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CONVERGENCE OF LOWEST ORDER SEMI-LAGRANGIAN

SCHEMES

HOLGER HEUMANN AND RALF HIPTMAIR

Abstract. We consider generalized linear transient advection-diffusion prob-
lems for differential forms on a bounded domain in Rn. We provide comprehen-
sive a priori convergence estimates for their spatio-temporal discretization by
means of a semi-Lagrangian approach combined with a discontinuous Galerkin
method. Under rather weak assumptions on the velocity underlying the ad-

vection we establish an asymptotic L2-estimate O(τ + hr + hr+1τ−

1
2 + τ

1
2 ),

where h is the spatial meshwidth, τ denotes the timestep, and r the polyno-
mial degree of the forms used as trial functions. This estimate can even be
improved considerably in a variety of special settings.

1. Introduction

A huge amount of research has been directed at numerical methods for transient
2nd-order advection-diffusion problems for an unknown scalar function u = u(x, t)
on a bounded domain Ω ⊂ Rn:

∂tu − div εgrad u + β · gradu = f in Ω,
u = gD on Γ0 ∪ Γin,

u(·, 0) = u0.
(1)

The non-negative smooth function ε = ε(x) is called the diffusion coefficient, β :
Ω $→ Rn stands for a given Lipschitz continuous velocity field, nΩ is the outward
normal and f ∈ C1

(
[0, T ];L2 (Ω)

)
is a given source function, T > 0 the final time.

The boundary splits into two disjoint parts Γin ∪ Γout = ∂Ω, the inflow and
outflow boundary, with

(2) Γin = {x ∈ ∂Ω, β · nΩ < 0} and Γout = {x ∈ ∂Ω, β · nΩ ≥ 0}.
Further, the part of the boundary ∂Ω where the diffusion parameter ε is positive,
e.g.

(3) Γ0 = {x ∈ ∂Ω, ε(x) > 0}
is called elliptic boundary. We have to impose Dirichlet or Neumann boundary
conditions on Γ0 ∪ Γin, cf. the Dirichlet data gD in (1).

Another important advection-diffusion problem is the so-called magnetic advec-
tion-diffusion problem for a vectorfield u : Ω → R3 [28], describing the evolution of
magnetic fields in conducting media:

∂tu + curl ε curl u + grad(β · u) + curl u× β = f in Ω,
u = gD on Γ0 ∪ Γin,

u(·, 0) = u0.
(4)

The most widely used numerical methods for (1) and (4) are Eulerian schemes
that perform spatial discretization on a fixed mesh and then introduce timestepping

Date: August 5, 2011.
2000 Mathematics Subject Classification. 65m25, 65m60, 65m12.
Key words and phrases. advection-diffusion problem, discrete differential forms, semi-

Lagrangian methods.
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2 HOLGER HEUMANN AND RALF HIPTMAIR

in the spirit of the so-called method of lines. Stability of the spatial discretiza-
tion for dominant advection is a key issue; it is well known that straightforward
Galerkin finite element discretization incurs severe pollution by spurious oscillation
for 0 < ε ) 1, unless excessively fine meshes are employed. A wide array of stable
spatial discretization methods has been devised for the scalar problem (1); exam-
ples are the Discontinuous Galerkin methods [33, 39, 51], Galerkin/Least-Squares
methods [34] or subgrid viscosity techniques [22]. We refer to the monograph [54]
for a detailed discussion of such methods. Sophisticated estimates confirm that
these methods, when applied to stationary scalar advection-diffusion problems, are
immune to pollution outside boundary layers or internal layers. We refer to [24] for
such estimates for Discontinuous Galerkin methods and to [43] and [54, Theorem
3.41] for a Galerkin/Least-Squares method.

For Eulerian methods, in particular, if ε is large (locally), implicit timestepping
is advisable for stability reasons. This entails solving a discrete stationary advection
diffusion problem in each timestep, that is, a large sparse linear system of equations
with non-symmetric system matrix. Such systems are notoriously challenging for
iterative solvers.

A “solver-friendly” [65] alternative that, in addition, manages to circumvent
all stability problems, is provided by the class of semi-Lagrangian methods, whose
analysis is the focus of this article. Like Eulerian methods they rely on a single fixed
mesh for spatial discretization. However, their derivation starts from combining the
temporal derivative in (1) and (4) and the advection part of the spatial differential
operator into a so-called material derivative, which is approximated by a difference
quotient. This implies tracking trajectories of the velocity field β, which is typical
of Lagrangian discretization schemes for transport problems. The semi-Lagrangian
idea has been introduced for scalar advection-diffusion problems like (1) in a host of
research papers, see, e.g., [9–11,21,23,25,48,55,60]. A survey of the literature can
be found in Section 5. Theses works exclusively address the scalar case, whereas,
apart from [28–30, 52], little attention has been paid to semi-Lagrangian methods
for (28).

In order to treat (1) and (4) in a common framework we adopt the perspective of
differential forms throughout this article. Doing this, both turn out to be members
of a much larger family of advection-diffusion problems. This is elaborated in
Section 2. The use of differential forms also helps reveal fundamental structural
properties shared by all advection-diffusion problems.

We point out, that the benefits of using the calculus of continuous and dis-
crete differential forms in the derivation and numerical analysis of discretizations of
second-order boundary value problems has become well established by now [5,6,20]
and has proved to be a very fruitful idea. The reader may judge whether this is
again confirmed by our work.

The rest of the paper is organized as follows. In Section 3 we present a well-
posedness results for transient advection-diffusion of differential forms. Then, in
Section 4 we introduce the semi-Lagrangian Galerkin method for such problems and
formulate, in Section 5, the main result. The proof of this result, in Section 7, is
based on the analysis of an auxillary Galerkin method for the stationary advection-
diffusion problem in Section 6.

2. Differential Forms and Vector Proxies

Let Ω be a smooth, oriented n-dimensional manifold with boundary. The sets of
smooth differential k-forms Λk (Ω) are the smooth sections of alternating k-linear
forms defined on the tangent spaces TxΩ of Ω with x ∈ Ω [57, p. 19]. We refer to
the books [16], [35] and [57] for a comprehensive introduction to differential forms
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and recall here only the basic algebraic operations. In what follows S(k, n) is the
set of permutations σ of numbers {1, 2, . . . n}, such that σ(1) < · · · < σ(k) and
σ(k + 1) < · · · < σ(n). We use sign(σ) to denote the sign of a permutation σ.

Definition 2.1. Let Ω ⊂ Rn be a smooth, oriented n-dimensional Riemannian man-
ifold with volume form µ ∈ Λn (Ω). In the following definitions v1, . . . ,vn are ar-
bitrary smooth vector fields on Ω while e1, . . . , en are orthonormal vector fields on
Ω. We define

• the exterior product ∧ : Λj (Ω) × Λk (Ω) → Λj+k (Ω) [57, Definition 1.2.2
a)]:

(ω ∧ η)(v1, . . . ,vj+k) :=
∑

σ∈S(k,j+k)

sign(σ)ω(vσ(1) . . . ,vσ(j))η(vσ(j+1), . . . ,vσ(j+k)).

• the scalar product (·, ·) : Λk (Ω)×Λk (Ω) → Λ0 (Ω) = C∞(Ω) [57, Definition
1.2.2 b)]:

(ω, η) :=
∑

σ∈S(k,n)

ω(eσ(1), . . . , eσ(n))η(eσ(1), . . . , eσ(n)).

• the Hodge operator & : Λk (Ω) → Λn−k (Ω) [57, Definition 1.2.2 c)]:

η ∧ &ω := (η, ω)µ, ∀η ∈ Λk (Ω) .

• the exterior derivative d : Λk (Ω) → Λk+1 (Ω) at x ∈ Ω [38, Proposition
3.2]:

(d ω)x(v1(x), . . . ,vk+1(x))

=
k+1∑

j=1

(−1)j+1∂
vj(x)ω(x)(v1(x), . . . , v̂j(x), . . . ,vk+1(x)),

where ∂vj denotes the partial derivative in direction vj and v̂j indicates a
suppressed argument.

• the contraction iβ : Λk (Ω) → Λk−1 (Ω) for a vector field β [57, Definition
1.2.2 d)]:

(iβ ω)(v1, . . .vk) = ω(β,v1, . . . ,vk).

• the Lie derivative Lβ : Λk (Ω) → Λk (Ω) [57, page 21]:

(5) Lβ ω = iβ d ω + d iβ ω.

• the pullback Φ∗ : Λk (Ω′) → Λk (Ω) for a smooth map Φ : Ω → Ω′ from Ω
to a manifold Ω′ [57, page 22]:

(Φ∗ω)x(v1, . . . ,vk) = ωΦ(x)(DΦxv1, . . . , DΦxvk),

where ωx denotes the evaluation of ω ∈ Λk (Ω) at x and DΦx is the differ-
ential of Φ at x.

• the trace tr : Λk (Ω) → Λk (∂Ω) is the pullback of the inclusion map ı :
∂Ω → Ω [5, page 16].

The stationary, Lipschitz continuous vector field β : Ω → TxΩ induces a flow
Xτ (x) = X(τ, x) with X : Ω × R $→ Ω, where

(6)
∂

∂τ
Xτ (x) = β(Xτ (x)), X0(x) = x.

It is an important result due to Cartan that [38, p. 142, prop. 5.3]

(7) Lβ ω =
∂

∂τ
X∗

τ ω|τ=0, ω ∈ Λk (Ω) .
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Recall that µ ∈ Λn (Ω) is the volume form on Ω. Completion of Λk (Ω) in
the norm ‖ω‖2

L2Λk(Ω) := (ω, ω)Ω :=
∫
Ω (ω, ω)µ yields the Hilbert space L2Λk (Ω).

