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SPARSE DETERMINISTIC APPROXIMATION

OF BAYESIAN INVERSE PROBLEMS

CH. SCHWAB1 AND A.M.STUART2

Abstract. We present a parametric deterministic formulation of Bayesian
inverse problems with input parameter from infinite dimensional, separable
Banach spaces. In this formulation, the forward problems are parametric,
deterministic elliptic partial differential equations, and the inverse problem is
to determine the unknown, parametric deterministic coefficients from noisy
observations comprising linear functionals of the solution.

We prove a generalized polynomial chaos representation of the posterior
density with respect to the prior measure, given noisy observational data. We
analyze the sparsity of the posterior density in terms of the summability of
the input data’s coefficient sequence. To this end, we estimate the fluctuations
in the prior. We exhibit sufficient conditions on the prior model in order for
approximations of the posterior density to converge at a given algebraic rate,
in terms of the number N of unknowns appearing in the parameteric repre-
sentation of the prior measure. Similar sparsity and approximation results are
also exhibited for the solution and covariance of the elliptic partial differential
equation under the posterior. These results then form the basis for efficient
uncertainty quantification, in the presence of data with noise.

1. Introduction

Quantification of the uncertainty in predictions made by physical models, re-
sulting from uncertainty in the input parameters to those models, is of increas-
ing importance in many areas of science and engineering. Considerable effort has
been devoted to developing numerical methods for this task. The most straight-
forward approach is sampling uncertain system responses by Monte Carlo simu-
lations. These have the advantage of being conceptually straightforward, but are
constrained in terms of efficiency by their N− 1

2 rate of convergence (N number
of samples). In the 1980s the engineering community started to develop new ap-
proaches to the problem via parametric representation of the probability space for
the input parameters [12, 13] based on the pioneering ideas of Wiener [16]. The use
of sparse spectral approximation techniques [15, 7] opens the avenue towards algo-
rithms for computational quantification of uncertainty which beat the asymptotic
complexity of Monte Carlo (MC) methods, as measured by computational cost per
unit error in predicted uncertainty.

Most of the work in this area has been confined to the use of probability models
on the input parameters which are very simple, albeit leading to high dimensional
parametric representations. Typically the randomness is described by a (possi-
bly countably infinite) set of independent random variables representing uncertain
coefficients in parametric expansions of input data, typically with known closed

Date: March 23, 2011.
1 supported by SNF and ERC, 2 supported by EPSRC and ERC.
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2 CH. SCHWAB AND A.M. STUART

form Lebesgue densities. In many applications, such uncertainty in parameters is
compensated for by (possibly noisy) observations, leading to an inverse problem.
One approach to such inverse problems is via the techniques of optimal control [2];
however this does not lead naturally to quantification of uncertainty. A Bayesian
approach to the inverse problem [10, 14] allows the observations to map a possibly
simple prior probability distribution on the input parameters into a posterior dis-
tribution. This posterior distribution is typically much more complicated than the
prior, involving many correlations and without a useable closed form. The posterior
distribution completely quantifies the uncertainty in the system’s response, under
given prior and structural assumptions on the system and given observational data.
It allows, in particular, the Bayesian statistical estimation of unknown system pa-
rameters and responses by integration with respect to the posterior measure, which
is of interest in many applications.

Monte Carlo Markov chain (MCMC) methods can be used to probe this poste-
rior probability distribution. This allows for computation of estimates of uncertain
system responses conditioned on given observation data by means of approximate
integration. However, these methods suffer from the same limits on computational
complexity as straightforward Monte Carlo methods. It is hence of interest to in-
vestigate whether sparse approximation techniques can be used to approximate the
posterior density and conditional expectations given the data. Our objective is
to study this question in the context of a model elliptic inverse problem. Elliptic
problems with random coefficients have provided an important class of model prob-
lems for the uncertainty quantification community, see, e.g., [4] and the references
therein. In the context of inverse problems and noisy observational data, the cor-
responding elliptic problem arises naturally in the study of groundwater flow (e.g.
[11]) where hydrologists wish to determine the transmissivity (diffusion coefficient)
from the head (solution of the elliptic PDE) and hence provides a natural model
problem in which to study sparse representations of the posterior distribution.

In Section 2 we recall the Bayesian setting for inverse problems from [14], stating
and proving an infinite dimensional Bayes rule adapted to our inverse problem set-
ting in Theorem 2.1. Section 3 formulates the forward and inverse elliptic problem
of interest, culminating in an application of Bayes rule in Theorem 3.4. The prior
model is built on the work in [3, 5] in which the diffusion coefficient is represented
parametrically via an infinite sum of functions, each with an independent uniformly
distributed and compactly supported random variable as coefficient. Once we have
shown that the posterior measure is well-defined and absolutely continuous with
respect to the prior, we proceed to study the analytic dependence of the posterior
density in Section 4, culminating in Theorems 4.2 and 4.7. In Section 5 we show
how this parametric representation, and analyticity, may be employed to develop
sparse polynomial chaos representations of the posterior density, and the key The-
orem 5.8 summarizes the achievable rates of convergence. In Section 6 we study a
variety of practical issues that arise in attempting to exploit the sparse polynomial
representations as realizable algorithms for the evaluation of (posterior) expecta-
tions. Throughout we concentrate on the posterior density itself. However we also
provide analysis related to the analyticity (and hence sparse polynomial represen-
tation) of various functions of the unknown input, in particular the solution to
the forward elliptic problem, and tensor products of this function. For the above
class of elliptic model problems, we prove that for given data, there exist sparse,
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N -term gpc (“generalized polynomial chaos”) approximations of this expecation
with respect to the posterior (which is written as a density reweighted expectation
with respect to the prior) which converge at the same rates afforded by best N -
term gpc approximations of the system response to uncertain, parametric inputs.
Moreover, our analysis implies that the set ΛN of the N “active” gpc-coefficients is
identical to the set ΛN of indices of a best N -term approximation of the system’s
response. It was shown in [5, 6] that these rates are, in turn, completely deter-
mined by the the decay rates of the input’s fluctuation expansions. We thus show
that the machinery developed to describe gpc approximations of uncertain system
response may be employed to study the more involved Bayesian inverse problem
where the uncertainty is conditioned on observational data. Numerical algorithms
which achieve the optimal complexity implied by the sparse approximations, and
numerical results demonstrating this will be given in our forthcoming work [1].

