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Abstract

We analyze the regularity of random entropy solutions to scalar hyperbolic conservation laws with
random initial data. We prove regularity theorems for statistics of random entropy solutions like
expectation, variance, space-time correlation functions and polynomial moments such as gPC coeffi-
cients. We show how regularity of such moments (statistical and polynomial chaos) of random entropy
solutions depends on the regularity of the distribution law of the random shock location of the initial
data. Sufficient conditions on the law of the initial data for moments of the random entropy solution
to be piece-wise smooth functions of space and time are identified, even in cases where path-wise
random entropy solutions are discontinuous almost surely. We extrapolate the results to hyperbolic
systems of conservation laws in one space dimension. We then exhibit a class of stochastic Galerkin
discretizations which allows to derive closed deterministic systems of hyperbolic conservation laws for
the coefficients in truncated polynomial chaos expansions of the random entropy solution. Based on
the regularity theory developed here, we show that depending on the smoothness of the law of the
initial data, arbitrarily high convergence rates are possible for the computation of coefficients in gPC
approximations of random entropy solutions for Riemann problems with random shock location by
combined Stochastic Galerkin Finite Volume schemes.

Introduction

We consider the multidimensional hyperbolic system of conservation laws

∂U

∂t
+

d∑

k=1

∂Fk(U)

∂xk
= 0, x = (x1, . . . , xd) ∈ Rd, t > 0; (1)

with random initial data depending on ω ∈ Ω:

U(x, 0,ω) = U0(x,ω), x ∈ Rd,ω ∈ Ω . (2)

Here Ω denotes the set of all elementary events in a probability space (Ω,F ,P) on which the
randomness of the initial data in (2) is modelled, and the random solution Ω " ω #→ U = [u1, . . . , up]!

is a measurable mapping from F into a suitable space of vector-valued functions, defined on Rd×[0,∞)
and taking values in a set of states S ⊂ Rp. The (deterministic) flux functions Fk, 1 ! k ! d in (1)
are assumed to be known smooth functions from S into Rp.

For smooth deterministic initial data, the unique entropy solutions of (1)–(2) generally develop
discontinuities in finite time. Therefore the admissible solutions to (1)–(2) are sought in the weak sense,
augmented by additional entropy criteria to ensure uniqueness and satisfy physical requirements. In
the scalar multidimensional case there exists a well-posedness result for entropy solutions, however, no
global well-posedness results are available for general multidimensional systems of conservation laws.

Many efficient numerical methods have been developed to approximate the entropy solutions of
systems of conservation laws [1,2], e.g. finite volume or discontinuous Galerkin methods. The classical
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assumption in designing efficient numerical methods is that the initial data U0 is known exactly.
However, in many practical applications it is not always possible to obtain exact initial data due
to, for example, measurement or modeling errors. In the present paper, we follow [3] and describe
incomplete information in the initial data (2) mathematically as random fields. Such initial data
are described in terms of statistical quantities of interest like the mean, variance, higher statistical
moments; in some cases the distribution law of the stochastic initial data is also assumed to be known.
In any of these situations one needs a mathematical formulation of (1)–(2) allowing random initial
data.

A mathematical framework of random entropy solutions for scalar conservation laws has been
developed in [3], to which we refer for a definition of random entropy solutions. There, existence and
uniqueness of random entropy solutions to (1)–(2) has been shown for scalar hyperbolic conservation
laws, also in multiple dimensions. Furthermore, the existence of the statistical quantities of the random
entropy solution such as the statistical mean and k-point spatio-temporal correlation functions under
suitable assumptions on the random initial data have been proven.

In this paper, we address the questions of regularity of the probabilistic shock profile as well as of the
higher statistical and polynomial moments of the solution to the hyperbolic equation or to hyperbolic
systems of equations with random initial data. It has been observed that in the case when the initial
data (2) is assumed to be the Riemann data with random initial discontinuity position, the resulting
statistical quantities (mean, variance and space-time correlation functions) are always smoother than
the deterministic solution resulting from each realization of the random input (we call it path-wise
solution). Moreover, the degree of smoothness depends on the smoothness of the probability density
function of a given distribution. For instance, if the position of the shock is distributed uniformly
on some interval, i.e. the distribution function is discontinuous, the statistical mean is nevertheless a
continuous function. If, on the other hand, the location of the shock in the initial data is normally
distributed so that the probability density function is infinitely differentiable, then we show that the
mean random entropy solution is also an infinitely differentiable function.

Numerical methods for uncertainty quantification in hyperbolic conservation laws have been stud-
ied in [3–7]. In numerical experiments in [3,4] (which were based on some form of path-wise simulation)
increased smoothness of statistical quantities derived from random entropy solution has been observed
numerically. The mathematical study of the regularity of statistical moments of random entropy so-
lutions for the scalar conservation law (1)–(2) is one purpose of this paper. We present elements of a
mathematical regularity theory which justifies, at least in one space dimension, the increase in space-
time regularity of certain ensemble averages of the random entropy solution. Our main finding is that
for a probability measure which is non-atomic (with respect to Lebesgue measure), statistics of random
entropy solutions are more regular than path-wise solutions. We exhibit, as extreme cases, classes of
probabilities distributions which render the statistics of the random entropy solutions smooth. We
emphasize that this smoothing effect is not related to the classical concept of viscous shock profile: all
conservation laws considered in the present paper are considered without any viscous regularization.

We present consequences of this observation for the design of effective numerical solvers for (1)–(2).
As alluded to above, the convergence order of solution approaches based on sample averages of

path-wise numerical solutions are constrained by the (inevitable, in general) shocks forming in entropy
solutions of (1). These imply only first-order convergence rates regardless of the formal order of the
numerical scheme used.

In the light of our regularity theory, therefore, superior performance of numerical schemes which
directly approximate statistical quantities can be anticipated. One example of such solution schemes
is the Stochastic Galerkin Finite Volume Method (“sGFVM” for short) where the primary unknowns
are coefficients in generalized polynomial chaos (“gPC” for short) expansions of the solution. These
coefficients can be, as we show, be considerably smoother than the path-wise solution.

The outline of the present paper is as follows: in Section 1, we recapitulate basic concepts from
probability and random variables taking values in function spaces. We recapitulate in particular the
notion of random entropy solution from [3]. Section 2 then addresses the regularity of the mean
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field (or ensemble average) of random entropy solutions with Riemann-type initial data. Section 3
generalizes the result to two- and n-point spatio-temporal correlation functions. Section 4 establishes
analogous results for gPC expansions of the random entropy solution. In Section 5, the generalizations
of the results to systems are discussed and another type of random initial data is considered. Section 6
addresses the consequences of the regularity results for high order approximations of random solutions.

1 Preliminaries

1.1 Probability spaces

We introduce a probability space (Ω,F ,P), with Ω being the set of all elementary events, or space of
outcomes, and F a σ-algebra of all possible events, equipped with a probability measure P. Random
entropy solutions are random functions taking values in a function space; to this end, let (E,G,G)
denote any measurable space. Then an E-valued random variable is any mapping Y : Ω → E such
that the set {ω ∈ Ω : Y (ω) ∈ A} = {Y ∈ A} ∈ F for any A ∈ G, i.e. such that Y is a G-measurable
mapping from Ω into E.

We confine ourselves to the case that E is a complete metric space; then (E,B(E)) equipped with
a Borel σ-algebra B(E) is a measurable space. By definition, E-valued random variables Y : Ω → E
are

(
E,B(E)

)
measurable. Furthermore, if E is a separable Banach space with norm ‖ ◦ ‖E and with

topological dual E∗, then B(E) is the smallest σ-algebra of subsets of E containing all sets

{x ∈ E : ϕ(x) < α},ϕ ∈ E∗,α ∈ R .

Hence, if E is a separable Banach space, Y : Ω → E is an E-valued random variable if and only if for
every ϕ ∈ E∗, ω #→ ϕ

(
Y (ω)

)
∈ R is an R-valued random variable. Moreover, there hold the following

results on existence and uniqueness [3].

Lemma 1.1. Let E be a separable Banach space and let Y : Ω → E be an E-valued random variable
on (Ω,F). Then the mapping ω #→ ‖Y (ω)‖E ∈ R is measurable.

Definition 1.1. The random variable Y : Ω → E is called Bochner integrable if, for any probability
measure P on the measurable space (Ω,F), it holds

∫

Ω

‖Y (ω)‖E P(dω) < ∞ .

