
!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
! Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Swiss Federal Institute of Technology Zurich

Static load balancing for multi-level
Monte Carlo finite volume solvers

J. Šukys, S. Mishra and Ch. Schwab

Research Report No. 2011-32
May 2011

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

Static load balancing for multi-level Monte Carlo
finite volume solvers

Jonas Šukys, Siddhartha Mishra, and Christoph Schwab

ETH Zürich, Switzerland,
{jonas.sukys,smishra,schwab}@sam.math.ethz.ch.

Abstract. The Multi-Level Monte Carlo finite volumes (MLMC-FVM)
algorithm was shown to be a robust and fast solver for uncertainty quan-
tification in the solutions of multi-dimensional systems of stochastic con-
servation laws. A novel load balancing procedure is used to ensure scal-
ability of the MLMC algorithm on massively parallel hardware. We de-
scribe this procedure together with other arising challenges in great de-
tail. Finally, numerical experiments in multi-dimensions showing strong
and weak scaling of our implementation are presented.

Keywords: uncertainty quantification, conservation laws, multi-level
Monte Carlo, finite volumes, static load balancing, linear scaling.

Acknowledgments. This work is performed under ETH interdisciplinary
research grant CH1-03 10-1. CS acknowledges partial support by the Eu-
ropean Research Council under grant ERC AdG 247277 - STAHDPDE.
JŠ is grateful to Stefan Pauli and Peter Arbenz for their contributions.

1 Introduction

A number of problems in physics and engineering are modeled in terms of systems
of conservation laws:

{
Ut + div(F(U)) = S(x,U),

U(x, 0) = U0(x),
∀(x, t) ∈ Rd × R+. (1)

Here, U : Rd → Rm denotes the vector of conserved variables, F : Rm × Rm →
Rm×d is the collection of directional flux vectors and S : Rd × Rm → Rm is the
source term. The partial differential equation is augmented with initial data U0.

Examples for conservation laws include the shallow water equations of oceanog-
raphy, the Euler equations of gas dynamics, the Magnetohydrodynamics (MHD)
equations of plasma physics and the equations of non-linear elasticity.

As the equations are non-linear, analytical solution formulas are only avail-
able in very special situations. Consequently, numerical schemes such as Finite
Volume methods [6] are required for the study of systems of conservation laws.

Existing numerical methods for approximating (1) require the initial data
U0 and source S as the input. However, in most practical situations, it is not

2

possible to measure this input precisely. This uncertainty in the inputs for (1)
propagates to the solution, leading to the stochastic system of conservation laws:
{
U(x, t,ω)t + div(F(U(x, t,ω))) = S(x,ω),

U(x, 0,ω) = U0(x,ω),
x ∈ Rd, t > 0, ∀ω ∈ Ω. (2)

where (Ω,F ,P) is a complete probability space and initial data U0 with the
source term S are random fields [1,2]. The solution is also realized as a random
field; its statistical moments like the expectation and variance are the quantities
of interest. An estimate of expectation can be obtained by the so-called Monte
Carlo finite volume method (MC-FVM) consisting of the following three steps:

1. Sample: We draw M independent identically distributed (i.i.d.) initial data
and source samples {Ui

0,S
i
0} with i = 1, 2, . . . ,M from the random fields

{U0,S0} and approximate these by piecewise constant cell averages.
2. Solve: For each realization {Ui

0,S
i
0}, the underlying conservation law (1) is

solved numerically by the finite volume method [6,3,5]. We denote the FVM
solutions by Ui,n

T , i.e. by cell averages {Ui,n
K : K ∈ T } at the time level tn.

3. Estimate Statistics: We estimate the expectation of the random solution
field with the sample mean (ensemble average) of the approximate solution:

EM [Un
T] :=

1

M

M∑

i=1

Ui,n
T , M = O(∆x− s

2). (3)

The error of the MC-FVM asymptotically scales [2] as (Work)
−s

(d+1+2s) , making
the MC-FVM method computationally infeasible when high accuracy is needed.

