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We consider diffusion in a random medium modeled as diffusion equation with lognormal Gaus-

sian diffusion coefficient. Sufficient conditions on the log permeability are provided in order for a
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1 Introduction

In recent years, partial differential equations with random inputs have attracted interest due to their
relevance for quantifying uncertainty in engineering and in the sciences. Broad classes of numerical
methods to estimate statistics of random solutions include sampling techniques such as Monte-Carlo and
Quasi-Monte Carlo methods, Stochastic collocation techniques and spectral discretization techniques
consisting of Galerkin projection onto (generalized) polynomial chaos bases. Whereas the former are
rather general, the latter require careful study of the probability measure and a spectral basis adapted
to the probability space of the random inputs. A common feature of the latter class of problems is their
parametrization as a deterministic problem on a parameter space of countably infinite dimension. A key
analytical question in this context is then the approximability of the parametric, deterministic solution in
terms of tensorized polynomial systems which are orthonormal with respect to the probability measure.
This approach has gained increasing significance in recent years. We mention the classic reference [12]
and the more recent publications [17, 25, 24, 2, 21, 20, 4, 18, 10] and the references there.

In particular, for the analysis of adaptive solution algorithms, so-called best N -term approximation
rates are of interest as benchmark for the best possible achieveable convergence rate for approximations
which are based on solving N instances of the corresponding deterministic PDE.

The two basic classes of deterministic approximation methods are stochastic Galerkin or also sampling
or stochastic collocation methods. One principal aim of this work is to prove that, indeed, adaptive
truncations of of Wiener polynomial chaos expansions can afford higher rates of convergence in terms of
the number N of PDE solves than the commonly used Monte Carlo sampling methods or even their more
efficient variants, the multi-level Monte-Carlo Finite Element Methods, whose complexity was recently
analyzed in [3].

In the case of probability measures with compact support such as, e.g. the uniform distribution,
best N -term approximation results in terms of tensorized Legendre polynomials (which are the natural
orthogonal polynomials for the uniform probability measure) for have recently been obtained in [8, 7, 16].
In many applications, however, countably many independent and identically normally distributed random
input parameters are assumed. In this case, the natural polynomial system for the representation of
system’s random response are well-known to be tensorized Hermite polynomials; this goes back N. Wiener
(see, e.g., [23]) and is, therefore, termed Wiener polynomial chaos, or WPC, representation.

To obtain best N -term approximation rates for truncated Wiener polynomial chaos expansions, for
solutions of elliptic partial differential equations with lognormal gaussian random coefficients and for
probability measures with unbounded support, such as lognormal models of permeabilities in subsurface
flow models, is one purpose of the present paper. It is structured as follows: in the next section, following
[13, 22] we specify the lognormal diffusion problem and present its reduction to a parametric, deterministic
problem on a subset Γ of the infinite-dimensional parameter space R

N which we show, however, to be
measurable with respect to a parametric family of Gaussian measures on R

N, and to be of full measure.
We then establish well-posedness of the parametric, deterministic problem and measurability of the
solution of the parametric deterministic problem for all parameter vectors in a subset Γ of RN of full
(Gaussian) measure. We present a weak formulation of this parametric, deterministic problem and prove
its well-posedness. We then show that the parametric solution can be expanded into a polynomial chaos
type series with respect to a countable family i.i.d Gaussian random variables. Moreoever, we establish
conditions on the p-summability of the Hermite coefficients of the solution, under suitable decay condition
of the random coefficients of the problem.

Throughout, we shall use the following notation: N denotes the set of natural numbers, and we define
N0 = N ∪ {0}. By D ⊂ R

d, d ≥ 2, we denote a bounded domain with Lipschitz boundary ∂D. By R
N

we denote the set of all sequences of real numbers and observe that R
N = R × R × ... = R

∞, where
R

∞ denotes the countable cartesian product of real lines. By F , we denote the countable set of “finitely
supported” multiindices, i.e. F =

{
ν ∈ N

N
0 : |ν| <∞

}
. Here, by |ν| = ν1+ν2+ ..., we denote the “length”

of the multiindex ν ∈ N
N
0 . Evidently, a multiindex ν ∈ F can have only finitely many nonzero entries νj .

For ν ∈ F , we denote by n ⊂ N the “support set” of ν, i.e. the (finite) set of all j ∈ N such that νj 6= 0,
with j repeated νj ≥ 1 times. Hence, |n| = |ν|. We shall always associate to ν ∈ F the support set n

and to µ ∈ F the set m ⊂ N. For a sequence y = (ym)m≥1 ∈ Γ ⊆ R
N, we denote by ∂νyu(·, y) the mixed

partial derivative of order ν and likewise ∂µy u(·, y). On occasion, we shall also write ∂ny in place of ∂νy and
likewise for ∂my .
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For a separable Hilbert space V we denote by ℓp(F ;V ) for 0 < p ≤ ∞ the set of sequences of
elements of the Hilbert space V which are indexed by the (countable) index set F whose norms in V are
unconditionally p-summable. The N -term convergence rate results in the present article were announced
first in [15].

2 Problem Formulation

LetD ⊂ R
d denote a bounded domain with a Lipschitz boundary ∂D and denote by (Ω,F ,P) a probability

space. In the domain D, we consider stochastic isotropic elliptic problems

−∇ · (a(x, ω)∇u(x, ω)) = f(x) in D , u|∂D = 0 . (2.1)

Here, the coefficient a : D × Ω 7→ R denotes a lognormal, isotropic stochastic diffusion coefficient, ie.,
g = log a is an isotropic Gaussian random field (iGRF for short) in D (we refer to [1, 6] for the definition
of iGRFs and for a discussion of their properties. The term f in (2.1) is the deterministic source term (a
stochastic source term that is uncorrelated to a could equally well be considered; to avoid unnecessarily
involved notation, and since this will not introduce any new mathematical issues, we do not elaborate on
this case). By V = H1

0 (D) we denote the closed subspace of the Sobolev space H1(D) of functions whose
boundary values vanish in the sense of trace, with norm

‖v‖V :=

(∫

D

|∇v(x)|2dx
)1/2

. (2.2)

For given random coefficient a(x, ω) and for any w, v ∈ V , we define the bilinear form

Ω ∋ ω 7→ b(ω;w, v) :=

∫

D

a(x, ω)∇w · ∇vdx : V × V 7→ R

and we consider the source term f as element of the dual space V ′ of V . Then, for any ω ∈ Ω, the weak
formulation of (2.1) reads: find u(ω) ∈ V such that

b(ω;u(ω), v) = 〈f, v〉 ∀v ∈ V . (2.3)

Here, and in what follows, we denote by 〈·, ·〉 the extension by continuity of the L2(D) innerproduct to
the V ′×V duality pairing. To prove well-posedness of (2.3), we use the Lax-Milgram Lemma. To invoke
it, further conditions are necessary in order to ensure that the diffusion coefficient is positive almost
surely and that collection of pathwise solutions {u(ω) : ω ∈ Ω} is measurable with respect to a Gaussian
probability measure. Sufficient conditions for this to hold were recently given in [6].

2.1 Model elliptic PDE with lognormal Gaussian Parameters

For the coefficient a(x, ω) of the problem (2.1), we assume a Karhúnen–Loève type expansion of log(a−a∗),
where a∗ is a bounded function on D with a∗(x) ≥ 0 for all x ∈ D. Thus, we assume that a is a lognormal
iGRF diffusion coefficient of the form

a(x, ω) = a∗(x) + a0(x) exp

(
∞∑

m=1

Ym(ω)ψm(x)

)
, x ∈ D , (2.4)

for y(ω) = (Ym(ω))m∈N : Ω → R
N.

To fix the scaling in the Karhúnen–Loève expansion (2.4), we further assume that Ym(ω) ∼ N (0, 1),
m ∈ N, ie. that the Ym are independent, standard Gaussian random variables in R

1. This is the case if,
for example, log(a− a∗) is an iGRF and if we expand log(a− a∗) in its Karhúnen–Loève series, or more
generally if (ψm)m∈N are orthonormal in the Cameron–Martin space of the distribution of log(a − a∗),
see [22, Section 2.4].