Definition 1.2. A probability measure is any σ-additive set function P : Ω → [0, 1] such that P(Ω) = 1.
The measure space (Ω,F ,P) is called probability space.

We shall always assume that the probability space is complete.

Definition 1.3. If Y : (Ω,F) → (E,G) is a random variable, then

L(Y )(A) = P({ω ∈ Ω : Y (ω) ∈ A}), ∀A ∈ G

denotes the law of Y under P. The image measure µY = L(Y ) on (E,G) is called law or distribution
of Y .

Definition 1.4. A random variable taking values in E is called simple if it can take only finitely
many values, i.e. if it has the explicit form

Y =
N∑

i=1

yiχAi , Ai ∈ F , xi ∈ E,N < ∞,

where χA is the indicator function of A ∈ F .
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For a simple E-valued random variable Y and for any B ∈ F we set

∫

B

Y (ω)P(dω) =
∫

B

Y dP =
N∑

i=1

xiP(Ai ∩B). (3)

For such Y (ω) and all B ∈ F holds

∥∥∥
∫

B

Y (ω)P(dω)
∥∥∥
E
!

∫

B

‖Y (ω)‖E P(dω). (4)

For any random variable Y : Ω → E which is Bochner integrable, there exists a sequence {Ym}m∈N of
simple random variables such that, for all ω ∈ Ω, ‖Y (ω) − Ym(ω)‖E → 0 as m → ∞. Therefore (3)
and (4) can be extended to any E-valued random variable. We denote the expectation of Y by

E[Y ] =

∫

Ω

Y (ω)P(dω) = lim
m→∞

∫

Ω

Ym(ω)P(dω) ∈ E.

Denote by Lp(Ω,F ,P;E) for 1 ! p ! ∞ the Bochner space of all p-summable, E-valued random
variables Y and equip it with the norm

‖Y ‖Lp(Ω;E) =
(
E[‖Y ‖pE ]

)1/p
=




∫

Ω

‖Y (ω)‖pE P(dω)




1/p

.

For p = ∞ we can denote by L∞(Ω,F ,P;E) the set of all E-valued random variables which are
essentially bounded and equip this space with the norm

‖Y ‖L∞(Ω;E) = ess sup
ω∈Ω

‖Y (ω)‖E .

1.2 Scalar conservation laws with random initial data

Consider the Cauchy problem for the scalar hyperbolic conservation law

∂u

∂t
+

d∑

j=1

∂fj(u)

∂xj
= 0, x = (x1, . . . , xd) ∈ Rd, t > 0 (5)

and random initial condition

u(x, 0,ω) = u0(x,ω), x ∈ Rd, ω ∈ Ω. (6)

Assume we have as u0 an L1(Rd)-valued random variable

u0 : (Ω,F) →
(
L1(Rd),B

(
L1(Rd)

))
(7)

and that
u0(·,ω) ∈ L∞(Rd) ∩BV (Rd) P− a.s. (8)

Since L1(Rd) is separable, the mapping u0 is well defined and we may impose for k ∈ N the k-th
moment condition

‖u0‖Lk(Ω;L1(Rd)) < ∞. (9)

Definition 1.5 (Random entropy solution). A random field

u : ω ∈ Ω #→ u(x, t,ω) ∈ C0
(
[0, T ]; (L1 ∩ L∞)(Rd)

)

is said to be a random entropy solution if it satisfies P-a.s. the following:
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(i) Weak solution: for P-a.e. ω ∈ Ω, u satisfies the following integral identity,

∞∫

0

∫

Rd

(
u(x, t,ω)

∂ϕ(x, t)

∂t
+

d∑

j=1

fj
(
u(x, t,ω)

)∂ϕ(x, t)
∂xj

)
dxdt+

+

∫

Rd

u0(x,ω)ϕ(x, 0) dx = 0, (10)

for all test functions ϕ ∈ C1
0

(
Rd × [0,∞)

)
.

(ii) Entropy condition: for any entropy–entropy flux pair, i.e. smooth functions η and Qj with
j = 1, . . . , d such that η is convex and Q′

j = η′f ′
j for all j, and for P-a.e. ω ∈ Ω, u satisfies the

following integral inequality:

∞∫

0

∫

Rd

(
η
(
u(x, t,ω)

)∂ϕ(x, t)
∂t

+
d∑

j=1

Qj
(
u(x, t,ω)

)∂ϕ(x, t)
∂xj

)
dxdt " 0, (11)

for all test functions ϕ ∈ C1
0

(
Rd × (0,∞)

)
, ϕ " 0.

The following well-posedness theorem for entropy solutions holds (see [3]).

Theorem 1.1. Consider the scalar conservation law (5)–(6) with random initial data u0 : Ω → L1(Rd)
satisfying (7)–(8) and the k-th moment condition (9) for some k ∈ N. Then there exists a unique
random entropy solution u : ω ∈ Ω #→ Cb

(
[0, T ];L1(Rd)

)
given by

u(·, t,ω) = S(t)u0(·,ω), t > 0, ω ∈ Ω

such that for every k " 1 and every 0 ! t ! T < ∞ holds P-a.s.

‖u‖Lk(Ω;C(0,T ;L1(Rd))) ! ‖u0‖Lk(Ω;L1(Rd)),

‖S(t)u0(·,ω)‖(L1∩L∞)(Rd) ! ‖u0(·,ω)‖(L1∩L∞)(Rd)

and such that we have
TV

(
S(t)u0(·,ω)

)
! TV

(
u0(·,ω)

)
P− a.s.

For u ∈ Lk(Ω;E) consider the following tensor product and the corresponding tensor-product
space:

u(k) = u⊗ · · ·⊗ u︸ ︷︷ ︸
k times

∈ L1(Ω;E(k)), E(k) = E ⊗ · · ·⊗ E︸ ︷︷ ︸
k times

.

For any cross-norm ‖ ◦ ‖E(k) on the tensor-product space E(k) we have

‖u1 ⊗ · · ·⊗ uk‖E(k) = ‖u1‖E . . . ‖uk‖E .

Therefore

‖u(k)‖L1(Ω;E(k)) =

∫

Ω

‖u(·,ω)‖kE P(dω) = ‖u‖kLk(Ω;E) < ∞,

which implies u(k) ∈ L1(Ω;E(k)) and the k-point spatio-temporal correlation function

Mk[u] = E[u(k)] ∈ E(k)

is well-defined for u ∈ Lk(Ω;E). With these assumptions the following theorem holds [3].
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Theorem 1.2. Consider the scalar conservation law (5)–(6) with random initial data u0 : Ω → L1(Rd)
satisfying (8). Assume further that for some k ∈ N and some real number r " 1

u0 ∈ Lrk
(
Ω;L1(Rd)

)
.

Then for every 0 < T < ∞ and every 0 < t1, t2, . . . , tk ! T < ∞ the tensor product

u(x1, t1,ω)⊗ · · ·⊗ u(xk, tk,ω)

is well-defined as an element of Lr
(
Ω;L1(Rkd)

)
. In particular, the k-point space-time correlation

function
Mk[u] = E[u(·, t1,ω)⊗ · · ·⊗ u(·, tk,ω)]

is well-defined for any choice of tj as an element of L1(Rkd) and it satisfies

∥∥∥Mk[u](t1, . . . , tk)
∥∥∥
L1(Rd)(k)

! ‖u0‖kLk(Ω,L1(Rd)).

Corollary 1.1. The expecation and variance of the solution are well-defined if rk " 2 in Theorem 1.2
since

E[u] = M1[u] ∈ L1(Rd), V[u] = E[(u− E[u])2] ∈ L1(Rd).

In the following, we restrict ourselves to d = 1 and consider the scalar conservation law

∂u

∂t
+

∂f(u)

∂x
= 0, x ∈ R, t > 0; (12)

u(x, 0,ω) = u0(x,ω), ω ∈ Ω (13)

with the flux function f ∈ C1(R), f : R → R. To analyze the regularity of the random entropy solution
to (12)–(13) we make the following additional assumption on the structure of the random field u0.