2. Bayesian Inverse Problems

Let G : X → R denote a “forward” map from some separable Banach space X
of unknown parameters into another separable Banach space R of responses. We
equip X and R with norms ‖ · ‖X and with ‖ · ‖R, respectively. In addition, we are
given O(·) : R → RK denoting a bounded linear observation operator on the space
R of system responses, which belong to the dual space R∗ of the space R of system
responses. We assume that the data is finite so that K < ∞, and equip RK with
the Euclidean norm, denoted by | · |.

We wish to determine the unknown data u ∈ X from the noisy observations

(2.1) δ = O(G(u)) + η

where η ∈ RK represents the noise. We assume that realization of the noise process
is not known to us, but that it is a draw from the Gaussian measure N (0,Γ), for
some positive (known) covariance operator Γ on RK . If we define G : X → RK by
G = O ◦G then we may write the equation for the observations as

(2.2) δ = G(u) + η.

We define the least squares functional (also referred to as “potential” in what
follows) Φ : X × RK → R by

(2.3) Φ(u; δ) =
1

2
|δ − G(u)|2Γ

where | · |Γ = |Γ− 1
2 · | so that

Φ(u; δ) =
1

2

(

(δ − G(u))#Γ−1(δ − G(u))
)

.

In [14] it is shown that, under appropriate conditions on the forward and ob-
servation model G and the prior measure on u, the posterior distribution on u is
absolutely contionuous with respect to the prior with Radon-Nikodym derivative
given by an infinite dimensional version of Bayes rule. Posterior uncertainty is
then determined by integration of suitably chosen functions against this posterior.
At the heart of the deterministic approach proposed and analyzed here lies the
reformulation of the forward problem with stochastic input data as an infinite di-
mensional, parametric deterministic problem. We are thus interested in expressing
the posterior distribution in terms of a parametric representation of the unknown
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coefficient function u. To this end we assume that, under the prior distribution,
this function admits a parametric representation of the form

(2.4) u(x) = ā(x) +
∑

j∈J

yjψj(x)

where y = {yj}j∈J is an i.i.d sequence of real-valued random variables yj ∼
U(−1, 1). Here and throughout, J denotes a finite or countably infinite index set,
i.e. either J = {1, 2, ..., J} or J = N. All assertions proved in the present paper
hold in either case.

To derive the parametric expression of the prior measure µ0 on y we denote by

U = (−1, 1)J

the space of all sequences (yj)j∈J of real numbers yj ∈ (−1, 1). Denoting the sub
σ-algebra of Borel subsets on R which are also subsets of (−1, 1) by B1(−1, 1), the
pair

(2.5) (U,B) =



(−1, 1)J,
⊗

j∈J

B1(−1, 1)





is a measurable space. We equip (U,B) with the uniform probability measure

(2.6) µ0(dy) :=
⊗

j∈J

dyj
2

which corresponds to bounded intervals for the possibly countably many uncer-
tain parameters. Since the countable product of probability measures is again a
probability measure, (U,B, µ0) is a probability space. We assume in what follows
that the prior measure on the uncertain input data, parametrized in the form (2.4),
is µ0(dy). We add in passing that unbounded parameter ranges as arise, e.g., in
lognormal random diffusion coefficients in models for subsurface flow [11], can be
treated by the techniques developed here, at the expense of additional technicalities.
We refer to [1] for details as well as for numerical experiments.

Define Ξ : U → RK by

(2.7) Ξ(y) = G(u)
∣
∣
∣
u=ā+

P

j∈J
yjψj

.

In the following we view U as a bounded subset in %∞(J), the Banach space of
bounded sequences, and thereby introduce a notion of continuity in U .

Theorem 2.1. Assume that Ξ : Ū → RK is bounded and continuous. Then µδ(dy),
the distribution of y given δ, is absolutely continuous with respect to µ0(dy). Fur-
thermore, if

(2.8) Θ(y) = exp
(

−Φ(u; δ)
)
∣
∣
∣
u=ā+

P

j∈J
yjψj

,

then

(2.9)
dµδ

dµ0
(y) =

1

Z
Θ(y), where Z =

∫

U
Θ(y)µ0(dy).

Proof. Let ν0 denote the probability measure on U×RK defined by µ0(dy)⊗π(dδ),
where π is the Gaussian measure N (0,Γ). Now define a second probability measure
ν on U × RK as follows. First we specify the distribution of δ given y to be
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N (Ξ(y),Γ). Since Ξ(y) : Ū → RK is continuous and µ0(U) = 1 we deduce that Ξ
is µ0 measurable. Hence we may complete the definition of ν by specifying that
y is distributed according to µ0. By construction, and ignoring the constant of
proportionality which depends only on δ, 1

dν

dν0
(y, δ) ∝ Θ(y).

From the boundedness of Ξ on Ū we deduce that Θ is bounded from below on Ū
by θ0 > 0 and hence that

Z ≥
∫

U
θ0µ0(dy) = θ0 > 0

since µ0(U) = 1. Noting that, under ν0, y and δ are independent, Lemma 5.3 in [8]
gives the desired result. !

Our aim is to show conditions under which expectations under the posterior
measure µδ can be approximated within a given error, whilst incurring a cost which
grows more slowly than that of Monte Carlo methods. We assume that we wish to
compute the expectation of a function φ : X → S, for some Banach space S. With
φ, we associate the parametric mapping

(2.10) Ψ(y) = exp
(

−Φ(u; δ)
)

φ(u)
∣
∣
∣
u=ā+

P

j∈J
yjψj

: U → S .

From Ψ we define

(2.11) Z ′ =

∫

U
Ψ(y)µ0(dy) ∈ S

so that the expectation of interest is given by Z ′/Z ∈ S. Thus our aim is to ap-
proximate Z ′ and Z more efficiently than can be achieved by Monte Carlo. Typical
choices for φ in applications might be φ(u) = G(u), the response of the system, or
φ(u) = G(u) ⊗ G(u) which would facilitate computation of the covariance of the
response.

In the next sections we will study the elliptic problem and deduce, from known
results concerning the parametric forward problem, the joint analyticity of the
posterior density Θ(y), and also Ψ(y), as a function of the parameter vector y ∈ U .
From these results, we deduce sharp estimates on size of domain of analyticity of
Θ(y) (and Ψ(y)) as a function of each coordinate yj, j ∈ N.