Analogously to the Sobolev spaces Hm (Ω) and Wm,p (Ω) for scalar functions with
m > 0 derivatives in L2 (Ω) and Lp (Ω) [57, Section 1.3] we define Sobolev-spaces
Wm,pΛk (Ω) and HmΛk (Ω) for differential forms by requiring that the map

(8) x $→ ωx(v1(x), . . . ,vk(x))

is in Wm,p (Ω) and Hm (Ω). In the following ‖·‖W m,pΛk(Ω) (|·|W m,pΛk(Ω)) and
‖·‖HmΛk(Ω) (|·|HmΛk(Ω)) will denote the corresponding (semi)-norms. We use also
the standard notations W m,p (Ω), |β|W m,p(Ω) and ‖β‖W m,p(Ω) to denote Sobolev
spaces, Sobolev semi-norms and Sobolev norms of vector valued functions with
m > 0 derivatives in Lp (Ω).

For the analysis of transport problems of differential forms in a Hilbert space
setting it is useful to introduce also the formal L2-adjoints of the exterior derivative,
contraction and Lie derivative [31, Page 8].

Definition 2.2. Let Ω ⊂ Rn be a smooth, oriented n-dimensional manifold with
volume form µ ∈ Λn (Ω). We define

• the exterior co-derivative:

(9) & δ ω := (−1)k d &ω, ω ∈ Λk (Ω) ,

• the co-contraction:

(10) & jβ ω := (−1)k iβ &ω, ω ∈ Λk (Ω) ,

• the Lie co-derivative:

(11) & Lβ ω = − Lβ &ω, ω ∈ Λk (Ω) .

With these definitions we derive the following product rules from the usual prod-
uct rules for exterior derivative [38, Proposition 3.3], contraction [38, Page 139] and
Lie derivative [38, Proposition 5.3] for ω ∈ Λj (Ω) and η ∈ Λk (Ω):

d(ω ∧ &η) = d ω ∧ &η + (−1)j+kω ∧ & δ η,(12)

iβ(ω ∧ &η) = iβ ω ∧ &η + (−1)j+kω ∧ & jβ η,(13)

Lβ(ω ∧ &η) = Lβ ω ∧ &η − ω ∧ &Lβ η.(14)

These formulas are valid for j + n− k > n, by the convention that d ω and iβ ω are
zero whenever ω ∈ Λj (Ω) with j > n.

With these notations at our disposal we formulate the non-stationary transport
problem for time-dependent differential forms ω(t) ∈ Λk (Ω):

(15)

∂tω(t) + δ ε dω(t) + Lβ ω(t) = ϕ, in Ω,

tr ω(t) = trψD(t), on Γin,

tr(iβ ω(t)) = tr(iβ ψD(t)), on Γin,

tr ω(t) = trψD(t), on Γ0,

ω(0) = ω0.

with boundary condition on the inflow boundary Γin and elliptic boundary Γ0, see
(2) and (3).

From Cartan’s formula (7) it is clear, why (15) is called transport problem for
differential forms if ε = 0. Moreover, in this case we find the formal solution for
this problem:
(16)

(ω(t))x =

{(
X∗

−tω(0)
)
x

+
∫ t

0

(
X∗

τ−tϕ(τ)
)

x
dτ, Xτ−t(x) -∈ ∂Ω ∀τ ∈ [0, t],(

X∗
t(x)−tψD(t(x))

)

x
+

∫ t

t(x)

(
X∗

τ−tϕ(τ)
)

x
dτ, Xt(x)−t(x) ∈ ∂Ω.
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k differential form vector proxy

0 x $→ ω(x) u(x) := ω(x)

1 x $→ {v $→ ω(x)(v)} u(x) · v := ω(x)(v)

2 x $→ {(v1,v2) $→ ω(x)(v1,v2)} u(x) · (v1 × v2) := ω(x)(v1,v2)

3 x $→ {(v1,v2,v3) $→ ω(x)(v1,v2,v3)} u(x) det(v1,v2,v3) := ω(x)(v1,v2,v3)

Table 1. In 3D Euclidian space the vector proxies of forms ω are
scalar functions u or vectorial functions u [32, Table 2.1].

k dω iβ ω δ ω jβ ω tr φ∗

0 grad u uβ u(x) u(φ(x))

1 curl u β · u − divu −u× β nΩ(x) × u(x) Dφ(x)T u(φ(x))

2 div u u × β curl u β · u u(x) · nΩ(x) det Dφ(x)Dφ(x)−1u(φ(x))

3 uβ − gradu detDφ(x)u(φ(x))

k Lβ ω Lβ ω Lβ ω + Lβ ω

0 β · grad u − div(uβ) −u div β

1 grad(β · u) + curl u× β curl(β × u) − β div u Dβu + (Dβ)T u− u div β

2 curl(u × β) + β div u β × curl u− grad(β · u) u div β − Dβu− (Dβ)T u

3 div(uβ) −β · gradu u div β

Table 2. Correspondences of operations on forms ω with opera-
tions on scalar functions u or vectorial functions (vector proxies) u
in 3D Euclidean space. φ is a diffeomorphism and Dβ is the Jacobi
matrix. The vector proxies of Lβ +Lβ follow from standard vector
calculus identities. [5, 32]

If we have a non-vanishing inflow boundary, for x ∈ Ω there might exist a value
t(x) ∈ R, with 0 < t(x) < t such that Xt(x)−t(x) ∈ ∂Ω and the solution depends
on prescribed boundary data. The representation formula (16) will be key to the
derivation and analysis of semi-Lagrangian methods for (15).

Remark 2.3. Based on coordinate charts differential forms allow a description by
means of functions and vector fields (”vector proxies”). For 3D Euclidian space the
usual correspondencies are given in Tables 1 and 2. This reveals that (1) and (4)
incarnate (15) for k = 0 and k = 1, respectivley in 3D.

3. Well-posedness of transient advection-diffusion problems

We use the Hille-Yosida Theorem [22, Theorem 6.52] to show existence and
uniqueness of solutions of (15). Let L be a separable Hilbert space with inner
product (·, ·)L. Let A : W ⊂ L $→ L be a linear, maximal and monotone operator,
i.e.

(17) ∀f ∈ L, ∃v ∈ W, v + Av = f
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and

(18) ∀v ∈ W, (Av, v)L ≥ 0.

It can be shown that in this case the space W , equipped with the scalar product
(u, v)L + (Au, Av)L is a Hilbert space. We define a bilinear form a as a (u, v) =
(Au, v)L for all u ∈ W and v ∈ L and consider the following model problem:

For f ∈ C1 ([0, T ];L) and u0 ∈ W , find u ∈ C1 ([0, T ];L) ∩ C0 ([0, T ];W ) such
that

(19)
(dtu, v)L + a (u, v) = (f, v)L , ∀v ∈ L, ∀t > 0,

(u(0), v)L = (u0, v)L , ∀v ∈ L.

The Hille-Yosida Theorem [22, Theorem 6.52] gives existence and uniqueness of
solutions:

Theorem 3.1 (Hille-Yosida). Let L be a separable Hilbert space with inner product
(·, ·)L. Let A : W ⊂ L $→ L be a linear, maximal and monotone operator and
a (u, v) = (Au, v)L for all u ∈ W and v ∈ L. For all f ∈ C1 ([0, T ];L) and u0 ∈ W
the problem (19) has a unique solution.

Here, we have A = δ ε d + Lβ and set

W = {ω ∈ L2Λk (Ω) , Aω ∈ L2Λk (Ω) , tr|Γin
ω = 0, tr|Γin

iβ ω = 0, tr|Γ0
ω = 0}

and L = L2Λk (Ω). We equip the space W with the norm

‖ω‖2
W := ‖ω‖2

L + ‖(δ ε d+ Lβ)ω‖2
L .

To ensure monotonicity (18) we need to assume that the operator Lβ +Lβ is non-
negative.

Assumption 3.2. We assume that Lβ +Lβ : L2Λk (Ω) → L2Λk (Ω) is non-negative.

Remark 3.3. By part b) of Proposition A.1 we know that Assumption 3.2 is a
condition on the velocity field β. This assumption is not very restrictive since we
can always introduce a change of variables ω′ = eαtω with α ∈ R, α > 0 and rescale
time such that the arising operator αid + Lβ +Lβ is positive.

The following lemma establishes then the crucial step for proving well-posedness.

Lemma 3.4. Under Assumption 3.2 the operator A = δ ε d+ Lβ : W ⊂ L → L is a
maximal and monotone operator.

Proof. Proving maximality (17) is equivalent to existence and uniqueness of solu-
tions of the following variational formulation:

For f ∈ L find ω ∈ W such that

(ω, η)L + (δ ε dω, η)L + (Lβ ω, η)L = (f, η)L , ∀η ∈ L.

To prove existence and uniqueness we verify the assumptions of the Banach-Neĉas-
Babûska Theorem [22, p. 85]: The bilinear form

a (ω, η) := (ω, η)L + (δ ε dω, η)L + (Lβ ω, η)L

is continuous on W × L and we show that it satisfies an inf-sup-condition. First
the non-negativity assumption and the product rule for Lie derivatives (14) imply
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stability in L:

a (ω, ω) = (ω, ω)L + (δ ε dω, ω)L + (Lβ ω, ω)L

=(ω, ω)L + (ε d ω, d ω)L −
∫

∂Ω
ε tr ω ∧ tr & dω)

+
1

2
((Lβ +Lβ)ω, ω)L +

1

2

∫

∂Ω
tr iβ(ω ∧ &ω)

≥‖ω‖2
L .

The last inequality follows from
∫

∂Ω tr iβ µ =
∫

∂Ω β ·nΩ inΩ µ and (β ·nΩ)|∂Ω\Γin
≥ 0

and the imposed homogeneous boundary conditions, since

(20)

∫

Γin

tr iβ(ω ∧ &ω) =

∫

Γin

tr iβ ω
︸ ︷︷ ︸

=0

∧ tr &ω +

∫

Γin

tr ω︸︷︷︸
=0

∧ tr & jβ ω = 0,

by (13). The L-stability implies

sup
η∈L

a (ω, η)

‖η‖L

≥
a (ω, ω)

‖ω‖L

≥ ‖ω‖L ,

and we deduce

sup
η∈L

a (ω, η)

‖η‖L

= sup
η∈L

(ω, η)L + (Lβ ω, η)L + (δ ε dω, η)L

‖η‖L

≥ sup
η∈L

(Lβ ω, η)L + (δ ε dω, η)L

‖η‖L

− sup
η∈L

(ω, η)L

‖η‖L

= sup
η∈L

(Lβ ω, η)L + (δ ε dω, η)L

‖η‖L

− ‖ω‖L

≥ ‖(δ ε d + Lβ)ω‖L − sup
η∈L

a (ω, η)

‖η‖L

.

