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! Eidgenössische
Technische Hochschule
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ACCURATE NUMERICAL SCHEMES FOR APPROXIMATING
INITIAL-BOUNDARY VALUE PROBLEMS

FOR SYSTEMS OF CONSERVATION LAWS.

SIDDHARTHA MISHRA AND LAURA V. SPINOLO

Abstract. Solutions of initial-boundary value problems for systems of conser-
vation laws depend on the underlying viscous mechanism, namely different vis-
cosity operators lead to different limit solutions. Standard numerical schemes
for approximating conservation laws do not take into account this fact and
converge to solutions that are not necessarily physically relevant. We design
numerical schemes that incorporate explicit information about the underlying
viscosity mechanism and approximate the physically relevant solution. Nu-
merical experiments illustrating the robust performance of these schemes are
presented.

1. Introduction

Many problems in physics and engineering are modeled by systems of conserva-
tion laws

(1.1) Ut + F(U)x = 0.

Here, U : Ω × R+ → Rm is the vector of unknowns and F : Rm → Rm is the flux
vector. The spatial domain is a set Ω ⊂ R. The above equations are augmented with
initial data. If Ω is a bounded domain, the conservation laws are augmented with
suitable boundary conditions. Examples of conservation laws include the shallow
water equations of oceanography, the Euler equations of gas dynamics and the
equations of MagnetoHydroDynamics (MHD).

We assume that the system of conservation laws is strictly hyperbolic, i.e. the
eigenvalues of the Jacobian matrix FU are real and distinct. Also, we assume that
all the eigenvalues of FU are bounded away from 0:

(1.2) λ1(U) < · · · < λk(U) < −d < 0 < d < λk+1(U) < · · · < λm(U)

for some positive constant d > 0 and some integer k < m.
It is well known (see Dafermos [8, Chapter 6]) that in general solutions of (1.1)

form discontinuities (shock waves, contact discontinuities) in finite time even when
the initial data are smooth. Hence, solutions of (1.1) are defined in the sense of
distributions.

In general, the distributional solution of a given Cauchy or initial-boundary value
problem is not unique and hence various admissibility conditions have been intro-
duced in the attempts at selecting a unique solution, see the book by Dafermos [8,
Chapters 4 and 8] for an extended discussion. These approaches often involve the

Date: September 15, 2011.
1991 Mathematics Subject Classification. 65M06,35L65.
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2 SIDDHARTHA MISHRA AND LAURA V. SPINOLO

celebrated entropy condition, which can be formulated as follows: assume that sys-
tem (1.1) admits an entropy-entropy flux pair, namely there exists a convex function
S : Rm → R and a function Q : Rm → R such that

(1.3) QU = SUFU,

where SU and QU denote the gradients of the function S and Q, respectively. A
distributional solution U satisfies the entropy admissibility condition if the following
inequality holds in the sense of distributions:

(1.4) S(U)t + Q(U)x ≤ 0.

Here, two remarks are in order: first, in general physical systems admit entropy-
entropy flux pairs. Second, systems of conservation laws like (1.1) are derived by
neglecting small scale effects like diffusion. Inclusion of these small effects in (1.1)
results in the mixed hyperbolic-parabolic system:

(1.5) Uε
t + F(Uε)x = ε (B(Uε)Uε

x)x .

Here, ε is a (small) viscosity parameter and B : Rm → Rm×m is the viscosity matrix.
For example, the Navier-Stokes equations are a viscous regularization of the Euler
equations of gas dynamics. In physical systems, the entropy admissibility criterion
is consistent with the zero small scale effects limit, namely one can show that, if the
solutions of the viscous approximation (1.5) converge in a strong enough topology,
then the limit satisfies (1.4).

We now focus on the initial-boundary value problem obtained by coupling the
system of conservation laws (1.1) with the Cauchy and Dirichlet data

(1.6) U(x, 0) = U0(x), x ∈ Ω =( Xl,∞) U(Xl, t) = Ū(t), t ∈ R+.

The study of the initial-boundary value problem poses additional difficulties as
compared to the study of the Cauchy problem: first, the problem (1.1)-(1.6) is,
in general, ill posed (i.e. it possesses no solutions) unless additional conditions are
imposed on the data Ū. Possible admissibility criteria on Ū are discussed in Dubois
and LeFloch [9].

Another additional difficulty one has to tackle when studying initial-boundary
value problems is the following: consider the viscous approximation (1.5) coupled
with the initial and boundary data

(1.7) Uε(x, 0) = U0(x), x ∈ Ω =( Xl,∞) Uε(Xl, t) = Ul(t), t ∈ R+.

Assume that the initial-boundary value problem (1.5), (1.7) is well posed (this is
not always the case in the case when B is singular) and that for ε → 0+ the solutions
converge in a suitable topology to a limit U. In general, because of boundary layer
phenomena, U may not satisfy the boundary condition Ul(t) pointwise. Dubois
and LeFloch [9] showed that, if the solutions of the viscous approximation (1.5)
converge as ε → 0+ to a solution of the initial-boundary problem (1.1), (1.6) in a
sufficiently strong topology, then the following inequality holds:

(1.8) Q(U(t))−Q(Ul(t))− 〈SU(Ul(t)),
(
F(U(t))− F(Ul(t))

)
〉 ≤ 0.

Here 〈·, ·〉 denotes the standard scalar product in Rm.
A further difficulty in the study of initial-boundary value problems was pointed

out in the works by Gisclon and Serre [12, 13]: they showed that the limit of
the viscous approximation (1.5) depends on the underlying viscosity mechanism.
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In other words, the limit of (1.5) in general changes if one changes the viscosity
matrix B.

As an example, we consider the linearized shallow water equations (2.13) with
initial data (2.18) and boundary data (2.19). The system is a linear, strictly hy-
perbolic, 2× 2 system and is the simplest possible problem that can be considered
in this context. We consider two different viscosity operators: an artificial uniform
(Laplacian) viscosity (2.15) and the physical eddy viscosity (2.14). The resulting
limit solutions are shown in the left of figure 1. As shown in the figure, there is
a significant difference in solutions (near the boundary) corresponding to different
viscosity operators.