Lemma 1.2. Assume there exists a random variable Y (ω) taking values in R and a deterministic
function ũ0(x, y) such that in (13),

u0(x,ω) = ũ0(x, y)
∣∣∣
y=Y (ω)

. (14)

Then for all t > 0 the following equality for the exact random entropy solution to (12)–(13) holds:

u(x, t,ω) = ũ(x, t, y)
∣∣∣
y=Y (ω)

. (15)

We parametrize the space of outcomes by introducing a real-valued random variable y = Y (ω):
Ω " ω #→ y = Y (ω) ∈ R. Then the initial condition (13) as well as the solution of the system (12) can
be represented as functions dependent on this stochastic variable y:

u0 = ũ0(x, y)
∣∣∣
y=Y (ω)

, u = ũ(x, t, y)
∣∣∣
y=Y (ω)

.

In the following we shall abuse the notation by omitting the tilde and writing u instead of ũ.
The scalar conservation law (12)–(13) in parametrized form will then become

∂u

∂t
+

∂f(u)

∂x
= 0, x ∈ R, t > 0; (16)

u(x, 0, y) = u0(x, y), y ∈ R, (17)

where u = u(x, t, y) is the unknown solution.
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We assume throughout that the probability measure P is non-atomic and absolutely continuous
with respect to Lebesgue measure λ on R. By the Radon-Nikodym theorem there exists an essentially
bounded probability density function, i.e.

ρ(y) = dP(ω)/dy ∈ (L1 ∩ L∞)(R) such that P(R) =
∫

R

ρ(y) dy = 1 .

We shall use the cumulative distribution function defined as

P (x) = P({y ! x}) =
x∫

−∞

ρ(y) dy. (18)

We are interested in the statistics of the random entropy solution such as the mean, variance,
statistical and polynomial moments. The latter are of particular significance for the numerical analysis
of gPC based discretizations. The expectation (or mean solution value) is defined by formula

E[u](x, t) =
∫

Ω

u(x, t,ω)P(dω) =
∫

R

u(x, t, y)ρ(y) dy. (19)

The variance of the random solution is formally defined by

V[u] = E
[
(u− E[u])2

]
= E

[
u2

]
− (E[u])2. (20)

Assume that the initial data u0(x, y) is such that the solution u(x, t, y) for each particular realization
of y (path-wise solution) is a shock wave, then in one-dimensional case it can be described by means
of the Heaviside function

H(x) =

{
1, if x > 0;

0, if x < 0.

We shall often write it as u(x, t, y) ∼ H(x−St−y), meaning that the exact solution of (16)–(17) equals
the Heaviside function, accurate to multiplication or addition of some constant, which apparently does
not influence the regularity.

Definition 1.6. Given a random variable Y (ω) with law dP(ω) = ρ dλ on R, we define the probabilistic
shock profile of the scalar conservation law (12) with random initial data (13) as the parametric
deterministic family of random entropy solutions u(x, t, y) generated by all particular realizations of
Y (ω).

2 Regularity of the probabilistic shock profile for one-dimensional
scalar equation

Consider the scalar hyperbolic equation in conservative form

∂u

∂t
+

∂f(u)

∂x
= 0, x ∈ R, t > 0; (21)

u(x, 0,ω) = u0(x,ω), ω ∈ Ω. (22)

The solution to equation (21) with initial condition (22) is generally defined by the following
implicit relation:

u(x, t,ω) = u0(x̃0,ω), x = x̃0 + f ′(u0(x̃0,ω)
)
t. (23)

Consider the Riemann initial data generating path-wise discontinuous solutions:

u0(x,ω) =

{
uL, if x < x0 + Y (ω);

uR, if x > x0 + Y (ω),
(24)

7



We introduce the stochastic variable y = x0 + Y (ω) ∈ R and use it to derive the exact path-wise
solution to equation (21) with Riemann initial data (24), which has the form of a shock wave:

u(x, t, y) = uL + (uR − uL)H(x− St− y), (25)

where S =
(
f(uR)− f(uL)

)
/(uR − uL) is the shock speed.

Let y be distributed with the probability density function ρ(y). Then the expectation of the
probabilistic shock profile of the random entropy solution is defined as the expected solution value, i.e.

E[u] =
∞∫

−∞

u(x, t, y)ρ(y) dy = uL + (uR − uL)

∞∫

−∞

H(x− St− y)ρ(y)dy . (26)

In the following, we need the modified Heaviside function

H̄(y − y0) =

{
1, y < y0;

0, y > y0

with y0 = x− St. Making use of the property
∫

H̄(y − y0)ϕ
′(y) dy =

∫
δ(y − y0)ϕ(y) dy,

resulting in H̄ ′(y − y0) = −δ(y − y0), where ϕ ∈ C∞
c (R) is a test function and δ(y) is the Dirac

delta-function such that
∞∫

−∞

ϕ(y)δ(y − y0) dy = ϕ(y0),

and using the (cumulative) distribution function (18) we get the following expression for the mean:

E[u] = uL + (uR − uL)

∞∫

−∞

ρ(y)H̄(y − y0) dy = uL + (uR − uL)

[
H̄(y − y0)P (y)

∣∣∣∣∣

∞

−∞

+

+

∞∫

−∞

P (y)δ(y − y0) dy

]
= uL + 0 + (uR − uL)P (y0) = uL + (uR − uL)P (x− St). (27)

Therefore, the regularity of the probabilistic shock profile is entirely defined by the properties of
the cumulative distribution function P (x − St). We next investigate the properties of P (x) for ρ(x)
belonging to different functional spaces and formulate the corresponding regularity theorems.

Theorem 2.1. Let ρ ∈ Ck(R). Then E[u] ∈ Ck+1(R) for any t > 0.

Proof. From (18), P ′(x) = ρ(x) ∈ Ck(R). Hence, P ∈ Ck+1(R) and from (27) we have E[u] ∈
Ck+1(R). #

Remark 2.1. Note that the integrability of ρ over R implies that it is at least piecewise-continuous
function, that is, ρ ∈ C−1(R). Hence, by Theorem 2.1, for t > 0 the expectation of the random
entropy solutions is a continuous functions of x on the whole domain R, i.e. E[u] ∈ C0(R).

Theorem 2.2. Let ρ ∈ C∞(R). Then E[u] ∈ C∞(R) for any t > 0.

Proof. The space C∞(R) of infinitely differentiable functions is by our definition

C∞(R) =
⋂

k"0

Ck(R).
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For any k " 0, ρ ∈ Ck(R) ⇒ P ∈ Ck+1(R). Hence, by Theorem 2.1,

ρ ∈
⋂

k"0

Ck(R) ⇒ P ∈
⋂

k"0

Ck+1(R) = C∞(R).

#

Theorem 2.3. Let ρ ∈ L∞(R). Then E[u] ∈ W 1,∞(R) for any t > 0.

Proof. By the assumptions in the theorem, ρ ∈ L∞(R), that is,

∃M > 0,M < ∞ : |ρ(y)| ! M a.e y ∈ R .

Hence, the weak derivative of the distribution function is bounded:

P ′(x) = ρ(x) ⇒ |P ′(x)| ! M a.e. x ∈ R .

The function P (x) itself is bounded: |P (x)| ! 1 a.e. x ∈ R. This implies

P ∈ W 1,∞(R) = {f ∈ L∞(R) : f ′ ∈ L∞(R)} .

#

The Hölder space Ck,α(R) is the space of functions whose k-th derivative is Hölder-continuous with
exponent α, i.e.

f ∈ Ck,α(R) ⇔ f (k) ∈ C0,α(R) ⇔ ∃M > 0,M < ∞ :
∣∣∣f (k)(x)− f (k)(y)

∣∣∣ ! M |x− y|α, ∀x, y ∈ R.

Theorem 2.4. Let ρ ∈ Ck,α(R). Then E[u] ∈ Ck+1,α(R) for any t > 0.

Proof. We have P ′ = ρ ∈ Ck,α(R) ⇔ ρ(k) = P (k+1) ∈ C0,α(R) ⇒ P ∈ Ck+1,α(R). Hence, E[u] ∈
Ck+1,α(R). #

We next formulate and prove several results on the regularity of the probabilistic shock profiles in
case of the piece-wise differentiable probability density functions.

Definition 2.1. The set P = {Kj}Jj=1, J < ∞ is called finite partition of the domain D ⊂ R if

1) Kj are open, 2) Ki ∩Kj = ∅ if i 3= j, 3) D =
⋃
j
Kj .

Definition 2.2. A function f is called piecewise k times continuously differentiable in D ⊂ R with
respect to the finite partition P, i.e. f ∈ Ck

pw(D,P), if ∀K ∈ P : f ∈ Ck(K).

