounded
on H1(Ω), then 3Π|H1(Ω) ⊂ H0(Ω) ∩H1(Ω) = {u ∈ H1(Ω) : div u = 0} = H1(Ω),
i.e.,

(3.6) H1(Ω) = 3Π|H1(Ω).

If, for some (fn)n ⊂ H1(Ω), fn → f in H1(Ω)′, then, viewed as functionals on
H1(Ω), fn → f in H−1(Ω), i.e., H̃−1

(Ω) ⊂ H−1(Ω).
Conversely, let f ∈ H−1(Ω). Then there exists a (fn)n ⊂ H1(Ω) with fn → f

in H−1(Ω). For any u ∈ H1(Ω), fn((I − Π)u) = 〈fn, (I − Π)u〉L2(Ω)n = 〈(I −
Π)fn,u〉L2(Ω)n = 0. So, after trivially extending f to a functional on H1(Ω) by
means of f(3(I − Π)) = 0, by the boundedness of Π on H1(Ω) and (3.6) we
have ‖f − fn‖H1(Ω)′ = sup0 "=u∈H1(Ω)

|(f−fn)(Πu)|
‖u‖H1(Ω)n

! sup0 "=u∈H1(Ω)
|(f−fn)(Πu)|
‖Πu‖H1(Ω)n

=

‖f − fn‖H−1(Ω), or H−1(Ω) ⊂ H̃−1
(Ω). #

Theorem 3.4. If Ω is convex or has a C2 boundary, then H̃−1
(Ω) = H−1(Ω).

Proof. As shown in, e.g., [Tem79, Ch.1, Th. 1.4], one has the following Helmholtz
decomposition

(3.7) L2(Ω)n = H0(Ω)⊕⊥ ∇(H1(Ω)/R).

The L2(Ω)n-orthogonal projector Π onto H0(Ω) is known as the Leray projector.
Given u ∈ L2(Ω)n, ∇z = (I − Π)u is the solution of 〈u − ∇z,∇w〉L2(Ω)n = 0
(w ∈ H1(Ω)/R).

When u ∈ H1(Ω), this z solves the Poisson problem with Neumann boundary
conditions 





−∆z =div u on Ω,
∂z
∂n =0 on ∂Ω,∫

Ω zdx=0.

By the condition on Ω, this Poisson problem is H2(Ω)-regular, and so

‖∇z‖H1(Ω)n ! ‖z‖H2(Ω) ! ‖div u‖L2(Ω)n ! ‖u‖H1(Ω)n ,

i.e., I−Π and thus Π is bounded on H1(Ω). Now the result follows from Lemma 3.3.
#

Using that on H1(Ω)×H1(Ω), (w,v) %→
∫
Ω ν∇w : ∇v dx is bounded and satis-

fies a G̊arding inequality, we have the following result about the well-posedness of
the variational formulation of the parabolic problem that results from the reduction
of the instationary Stokes problem, with the homogeneous constraint divxu = 0,
to a system of equations for the divergence-free velocities only:

Theorem 3.5. With

X := L2((0, T ),H1(Ω)), Y := L2((0, T ),H1(Ω)) ∩H1
0,{T}((0, T );H−1(Ω)),

A := u %→ (v %→ a(u,v)) is a boundedly invertible linear mapping from X to Y ′.
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Proof. The statement is equivalent to A′ being boundedly invertible from Y to X ′,
which in turn, by making the change of variable T − t to t, is equivalent to the
statement that

u %→ (v %→
∫ T

0

∫

Ω

∂u
∂t · v dxdt +

∫ T

0

∫

Ω
ν∇xu : ∇xv dxdt),

from L2((0, T ),H1(Ω)) ∩ H1
0,{0}((0, T );H−1(Ω)) to L2((0, T ),H−1(Ω)) is bound-

edly invertible. The boundedness of this mapping follows easily. The mapping
corresponds to a variational formulation of a parabolic problem with homogeneous
initial datum in the space of divergence-free velocities. The boundedness of the
inverse is a consequence of (u,v) %→

∫
Ω ν∇xu : ∇xv dx being bounded and coercive

on H1(Ω) × H1(Ω), and it is shown, e.g., as a special case of [SS09, Thm. 4.1],
where a possible inhomogeneous initial condition is imposed weakly. #

The characterizations of the kernels given by (3.4), Lemma 3.2, and Theorem 3.4,
together with Theorem 3.5 imply Condition (i) of Theorem 2.1.

Condition (iii) of Theorem 2.1 is equivalent to (iii)′ which, by Lemma 2.3, is
equivalent to

I ⊗ divx : L
(
L2((0, T ),H1(Ω)) ∩H1

0,{T}((0, T ),H1(Ω)′),

L2((0, T );L2,0(Ω)) ∩H1
0,{T}((0, T ), H̃2(Ω)′)

)
is surjective.

(3.8)

Note that since I⊗divx is not injective, to prove (3.8) it is generally not sufficient to
show that I⊗divx is surjective both as mapping in L(L2((0, T ),H1(Ω)), L2((0, T );L2,0(Ω)))
and as mapping in L(H1

0,{T}((0, T ),H1(Ω)′),H1
0,{T}((0, T ), H̃2(Ω)′)).

Below, we will construct a mapping div+ with div ◦ div+ = I, such that

(3.9) div+ ∈ L(L2,0(Ω),H1(Ω)), div+ ∈ L(H̃2(Ω)′,H1(Ω)′).