The multi-level Monte Carlo finite volume method (MLMC-FVM) was re-
cently proposed in [2,1]. The key idea behind MLMC-FVM is to simultaneously
draw MC samples on a hierarchy of nested grids. There are four main steps:

1. Nested meshes: Consider nested triangulations {T!}∞!=0 of the spatial do-
main with corresponding mesh widths ∆x! that satisfy:

∆x! = ∆x(T!) = sup{diam(K) : K ∈ T!} = O(2−!∆x0), $ ∈ N0, (4)

where ∆x0 - mesh width of the coarsest resolution at the lowest level $ = 0.
2. Sample: For each level of resolution $ ∈ N0, we draw M! independent iden-

tically distributed (i.i.d) samples {Ui
0,!,S

i
0,!} with i = 1, 2, · · · ,M! from the

random fields {U0,S0} and approximate these by cell averages.
3. Solve: For each resolution level $ and each realization {Ui

0,!,S
i
0,!}, the un-

derlying balance law (1) is solved by the finite volume method [6,3,5] with
mesh width ∆x!; denote solutions by Ui,n

T!
at the time tn and mesh level $.

4. Estimate solution statistics: Fix some positive integer L < ∞ corre-
sponding to the highest level. We estimate the expectation of the random
solution field with the following estimator:

EL[U(·, tn)] :=
L∑

!=0

EM! [U
n
T!

−Un
T!−1

], (5)

3

with EM! being the MC estimator defined in (3) for the level $. Higher
statistical moments can be approximated analogously (see, e.g., [2]).

Authors in [2] provide error vs. computational work estimate leading to the
following required number of samples on each discretization level $ to equilibrate
the statistical and spatio-temporal discretization errors in (5):

M! = O(22(L−!)s). (6)

Notice that (6) implies that the largest number of MC samples is required on
the coarsest mesh level $ = 0, whereas only a small fixed number of MC samples
are needed on the finest discretization levels.

The corresponding error vs. work estimate for MLMC-FVM is given by [1,2],

error !





(Work)−s/(d+1) if s < (d+ 1)/2,
(

Work
log(Work)

)−s/(d+1)
if s = (d+ 1)/2.

(7)

The above estimates show that the MLMC-FVM is superior to the MC-FVM.
Furthermore, if convergence rate s of the FVM solver satisfies s < (d+1)/2 then
this estimate is exactly of the same order as the estimate for the deterministic
finite volume scheme. For the same error, the MLMC-FVM was shown to be
considerably faster than the MC-FVM [1,2]; in particular, at the relative error
level of 1%, the speed up reached approximately two orders of magnitude [1,2].

2 Highly scalable implementation of MLMC-FVM

MLMC-FVM is non-intrusive as any standard FVM code can be used in step
3. Furthermore, MLMC-FVM is amenable to efficient parallelization as data
from different grid resolutions and samples only interacts in step 4. Select a
nested hierarchy of triangulations in step 1 is straightforward for any parallel
architecture. In step 2, we draw samples for {U0,S0} with a given probability
distribution. Here, a robust random number generator (RNG) is needed.

2.1 Robust pseudo random number generation

Random number generation becomes a very sensitive part of Monte Carlo type
algorithms on massively parallel architectures. Inconsistent seeding and insuf-
ficient period length of the RNG might cause correlations in presumably i.i.d.
draws which might potentially lead to biased solutions such as in Figure 5 of [1].

Such spurious correlations are due to two factors: firstly, large number of MC
samples requires longer period and hence larger buffer of the RNG. Secondly,
the seeding of the buffer for each core must preserve statistical independence.

For the numerical simulations reported below, we used the WELL-series [9]
of pseudo random number generators, which were designed with particular at-
tention towards large periods and good equidistribution. In particular, the RNG

4

WELL512a was used; we found WELL512a to have a sufficiently large period 2512−1
and to be reasonably efficient (33 CPU sec for 109 draws). We emphasize that
there are plenty of alternatives to WELL512a with even longer periods (which,
however, use more memory). To name a few: WELL1024a with period 21024 − 1,
takes 34 sec and WELLRNG44497 with period 244497−1 which takes 41 sec for 109

draws. The strategy to deal with seeding issues is described in subsection 2.4.
In step 3 of the MLMC-FVM algorithm, we solve the conservation law (2) for

each draw of the initial data. This is performed with ALSVID. A massively parallel
version of ALSVID has already been developed for deterministic problems; refer
to [7] for further details. The parallelization paradigm for ALSVID is based on
domain decomposition using MPI standard [12].