The Hölder space Ck,α
pw (R,P) is the piece-wise analogue of the Hölder space Ck,α(R):

f ∈ Ck,α
pw (R,P) ⇔ ∀K ∈ P f ∈ Ck,α(K) ⇔ f (k) ∈ C0,α

pw (K) ⇔

∃M > 0,M < ∞ : |f (k)(x)− f (k)(y)| ! M |x− y|α, ∀x, y ∈ K .

In the following, we shall omit explicit reference to the partition P when it is clear from the context.
We shall further denote the partition of R induced by the probability density function ρ as Pρ.

Theorem 2.5. Let ρ ∈ Ck
pw(R,Pρ). Then E[u] ∈ Ck+1

pw (R,Pt) ∩ C0(R) for any t > 0.
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Proof. Assume that the probability density function is piece-wise k times continuously differentiable
with respect to some partition Pρ, that is, ρ ∈ Ck

pw(R,Pρ), where Pρ = {Kj}Jj=1 and Kj = (yj , yj+1)
is an open interval. Then the density ρ can be represented as finite sum of compactly supported
functions ρj :

ρ(y) =
J∑

j=1

ρj(y),

where ρj(y) is compactly supported on Kj and ρj ∈ Ck(Kj). Then the expectation will be written as

E[u] =
∞∫

−∞

u(x, t, y)ρ(y) dy = uL + (uR − uL)

∞∫

−∞

H̄(y − y0)ρ(y) dy =

= uL + (uR − uL)

∞∫

−∞

H̄(y − y0)
J∑

j=1

ρj(y) = uL + (uR − uL)
J∑

j=1

∞∫

−∞

H̄(y − y0)ρj(y) dy =

= uL + (uR − uL)
J∑

j=1

[
H̄(y − y0)Pj(y)

∣∣∣∣∣

∞

−∞

+

∞∫

−∞

Pj(y)δ(y − y0) dy

]
=

= uL + 0 + (uR − uL)
J∑

j=1

Pj(y0) = uL + (uR − uL)
J∑

j=1

Pj(x− St) = uL + (uR − uL)P (x− St),

where y0 = x− St and

Pj(x) =

x∫

−∞

ρj(ξ) dξ

is the j-th distribution function of the form (18). Each Pj(x) ∈ Ck+1(Kj) provided ρj ∈ Ck(Kj)
(Theorem 2.1), hence, by Definition 2.2, E[u] ∈ Ck+1

pw (R,Pt), where

Pt = {T−1
S Kj}Jj=1 = {(yj + St, yj+1 + St)}Jj=1,

with TS denoting the shifting operator and T−1
S its inverse:

TSϕ(x, t) = ϕ(x− St), T−1
S ϕ(x, t) = ϕ(x+ St).

#

Theorem 2.6. Let ρ ∈ C∞
pw(R,Pρ). Then E[u] ∈ C∞

pw(R,Pt) ∩ C0(R) for any t > 0.

Proof. To prove the theorem it is sufficient to note that C∞
pw(R,Pρ) =

⋂
k"0

Ck
pw(R,Pρ). Therefore, by

Theorem 2.1,

ρ ∈
⋂

k"0

Ck
pw(R,Pρ) ⇒ P ∈

⋂

k"0

Ck+1
pw (R,Pt) = C∞

pw(R,Pt)

and E[u] ∈ C∞
pw(R,Pt). #

Theorem 2.7. Let ρ ∈ Ck,α
pw (R,Pρ). Then E[u] ∈ Ck+1,α

pw (R,Pt) ∩ C0(R) for any t > 0.

Proof. Rewrite the density ρ as finite sum of compactly supported functions ρj :

ρ(y) =
J∑

j=1

ρj(y),
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where ρj(y) is compactly supported on Kj = (yj , yj+1), j = 1, . . . , J (see proof of Theorem 2.4) and
ρj ∈ Ck,α(Kj). The distribution function is

P (x) =

x∫

−∞

J∑

j=1

ρj(y) dy =
J∑

j=1

x∫

−∞

ρj(y) dy =
J∑

j=1

Pj(x),

where each Pj ∈ Ck+1,α(Kj) by Theorem 2.4. Hence, E[u] ∈ Ck+1,α
pw (R,Pt), where

Pt = {T−1
S Kj}Jj=1 = {(yj + St, yj+1 + St)}Jj=1.

#

Example 2.1 (Uniform distribution).
Consider the Riemann problem for the Burgers equation

∂u

∂t
+

∂

∂x

(1
2
u2

)
= 0, x ∈ R, t > 0; (28)

u(x, 0,ω) = u0(ω) =

{
uL, x < x0 + c

(
2Y (ω)− 1

)
;

uR, x > x0 + c
(
2Y (ω)− 1

)
,

(29)

where the position of the initial discontinuity depends on the random variable Y (ω) and x0 and c
are constants. We assume Y (ω) ∼ U [0, 1] (uniform distribution on [0, 1]) and define the initial shock
location as

y = x0 + c
(
2Y (ω)− 1

)
.

Such choice implies y ∼ U [x0 − c, x0 + c]. Hence, we may represent the random initial condition (29)
in the parametric, deterministic form

u(x, 0,ω) = u0(ω) =

{
uL, x < y;

uR, x > y,
(30)

If Y (ω) ∼ U [0, 1] then its probability density function is

ρ
(
Y (ω)

)
=

{
1, Y (ω) ∈ [0, 1];

0, otherwise,

and its distribution function

P (x) =

1∫

0

ρ
(
Y (ω)

)
dY (ω) =






0, x < 0;

x, x ∈ [0, 1];

1, x > 1.

The probability density function in terms of the random variable y is easily verified to be

ρ(y) =

{
1/(2c), y ∈ [x0 − c, x0 + c];

0, otherwise,

and the corresponding distribution function is

PU (x) =






0, x < x0 − c;
1

2c
(x− x0 + c), x ∈ [x0 − c, x0 + c];

1, x > x0 + c.

11



The expectation of the random entropy solution u is then

E[u] = uL + (uR − uL)PU (x− St) =

= uL + (uR − uL)






0, x− St < x0 − c;
1
2c(x− St− x0 + c), x− St ∈ [x0 − c, x0 + c];

1, x− St > x0 + c.

(31)

Consider Fig. 1 in which the mean and the variance of the probabilistic shock profiles computed
by the Stochastic Finite Volume method [5] is plotted.
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Figure 1: Expectation and variance of the probabilistic shock profile, y ∼ U [0.9.1.1].

Obviously, the function E[u] is continuous at points x = St + x0 ± c for every t > 0. However,
pointwise derivatives at these points do not exist, meaning that E[u] is only in C0(R). It is easy to
see that E[u] ∈ C∞

pw(R,Pt): the partition of R generated by the function ρ is

Pρ = {(−∞, x0 − c), (x0 − c, x0 + c), (x0 + c,∞)},

and on each piece I ∈ Pρ the density function ρ ∈ C∞(I). The partition of R induced by the
distribution function P for every t > 0 is

Pt = {(−∞, St+ x0 − c), (St+ x0 − c, x0 + c), (St+ x0 + c,∞)}

and P ∈ C∞(I) ∀I ∈ Pt. Consequently, by our definition of a piece-wise smooth function we have
E[u] ∈ C∞

pw(R,Pt).

Example 2.2 (Normal distribution).
Consider again the Riemann problem for the Burgers equation (28) with discontinuous initial data

(29) assuming Y (ω) ∼ N [M,σ]. The probability density function for the normal distribution is

ρ
(
Y (ω)

)
=

1√
2πσ2

e−
(Y (ω)−M)2

2σ2 .

Using the error function

Erf(x) =
2√
π

x∫

0

e−y2 dy,

the distribution function for the normal distribution can be expressed as

PN (x) =
1

2

[
1 + Erf

(
x−M√

2σ2

)]
,
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which is a smooth function in R, that is PN ∈ C∞(R) and therefore the expectation

E[u] = uL + (uR − uL)PN (x− St) = uL +
(uR − uL)

2

[
1 + Erf

(
x−M√

2σ2

)]

is also a smooth function, E[u] ∈ C∞(R).
The mean and the variance of the probabilistic shock profiles computed by the Stochastic Finite

Volume method [5] is plotted in Fig. 2.
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Figure 2: Expectation and variance of the probabilistic shock profile, Y (ω) ∼ N [1, 0.03].