An extended discussion concerning the initial boundary value problem for sys-
tems of conservation laws and its viscous approximation can be found in the books
by Serre [25, 26, Chapters 14 and 15], while we refer to the lecture notes by Serre [27]
and to the rich bibliography therein for the theoretical treatment of the discrete
approximation of viscous shock profiles. To conclude, we stress that analytically
establishing the convergence ε → 0+ for (1.5) is still an open problem in the gen-
eral case, but results are available in more specific cases: in particular, Gisclon [12]
showed local-in-time convergence in the case when B is invertible and, by extend-
ing the analysis in Bianchini and Bressan [6], Ancona and Bianchini [3] proved
global-in-time convergence in the case when B is the identity.

1.1. Numerical schemes. Numerical schemes play a very important role in the
study of system of conservation laws. Conservative finite difference (finite volume)
methods are among the most popular discretization frameworks for (1.1). See
the book by LeVeque [23] for an extended discussion. Given the real numbers
Xl < Xr, we discretize the computational domain [Xl, Xr] by N +1 equally spaced
points xj+1/2 = Xl + j∆x with X1/2 = Xl and with mesh size ∆x and we set
xj = xj−1/2+xj+1/2

2 . Time is discretized with a time step ∆tn. The mesh size and
time step are related by a standard CFL condition.

The aim is to approximate cell averages Un
j of the unknown U in the cell Cj =

[xj−1/2, xj+1/2) at time tn by the scheme

(1.9) Un+1
j = Un

j −
∆tn

∆x

(
Fn

j+1/2 − Fn
j−1/2

)
.

Here, Fn
j+1/2 = F(Un

j ,Un
j+1) is the numerical flux. The numerical flux is obtained

by solving (approximately) the Riemann problem for (1.1) with the states Un
j and

Un+1
j .
Following [9, 23], the Dirichlet boundary conditions at X = Xl are imposed by

setting in the ghost cell [x−1/2, x1/2]:

(1.10) Un
0 = Ul(tn).

However, standard numerical schemes may not converge to the physically rel-
evant solution of the initial boundary value problem for a system of conservation
laws. We illustrate this by again considering the linearized shallow water equa-
tions (2.13) with initial data (2.18) and boundary data (2.19). The results with a
standard Roe (Godunov) scheme for this linear system are presented in figure 1,
right. The figure clearly shows that the Roe scheme converges to a solution that
is different from the physically relevant solution of the system, realized as a limit
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(b) Roe scheme

Figure 1. Left: The limit viscous profile for the linearized shallow
water equations (2.13) with uniform (Laplacian) viscosity (2.15)
and eddy viscosity (2.14). Right: Approximate solutions with the
Roe (Godunov) scheme for the linearized shallow water equations
for the same data as the left figure.

of the eddy viscosity approximation (2.14). In fact, the solution converges to the
limit of the artificial uniform viscosity approximation (2.15).

The problem with standard numerical schemes approximating the initial-boundary
value problem (1.1) lies in the fact that they do not incorporate explicit information
about the underlying viscous approximation (1.5). The implicit numerical viscosity
added by such schemes may lead to the schemes converging to an incorrect solution.
This situation presents analogies with the numerical approximation of non-classical
shocks (see LeFloch[19]), non-conservative hyperbolic systems (see Castro, LeFloch,
Munoz Ruiz and Pares [7]) and conservation laws with discontinuous coefficients
(see Admiurthi, Mishra and Veerappa Gowda [2]).

Here, we design numerical schemes that incorporate explicit information about
the underlying viscous operators. Consequently, these schemes approximate the
physically relevant solutions of system of conservation laws. The schemes are based
on the following two ingredients:

(i.) An entropy conservative discretization of the flux F in (1.1) (see Fjordholm,
Mishra and Tadmor [11] and Tadmor [28]).

(ii.) Numerical diffusion operators for (1.1) that are based on the underlying
viscosity matrix B in (1.5).

We present both first- and second-order schemes that are shown (numerically) to
converge to the physically relevant solution of the system of conservation laws.

The rest of the paper is organized as follows: in Section 2, we discuss the the-
oretical results concerning the initial-boundary value problems (1.5) that will be
used in the following sections. In particular, explicit solutions of the boundary
value problem for a linear system are presented. In Section 3, we present numerical
schemes for the system of conservation laws (1.1) that converge to the physically
relevant solution. Second-order schemes are discussed in Section 4.

2. Theoretical framework

In the following section, we focus on the so-called boundary Riemann problem,
which is posed when the Cauchy and Dirichlet data for the mixed hyperbolic-
parabolic system (1.5) are two constant states, U0(x) ≡ U0 ∈ Rm and Ul(t) ≡ Ul ∈
Rm. The solution of a general initial-boundary value problem can be build using
the solutions of the boundary Riemann problem and standard Riemann problems
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in the interior, see Goodman [14] and Sablé-Tougeron [24] (Glimm scheme) and
Amadori [1] (wave front-tracking algorithm).

2.1. Linear case.

2.1.1. The solution of the Riemann problem in the linear case. We start by recalling
the solution of the Riemann problem obtained by coupling the linear system

(2.1) Ut +AUx = 0 U ∈ Rm

with the initial datum

(2.2) U(0, x) =
{

U− x < 0
U+ x > 0.

In (2.1), A is a constant, strictly hyperbolic m ×m matrix, and in (2.2) U+ and
U− are two given values in Rm.

Denote by λ1, . . . ,λm the eigenvalues of A and by R1, . . . , Rm the corresponding
right eigenvectors and consider the linear system

(2.3) U− +
m∑

i=1

αiRi = U+,

which by strict hyperbolicity admits a unique solution (α1, . . . ,αm). Then the
solution of (2.1)-(2.2) is

(2.4) U(t, x) =






U− if x < λ1t

U− +
j∑

i=1

αiRi if λjt < x < λj+1t, j = 1, . . . ,m− 1

U+ if x > λmt

2.1.2. The solution of the boundary Riemann problem in the linear case. We now
consider the boundary Riemann problem obtained by coupling the linear mixed
hyperbolic-parabolic system

(2.5) Uε
t +AUε

x = εBUε
xx U ∈ Rm

with the Dirichlet and Cauchy data,

(2.6) U(t, 0) = Ul, U(0, x) = U0(x), ∀ t > 0, x > 0,

and by taking the limit ε → 0+. The matrix A in (2.5) is a constant m × m
matrix satisfying (1.2), and B is another constant, m ×m matrix which depends
on the underlying physical model (we discuss explicit examples later in this paper).
The data Ul and U0 in (2.6) are constant states in Rm. Note that, in general, the
problem (2.5),(2.6) may be ill-posed if the matrix B is not invertible. However, to
simplify the exposition in the present paper we always choose the data (2.6) in such
a way that it is well-posed.