This yields

(
(1 + 1)2 + 1

)(
sup
η∈L

a (ω, η)

‖η‖L

)2

≥ ‖(δ ε d+ Lβ)ω‖2
L + ‖ω‖2

L ,

i.e. the inf-sup-inequality

inf
ω∈W

sup
η∈L

a (ω, η)

‖ω‖W ‖η‖L

≥ 5−
1
2 .

Next we establish the injectivity condition in the Banach-Neĉas-Babûska Theorem
[22, p. 85]. Let η ∈ L such that a (ω, η) = 0 for all ω ∈ W . A density argument
gives η+ δ ε d η+Lβ η = 0, which implies ‖η‖W ≤ ∞. Testing with ω ∈ Λk (Ω)∩W
we find tr &η = 0 and tr iβ &η = 0 at ∂Ω \ Γin, tr & dω = 0 at Γ0 and deduce

0 = (η, η)L + (η, δ ε d η)L + (η,Lβ η)L

=(η, η)L + (d η, ε d η) −
∫

∂Ω
ε tr(η ∧ & d η)

+
1

2

(
(η,Lβ η)L + (η, Lβ η)L

)
−

1

2

∫

∂Ω
tr iβ(η ∧ &η)

≥‖η‖2
L ,

i.e. η = 0.
Summing up, Assumption 3.2 and the boundary conditions in the definition of

W ensure that the Lie derivative is a maximal and monotone operator. !
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Remark 3.5. The identity (20) shows that we could impose other inflow boundary
conditions. For the following four conditions we can show well-posedness:

(1) tr iβ ω = tr iβ ψD and trω = trψD on Γin;
(2) tr iβ ω = tr iβ ψD and tr iβ &ω = tr iβ &ψD on Γin;
(3) tr &ω = tr &ψD and trω = trψD on Γin;
(4) tr &ω = tr &ψD and tr iβ &ω = tr iβ &ψD on Γin;

If the normal component of β vanishes everywhere on ∂Ω, we do not need to impose
any inflow boundary conditions, since Γin is empty.

4. Semi-Lagrangian Methods

We review the construction of a Semi-Lagrangian discretization of (15). More
details for pure advection (ε = 0) can be found in [28,30]. Let T be a triangulation
of Ω and ω ∈ L2Λk (Ω) piecewise smooth on T . Let F be the set of all n − 1-
dimensional open faces of all elements T ∈ T and assume an arbitrary orientation
of faces f ∈ F , i.e. the faces have a distinguished normal nf . If a face f is contained
in the boundary of some element T then either nf = nT |f or nf = −nT |f . Then

ω+ and ω− denote the two different restrictions of ω ∈ Λk (Ω) to f , e.g. ω+
x :=

lims→0+ ωx+snf
for x ∈ f . With these restriction we define the jump [ω]f = ω−−ω+

and the average {ω}f = 1
2 (ω− + ω+). For f ⊂ ∂Ω we assume f to be oriented such

that nf points outward. Let F◦ and F∂ be the set of interior and boundary facets,
respectively; F∂

−,F∂
+,F∂

0 ⊂ F∂ is the set of facets on the inflow boundary Γ−,
the outflow boundary Γ+ and the elliptic boundary Γ0. Let (·, ·)Ω be the L2-inner
product on any Λk (Ω). In the following, Λk

h (T ) denotes some piecewise polynomial
approximation space on the triangulation T for k-forms in Ω. The discretization of
the diffusion operator δ ε d is based on the bilinear form

(21)

b (ωh, ηh) :=
∑

T∈T

(ε d ωh, d ηh)T

+
∑

f∈F◦

(∫

f

ε tr [ωh]f ∧ tr & {d ηh}f −
∫

f

ε tr [ηh]f ∧ tr & {d ωh}f

)

+
∑

f∈F∂
0

(∫

f

ε trωh ∧ tr &d ηh −
∫

f

ε tr ηh ∧ tr &dωh

)

+
∑

f∈F∂
0

∫

f

sfε tr inf
(ωh ∧ &ηh) +

∑

f∈F◦

sfε tr inf
([ωh]f ∧ & [ηh]f ),

for ωh, ηh ∈ Λk
h (T ), sf > 0, and another bilinear form

(22) - (ψ, ηh) =
∑

f∈F∂
0

∫

f

ε trψ ∧ tr & d ηh +

∫

f

sfε tr inf
(ψ ∧ &ηh),

for ψ ∈ Λk (Ω) and ηh ∈ Λk
h (T ). These are related to the discontinuous Galerkin

(DG) non-symmetric interior penalty discretization [33, 46, 53]. The penalty pa-
rameter sf is inversely proportional to the local mesh size.

Recall that Xτ is the flow of the velocity field β. Here and in the following, we
assume that β is defined on an open neighbourhood of Ω. For fixed small τ the
map X−τ induces the decomposition Ω = Ωin ∪ Ω0, with X−τ (Ωin) ∩ Ω = {} and
X−τ (Ω0) ⊂ Ω. Further we have Xτ (Ω) = Ω0 ∪ Ωout with Ωout = Xτ (Ω) \ Ω0; see
Figure 1.
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Ω

Ωin

Ωout

Ω0

β

Figure 1. Illustration of the definition of the domains Ω0, Ωin

and Ωout for β = const: the black lines and the light blue lines
bound Ω and Xτ (Ω), respectively. The black shaded area is Ωin

and the light blue shaded area is Ωout.

For the advection operator we introduce the ’weak discrete material derivative’
[28, page 1477] [29, page 8]

(23) aτ (ωh, ηh) :=
1

τ
(ωh, ηh)Ω −

1

τ

(
X∗

−τωh, ηh

)
Ω0

, ωh, ηh ∈ Λk
h (T )

and

(24) gτ (ψ, ηh) :=
1

τ

(
ψ̃, ηh

)

Ωin

, ψ ∈ Λk (Ω) , ηh ∈ Λk
h (T ) ,

where ψ̃ is an extension of ψ into Ωin that is constant along the characteristic lines
of β. More precisely, if we define the time t(x) for x ∈ Ωin such that X−t(x)(x) ∈ Γin

we set

(25) ψ̃x =
(
X∗

−t(x)ψ
)

x
.

To formulate a semi-Lagrangian method, we consider a partitioning of the time
interval of the form [0, T ] =

⋃N−1
n=0 [tn, tn+1] with tn = τn and τ = T

N
. Then the

semi-Lagrangian Galerkin timestepping scheme for the advection-diffusion prob-
lem (15) constructs sequences (ωn

h)N
n=0, ωn

h ∈ Λk
h (T ), approximating (ω(tn))N

n=0
according to:

• Find (ωn
h)N

n=0, ωn
h ∈ Λk

h (T ), such that for all ηh ∈ Λk
h (T ):

(26)

(
ω0

h, ηh

)
Ω

= (ω0, ηh)Ω ,

b
(
ωn+1

h , η
)
+

1

τ

(
ωn+1

h , ηh

)
Ω
−

1

τ
(ωn

h , ηh)Ω

+ aτ (ωn
h , ηh) =

(
ϕ(tn+1), ηh

)
Ω

+ - (ψD(tn), ηh) + gτ

(
ψ̃n

D, η
)

.

ψ̃n
D is the extension

(
X∗

−t(x)ψD(tn)
)

x
for x ∈ Ωin introduced in (25).

Remark 4.1. The semi-Lagrangian scheme (26) for the pure advection problem,
that is problem (15) with ε = 0, boils down to the Galerkin projection of the formal
solution (16), where we choose a low order quadrature for the evaluation of the right
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hand side

ϕn+1 := ϕ(tn+1) ≈ τ

∫ tn+1

tn

X∗
t−tn+1ϕ(t)dt.

To see this, notice

1

τ

(
ωn+1

h , ηh

)
Ω
−

1

τ
(ωn

h , ηh)Ω + aτ (ωn
h , ηh) =

1

τ

(
ωn+1

h , ηh

)
Ω
−

1

τ

(
X∗

−τωn
h , ηh

)
Ω0

.

Candidate spaces for Λk
h (T ) are the spaces of discrete differential forms, intro-

duced in [5] and [6], that are subspaces of appropriate Sobolev-spaces of differential
forms. In R3, these spaces correspond to the standard Lagrangian finite element
spaces (k = 0), to the H (curl, Ω) (k = 1) and H(div, Ω) (k = 2) conforming
finite element spaces of Nédélec’s first [44] and second family [45] and to spaces of
discontinuous piecewise polynomial functions (k = 3), respectively. Then in the def-
initions of b (·, ·) and - (·, ·) all the integral terms over interior faces f ∈ F◦ vanish,
because tr([ωh]f ) = 0. While these spaces feature a lot of interesting mathematical
structure, in our derivation we will need only certain optimal approximation prop-
erties like infη∈Λk

h(T ) ‖ω − η‖L2Λk(Ω) = O(hr+1) for ω sufficiently smooth, where r is

the degree of the piecewise polynomials that are contained in Λk
h (T ) and h the local

mesh size. Therefore, other possible choices for Λk
h (T ) include the usual globally

discontinuous approximation spaces used in discontinuous Galerkin methods.

Remark 4.2. To elucidate the relationship of (26) with methods proposed in the
literature (usually stated in terms of vector proxies there), we provide the vector
proxy incarnation of (1) and (4) for homogeneous boundary conditions. Let Vh

and Vh denote some scalar and vectorial finite dimensional approximation spaces.
Then the semi-Lagrangian Galerkin schemes for the two boundary value problems
are: Given u0

h ∈ Vh find un
h ∈ Vh, n = 1, 2, . . . , N such that for all vh ∈ Vh

(27)

τb
(
un+1

h , vh

)
+

∫

Ω

(
un+1

h (x) − un
h (X−τ (x))

)
vh(x)dx

= τ

∫

Ω
ϕn+1(x)vh(x)dx;

and: Given u0
h ∈ Vh find un

h ∈ Vh, n = 1, 2, . . . , N such that for all vh ∈ Vh

(28) τb
(
un+1

h ,vh

)
+

∫

Ω

(
un+1

h (x) − DXT
−τ (x)un

h (X−τ (x))
)
vh(x)dx

= τ

∫

Ω
ϕn+1(x)vh(x)dx.