Example 2.3 (Atomic measure).
Up to this point we have only considered the probabilistic spaces having the non-atomic measure

P such that P(dω) = ρ(y)dy with ρ ∈
(
L∞ ∩ L1

)
(R). However, it is worth considering the example

of the atomic measure to show that the statistical moments of random entropy solutions to scalar
conservation laws are not necessarily continuous in this case.

To this end, let the probability density function have the following form: ρ(y) = ρ1(y) +
1
2δ(y),

where

ρ1(y) =

{
1/4, y ∈ [−1, 1];

0, else.

Such ρ(y) is atomic since it is not bounded at the point y = 0 because of the presence of delta-
function. As before, the mean value of the solution is given by (27) and its regularity is entirely
determined by the distribution function P (x− St), which in our example takes the form

P (x− St) =






0, x < St− 1;
1

4
(x− St+ 1), St− 1 ! x < St;

1

4
(x− St+ 1) +

1

2
; St ! x < St+ 1;

1, x " St+ 1.

Apparently, the distribution function P (x) is discontinuous at the point x = 0 for any t > 0, although
the density function ρ(y) could be considered as piece-wise differentiable, but not bounded at y = 0.
However, E[u] ∈ C∞

pw(R,Pt) with respect to the partition

Pt = {(−∞, St− 1), (St− 1, St), (St, St+ 1), (St+ 1,∞)}.

3 Regularity of spatio-temporal correlation functions

To form the n-point correlation functions, form the tensor product of the pathwise random entropy
solutions:

Cn[u] = u(x1, t1,ω)⊗ u(x2, t2,ω)⊗ . . .⊗ u(xn, tn,ω).
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The n-point spacio-temporal correlation function is the expectation

Mn[u] = E
[
Cn[u]

]
= E[u(x1, t1,ω)⊗ . . .⊗ u(xn, tn,ω)] =

=

∫

Ω

u(x1, t1,ω)⊗ . . .⊗ u(xn, tn,ω)P(dω) =
∫

R

u(x1, t1, y) . . . u(xn, tn, y)ρ(y) dy , (32)

where y : Ω → R is a random variable parametrizing the probability space Ω.
Specifically, consider the scalar equation (21) with initial condition (24). The solution in this

case is a shock wave of the form (25), which is equivalent (up to multiplication and addition of some
constant) to the Heaviside function; therefore we can write

u(x, t, y) ∼ H(x− St− y) = H̄(y − y0), y0 = x− St. (33)

The n-point correlation function of (33) is

Mn[u] =

∫

R

u(x1, t1, y) . . . u(xn, tn, y)ρ(y) dy =

∫

R

H̄(y − y10) . . . H̄(y − yn0 )ρ(y) dy (34)

where yi0 = xi − Sti, i = 1, . . . n.
The integrand in (34) is non-zero only if all Heaviside functions H̄(y − yi0) 3= 0, which is accom-

plished if ỹ = min
i
{xi − Sti} > y. Hence, the expression for the n-point correlation function becomes

Mn[u] =

∫

R

H̄(y − ỹ)ρ(y) dy = P (ỹ) = P (min
i
{xi − Sti}). (35)

This defines the partition of R induced by Mn[u] which we denote as Pn
M . It will allow us to

formulate the general theorem on the regularity of the correlation functions. The proof is based on
the same principles as the proof of Theorems 2.1–2.7 for the expectation.

Theorem 3.1. For every k ∈ N0 and ρ ∈ Ck(R) and every t > 0 the n-point space-time correlation
function Mn[u] ∈ Ck+1(Rn). In particular, if ρ ∈ C∞(R) then Mn[u] ∈ C∞(Rn). Moreover, if
ρ ∈ Ck,α(R) then Mn[u] ∈ Ck+1,α(Rn).

Obvious corollary from Theorem 3.1 is the following.

Corollary 3.1. The following statements hold:

1. Let ρ ∈ Ck
pw(R,Pρ). Then Mn[u] ∈ Ck+1

pw (Rn,Pn
M,t) for any t > 0.

2. Let ρ ∈ C∞
pw(R,Pρ). Then Mn[u] ∈ C∞

pw(Rn,Pn
M,t) for any t > 0.

3. Let ρ ∈ Ck,α
pw (R,Pρ). Then Mn[u] ∈ Ck+1,α

pw (Rn,Pn
M,t) for any t > 0, where Pn

M,t = TSPn
M .

We illustrate the foregoing theorem by the same example.

Example 3.1 (Two-point correlation function).
Consider the scalar one-dimensional Burgers equation (28)–(29). We shall analyze in detail the

regularity of the two-point space-time correlation function and prove that M2[u] ∈ Ck+1
pw (R2,P2

M ) for

ρ ∈ Ck(R,Pρ) with given t1, t2 > 0, where

M2[u] =

∞∫

−∞

u(x1, t1, y)u(x2, t2, y)ρ(y) dy
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Given the solution of the form (25), its two-point correlation function is

M2[u] =

∞∫

−∞

(
uL + (uR − uL)H(x1 − St1 − y)

)(
uL + (uR − uL)H(x2 − St2 − y)

)
ρ(y) dy =

= u2L + uL(uR − uL)
(
P (x1 − St1) + P (x2 − St2)

)
+ (uR − uL)

2P̃ (x1 − St1, x2 − St2), (36)

where

P̃ (x1, x2) =

min{x1,x2}∫

−∞

ρ(y) dy = P
(
min{x1, x2}

)
= P (x1) +

(
P (x2)− P (x1)

)
H(x1 − x2).

Let ρ ∈ Ck(R), then P ∈ Ck+1(R). The regularity of the two-point correlation function in the
whole R2 space is determined by the properties of the function P̃ (x1 − St1, x2 − St2) for given times
t1 and t2. It is easy to check that the function P̃ (x1 − St1, x2 − St2) is continuous across the line
Γ : x1 − St1 = x2 − St2 on the (x1, x2) plane, implying M2[u] ∈ C0(R2). The derivatives of M2[u]
are, however, discontinuous across the line Γ: for instance,

∂

∂x1
M2[u]

∣∣∣∣
K1

= uL(uR−uL)
∂

∂x1
P (x1−St1)+ (uR−uL)

2 ∂

∂x1
P (x1−St1) = uR(uR−uL)ρ(x1−St1),

∂

∂x1
M2[u]

∣∣∣∣
K2

= uL(uR−uL)
∂

∂x1
P (x1−St1)+ (uR−uL)

2 ∂

∂x1
P (x2−St2) = uL(uR−uL)ρ(x1−St1).

Obviously, ∂
∂x1

M2[u]
∣∣∣
K1

3= ∂
∂x1

M2[u]
∣∣∣
K2

along Γ unless uL = uR, which is a trivial case that we will

not consider.
Moreover, it is possible to prove that M2[u] ∈ Ck+1

pw (R2,P2
M ) if ρ ∈ Ck(R). Consider the following

finite partition of R2: P2
M = {Kj}2j=1, where

K1 = {(x1, x2) : x1 − x2 − S(t1 − t2) < 0}, K2 = {(x1, x2) : x1 − x2 − S(t1 − t2) > 0}.

Obviously, K1 ∩K2 = ∅, R2 = K1 ∪K2, and

P̃ (x1 − St1, x2 − St2) =

{
P (x1 − St1) on K1;

P (x2 − St2) on K2.

Therefore P̃ (x1 − St1, x2 − St2) ∈ Ck+1(K1), P̃ (x1 − St1, x2 − St2) ∈ Ck+1(K2) and the same holds
true for the two-point correlation function: M2[u] ∈ Ck+1(K1), M2[u] ∈ Ck+1(K2). Then, taking
into account Definition 2.2, M2[u] ∈ Ck+1

pw (R2,P2
M ) ∩ C0(R2).