By the above assumptions, the law of the sequence of random variables y = (Y1(ω), Y2(ω), . . .) is
defined on the probability space (RN,B(RN), γ), with the Gaussian measure γ given by

γ =

∞⊗

m=1

N1 (2.5)
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(see, e.g., [5]). In (2.4), we assume that ψm ∈ L∞(D) for all m ∈ N0, a0(x) ≥ ǎ0 > 0 for all x ∈ D,
a∗(x) ≥ 0 and

∞∑

m=1

‖ψm‖L∞(D) <∞ , (2.6)

i.e. we require that the sequence

b = (bm)m≥1 = (‖ψm‖L∞(D))m≥1 ∈ ℓ1(N) . (2.7)

Given any sequence b ∈ ℓ1(N), we define the set

Γb :=

{
y ∈ R

N ;

∞∑

m=1

bm|ym| <∞
}
. (2.8)

For y ∈ Γb, we formally define the deterministic, parametric diffusion coefficient

a(x, y) = a∗(x) + a0(x) exp

(
∞∑

m=1

ymψm(x)

)
, x ∈ D. (2.9)

The series in (2.9) converges in L∞(D) for all y ∈ Γb ⊂ R
N. We observe from (2.9) that as a∗(x) ≥ 0 for

almost all x ∈ D, for every y ∈ Γb holds

∀ν ∈ F :

∥∥∥∥
∂νya(·, y)
a(·, y)

∥∥∥∥
L∞(D)

≤ bν = bν11 b
ν2
2 . . . . (2.10)

Moreover, the set Γb of admissible parameter vectors is γ-measurable and of full measure: there holds
(see [22, Lemma 2.28])

Lemma 2.1 For any sequence b ∈ ℓ1(N),

Γb ∈ B(RN) and γ(Γb) = 1 .

In the following, if the dependence of the set Γb on the sequence b is clear from the context, we omit it
in the notation.

Lemma 2.2 For all y ∈ Γ, the diffusion coefficient (2.9) is well-defined and satisfies

0 < ǎ(y) := ess inf
x∈D

a(x, y) ≤ ess sup
x∈D

a(x, y) =: â(y) <∞ (2.11)

with

â(y) ≤ ‖a∗‖L∞(D) + ‖a0‖L∞(D) exp

(
∞∑

m=1

bm|ym|
)
,

ǎ(y) ≥ ess inf
x∈D

a∗(x) + ǎ0(y) exp

(
−

∞∑

m=1

bm|ym|
)
.

Proof: Let y ∈ Γ and x ∈ D with |ψm(x)| ≤ bm for all m ∈ N. Then

∞∑

m=1

|ψm(x)||ym| ≤
∞∑

m=1

bm|ym| <∞ .

By continuity and positivity of exp(·), for y ∈ Γb,

exp

(
∞∑

m=1

ψm(x)ym

)
=

∞∏

m=1

exp(ψm(x)ym) ∈ (0,∞) . (2.12)

Then the claim follows from Kakutani’s Theorem (see, e.g. [5]). ✷
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Due to Lemmas 2.1 and 2.2, we consider Γ as the parameter space instead of RN. Even though Γ is
not a cartesian product of intervals, product measures such as γ on Γ can be defined by restriction.

In this context, Lemma 2.2 shows that the stochastic diffusion coefficient a(x, ω) in (2.4) is well
defined, bounded from above and to admit a positive lower bound for almost all ω ∈ Ω. Thus the
stochastic diffusion equation (2.1) and, equivalently, the stochastic variational form (2.3) admits a unique
solution u(ω) ∈ V for almost all ω ∈ Ω.

For each y ∈ Γ, we consider the parametric deterministic elliptic problem

−∇ · (a(x, y)∇u(x, y)) = f(x) for x ∈ D , u(x, y) = 0 for x ∈ ∂D (2.13)

with the solution u(y) ∈ V . For y ∈ Γ, we define the parametric, deterministic bilinear form

b(y;w, v) :=

∫

D

a(x, y)∇w(x) · ∇v(x)dx , w, v ∈ V , (2.14)

and reinterpret the forcing term f as a map into the dual space V ′ by

f(v) :=

∫

D

f(x)v(x)dx , v ∈ V , (2.15)

with the integral understood as extension of the L2(D)-innerproduct to the V ′ × V -duality pairing by
continuity.

The parametric, deterministic variational formulation of the lognormal diffusion equation (2.13) is
given by the linear variational problem of determining, for y ∈ Γ, an element u(y) ∈ V such that

b(y;u(y), v) = f(v) ∀v ∈ V . (2.16)

Theorem 2.3 For all y ∈ Γ, (2.16) has a unique solution u(y) ∈ V . It satisfies

‖u(y)‖V ≤ 1

ǎ(y)
‖f(·)‖V ′ ∀y ∈ Γ . (2.17)

Proof: By Lemma 2.2 and (2.2), the bilinear form b(y; ·, ·) is continuous and coercive on V with coercivity
constant ǎ(y) for all y ∈ Γ. The claim follows by the Lax–Milgram lemma. ✷

Next, we review solvability of elliptic problems with log-normal coefficients as discussed in [13] and
[22] to the extent that we require later.

2.2 Auxiliary Gaussian Measures

For any sequence σ = (σm)m∈N ∈ exp(ℓ1(N)), i.e. σm = exp(sm) with (sm)m ∈ ℓ1(N), we define the
product measure

γσ :=
∞⊗

m=1

Nσ2
m

(2.18)

on (RN,B(RN)), where Nσ2
m

denotes the centered Gaussian measure on R
1 with standard deviation

σm > 0. We denote the standard Gaussian measure on R
N by γ = γ1.

Proposition 2.4 ([13]) For all σ = (σm)m∈N ∈ exp(ℓ1(N)), the measure γσ is equivalent to γ. The
density of γσ with respect to γ is given explicitly by

ζσ(y) =

(
∞∏

m=1

1

σm

)
exp

(
−1

2

∞∑

m=1

(σ−2
m − 1)y2m

)
. (2.19)

Proposition 2.4 implies in particular that γσ(Γ) = 1 for any σ ∈ exp(ℓ1(N)). Therefore, the restriction
of γσ to Γ is a probability measure.

We consider sequences σ that depend exponentially on b = (bm)m∈N, whose terms are given by

σm(χ) := exp(χbm) , m ∈ N , χ ∈ R . (2.20)

We abbreviate γχ := γ
σ(χ) and ζχ := ζ

σ(χ). In particular, γ = γ1 = γ0. Then we have

4



Lemma 2.5 ([22, Lemma 2.32]) Let η < χ and k ≥ 0. Then

∀y ∈ Γ :
ζη(y)

ζχ(y)
exp

(
k

∞∑

m=1

bm|ym|
)

≤ exp

((
k2e2χ‖b‖ℓ∞(N)

4(χ− η)
+ χ− η

)
‖b‖ℓ1(N)

)
. (2.21)

If, in particular, k = 0 then (2.21) reads

∀y ∈ Γ :
ζη(y)

ζχ(y)
≤ exp

(
(χ− η)‖b‖ℓ1(N)

)
. (2.22)

We also have

Proposition 2.6 ([22, Proposition 2.33]) Let 0 < p <∞ and η < χ. Then

Lp(Γ, γχ) ⊂ Lp(Γ, γη) (2.23)

and

‖v‖Lp(Γ,γη) ≤ exp

(
χ− η

p
‖b‖ℓ1(N)

)
‖v‖Lp(Γ,γχ) ∀v ∈ Lp(Γ, γχ) . (2.24)

Proposition 2.6 also applies to Lebesgue–Bochner spaces of functions taking values in, for example,
V or V ′. We will use it with η = 0, such that γη = γ.

2.3 Integrability of the Solution

We now briefly discuss integrability properties of the solution u of (2.16). Borel measurability of the map
R

N ⊃ Γ ∋ y 7→ u(y) ∈ V is shown in [13, Lemma 3.4] under the assumption that f is Borel measurable
as a map from R

N to V ′. This could also be obtained (under stronger assumptions) from Theorem 2.17
below.

Proposition 2.7 Let 0 < p <∞ and ̺ > 0. The solution u of (2.16) belongs to Lp(Γ, γ;V ) and satisfies

‖u‖Lp(Γ,γ;V ) ≤ c̺̄,p‖f‖V ′

with

c̺̄,p = min





exp

(
̺
p‖b‖ℓ1(N)

)

ess infx∈D a∗(x)
,

1

ǎ0
exp

(
‖b‖ℓ1(N)

(
p exp(2̺‖b‖ℓ∞(N))

4̺
+
̺

p

))

 .

The propsition is a special case of Proposition 2.34 of [22] where this assertion is shown in the more
general case that when f ∈ Lp(Γ, γ̺;V

′), it holds

‖u‖Lp(Γ,γ;V ) ≤ c̺̄,p‖f‖Lp(Γ,γ̺;V ′) .