For ε = 0 the scheme (27) agrees with the so-called ”exactly integrated semi-
Semi-Lagrange Galerkin scheme” in [50]. Actual implementations, e.g. in [21,
48, 59, 61, 63], of this method require further approximation steps, e.g. approxima-
tion of trajectories or the evaluation of the inner products

∫
Ω uh(X−τ (x))vh(x)dx

(see Figure 2). A flawed treatment of these additional approximations in (27) of
(28) can lead to unconditionally unstable [41] or non-convergent semi-Lagrangian
timestepping schemes [29].

In introducing the change of variables y := X−τ (x) we could replace the prod-
ucts un

h(X−τ (x))vh(x) in (27) and (28) with un
h(y)vh(Xτ (y)). Sometimes such

representations are referred to as the weak Lagrange-Galerkin method [42] or (lo-
calized) adjoint Lagrange-Galerkin method [17, 26, 27] (LAM, ELLAM). Also the
treatment of inflow boundary conditions can be found in the literature on LAM and
ELLAM [17,26,27].
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Figure 2. A mesh T (blue, solid lines) on Ω = [0, 1]2

and its image mesh Xτ (T ) under the flow induced by β =(
1
16 sin(2πx) sin(2πy), 1

16 sin(2πx) sin(2πy)
)
. The inner product∫

Ω uh(X−τ (x))vh(x)dx in (27) and (28) is an inner product of two
functions that are piecewise smooth on two different meshes: vh(x)
is piecewise smooth on T and uh(X−τ (x)) is piecewise smooth on
Xτ (T ).

5. Previous Work on Semi-Lagrangian Galerkin Methods and Main
Result

Ample convergence theory is available for variants of the semi-Lagrangian dis-
cretization (27) of the scalar advection-diffusion boundary value problem (1). It has
yielded three types of a priori convergence results that we are going to discuss be-
low. The first class of results accepts the dependence of constants in the estimates
on the diffusion coefficient ε and their blowing up when ε → 0. The second class of
results provides estimates that are uniformly in ε and the third class concentrates
on estimates for the limit case ε = 0.

Even though convergence theory for piecewise polynomial trial spaces of higher
degree is available, we only review the results for lowest-order approximation spaces,
i.e., if not stated otherwise, Vh is the space of piecewise linear H1 (Ω)-conforming
finite elements. It turned out to be surprisingly difficult to establish any convergence
result for fully discrete semi-Lagrangian methods in the general setting of a bounded
domain and non-vanishing normal component of β at parts of the boundary, when
τ and h are roughly linearly proportional.

Results that are non-uniform in the diffusion coefficient can be found in [13, 21,
48, 59, 61, 63].

The early work of Pironneau [48] proved the estimate ‖u(tn) − un
h‖L2(Ω) ≤

c(ε)(τ +h+h2τ−1), where it is assumed that divβ = 0 and β has vanishing normal
component on the boundary of Ω. The exact flow X(τ) is approximated by a flow
Xh(τ) corresponding to a piecewise constant approximation of the velocity β. Then
all the integrals occurring in (27), and in particular

∫
Ω uh(Xh,−τ (x))vh(x)dx, can be

computed exactly [48, Page 314.]. Subsequently, Douglas and Russel in [21] proved
the estimate ‖u(tn) − un

h‖L2(Ω) ≤ c(ε)(τ + h2) in one dimension for Ω = R. Their
result accounts for characteristics that are approximated by an explicit Euler step
but assumes that

∫
Ω uh(x− τβ(x))vh(x)dx can be computed exactly. For general β
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this assumption is impractical (see Figure 2). Later Süli [59] extended the so-called
area-weighting technique for advection problems [41] to advection-diffusion prob-
lems in unbounded domains. For a fully discrete semi-Lagrangian scheme he proved
the estimate ‖u(tn) − un

h‖L2(Ω) ≤ c(ε)(τ + h). Bermejo used a similar technique

to formulate fully discrete semi-Lagrangian schemes on rectangular meshes [12]
and showed ‖u(tn) − un

h‖L2(Ω) ≤ c(ε)(τ + max(h2τ−1, τ)). Wang, Ewing, and Rus-

sell [61] considered the ELLAM variants of semi-Lagrangian schemes, cf. [17,26,27],
for the scalar advection-diffusion problem with constant velocity on intervals Ω ⊂ R.
Their analysis can accommodate various types of boundary conditions and yields
the estimate ‖u(tn) − un

h‖L2(Ω) ≤ c(ε)(τ + h2). Recently, Wang and Wang [63]
generalized this to the case of non-constant β and Ω ⊂ Rn and proved the es-
timate ‖u(tn) − un

h‖L2(Ω) ≤ c(ε)(min(τ, h) + τ + h2 for a fully discrete ELLAM

method. Both these last works assume that the integrals
∫
Ω uh(X−τ (x))vh(x)dx

are computed exactly.
Available estimates that are uniform in the diffusion coefficient assume either

vanishing normal components of β at the boundary of Ω [8] or impose periodic
boundary conditions [62]. Both these settings avoid the critical case of steep
boundary layers: in the former case Bause und Knabner [8] gave the estimate
‖u(tn) − un

h‖L2(Ω) ≤ c(τ + h2 + min(h2, h2/τ)), while in the latter case Wang and

Wang [62] proved the estimate ‖u(tn) − un
h‖L2(Ω) ≤ c(

√
ετ + τ + h). Both results

hinge on the exact evaluation of the integrals
∫
Ω uh(X−τ (x))vh(x)dx.

Error bounds that tackle the limit case ε = 0 can be found in [2, 19, 37, 40,
48]: Pironneau [48] gave the estimate ‖u(tn) − un

h‖L2(Ω) ≤ C1(τ, h) + c(h2τ−1),

where C1(τ, h) = O(hm1) + O(τm2 ) reflects an error due to the approximation
of the trajectories. It is assumed that divβ = 0 and β has vanishing normal
component on the boundary of Ω. Later, for a variant of the scheme from [21] with
periodic boundary conditions, in [19] Dawson and co-workers showed the estimate
‖u(tn) − un

h‖l2(Z) ≤ C(τ + h). The result of Johnson [37], ‖u(tn) − un
h‖L2(Ω) ≤

ch2τ− 1
2 , assumed that β = const and Ω = Rn. Another important result is due

to Lucier [40] and Arbogast and Wang [2]: The semi-Lagrangian scheme for scalar
conservation laws, k = n in (26), and Vh being the space of piecewise constant finite
elements agrees with Godunov’s method, for which ‖u(tn) − un

h‖L1(Ω) ≤ C1(τ, h)+

c(h+hτ− 1
2 ) is shown [2,40], where C1(τ) = O(τm2 ) is due to the approximation of

the trajectories.
In contrast to the scalar problem, there are almost no results addressing semi-

Lagrangian methods for the non-scalar problem (4). We would like to mention the
Arbitrary Lagrangian-Eulerian (ALE) method from [52]. Yet this approach relies
on a series of distorted meshes, while the semi-Lagrangian methods work on a single
fixed mesh.

Besides the semi-Lagrangian Galerkin method considered here, there is also a
different kind of semi-Lagrangian schemes that use interpolation operators instead
of L2-projection to map the quantities uh(X−τ (x)) onto the approximation space.
We refer to the literature, e.g. [29, 49, 58], for a discussion and theoretical results
on such methods.

If we neglect for a moment complications introduced by the treatment of bound-
ary conditions and the evaluation of the non-standard inner product, we find a
discrepancy between the theoretical results for vanishing and non-vanishing dif-
fusion: For τ = O(h) and piecewise linear approximation spaces the ε-uniform
estimates of [8, 62] yield an error of order O(h), while the best result for vanishing
diffusion gives an error of order h1+ 1

2 [37]. However, the proof of this estimate
(see [37, p. 52]) seems to be confined to the Cauchy problem for linear advection.
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Apparently it is not possible to establish similar estimates for both non-vanishing
diffusion and inflow boundary with these techniques.

In this article we present a new kind of analysis for semi-Lagrangian Galerkin
methods that is based on an auxiliary discretization of the stationary advection-
diffusion problem. Thanks to the use of differential forms our analysis covers
not only scalar but also non-scalar advection-diffusion problems, like the mag-
netic advection-diffusion problem (4) from magnetohydrodynamics. We prove an
L2-estimate of order O(‖ε‖L∞(Ω) hr + hr+1τ− 1

2 + τ
1
2 + τ) for unstructured sim-

plicial meshes and approximation spaces with local approximation order O(hr+1)
in L2 (Ω). This estimate holds for conforming and non-conforming approximation
spaces alike, and it includes the case of non-vanishing inflow boundary data, ex-
tending the results in [29]. In the case of vanishing inflow boundary data we get an
L2-estimate of order O(‖ε‖L∞(Ω) hr +hr+1τ− 1

2 + τ), that for ε ) h agrees with the
stronger results for the Cauchy problem with vanishing diffusion [37]. We point out
that all these estimates hinge on (strict) positivity assumptions for an expression
depending on derivatives of β. More precisely we make the following assumption,
closely related to Assumption 3.2.

Assumption 5.1. We assume that Lβ +Lβ : L2Λk (Ω) → L2Λk (Ω) is strictly pos-
itive, i.e. there exists a constant α0 > 0 such that

(29) ((Lβ +Lβ)ω, ω)Ω ≥ α0 (ω, ω)Ω , ∀ω ∈ Λk (Ω) .

Again, for the transient problem this assumption is not very restrictive, due to
the rescaling argument from Remark 3.3.

Our main result is the following theorem.