Assume next in (29) Y (ω) ∼ U [0, 1]. Then M2[u] ∈ C∞
pw(R2,P2

M ) ∩ C0(R2). In this case we take
y = x0 + c

(
2Y (ω)− 1

)
so that y ∼ U [x0 − c, x0 + c]. Then the two-point correlation function can be

expressed as

M2[u] = u2L + uL(uR − uL)
(
I1(x1) + I2(x2)

)
+ (uR − uL)

2I3(x1, x2), (37)
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where we set x∗0 = min{x1 − St1, x2 − St2} and

I1(x1) =

1∫

0

H
(
x1 − St1 − x0(y)

)
dy =

1

2c

c∫

−c

H
(
x1 − St1 − x0

)
dx0 =

=






0, x1 ! St1 − c;
1

2c
(x1 − St1 + c), x1 ∈ (St1 − c, St1 + c);

1, x1 " St1 + c,

I2(x2) =

1∫

0

H
(
x2 − St2 − x0(y)

)
dy =






0, x2 ! St2 − c;
1

2c
(x2 − St2 + c), x2 ∈ (St2 − c, St2 + c);

1, x2 " St2 + c,

I3(x1, x2) =

1∫

0

H
(
x1 − St1 − x0(y)

)
H
(
x2 − St2 − x0(y)

)
dy =






0, x∗0 ! −c;
1

2c
(x∗0 + c), x∗0 ∈ (−c, c);

1, x∗0 " c,

To analyze the regularity of M2[u] we consider the partition of R2 induced by M2[u].
Assume first that x∗0 = x1 − St1 < x2 − St2. We have the following subdomains for the integral

I1(x1), depending on the position of x∗0 defining I3(x1, x2) also uniquely.

1. x1 − St1 ! −c ⇒ I1(x1) = 0, I3(x1, x2) = 0.

For I2(x2) there are three subdomains:

(a) x2 − St2 ! −c ⇒ I2(x2) = 0 ⇒ M2
1[u] = u2L.

(b) |x2 − St2| < c ⇒ I2(x2) =
1

2c
(x2 − St2 + c) ⇒ M2

2[u] = u2L +
1

2c
uL(uR − uL)(x2 − St2 + c).

(c) x2 − St2 " c ⇒ I2(x2) = 1 ⇒ M2
3[u] = uLuR.

2. |x1 − St1| < c ⇒ I1(x1) =
1

2c
(x1 − St1 + c), I3(x1, x2) =

1

2c
(x1 − St1 + c).

In this case there are two possible subdomains for I2(x2) since x2 − St2 > x1 − St1 > −c.

(a) |x2 − St2| < c ⇒ I2(x2) =
1

2c
(x2 − St2 + c) ⇒

M2
4 = u2L +

1

2c
uL(uR − uL)(x1 − St1 + x2 − St2) +

1

2c
(uR − uL)

2(x1 − St1 + c).

(b) x2 − St2 " c ⇒ I2(x2) = 1 ⇒

M2
5 = u2L + uL(uR − uL)

(
1

2c
(x1 − St1 + c) + 1

)
+

1

2c
(uR − uL)

2(x1 − St1 + c).

3. x1 − St1 " c ⇒ I1(x1) = 1, I3(x1, x2) = 1, I2(x2) = 1 ⇒ M2
6[u] = u2R.

Now assume that x∗0 = x2 − St2 < x1 − St1. We have the following subdomains for I2(x2).

1. x2 − St2 ! −c ⇒ I2(x2) = 0, I3(x1, x2) = 0.

For I1(x1) there are three subdomains:

(a) x1 − St1 ! −c ⇒ I1(x1) = 0 ⇒ M2
7[u] = u2L.

(b) |x1 − St1| < c ⇒ I1(x1) =
1

2c
(x1 − St1 + c) ⇒ M2

8[u] = u2L +
1

2c
uL(uR − uL)(x1 − St1 + c).
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(c) x1 − St1 " c ⇒ I1(x1) = 1 ⇒ M2
9[u] = uLuR.

2. |x2 − St2| < c ⇒ I2(x2) =
1

2c
(x2 − St2 + c), I3(x1, x2) =

1

2c
(x2 − St2 + c).

There are two possible subdomains for I1(x1) since x1 − St1 > x2 − St2 > −c.

(a) |x1 − St1| < c ⇒ I1(x1) =
1

2c
(x1 − St1 + c) ⇒

M2
10 = u2L +

1

2c
uL(uR − uL)(x1 − St1 + x2 − St2) +

1

2c
(uR − uL)

2(x2 − St2 + c).

(b) x1 − St1 " c ⇒ I1(x1) = 1 ⇒

M2
11 = u2L + uL(uR − uL)

(
1

2c
(x2 − St2 + c) + 1

)
+

1

2c
(uR − uL)

2(x2 − St2 + c).

3. x2 − St2 " c ⇒ I2(x2) = 1, I3(x1, x2) = 1, I1(x1) = 1 ⇒ M2
12[u] = u2R.

In summary, we have constructed the partition P2
M of R2 such that M2[u] ∈ C∞

pw(R2,P2
M ).

4 Regularity of polynomial moments

In this section we follow [9] in the definition of the generalized polynomial chaos expansion (gPC) and
the formulation of the assumptions under which the gPC expansion converges to a desired random
variable, see also [10,11]. We then address the question of the regularity of the expansion coefficients,
also called polynomial moments.

Consider the probability space (Ω,F ,P) defined in Section 1.1, with probability measure P. Con-
sider the chaos expansion with respect to a countable sequence {ξm}m∈N of basic random variables
satisfying the following assumptions:

Assumption 4.1.

(1) Each basic random variable ξm possesses finite moments of all orders, i.e. E[|ξm|k] < ∞ for all
k,m ∈ N.

(2) The distribution functions Pξm(x) = P(ξm < x) of the basic random variables are continuous.

We next restrict ourselves to the expansions in a single basic random variable ξ with distribution
function Pξ which satisfies Assumption 4.1. For any random variable η ∈ L2(Ω,F ,P) which is measur-
able with respect to ξ there exists a measurable function f : R → R such that η = f(ξ). To expand η
in the gPC series one needs to construct the set of orthonormal polynomials {pn}n∈N0 associated with
the distribution function Pξ, which is possible since all the moments of ξ are finite by Assumption 4.1.

Definition 4.1. The moment problem is uniquely solvable for a probability distribution on (R,B(R))
(or the distribution is determinate), if the distribution function is uniquely defined by the sequence of
its moments

µk = E[ξk] =
∫

R

xkPξ(dx), k ∈ N0.

The following theorem justifies the existence of the gPC expansion [9].

Theorem 4.1. The sequence of orthogonal polynomials associated with a real random variable ξ
satisfying Assumption 4.1 is dense in L2(R,B(R), Pξ) if and only if the moment problem is uniquely
solvable for its distribution.
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Thus, if the conditions of Theorem 4.1 are satisfied, the sequence of random variables {pn(ξ)}n∈N0

constitutes an orthonormal basis of the Hilbert space L2(Ω,F ,P), and each element of this space can
be expanded with respect to this basis:

η = f(ξ) =
∞∑

k=0

akpk(ξ), (38)

and the coefficients ak can be calculated as

ak = E[ηpk(ξ)] =
∫

R

f(x)pn(x)Pξ(dx), k ∈ N0. (39)

Consider now the solution to the one-dimensional scalar conservation law (12) with random initial
data (13). Assuming the existence of the random variable such that y = Y (ω) ∈ R satisfying the
Assumption 4.1 with continuous distribution function P (x) = P({y < x}) such that there exists a
probability density function ρ(y) = dP(ω)/dy, we can write the gPC expansion (38) in y for the

stochastic function u(x, t, y)
∣∣∣
y=Y (ω)

:

u(x, t, y) =
∞∑

α=0

uα(x, t)ϕα(y), (40)

where {ϕα}α∈N0 is the set of orthonormal polynomials associated with the distribution function P :

< ϕα,ϕβ >=

∫

R

ϕα(y)ϕβ(y)ρ(y) dy = δαβ .