Since, consequently, I⊗div+
x is a right-inverse for the mapping from (3.8), this will

imply the surjectivity of the latter mapping.
We define div+ : g %→ u by






u +∇p = f on Ω,
div u = g on Ω,
u · n = 0 on ∂Ω,

where f = 0, or, more precisely, by its variational formulation to find (u, p) ∈
L2(Ω)n ×H1(Ω)/R such that

(3.10)
∫

Ω
u ·v+

∫

Ω
∇p ·v+

∫

Ω
∇q ·u = f(v)+g(q) ((v, q) ∈ L2(Ω)n×H1(Ω)/R).

From the fact that ∇ ∈ L(H1(Ω)/R, L2(Ω)n) is a homeomorphism onto its range, it
immediately follows that this variational problem, for general f ∈ L2(Ω)n, defines
a boundedly invertible operator from L2(Ω)n ×H1(Ω)/R to its dual.

Under the condition of Theorem 3.4, for f ∈ H1(Ω) and g ∈ L2,0(Ω), the solution
p of {

−∆p = g − div f on Ω,
∂p
∂n = 0 on ∂Ω,

is in H̃2(Ω), and u := f −∇p ∈ H1(Ω). We infer that under this condition, (3.10)
defines a boundedly invertible mapping from H1(Ω)× H̃2(Ω) to H1(Ω)× L2,0(Ω),
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and so by symmetry of the operator, also from H1(Ω)′×L2,0(Ω) to H1(Ω)′×H̃2(Ω)′.
We conclude that (3.9) and thus Condition (iii) of Theorem 2.1 are valid.

Having verified all conditions of Theorem 2.1, the proof of Theorem 3.1 is com-
pleted.

The variational formulation (3.2) of the Stokes problem (3.1) was derived by
applying integration by parts over time. This has the advantage that the initial
condition u(0, ·) = u0 enters the variational formulation as a natural boundary con-
dition, i.e., in the right-hand side. In any case for a homogeneous initial condition,
i.e., u(0, ·) = 0, an alternative variational formulation is obtained by not applying
integration by parts over time. It reads as a variational formulation of the form
(2.1), where

(3.11)






a(u,v) =
∫ T

0

∫

Ω

∂u
∂t · v dxdt +

∫ T

0

∫

Ω
ν∇xu : ∇xv dxdt,

b(p,v) = −
∫ T

0

∫

Ω
p div v dxdt,

c(u, q) =
∫ T

0

∫

Ω
q div u dxdt,

f(v) =
∫ T

0

∫

Ω
f̃ · v dxdt +

∫ T

0

∫

∂Ω

n−1∑

i=1

(v · τi)gidxdt

g(q) =
∫ T

0

∫

Ω
g q dxdt.

Theorem 3.6. With

U := L2((0, T );H1(Ω)) ∩H1
0,{0}((0, T );H1(Ω)′),

P := L2((0, T );L2,0(Ω)),

V := L2((0, T );H1(Ω)),

Q :=
(
L2((0, T );L2,0(Ω)) ∩H1

0,{0}
(
(0, T ); H̃2(Ω)′

))′
,

the mapping L : (u, p) %→ (f , g) as in (2.1) with bilinear forms from (3.11) defines
a boundedly invertible linear mapping U× P → V′ ×Q′.

Proof. Denoting the spaces U, V, P , and Q, and operator L from Theorem 3.1
here as Ū, V̄, P̄ , Q̄, and L̄, and defining (Rw)(t, x) = w(T − t, x), we have

(L(u, p))(v, q) = (L̄(Rv,−Rq))(Ru,−Rp) = (L̄′(Ru,−Rp))(Rv,−Rq).

From L̄′ ∈ L(V̄×Q̄, Ū′× P̄ ′) being a boundedly invertible, and RU = V̄, RP = Q̄,
RV = Ū, and RQ = P̄ , the proof is completed. #

4. The instationary Stokes problem, with no-slip boundary
conditions, as a well-posed operator equation

Let Ω ⊂ Rn be a domain. Later in this section, we will have to add the condition
that Ω is such that the stationary Stokes problem is H2(Ω)n ×H1(Ω)-regular.

Given vector fields f̃ on [0, T ]× Ω and u0 on Ω, and a function g on [0, T ]× Ω,
we consider the instationary inhomogeneous Stokes problem with no-slip boundary
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conditions to find the velocities u and pressure p that satisfy





∂u
∂t − ν∆xu +∇x p = f̃ on [0, T ]× Ω,

divx u = g on [0, T ]× Ω,
u = 0 on [0, T ]× ∂Ω,

u(0, ·) = u0 on Ω.

By taking the canonical scalar product of the first equation with smooth test func-
tions v, that as function of x vanish at ∂Ω, and that as function of t vanish at
t = T , and by applying integration by parts in space and time, and by multiplying
the second equation by smooth functions q, and by applying integration by parts,
we arrive at a variational problem of the form (2.1), where

(4.1)






a(u,v) = −
∫ T

0

∫

Ω
u · ∂v

∂t dxdt +
∫ T

0

∫

Ω
ν∇xu : ∇xv dxdt,

b(p,v) =
∫ T

0

∫

Ω
v ·∇p dxdt,

c(u, q) = −
∫ T

0

∫

Ω
u ·∇q dxdt,

f(v) =
∫ T

0

∫

Ω
f̃ · v dxdt +

∫

Ω
u0 · v(0, ·) dx,

g(q) =
∫ T

0

∫

Ω
g q dxdt.