We also need integrability of u with respect to the measure γ̺. There holds (see [13, Lemma 3.10]):

Lemma 2.8 For all ̺ ≥ 0 and all 0 < r <∞,

exp

(
∞∑

m=1

bm|ym|
)

∈ Lr(Γ, γ̺)

with
∥∥∥∥∥exp

(
∞∑

m=1

bm|ym|
)∥∥∥∥∥

Lr(Γ,γ̺)

≤ exp

(
r

2
‖b‖2ℓ2(N) exp(2̺‖b‖ℓ∞(N)) +

√
2

π
‖b‖ℓ1(N) exp(̺‖b‖ℓ∞(N))

)
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Theorem 2.9 Let 0 < q < p < ∞ and ̺ ≥ 0. The solution u of (2.16) belongs to Lq(Γ, γ̺;V ) and
satisfies

‖u‖Lq(Γ,γ̺;V ) ≤ c̺̃,q,p‖f‖V ′

with

c̺̃,q,p =
1

ǎ0
exp

(
qp

2(p− q)
‖b‖2ℓ2(N) exp(2̺‖b‖ℓ∞(N)) +

√
2

π
‖b‖ℓ1(N) exp(̺‖b‖ℓ∞(N))

)
,

or, if ess infy∈Γ a∗(y) > 0 and q ≤ p, also with c̺̃,q,p = 1/ess infx∈D a∗(x)

This theorem is a special case of Theorem 2.36 in [22]. Indeed, in [22] it is shown that when f depends
on y and is in Lp(Γ, γ̺;V

′), there holds

‖u‖Lq(Γ,γ̺;V ) ≤ c̺̃,q,p‖f‖Lp(Γ,γ̺;V ′)

In particular, if f ∈ Lp(Γ, γ̺;V
′) with p > 2, then u ∈ L2(Γ, γ̺;V ) and

‖u‖L2(Γ,γ̺;V ) ≤ c̺̃,p‖f‖Lp(Γ,γ̺;V ′) (2.25)

with

c̺̃,p =
1

ǎ0
exp

(
p

p− 2
exp(2̺‖b‖ℓ∞(N))‖b‖2ℓ2(N) +

√
2

π
exp(̺‖b‖ℓ∞(N))‖b‖ℓ1(N)

)
. (2.26)

In our case, f is independent of y so the assertion u ∈ L2(Γ, γ̺;V ) holds. As p→ ∞, we find that

c̺̃,∞ =
1

ǎ0
exp

(
exp(2̺‖b‖ℓ∞(N))‖b‖2ℓ2(N) +

√
2

π
exp(̺‖b‖ℓ∞(N))‖b‖ℓ1(N)

)
<∞ .

By the Cameron-Martin theorem, the space of Gaussian random fields with finite second moments admits
a Wiener-Itô decomposition corresponding to expansions of such random fields in terms of Hermite
polynomials of Gaussians. The main result of the present paper is to show regularity for the Wiener-
Itô decomposition of the solution of the diffusion problem. Specifically, we show that the terms of its
Wiener-Itô decomposition are p summable for some power 0 < p < 2. To this end, we denote by Hn(t)
the Hermite polynomial of degree n ∈ N, normalized so that

‖Hn(t)‖L2(R,N1) = 1 . (2.27)

Note that H0 ≡ 1. For y ∈ Γ and for ν ∈ F , we define

Hν(y) :=
∏

m≥1

Hνm(ym) = Hν1(y1)Hν2 (y2) . . . . (2.28)

Since ν ∈ F and H0 ≡ 1, the formally infinite product in (2.28) contains only finitely many nontrivial
factors.

It is classical that the univariate Hermite polynomials form a countable orthonormal basis of L2(R1, γ1)
(see, e.g. [9, Proposition 9.4] or [5, Lemma 1.3.2 i)]). By [22, Proposition 2.38], for (2.28) the tensorized
Hermite polynomials (Hν)ν∈F , form an orthonormal basis of L2(Γ, γ). We transform these to an or-
thonormal basis of L2(Γ, γ̺) using the map

τ̺ : RN → R
N , (ym)m∈N 7→ (e−̺bmym)m∈N . (2.29)

Note that τ̺ maps Γ bijectively onto Γ.

Lemma 2.10 For all ̺ ∈ R, the map

L2(Γ, γ) → L2(Γ, γ̺) , v 7→ v ◦ τ̺ (2.30)

is a unitary isomorphism of Hilbert spaces. Furthermore,
∫

Γ

v(y)γ(dy) =

∫

Γ

v(τ̺(y))γ̺(dy) ∀v ∈ L2(Γ, γ) . (2.31)
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Proof: The standard Gaussian measure γ is the image of γ̺ under the map τ̺. i.e. γ(E) = γ̺(τ
−1
̺ (E))

for all E ∈ B(Γ). This is easily checked for sets E = {y ∈ Γ ; ym ≤ λ} with λ ∈ R and m ∈ N. Then
(2.31) is the transformation theorem. The remaining part of the assertion is a direct consequence. ✷

The next assertion is closely related to the Wiener-Itô decomposition of L2(RN, γ).

Proposition 2.11 For all ̺ ∈ R, (Hν ◦ τ̺)ν∈F is an orthonormal basis of L2(Γ, γ̺).

Proof: The claim follows from Lemma 2.10 since (Hν)ν∈F from (2.28) is an orthonormal basis of L2(Γ, γ),
[9, Theorem 9.7]. ✷

Corollary 2.12 Let ̺ ≥ 0. Then the solution u of (2.16) can be represented in the form

u(y) =
∑

ν∈F

uνHν(τ̺(y)) , y ∈ Γ , (2.32)

with convergence in L2(Γ, γ̺;V ), for the coefficients

uν =

∫

Γ

u(τ−1
̺ (y))Hν(y)γ(dy) ∈ V , ν ∈ F . (2.33)

Furthermore, the coefficient vector u := (uν)ν∈F ∈ ℓ2(F ;V ) and there holds the isometry

‖u‖ℓ2(F ;V ) = ‖u‖L2(Γ,γ̺;V ) (2.34)

and the a-priori bound
‖u‖ℓ2(F ;V ) ≤ c̺̃,p‖f‖V ′ (2.35)

with the constant c̺̃,p from (2.26).

Proof: By Theorem 2.9 with q = 2, the solution u of (2.16) is in L2(Γ, γ̺;V ). Then (2.32) is the expansion
of u in the orthonormal basis from Proposition 2.11, and (2.33) follows from (2.31) since

uν =

∫

Γ

u(y)Hν(τ̺(y))γ̺(dy) =

∫

Γ

u(τ−1
̺ (y))Hν(y)γ(dy) .

Equation 2.35 is a consequence of (2.25) and of Parseval’s identity. ✷

2.4 Weak Formulation on a Problem-Dependent Space

Since the diffusion coefficient a(x, y) is not uniformly bounded in y ∈ Γ, simply integrating (2.16) over
Γ with respect to γ does not lead to a well-posed linear variational problem on L2(Γ, γ;V ). As shown
below, this difficulty can be overcome by considering a variational from with respect to a “stronger”
Gaussian measure. We refer to [11, 6, 10] for more detailed discussion of this phenomenon.

If a∗(x) is not bounded away from zero we integrate (2.16) with respect to a measure that is stronger
than γ in the sense of Proposition 2.6, but not by as much as γ̺. For parameters 0 ≤ ϑ < 1 and ̺ > 0,
define

Bϑ̺(w, v) :=

∫

Γ

b(y;w(y), v(y))γϑ̺(dy) =

∫

Γ

∫

D

a(x, y)∇w(x, y) · ∇v(x, y)dxγϑ̺(dy) (2.36)

and

Fϑ̺(v) :=

∫

Γ

f(v(y))γϑ̺(dy) =

∫

Γ

∫

D

f(x)v(x, y)dxγϑ̺(dy) (2.37)

for suitable w and v. For the variational formulation, we define the space

Vϑ̺ := {v : Γ → V : B(Γ)-measurable ; Bϑ̺(v, v) <∞} . (2.38)

We consider elements of Vϑ̺ as equivalence classes of γ-almost everywhere identical functions.

Proposition 2.13 The space Vϑ̺ endowed with the inner product Bϑ̺(·, ·) is a Hilbert space.
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We refer to [13, Proposition 3.6] for the proof of Proposition 2.13. The argument is analogous to a
standard proof that L2(R) is a Hilbert space.

Lemma 2.14 For all w, v ∈ L2(Γ, γ̺;V ),

|Bϑ̺(w, v)| ≤ ĉϑ̺‖w‖L2(Γ,γ̺;V )‖v‖L2(Γ,γ̺;V )

with

ĉϑ̺ =

(
‖a∗‖L∞(D) + ‖a0‖L∞(D) exp

(
exp(2̺‖b‖ℓ∞(N))

4(1− ϑ)̺
‖b‖ℓ1(N)

))
exp

(
(1 − ϑ)̺‖b‖ℓ1(N)

)
.