Theorem 5.2. Let ω, (ωn
h)N

n=0 be the solutions of (15) and (26), respectively. If

β ∈ W 2,∞ (Ω), Assumption (5.1) holds, and, additionally, Λk
h (T ) furnishes the

approximation property for s > 0, r ≥ s:

inf
η∈Λk

h(T )
|ω − η|HsΛk(T ) ≤ Khr+1−s‖ω‖Hr+1Λk(T ), ω ∈ Hr+1Λk (T ) , T ∈ T ,

with K > 0 independent of h, then, for sufficiently small τ , we get
(30)

max
0≤n≤N

‖ω(tn) − ωn
h‖L2Λk(Ω) ≤ C

(
‖ε‖L∞(Ω) hr + hr+1 + hr+1τ− 1

2 + τ
1
2 + τ

)
,

where C > 0 depends on K, ‖∂tω(t)‖HmΛk(Ω), ‖ω(t)‖HmΛk(Ω),
∥∥∂2

t ω(t)
∥∥

L2Λk(Ω)
,

‖∂tϕ(t)‖L2Λk(Ω), |∂tω(t)|ε) and φ(t), but is independent of τ and h.1

We give a proof of this theorem in Section 7.

Remark 5.3. The proof of Theorem 5.2 shows that the term τ
1
2 in our error estimate

(30) is due to non-vanishing inflow data. In the case of vanishing inflow data we
obtain the estimate:

(31) max
0≤n≤N

‖ω(tn) − ωn
h‖L2Λk(Ω) ≤ C

(
‖ε‖L∞(Ω) hr + hr+1 + hr+1τ− 1

2 + τ
)

,

instead of (30). Further, the implicit dependence of C on the diffusion coefficient
ε due to the higher order norms of the solution ω can be removed for sufficiently
smooth data, cf. [62, Theorem 5.2].

1By the phrase that a constant is independent of h we mean that it may only depend on the
shape-regularity of the mesh cells, but not on their size.
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6. Auxiliary Method of Characteristics

In this section we present a Galerkin method for the stationary advection-
diffusion problem

(32)

δ ε dω + Lβ ω = ϕ, in Ω,

trω = trψD, on Γin,

tr iβ ω = tr iβ ψD, on Γin

trω = trψD, on Γ0.

We use the Cartan formula (7) to introduce a so-called characteristic method for
(32). Characteristic methods for the scalar stationary advection problems have
been introduced in [14], convergence for the scalar advection problem in R2 was
proved in [7]. Although we do prove convergence for our characteristic method for
differential k-forms in Rn we merely use it as a technical tool; the characteristic
methods will be instrumental for the analysis of semi-Lagrangian method for the
non-stationary advection-diffusion problem (15).

Fixing τ > 0, we use (21), (23), (24) and (25) and define the characteristic
Galerkin scheme for the advection-diffusion problem (32): Find ωh ∈ Λk

h (T ) such
that:

(33) b (ωh, ηh)+ aτ (ωh, ηh) = (ϕ, ηh)+ - (ψD, ηh)+gτ

(
ψ̃D, ηh

)
, ∀ηh ∈ Λk

h (T ) .

The technique to prove convergence for the characteristic methods resembles the
analysis of discontinuous Galerkin methods for the scalar problem, see, e.g. [3, 15].
The idea is to prove convergence in some mesh dependent norm.

First, we collect some important results for the advection operator. We define a
norm

(34)
‖ω‖2

h,τ := ‖ω‖2
L2Λk(Ω) +

1

2τ

∥∥ω − X∗
−τω

∥∥2

L2Λk(Ω0)

+
1

2τ
‖ω‖2

L2Λk(Ωin) +
1

2τ

∥∥X∗
−τω

∥∥2

L2Λk(Ωout)

parametrized by τ and prove stability of a (τ, ·) · (cf. (23)) in this norm for suffi-
ciently small τ under the Assumption 3.2. By Part b) of Proposition A.1 we know
that this condition is an assumption on the velocity field β.

Lemma 6.1. Under Assumption (5.1) and for sufficiently small τ > 0 we have for
all ω ∈ Λk

h (T ) ∪ Λk (Ω):

aτ (ω, ω) ≥ min(α0, 1) ‖ω‖2
h,τ ,

where α0 is the constant in Assumption 5.1.

Proof. We find

aτ (ω, ω) =
1

τ
(ω, ω)Ω −

1

τ

(
X∗

−τω, ω
)
Ω0

=
1

2τ
(ω, ω)Ω0

−
1

2τ

(
X∗

−τω, X∗
−τω

)
Ω0

+
1

2τ

(
ω − X∗

−τω, ω − X∗
−τω

)
Ω0

+
1

τ
(ω, ω)Ωin

=
1

2τ
(ω, ω)Ω −

1

2τ

(
X∗

−τω, X∗
−τω

)
Ω0∪Ωout

+
1

2τ
(ω, ω)Ωin

+
1

2τ

(
ω − X∗

−τω, ω − X∗
−τω

)
Ω0

+
1

2τ

(
X∗

−τω, X∗
−τω

)
Ωout

≥min(α0, 1) ‖ω‖2
h,τ ,
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where the last estimate follows from assumption (29) by the following identity:

(35) (ω, ω)Ω −
(
X∗

−τω, X∗
−τω

)
Ω0∪Ωout

=

∫

Ω
ω ∧ &ω −

∫

Ω
ω ∧ X∗

τ & X∗
−τω.

!

The next Lemma gives a continuity estimate for aτ (ω, η).

Lemma 6.2. For τ sufficiently small we have

aτ (ω, ηh) ≤ C(
1√
τ

+ 1 + τ) ‖ω‖L2Λk(Ω) ‖ηh‖h,τ , ω ∈ L2Λk (Ω) , ηh ∈ Λk
h (T ) ,

with C = C(β) ≥ 0 independent of τ and the mesh size h.

Proof. First we rewrite aτ :

aτ (ω, ηh) =
1

τ
(ω, ηh)Ω +

1

τ

(
X∗

−τω, X∗
−τηh − ηh

)
Ω0

−
1

τ

(
X∗

−τω, X∗
−τηh

)
Ω0

=
1

τ

(
X∗

−τω, X∗
−τηh − ηh

)
Ω0

+
1

τ
(ω, ηh)Ω

−
1

τ

(
X∗

−τω, X∗
−τηh

)
Ω0∪Ωout

+
1

τ

(
X∗

−τω, X∗
−τηh

)
Ωout

and then estimate the individual terms in the last sum:
∣∣∣∣
1

τ

(
X∗

−τω, X∗
−τηh − ηh

)
Ω0

∣∣∣∣ ≤
√

1 + Cτ

τ
‖ω‖L2Λk(Ω)

1√
τ

∥∥ηh − X∗
−τηh

∥∥
L2Λk(Ω0)

,

∣∣∣∣
1

τ
(ω, ηh)Ω −

1

τ

(
X∗

−τω, X∗
−τηh

)
Ω0∪Ωout

∣∣∣∣ ≤ C(β)(1 + τ) ‖ω‖L2Λk(Ω) ‖ηh‖L2Λk(Ω) ,

∣∣∣∣
1

τ

(
X∗

−τω, X∗
−τηh

)
Ωout

∣∣∣∣ ≤
√

1 + Cτ

τ
‖ω‖L2Λk(Ω)

1√
τ

∥∥X∗
−τηh

∥∥
L2Λk(Ωout)

.

The second estimate is based on the expansion (47) and the bound (46). The first
and third estimate use boundedness of the pullback for sufficiently small τ (see Part
a) of Proposition A.1):

∥∥X∗
−τω

∥∥
L2Λk(Ω0∪Ωout)

≤
√

1 + Cτ ‖ω‖L2Λk(Ω) .

Recalling definition (34) of the norm ‖·‖h,τ we deduce the assertion. !

In contrast to discontinuous Galerkin methods obviously the characteristic method
is not consistent. But we can control the consistency error and prove convergence
in an energy norm |‖·‖|2 := |·|2ε + ‖·‖2

L2Λk(Ω), where |·|ε is the semi-norm associated
to the bilinear form b (·, ·) defined in (21), i.e.

(36) |ω|2ε := b (ω, ω)

=
∑

T∈T

(ε dω, d ω)T +
∑

f∈F∂
0

∫

f

sfε tr inf
(ω ∧ &ω) +

∑

f∈F◦

sfε tr inf
([ω]f ∧ & [ω]f ).

Theorem 6.3. For r ∈ N let ω ∈ Hmax(2,r+1)Λk (Ω) and ωh ∈ Λk
h (T ) be the

solutions of the advection-diffusion problem (32) and its characteristic Galerkin
discretization (33), respectively. If β ∈ W 2,∞ (Ω), Assumption (5.1) holds and,
additionally, for 0 ≤ s ≤ r and K > 0 independent of ω and h, the approximation
space Λk

h (T ) furnishes the approximation property

inf
ηh∈Λk

h(T )
|ω − ηh|HsΛk(T ) ≤ Khr+1−s‖ω‖Hr+1Λk(T ), ω ∈ Hr+1Λk (T ) , T ∈ T ,
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then, for sufficiently small τ and with C > 0 independent of the mesh size h :=
maxT (hT ), timestep size τ and diffusion coefficient ε, we get:

|‖ω − ωh‖| ≤ C
(∥∥√ε

∥∥
L∞(Ω)

hr + hr+1 + hr+1τ− 1
2 + τ

1
2

)
‖ω‖Hmax(2,r+1)Λk(Ω).

Proof. Let ω̄h denote the L2-projection of ω onto Λk
h (T ), then:

(37) |‖ω − ωh‖| ≤ |‖ω − ω̄h‖| + |‖ω̄h − ωh‖| .
Clearly, for the first term on the right hand side the approximation property gives:

|‖ω − ω̄h‖| ≤ C
(∥∥√ε

∥∥
L∞(Ω)

hr + hr+1
)
‖ω‖Hmax(2,r+1)Λk(Ω).

The rest of the proof targets the second term in (37). The stability estimate of
Lemma 6.1 yields

(38)

min(α0, 1)
(
|ω̄h − ωh|2ε + ‖ω̄h − ωh‖2

h,τ

)
≤

b (ω̄h − ω, ω̄h − ωh) + aτ (ω̄h − ω, ω̄h − ωh)

+ b (ω − ωh, ω̄h − ωh) + aτ (ω − ωh, ω̄h − ωh) .