As mentioned in the introduction, one of the main challenges coming from the
presence of the boundary is the following: denote by U the limit ε → 0+ of U ε,
then in general the trace of U on the t-axis is not Ul,

(2.7) Ū=̇ lim
x→0+

U(t, x) ,= Ul.
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More precisely, the relation between Ub and Ū is the following: there is a function
W : [0,+∞[→ Rm satisfying

(2.8)

{
BẆ = A(U− Ū)
W (0) = Ul, lim

y→+∞
W(y) = Ū,

where we denote by Ẇ the first derivative of W(y). A function W satisfying (2.8)
is called a boundary layer.

Under the assumption (1.2) and in the case when B is the identity, system (2.8)
admits a solution W if and only if

(Ul − Ū) ∈ span〈R1, . . . , Rk〉.

We recall that by (1.2), k is the number of negative eigenvalues of A and as in
Section 2.1.1, we denote by R1, . . . , Rk the corresponding eigenvectors. In general,
when the matrix B is invertible, the system (2.8) admits a solution if and only if
Ul − Ū belongs to the stable space of B−1A (i.e., to the subspace of Rm generated
by the generalized eigenvectors associated to the eigenvalues of B−1A with strictly
negative real part). Note that this space depends on the matrix B: this is the reason
why, even in the simplest possible case (linear system with an invertible viscosity
matrix), the limit ε → 0+ of (2.5), (2.6) depends on the choice of B.

In the case when B is not invertible, the analysis in Bianchini and Spinolo [5,
Sections 4.2,4.3] guarantees that, in physical cases, if the initial-boundary value
problem (2.5),(2.6) is well-posed, then there are k linearly independent vectors
R̃1, . . . , R̃k such that the following two properties hold: first, system (2.8) admits
a solution if and only if

(2.9) (Ul − Ū) ∈ span〈R̃1, . . . , R̃k〉.

Second, the vectors R̃1, . . . , R̃k, Rk+1, . . . , Rm constitute a basis of Rm. Specific
examples with explicit constructions of the vectors R̃1, . . . , R̃k are discussed later.

Consider the linear system

(2.10) Ul +
k∑

i=1

αiR̃i +
m∑

i=k+1

αiRi = U0,

which by the second property of the vectors R̃1, . . . , R̃k admits a unique solution
(α1, . . . ,αm). The solution U obtained by taking the limit ε → 0+ of (2.5),(2.6) is
then
(2.11)

U(t, x) =






Ub +
k∑

i=1

αiR̃i if 0 < x < λkt

Ub +
k∑

i=1

αiR̃i +
j∑

i=k+1

αiRi if λjt < x < λj+1t, j = k + 1, . . . ,m− 1

U0 if x > λmt ,

where as usual λ1, . . . ,λm denote the eigenvalues of the matrix A. Note that this
construction also works in the case when the matrix B is the identity provided that
we set

(2.12) R̃i=̇Ri ∀ i = 1, . . . , k.
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2.2. Explicit computations for the linearized shallow water equations.
The above constructions are fairly general and abstract. We illustrate them by an
example, i.e. the linearized shallow water equations of fluid flow (see LeVeque [23]):

(2.13)
ht + ũhx + h̃ux = 0,

ut + ghx + ũux = 0.

Here, the height is denoted by h and water velocity by u. The constant g stands
for the acceleration due to gravity and h̃, ũ are the (constant) height and velocity
states around which the shallow water equations are linearized.

The physically relevant viscosity mechanism for the shallow water system is the
eddy viscosity. Adding eddy viscosity to the linearized shallow water system results
in the following mixed hyperbolic-parabolic system:

(2.14)
ht + ũhx + h̃ux = 0,

ut + ghx + ũux = εuxx.

For the sake of comparison, we add an artificial viscosity to the linearized shallow
waters by including the Laplacian. The resulting parabolic system is

(2.15)
ht + ũhx + h̃ux = εhxx,

ut + ghx + ũux = εuxx.

Systems (2.15) and (2.14) can be written in the form (2.5) provided that

(2.16) A =
(

ũ h̃
g ũ

)
, B = BLap =

(
1 0
0 1

)
, B = BEDvisc =

(
0 0
0 1

)

in (2.15) and (2.14), respectively. We will construct explicit solutions for the lin-
earized shallow water equations (2.13) for the limit of both the eddy viscosity as
well as the artificial viscosity. For the rest of this section, we specify the parameters

(2.17) h̃ = 2, ũ = 1, g = 1.

and consider the initial data

(2.18) (h, u)(x, 0) =

{
U− = (3, 1), if x < 0,

U+ = (1, 1), if x > 0.

and the Dirichlet boundary data

(2.19) (h, u)(−1, t) = Ul(t) = (2, 1) ∀ t > 0.

2.2.1. Solution of the Riemann problem. We now apply the construction described
in Section 2.1.1 to solve the Riemann problem (2.13), (2.18). The eigenvalues of the
matrix A in (2.16) are λ1 = 1−

√
2 < 0 and λ2 = 1 +

√
2 > 0, with corresponding

eigenvectors

(2.20) R1 =
(

1
−
√

2/2

)
R2 =

(
1√
2/2.

)
.

Hence, the solution of the linear system (2.3) in this case is α1 = α2 = −1.
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2.2.2. Solution of the boundary Riemann problem limit of the uniform (Laplacian)
viscosity. We now apply the construction in Section 2.1.2 to determine the limit
ε → 0+ of the viscous approximation (2.15) coupled with the Cauchy and Dirichlet
data (2.18) and (2.19).

We solve the linear system (2.10) in the case when Ul is given by (2.19), U0 =
(3, 1) and (2.12) holds and we obtain α1 = α2 = 1/2.