2.2 A priori estimates for computational work

The key issue in the parallel implementation of the solve steps (in the Step 3 of
MLMC-FVM algorithm) is to distribute computational work evenly among the
cores. The FVM algorithm consists of computing fluxes across all cell interfaces
and then updating cell averages via the explicit stable time stepping routine [6].
The computational complexity of numerical flux approximations is given by an
explicit algorithm and is of order equal to the number of cells in the mesh T ,

WorkstepT = Workstep(∆x) = O(N) = O(∆x−d), (8)

where N = #T denotes the number of cells and ∆x denotes the mesh width of
triangulation T . To ensure stability of the FVM scheme, a CFL condition [6] is
imposed on the time step size ∆t := tn+1 − tn, which forces

∆t = O(∆x). (9)

Hence, the computational work WorkdetT for one complete deterministic solve
using the FVM method on the triangulation T with mesh width ∆x is given by
multiplying the work for one step (8) by the total number of steps O(∆t−1),

WorkdetT = WorkstepT · O(∆t)
(9)
= O(∆x−d) · O(∆x−1) = O(∆x−(d+1)). (10)

In most explicit FVM schemes (e.g. Rusanov with (W)ENO and SSP-RK2, see
[6]), all lower order terms O(∆x−d) in (10) are negligible, even when a very
coarse mesh is used. Hence, we assume that (10) holds in a stricter sense,

WorkdetT = K∆x−(d+1), (11)

where constant K depends on the FVM that is used and on the time horizon
t > 0, but does not depend on mesh width ∆x. Finally, MC algorithm (3)
combines multiple deterministic solves for a sequence of sample draws ω ∈ Ω. By
WorkM (∆x) we denote the computational work needed for a MC-FVM algorithm
performing M solves, each of complexity as in (11). Then,

WorkM (∆x) = M ·Workdet(∆x) = M ·K∆x−(d+1). (12)

Next, we describe our load balancing strategy needed for the Step 3.

5

2.3 Static load balancing

In what follows, we assume a homogeneous computing environmentmeaning that
all cores are assumed to have identical CPUs and RAM per node, and equal band-
width and latency to all other cores. There are 3 levels of parallelization: across
mesh resolution levels, across MC samples and inside the deterministic solver
using domain decomposition (see example in Figure 1). Domain decomposition
is used only in the few levels with the finest mesh resolution. On these levels,
the number of MC samples is small. However, these levels require most of the
computational effort (unless s = (d+ 1)/2 in (7) holds).

For the finest level $ = L we fix the number of cores:

CL︸︷︷︸
of cores

= DL︸︷︷︸
of subdomains

× PL︸︷︷︸
of groups for MC samples

(13)

where for every level 0 ≤ $ ≤ L, D! denotes the number of subdomains and
P! denotes the number of “samplers” - groups of cores, where every such group
computes some portion of required M! Monte Carlo samples at level $. We
assume that each subdomain is computed on exactly one core and denote the
total number of cores at level 0 ≤ $ ≤ L by C!, i.e.

C! = D!P!, ∀$ ∈ {0, . . . , L}. (14)

Since total computational work for EM! [U
n
T!

−Un
T!−1

] is then given by (12), i.e.

Work! := WorkM!(∆x!) +WorkM!(∆x!−1), (15)

the ratio of computational work for the remaining levels $ ∈ {L − 1, . . . , 1} is
given recursively by inserting (6) into a priori work estimates (12):

Work!
Work!−1

=
ML22(L−!)sK

(
∆x−(d+1)

! +∆x−(d+1)
!−1

)

ML22(L−(!−1))sK
(
∆x−(d+1)

!−1 +∆x−(d+1)
!−2

)

=
2−2!s

2−2(!+1)s

∆x−(d+1)
!

(
1 + 2−(d+1)

)

∆x−(d+1)
!

(
2−(d+1) + 2−2(d+1)

) = 2d+1−2s.