We find for the consistency error b (ω − ωh, ηh) + aτ (ω − ωh, ηh), ηh ∈ Λk
h (T ) by

the definition of b (·, ·), aτ (·, ·), gτ (·, ·), - (·, ·) and δ ε d ω + Lβ ω = ϕ:

(39)

|b (ω − ωh, ηh) + aτ (ω − ωh, ηh)| =
∣∣∣aτ (ω, ηh) − gτ

(
ψ̃D, ηh

)
− (Lβ ω, ηh)Ω

∣∣∣

=

∣∣∣∣
1

τ
(ω, ηh)Ω −

1

τ

(
X∗

−τω, ηh

)
Ω0

−
1

τ

(
ψ̃D, ηh

)

Ωin

− (Lβ ω, ηh)Ω

∣∣∣∣

=

∣∣∣∣∣

(
1

τ

(
ω − X∗

−τω
)
− Lβ ω, ηh

)

Ω0

+

(
1

τ

(
ω − ψ̃D

)
− Lβ ω, ηh

)

Ωin

∣∣∣∣∣ .

A bound for the first term in the last inequality follows from (7) and Taylor expan-
sion

1

τ

(
ω − X∗

−τω
)
− Lβ ω =

1

τ

∫ τ

0
(−s)

∂2X∗
t ω

∂t2 |t=s

ds =
1

τ

∫ τ

0
(−s)X∗

s L2
β ωds,

and we find∣∣∣∣∣

(
1

τ

(
ω − X∗

−τω
)
− Lβ ω, ηh

)

Ω0

∣∣∣∣∣ ≤ Cτ ‖β‖W 2,∞(Ω) ‖ω‖H2Λk(Ω) ‖ηh‖L2Λk(Ω)

with C independent of h and τ . Recall that ψ̃D(x) =
(
X∗

−t(x)ψD

)

x
with X−t(x)(x) ∈

Γin and ψD = ω on Γin. For the second term Taylor expansion yields
∣∣∣∣∣

(
1

τ

(
ω − ψ̃D

)
− Lβ ω, ηh

)

Ωin

∣∣∣∣∣ ≤ C ‖Lβ ω‖L2Λk(Ωin) ‖ηh‖L2Λk(Ωin)

≤ Cτ
1
2 ‖β‖W 1,∞(Ω) ‖ω‖H1Λk(Ω) ‖ηh‖h,τ .

The last inequality follow from the definition (34) of the norm ‖·‖h,τ . This means
that we have the following bound for the consistency error:

(40) |b (ω − ωh, ω̄h − ωh) + aτ (ω − ωh, ω̄h − ωh)|

≤ Cτ
1
2 ‖β‖W 2,∞(Ω) ‖ω‖H2Λk(Ω) ‖ω̄h − ωh‖h,τ .

The continuity estimate in Lemma 6.2 and the approximation property of Λk
h (T )

give:

(41) aτ (ω̄h − ω, ω̄h − ωh) ≤ Cτ− 1
2 hr+1‖ω‖Hr+1Λk(Ω) ‖ω̄h − ωh‖h,τ .
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Since the bilinear form b (·, ·) arises from the non-symmetric interior penalty method
for differential k-forms, we can use inverse inequalities and multiplicative trace in-
equalities (Proposition A.3) to establish the following estimate completely analogu-
ous to the case k = 0 (see e.g. [33, Theorem 4.5] or [4, Section 5]).

(42) b (ω̄h − ω, ω̄h − ωh) ≤ C
∥∥√ε

∥∥
L∞(Ω)

hr‖ω‖Hr+1Λk(Ω) |ω̄h − ωh|ε .

Combining the estimates (40), (41) and (42) with (38) yields:

|‖ω̄h − ωh‖| ≤ C
(∥∥√ε

∥∥
L∞(Ω)

hr + hr+1
)
‖ω‖Hmax(2,r+1)Λk(Ω),

which, in turn proves together with (37) the assertion. !

The L2-estimate that follows from Theorem 6.3 is suboptimal for ε > 0. But if
we restrict ourselves to a certain class of conforming approximation spaces Λk

h (T ) ⊂
HΛk (Ω), we can improve this result. For instance we may choose Λk

h (T ) =
P−

r+1Λ
k(T ), where the spaces P−

r+1Λ
k(T ) ⊂ HΛk (Ω), 0 < k < n and r ≥ 0, are

defined in [6, section 5]. Then there exist projection operators Ik
h : Λk (Ω) $→ Λk

h (T )
such that

(43)

d Ik
h = Ik+1

h d ;
∥∥ω − Ik

hω
∥∥

L2Λk(Ω)
≤ Khr+1‖ω‖Hr+1Λk(Ω), ω ∈ Hr+1Λk (Ω) ;

∥∥d ω − d Ik
hω

∥∥
L2Λk(Ω)

≤ Khr+1‖dω‖Hr+1Λk(Ω), ω ∈ Hr+1Λk (Ω) ,

for K > 0 independent of ω and h (see [6, Theorem 5.9] and [18] for the case of es-
sential boundary conditions). In R3 the space P−

r+1Λ
k(T ) corresponds to Nédélec’s

first family [44] of H (curl, Ω) (k = 1) and H(div, Ω) (k = 2) conforming spaces.

Theorem 6.4. Let 0 < k < n, and for r ∈ N let ω ∈ Hmax(2,r+1)Λk (Ω) and ωh ∈
Λk

h (T ), with trωh|Γ0
= trψD|Γ0

, be the solutions to the advection-diffusion problem

(32) and its discrete variational formulation (33), respectively. If β ∈ W 2,∞ (Ω),
Assumption (5.1) holds and, additionally, the approximation space Λk

h (T ) has the
properties (43), for sufficiently small τ we get:

|‖ω − ωh‖| ≤ C
(
hr+1 + hr+1τ− 1

2 + τ
1
2

)
‖ω‖Hmax(2,r+1)Λk(Ω)

+ C
∥∥√ε

∥∥
L∞(Ω)

hr+1‖d ω‖Hr+1Λk(Ω),

with C > 0 independent of mesh size h := maxT (hT ), timestep size τ and diffusion
coefficient ε,

Proof. The proof follows the lines of the proof of Theorem 6.3 with ω̄h := Ik
hω,

where Ik
h is the projection operator onto P−

r+1Λ
k(T ) with the properties (43). Since

tr [ωh]f = 0 for ωh ∈ Λk
h (T ) ⊂ HΛk (Ω) the assertion follows from the approxima-

tion properties of Ik
h . !

7. Semi-Lagrangian Galerkin Scheme: Convergence

We would like to stress that the Semi-Lagrangian Galerkin schemes (26) resem-
bles an explicit Eulerian scheme, if ε = 0. In light of this similarity it is very
likely that this scheme converges at least for sufficiently small timesteps τ also for
lowest order spatial approximations. Moreover, we can even prove convergence for
sufficiently small timesteps under the assumption that aτ (·, ·) allows for a Galerkin
projector. Now we prove our main result, Theorem 5.2.
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Proof of Theorem 5.2. By Theorem 6.3 we have a Ritz-Galerkin projection Phω(tn) ∈
Λk

h (T ) with

b (Phω(tn), ηh)+ aτ (Phω(tn), ηh) = (ϕ(tn), ηh)+ - (ψD(tn), ηh)+ gτ

(
ψ̃n

D, ηh

)
,

for all ηh ∈ Λk
h (T ) that fulfills the estimate

|‖ω(tn) − Phω(tn)‖| ≤

C1

(∥∥√ε
∥∥

L∞(Ω)
hr + hr+1 + hr+1τ− 1

2 + τ
1
2

)
‖ω(tn)‖HmΛk(Ω)

for m = max(2, r + 1) and C1 > 0 independent of h. Let ω̄n
h := Phω(tn), then

b
(
ω̄n+1

h , ηh

)
+

1

τ

(
ω̄n+1

h − ω̄n
h , ηh

)
Ω

+ aτ (ω̄n
h , ηh) =

(
ϕ(tn+1), ηh

)
+ - (ψD(tn), ηh) + gτ

(
ψ̃n

D, ηh

)
+

(
Rn+1, ηh

)
Ω

+ b
(
ω̄n+1

h − ω̄n
h , ηh

)
,

with

(
Rn+1, ηh

)
Ω

=

(
1

τ
(ω̄n+1

h − ω̄n
h) − ∂tω(tn), ηh

)

Ω

+
(
ϕ(tn) − ϕ(tn+1), ηh

)
Ω

.

We define γn
h := ω̄n

h − ωn
h and find:

b
(
γn+1

h , ηh

)
+

1

τ

(
γn+1

h − γn
h , ηh

)
Ω

+aτ (γn
h , ηh) =

(
Rn+1, ηh

)
Ω

+b
(
ω̄n+1

h − ω̄n
h , ηh

)
,

for all ηh ∈ Λk
h (T ), or, equivalently

b
(
γn+1

h , ηh

)
+

1

τ

(
γn+1

h − X∗
−τγn

h , ηh

)
Ω

=
(
Rn+1, ηh

)
Ω

+ b
(
ω̄n+1

h − ω̄n
h , ηh

)
.