By combining this with the analysis in Section 2.2.1 and by recalling (2.4)
and (2.11), we conclude that the local in time solution of (2.13) obtained by taking
the limit ε → 0+ of (2.15), (2.18), (2.19) is
(2.21)

(h, u)(t, x) =






(5/2, 1−
√

2/4) if 0 < x + 1 < (1 +
√

2)t
(3, 1) if x + 1 > (1 +

√
2)t and x < (1−

√
2)t

(2, 1 +
√

2/2) if (1−
√

2)t < x < (1 +
√

2)t
(1, 1) if x > (1 +

√
2)t

2.2.3. Solution of the boundary Riemann problem limit of the eddy viscosity. We
evaluate the limit ε → 0+ of the viscous approximation (2.14) coupled with the
Cauchy and Dirichlet data (2.18) and (2.19) by applying the construction described
in Section 2.1.2. We consider system (2.8) in the case when B is the same matrix
BEDvisc as in (2.16) and Ul is given by (2.19) and we get

(2.22)






0 = h− h̄ + 2(u− ū)
u̇ = −(u− ū)
(h, u)(0) = (2, 1) limy→+∞(h, u)(y) = (h̄, ū).

By imposing the initial datum h(0) = 2, u(0) = 1 one gets that (2.22) admits a
solution if and only if

(
2− h̄
1− ū

)
= span〈R̃1〉 R̃1=̇

(
1,−1/2

)

and hence by solving the linear system (2.10) we get in this case α1 =
√

2/(
√

2+1)
and α2 = 1/(

√
2 + 1). By combining this with the analysis in Section 2.2.1 and

by recalling (2.4) and (2.11) we conclude that the local in time solution of (2.13)
obtained by taking the limit ε → 0+ of (2.14), (2.18), (2.19) is
(2.23)

(h, u)(t, x) =






(
(3
√

2 + 2)/(
√

2 + 1), (
√

2 + 2)/(2
√

2 + 2)
)

if 0 < x + 1 < (1 +
√

2)t
(3, 1) if x + 1 > (1 +

√
2)t and x < (1−

√
2)t

(2, 1 +
√

2/2) if (1−
√

2)t < x < (1 +
√

2)t
(1, 1) if x > (1 +

√
2)t

The explicit calculations clearly show that the solution of the linearized shallow
water equations (2.13) realized as a limit of vanishing eddy viscosity (2.14) differs
from the solution realized as a limit of the artificial viscosity (2.15). In particular,
the solutions are different near the boundary at x = 0 whereas they are the same,
away from the boundary. The height (h) for both solutions is shown in figure 1,
left.

2.3. The solution of the boundary Riemann problem for non-linear sys-
tems. Consider the boundary Riemann problem obtained by coupling the mixed
hyperbolic-parabolic system (1.5) with the Cauchy and Dirichlet data Uε(0, x) =
U0, Uε(t, 0) = Ul, respectively, where U0,Ul ∈ Rm, and by then taking the limit
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ε → 0+. One of the main challenges posed by this problem is establishing the
relation between the data Ul and the trace

Ū=̇ lim
x→0+

U(t, x).

As pointed out by Gisclon and Serre [12, 13], there exists a boundary layer W : [0,+∞[→ Rm

such that

(2.24)
{

B(W )Ẇ = F(W)− F(Ū)
W(0) = Ul limy→+∞W(y) = Ū.

In the case when the Jacobian matrix FU satisfies (1.2) and the matrix B is in-
vertible, the existence of a boundary layer W satisfying (2.24) is equivalent to the
fact that Ul belongs to a suitable stable manifold centered at Ū. The general case
when condition (1.2) is violated (i.e., one eigenvalue of the Jacobian matrix FU can
attain the value 0) or the viscosity matrix B is singular is more complicated, but
it can be treated under suitable assumptions. A characterization of the solution of
the boundary Riemann problem obtained as limit of ε → 0+ of the viscous approx-
imation (1.5) is provided in Bianchini and Spinolo [5] under the assumption that
the Dirichlet and boundary data are sufficiently close. We also refer to Joseph and
LeFloch [18], Ancona and Bianchini [3] and to the references therein for characteri-
zations of solution of the boundary Riemann problem obtained as limits of different
viscous approximations. We observe that in general it is difficult to compute the
solution of the boundary Riemann problem for a non-linear system explicitly.

3. Numerical schemes.

3.1. Definition of the schemes. We write down a semi-discrete conservative
finite difference (finite volume) scheme for the system of conservation laws (1.1) as

(3.1)
d

dt
Uj(t) +

1
∆x

(
Fj+1/2 − Fj−1/2

)
= 0.

Here Uj ≈ U(xj) with xj being the midpoint of the cell [xj−1/2, xj+1/2]. As
stated in the introduction, the numerical flux Fj+1/2 = F(Uj ,Uj+1) is determined
by (approximate) solutions of the Riemann problem at the interface xj+1/2. An
equivalent expression of the numerical flux (see the book by LeVeque [23]) is

(3.2) Fj+1/2 =
F(Uj) + F(Uj+1)

2
− 1

2
D̂j+1/2,

with D̂ = D̂(Uj ,Uj+1) being the corresponding numerical diffusion operator. As
an example, the Roe diffusion operator (see again [23]) is given by

(3.3) D̂j+1/2 = Rj+1/2|Λj+1/2|R−1
j+1/2[[U]]j+1/2,

where Λ and R are matrix of eigenvalues and eigenvectors of the Jacobian FU

evaluated at a suitable average state. Also, here and in the following we use the
notations

aj+1/2 =
aj + aj+1

2
, [[a]]j+1/2 = aj+1 − aj .

Clearly, the above numerical diffusion operator does not incorporate any informa-
tion about the underlying viscous approximation. Hence, the approximate solutions
generated by schemes such as the Roe scheme may not converge to the physically
relevant solution, given as a limit of the underlying viscous approximation as the
viscosity parameter goes to zero. An illustration is provided in figure 1, right. Here,
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we present results obtained by approximating the linearized shallow water system
(2.13) with the Roe (Godunov) scheme. The exact solution, computed in (2.23) as
the limit of vanishing eddy viscosity (2.14) is also shown on the left. As shown in
the figure, the Roe scheme does not converge to this physically relevant solution as
the numerical viscosity (3.3) is very different from the eddy viscosity in (2.14).