3. Model Parametric Elliptic Problem

3.1. Function Spaces. Our aim is to study the inverse problem of determining
the diffusion coefficient u of an elliptic PDE from observation of a finite set of noisy
linear functionals of the solution p, given u.

Let D be a bounded Lipschitz domain in Rd, d = 1, 2 or 3, with Lipschitz

boundary ∂D. Let further
(

H, (·, ·), ‖ · ‖
)

denote the Hilbert space L2(D) which

we will identify throughout with its dual space, i.e. H , H∗.
We define also the space V of variational solutions of the forward problem:

specifically, we let
(

V, (∇·,∇·), ‖ · ‖V
)

denote the Hilbert space H1
0 (D) (everything

that follows will hold for rather general, elliptic problems with affine parameter

1Θ(y) is also a function of δ but that we suppress this for economy of notation.
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dependence and “energy” space V ). The dual space V ∗ of all continuous, linear
functionals on V is isomorphic to the Banach space H−1(D) which we equip with
the dual norm to V , denoted ‖ · ‖−1. We shall assume for the (deterministic) data
f ∈ V ∗.

3.2. Forward Problem. In the bounded Lipschitz domain D, we consider the
following elliptic PDE:

(3.1) −∇ ·
(

u∇p
)

= f in D, p = 0 in ∂D.

Given data u ∈ L∞(D), a weak solution of (3.1) for any f ∈ V ∗ is a function p ∈ V
which satisfies

(3.2)

∫

D
u(x)∇p(x) ·∇q(x)dx =V 〈v, f〉V ∗ for all q ∈ V .

For the well-posedness of the forward problem, we shall work under

Assumption 3.1. There exist constants 0 < amin ≤ amax < ∞ so that

(3.3) 0 < amin ≤ u(x) ≤ amax < ∞, x ∈ D,

Under Assumption 3.1, the Lax-Milgram Lemma ensures the existence and
uniqueness of the response p of (3.2). Thus, in the notation of the previous sec-
tion, R = V and G(u) = p. Moreover, this variational solution satisfies the a-priori
estimate

(3.4) ‖G(u)‖V = ‖p‖V ≤ ‖f‖V ∗

amin

.

We assume that the observation function O : V → RK comprises K linear func-
tionals ok ∈ V ∗, k = 1, . . . , K. In the notation of the previous section, we denote
by X = L∞(D) the Banach space in which the unknown input parameter u takes
values. It follows that

(3.5) |G(u)| ≤ ‖f‖V ∗

amin

(
K
∑

k=1

‖ok‖2V ∗

) 1
2 .

As mentioned in the previous section, we are not only interested in the posterior
densityΘ itself, but also in certain functionals φ(·) : X 1→ S of the system’s response
p = G(u). For our subsequent error analysis of polynomial chaos approximations
of conditional expectations of these functionals, analyticity of the function Ψ(y)
defined in (2.10) will be needed. Rather than formulating results for the most
general functionals φ(·) we confine ourselves to p and its m point correlation

(3.6) φ(u) := (p(u))(m) := p(u)⊗ ...⊗ p(u)
︸ ︷︷ ︸

m times

∈ S = V (m) := V ⊗ ...⊗ V
︸ ︷︷ ︸

m times

.

Indeed in some cases we consider only p = 1, for brevity.

3.3. Structural Assumptions on Diffusion Coefficient. As discussed in sec-
tion 2 we introduce a parametric representation of the random input parameter u
via an affine representation with respect to y, which means that the parameters yj
are the coefficients of the function u in the formal series expansion

(3.7) u(x, y) = ā(x) +
∑

j∈J

yjψj(x), x ∈ D,
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where ā ∈ L∞(D) and {ψj}j∈J ⊂ L∞(D). We are interested in the effect of
approximating the solutions input parameter u(x, y), by truncation of the series
expansion (3.7) in the case J = N, and on the corresponding effect on the forward
(resp. observational) map G(u(·)) (resp. G(u(·))) to the family of elliptic equations
with the above input parameters. In the decomposition (3.7), we have the choice
to either normalize the basis (e.g., assume they all have norm one in some space)
or to normalize the parameters. It is more convenient for us to do the latter. This
leads us to the following assumptions which shall be made throughout:

i) For all j ∈ N : ψj ∈ L∞(D) and ψj(x) is defined for all x ∈ D,
ii)

(3.8) y = (y1, y2, . . . ) ∈ U = [−1, 1]J,

i.e. the parameter vector y in (3.7) belongs to the unit ball of the sequence
space %∞(J),

iii) for each u(x, y) to be considered, (3.7) holds for every x ∈ D and every
y ∈ U .

We will, on occasion, use (3.7) with J ⊂ N, as well as with J = N. We will work
throughout under the assumption that the ellipticity condition (3.3) holds uniformly
for y ∈ U .
Uniform Ellipticity Assumption: there exist 0 < amin ≤ amax < ∞ such that for
all x ∈ D and for all y ∈ U

(3.9) 0 < amin ≤ u(x, y) ≤ amax < ∞.

We refer to assumption (3.9) as UEA(amin, amax) in the following. In particular,
UEA(amin, amax) implies amin ≤ ā(x) ≤ amax for all x ∈ D, since we can choose yj = 0
for all j ∈ N. Also observe that the validity of the lower and upper inequality in
(3.9) for all y ∈ U are respectively equivalent to the conditions that

(3.10)
∑

j∈J

|ψj(x)| ≤ ā(x) − amin, x ∈ D,

and

(3.11)
∑

j∈J

|ψj(x)| ≤ amax − ā(x), x ∈ D.

We shall require in what follows a quantitative control of the relative size of the
fluctuations in the representation (3.7). To this end, we shall impose

Assumption 3.2. The functions ā and ψj in (3.7) satisfy
∑

j∈J

‖ψj‖L∞(D) ≤
κ

1 + κ
amin,

with amin = minx∈D ā(x) > 0 and κ > 0.

Assumption 3.1 is then satisfied by choosing

(3.12) amin := amin −
κ

1 + κ
amin =

1

1 + κ
amin.
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3.4. Inverse Problem. We start by proving that the forward maps G : X → V
and G : X → RK are Lipschitz.