Proof: By continuity of b(y; ·, ·) for y ∈ Γ,

|Bϑ̺(w, v)| ≤
∫

Γ

ζϑ̺(y)

ζ̺(y)
â(y)‖w(y)‖V ‖v(y)‖V γ̺(dy)

≤
∥∥∥∥
ζϑ̺
ζ̺
â

∥∥∥∥
L∞(Γ,γ)

‖w‖L2(Γ,γ̺;V )‖v‖L2(Γ,γ̺;V )

and the claim follows from Lemmas 2.2 and 2.5 with η = ϑ̺, χ = ̺ and k = 1. ✷

Lemma 2.15 For all v ∈ L2(Γ, γ;V ) with Bϑ̺(v, v) <∞, the bilinear form Bϑ̺(·, ·) is coercive, i.e.

∀v ∈ L2(Γ, γ;V ) : Bϑ̺(v, v) ≥ čϑ̺‖v‖2L2(Γ,γ;V )

with coercivity constant čϑ̺ given by

čϑ̺ =

(
ess inf
x∈D

a∗(x) + ǎ0 exp

(
−e

2ϑ̺‖b‖ℓ∞(N)

4ϑ̺
‖b‖ℓ1(N)

))
exp

(
−ϑ̺‖b‖ℓ1(N)

)
.

Proof: Using coercivity of b(y; ·, ·) for y ∈ Γ, we obtain

Bϑ̺(v, v) ≥
∫

Γ

ζϑ̺(y)ǎ(y)‖v(y)‖2V γ(dy) ≥ ess inf
y∈Γ

{ζϑ̺(y)ǎ(y)}‖v‖2L2(Γ,γ;V )

and the claim follows from Lemmas 2.2 and from 2.5 with η = 0, χ = ϑ̺ and k = 1. ✷

Proposition 2.16 If ϑ > 0, the Hilbert space Vϑ̺ is related to Lebesgue–Bochner spaces by the continuous
embeddings

L2(Γ, γ;V ) ⊃ Vϑ̺ ⊃ L2(Γ, γ̺;V ) .

For ϑ = 0, this still holds if ess infx∈D a∗(x) > 0.

Proof: Lemmas 2.14 and 2.15 imply

čϑ̺‖v‖2L2(Γ,γ;V ) ≤ Bϑ̺(v, v) ≤ ĉϑ̺‖v‖2L2(Γ,γ̺;V )

for all v ∈ L2(Γ, γ̺;V ). ✷

Also, using (2.22) with η = ϑ̺ and χ = ̺, it follows that if f ∈ L2(Γ, γ̺;V
′), then Fϑ̺ is in the dual

of Vϑ̺. There holds the following result from [13, Corollary 3.8].

Theorem 2.17 The solution u of (2.16) is the unique solution in Vϑ̺ of the linear variational problem

Bϑ̺(u, v) = Fϑ̺(v) ∀v ∈ Vϑ̺ . (2.39)

8



2.5 Stochastic Galerkin Approximation

Using the variational formulation (2.39) of (2.16), we can define Galerkin projections of u onto suitable
spaces. Let VN ⊂ L2(Γ, γ̺;V ) ⊂ Vϑ̺ be finite dimensional. Then the Galerkin projection of u onto VN

is the unique element uN ∈ VN satisfying

Bϑ̺(uN , vN ) = Fϑ̺(vN ) ∀vN ∈ VN . (2.40)

This uN is well-defined since, being finite dimensional, VN is a closed subspace of Vϑ̺, and thus also a
Hilbert space when endowed with the inner product Bϑ̺(·, ·).

Theorem 2.18 The Galerkin projection uN satisfies

‖u− uN‖L2(Γ,γ;V ) ≤
√
ĉϑ̺
čϑ̺

inf
vN∈VN

‖u− vN‖L2(Γ,γ̺;V ) . (2.41)

Proof: Theorem 2.9 implies that u ∈ L2(Γ, γ̺;V ). By definition, uN is the orthogonal projection of u
onto VN with respect to the inner product Bϑ̺(·, ·). Therefore, it minimizes the projection error in the
norm induced by Bϑ̺(·, ·). Using Lemmas 2.14 and 2.15, we have

čϑ̺‖u− uN‖2L2(Γ,γ;V ) ≤ Bϑ̺(u− uN , u− uN)

= inf
vN∈VN

Bϑ̺(u− vN , u− vN )

≤ ĉϑ̺ inf
vN∈VN

‖u− vN‖2L2(Γ,γ̺;V ) ,

and the claim follows. ✷

Remark 2.19 The errors on the two sides of the estimate (2.41) are measured in different norms.
Therefore, Theorem 2.18 states that the Galerkin projection is almost quasi-optimal. Inserting the values
of ĉϑ̺ and čϑ̺ from Lemmas 2.14 and 2.15, we see that the constant in (2.41) is

√
ĉϑ̺
čϑ̺

=

√√√√√
‖a∗‖L∞(D) + ‖a0‖L∞(D) exp

(
e2̺‖b‖ℓ∞

4(1−ϑ)̺ ‖b‖ℓ1
)

ess infx∈D a∗(x) + ǎ0 exp
(
− e2ϑ̺‖b‖ℓ∞

4ϑ̺ ‖b‖ℓ1
) exp

(̺
2
‖b‖ℓ1

)
.

In particular, it tends to ∞ as ̺ approaches 0 or ∞, or if ϑ approaches 1. If a∗ is not bounded away
from 0, then the constant also tends to ∞ as ϑ approaches 0.

Motivated by Corollary 2.12, we consider in particular spaces VN of the form

VN :=
{
v ∈ L2(Γ, γ̺;V ) ; vν ∈ VN,ν ∀ν ∈ F

}
, (2.42)

where VN,ν ⊂ V is a finite dimensional subspace for all ν ∈ F , and VN,ν = {0} for all but finitely many
ν ∈ F . In (2.42), (vν)ν∈F are the Hermite coefficients of v ∈ L2(Γ, γ̺;V ) with respect to the scaled
Hermite polynomials (Hν ◦ τ̺)ν∈F from Proposition 2.11, i.e.

vν =

∫

Γ

v(τ−1
̺ (y))Hν(y)γ(dy) , ν ∈ F . (2.43)

Then VN is a finite dimensional subspace of L2(Γ, γ̺;V ), and its dimension is the sum of the dimensions
of VN,ν over ν ∈ F .

Corollary 2.20 For VN be of the form (2.42) the Galerkin projection uN satisfies

‖u− uN‖L2(Γ,γ;V ) ≤
√
ĉϑ̺
čϑ̺

(
∑

ν∈F

inf
vν∈VN,ν

‖uν − vν‖2V

)1/2

. (2.44)

Proof: The claim follows from Theorem 2.18 and from Parseval’s identity since (Hν ◦ τ̺)ν∈F is an
orthonormal basis of L2(Γ, γ̺;V ). ✷
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3 Regularity of the parametric solution

For a given parameter vector y ∈ Γ, we consider the parametric, deterministic problem (2.13) with the
parametric variational formulation (2.16). We are interested in bounding partial derivatives ∂νyu(·, y) for
any ν ∈ F . To this end, we observe that as a consequence of deRham’s Theorem

∃F (·) ∈ L2(D)d s.t. f(·) = −∇ · F (·) in V ′ . (3.1)

We use the positivity of a(·, y) for y ∈ Γ and (3.1) to rewrite the parametric deterministic problem (2.16)
as follows: find u(·, y) ∈ V such that

u(·, y) ∈ V b(y;u(·, y), v) = −
∫

D

a−1/2(x, y)F (x) · a1/2(x, y)∇vdx ∀v ∈ V . (3.2)

Inserting into (3.2) the test function v = u(·, y), we find

∫

D

a(x, y)|∇u(x, y)|2dx = −
∫

D

F (x) · ∇u(x, y)dx ≤ ‖a−1/2F (·)‖L2(D)‖a1/2∇u(·, y)‖L2(D) .

For y ∈ Γ we define the a-dependent norms

‖v‖a :=

(∫

D

a(x, y)|∇v|2dx
)1/2

and, for f ∈ V ′ with F ∈ L2(D)d as in (3.1),

‖f‖a−1 :=

(∫

D

a−1(x, y)|F (x)|2dx
)1/2

.