In this paper, we consider a different paradigm for numerically approximating the
initial-boundary value problem. The main difference from the standard schemes lies
in the choice of the numerical flux F in (3.1). It combines the following ingredients.

3.1.1. Entropy conservative fluxes: We assume that (1.1) admits an entropy-entropy
flux pair (S, Q) and by following Tadmor [28] we define an entropy conservative flux
for (1.1) as

Definition 3.1. A numerical flux F∗j+1/2 = F∗(Uj ,Uj+1) is defined to be entropy
conservative for entropy S if it satisfies

(3.4) [[V]]&j+1/2F
∗
j+1/2 = [[Ψ]]j+1/2

for every j. Here, V = SU is the vector of entropy variables and Ψ = V&F−Q is
the entropy potential for the entropy function S and entropy flux Q.

The existence of entropy conservative fluxes for system of conservation laws is
shown in Tadmor [28] and explicit examples of entropy conservative fluxes are
summarized in Fjordholm, Mishra and Tadmor [11].

It is known (see Dafermos [8, Chapter 7]) that if (S, Q) is an entropy-entropy
flux pair (S, Q) with S strictly convex, then FUUV is symmetric and UV is sym-
metric and positive definite. In the following, we also assume that the entropy is
dissipative, namely that

(3.5) 〈BUVξ, ξ〉 ≥ 0 ∀ ξ ∈ Rm.

This condition is satisfied in physical cases. In particular, it is satisfied in all the
cases we discuss in the following.

3.1.2. Numerical diffusion operator: Let (1.5) be the underlying mixed hyperbolic-
parabolic regularization of the hyperbolic equation (1.1). We choose a numerical
diffusion operator,

(3.6) D∗j+1/2 := D∗(Uj ,Uj+1) = cmaxB(Ûj+1/2)[[U]]j+1/2.

Here, B is the viscosity matrix in the parabolic regularization (1.5) evaluated at
some suitable averaged state Ûj+1/2 and

(3.7) cmax(t) = max
j

|λmax
j |,

with λmax
j being the largest eigenvalue of the Jacobian FU at a given state Uj .

3.1.3. Correct numerical diffusion (CND) scheme. We choose the numerical flux

(3.8) Fj+1/2 = F∗j+1/2 −
1
2
D∗j+1/2.

Here, F∗j+1/2 = F∗ (Uj ,Uj+1) is an entropy conservative flux (3.4) for the system
(1.1) and the numerical diffusion operator D∗j+1/2 is defined in (3.6). The semi-
discrete scheme (3.1) with numerical flux (3.8) has the following properties:
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Theorem 3.1. Assume that the system (1.1) is equipped with the entropy-entropy
flux pair (S, Q) which is dissipative in the sense of (3.5). Then, the scheme (3.1)
with numerical flux (3.8) satisfies

(i.) a (local) discrete entropy inequality (discrete version of the entropy inequal-
ity (1.4)) of the form

(3.9)
d

dt
S(Uj)(t) +

1
∆x

(
Q̂j+1/2 − Q̂j+1/2

)
≤ 0,

with a numerical entropy flux Q̂ that is consistent with the entropy flux Q.
(ii.) The scheme is first-order accurate and the equivalent equation is

(3.10) U∆x
t + F(U∆x)x =

cmax∆x

2
(
B(U∆x)U∆x

x

)
x

+O(∆x2).

Proof. Multiplying both sides of the scheme (3.1) by the entropy variable V&
j , we

obtain

(3.11)

d

dt
S(Uj) +

1
∆x

(
Q̃j+1/2 − Q̃j−1/2

)

= +
1

2∆x

(
[[V]]&j+1/2F

∗
j+1/2 + [[V]]&j−1/2F

∗
j−1/2

)

︸ ︷︷ ︸
T1

− cmax

4∆x

(
[[V]]&j+1/2B(U(V̂j+1/2))UV(V̂j+1/2)[[V]]j+1/2

)

− cmax

4∆x

(
[[V]]&j−1/2B(U(V̂j−1/2))UV(V̂j−1/2)[[V]]j−1/2

)
.

Here, we have introduced the numerical flux

Q̃j+1/2 := V
&
j F∗j+1/2 −

cmax

2

(
V
&
j+1/2B(U(V̂j+1/2))[[U]]j+1/2

)
,

with Q̃j−1/2 defined analogously. Also, we have introduced the average V̂j+1/2

satisfying

(3.12) [[U]]j+1/2 = UV(V̂j+1/2)[[V]]j+1/2.

By using the definition of the entropy conservative flux (3.4), the term T1 in (3.11)
can be simplified as

T1 =
1

2∆x

(
[[V]]&j+1/2F

∗
j+1/2 + [[V]]&j−1/2F

∗
j−1/2

)

=
1

2∆x

(
[[Ψ]]j+1/2 + [[Ψ]]j−1/2

)

=
1

∆x

(
Ψj+1/2 −Ψj−1/2

)

Substituting the above expression of T1 in (3.11) yields

(3.13)

d

dt
S(Uj) +

1
∆x

(
Q̂j+1/2 − Q̂j−1/2

)
=

− cmax

4∆x

(
[[V]]&j+1/2B(U(V̂j+1/2))UV(V̂j+1/2)[[V]]j+1/2

)

− cmax

4∆x

(
[[V]]&j−1/2B(U(V̂j−1/2))UV(V̂j−1/2)[[V]]j−1/2

)
.

with

Q̂j+1/2 := V
&
j+1/2F

∗
j+1/2 −Ψj+1/2 −

cmax

2

(
V
&
j+1/2B(U(V̂j+1/2))[[U]]j+1/2

)
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and Q̂j−1/2 defined analogously. Note that Q̂(a, a) = Q(a) from the definition
of the entropy potential Ψ. The discrete entropy inequality (3.9) follows from
assumption (3.5).

The equivalent equation (3.10) is a simple consequence of Taylor expansion and
reveals the first order accuracy of the scheme. !