Lemma 3.3. If p and p̃ are solutions of (3.2) with the same right hand side f
and with coefficients u and ũ, respectively, and if these coefficients both satisfy the
assumption (3.3), then the forward solution map u → p = G(u) ∈ Lip(X,V ) and it
satisfies

(3.13) ‖p− p̃‖V ≤ ‖f‖V ∗

a2min
‖u− ũ‖L∞(D).

Moreover the forward solution map can be composed with the observation operator
to obtain u → G(u) ∈ Lip(X,RK) with Lipschitz dependence on u, i.e.

(3.14) |G(u)− G(ũ)| ≤ ‖f‖V ∗

a2min

(
K∑

k=1

‖ok‖2V ∗

) 1
2 ‖u− ũ‖L∞(D).

Proof: Subtracting the variational formulations for p and p̃, we find that for all
q ∈ V ,

0 =

∫

D
u∇p ·∇qdx−

∫

D
ũ∇p̃ ·∇qdx =

∫

D
u(∇p−∇p̃) ·∇qdx+

∫

D
(u− ũ)∇p̃ ·∇qdx.

Therefore w = p− p̃ is the solution of
∫

D u∇w ·∇q = L(q) where L(v) :=
∫

D(u −
ũ)∇p̃ ·∇v. Hence

‖w‖V ≤ ‖L‖V ∗

amin

,

and we obtain (3.13) since it follows from (3.4) that

‖L‖V ∗ = max
‖v‖V =1

|L(v)| ≤ ‖u− ũ‖L∞(D)‖p̃‖V ≤ ‖u− ũ‖L∞(D)
‖f‖V ∗

amin

.

Lipschitz continuity of G = O ◦ G : X → RK is immediate since O comprises the
K linear functionals ok. Thus (3.13) implies (3.14). !

The next result may be deduced in a straightforward fashion from the preceding
analysis:

Theorem 3.4. Under the UEA(amin, amax) and Assumptions 3.2 it follows that the
posterior measure µδ(dy) on y given δ is absolutely continuous with respect to the
prior measure µ0(dy) with Radon-Nikodym derivative given by (2.8) and (2.9).

Proof. This is a straightforward consequence of Theorem 2.1 provided that we show
boundedness and continuity of Ξ : Ū → RK given by (2.7). Boundedness follows
from (3.5), together with the boundedness of ‖ok‖V ∗ , under UEA(amin, amax). Let
u, ũ denote two diffusion coefficients generated by two parametric sequences y, ỹ in
U . Then, by (3.14) and Assumption 3.2,

|Ξ(y)− Ξ(ỹ)| ≤ ‖f‖V ∗

a2min

(
K
∑

k=1

‖ok‖2V ∗

) 1
2 ‖u− ũ‖L∞(D)

≤ ‖f‖V ∗

a2min

(
K
∑

k=1

‖ok‖2V ∗

) 1
2

κ

1 + κ
amin‖y − ỹ‖#∞(J) .

The result follows. !
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4. Complex Extension of the Elliptic Problem

As indicated above, one main technical objective will consist in proving analyt-
icity of the posterior density Θ(y) with respect to the (possibly countably many)
parameters y ∈ U in (3.7) defining the prior, and to obtain bounds on the maximal
domains in C into which Θ(y) can be continued analytically. Our key ingredients
for getting such estimates rely on complex analysis.

It is well-known that the existence theory for the forward problem (3.1) extends
to the case where the coefficient function u(x) takes values in C. In this case, the
ellipticity assumption (3.3) should be replaced by

(4.1) 0 < amin ≤ 3(u(x)) ≤ |α(x)| ≤ amax < ∞, x ∈ D.

and all the above results remain valid with Sobolev spaces understood as spaces
of complex valued functions. Throughout what follows, we shall frequently pass to
spaces of complex valued functions, without distinguishing these notationally. It
will always be clear from the context which coefficient field is implied.

4.1. Notation and Assumptions. We extend the definition of u(x, y) to u(x, z)
for the complex variable z = (zj)j≥1 (by using the zj instead of yj in the definition
of u by (3.7)) where each zj has modulus less than or equal to 1. Therefore z
belongs to the polydisc

(4.2) U :=
⊗

j∈J

{zj ∈ C : |zj | ≤ 1} ⊂ CJ .

Note that U ⊂ U . Using (3.10) and (3.11), when the functions a and ψj are real
valued, condition UEA(amin, amax) implies that for all x ∈ D and z ∈ U ,

(4.3) 0 < amin ≤ 3(u(x, z)) ≤ |u(x, z)| ≤ 2amax ,

and therefore the corresponding solution p(z) is well defined in V for all z ∈ U by
the Lax-Milgram theorem for sesquilinear forms. More generally, we may consider
an expansion of the form,

u(x, z) = a+
∑

j∈J

zjψj

where a and ψj are complex valued functions and replace UEA(amin, amax) by the
following, complex-valued counterpart:
Uniform Ellipticity Assumption in C : there exist 0 < amin ≤ amax < ∞ such
that for all x ∈ D and all z ∈ U

(4.4) 0 < amin ≤ 3(u(x, z)) ≤ |u(x, z)| ≤ amax < ∞.

We refer to (4.4) as UEAC(amin, amax).

4.2. Domains of holomorphy. UEAC(amin, amax) implies that the forward so-
lution map z 1→ p(z) is strongly holomorphic as a V−valued function which is
uniformly bounded in certain domains larger than U . For 0 < r ≤ 2amax < ∞ we
define the open set
(4.5)

Ar = {z ∈ CJ : r < 3(u(x, z)) ≤ |u(x, z)| < 2amax for every x ∈ D} ⊂ CJ .

Under UEAC(amin, amax), for every 0 < r < amin holds U ⊂ Ar.
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According to the Lax-Milgram theorem, for every z ∈ Ar there exists a unique
solution p(z) ∈ V of the variational problem: given f ∈ V ∗, for every z ∈ Ar, find
p ∈ V such that

(4.6) α(z; p, q) = (f, q) ∀q ∈ V .

Here the sesquilinear form α(z; ·, ·) is defined as

(4.7) α
(

z; p, q) =

∫

D
u(x, z)∇p ·∇qdx ∀p, q ∈ V .