With these notations in hand, applying the Cauchy-Schwarz inequality to (3.2), we find for every y ∈ Γ
that

‖u(·, y)‖2a = |b(y;u(·, y), u(·, y))| ≤ ‖f(·)‖a−1‖u(·, y)‖a
so that we obtain the a-priori estimate

∀y ∈ Γ : ‖u(·, y)‖a ≤ ‖f(·)‖a−1 . (3.3)

Next, we prove bounds for ∂νyu(·, y) for every ν ∈ F . The argument follows the corresponding analysis
for uniform probability measures on the yi in [4, Appendix A]. We present it here as we will subsequently
establish higher regularity with respect to the spatial variable along the same lines. These (pointwise
with respect to y ∈ Γb) bounds are key ingredient for establishing the p-summability of the Hermite
coefficients. The following result provides a bound on derivatives ∂νyu(·, y) of the parametric solution; it
has been proved in [4, 14]. For completeness and since we refer to parts of its proof subsequently, we
sketch the proof.

Theorem 3.1 Under the assumption (2.7), for f ∈ V ′ which is independent of y, for every y ∈ Γb there
holds

‖∂νyu(·, y)‖a ≤ |ν|!b̄ν‖f(·)‖a−1 , (3.4)

where the sequence b̄ is defined by b̄ := b/ loge 2 with the sequence b defined in (2.7).

Proof: For ν = 0 ∈ F , (3.4) reduces to the a-priori estimate (3.3). For |ν| > 0, we prove (3.4) by induction
with respect to |ν|.

This will be accomplished by recursive differentiation of the parametric weak formulation (2.16) with
respect to y. To this end, we require a version of the multivariate Leibnitz rule: given any two smooth
functions f , g of y ∈ Γ, for any ν ∈ F with associated support set n ⊂ N holds

∂ny (fg) =
∑

m∈P(n)

(∂my f)(∂
n\m
y g) . (3.5)
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Here, for a finite set m ⊂ N, P(m) denotes the power set of m.
Applying for ν ∈ F with finite support set n = {j ∈ N : νj 6= 0} ∂νy to (2.13), the y-independence of

f implies

∀v ∈ V :

∫

D

a(x, y)∇(∂νyu) · ∇vdx = −
∑

m∈P(n)\{n}

∫

D

(∂n\my a)(x, y)∇(∂my u) · ∇vdx

= −
∑

0≺µ�ν

ν!

µ!(ν − µ)!

∫

D

∂µy a∇∂ν−µu · ∇vdx ,
(3.6)

where µ ≺ ν means that µi ≤ νi ∀ i with µi < νi for at least one index i, and µ � ν means that ∀ i,
µi ≤ νi; by 0 we denote the zero sequence in F . We refer to [4, Appendix] for a more detailed derivation.

Choosing in identity (3.6) the test function v = ∂nyu = ∂νyu, we find for every y ∈ Γ

‖(∂nyu(·, y)‖2a = −
∑

m∈P(n)\{n}

∫

D

(∂n\my a)(x, y)∇(∂my u) · ∇(∂nyu)dx

≤
∑

m∈P(n)\{n}

∥∥∥∥∥
∂
n\m
y a(·, y)
a(·, y)

∥∥∥∥∥
L∞(D)

‖∂my u(·, y)‖a‖∂nyu(·, y)‖a

which implies with (2.10) the a-priori estimate

‖∂nyu(·, y)‖a ≤
|n|−1∑

i=0

∑

m∈P(n):|m|=i

∥∥∥∥∥
∂
n\m
y a(·, y)
a(·, y)

∥∥∥∥∥
L∞(D)

‖∂my u(·, y)‖a

≤
|n|−1∑

i=0

∑

m∈P(n):|m|=i

bn\m‖∂my u(·, y)‖a .
(3.7)

We next note that

# {m ∈ P(n) : |m| = i} =

(
|n|
i

)
.

We define the sequence d = (dn)n≥0 by the recursion

d0 := 1, ∀j ≥ 1 : dj :=

j−1∑

i=0

(
j
i

)
di . (3.8)

We now claim that for all ν ∈ F with support set n ⊂ N, we have

‖∂nyu(·, y)‖a ≤ d|n|b
n‖f‖a−1 . (3.9)

For |ν| = 0, (3.9) is just the bound (3.3). For |ν| > 0, we assume that (3.9) is already proved for all
µ ∈ F such that |µ| ≤ n− 1 for some n ≥ 1. Next, for ν ∈ F such that |ν| = n with associated support
set n, we find from (3.7) that

‖∂nyu(·, y)‖a ≤
|n|−1∑

i=0

∑

m∈P(n):|m|=i

bn\m‖∂my u(·, y)‖a

≤
|n|−1∑

i=0

∑

m∈P(n):|m|=i

bn\md|m|b
m‖f‖a−1

=




|n|−1∑

i=0

(
|n|
i

)
di


 bn‖f‖a−1

= d|n|b
n‖f‖a−1 .

This completes the induction step and hence the proof of (3.9). The assertion (3.4) now follows from the
inequality (see [4, 14]) dn ≤ n!/(loge 2)

n which holds for all n ∈ N0. ✷
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4 Best N term approximation

For best N -term approximation rates, we study the summability of the sequence of Hermite coefficients
(uν)ν∈F in (2.33). In particular, we will show that the sequence (‖uν‖V )ν belongs to a space ℓp(F) under
certain summability conditions for the coefficients ψm of the expansion (2.9).

4.1 p-Summability of ‖uν‖V
The summability property of (‖uν‖V )ν depends on the summability of the coefficients of the expansion
(2.9). We will work under the following assumption on the summability of the input’s coefficients ψk.

Assumption 4.1 There exists 0 < p ≤ 1 such that the sequence (bk)k≥1 defined in (2.7) satisfies

(kbk)k≥1 ∈ ℓp(N) .

We make repeated use of the following, elementary estimate.

Lemma 4.2 [15] For all t > 0,

∫ ∞

−∞

exp(−z2/(2σ2) + |z|t) dz

σ
√
2π

≤ exp(σ2t2/2 + σt
√
2/π) .

Lemma 4.3 For sj ∈ {1, 2, . . . , t} ( j = 1, . . . ,m),

(s1 + . . .+ sm)! ≤ ttm1s12s2 . . .msm .

Proof We prove this bound by induction with respect to m. When m = 1 there holds s1! ≤ t! < tt which
is the assertion. Assume now that the assertion holds for all orders up to some value m > 1. Then we
have

(s1+. . .+sm+1) . . . (s1+. . .+sm+sm+1) ≤ ((tm+1) . . . (tm+sm+1)) ≤ tsm+1(m+1)sm+1 ≤ tt(m+1)sm+1 .

Therefore

(s1 + . . .+ sm+1)! ≤ ttm1s12s2 . . .msm tt(m+ 1)sm+1 = tt(m+1)1s12s2 . . . (m+ 1)sm+1 .

✷

Based on Lemma 4.3, we can show the following summability property for the coefficients uν ∈ V of
the expansion (2.32).

Proposition 4.4 Under Assumption 4.1, the coefficients (uν)ν of the Wiener-Hermite polynomial chaos
expansion (2.32) are p-summable in the sense that (‖uν‖V )ν ∈ ℓp(F).

Proof Let S = (i1, . . . , im) ⊂ N be any subset of N, and denote by S̄ := N\S its complement. With the
index set S, we associate the product Hermite differential operator

LS = (−1)m
m∏

j=1

(
d2

dy2ij
− 1

σ2
ij

yij
d

dyij

)
.

We note that 


m∏

j=1

e
−y2

ij
/(2σ2

ij
)


LS =

m∏

j=1

d

dyij

(
e
−y2

ij
/(2σ2

ij
) d

dyij

)

is self-adjoint over the space of m-variate, continuously differentiable functions g where g and the first
derivatives of g grow at most exponentially at infinity. Next, we observe that the Hermite polynomials
Hn(t/σ) satisfy the eigenproblems

−
(
d2

dt2
− t

σ2

d

dt

)
Hn

(
t

σ

)
= nσ−2Hn

(
t

σ

)
.
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For j ∈ N, let Γj be a copy of R and yj ∈ Γj. We denote by ΓS = ⊗m
j=1Γij and by yS = (yi1 , . . . , yim) a

point in ΓS . For such S and for any ν ∈ F , we define

λS(ν) =

m∏

j=1

νijσ
−2
ij

.

Let ΓS̄ = {ȳ = (yj)j /∈S :
∑

j /∈S yjbj <∞}. Then Γ = ΓS̄ × ΓS . Fixing yj for j /∈ S, we have




m∏

j=1

1

σij
√
2π



∫

ΓS

u exp


−

m∑

j=1

y2ij/(2σ
2
ij )


λS(ν)Hν (τ̺(y))dyS

=




m∏

j=1

1

σij
√
2π




∫

ΓS

u exp



−
m∑

j=1

y2ij/(2σ
2
ij )



LS(Hν(τ̺(y))dyS

=




m∏

j=1

1

σij
√
2π




∫

ΓS

exp



−
m∑

j=1

y2ij/(2σ
2
ij )



LS(u)Hν(τ̺(y))dyS .