Thus, the proposed numerical scheme is entropy stable under reasonable hy-
potheses on the system (1.1). Furthermore, the equivalent equation (3.10) shows
that the numerical viscosity of this scheme matches the underlying physical viscos-
ity operator in (1.5) at leading order. Hence, we claim that the scheme (3.1) with
numerical flux (3.8) incorporates the correct numerical dissipation and term it as
the CND scheme.

The Dirichlet boundary conditions for (1.1) are imposed weakly by setting

(3.14) U0(t) = Ul(t).

This amounts to setting the Dirichlet data as the value in the ghost cell [x−1/2, x1/2].
The semi-discrete scheme (3.1) is integrated in time with the SSP-RK2 time

integrator:

(3.15)

U∗ = Un + ∆tL(Un),
U∗∗ = U∗ + ∆tL(U∗),

Un+1 =
1
2
(Un + U∗∗),

that approximates the ODE system

(3.16)
d

dt
U(t) = L(U(t)),

for the unknowns U = {Uj}j , defined by the scheme (3.1).

3.2. Linear systems: We illustrate the finite difference scheme (3.1) for a linear
system, i.e for (1.1) (and the parabolic regularization (1.5)) with

(3.17) F(U) = AU, B(U) = B,

for A,B given (m ×m)-matrices. As pointed out before, if S(U) = 1
2U

TSU is a
strictly convex entropy, then the matrix SA is symmetric. Following Fjordholm,
Mishra and Tadmor [11]), we define the corresponding entropy conservative flux as

(3.18) F∗j+1/2 = AUj+1/2.

We consider the following specific example:

3.2.1. Linearized shallow water system. The linearized shallow water system (2.13)
is considered. We assign the data (2.18) and (2.19). The computational domain is
[−1, 1] and we use open (Neumann type) boundary conditions at the right boundary
x = 1.

The numerical solutions computed with the standard Roe scheme (3.1) and the
CND scheme (3.8) are shown in figure 2. As we are interested in computing the
physically relevant solutions of the linearized shallow water equations, obtained as
a limit of the eddy viscosity (2.14), we also plot the exact solution computed in
(2.23) for comparison. Both the numerical solutions are computed with a 1000
mesh points.
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The results in figure 2 clearly show that the Roe scheme does not converge to
the physically relevant solution (2.23). On the other hand, the solutions computed
with the CND scheme approximate the physically relevant solution (2.23) quite
well. There are some small amplitude oscillations in the height with the CND
scheme. This is a consequence of the singularity of the viscosity matrix B in this
case. The experiment clearly shows that incorporating explicit information about
the underlying viscous mechanism in the numerical diffusion operator results in the
approximation of the correct solution.
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Figure 2. Solutions of the linearized shallow water equations
(2.13) with initial data (2.18) and boundary data (2.19) computed
with the Roe and CND schemes with 1000 mesh points. The exact
solution computed in (2.23) is provided for comparison.

3.3. Nonlinear Euler equations. In one space dimension, the Euler equations
of gas dynamics are

(3.19)

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p)x = 0,

Et + ((E + p)u)x = 0.

Here, ρ is the fluid density and u is the velocity. The total energy E and the
pressure p are related by the ideal gas equation of state:

(3.20) E =
p

γ − 1
+

1
2
ρu2,
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with γ > 1 being a constant specific of the gas.
The system is hyperbolic with eigenvalues

(3.21) λ1 = u− c, λ2 = u, λ3 = u + c.

Here, c =
√

γp
ρ is the sound speed.

The equations are augmented with the entropy inequality

(3.22)
(
−ρs

γ − 1

)

t

+
(
−ρus

γ − 1

)

x

≤ 0,

with thermodynamic entropy

s = log(p)− γ log(ρ).

The compressible Euler equations are derived by ignoring kinematic viscosity
and heat conduction. Taking these small scale effects into account results in the
compressible Navier-Stokes equations:

(3.23)

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p)x = νuxx,

Et + ((E + p)u)x = ν

(
u2

2

)

xx

+ κθxx.

Here, θ is the temperature given by

θ =
p

(γ − 1)ρ
.

The viscosity coefficient is denoted by ν and κ is the coefficient of heat conduction.
For the sake of comparison, we add an uniform (Laplacian) diffusion to obtain

the compressible Euler equations with artificial viscosity:

(3.24)

ρt + (ρu)x = ερxx,

(ρu)t + (ρu2 + p)x = ε(ρu)xx,

Et + ((E + p)u)x = εExx.

To evaluate the limit solution of (3.23), we construct a numerical approximation
by discretizing the mixed hyperbolic-parabolic systems (3.23) and (3.24) for a fixed
and very small value of the viscosity coefficient. We do so by the (semi-discrete)
finite difference scheme

(3.25)
d

dt
Uj(t) +

1
∆x

(
F∗j+1/2 − F∗j−1/2

)
=

ε

∆x2
Dj .

Here, the numerical flux is the entropy conservative flux (3.4) (see Ismail and
Roe [16])

(3.26)

F∗j+1/2 = [F1,∗
j+1/2,F

2,∗
j+1/2,F

3,∗
j+1/2]

&,

F1,∗
j+1/2 = (z2)j+1/2(z3)L

j+1/2, F2,∗
j+1/2 =

(z3)j+1/2

(z1)j+1/2
+ F1,∗

j+1/2,

F3,∗
j+1/2 =

1
2

(z2)j+1/2

(z1)j+1/2

(
γ + 1
γ − 1

(z3)L
j+1/2

(z1)L
j+1/2

+ F2,∗
j+1/2

)
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with parameter vectors

(3.27) (z1, z2, z3) =
(√

ρ

p
,

√
ρ

p
u,
√

ρp

)
.

The logarithmic mean of any quantity a, defined on the mesh, is denoted by

(a)L
j+1/2 =

aj+1 − aj

log(aj+1)− log(aj)
.

We define the numerical diffusion operators by setting

(3.28)

Dj =
[
D1

j ,D2
j ,D3

j

]&
,

D1
j = 0,

D2
j = ν(uj+1 − 2uj + uj−1),

D3
j =

ν

2
(u2

j+1 − 2u2
j + u2

j−1) + κ(θj+1 − 2θj + θj−1).

and

(3.29) Dj = Uj+1 − 2Uj + Uj−1,

for the compressible Navier-Stokes equations (3.23) and the Euler equations with
artificial viscosity (3.24), respectively.