Remark 4.1. With Ĥ2(Ω) := {p ∈ H2(Ω) : ∇p = 0 on ∂Ω}/R, following the expo-
sition in Sect. 3, an obvious choice for the spaces U, P and V, Q for the variables
u, p and v, q, would be

L2((0, T );H1
0 (Ω)n),

(
L2((0, T );L2,0(Ω)) ∩H1

0,{T}
(
(0, T ); Ĥ2(Ω)′

))′
,

L2((0, T );H1
0 (Ω)n) ∩H1

0,{T}((0, T );H−1(Ω)n), L2((0, T );L2,0(Ω)),

where H−1(Ω) = H1
0 (Ω)′ with respect to the identification L2(Ω)′ . L2(Ω). With

this choice, the resulting space H1(Ω) of divergence free spatial functions would
read as {u ∈ H1

0 (Ω)n : div u = 0}, with, as in Sect. 3, its closure H0(Ω) in L2(Ω)n

being {u ∈ L2(Ω)n : div u = 0, u · n = 0 on ∂Ω}. Now when following the analysis
from Sect. 3, the problem is that the L2(Ω)n-orthogonal projector onto H0(Ω), i.e.,
the Leray projector, does not preserve no-slip boundary conditions, and therefore
is not bounded on H1

0 (Ω)n.

In view of Remark 4.1, we will define trial- and testspaces by making a shift in
smoothness indices for the spatial variables.

Theorem 4.2. With

U := L2((0, T );L2(Ω)n),

P :=
(
L2((0, T );H1(Ω)/R) ∩H1

0,{T}
(
(0, T ); (H1(Ω)/R)′

))′
,

V := L2((0, T ); (H1
0 (Ω) ∩H2(Ω))n) ∩H1

0,{T}((0, T );L2(Ω)n),

Q := L2((0, T );H1(Ω)/R),

the mapping L : (u, p) %→ (f , g) as in (2.1) with bilinear forms from (4.1) defines a
boundedly invertible linear mapping U×P → V′×Q′. (Here, dual spaces should be
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interpreted with respect to the identifications L2,0(Ω)′ . L2,0(Ω), or Condition (i)
L2((0, T );L2,0(Ω))′ . L2((0, T );L2,0(Ω)), respectively.)

To prove this theorem, in the following, we will verify the conditions of Theo-
rem 2.1.

In Sect. 3, for the verification of the Conditions (i) and (iii), we used H2(Ω)-
regularity of the Poisson problem on Ω with homogeneous Neumann boundary
conditions. In this section, instead we will use the H2(Ω)n×H1(Ω)-regularity of the
stationary Stokes problem on Ω with Dirichlet boundary conditions. In variational
form, this problem reads as finding, for given f ∈ H−1(Ω)n, g ∈ (H1(Ω)/R)′, the
solution (u, p) ∈ H1

0 (Ω)n × L2,0(Ω) of
(4.2)∫

Ω
ν∇u : ∇v dx+

∫

Ω
v·∇p dx−

∫

Ω
u·∇q dx = f(v)+g(q) ((v, q) ∈ H1

0 (Ω)n×L2,0(Ω)).

From (3.3), and the general theory from Sect. 2, one verifies the well-known fact
that this problem defines a boundedly invertible operator from H1

0 (Ω)n × L2,0(Ω)
to its dual. Under additional conditions on Ω, the problem can be shown to be
H2(Ω)n ×H1(Ω)-regular:

Theorem 4.3. For domains Ω in R2 or R3 that either have a C2 boundary or that
are convex with a piecewise smooth boundary, (4.2) defines a boundedly invertible
mapping from (H2(Ω)∩H1

0 (Ω))n×H1(Ω)/R to L2(Ω)×H1(Ω)/R, and from L2(Ω)×
(H1(Ω)/R)′ to ((H2(Ω) ∩H1

0 (Ω))n)′ × (H1(Ω)/R)′.

A proof can be found in [KO76, Dau89] in two - or three-dimensions, respectively.
The last mentioned result follows from symmetry of the variational problem by
taking adjoints.

Lemma 4.4. It holds that

ker(∇′ ∈ L(L2(Ω)n, (H1(Ω)/R)′))

= {u ∈ L2(Ω)n : div u = 0, u · n = 0 on ∂Ω} := H̆0
(Ω),

ker(∇′ ∈ L(H1
0 (Ω), L2,0(Ω))) = {u ∈ H1

0 (Ω)n : div u = 0} := H̆1
(Ω),

ker(∇′ ∈ L((H2(Ω) ∩H1
0 (Ω)1)n,H1(Ω)/R))

= {u ∈ (H2(Ω) ∩H1
0 (Ω))n : div u = 0} := H̆2

(Ω).

Proof. Since in the last two cases ∇ = −div′ by definition, we only have to verify
the first statement, i.e., that

N := ker(∇′ ∈ L(L2(Ω)n, (H1(Ω)/R)′)) = H̆0
(Ω).