We take ηh = 2τγn+1
h , use 2p(p − q) = p2 + (p − q)2 − q2 and the definition of

the semi-norm |·|ε and boundedness of b (·, ·) in that semi-norm (see [4, Section 4]
or [3, Lemma 2.2]):

2τ
∣∣γn+1

h

∣∣2
ε
+

∥∥γn+1
h

∥∥2

L2Λk(Ω)
+

∥∥γn+1
h − X∗

−τγn
h

∥∥2

L2Λk(Ω)

≤
∥∥X∗

−τγn
h

∥∥2

L2Λk(Ω)
+ 2τ

∥∥Rn+1
∥∥

L2Λk(Ω)

∥∥γn+1
h

∥∥
L2Λk(Ω)

+ Cb2τ
∣∣ω̄n+1

h − ω̄n
h

∣∣
ε

∣∣γn+1
h

∣∣
ε

≤
∥∥X∗

−τγn
h

∥∥2

L2Λk(Ω)
+

τ

κ

∥∥Rn+1
∥∥2

L2Λk(Ω)
+ κτ

∥∥γn+1
h

∥∥2

L2Λk(Ω)

+ C2
b

τ

2

∣∣ω̄n+1
h − ω̄n

h

∣∣2
ε

+ 2τ
∣∣γn+1

h

∣∣2
ε
,

for κ > 0. By part a) of Proposition A.1, τ ≤ 1
κ
, we deduce

∥∥γn+1
h

∥∥2

L2Λk(Ω)
≤

1 + C2τ

1 − κτ
‖γn

h‖
2
L2Λk(Ω)

+
τ

(1 − κτ)κ

∥∥Rn+1
∥∥2

L2Λk(Ω)
+

τC2
b

2(1− κτ)

∣∣ω̄n+1
h − ω̄n

h

∣∣2
ε
.

From the definitions of Rn and ω̄n
h we infer

∥∥Rn+1
∥∥

L2Λk(Ω)
≤C3τ max

t∈[0,T ]

(∥∥∂2
t ω(t)

∥∥
L2Λk(Ω)

+ ‖∂tϕ(t)‖L2Λk(Ω)

)

+ C4

(∥∥√ε
∥∥

L∞(Ω)
hr + hr+1 + hr+1τ− 1

2 + τ
1
2

)
max

t∈[0,T ]
‖∂tω(t)‖HmΛk(Ω),
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and
∣∣ω̄n+1

h − ω̄n
h

∣∣
ε
≤

∣∣ω̄n+1
h − ω(tn+1)

∣∣
ε
+ |ω̄n

h − ω(tn)|ε +
∣∣ω(tn+1) − ω(tn)

∣∣
ε

≤ C5

(∥∥√ε
∥∥

L∞(Ω)
hr + hr+1 + hr+1τ− 1

2 + τ
1
2

)
max

t∈[0,T ]
‖ω(tn)‖HmΛk(Ω)

+ C6τ max
t∈[0,T ]

|∂tω(t)|ε ,

hence, the assertion (30) follows from triangle inequality, Theorem 6.3 and a discrete
Gronwall-like inequality: If a sequence of non-negative numbers satisfies

b0 = a0

bn+1 ≤ an+1 + (1 + Cτ)bn, C > 0

then we can infer

bN ≤
eCNτ − 1

Cτ
max

1≤i≤N
ai + eCNτb0.

We can apply this with bn = ‖γn
h‖L2Λk(Ω) and note nτ ≤ T . !

For the case of the conforming approximation spaces Λk
h (T ) = P−

r+1Λ
k(T ) we

obtain a similar result.

Theorem 7.1. Let 0 < k < n. Let ω, (ωn
h)N

n=0 be the solutions of (15) and (26),

respectively. If β ∈ W 2,∞ (Ω), Assumption (5.1) holds and additionally Λk
h (T ) =

P−
r+1Λ

k(T ) [6, section 5], we get for sufficiently small τ

max
0≤n≤N

‖ω(tn) − ωn
h‖L2Λk(Ω) ≤ C

(
‖ε‖L∞(Ω) hr+1 + hr+1 + hr+1τ− 1

2 + τ
1
2 + τ

)
,

where C depends on ‖∂tω(t)‖HmΛk(Ω), ‖∂t dω(t)‖HmΛk(Ω), ‖ω(t)‖HmΛk(Ω), ‖d ω(t)‖HmΛk(Ω),

‖ω(t)‖HmΛk(Ω),
∥∥∂2

t ω(t)
∥∥

L2Λk(Ω)
, ‖∂tϕ(t)‖L2Λk(Ω), |∂tω(t)|ε, for m = max(2, r+1),

but is independent of τ and h.

Proof. The proof is analogous to the proof of the previous theorem taking into
account the approximation result of Theorem 6.4. !

Remark 7.2. Theorems 5.2 and 7.1 give convergence for τ = O(h), lowest order
spatial approximation spaces and ε = 0. Assumption (5.1) can always be taken for
granted due to the rescaling argument of Remark 3.3. Proofs of convergence for the
semi-Lagrangian scheme for the rescaled variables follow the same lines as the proof
of Theorem 5.2, and, in particular, we can establish convergence for τ = O(h) and
lowest order approximation spaces.

Remark 7.3. The assumption that
(
X∗

−τωh, ηh

)
Ω0

, ωh, ηh ∈ Λk
h (T ), can be com-

puted exactly is not crucial in our analysis. As in the standard, but non-optimal,
analysis of fully discrete semi-Lagrangian methods [29] we can replace the exact
flow Xτ with a consistent approximation X̄τ , such that
∥∥Xτ − X̄τ

∥∥
L∞(Ω)

≤ O(hl1+1τ + τ l2) and
∥∥Xτ − X̄τ

∥∥
W 1,∞(Ω)

≤ O(hl1τ + τ l2).

for l1, l2 ≥ 1 and h → 0 and τ → 0. In this case we use X̄τ instead of Xτ

to define the bilinear form aτ (·, ·) in (23) and the norm |·|h,τ in (34). Then the
analysis for the convergence estimate for the stationary problem need to be modified.
The bound (39) of the consistency error (38) contains then the additional term(
(X∗

−τ − X̄∗
−τ )ω, ηh

)
Ω
. This additional term can be bounded by

(
(X∗

−τ − X̄∗
−τ )ω, ηh

)
Ω
≤Cl(h

l1τ + τ l2 )‖ω‖H1Λk(Ω) ‖ηh‖L2Λk(Ω)
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since a similar argument as in the proof of Proposition A.1 (see also [29, Lemma
5.1]) gives:

∥∥X∗
−τω − X̄∗

−τω
∥∥2

L2Λk(Ω)
≤

C
∣∣X−τ − X̄−τ

∣∣2
W 1,∞(Ω)

‖ω‖2
L2Λk(Ω) + C

∥∥X−τ − X̄−τ

∥∥2

L∞(Ω)
|ω|2H1Λk(Ω).

Details on the construction of such approximate flow maps can be found in [29, Sec-
tion 5]. The construction relies on the nodal basis functions spanning the space of
continuous piecewise polynomial Lagrangian finite element functions and approx-
imations of the trajectories of the degrees of freedoms corresponding to the basis
functions.

Remark 7.4. For non-vanishing diffusion coefficient ε our estimates (30) and (31)
are sub-optimal when compared to the theoretical results in [19, Theorem 3.3], [61]
and [63, Theorem 4.1]. And even though these estimates assume the exact cal-
culation of the integrals of type

∫
Ω u(X−τ (x))v(x)dx, there are numerical experi-

ments with fully discrete semi-Lagrangian Galerkin schemes, see e.g. [61, Section
9.1], [64, Section 6.1] or [63, Section 5.1], that suggest that these results hold also
for the perturbed methods. Nevertheless, for fully discrete semi-Lagrangian methods
a rigorous proof of an estimate of order O(τ + h2) in L2 remains elusive.

Though in the case of vanishing diffusion coefficient ε many numerical experi-
ments (see [29, Sections 6.1, 6.3], [64, Section 6.2]) hint at a higher order of con-
vergence than our estimates (30) and (31), we believe that at least in this case our
results are sharp on simplicial meshes. Probably the superconvergence behaviour
observed in these experiments is closely related to superconvergence of stabilized
Galerkin methods for scalar advection. Peterson [47] and Zhou [66] showed that
the usual error estimates of order O(hr+ 1

2 ) in L2 for the stabilized discontinuous
Galerkin method [15,36,51] and the SUPG/SDFEM method [22,34,43] are sharp.
This result carries over to Eulerian discretizations [31, Section 5.1], that can be
seen as perturbations of our semi-Lagrangian Galerkin schemes (see [31, Section
4.2] or [28, Lemma 4.2]).

Appendix A. Auxiliary Estimates

We exploit the close relationship of the operator Lβ +Lβ and the bilinear form(
X∗

−τω, X∗
−τη

)
Xτ (Ω)

. In Section 3 we use the result of this section for Lβ +Lβ to

prove well-posedness of (15). Also the analysis of the auxiliary method of character-
istics introduced in Section 6 is based on the following results for

(
X∗

−τω, X∗
−τη

)
Xτ (Ω)

.

Proposition A.1. Let β ∈ W 1,∞ (Ω) and ω, η ∈ L2Λk (Ω), then

a) we have the estimate

(44)
∣∣∣
(
X∗

−τω, X∗
−τη

)
Xτ (Ω)

∣∣∣ ≤ C(DX−τ ) ‖ω‖L2Λk(Ω) ‖η‖L2Λk(Ω) ,

with C(DX−τ ) = 1 + τC(Dβ) for τ sufficiently small;
b) the operator Lβ +Lβ is symmetric:

(45) (ω, (Lβ +Lβ)η)Ω = ((Lβ +Lβ)ω, η)Ω , ω, η ∈ L2Λk (Ω) .

and we have the estimate

(46)
∣∣ (ω, (Lβ +Lβ)η)Ω

∣∣ ≤ C |β|W 1,∞(Ω) ‖ω‖L2Λk(Ω) ‖η‖L2Λk(Ω) .

If β ∈ W 2,∞ (Ω) and ω, η ∈ L2Λk (Ω)
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c) we have the expansion

(47)
(
X∗

−τω, X∗
−τη

)
Xτ (Ω)

= (ω, η)Ω − τ (ω, (Lβ +Lβ)η)Ω + R(β, τ) (ω, η)Ω ,

with ‖R(β, τ)‖ ≤ C(β)τ2 independent of ω and η.