As an example, we consider both (3.24) and (3.23) in the domain [−1, 1] with
initial data

(3.30) (ρ0, u0, p0) =

{
(3.0, 1.0, 3.0), if x < 0,

(1.0, 1.0, 1.0), if x > 0.

We impose open boundary conditions at the right boundary and Dirichlet boundary
conditions at the left boundary with boundary data

(3.31)
(
ρ(−1, t), u(−1, t), p(−1, t)

)
= (2.0, 1.0, 2.0).

We set ν = κ = ε. The results for the finite difference scheme approximating the
uniform viscosity (3.24) and the physical viscosity (3.23) are presented in Figure
3. The figure shows that the there is a clear difference in the limit solutions of this
problem, obtained from the compressible Navier-Stokes equations (3.23) and the
Euler equations with artificial viscosity (3.24). The difference is more pronounced in
the density variable near the left boundary. Both the limit solutions were computed
by setting ε = 10−5 and on a very fine mesh of 32000 points.

Remark 3.1. The above example also illustrates the limitations of using a mixed
hyperbolic-parabolic system like the compressible Navier-Stokes equations (3.23).
In order to resolve the viscous scales, we need to choose ∆x = O

(
1
ε

)
, with ε being

the viscosity parameter. As ε is very small in practice, the computational effort
involved is prohibitively expensive. In the above example, we needed 32000 points to
handle ε = 10−5. Such ultra fine grids are not feasible, particularly in several space
dimensions.
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Figure 3. Limit solutions of the compressible Euler equations
(3.19) with initial data (3.30) and boundary data (3.31). The limits
of the physical viscosity i.e compressible Navier-Stokes equations
(3.23) and the artificial (Laplacian) viscosity (3.24) are compared.

3.3.1. CND scheme for the Euler equations. The CND scheme (3.1) for the Euler
equations (3.19) is specified as follows: the entropy conservative flux in (3.8) is
given by (3.26) and the numerical diffusion operator in (3.8) matches the kinematic
viscosity and heat conduction of the compressible Navier-Stokes equations since it
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is defined by setting

(3.32)

D∗j+1/2 =
[
D1

j+1/2,D2
j+1/2,D3

j+1/2

]&
,

D1
j+1/2 = 0,

D2
j+1/2 =

(
max

j

(
|uj |+

√
γpj

ρj

))
(uj+1 − uj) ,

D3
j+1/2 =

(
max

j

(
|uj |+

√
γpj

ρj

)) (
1
2
(u2

j+1 − u2
j ) + (θj+1 − θj)

)
.

We discretize the initial-boundary value problem for the compressible Euler equa-
tions (3.19) on the computational domain [−1, 1] with initial data (3.30) and Dirich-
let data (3.31). The results with the CND scheme and a standard Roe scheme are
shown in figure 4. We present approximate solutions, computed on a mesh of 1000
points, for both schemes. Both the Roe and the CND schemes have converged at
this resolution. As we are interesting in approximating the physically relevant solu-
tions of the Euler equations, realized as a limit of the Navier-Stokes equations, we
plot a reference solution computed on a mesh of 32000 points of the compressible
Navier-Stokes equations (3.23) with κ = ν = 10−5. The figure shows that the Roe
scheme clearly converges to an incorrect solution near the left boundary. This lack
of convergence is most pronounced in the density variable. Similar results were
also obtained with the standard Rusanov, HLL and HLLC solvers (see the book by
LeVeque[23] for a detailed description of these solvers).

On the other hand, the CND scheme converges to the physically relevant solu-
tion. There are slight oscillations with the CND scheme as the numerical diffusion
operator is singular. However, these oscillations do not impact on the convergence
properties of this scheme. Furthermore, the CND scheme is slightly more accurate
than the Roe scheme when both of them converge to the same solution (see near
the interior contact).

4. Second-order CND schemes

The CND scheme, described in the last section, was first-order accurate in space.
Consequently, it approximated shocks and contact discontinuities with excessive
smearing, particularly on coarse meshes. We can improve the resolution of numer-
ical schemes by constructing second-order accurate schemes.

To this end, we reconstruct the cell averages Uj of the unknown to a piecewise
linear function given by

(4.1) pj(x) := Uj +
U′

j

∆x
(x− xj).

The numerical derivative U′ is chosen to be non-oscillatory by limiting the slope,
i.e. setting

(4.2) U′
j = minmod(Uj+1 −Uj ,Uj −Uj−1),

with the minmod function defined as

(4.3) minmod(a, b) =

{
sgn(a) min{|a|, |b|}, if sgn(a) = sgn(b),
0, otherwise.
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Figure 4. Approximate solutions of the compressible Euler equa-
tions (3.19) with initial data (3.30) and boundary data (3.31). We
compare the Roe and CND schemes on 1000 mesh points with
a reference solution of the compressible Navier-Stokes equations
(3.23) with κ = ν = 10−5.

Other limiters like the MC and Superbee limiters can also be chosen (see the book
by LeVeque[23] for the corresponding definitions). We need the cell interface values

(4.4) U+
j := pj(xj+1/2), U−

j := pj(xj−1/2).

With these reconstructed values, we modify the numerical flux (3.8) by setting

(4.5) Fj+1/2 = F∗j+1/2 −
1
2
D̃j+1/2,
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with

(4.6) D̃j+1/2 = D̃(U+
j ,U−

j+1) = cmaxB(Uj+1/2)
(
U−

j+1 −U+
j

)
,

where the constant cmax is the same as in (3.7). Note that the only difference be-
tween the flux (3.8) and the flux (4.5) lies in replacing the difference in cell averages
in the numerical diffusion operator in (3.6) with the difference in the corresponding
reconstructed edge values in (4.6). The overall scheme (3.1) with numerical flux
(4.5) is (formally) second-order accurate as the entropy conservative flux F∗ is sec-
ond order accurate (see Tadmor [28]) and the difference in the numerical diffusion
operator is a difference of second-order reconstructed values, see Fjordholm, Mishra
and Tadmor [11] for a proof of the order of accuracy of schemes constructed with
numerical fluxes like (4.5).