For u ∈ H̆0
(Ω), p ∈ H1(Ω)/R, one has

∫
Ω∇p · u dx = 0, i.e., H̆0

(Ω) ⊂ N . To
prove the reversed inclusion, we have to show that

{u ∈L2(Ω)n : 〈u,w〉L2(Ω) = 0, w ∈ N }

⊃
{
u ∈ L2(Ω)n : 〈u,w〉L2(Ω) = 0, w ∈ H̆0

(Ω)
}
.

(4.3)

The set on the right is part of {u∈L2(Ω)n: 〈u,w〉L2(Ω) =0, w ∈ D(Ω), div w=0}.
As shown by De Rham ([dR84], cf. [Tem79, Ch. 1, Prop. 1.1]), a distribution u that
vanishes on all divergence-free test functions is a gradient of another distribution.
If, additionally u ∈ L2(Ω)n, then necessarily u ∈ ∇(H1(Ω)/R).



SPACE-TIME VARIATIONAL FORMULATIONS OF (NAVIER–) STOKES 13

Since ∇ ∈ L(H1(Ω)/R, L2(Ω)n) and so closed, the closed range theorem tells us
that the space on the left in (4.3) is equal to ∇(H1(Ω)/R), which completes the
proof. #

It holds that H̆2
(Ω) ↪→ H̆1

(Ω) ↪→ H̆0
(Ω) with dense embeddings. For i ∈ {1, 2},

we set H̆−i
(Ω) := (H̆i

(Ω))′, where this dual space should be interpreted with
respect to the identification (H̆0

(Ω))′ . H̆0
(Ω).

The stationary Stokes problem (4.2) with g = 0 can be reduced to a problem
involving divergence-free velocities only. It reads as finding, for given f ∈ H̆−1

(Ω) ⊃
H−1(Ω)n, u ∈ H̆1

(Ω) that solves

(4.4)
∫

Ω
ν∇u : ∇v dx = f(v) (v ∈ H̆1

(Ω)).

As follows from Theorem 2.1, together with the characterizations of the kernels
from Lemma 4.4, and Theorem 4.3, we have:

Corollary 4.5. The variational problem (4.4) defines a boundedly invertible lin-
ear mapping from H̆1

(Ω) to H̆−1
(Ω), and, under the conditions on Ω from Theo-

rem 4.2, from H̆2
(Ω) to H̆0

(Ω), and from H̆0
(Ω) to H̆−2

(Ω).

After these preparations dealing with the stationary Stokes problem, we are
ready to prove Theorem 4.2 by verifying the conditions of Theorem 2.1.

Similarly as in Sect. 3, one shows that the bilinear forms a : U × V → R,
b : P ×V → R, and c : U×Q → R are bounded.

The operator I ⊗∇x ∈ L(Q,U′) is a homeomorphism onto its range, which by
Lemma 2.3 shows Condition (ii) of Theorem 2.1.

As an obvious consequence of Lemma 4.4, we have

ker(I ⊗∇′ ∈ L(U, Q′)) = L2((0, T ); H̆0
(Ω))(4.5)

ker(I ⊗∇′ ∈ L(V, P ′)) = L2((0, T ); H̆2
(Ω)) ∩H1

0,{T}((0, T ); H̆0
(Ω))(4.6)

Theorem 4.6. With

X 1 := L2((0, T ); H̆0
(Ω)), Y1 := L2((0, T ); H̆2

(Ω)) ∩H1
0,{T}((0, T ); H̆0

(Ω)),

under the condition on Ω from Theorem 4.3, A : u %→ (v %→ a(u,v)) defines a
boundedly invertible linear mapping from X 1 to Y ′

1.

Proof. We follow [Ste11b, proof of Thm. 4.2]. The boundedness of A follows easily.
The boundedness of A−1 is equivalent to (A′)−1 ∈ L(X ′

1,Y1). To demonstrate
the latter, we have to show that for any f ∈ X 1 . X ′

1, the variational problem of
finding z such that

(4.7)
∫ T

0

∫

Ω
−w · ∂z

∂t
dxdt+

∫ T

0

∫

Ω
∇νw : ∇z dxdt =

∫ T

0

∫

Ω
f ·w dxdt (w ∈ X 1),

has a unique solution z ∈ Y1 with ‖z‖Y1 ! ‖f‖X 1 .
Although this result may follow from the theory of analytic semigroups, we give

a more elementary derivation. With

X 0 := L2((0, T ); H̆1
(Ω)), Y0 := L2((0, T ); H̆1

(Ω)) ∩H1
0,{T}((0, T ); H̆−1

),
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similar to Theorem 3.5, we have that for f ∈ X ′
0 ⊃ X ′

1, (4.7), with test space X 0,
has a unique solution z ∈ Y0. Below, we will show that for a subspace of sufficiently
smooth f , this solution is in Y1, and thus that (4.7) holds for all w ∈ X 1, and
moreover that ‖z‖Y1 ! ‖f‖X 1 . Since the subspace of these smooth f will be dense
in X 1, this will complete the proof.

Equation (4.7) is the variational formulation of the problem of finding, for t ∈
[0, T ], z(t, ·) ∈ H̆1

(Ω) that satisfies
(4.8){∫

Ω−
∂z
∂t (t, ·) · w dx +

∫
Ω ν∇w : ∇z(t, ·) dx =

∫
Ω f(t, ·) · w dx (w ∈ H̆1

(Ω)),
z(T, ·) = 0.