Therefore, integrating over the remaining components yj for j ∈ S̄ = N\S,
∫

Γ

uλS(ν)Hν(τ̺(y))dγ̺(y) =

∫

Γ

LS(u)Hν(τ̺(y))dγ̺(y) .

This shows that in the sense L2(Γ, γ̺;V ) there holds the identity

∑

ν∈F

uνλS(ν)Hν (τ̺(y)) = LS(u) .

Applying the operator LS r times, we find in the same way that
∑

ν∈F

uνλ
r
S(ν)Hν (τ̺(y)) = Lr

S(u) .

From this, we obtain ∑

ν∈F

‖uν‖2V λ2rS (ν) =

∫

Γ

‖Lr
S(u)‖2V dγ̺(y) . (4.1)

We note that there are polynomials qj(t) (j = 1, . . . , 2r) of degrees at most r such that

( d2
dt2

− t

σ2

d

dt

)r
=

2r∑

j=1

qj(t)
dj

dtj
,

The polynomials qj(t) are of the form

qj(t) =

r∑

k=1

(
r∑

l=1

1

σ2l
qjkl

)
tk,

where qjkl only depends on j, k, l and r. As σ ≥ 1, there is a constant C1(r) so that for all j and t

|qj(t)| ≤ C1(r)(1 + |t|)r .

Thus

‖Lr
S(u)(·, y)‖V =

∥∥∥∥∥∥

m∏

j=1

( d2

dy2ij
− yij
σ2
ij

d

dyij

)r
u

∥∥∥∥∥∥
V

≤ C1(r)
m

m∏

j=1

(1 + |yij |)r
( ∑

sj=1,...,2r

j=1,...,m

∥∥∥∥
ds1

dys1i1
. . .

dsm

dysmim
u

∥∥∥∥
V

)
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and we deduce

‖Lr
S(u)(·, y)‖2V ≤ C1(r)

2m(2r)m
m∏

j=1

(1 + |yij |)2r
( ∑

sj=1,...,2r

j=1,...,m

∥∥∥∥
ds1

dys1i1
. . .

dsm

dysmim
u

∥∥∥∥
2

V

)
.

Using estimate (3.4), we find

‖Lr
S(u)(·, y)‖2V ≤ C1(r)

2m(2r)m
m∏

j=1

(1 + |yij |)2r



∑

sj=1,...,2r

j=1,...,m

((s1 + . . .+ sm)!)2b̄2s1i1
. . . b̄2smim




×‖(a(·, y)−1)‖L∞(D)‖f(·)‖2a−1

≤ C1(r)
2m(2r)m

m∏

j=1

(1 + |yij |)2r(2r)4rm



∑

sj=1,...,2r

j=1,...,m

(1b̄i1)
2s1 . . . (mb̄im)2sm




× 1

(ess infx a0(x))2
exp
(
2
∑

j≥1

|yj|‖ψj‖L∞(D)

)
‖F (x)‖2L2(D) . (4.2)

Next, we fix a positive constant κ such that

0 < κ ≤ 1

4
exp(−2̺max

j
‖ψj‖L∞(D)) ≤

1

4σ2
j

(4.3)

for all j with the choice of σj in (2.20) where χ = ̺. Let further C2(r) denote a positive constant so that

∀t > 0 : (1 + t)2r ≤ C2(r)e
t2κ .

With the constants chosen in this way, we estimate

∫

Γ

m∏

j=1

(1 + |yij |)2r exp
(
2
∑

j≥1

|yj |‖ψj‖L∞(D)

)
dγ̺(y)

≤ (C2(r))
m
∏

j∈S

∫ ∞

−∞

exp
(
−y2j (1/(2σ2

j )− κ) + 2|yj |‖ψj‖L∞(D)

) dyj

σj
√
2π

(4.4)

×
∏

j /∈S

∫ ∞

−∞

exp
(
−y2j /(2σ2

j ) + 2|yj |‖ψj‖L∞(D)

) dyj

σj
√
2π

.

From Lemma 4.2, for t > 0 we obtain

∫ ∞

−∞

exp
(
−z2(1/(2σ2

j )− κ) + |z|t
) dz

σj
√
2π

≤
√
2 exp

(
σ2
j t

2 + σjt2/
√
π
)

where we have used inequality (4.3). Therefore

∫

Γ

m∏

j=1

(1 + |yij |)2r exp



∑

j≥1

2|yj|‖ψj‖L∞(D)


 dγ̺(y)

≤ (C2(r))
m2m/2 exp



∑

j∈S

4σ2
j ‖ψj‖2L∞(D) + 4σj‖ψj‖L∞(D)/

√
π




× exp



∑

j /∈S

2σ2
j ‖ψj‖2L∞(D) + 2σj‖ψj‖L∞(D)

√
2/π




≤ c(C2(r))
m2m/2,
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where the last inequality is deduced from the fact that 1 ≤ σj ≤ exp(̺maxj ‖ψj‖L∞(D)). From (4.2), we
then obtain the bound

∫

Γ

‖Lr
Su(·, y)‖2V dγ̺(y) ≤ K2m

∑

sj=1,...,2r

j=1,...,m

(i1b̄i1)
2s1 . . . (imb̄im)2sm ,

for a sufficiently large constant K which depends on r ∈ N.
We deduce from (4.1) that for ν ∈ F with supp(ν) = S ⊂ N,

‖uν‖V ≤ Km
∑

sj=1,...,2r

j=1,...,m

(i1b̄i1)
s1 . . . (imb̄im)sm

1

νri1 . . . ν
r
im

σ2r
i1 . . . σ

2r
im .

When r > 1/p, let M =
∑

k≥1 k
−rp. We have,

∑

supp(ν)=S

‖uν‖pV ≤ exp(2prm̺max
j

‖ψj‖L∞(D))K
mpMm




∑

sj=1,...,2r

j=1,...,m

(i1b̄i1)
s1 . . . (imb̄im)sm




p

= Lm
m∏

j=1

(
2r∑

s=1

(ij b̄ij )
s

)p

,

where L := exp(2rp̺maxj ‖ψj‖L∞(D))K
pM . Thus

∑

ν∈F

‖uν‖pV =

∞∑

i1,...,im=1

m∏

j=1

L

(
2r∑

s=1

(ij b̄ij )
s

)p

≤
∞∏

k=1

(
1 + L

( 2r∑

s=1

(kb̄k)
s
)p
)

≤ exp

(
L

∞∑

k=1

( 2r∑

s=1

(kb̄k)
s
)p
)
,

which is finite provided that (kbk)k≥1 ∈ ℓp(N). ✷

4.2 Best N-term convergence rate

For a subset Λ ⊂ F of finite cardinality N , we define by

V̺,Λ = {v =
∑

ν∈Λ

vνHν(τ̺(y)) : vν ∈ V } ⊂ L2(U, γ̺;V ) ⊂ Vϑ̺

the set of N -term truncated Hermite expansions with “active” coefficients indexed by ν ∈ Λ. We consider
the stochastic Galerkin approximation (2.40) for VN = V̺,Λ:
Find uΛ ∈ V̺,Λ such that

Bϑ̺(uΛ, vΛ) = Fϑ̺(vΛ) ∀ vΛ ∈ V̺,Λ. (4.5)

By Lemma 2.15, for any set Λ ⊂ F this problem admits a unique solution uΛ, the Galerkin projection
of the solution u onto VN = V̺,Λ. The following result shows that Assumption 4.1 implies convergence
rates of these Galerkin approximations, provided that the sets ΛN ⊂ F of “active” components in the
Wiener-Ito decomposition of the random field u are judiciously chosen.

Proposition 4.5 Under Assumption 4.1, for every N ∈ N there exists an index set ΛN ⊂ F of cardinality
not exceeding N such that the parametric, weak solution u of equation (2.13) and the stochastic Galerkin
approximation uΛN

of (4.5) satisfies

‖u− uΛN
‖L2(U,γ;V ) ≤ c(ϑ, ̺)N−(1/p−1/2) .

Proof Let Λ ⊂ F be a subset of finite cardinality, and define the partial sum of the Wiener-Itô decom-
position of u in (2.32) over Λ by

v(x, y) =
∑

ν∈Λ

uν(x)Hν(τ̺(y)) .

15



From (2.35), it follows that

‖u− uΛ‖L2(U,γ;V ) ≤ c(ϑ, ̺)‖u− v‖L2(U,γ̺;V ) ≤ c(ϑ, ̺)

(
∑

ν /∈Λ

‖uν‖2V

)1/2

.