The analytic continuation of the solution p(y) to Ar is the unique solution p(z) of
(4.6) which satisfies the a-priori estimate

(4.8) sup
z∈Ar

‖p(z)‖V ≤ ‖f‖V ∗

r
.

The first step of our analysis is to establish strong holomorphy of the forward
solution map z 1→ p(z) in (4.6) with respect to the countably many variables zj at
any point z ∈ Ar. This follows from the observation that the function p(z) is the
solution to the operator equationA(z)p(z) = f , where the operatorA(z) ∈ L(V, V ∗)
depends in an affine manner on each variable zj . To prepare the argument for
proving holomorphy of the functionals Φ and Θ appearing in (2.8), (2.10) we give
a direct proof.

Using Lemma 3.3 we have proved by means a difference quotient argument given
in [6], Lemma 4.1 which follows. This lemma, together with Hartogs’ Theorem (see,
e.g., [9]) and the separability of V , implies strong holomorphy of p(z) as a V -valued
function on Ar, stated as Theorem 4.2 below. The proof of this theorem can also
be found in [6]; the result will also be obtained as a corollary of the analyticity
results for the functionals Ψ, Θ proved below.

Lemma 4.1. At any z ∈ Ar, the function z 1→ p(z) admits a complex derivative
∂zjp(z) ∈ V with respect to each variable zj. This derivative is the weak solution
of the problem: given z ∈ Ar, find ∂zjp(z) ∈ V such that

(4.9) α(z; ∂zjp(z), q) = L0(q) := −
∫

D
ψj∇p(z) ·∇qdx , for all q ∈ V.

Theorem 4.2. Under UEAC(amin, amax) for any 0 < r < amin the solution p(z) =
G(u(z)) of the parametric forward problem is holomorphic as a V -valued function
in Ar and there holds the apriori estimate (4.8).

We remark that Ar also contains certain polydiscs: for any sequence ρ := (ρj)j≥1

of positive radii we define the polydisc

(4.10) Uρ =
⊗

j∈J

{zj ∈ C : |zj | ≤ ρj} = {zj ∈ C : z = (zj)j∈J ; |zj | ≤ ρj} ⊂ CJ .

We say that a sequence ρ = (ρj)j≥1 of radii is r-admissible if and only if for every
x ∈ D

(4.11)
∑

j∈J

ρj |ψj(x)| ≤ 3(ā(x)) − r.
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If the sequence ρ is r-admissible, then the polydisc Uρ is contained in Ar since on
the one hand for all z ∈ Uρ and for almost every x ∈ D

3(ā(x, z)) ≥ 3(ā(x)) −
∑

j∈J

|zjψj(x)| ≥ 3(ā(x)) −
∑

j∈J

ρj|ψj(x)| ≥ r,

and on the other hand, for every x ∈ D

|a(x, z)| ≤ |ā(x)| +
∑

j∈J

|zjψj(x)| ≤ |ā(x)| + 3(ā(x)) − r ≤ 2|ā(x)| ≤ 2amax .

Here we used |ā(x)| ≤ amax which follows from UEAC(amin, amax).
Similar to (3.10), the validity of the lower inequality in (4.4) for all z ∈ U is

equivalent to the condition that

(4.12)
∑

j≥1

|ψj(x)| ≤ 3(ā(x)) − amin, x ∈ D.

This shows that the constant sequence ρj = 1 is r-admissible for all 0 < r ≤ amin.

Remark 4.1. For 0 < r < amin there exist r-admissible sequences such that ρj > 1
for all j ≥ 1, i.e. such that the polydisc Uρ is strictly larger than U in every vari-
able. This will be exploited systematically below in the derivation of approximation
bounds. !

4.3. Holomorphy of response functionals. We next show that, for given data
δ, the functionals G(·), Φ(u(·); δ) and Θ(·) depend holomorphically on the parameter
vector z ∈ CJ, on polydiscs Uρ as in (4.10) for suitable r-admissible sequences of
semiaxes ρ. Our general strategy for proving this will be analogous to the argument
for establishing analyticity of the map z 1→ G(u(z)) as a V -valued functions.

We now extend Theorem 4.2 from the solution of the elliptic PDE to the posterior
density, and related quantities required to define expectations under the posterior,
culminating in Theorem 4.7 and Corollary 4.8. We achieve this through a sequence
of lemmas which we now derive.

The following lemma is simply a complexification of (3.5) and (3.14). It implies
bounds on G and its Lipschitz constant in the covariance weighted norm.

Lemma 4.3. Under UEAC(amin, amax), for every f ∈ V ∗ = H−1(D) and for every
O(·) ∈ (V ∗)∗ , V → Y = RK holds

|G(u)| ≤ ‖f‖V ∗

amin

(
K
∑

k=1

‖ok‖2V ∗

) 1
2 ,(4.13)

|G(u)− G(u)| ≤ ‖f‖V ∗

a2min
‖u1 − u2‖L∞(D)

(
K
∑

k=1

‖ok‖2V ∗

) 1
2 .(4.14)

To be concrete we concentrate in the next lemma on computing the expected
value of the pressure p = G(u) ∈ V under the posterior measure. To this end we
define Ψ with ψ as in (3.6) with m = 1. We start by considering the case of a single
parameter.

Lemma 4.4. Let J = {1} and take φ = G : U → V . With u(x, y) as in (2.4),
under UEAC(amin, amax), the functions Ψ : [−1, 1] → V and Θ : [−1, 1] → R and the
potential Φ(u(x, ·); δ) defined by (2.10), (2.8) and (2.3) respectively, may be extended
to functions which are strongly holomorphic on the strip {y + iz : |y| < r/κ} for
any r ∈ (κ, 1).
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Proof. We view H,V and X = L∞(D) as Banach spaces over C. We extend the
equation (3.7) to complex coefficients u(x, z) = Re(a(x) + zψ(x)) = a(x) + yψ(x)
since z = y + iζ. Note that a + zψ is holomorphic in z since it is linear. Since
Re(a+ zψ) = a+ yψ ≥ amin, if follows that, for all ζ = Im(z),

Re

∫

D
u(x)|∇p(x) −∇p̃(x)|2dx ≥ amin‖p− p̃‖2V .