The coefficients of the gPC expansion are deterministic functions of x and t and are defined as
follows:

uα(x, t) = E[ϕαu] =

∫

R

u(x, t, y)ϕα(y)ρ(y) dy. (41)

Consider next the one-dimensional scalar conservation law (21) and initial data (24) with y =
x0+Y (ω). The solution is equivalent to (33) up to some constant which does not affect the regularity
properties. To study the regularity of the expansion coefficients uα(x, t), first rewrite (41) for the
one-dimensional shock solution and apply integration by parts:

uα(x, t) =

∞∫

−∞

H̄(y − y0)ϕα(y)ρ(y) dy =

∞∫

−∞

H̄(y − y0)ϕα(y)P
′(y) dy =

=

∞∫

−∞

H̄ϕ,α(y − y0)P
′(y) dy = H̄ϕ,α(y − y0)P (y)

∣∣∣∣∣

∞

−∞

−
∞∫

−∞

H̄ ′
ϕ,α(y − y0)P (y) dy =

= −
∞∫

−∞

{
H̄ ′(y − y0)ϕα(y) + H̄(y − y0)ϕ

′
α(y)

}
P (y) dy =

=

∞∫

−∞

δ(y − y0)ϕα(y)P (y) dy −
∞∫

−∞

H̄(y − y0)ϕ
′
α(y)P (y) dy =

= P (x− St)ϕα(x− St)−
x−St∫

−∞

P (y)ϕ′
α(y) dy, (42)
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where we have denoted H̄ϕ,α = H̄(y − y0)ϕα(y).
Note that the functions ϕα(y) are polynomials and hence they belong to C∞(R). The second,

integral term in (42) apparently is at least as smooth as P (y). Therefore, these terms do not affect the
smoothness of the coefficient uα(x, t), which is entirely defined by the regularity of the distribution
function P . Thus, we can summarize the results which are analogous to the results for the expectation
and statistical moments.

Theorem 4.2. For any k ∈ N0 and any t > 0, if ρ ∈ Ck(R) then uα ∈ Ck+1(R),α " 0. In particular,
if ρ ∈ C∞(R) then uα ∈ C∞(R),α " 0. For ρ ∈ L∞(R) the polynomial moment uα ∈ W 1,∞(R),α " 0.

Corollary 4.1. The following statements are valid:

1. If ρ ∈ Ck
pw(R,Pρ), then uα ∈ Ck+1

pw (R,Pt), α " 0, for any t > 0.

2. If ρ ∈ C∞
pw(R,Pρ), then uα ∈ C∞

pw(R,Pt), α " 0, for any t > 0.

3. If ρ ∈ Ck,γ
pw (R,Pρ), then uα ∈ Ck+1,γ

pw (R,Pt), α " 0, for any t > 0.

5 Generalizations

5.1 Linear hyperbolic systems

The results obtained in preceding sections for one-dimensional scalar conservation law can be easily
extrapolated onto linear systems. Consider the linear hyperbolic system

∂U

∂t
+A

∂U

∂x
= 0, x ∈ R, t > 0 (43)

with Riemann initial data and uncertain initial discontinuity position given in the parametrized form

U(x, 0, y) = U0(x, y) =

{
UL, x < y;

UR, x > y,
(44)

where U = [u1, . . . , um]T is the solution vector and A is the constant coefficient matrix. It is possible
to diagonalize the system (43) by transforming it to new variables (Riemann invariants) W = R−1U,
where R = [r1, . . . , rm] is the matrix of right eigenvectors of A such that A = RΛR−1 with the matrix
Λ = diag(λ1, . . . ,λm) being the diagonal matrix of eigenvalues of A.

Hence, in Riemann invariants the system and the initial condition can be recast as

∂W

∂t
+Λ

∂W

∂x
= 0, (45)

W(x, 0, y) = W0(x, y) =

{
WL = R−1UL, x < y;

WR = R−1UR, x > y.
(46)

or, in component-wise form for i = 1, . . . ,m

∂wi

∂t
+ λi

∂wi

∂x
= 0, (47)

wi(x, 0, y) = w0
i (x, y) =

{
wi
L, x < y;

wi
R, x > y.

(48)

Obviously, for each i the equations (47)–(48) form the linear transport problem, whose exact
solution is a shock wave moving with speed λi,

wi(x, t, y) = wi
L + (wi

R − wi
L)H(x− λit− y). (49)
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The solution in initial variables is then a linear combination of shocks of the form (49):

U(x, t, y) = RW =
m∑

i=1

wi(x, t, y)ri =
m∑

i=1

(
wi
L + (wi

R − wi
L)H(x− λit− y)

)
ri. (50)

Therefore, all the regularity statements obtained for scalar equations are also valid for linear
systems.

Remark 5.1. Similar results are also anticipated in the case of quasi-linear one-dimensional systems
of conservation laws.

5.2 Uncertain shock amplitude

In this section we demonstrate the intrinsic difference between the probabilistic shock profile gen-
erated by the Riemann initial data with uncertain shock position having smooth statistics and the
probabilistic shock profile with shock statistics. Consider the scalar one-dimensional Burgers equation

∂u

∂t
+ u

∂u

∂x
= 0, (51)

with the initial condition having an uncertain amplitude:

u0(x,ω) = Y (ω) sin(2πx), (52)

where Y (ω) will be distributed either uniformly or normally,

Y (ω) ∼ U [−c, c] or Y (ω) ∼ N [M,σ].

For such kind of problems the previously derived regularity theorems are no longer valid: the
stationary shock is generated at certain time moment at x = 0.5, and this shock remains present in
the physical space. What is more, the existence of the shock does not depend on the regularity of the
probability density function, which is illustrated in Figs. 3–4. The numerical results were obtained by
the Stochastic Finite Volume method combined with various deterministic solvers (ENO-1 stands for
the first order finite volume solver, ENO-2 and WENO-3 for the ENO/WENO solvers with piece-wise
linear reconstruction, respectively).
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Figure 3: Expectation and variance of the random shock solution, Y (ω) ∼ U [0, 1].

6 Convergence rates of high order Stochastic Galerkin-FVM schemes

Here, we explore the implications of the increased regularity of statistical moments of random en-
tropy solutions on possible high order schemes for their numerical approximations. Clearly, schemes
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Figure 4: Expectation and variance of the random shock solution, Y (ω) ∼ N [0.5, 0.15].

based on path-wise approximation and sample averaging as proposed, for example, in [3], will have
to numerically resolve the discontinuities in the path-wise realizations of random entropy solutions.
Accordingly, their potential high order convergence is offset by the lack of regularity of pathwise re-
alizations of the random entropy solutions. To exploit the regularity of statistical moments requires,
therefore, their direct approximation by FVM. To this end, new deterministic systems of hyperbolic
conservation laws satisfied by these moments need to be derived analytically prior to discretization.
This is possible, for example, by the so-called Stochastic Galerkin methods recently proposed in [6], [7].
We briefly recapitulate the development here, and report numerical studies exhibiting maximal order
of convergence for a number of numerical schemes for the resulting hyperbolic systems.

The results of Theorem 4.2 can be generalized to the linear systems case

∂U

∂t
+

∂F(U)

∂x
= 0, F = AU, x ∈ (a, b), t > 0; (53)

U(x, 0, y) = U0(x, y), x ∈ (a, b), y ∈ Y ⊂ R, (54)

with uncertain initial shock location U0(x, y) = H(x−y), where the shock position is distributed with
the probability density ρ(y).

Theorem 6.1. For a given probability density function ρ, any k ∈ N0 and any t > 0 holds:

1. If ρ ∈ Ck(R) then uα ∈ Ck+1(R), α " 0. In particular, if ρ ∈ C∞(R) then uα ∈ C∞(R), α " 0.
For ρ ∈ L∞(R) the coefficient uα ∈ W 1,∞(R), α " 0.

2. If ρ ∈ Ck
pw(R,Pρ), then uα ∈ Ck+1

pw (R,Pt), α " 0, for any t > 0.

3. If ρ ∈ C∞
pw(R,Pρ), then uα ∈ C∞

pw(R,Pt), α " 0, for any t > 0.

4. If ρ ∈ Ck,γ
pw (R,Pρ), then uα ∈ Ck+1,γ

pw (R,Pt), α " 0, for any t > 0.

Proof. The solution of the linear hyperbolic system with Riemann initial data is a linear combination
of the invariants:

U(x, t, y) =
m∑

i=1

wi(x, t, y)ri,

where each invariant wi(x, t, y) is a solution of the linear advection equation

∂wi

∂t
+ λi

∂wi

∂x
= 0.

The gPC expansion for wi(x, t, y) has the form

wi(x, t, y) =
∞∑

α=0

wi,α(x, t)ϕα(y),
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where we choose the system of basis gPC polynomials {ϕα},α ∈ N0 to be orthonormal with respect
to the probability measure: ∫

Y

ϕα(y)ϕβ(y)ρ(y) dy = δαβ ,

such that the equations for the gPC coefficients become fully decoupled.
Then the gPC expansion for the solution of the linear system (53)–(54) is

U(x, t, y) =
∞∑

α=0

Uα(x, t)ϕα(y) =
m∑

i=1

∞∑

α=0

wi,α(x, t)ϕα(y)ri =
∞∑

α=0

(
m∑

i=1

wi,α(x, t)ri

)
ϕα(y),

which is a linear combination of the gPC coefficients for the invariants, for which Theorem 4.2 can be
applied directly.