Assumption 4.1 implies, by Proposition 4.4, that (‖uν‖V )ν∈F ∈ ℓp(F). Choosing Λ = ΛN as a set of
N coefficients uν which are largest in norm ‖uν‖V , we deduce from Stechkin’s lemma (see, e.g. [8]) and
from the isometry (2.34) that

‖u− uΛ‖L2(U,γ;V ) ≤ c(ϑ, ̺)N−(1/p−1/2) .

✷

5 Spatial Regularity and Finite Element Approximation

So far, we considered the semidiscrete stochastic Galerkin approximation of the parametric, deterministic
solution. In practice, however, the Wiener-Itô coefficients of the stochastic Galerkin approximation uΛ
are not explicitly available and must be approximated from a suitable Finite Element subspace of V ,
introducing an additional discretization error. In order to obtain convergence rates for this Finite Element
approximation, we require additional regularity of the Wiener-Itô coefficients. In principle, regularity for
diffusion problems is a standard matter; in the present setting, however, we require regularity of the
parametric diffusion problem with uniform control of the constants’ dependence on the parameter vector
y ∈ Γ.

As in [8, 7], in the analysis of the spatial regularity we only aim at bounds for the second weak deriva-
tives of the parametric solution u(x, y) which are required for convergence rate estimates of continuous,
piecewise linear Finite Element Methods, and exploit moreover that the stochastic coefficient a(x, y) is
isotropic.

5.1 Spatial Regularity

To quantify the spatial regularity of the Hermite coefficients as well as for the ensuing Finite Element
convergence analysis, it will be convenient to define the space

W = {u ∈ V : ∆u ∈ L2(D)}, (5.1)

equipped with the norm ‖u‖W = ‖u‖V + ‖∆u‖L2(D). The space W is a closed subspace of V , which is
known to coincide for convex domains D with H2(D) ∩H1

0 (D). For a finite subset m ⊂ N, we denote by

vm := ∇ · (a∇∂my u) = a∆∂my u+∇a · ∇∂my u . (5.2)

We then have
a1/2∆∂my u = a−1/2vm − a−1/2∇a · ∇∂my u . (5.3)

The gradient ∇a in equations (5.2) and (5.3) is only formal, as it is in general not defined for arbitrary
y ∈ Γb. We thus consider the parametric, deterministic problem (2.13) for parameter vectors y from a

subset Γb̂ ⊂ R
N of full measure, for which∇a(·, y) is well defined. To define this set, denote by b̂ = (b̂k)k≥1

the sequence
b̂k := ‖ψk‖L∞(D) + ‖∇ψk‖L∞(D) k = 1, 2, ... (5.4)

We now impose an additional assumption.

Assumption 5.1 The coefficients a∗, a0 ∈W 1,∞(D) and

b̂ = (b̂k)k≥1 = (‖ψk‖L∞(D) + ‖∇ψk‖L∞(D))k≥1 ∈ ℓ1(N) .
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Under Assumption 5.1, we may define the set Γb̂ ⊂ R
N as the set Γb in (2.8), with b̂m in place of bm.

Then Γb̂ ⊂ Γb and, by Lemma 2.1, the set Γb̂ has full (Gaussian) measure in R
N. Then for all y ∈ Γb̂,

∇a(·, y) = ∇a∗ +∇a0 exp
(

∞∑

k=1

ykψm

)
+ a0 exp

(
∞∑

k=1

ykψm

)
∞∑

k=1

yk∇ψk .

We observe that due to b̂k ≥ bk, it holds that Γb ⊃ Γb̂. Therefore we have, under Assumption 5.1, for
every y ∈ Γb̂

‖a1/2∆∂my u‖L2(D) ≤ ‖a−1/2vm‖L2(D)

+

(
‖a−1∇a∗‖L∞(D) +

∥∥∥∥
∇a0
a0

∥∥∥∥
L∞(D)

+
∞∑

k=1

|yk|‖∇ψk‖L∞(D)

)
‖a1/2∇∂my u‖L2(D) . (5.5)

From (3.6), we get with the Leibniz rule

vn(x, y) = −
∑

m∈P(n)\{n}

∇(∂n\my a(x, y)) · ∇∂my u+ ∂n\my a(x, y)∆∂my u .

We have

∇(∂n\my a(·, y)) =

[
∇a0 exp

(
∞∑

k=1

ykψk

)

+a0 exp

(
∞∑

k=1

ykψk

)(
∞∑

k=1

yk∇ψk

)]
ψν1−µ1

1 ψν2−µ2

2 . . .

+a0 exp

(
∞∑

k=1

ykψk

)
∇
(
ψν1−µ1

1 ψν2−µ2

2 . . .
)
.

From this we obtain

‖a−1∇(∂n\my a(·, y))‖L2(D)

≤
[∥∥∥∥

∇a0
a0

∥∥∥∥
L∞(D)

+

∞∑

k=1

yk‖∇ψk‖L∞(D)

]
‖ψ1‖ν1−µ1

L∞(D)‖ψ2‖ν2−µ2

L∞(D) . . .

+‖ψ1‖ν1−µ1

L∞(D)‖ψ2‖ν2−µ2

L∞(D) . . .
∞∑

k=1

(νk − µk)‖∇ψk‖L∞(D)

‖ψk‖L∞(D)
.

Under Assumption 5.1, we have the estimate

‖ψk‖νk−µk

L∞(D) + (νk − µk)‖ψk‖νk−µk−1
L∞(D) ‖∇ψk‖L∞(D) ≤ b̂νk−µk

k ,

and we deduce that

‖a−1∇(∂n\my a(·, y))‖L2(D) ≤
(∥∥∥∥

∇a0
a0

∥∥∥∥
L∞(D)

+
∞∑

k=1

yk‖∇ψk‖L∞(D) + 1

)
b̂n\m .

Therefore

‖a−1/2(·, y)vn‖L2(D) ≤
∑

m∈P(n)\{n}

(∥∥∥∥
∇a0
a0

∥∥∥∥
L∞(D)

+

∞∑

k=1

yk‖∇ψk‖L∞(D) + 1

)
b̂n\m‖a1/2∇∂my u‖L2(D)

+b̂n\m‖a1/2∆∂my u‖L2(D) .

From this and (5.5), we have for all y ∈ Γb̂

‖a−1/2vn‖L2(D) ≤
∑

m∈P(n)\{n}

A(y)b̂n\m‖a1/2∇∂my u‖L2(D) + b̂n\m‖a−1/2vm‖L2(D)
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where the constant A(y) is, for y ∈ Γb̂, defined by

A(y) = ‖a−1(·, y)∇a∗(·)‖L∞(D) + 2‖a0(·)−1∇a0(·)‖L∞(D) + 2
∞∑

k=1

|yk|‖∇ψk‖L∞(D) + 1 . (5.6)

From (3.7), we have for y ∈ Γb̂ that

A(y)−1‖a−1/2vn‖L2(D) + ‖∂nyu(·, y)‖a ≤
∑

m∈P(n)\{n}

2b̂n\m(A(y)−1‖a−1/2vm‖L2(D) + ‖∂my u‖a) .

We therefore have

Theorem 5.2 Under Assumption 5.1 and for f ∈ L2(D), we have for y ∈ Γb̂, with A(y) as in (5.6),

A(y)−1‖a−1/2vν‖L2(D) + ‖∂νyu(·, y)‖a ≤ (A(y)−1‖a−1/2f‖L2(D) + ‖f‖a−1)|ν|!¯̂bν ,

where the sequence
¯̂
b is defined by

¯̂
bk := 2b̂k/ log 2 with b̂k as in Assumption 5.1.

Proof: The proof proceeds along the same lines as the proof of Theorem 3.1, once we remark that for
ν = 0, ‖u(·, y)‖a ≤ ‖f‖a−1 and choose v0 = f . ✷

It then follows that

‖a−1/2vν‖L2(D) ≤ (‖a−1/2f‖L2(D) +A(y)‖f‖a−1)|ν|!¯̂bν .

From (5.5) and Theorem 3.1 we have

∀y ∈ Γb̂ : ‖a1/2∆∂νyu‖L2(D) ≤ (‖a−1/2f‖L2(D) + 2A(y)‖f‖a−1)|ν|!¯̂bν .

To study the regularity of the coefficients uν of the expansion (2.33), we will work under the following
assumption.

Assumption 5.3 The coefficients a∗, a0 ∈W 1,∞(D) and there exists 0 < p < 1 such that

(k‖∇ψk‖L∞(D))k≥1 ∈ ℓp(N) .

We note in passing that Assumption 5.3 implies Assumption 5.1.

Theorem 5.4 Under Assumptions 4.1 and 5.3, the coefficient sequence (uν)ν∈F of the Wiener-Itô chaos
expansion (2.32) satisfies ∑

ν∈F

‖uν‖pW <∞ .