We test this second-order scheme (3.1), (4.5) for the compressible Euler equa-
tions. Let the computational domain be [−1, 1] with initial data (3.30) and Dirichlet
data (3.31).

The scheme (3.1) is specified as follows: the entropy conservative flux in numer-
ical flux (4.5) is given by (3.26). The numerical diffusion is

(4.7)

D∗j+1/2 =
[
D1

j+1/2,D2
j+1/2,D3

j+1/2

]&
,

D1
j+1/2 = 0,

D2
j+1/2 =

(
max

j

(
|uj |+

√
γpj

ρj

)) (
u−j+1 − u+

j

)
,

D3
j+1/2 =

(
max

j

(
|uj |+

√
γpj

ρj

)) (
1
2
((u−j+1)

2 − (u+
j )2) + (θ−j+1 − θ+

j )
)

,

with u±, θ± being obtained from the reconstructed conservative variables. The
overall scheme (integrated in time with the SSP RK2 time stepping (3.15)) is termed
as the CND2 scheme.

We compute approximate solutions of the Euler equations with initial data (3.30)
and boundary data (3.31) using the CND and CND2 schemes and show the results,
obtained on a mesh of 200 points, in figure 5. The result shows that both the
first and second order CND schemes approximate the physically relevant solution,
computed as the limit of the compressible Navier-Stokes equations, quite well. The
first-order scheme smears the discontinuities as well as generates oscillations. On
the other hand, the second-order scheme is clearly sharper at discontinuities. Fur-
thermore, it reduces the oscillations considerably.

5. Conclusion

We consider the initial-boundary value problem for systems of conservation laws
(1.1). Since the work by Gisclon and Serre [12, 13] it is known that the solutions
of the initial boundary value problem depend on the underlying viscous approxi-
mation (1.5). Different choices of viscosity operators can lead to different solutions
for the limit system of conservation laws (1.1). These results hold for both linear
as well as non-linear systems. Even 2× 2, strictly hyperbolic, symmetrizable linear
systems like the linearized shallow water equations (2.13) show this behavior.

This dependence of solutions on underlying small scale effects suggests that one
should discretize the viscous approximation (1.5) directly. However, this is very
expensive computationally on account of very low values of the viscosity parameter.
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Figure 5. Approximate solutions of the compressible Euler equa-
tions (3.19) with initial data (3.30) and boundary data (3.31). We
compare the CND and CND2 schemes on 200 mesh points with
a reference solution of the compressible Navier-Stokes equations
(3.23) with κ = ν = 10−5.

Therefore, we need to design numerical schemes for the system of conservation laws
(1.1) that converge to the physically relevant solutions i.e the limit of solutions
of (1.5) as ε → 0. Unfortunately, existing numerical schemes like the standard
Godunov, Roe and HLL schemes might converge of the physically incorrect solution
of the initial-boundary value problem.

In this paper, we design a conservative finite difference scheme (3.1) with a
numerical flux (3.8) based on the following two ingredients:

• entropy conservative fluxes (3.4);
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• numerical diffusion operators (3.6).

Information about the underlying viscous approximation (1.5) is explicitly incor-
porated into the choice of the numerical diffusion operator. The resulting entropy
stable schemes are shown (numerically) to converge to the limit solution, obtained
from the underlying viscous approximation. Thus, we provide a numerical frame-
work for computing solutions of the system of conservation laws that require explicit
information about the underlying small scale effects. To the best of our knowledge,
this is the first time such schemes have been constructed in the context of initial-
boundary value problems.

We present a set of numerical experiments for both the linearized shallow wa-
ter and nonlinear Euler equations to demonstrate that our numerical schemes do
converge to the limit solutions of the underlying eddy viscosity or Navier-Stokes
viscosity, respectively. Second-order schemes are constructed and are shown to be
superior to first-order schemes in terms of accuracy as well as in suppressing oscil-
lations that might result from a lack of viscosity in some conservative variables. At
the same time, these second-order schemes also converge to the physically relevant
solutions.

We concentrated on Dirichlet boundary conditions in one space dimension in this
paper. Extensions to several space dimensions and to other interesting boundary
conditions will be considered in a forthcoming paper.

References

[1] D. Amadori Initial-boundary value problems for nonlinear systems of conservation laws.
NoDEA Nonlinear Differential Equations Appl. 4, no. 1, 1-42, 1997.

[2] Adimurthi, S. Mishra, and G. D. Veerappa Gowda. Optimal entropy solutions for scalar
conservation laws with discontinuous flux. J. Hyperbolic. Diff. Eqns., 2(4), 787-838, 2005.

[3] F. Ancona and S. Bianchini Vanishing viscosity solutions of hyperbolic systems of conser-
vation laws with boundary “WASCOM 2005”13th Conference on Waves and Stability in
Continuous Media, 13-21, World Sci. Publ., Hackensack, NJ 2(4), 2006.

[4] S. Bianchini On the Riemann problem for non-conservative hyperbolic systems. Arch. Ra-
tion. Mech. Anal. 166, no. 1, 1-26, 2003.

[5] S. Bianchini and L.V. Spinolo The boundary Riemann solver coming from the real vanishing
viscosity approximation. Arch. Ration. Mech. Anal. 191, no. 1, 1-96, 2009.

[6] S. Bianchini and A. Bressan Vanishing viscosity solutions of nonlinear hyperbolic systems.
Ann. of Math.(2) 161, no. 1, 223-342, 2005.

[7] M. J. Castro, P. LeFloch, M. L. Munoz Ruiz and C. Pares. Why many theories of shock
waves are necessary: convergence error in formally path-consistent schemes. J. Comput.
Phys., 227 (17), 2008, 8107-8129.

[8] C. Dafermos. Hyperbolic conservation laws in continuum physics. Third edition.
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathemat-
ical Sciences], 325. Springer-Verlag, Berlin, 2010.

[9] F. Dubois and P. LeFloch. Boundary conditions for non-linear hyperbolic systems. J. Dif-
ferential Equations, 71 (1), 93-122, 1988.

[10] U. S. Fjordholm and S. Mishra. Accurate numerical discretizations of non-conservative hy-
perbolic systems. M2AN Math. Model. Num. Anal to appear. Research Report N. 2010–25,
Seminar für Angewandte Mathmatik ETH Zürich, 2010.
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