We prove that the mapping Ψ and Θ are holomorphic by studying the properties
of G(a + zψ) and Φ(a + zψ) as functions of z ∈ C. Let h ∈ C with |h| < ε 5 1 .
We show that

lim
|h|→0

h−1
(

p(z + h)− p(z)
)

exists in V (strong holomorphy). Note first that ∂zu = ψ. Now consider p. We
have

1

h

(

p(z + h)− p(z)
)

=
1

h

(

G
(

a+ (z + h)ψ
)

−G
(

a+ zψ
)
)

=: r .

By Lemma 3.3 we deduce that

‖r‖V ≤
‖f‖H−1(D)

a2min
‖ψ‖L∞(D) .

From this it follows that there is a weakly convergent subsequence in V , as |h| → 0.
We proceed to deduce existence of a strong limit. To this end, we introduce the
sesquilinear form

b(p, q) =

∫

D
u∇p∇qdx .

Then
b
(

G(u), q
)

= (f, q) ∀q ∈ V .

For a coefficient function u as in (3.7), the form b(·, ·) is equal to the parametric
sesquilinear form α(z; p, q) defined in (4.7).

Note that for z = ā + yψ ∈ R and for real-valued arguments p and q, the
parametric sesquilinear form α(z; p, q) coincides with the bilinear form in (3.2).
Accordingly, for every z ∈ CJ the unique holomorphic extension of the parametric
solution G(u(ā + yψ)) to complex parameters z = y + iζ is the unique variational
solution of the parametric problem

(4.15) α
(

z;G(a+ zψ), q
)

= (f, q), ∀q ∈ V.

Assumption UEAC(amin, amax) is readily seen to imply

∀p ∈ V : Re
(

α(z; p, p)
)

≥ amin‖p‖2V .

If we choose δ ∈ (κ, 1) and choose z = y+ iη, we obtain, for all ζ and for |y| ≤ δ/κ

(4.16) Re
(

α(z; p, p)
)

≥ amin(1− δ)‖p‖2V .
From (4.15) we see that for such values of z = y + iζ

0 =α
(

z;G
(

a+ zψ
)

, q
)

− α
(

z;G
(

a+ (z + h)ψ
)

, q
)

+ α
(

z;G
(

a+ (z + h)ψ
)

, q
)

− α
(

z + h;G
(

a+ (z + h)ψ
)

, q
)

=α
(

z;G
(

a+ zψ
)

−G
(

a+ (z + h)ψ
)

, q
)

−
∫

D
hψ∇G

(

a+ (z + h)ψ
)

∇qdx.
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Dividing by h we obtain that r satisfies, for all z = y+ iζ with |y| ≤ δ/κ and every
ζ ∈ R

(4.17) ∀q ∈ V : α
(

z; r, q
)

+

∫

D
ψ∇G

(

a+ (z + h)ψ
)

∇qdx = 0 .

The second term we denote by s(h) and note that, by Lemma 3.3,

|s(h1)− s(h2)| ≤
1

a2min
‖ψ‖2∞‖f‖1‖q‖V |h1 − h2| .

If we denote the solution r to equation (4.17) by rh(a; z) then we deduce from the
Lipschitz continuity of s(·) that rh(a; z) → r0(a; z) where

α(z; r0, q) = s(0), ∀q ∈ V.

Hence r0 = ∂zG(a+ zψ) ∈ V and we deduce that G : [−1, 1] → V can be extended
to a complex-valued function which is strongly holomorphic on the strip {y + iζ :
|y| < δ/κ, ζ ∈ R}.

We next study the domain of holomorphy of the analytic continuation of the
potential Φ(a + zψ; d) to parameters z ∈ C. It suffices to consider K = 1 noting
that then the unique analytic continuation of the potential Φ is given by

(4.18) Φ(a+ zψ; δ) =
1

2γ2

(

δ − G(a+ zψ)
)#(

δ − G(a+ zψ)
)

.

The function z 1→ G(a + zψ) is holomorphic with the same domain of holomorphy
as G(a+ zψ). Similarly it follows that the function

z 1→
(

δ − G(a+ zψ)
)#(

δ − G(a+ zψ)
)

is holomorphic, with the same domain of holomorphy; this shown by composing the
relevant power series expansion. From this we deduce that Θ and Ψ are holomor-
phic, with the same domain of holomorphy. !

So far we have considered the case J = {1} . We now generalize. To this end,
we pick an arbitrary m ∈ J and write y = (y%, ym) and z = (z%, zm) .

Assumption 4.5. There are constants 0 < amin ≤ amax < ∞ and κ ∈ (0, 1) such
that

(4.19) 0 < amin ≤ a ≤ amax < ∞, a.e. x ∈ D,
∥
∥
∥‖ψj‖L∞(D)

∥
∥
∥
#1(J)

< κamin .

For m ∈ J, we write (3.7) in the form

u(x; y) = a(x) + ymψm(x) +
∑

j∈J\{m}

yjψj(x) .

From Assumption 4.5 we deduce that there are numbers κj ≤ κ such that

‖ψj‖L∞ < aminκj .

Hence we obtain, for every x ∈ D and every y ∈ U the lower bound

u(x, y) ≥ amin

(

1−
(

κ− κm

)

− κm

)

≥ amin

(

1−
(

κ− κm

)
)(

1− κm

1−
(

κ− κm

)

)

≥ a′min(1− κ′
m)
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with a′min = amin(1 − κ) and κ′
m = κm

(

1 −
(

κ − κm

)
)−1

∈ (0, 1) . With this

observation we obtain

Lemma 4.6. Let Assumption 4.5 hold and set U = [−1, 1]J and φ = G : U →
V . Then the functions Ψ : U → V and Θ : U → R, as well as the potential
Φ(u(x, ·); δ) : U → R admit unique extensions to strongly holomorphic functions on
the product of strips given by

(4.20) Sρ :=
⊗

j∈J

{

yj + izj : |yj | < δj/κ
′
j, zj ∈ R

}

for any sequence ρ = (ρj)j∈J with ρj ∈ (κ′
j , 1).