Proof. 1.) We first examine the special case of Ω beeing a domain in R3:
The results follow directly from the corresponding vector proxy representations
from Table 2: While the assertion b) is obvious in R3, we recall that

(
X∗

−τω, X∗
−τη

)
Xτ (Ω)

=

∫

Ω
ω ∧ X∗

τ & X∗
−τη

and hence, we find for differential forms ω in R3 with vector correspondences u or
u:

k = 0 : (X∗
τ & X∗

−τω)(x) ∼ det(DXτ (x))u(x),

k = 1 : (X∗
τ & X∗

−τω)(x) ∼ det(DXτ (x))DX−1
τ (x)DX−T

τ (x)u(x),

k = 2 : (X∗
τ & X∗

−τω)(x) ∼ det(DXτ (x))−1DXT
τ (x)DXτ (x)u(x),

k = 3 : (X∗
τ & X∗

−τω)(x) ∼ det(DXτ (x))−1u(x),

which yields the assertion a). Taylor expansion of ω∧X∗
τ &X∗

−τω in τ finally proves
assertion c).

2.) General case (see also [29, Lemma 4.1]:
The proof for the general case is very similar, but involves certain technical nota-
tions from tensor calculus, if one aims at explicit formulas for the operator Lβ +Lβ

and the constants. By density of Λk (Ω) in L2Λk (Ω) it is enough to prove the
assertions for smooth η, ω ∈ Λk (Ω).
a) By multi-linearity we have for orthonormal vector fields e1, . . . en and σ ∈ S(j, n),
γ ∈ Λj (Ω) and x ∈ Ω [56, Page 610]:

(48) (X∗
τ γ)x(eσ(1), . . . , eσ(j))

=
∑

σ′∈S(j,n)

det
(
(DXτ (x))σ′,σ

)
γXτ (x)(eσ′(1), . . . , eσ′(j)),

where the quantities det
(
(DXτ (x))σ′,σ

)
are known as the j-minors of the differen-

tial DXτ (x) with respect to e1, . . . , en, i.e. the determinants of those submatrices
of DXτ (x), that contain the rows σ′ and columns σ. By the definition of the inner
product of differential forms we have

(
X∗

−τω, X∗
−τη

)
Xτ (Ω)

=

∫

Xτ (Ω)
X∗

−τω ∧ &X∗
−τη =

∫

Xτ (Ω)

(
X∗

−τω, X∗
−τη

)
µ.

Hence, by the definition of the inner product of alternating forms and (48), we find

(49)
(
X∗

−τω, X∗
−τη

)
Xτ (Ω)

= (det(DXτ )Mk(DXτ )ω,Mk(DXτ )η)Ω

with

(Mj(DXτ )γ)x(eσ(1), . . . , eσ(j)) :=
∑

σ′∈S(j,n)

det
(
(DXτ (x))σ′,σ

)
γx(eσ′(1), . . . , eσ′(j)).

This proves the assertion.
b.) We consider η̄ and ω̄ to be extensions of η and ω to Λk (Rn) and assume
β ∈ C∞(Ω). First, Cartan’s formula (7) and compatibility of exterior product and
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pullback yield:

η̄ ∧ &(Lβ +Lβ)ω̄ = lim
τ→0

1

τ
(η̄ ∧ (&X∗

τ ω̄ − &ω̄) − η̄ ∧ (X∗
τ & ω̄ − &ω̄))

= lim
τ→0

1

τ
η̄ ∧ (&X∗

τ ω̄ − X∗
τ & ω̄)

= lim
τ→0

1

τ

(
η̄ ∧ &X∗

τ ω̄ − X∗
τ (X∗

−τ η̄ ∧ &ω̄)
)

= lim
τ→0

1

τ

(
(η̄, X∗

τ ω̄)µ − X∗
τ

(
X∗

−τ η̄, ω̄
)
µ
)
.

From the Taylor expansion DXτ (x) = id+τDβ(x)+O(τ2) of DXτ (x) around τ = 0
and the Taylor expansion of det(), det(A + εB) = det(A) + ε tr(Adj(A)B) + O(ε2)
and (48) we infer

(50)

(X∗
τ γ)x(eσ(1), . . . , eσ(j)) =

∑

σ′∈S(j,n)

det((In)σ′,σ)γXτ (x)(eσ′(1), . . . , eσ′(j)),

+ τ
∑

σ′∈S(j,n)

tr (Adj((In)σ′,σ)(Dβx)σ′,σ) γXτ (x)(eσ′(1), . . . , eσ′(j)) + O(τ2),

with Adj and tr the adjugate and trace operator for matrices, and the unit matrix
In ∈ Rn×n. Introducing the abbreviation

(51)
(
M′

j(Xτ )γ
)
x
(eσ(1), . . . , eσ(j)) =

∑

σ′

tr (Adj((In)σ′,σ)(Dβx)σ′,σ) γXτ (x)(eσ′(1), . . . , eσ′(j)),

we find:

(52)

(η̄ ∧ &(Lβ +Lβ)ω̄)x

= lim
τ→0

( (η̄x, (M′
k(Xτ )ω̄)x)µ + X∗

τ ((M′
k(X−τ )η̄)x, ω̄x)µ)

+ lim
τ→0

1

τ

( (
η̄x, ω̄Xτ (x)

)
µ − X∗

τ

(
η̄X−τ (x), ω̄x

)
µ
)

= (η̄x, (M′
k(X0)ω̄)x)µ + ((M′

k(X0)η̄)x, ω̄x)µ

+ lim
τ→0

1

τ

( (
η̄x, ω̄Xτ (x)

)
(µ − X∗

τ µ)
)

= (η̄x, (M′
k(X0)ω̄)x)µ + ((M′

k(X0)η̄)x, ω̄x)µ − (η̄x, ω̄x)M′
n(X0)µ.

This result holds for any extension of ω and η and the assertion follows by density
of Λk (Ω) in L2Λk (Ω), since M′

k(·) depends only on the Jacobian of β. Thus we
see that β ∈ W 1,∞ (Ω) is the minimal smoothness assumption for β.
c) First, we see that:

∂

∂τ
(X∗

τ ω, X∗
τ η)X−τ (Ω)|τ=0

= lim
τ→0

1

τ

(
(ω, η)Ω −

(
X∗

−τω, X∗
−τη

)
Xτ (Ω)

)

= lim
τ→0

1

τ

(
(ω, η)Ω −

(
X∗

−τω, η
)
Xτ (Ω)

)

+ lim
τ→0

1

τ

( (
X∗

−τω, η
)

X∗

τ (Ω)
−

(
X∗

−τω, X∗
−τη

)
Xτ (Ω)

)

= lim
τ→0

1

τ

∫

Ω
ω ∧ (&η − X∗

τ & η)

+ lim
τ→0

1

τ

∫

Ω
ω ∧ X∗

τ &
(
η − X∗

−τη
)

= (ω,Lβ η)Ω + (ω, Lβ η)Ω .

Then the assertion follows by the Taylor expansion of (49). !
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While the previous result is important in the treatment of the advection terms,
the treatment of the diffusion requires certain multiplicative trace inequalities.

Recall that (12) implies an integration by parts formula for ω ∈ Λk (Ω) and
η ∈ Λk+1 (Ω) on a bounded domain Ω:

∫

∂Ω
trω ∧ tr &η = (d ω, η)Ω − (ω, d η)Ω .

Observe that the right hand side is not a semidefinite bilinear form. Nevertheless
we have a Cauchy-Schwarz type inequality:

Proposition A.2. Let Ω be a bounded domain with outward normal nΩ. Then, we
define a semi-norm for ω ∈ Λk (Ω) by

(53) |ω|2∂Ω,tr :=

∫

∂Ω
tr inΩ(ω ∧ &ω),

and have

(54)

∣∣∣∣

∫

∂Ω
trω ∧ tr &η

∣∣∣∣ ≤ |ω|∂Ω,tr |η|∂Ω,tr , ω ∈ Λk (Ω) , η ∈ Λk+1 (Ω)

for ω ∈ Λk (Ω) and η ∈ Λk+1 (Ω).

Proof. According to [57, proposition 1.2.6] we have:

tr ω ∧ tr &η = (ω, inΩ η) inΩ µ,

where µ is the volume form of Ω. Hence, the assertion follows from the standard
Cauchy-Schwarz inequality for the scalar product of alternating k-forms and

(ω, ω) inΩ µ = inΩ(ω, ω)µ = inΩ(ω ∧ &ω),

because, certainly, (inΩ η, inΩ η) ≤ (ω, ω). !

The next proposition states a multiplicative trace inequality (cf. [1, Theorem
3.10]) for the semi-norm |·|∂Ω,tr for a convex polygonal domain Ω.

Proposition A.3. Assume that Ω is a convex polygonal domain. Let hΩ be the
radius of the smallest n-dimensional ball that contains Ω and ρΩ the radius of the
largest n-dimensional ball that is contained in Ω. Then we have:

(55) |ω|2∂Ω,tr ≤ 2
hΩ

ρΩ
‖ω‖L2Λk(Ω) |ω|H1Λk(Ω) +

n

ρΩ
‖ω‖2

L2Λk(Ω) .

Proof. Without loss of generality, we suppose that the center x̄ of the largest in-
scribed ball is the origin of the coordinate system. We start from the following
relation: ∫

∂Ω
tr ix(ω ∧ &ω) =

∫

Ω
d ix(ω ∧ &ω).

On the one hand we have the lower bound:

(56)

∫

∂Ω
tr ix(ω ∧ &ω) ≥ min

x∈∂Ω
(x · nΩ(x))

∫

∂Ω
tr inΩ(ω ∧ &ω) = ρΩ |ω|2∂Ω,tr ,

because
∫

∂Ω tr ix µ =
∫

∂Ω x · nΩ inΩ µ. Moreover

(57)

∫

Ω
d ix(ω ∧ &ω) =

∫

Ω
Lx(ω ∧ &ω) =

∫

Ω
(Lx +Lx)(ω ∧ &ω) −

∫

Ω
j
x

δ(ω ∧ &ω).

With the Cauchy inequality the second term on the right hand side is estimated as

(58)

∣∣∣∣

∫

Ω
j
x

δ(ω ∧ &ω)

∣∣∣∣ ≤ 2 sup
x∈Ω

|x| ‖ω‖L2Λk(Ω) |ω|H1Λk(Ω).

Since further (Lx +Lx)µ = (divx)µ (see (52) and (51)), the lower bound (56)
together with (57) and (58) proves assertion (55). !
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