(16)

For level $ = 0, the term Un
T−1

in EM0 [U
n
T0

−Un
T−1

] is known (≡ 0), hence (16)

provides a lower bound rather than an equality, i.e. Work0 ≤ Work1/(2d+1−2s).
Consequently, the positive integer parameters DL and PL ≤ ML recursively

determine the number of cores needed for each level $ <L via the relation

C! =

⌈
C!+1

2d+1−2s

⌉
, ∀$ < L. (17)

Notice, that the denominator 2d+1−2s in (17) is a positive integer (a power of 2)
provided s ∈ N/2 and s ≤ (d+ 1)/2 (which is not an additional constraint as it
is also present in (7)). However, when s < (d+ 1)/2, we have:

2d+1−2s ≥ 2, (18)

6

which (when L is large) leads to inefficient load distribution for levels $ ≤ $∗,
where each successive level needs needs less than one core:

$∗ := min{0 ≤ $ ≤ L : C!+1 < 2d+1−2s}. (19)

We investigate the amount of total computational work (Work{0,...,!∗}) required
for such “inefficient” levels $ ∈ {0, . . . , $∗}:

Work{0,...,!∗} : =
!∗∑

!=0

Work!
(16)
=

!∗∑

!=0

Work!∗

2(d+1−2s)(!∗−!)
≤

!∗∑

!=−∞

Work!∗

2(d+1−2s)(!∗−!)

=
Work!∗

1− (2d+1−2s)−1

(18)
≤ Work!∗

1− 1
2

= 2 ·Work!∗ .

(20)

For the sake of simplicity, assume that PL and DL are nonnegative integer pow-
ers of 2. Under this assumption, definition (19) of $∗ together with recurrence
relation (17) without rounding up (*·+) implies that C!∗ ≤ 1/2. Hence, total
work estimate (20) for all levels $ ∈ {0, . . . , $∗} translates into an estimate for
sufficient number of cores, which, instead of $∗ + 1, turns out to be only 1:

Work{0,...,!∗} ≤ 2 ·Work!∗ −→ C{0,...,!∗} ≤ 2 · 1
2
= 1. (21)

The implementation of (21) (i.e. multiple levels per 1 core) is essential to
obtain efficient and highly scalable parallelization of MLMC-FVMwhen s < d+1

2 .
The example of static load distribution for MLMC-FVM algorithm using all

three parallelization levels is given in Figure 1, where the parameters are set to:

L = 5, ML = 4, d = 1, s =
1

2
, DL = 2, PL = 4.

!"#"!$%$& !"#"!$%$' !"#"!$%$(

!"#$%

%&'()$#%

*+",+%&'()$%

-"'&./
-$!"'("%.0."/
12345678

-.%0#.9:0."/
",+%&'()$%

; ; ; ; < < < < = =

>

)

?<

*$+$,

@A+B+;<=

':)0.()$+)$C$)%
($#+!"#$

Fig. 1. Example for the static load distribution structure

Next, we describe our implementation of this load balancing using C++ and MPI.

7

2.4 Implementation using C++ and MPI

In what follows, we assume that each MPI process is running on its own core.
Simulation is divided into 3 main phases - initialization, simulation and data
collection; key concepts for the implementation of the static load balancing al-
gorithm for each phase is described below.

Phase 1 - Initialization:

– MPI groups and communicators. By default, message passing in MPI is
done via the main communicator MPI COMM WORLD which connects all pro-
cesses. Each process has a prescribed unique non-negative integer called rank.
The process with the rank 0 is called root. Apart from MPI COMM WORLD, we
use MPI Group range incl() and MPI Comm create() to create sub-groups
and corresponding inter-communicators, this way empowering message pass-
ing within particular subgroups of processes. Such communicators ease the
use of collective reduction operations within some particular subgroup of
processes. We implemented 3 types of communicators (see Figure 2):
1. Domain communicators connect processes within each sampler; these

precesses are used for domain decomposition of one physical mesh.
2. Sampler communicators connect processes that work on the MC sam-

ples at the same mesh level.
3. Level communicators connect only the processes (across all levels) that

are roots of both domain and sampler communicators,
where, analogously to MPI COMM WORLD, every process has a unique rank in
each of the communicators 1-3; processes with rank 0 in domain communi-
cators are called domain roots, in sampler communicators - sampler roots,
and in level communicators - level roots. MPI COMM WORLD is used only in
MPI Init(), MPI Finalize() and MPI Wtime(). Figure 2 depicts all non-
trivial communicators and roots for the example setup as in Figure 1.

!"#$%&

'$#()*+

)*,*)

-"##.&%/$0"+'1+""0'2

Fig. 2. Structure and root processes of the communicators for setup as in Figure 1

8

– Seeding RNG. To deal with the seeding issues mentioned in subsection 2.1,
we injectively (i.e. one-to-one) map the unique rank (in MPI COMM WORLD) of
each process that is root in both domain and sampler communicators to some
corresponding element in the hardcoded array of prime numbers (seeds).
Then these processes generate random vectors of real numbers needed to
compute MC samples {Ui

0,!,S
i
0,!} for the entire level $. Afterwards, sam-

ples are scattered evenly using MPI Scatter() via the sampler communica-
tor; MPI IN PLACE is used to remove unnecessary memory overhead. Finally,
samples are broadcast using MPI Bcast() via the domain communicator.