Proof. Fixing y%, we view Ψ and Θ as functions of the single parameter ym. For
each fixed y%, we extend ym to a complex variable zm. The estimates preceding the
statement of this lemma, together with Lemma 4.4, show that Ψ and Θ are holo-
morphic in the strip {ym + izm : |ym| < δm/κ′

m} for any δm ∈ (κ′
m, 1). Hartogs’

theorem [9] and the fact that in separable Banach spaces (such as V ) weak holo-
morphy equals strong holomorphy extends this result onto the product of strips,
S. !

We note that the strip Sρ ⊂ CJ defined in (4.20) contains in particular the
polydisc Uρ with (ρj)∈J where ρj = δj/κ′

j.

4.4. Holomorphy and bounds on the posterior density. So far, we have
shown that the responses G(u), G(u) and the potentials Φ(u; δ) depend holo-
morphically on the coordinates z ∈ Ar ⊂ CJ in the parametric representation
u = ā +

∑

j∈J
zjψj . Now we deduce bounds on the analytic continuation of the

posterior density Θ(z) in (2.8) as a function of the parameters z on the domains of
holomorphy. We have

Theorem 4.7. Under UEAC(amin, amax) for the analytic continuation Θ(z) of the
posterior density to the domains Ar of holomorphy defined in (4.5), i.e. for

(4.21) Θ(z) = exp
(

−Φ(u; δ)|u=ā+
P

j∈J
zjψj

)

there holds for every 0 < r < amin

(4.22) sup
z∈Ar

|Θ(z)| = sup
z∈Ar

| exp(−Φ(u(z); δ)| ≤ exp

(

‖f‖2V ∗

r2

K
∑

k=1

‖ok‖2V ∗

)

.

These analyticity properties, and resulting bounds, can be extended to functions
φ(·) as defined by (3.6), using Lemma 4.6 and Theorem 4.7. This gives the following
result.

Corollary 4.8. Under UEAC(amin, amax), for any m ∈ N the functionals φ(u) =
p(m) ∈ S = V (m) the posterior densities Ψ(z) = Θ(z)φ(u(z)) defined in (2.10)
admit analytic continuations as strongly holomorphic, V (m)-valued functions with
domains Ar of holomorphy defined in (4.5). Moreoever, for these functionals the
analytic continuations of Ψ in (2.10) admit the bounds

(4.23) sup
z∈Ar

‖Θ(z)(p(z))(m)‖V (m) ≤
‖f‖mV ∗

rm
exp

(

‖f‖2V ∗

r2

K
∑

k=1

‖ok‖2V ∗

)

.
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5. Polynomial Chaos Approximations of the Posterior

Building on the results of the previous section, we now proceed to approximate
Θ(z), viewed as a holomorphic functional over z ∈ CJ, by so-called polynomial
chaos representations. Exactly the same results on analyticity and on N -term
approximation of Ψ(z) hold. We omit details for reasons of brevity of exposition
and confine ourselves to establishing rates of convergence of N -term truncated
representations of the posterior density Θ. The results in the present section are,
in one sense, sparsity results on the posterior density Θ. On the other hand, such
N -term truncated gpc representations of Θ are, as we will show in the next section,
computationally accessible once sparse truncated adaptive forward solvers of the
parametrized system of interest are available. Such solvers are indeed available
(see, e.g., [7, 3] and the references therein), so that the abstract approximation
results in the present section have a substantive constructive aspect. Algorithms
based on Smolyak-type quadratures in U which are designed based on the present
theoretical results will be developed and analyzed in [1]. In this section we analyze
the convergence rate of N -term truncated Legendre gpc-approximations of Θ and,
with the aim of a constructive N -term approximation of the posterior Θ(y) in U in
Section 6 ahead, we analyze also N -term truncated monomial gpc-approximations
of Θ(y).

5.1. gpc Representations of Θ. With the index set J from the parametrization
(3.7) of the input, we associate the countable index set

(5.1) F = {ν ∈ N
J

0 : |ν|1 < ∞}

of multiindices where N0 = N ∪ {0}. We remark that sequences ν ∈ F are finitely
supported even for J = N. For ν ∈ F , we denote by Iν = {j ∈ N : νj 7= 0} ⊂ N

the “support” of ν ∈ F , i.e. the finite set of indices of entries of ν ∈ F which
are non-zero, and by ℵ(ν) := #Iν < ∞, ν ∈ F the “support size” of ν, i.e. the
cardinality of Iν .

For the deterministic approximation of the posterior density Θ(y) in (2.8) we
shall use tensorized polynomial bases similar to what is done in so-called “polyno-
mial chaos” expansions of random fields. We shall consider two particular polyno-
mial bases, Legendre and monomial bases.

5.1.1. Legendre Expansions of Θ. Since we assumed that the prior measure µ0(dy)
is built by tensorization of the uniform probability measures on (−1, 1), build the
bases by tensorization as follows: let Lk(zj) denote the kth Legendre polynomial of
the variable zi ∈ C, normalized such that

(5.2)

∫ 1

−1
(Lk(t))

2 dt

2
= 1, k = 0, 1, 2, ...

Note that L0 ≡ 1. The Legendre polynomials Lk in (5.2) are extended to tensor-
product polynomials on U via

(5.3) Lν(z) =
∏

j∈J

Lνj (zj), z ∈ CJ, ν ∈ F .

The normalization (5.2) implies that the polynomials Lν(z) in (5.3) are well-defined
for any z ∈ CJ since the finite support of each element of ν ∈ F implies that Lν
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in (5.3) is the product of only finitely many nontrivial polynomials. It moreover
implies that the set of tensorized Legendre polynomials

(5.4) P(U, µ0(dy)) := {Lν : ν ∈ F}

forms a countable orthornomal basis in L2(U, µ0(dy)). This observation suggests,
by virtue of Lemma 5.1, the use of mean square convergent gpc-expansions to
represent Θ and Ψ. Such expansions can also serve as a basis for sampling of these
quantities with draws that are equidistributed with respect to the prior µ0.

Lemma 5.1. The density Θ : U → R is square integrable with respect to the prior
µ0(dy) over U , i.e. Θ ∈ L2

(

U, µ0(dy)
)

. Moreover, if the functional φ(·) : U → S
in (2.10) is bounded, then

∫

U
‖Ψ(y)‖2Sµ0(dy) < ∞,

i.e. Ψ ∈ L2
(

U, µ0(dy);S
)

.