Proof: We proceed as in the proof of Proposition 4.4. We have, for fixed y ∈ Γ,

‖∆Lr
S(u)(·, y)‖2L2(D) ≤ C1(r)

2m(2r)m
m∏

j=1

(1 + |yij |)2r



∑

sj=1,...,2r

j=1,...,m

((s1 + . . .+ sm)!)2
¯̂
b
2s1

i1 . . .
¯̂
b
2sm

im




×‖a(·, y)−1‖L∞(D)(‖a−1/2f‖L2(D) + 2A(y)‖f‖a−1)2

≤ C1(r)
2m(2r)m

m∏

j=1

(1 + |yij |)2r



∑

sj=1,...,2r

j=1,...,m

((s1 + . . .+ sm)!)2
¯̂
b
2s1

i1 . . .
¯̂
b
2sm

im




×‖(a(·, y))−2‖L∞(D)(‖f‖L2(D) + 2A(y)‖F‖L2(D))
2 .

We note that for every y ∈ Γb̂

|A(y)| ≤ ‖∇a∗‖L∞(D)‖(a(·, y))−1‖L∞(D) + 2‖a−1
0 ∇a0‖L∞(D) + 2

∞∑

k=1

|yk|‖∇ψk‖L∞(D) + 1

≤ c

(
1 + ‖(a(·, y))−1‖L∞(D) +

∞∑

k=1

|yk|‖∇ψk‖L∞(D)

)
.
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Therefore we find, for every y ∈ Γb̂,

(‖f‖L2(D) + 2|A(y)|‖F‖L2(D))
2

≤ c

(
1 + ‖(a(·, y))−1‖L∞(D) +

∞∑

k=1

|yk|‖∇ψk‖L∞(D)

)2

≤ c

(
exp

( ∞∑

k=1

|yk|‖ψk‖L∞(D)

)
+ exp

( ∞∑

k=1

|yk|‖∇ψk‖L∞(D)

))2

≤ c exp
(
2

∞∑

k=1

|yk|(‖ψk‖L∞(D) + ‖∇ψk‖L∞(D))
)
.

Thus

‖∆Lr
S(u)(·, y)‖2L2(D) ≤ C1(r)

2m(2r)m
m∏

j=1

(1 + |yij |)2r



∑

sj=1,...,2r

j=1,...,m

((s1 + . . .+ sm)!)2
¯̂
b
2s1

i1 . . .
¯̂
b
2sm

im




× exp
(
4

∞∑

k=1

|yk|(‖ψk‖L∞(D) + ‖∇ψk‖L∞(D))
)
.

The remaining part of the proof then follows the lines of the argument in the proof of Proposition 4.4. ✷

5.2 Convergence Rates of WPC Finite-Element Approximations

Let Vh ⊂ V be a one-parameter family of finite-dimensional spaces of continuous, piecewise linear func-
tions associated to a family of shape regular, quasi uniform partitions of the domain D into simplices with
meshwidth O(h). We also denote Vh by VM where M(h) denotes the finite dimension of the finite ele-
ment space Vh. The quasiuniformity of the partitions of D implies that M(h) = O(h−1/d). We recall the
definition (5.1) of the space W , and assume the following approximation property of the one-parameter
family Vh of finite-dimensional subspaces of V .

Assumption 5.5 For all functions v ∈W ,

inf
vh∈Vh

‖v − vh‖V ≤ CM−s‖v‖W ,

for where M = dim(Vh) and where C, s > 0 are positive constants which are independent of M .

For Λ ⊂ F , let M = (Mν)ν∈Λ be a sequence of positive integers. We denote by

V̺,Λ,M = {vΛ,M ∈ L2(U, γ̺;V ) : vΛ,M =
∑

ν∈Λ

vΛ,M,ν(·)Hν(τ̺(·)), vΛ,M,ν ∈ VMν
} .

We then consider the approximating problem for (2.39):
Find uΛ,M =

∑
ν∈Λ uΛ,M,νHν(τ̺(·)) ∈ V̺,Λ,M such that

Bϑ̺(uΛ,M, vΛ,M) = Fϑ,̺(vΛ,M), ∀ vΛ,M ∈ V̺,Λ,M . (5.7)

From Theorem 2.18, we have

‖u− uΛ,M‖L2(Γ,γ;V ) ≤ c(ϑ, ̺) inf
vΛ,M∈V̺,Λ,M

‖u− vΛ,M‖L2(Γ,γ̺;V ).

Denoting by Λ ⊂ F the set of indices corresponding to the coefficients uν with the largest V norm, we
have for all vΛ,M,ν ∈ V

‖u− uΛ,M‖L2(Γ,γ;V ) ≤ c(ϑ, ̺)

(
∑

ν /∈Λ

‖uν‖2V +
∑

ν∈Λ

‖uν − vΛ,M,ν‖2V

)1/2

≤ c(ϑ, ̺)

(
N−2r +

∑

ν∈Λ

‖uν − vΛ,M,ν‖2V

)1/2
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where the convergence rate r = 1/p− 1/2 and where we have used Proposition 4.5. Thus

‖u− uΛ,M‖L2(Γ,γ;V ) ≤ c(ϑ, ̺)

(
N−2r +

∑

ν∈Λ

M−2s
ν ‖uν‖2W

)1/2

. (5.8)

We then optimize the resolution of the WPC coefficient with index ν ∈ Λ to equal Mν , for a given total
number of degrees of freedom

Ndof =
∑

ν∈Λ

Mν ,

such that both contributions in the estimate (5.8) are of equal order. This yields the following result.

Theorem 5.6 Assume that the constant p in Assumption 5.3 satisfies p ≤ 2/(1+ 2s). There is a choice
for the dimensions Mν of the finite element approximating spaces Vν such that

‖u− uΛ,M‖L2(Γ,γ;V ) ≤ c(ϑ, ̺)N−s
dof .

Proof This theorem is proved as the corresponding result for the Legendre chaos expansion in Cohen
et al. [7], using Theorem 5.4, where the subspace dimensions Mν are chosen as distributed among the
active WPC indices ν ∈ Λ via the minimizing problem:

min

{
∑

ν∈Λ

Mν :
∑

ν∈Λ

M−2s
ν ‖uν‖2W ≤ N−2r

}
.

✷

6 Concluding Remarks

We conclude this work by indicating several extensions. First, in the present paper, we assumed that the
Karhúnen–Loève eigenfunctions ψj in the expansions (2.4), (2.9) either belong to L∞(D) (eg. in Theorems
2.3, 2.9, 2.17) or to W 1,∞(D) (eg. in Theorem 5.4). Typically, however, P-as. path regularity of GRFs
is expressed in spaces of (Hölder-)continuous functions (see, eg. [1, 6] and the references there). Due to
the inclusions C0(D) ⊂ L∞(D), Theorems 2.3, 2.9, 2.17 will remain valid in this case as well. Likewise,
if the Karhúnen–Loève eigenfunctions are Lipschitz continuous, ie. ψj ∈ C0,1(D), and if the Lipschitz
constants Lk for ψk satisfy Assumption 5.3, Theorem 5.4 and the Finite Element WPC approximation
result Theorem 5.6 and their proof apply verbatim, with ‖ψk‖L∞(D) + ‖∇ψk‖L∞(D) in Assumption 5.3
replaced by ‖ψk‖C0(D) + Lk.

We note that continuous, piecewise linear Finite Elements on uniformly refined, regular simplicial
triangulations of a polyhedral domain D ⊂ R

d of meshwidth h > 0 satisfy Assumption 5.5 with s = 1/d.
The W 1,∞(D) regularity on the ψk as specified in Assumption 5.3 limits the spatial regularity essentially
to H2(D) (and, hence, the attainable convergence rate in Assumption 5.5 to s = 1/d).

Finally, we remark that in Assumptions 4.1 and 5.3, the values of 0 < p < 1 were identical. Inspection
of the proofs shows, however, that analogous results can be obtained with different summability exponents
0 < p0 ≤ p1 < 1 in Assumption 4.1 and Assumption 5.3, respectively. This is natural, for example, in the
case when D = (0, 1) and ψk(x) = sin(kπx). The weaker ℓp1 summability of the sequence (k‖uν‖W )ν∈F

which then results from Theorem 5.4 implies in Theorem 5.6 the convergence rate

r = min

(
s(1/p0 − 1/2)

s+ 1/p0 − 1/p1
, s

)
(6.1)

where s < 1/d results from the presence of reentrant corners in D and the quasiuniformity of the
simplicial triangulations of D. We refer to [19, Theorem 6.1] for details, also for higher order Finite
Element discretizations and an analysis of the influence of corners in D on the convergence rates, in the
case when the yj are are uniform random variables taking values in the bounded intervals (−1, 1).
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