Therefore, our smoothness results are valid for the solution of the linear hyperbolic systems. #

6.1 Stochastic Galerkin method

In this section, we describe the construction of the Stochastic Galerkin Finite Volume method (sGFVM)
for one-dimensional system of hyperbolic conservation laws.

∂U

∂t
+

∂F(U)

∂x
= 0, x ∈ (a, b), t > 0; (55)

U(x, 0, y) = U0(x, y), x ∈ (a, b), y ∈ Y ⊂ R. (56)

The sGFVM aims to approximate the coefficients of the truncated gPC expansion

u(x, t, y) =
N∑

k=0

Uk(x, t)ϕk(y), (57)

where {ϕk}, k = 0, . . . , N is a system of basis polymonials on Y . Note that these polynomials are not
necessarily orthogonal with respect to the probability density function ρ(y).

Multiplying the equations (55)–(56) by the basis function ϕi(y) and integrating the result over Y
we obtain

∫

Y

∂U

∂t
ϕi(y)ρ(y) dy +

∫

Y

∂F(U)

∂x
ϕi(y)ρ(y) dy = 0, (58)

∫

Y

U(x, 0, y)ϕi(y)ρ(y) dy =

∫

Y

U0(x, y)ϕi(y)ρ(y) dy, (59)

which after simple algebraic manipulations reduces to

N∑

k=0

∂Uk

∂t
Mki +

∂

∂x

∫

Y

F(U)ϕi(y)ρ(y) dy = 0, (60)

N∑

k=0

U(0)
k Mki =

∫

Y

U0(x, y)ϕi(y)ρ(y) dy. (61)

where U(0)
k = Uk(x, 0) and Mki are the mass matrix components,

Mki =

∫

Y

ϕk(y)ϕi(y)ρ(y) dy. (62)

The resulting form of the Galerkin system (60)–(61) depends on the concrete form of the flux function
F(U).
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6.2 Convergence analysis for linearized Euler equations

In this section, we apply the sGFVM for the numerical solution of the linearized Euler equations to
demonstrate the results obtained in Sections 4 and 5.1. In particular, we show the improvement of
the convergence rates for the gPC coefficients produces by sGFVM due to the increased regularity of
the solution statistics.

The linearized Euler equations are represented by the system of equations for the density ρ, velocity
u and pressure p of an inviscid gas, which takes the form

∂U

∂t
+A

∂U

∂x
= 0, (63)

where

U =




ρ
u
p



 , A =




ū ρ̄ 0
0 ū 1

ρ̄

0 γp̄ ū



 . (64)

The matrix A has the eigenvalue decomposition A = RΛR−1 with

Λ = diag (ū− ā, ū, ū+ ā) , R =




− ρ̄

ā 1 ρ̄
ā

1 0 1
−ρ̄ā 0 ρ̄ā



 , (65)

where ā =
√

γp̄
ρ̄ is the sound speed. We set γ = 7/5, ρ̄ = 1, ū = 1 and p̄ = 1/γ.

Taking in (60) F(U) = AU we get

N∑

k=0

∂Uk

∂t
Mki +

∫

Y

A
∂

∂x

N∑

k=0

Ukϕk(y)ϕi(y)ρ(y) dy = 0, (66)

which is equivalent to
N∑

k=0

∂Uk

∂t
Mki +

N∑

k=0

A
∂Uk

∂x
Mki = 0. (67)

Hence, the sGFVM for linearized Euler equations consists of solving (N + 1) advection equations
to determine the coefficients Uk(x, t), k = 0, . . . , N :

∂Uk

∂t
+A

∂Uk

∂x
= 0, (68)

N∑

k=0

U(0)
k Mki =

∫

Y

U0(x, y)ϕi(y)ρ(y) dy. (69)

According to the Theorem 6.1, the gPC coefficients are smoother than the path-wise solution of the
conservation law with Riemann initial data with uncertain shock location; in particular, the regularity
of the coefficients is determined by the regularity of the given probability density function for the
initial shock position.

Consider first the test case in which the initial condition is taken as a sine-wave with random initial
phase:

U0(x, y) =




ρ0
u0
p0



 =




sin

(
2.0π(x+ 0.1 ∗ y)

)

sin
(
2.0π(x+ 0.1 ∗ y + 0.1)

)

sin
(
2.0π(x+ 0.1 ∗ y − 0.1)

)



 , (70)

and the phase y = Y (ω) is distributed with probability density

µ(ξ) =
1

A
e
− 1

1−ξ2 , (71)
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where A is the normalization constant.
The solution to (68)–(69) is computed using 5th order WENO scheme; the gPC coefficients and

convergence rates are illustrated in Figs. 5–7. Note that for this type of the initial data we observe an
optimal 5th order of convergence, which is anticipated since the initial condition is a smooth function.
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Figure 5: Stochastic Galerkin method for linearized Euler equations: density.
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Figure 6: Stochastic Galerkin method for linearized Euler equations: velocity.

Next, to demonstrate the consequences of the obtained regularity results on high-order approxi-
mations of gPC coefficients we solve (68)–(69) with the following Riemann initial data:

U0(x, y) =

{
UL, x < y;

UR, x > y,
(72)

where

UL =




1.0
0.0
1.5



 , UR =




0.1
0.0
0.2



 ,
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Figure 7: Stochastic Galerkin method for linearized Euler equations: pressure.

y = x0 + Y (ω), x0 is a known constant and Y (ω) is distributed with the same probability density
function (71).

Note that µ ∈ C∞(−1, 1), therefore, under the theory developed in this paper we expect the
improvement of the convergence rates in the computation of the statistical quantities based on the
gPC coefficients compared to the approximation of these quantities based on the simulation of a
number of path-wise solutions (e.g. in Monte Carlo type methods).

Consider first the approximation of the gPC coefficients obtained using the sGFVM with three
gPC terms. Figs. 8 a), 9 a) and 10 a) illustrate the polynomial coefficients for each of the variables
ρ, u and p, and the corresponding convergence plot is shown in Figs. 8 b), 9 b) and 10 b). In this
computation, the 3rd order WENO scheme was used to approximate the solution of (68)–(69). We
note that the average convergence rate reaches the value of 3, while the path-wise simulations of shock
solutions would result in the first order of accuracy as a maximum. Figs. 11–13 correspond to the
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Figure 8: Stochastic Galerkin method for linearized Euler equations: density.

sGFVM with six gPC terms based on 5th order WENO solver to the Galerkin systems. The results
show the convergence rate reaching the value of 5 asymptotically.
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Figure 9: Stochastic Galerkin method for linearized Euler equations: velocity.
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Figure 10: Stochastic Galerkin method for linearized Euler equations: pressure.

Hence, we have demonstrated how the smoothness of the gPC coefficients for problems with Rie-
mann initial data and random discontinuity position affects the convergence rates of the sGFVM
method, thus making the gPC based computations more efficient as compared to the methods based
on the simulation of the path-wise shock solutions.

7 Conclusions

We have investigated the regularity properties of random entropy solutions to hyperbolic conservation
laws with random initial data for both scalar equations and certain hyperbolic systems in one space
dimension. For Riemann initial data with random shock location we have proven that the resulting
probabilistic shock profiles exhibit additional smoothness related to the probability density function
of the distribution law of the shock location in the initial data. This smoothing effect is unrelated
to viscosity and is found even in cases where the path-wise entropy solutions develop shocks. We
have proven that this holds true also for statistical moments like the mean, variance, higher order
spatio-temporal correlation functions as well as the coefficients in the gPC expansion. The improved
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Figure 11: Stochastic Galerkin method for linearized Euler equations: density.
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Figure 12: Stochastic Galerkin method for linearized Euler equations: velocity.

regularity was shown numerically to imply absence of discontinuities in hyperbolic systems obtained
by stochastic Galerkin projections onto truncated generalized polynomial chaos expansions of random
entropy solutions. This opens the possibility for developing high-order convergent numerical schemes
by combining intrusive gPC-type Galerkin discretizations in stochastic space with standard high-
order finite volume discretizations in physical space. The generalization of the obtained results to
multidimensional equations and systems of equations is subject of ongoing research and will be reported
elsewhere.
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Figure 13: Stochastic Galerkin method for linearized Euler equations: pressure.
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