Note that as function of t̃ = T − t, z satisfies a standard parabolic initial value
problem. As shown in [Wlo82, Ch.IV,§27], if f ∈ H2((0, T ); H̆−1

(Ω)) with f(T, ·) ∈
H̆2

(Ω) and ∂f
∂t (T, ·) ∈ H̆0

(Ω), then its solution z ∈ H2((0, T ); H̆1
(Ω)).

By substituting w = −∂z
∂t (t, ·) ∈ H̆1

(Ω) in (4.8), we obtain

‖∂z
∂t

(t, ·)‖2L2(Ω)n −
1
2

∂

∂t

∫

Ω
ν∇z(t, ·) : ∇z(t, ·) dx = −

∫

Ω
f(t, ·) · ∂z

∂t
(t, ·) dx.

By integrating this equality over time, applying z(T, ·) = 0 and Cauchy-Schwarz’
inequality, and by additionally assuming that f ∈ L2((0, T ); H̆0

(Ω)), we arrive at
∫ T

0
‖∂z

∂t
(t, ·)‖2L2(Ω)ndt ≤ 1

2

∫ T

0
‖f(t, ·)‖2L2(Ω)ndt +

1
2

∫ T

0
‖∂z

∂t
(t, ·)‖2L2(Ω)ndt,

or

(4.9)
∫ T

0
‖∂z

∂t
(t, ·)‖2L2(Ω)ndt ≤

∫ T

0
‖f(t, ·)‖2L2(Ω)ndt.

By additionally assuming that f(t, ·) ∈ H̆0
(Ω), from ∂z

∂t (t, ·) ∈ H̆1
(Ω) ⊂ H̆0

(Ω)
and the H2(Ω)-regularity result from Corollary 4.5, (4.8) shows that z(t, ·) ∈ H̆2

(Ω)
with ‖z(t, ·)‖H2(Ω)n ! ‖f(t, ·)‖L2(Ω)n +‖∂z

∂t (t, ·)‖L2(Ω)n . By integrating this inequal-
ity over time and applying (4.9), we obtain that

(4.10) ‖z‖
L2((0,T );H̆2

(Ω))
! ‖f‖L2((0,T );L2(Ω)n)

By combining (4.9) and (4.10), we have ‖z‖Y1 ! ‖f‖X 1 and the proof is completed.
#

The characterizations of the kernels (4.5) and (4.6) together with Theorem 4.6
imply Condition (i) of Theorem 2.1.

Condition (iii) of Theorem 2.1 is equivalent to (iii)′, which by Lemma 2.3, is
equivalent to

I ⊗ div ∈ L
(
L2((0, T ); (H1

0 (Ω) ∩H2(Ω))n) ∩H1
0,{T}((0, T );L2(Ω)n),

L2((0, T );H1(Ω)/R) ∩H1
0,{T}

(
(0, T ); (H1(Ω)/R)′

))
is surjective.

(4.11)

Below, we will construct a mapping div+ with div ◦ div+ = I, such that

(4.12) div+ ∈ L(H1(Ω)/R, (H1
0 (Ω) ∩H2(Ω))n), div+ ∈ L((H1(Ω)/R)′, L2(Ω)n).
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Since, consequently, I ⊗ div+
x is a right-inverse for the mapping from (4.11), this

will imply the surjectivity of the latter mapping.
We define div+ : g %→ u by






−∆u +∇p = 0 on Ω
div u = g on Ω

u = 0 on ∂Ω

or, more precisely, by its variational formulation to find (u, p) ∈ H1
0 (Ω)n ×L2,0(Ω)

such that

(4.13)
∫

Ω
∇u ·∇v +

∫

Ω
p div v +

∫

Ω
q div u = g(q) ((u, p) ∈ H1

0 (Ω)n × L2,0(Ω)).

For domains Ω that satisfy the condition from Theorem 4.3, an application of this
theorem shows that div+ satisfies (4.12). We conclude that (4.11) and thus that
Condition (iii) of Theorem 2.1 are valid.

Having verified all conditions of Theorem 2.1, the proof of Theorem 4.2 is com-
pleted.

Similar to Theorem 3.6 for the free-slip boundary conditions case, for the in-
stationary Stokes problem with no-slip boundary conditions and a homogeneous
initial condition, a variational formulation of the form (2.1) can be derived without
applying integration by parts. The bilinear forms and right-hand side read as

(4.14)






a(u,v) =
∫ T

0

∫

Ω

∂u
∂t · v dxdt +

∫ T

0

∫

Ω
ν∇xu : ∇xv dxdt,

b(p,v) =
∫ T

0

∫

Ω
v ·∇p dxdt,

c(u, q) = −
∫ T

0

∫

Ω
u ·∇q dxdt,

f(v) =
∫ T

0

∫

Ω
f̃ · v dxdt,

g(q) =
∫ T

0

∫

Ω
g q dxdt.

and we have the following result:

Theorem 4.7. With

U := L2((0, T ); (H1
0 (Ω) ∩H2(Ω))n) ∩H1

0,{0}((0, T );L2(Ω)n),

P := L2((0, T );H1(Ω)/R),
V := L2((0, T );L2(Ω)n),

Q :=
(
L2((0, T );H1(Ω)/R) ∩H1

0,{0}
(
(0, T ); (H1(Ω)/R)′

))′
,

the mapping L : (u, p) %→ (f , g) as in (2.1) with bilinear forms from (4.14) defines
a boundedly invertible linear mapping U× P → V′ ×Q′.