Phase 2 - Simulation:

– FVM solves for 2 mesh levels. FVM solves of each sample are performed
for EM! [U

n
T!
] and for EM! [U

n
T!−1

], and then combined into EM! [U
n
T!
−Un

T!−1
].

– Inter-domain communication. Cell values near interfaces of adjacent sub-
domains are exchanged asynchronously with MPI Isend() and MPI Recv().

Phase 3 - Data collection and output:

– MC estimator. For each level, statistical estimates are collectively reduced
with MPI Reduce() into sampler roots using sampler communicators; then
MC estimators (3) for mean and variance (see subsection 2.5) are obtained.

– MLMC estimator. MC estimators from different levels are finally com-
bined via level communicators to level roots to obtain MLMC estimator (5).

– Parallel data output. Each process that is both sampler root and level root
writes out final result. Hence, the number of parallel output files is equal to
the number of subdomains on the finest mesh level.

This concludes the discussion of static load balancing and of step 3 of MLMC-
FVM. In step 4, the results are combined to compute sample mean and variance.

2.5 Variance computation for parallel runs

A numerically stable serial variance computation algorithm (so-called “online”)
is given as follows [10]: set ū0 = 0 and Φ0 = 0; then proceed recursively,

ūi =
i∑

j=1

uj/i, Φi :=
i∑

j=1

(uj − ūi)2 = Φi−1 + (ui − ūi)(ui − ūi−1). (22)

Then, the unbiased mean and variance estimates are given by:

EM [u] = ūM , VarM [u] = ΦM/(M − 1). (23)

For parallel architectures, assume we have 2 cores A and B each computing
MA and MB (M = MA+MB) number of samples respectively. Then an unbiased
estimate for mean and variance can be obtained by [11]

EM [u] =
MAEMA [u] +MBEMB [u]

M
, VarM [u] =

ΦM

M − 1
, (24)

where: ΦM = ΦMA + ΦMB + δ2 · MA ·MB

M
, δ = EMB [u]− EMA [u]. (25)

Then, for any finite number of cores formula (24) is applied recursively.

9

3 Efficiency and linear scaling in numerical simulations

The static load balancing algorithm was tested on a series of standard bench-
marks for hyperbolic solvers. For detailed description of the setup, refer to [1] for
Euler equations of gas dynamics, [1,3] for Magnetohydrodynamics (MHD) equa-
tions of plasma physics, and [4] for shallow water equations with randomly vary-
ing bottom topography. The runtime of all aforementioned simulations was mea-
sured by the so-called wall-time, accessible as MPI Wtime() routine in MPI2.0.
We define parallel efficiency as a fraction of pure simulation time over total time,

efficiency :=
(cumulative wall-time)− (cumulative wall-time of MPI calls)

cumulative wall-time
.

(26)
In Figure 3 we verify strong scaling (fixed discretization and sampling param-

eters while increasing #cores) and in Figure 4 we verify weak scaling (problem
size is equivalent to #cores) of our implementation in 1d. In 2d simulations, we
maintained such scaling upto 1023 cores at 97% efficiency. We believe that our
parallelization algorithm will scale linearly for a much larger number of cores.

Fig. 3. Strong scaling. Domain decomposition method (DDM) is enabled from 101.5

cores onwards (for MLMC only); its scalability is inferior to pure (ML)MC paralleliza-
tion due to additional networking between sub-domain boundaries.

4 Conclusion

MLMC-FVM algorithm is superior to standard MC algorithms for uncertainty
quantification in hyperbolic conservation laws, and yet, as most sampling algo-
rithms, it still scales linearly w.r.t. number of uncertainty sources. Due to its
non-intrusiveness, MLMC-FVM was efficiently parallelized for multi-core archi-
tectures. Strong and weak scaling of our implementation ALSVID-UQ [8] of the
proposed static load balancing was verified on the high performance clusters
[13,14] in multiple space dimensions. The suite of benchmarks included Euler
equations of gas dynamics, MHD equations [1], and shallow water equations [4].