5. The instationary Navier-Stokes problem with homogeneous initial
condition

With the spaces U, P , V, Q from either Theorem 4.7 (no slip boundary condi-
tions) and n ∈ {2, 3}, or those from Theorem 3.6 (free-slip boundary conditions)
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and n = 2, we will show that for sufficiently small data (f , g) ∈ V′ × Q′, the
corresponding Navier-Stokes problem has locally a unique solution in U× P .

Lemma 5.1. For Banach spaces X and Y , let B = L + N : X → Y ′ where
L ∈ L(X, Y ′) is boundedly invertible, and N(0) = 0.

For some R > 0 and α < ‖L−1‖−1
L(Y ′,X), let

‖N(x1)−N(x2)‖Y ′ ≤ α‖x1 − x2‖X (x1, x2 ∈ B(0;R) := {x ∈ X : ‖x‖X ≤ R}).

Then for any h ∈ Y ′ with ‖h‖Y ′ ≤ R(‖L−1‖−1
L(Y ′,X) − α), there exists a unique

x ∈ B(0;R) with B(x) = h.

Proof. B(x) = h is equivalent to x = T (x) := L−1(h − N(x)). For ‖h‖Y ′ ≤
R(‖L−1‖−1

L(Y ′,X)−α) and x ∈ B(0;R), ‖T (x)‖X ≤ ‖L−1‖L(Y ′,X)(‖h‖Y +α‖x‖X) ≤
R, and, for x1, x2 ∈ B(0;R), ‖T (x1) − T (x2)‖X ≤ ‖L−1‖L(Y ′,X)α‖x1 − x2‖. The
proof is completed by an application of Banach’s fixed point theorem. #

5.1. No-slip boundary conditions. Let Ω be a domain in R2 or R3 that ei-
ther has a C2 boundary, or that is convex, satisfies the cone condition, and has a
piecewise smooth boundary.

Given a vector field f̃ on [0, T ]× Ω, and a function g on [0, T ]× Ω, we consider
the instationary Navier–Stokes problem to find the velocities u and pressure p that
satisfy

(5.1)






∂u
∂t − ν∆xu + u ·∇x u +∇x p = f̃ on [0, T ]× Ω,

divx u = g on [0, T ]× Ω,
u = 0 on [0, T ]× ∂Ω,

u(0, ·) = 0 on Ω.

It gives rise to a variational problem of the form (2.1) with an extra trilinear term
n(·, ·, ·), that reads as finding u ∈ U, p ∈ P such that

(5.2) a(u,v) + b(p,v) + c(u, q) = f(v) + g(q)− n(u,u,v) (v ∈ V, q ∈ Q),

where the spaces U, P , V, Q, right-hand side functionals f and g, and bilinear
forms a, b, c are as in Theorem 4.7 or (4.14), and

(5.3) n(y, z,v) :=
∫ T

0

∫

Ω
y ·∇x z · v dxdt.

Theorem 5.2. For sufficiently small f ∈ V′ and g ∈ Q′, (5.2) has a unique
solution (u, p) in some ball in U× P around the origin.

Proof. By Theorem 4.7 and Lemma 5.1, it suffices to show that with N(u)(v) :=
n(u,u,v), it holds that N : U→ V′ with

‖N(u)−N(w)‖V′ ≤ ζ(‖u‖U, ‖w‖U)‖u−w‖U

for some ζ : [0,∞)2 → [0,∞) with ζ(α) → 0 if α → 0.
Recall that U = L2((0, T ); (H1

0 (Ω) ∩ H2(Ω))n) ∩ H1
0,{0}((0, T );L2(Ω)n) and

V = L2((0, T );L2(Ω)n). Using twice a Hölder inequality, twice that H1(Ω) ↪→
L6(Ω) when n ≤ 3 (here the cone condition is used), and also twice that U ↪→
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C([0, T ];H1
0 (Ω)n) ([DL92, Ch. XVIII,§1.3]), being a consequence of [L2(Ω),H1

0 (Ω)∩
H2(Ω)]1/2 = H1

0 (Ω), for y, z ∈ U we find
(

sup
0 "=v∈V

|n(y, z,v)|
‖v‖V

)2

=
∫ T

0
‖y(t, ·) ·∇xz(t, ·)‖2L2(Ω)n dt

=
∫ T

0

n∑

i=1

∫

Ω
|y ·∇xzi|2 dx dt ≤

n∑

i=1

∫ T

0

∫

Ω
|y|2|∇xzi|2 dx dt

≤
n∑

i=1

∫ T

0
‖y(t, ·)‖2L6(Ω)n‖∇zi(t, ·)‖2L3(Ω)n dt

≤ sup
t∈[0,T ]

‖y(t, ·)‖2L6(Ω)n

n∑

i=1

∫ T

0

( ∫

Ω
|∇xzi|

3
2 |∇xzi|

3
2

) 2
3
dt

≤ sup
t∈[0,T ]

‖y(t, ·)‖2L6(Ω)n

n∑

i=1

∫ T

0
‖∇xzi(t, ·)‖L2(Ω)n‖∇xzi(t, ·)‖L6(Ω)ndt

! sup
t∈[0,T ]

‖y(t, ·)‖2H1(Ω)n sup
t∈[0,T ]

‖z(t, ·)‖H1(Ω)n

√
T‖z‖L2(0,T );H2(Ω)n) ! ‖y‖2U‖z‖2U.

As a first consequence, we have ‖N(u)‖2V′ ! ‖u‖4U, and so in particular, N :
U→ V′.

Secondly, from n(u,u, ·)− n(w,w, ·) = n(u−w,u, ·) + n(w,u−w, ·), we find

‖N(u)−N(w)‖2V′ ! (‖u‖2U + ‖w‖2U)‖u−w‖2U,

which completes the proof. #

Besides existence and local uniqueness for sufficiently small data, we also have
local uniqueness of any solution:

Theorem 5.3. Let (u, p) be a solution of (5.2), then for sufficiently small δf ∈ V′,
δg ∈ Q′, (5.2) with (f, g) reading as (f + δf, g + δg) has a unique solution in some
ball in U× P around (u, p).

Proof. Writing the solution with perturbed data as (u + δu, p + δp), we find that
(δu, δp) ∈ U× V solves

au(δu,v) + b(δp,v) + c(δu, q) = δf(v) + δg(q)− n(δu, δu,v) (v ∈ V, q ∈ Q),

where
au(δu,v) := a(δu,v) + n(u, δu,v) + n(δu,u,v).

The bilinear form au corresponds to the partial differential operator w %→ −ν∆xw+
u ·∇xw + w ·∇xu. Since the perturbations are of lower order, any result that we
have proven for the Stokes equations is also valid for the modified Stokes equations
with −ν∆xw reading as −ν∆xw+u ·∇xw+w ·∇xu (not uniformly in u though).
We conclude that the statement is proven similarly to Theorem 5.2. #

Remark 5.4. The point of the above proof is that with

B : U× P → V′ ×Q′ : (u, p) %→
(
(v, q) %→ a(u,v) + b(p,v) + c(u, q) + n(u,u,v)

)
,

the Fréchet derivative

DB(u, p) : (δu, δp) %→
(
(v, q) %→ au(δu,v)+b(δp,v)+c(δu, q)

)
∈ L(U×P,V′×Q′)
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is boundedly invertible, which is a crucial property for any method for solving the
Navier-Stokes equations.

5.2. Free-slip boundary conditions. Let Ω be a bounded domain in R2 that
either has a C2 boundary or that is convex with a Lipschitz boundary.

Given a vector field f̃ on [0, T ]× Ω, we consider the instationary Navier–Stokes
problem to find the velocities u and pressure p that satisfy

(5.4)






∂u
∂t − ν∆xu + u ·∇x u +∇x p = f̃ on [0, T ]× Ω,

divx u = 0 on [0, T ]× Ω,
u · n = 0 on [0, T ]× ∂Ω,

∂u
∂n · τi = gi on [0, T ]× ∂Ω, 1 ≤ i ≤ n− 1,
u(0, ·) = u0 on Ω,

where τ1, . . . , τn−1 is an orthonormal set of tangent vectors.
It gives rise to a variational problem of the form (2.1) with an extra nonlinear

term, that reads as finding u ∈ U, p ∈ P such that

(5.5) a(u,v) + b(p,v) + c(u, q) = f(v) + n(u,v,u) (v ∈ V, q ∈ Q),

where the spaces U, P , V, Q, right-hand side functional f , and bilinear forms a,
b, c are as in Theorem 3.6 or (3.11), and the form n is as in (5.3).

We arrived at this variational formulation with n(u,v,u), instead of the expected
term −n(u,u,v), by using that for smooth vector fields u on Ω that have vanishing
normals at ∂Ω and that are divergence-free, and for smooth vector fields v on Ω,

n(u,v,v) =
2∑

i,j=1

∫

Ω
ui(∂ivj)vj dx = 1

2

2∑

i,j=1

∫

Ω
ui∂iv

2
j dx

= 1
2

[ ∑

j

∫

Ω
−div u v2

j dx +
∫

∂Ω
v2

j u · n ds
]

= 0

Expanding n(u,v + w,v + w) for smooth vector fields v,w on Ω, we arrive at
n(u,v,w) = −n(u,w,v). Note that it is essential that in (5.4) we have imposed
u ·n = 0 on [0, T ]×∂Ω, instead of u ·n = g on [0, T ]×∂Ω for some general function.

Theorem 5.5. For sufficiently small f ∈ V′, (5.5) has a unique solution (u, p) in
some ball in U× P around the origin.

Proof. As shown in [Tem79, Ch.III, §3, Lemma 3.3], for v ∈ H1(R2) it holds that

‖v‖L4(R2) ≤ 21/4‖v‖
1
2
L2(R2)|v|

1
2
H1(R2).