10

Fig. 4. Weak scaling. Analogously as in Figure 3, the slight deterioration in MLMC
scaling from 101.5 cores onwards could have been caused by inferior scaling of DDM.

References

1. S. Mishra, Ch. Schwab and J. Šukys. Multi-level Monte Carlo finite volume methods
for nonlinear systems of conservation laws in multi-dimensions. Submitted, 2011.
Available from: http://www.sam.math.ethz.ch/reports/2011/02.

2. S. Mishra and Ch. Schwab. Sparse tensor multi-level Monte Carlo Finite Volume
Methods for hyperbolic conservation laws with random initial data. Preprint 2010.
Available from http://www.sam.math.ethz.ch/reports/2010/24.

3. F. Fuchs, A. D. McMurry, S. Mishra, N. H. Risebro and K. Waagan. Approximate
Riemann solver based high-order finite volume schemes for the Godunov-Powell form
of ideal MHD equations in multi-dimensions. Comm. Comp. Phys., 9:324-362, 2011.

4. S. Mishra, Ch. Schwab and J. Šukys. Multi-level Monte Carlo finite volume meth-
ods for shallow water equations with uncertain topography in multi-dimensions. In
progress, 2011.

5. U.S. Fjordholm, S. Mishra, and E. Tadmor. Well-balanced, energy stable schemes
for the shallow water equations with varying topology. Submitted, 2010. Available
from http://www.sam.math.ethz.ch/reports/2010/26.

6. R.A. LeVeque. Numerical Solution of Hyperbolic Conservation Laws. Cambridge
Univ. Press 2005.

7. ALSVID. Available from http://folk.uio.no/mcmurry/amhd.
8. ALSVID-UQ. Available from http://mlmc.origo.ethz.ch/.
9. P. L’Ecuyer and F. Panneton. Fast Random Number Generators Based on Linear
Recurrences Modulo 2. ACM Trans. Math. Software, 32:1-16, 2006.

10. B. P. Welford. Note on a Method for Calculating Corrected Sums of Squares and
Products. Technometrics, 4:419-420, 1962.

11. T. F. Chan, G. H. Golub. and R. J. LeVeque. Updating Formulae and a Pairwise
Algorithm for Computing Sample Variances. STAN-CS-79-773, 1979.

12. MPI: A Message-Passing Interface Standard. Version 2.2, 2009. Available from:
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf.

13. Brutus, ETH Zürich, de.wikipedia.org/wiki/Brutus_(Cluster).
14. Palu, Swiss National Supercomputing Center (CSCS), Manno, www.cscs.ch.

Research Reports

No. Authors/Title

11-32 J. Šukys, S. Mishra and Ch. Schwab
Static load balancing for multi-level Monte Carlo finite volume solvers

11-31 C.J. Gittelson, J. Könnö, Ch. Schwab and R. Stenberg
The multi-level Monte Carlo Finite Element Method for a stochastic
Brinkman problem

11-30 A. Barth, A. Lang and Ch. Schwab
Multi-level Monte Carlo Finite Element method for parabolic stochastic
partial differential equations

11-29 M. Hansen and Ch. Schwab
Analytic regularity and nonlinear approximation of a class of parametric
semilinear elliptic PDEs

11-28 R. Hiptmair and S. Mao
Stable multilevel splittings of boundary edge element spaces

11-27 Ph. Grohs
Shearlets and microlocal analysis

11-26 H. Kumar
Implicit-explicit Runge-Kutta methods for the two-fluid MHD equations

11-25 H. Papasaika, E. Kokiopoulou, E. Baltsavias, K. Schindler and
D. Kressner
Sparsity-seeking fusion of digital elevation models

11-24 H. Harbrecht and J. Li
A fast deterministic method for stochastic elliptic interface problems
based on low-rank approximation

11-23 P. Corti and S. Mishra
Stable finite difference schemes for the magnetic induction equation with
Hall effect

11-22 H. Kumar and S. Mishra
Entropy stable numerical schemes for two-fluid MHD equations

11-21 H. Heumann, R. Hiptmair, K. Li and J. Xu
Semi-Lagrangian methods for advection of differential forms

11-20 A. Moiola
Plane wave approximation in linear elasticity

11-19 C.J. Gittelson
Uniformly convergent adaptive methods for parametric operator
equations