Since Ω ⊂ R2 is a bounded Lipschitz domain, there exists an operator E that
extends functions on Ω to functions on R2 with E ∈ L(L2(Ω), L2(R2)), E ∈
L(H1(Ω),H1(R2)) ([Ste70, Ch.VI,§3, Thm.5]). We conclude that for v ∈ H1(Ω),

‖v‖L4(Ω) ≤ ‖Ev‖L4(R2) ≤ 21/4‖Ev‖
1
2
L2(R2)|Ev|

1
2
H1(R2) ! ‖v‖

1
2
L2(Ω)‖v‖

1
2
H1(Ω).
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Using this result, and by a few applications of Cauchy-Schwarz inequality, for
y,v, z ∈ H1(Ω) we have

|
∫

Ω
y ·∇xv · z dx| = |

∫

Ω

2∑

i,j=1

yi(∂ivj)zj dx|

≤
∑

i,j

‖∂ivj‖L2(Ω)‖yi‖L4(Ω)‖zj‖L4(Ω)

≤
√∑

i,j

‖∂ivj‖2L4(Ω)

√∑

i

‖yi‖2L4(Ω)

∑

j

‖zj‖2L4(Ω)

! ‖v‖H1(Ω)2‖y‖
1
2
L2(Ω)2‖y‖

1
2
H1(Ω)2‖z‖

1
2
L2(Ω)2‖z‖

1
2
H1(Ω)2 .

Recalling that U = L2((0, T );H1(Ω))∩H1
0,{0}((0, T );H1(Ω)′) and V = L2((0, T );H1(Ω)),

for y, z ∈ U, v ∈ V, from U ↪→ C([0, T ];L2(Ω)) we obtain

|n(y,v, z)| !
∫ T

0
‖v(t, ·)‖H1(Ω)2‖y(t, ·)‖

1
2
L2(Ω)2‖y(t, ·)‖

1
2
H1(Ω)2‖z(t, ·)‖

1
2
L2(Ω)2‖z(t, ·)‖

1
2
H1(Ω)2 dt

≤ sup
t∈[0,t]

‖y(t, ·)‖
1
2
L2(Ω) sup

t∈[0,t]
‖z(t, ·)‖

1
2
L2(Ω)

×
∫ T

0
‖v(t, ·)‖H1(Ω)2‖y(t, ·)‖

1
2
H1(Ω)2‖z(t, ·)‖

1
2
H1(Ω)2 dt

! ‖y‖
1
2
U‖z‖

1
2
U‖v‖V

( ∫ T

0
‖y(t, ·)‖2H1(Ω)2 dt

) 1
4
( ∫ T

0
‖z(t, ·)‖2H1(Ω)2 dt

) 1
4

! ‖y‖U‖z‖U‖v‖V,

or sup0 "=v∈V
|n(y,v,z)|
‖v‖V ! ‖y‖U‖z‖U. Similar to the proof of Theorem 5.2, the latter

result together with Theorem 3.6 and Lemma 5.1 completes the proof. #

Similar to the no-slip case, besides existence and local uniqueness for sufficiently
small data, we also have local uniqueness of any solution:

Theorem 5.6. Let (u, p) be a solution of (5.5), then for sufficiently small δf ∈ V′,
(5.2) with f reading as f + δf has a unique solution in some ball in U×P around
(u, p).

References

[BCM88] C. Bernardi, C. Canuto, and Y. Maday. Generalized inf-sup conditions for Chebyshev
spectral approximation of the Stokes problem. SIAM J. Numer. Anal., 25(6):1237–
1271, 1988.

[CDD01] A. Cohen, W. Dahmen, and R. DeVore. Adaptive wavelet methods for elliptic oper-
ator equations – Convergence rates. Math. Comp, 70:27–75, 2001.

[CS11] N.G. Chegini and R.P. Stevenson. Adaptive wavelets schemes for parabolic problems:
Sparse matrices and numerical results. SIAM J. Numer. Anal., 49(1):182–212, 2011.

[Dau89] M. Dauge. Stationary Stokes and Navier-Stokes systems on two- or three-dimensional
domains with corners. I. Linearized equations. SIAM J. Math. Anal., 20(1):74–97,
1989.

[DL92] R. Dautray and J.-L. Lions. Mathematical analysis and numerical methods for science
and technology. Vol. 5. Springer-Verlag, Berlin, 1992. Evolution problems I.



20 RAFAELA GUBEROVIC, CHRISTOPH SCHWAB, AND ROB STEVENSON

[dR84] G. de Rham. Differentiable manifolds, volume 266 of Grundlehren der Mathematis-
chen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-
Verlag, Berlin, 1984. Forms, currents, harmonic forms, Translated from the French
by F. R. Smith, With an introduction by S. S. Chern.

[EL94] R. E. Ewing and R. D. Lazarov. Approximation of parabolic problems on grids locally
refined in time and space. In Proceedings of the Third ARO Workshop on Adaptive
Methods for Partial Differential Equations (Troy, NY, 1992), volume 14, pages 199–
211, 1994.

[FNWW09] I. Faille, F. Nataf, F. Willien, and S. Wolf. Two local time stepping schemes for par-
abolic problems. In Multiresolution and adaptive methods for convection-dominated
problems, volume 29 of ESAIM Proc., pages 58–72. EDP Sci., Les Ulis, 2009.

[GSSt11] R. Guberovic, C. Schwab and R. Stevenson. Space-time variational solutions of
Navier-Stokes Equations (in preparation) (2011).

[GK11] M.D. Gunzburger and A. Kunoth. Space-time adaptive wavelet methods for con-
trol problems constrained by parabolic evolution equations. SIAM J. Contr. Optim.,
49(3):1150–1170, 2011.

[KO76] R.B. Kellogg and J.E. Osborn. A regularity result for the Stokes in a convex polygon.
J. Funct. Anal., 21:397–431, 1976.
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