Proof. Since Φ is positive it follows that Θ(y) ∈ [0, 1] for all y ∈ U and the first
result follows because µ0 is a probability measure. Now define K = supy∈U |φ(y)|.
Then supy∈U ‖Ψ(y)‖S ≤ K and the second result follows similarly, again using that
µ0 is a probability measure. !

Remark 5.1. It is a consequence of (3.4) that in the case where φ(u) = G(u) = p ∈ V
we have ‖Ψ(y)‖V ≤ ‖f‖V ∗/amin for all y ∈ U . Thus the second assertion of Lemma
5.1 holds for calculation of the expectation of the pressure under the posterior
distribution on u, the concrete case which we concentrate on here. !

Since P(U, µ0(dy)) in (5.4) is a countable orthonormal basis of L2(U, µ0(dy)),
the density Θ(y) of the posterior measure given data δ ∈ Y , and the posterior
reweighted pressure Ψ(y) can be represented in L2(U, µ0(dy)) by (parametric and
deterministic) generalized Legendre polynomial chaos expansions. We start by
considering the scalar valued function Θ(y).

(5.5) Θ(y) =
∑

ν∈F

θνLν(y) in L2(U, ρ(dy))

where the gpc expansion coefficients θν are defined by

(5.6) θν =

∫

U
Θ(y)Lν(y)µ0(dy) , ν ∈ F .

By Parseval’s equation and the normalization (5.2), it follows immediately from
(5.5) and Lemma 5.1 with Parseval’s equality that the second moment of the pos-
terior density with respect to the prior

(5.7) ‖Θ‖2L2(U,µ0(dy)) =
∑

ν∈F

|θν |2

is finite.
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5.1.2. Monomial Expansions of Θ. We next consider expansions of the posterior
density Θ with respect to monomials

yν =
∏

j≥1

yνjj , y ∈ U, ν ∈ F .

Once more, the infinite product is well-defined since, for every ν ∈ F , it contains
only ℵ(ν) many nontrivial factors. By Lemma 4.6 and Theorem 4.7, the posterior
density Θ(y) admits an analytic continuation to the product of strips Sρ which
contains, in particular, the polydisc Uρ. In U , Θ(y) can therefore be represented by
a monomial expansion with uniquely determined coefficients τν ∈ V which coincide,
by uniqueness of the analytic continuation, with the Taylor coefficients of Θ at
0 ∈ U :

(5.8) ∀y ∈ U : Θ(y) =
∑

ν∈F

τνy
ν , τν :=

1

ν!
∂ν
yΘ(y) |y=0 .

5.2. Best N-term Approximations of Θ. Evaluation of expectations under the
posterior requires evaluation of integrals (2.11). Numerical efficiency of this step
requires efficient numerical realization of the forward map for given samples of the
unknown u and, more importantly, to use as few samples as possible. In the con-
text of MCMC, various strategies of reducing the sample number whilst retaining
accuracy in the estimate of (2.11) are available. Here, however, our strategy a
different one: we approximate the spectral representation (5.5) by truncating it to
a finite number N of significant terms. By (5.7), the coefficient sequence (θν)ν∈F

must necessarily decay. If this decay is sufficiently strong, possibly high conver-
gence rates of approximations of the integral (2.11) result. The following classical
result from approximation theory makes these heuristic considerations precise: de-
note by (γn)n∈N a (generally not unique) decreasing rearrangement of the sequence
(|θν |)ν∈F . Then, for any summability exponents 0 < σ ≤ q ≤ ∞ and for any N ∈ N

holds

(5.9)

(

∑

n>N

γq
n

) 1
q

≤ N−( 1
σ− 1

q )





∑

n≥1

γσ
n





1
σ

.

5.2.1. L2(U ;µ0) Approximation. Denote by ΛN ⊂ F a set of indices ν ∈ F corre-
sponding to N largest gpc coefficients |θν | in (5.5), and denote by

(5.10) ΘΛN (y) :=
∑

ν∈ΛN

θνLν(y)

the Legendre expansion (5.5) truncated to this set of indices. Using (5.9) with
q = 2, Paseval’s equation (5.7) and 0 < σ < 2 we obtain for all N

(5.11) ‖Θ(z)−ΘΛN (z)‖L2(U,µ0(dy)) ≤ N−s‖(θν)‖#σ(F), s :=
1

σ
− 1

2
.

We infer from (5.11) that a mean-square convergence rate s > 1/2 of the approxi-
mate posterior density ΘΛN can be achieved if (θν) ∈ %σ(F) for some 0 < σ < 1.
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5.2.2. L1(U ;µ0) and pointwise Approximation of Θ. The analyticity of Θ(y) in Uρ

implies that Θ(y) can be represented by the Taylor exansion (5.8). This expansion
is unconditionally summable in U and, for any sequence {ΛN}N∈N ⊂ F which
exhausts F 2, the corresponding sequence of N -term truncated partial Taylor sums

(5.12) TΛN (y) :=
∑

ν∈ΛN

τνy
ν

converges pointwise in U to Θ. Since for y ∈ U and ν ∈ F we have |yν | ≤ 1, for
any ΛN ⊂ F of cardinality not exceeding N holds

(5.13) sup
y∈U

|Θ(y)− TΛN (y)| = sup
y∈U

∣
∣
∣
∣
∣
∣

∑

ν∈F\ΛN

τνy
ν

∣
∣
∣
∣
∣
∣

≤
∑

ν∈F\ΛN

|τν | .

Similarly, we have

‖Θ− TΛN ‖L1(U,µ0)
=

∥
∥
∥
∥
∥
∥

∑

ν∈F\ΛN

τνy
ν

∥
∥
∥
∥
∥
∥
L1(U,µ0)

≤
∑

ν∈F\ΛN

|τν | ‖yν‖L1(U,µ0)
.

For ν ∈ F , we calculate

‖yν‖L1(U,µ0)
=

∫

y∈U
|yν |µ0(dy) =

1

(ν + 1)!

so that we find

(5.14) ‖Θ− TΛN‖L1(U,µ0)
≤

∑

ν∈F\ΛN

|τν |
(ν + 1)!

.

5.2.3. Summary. There are, hence, two main issues to be addressed to employ the
approximations i) establishing the summability of the coefficient sequences in the
series (5.5), (5.8) and ii) finding algorithms which locate sets ΛN ⊂ F of cardi-
nality not exceeding N for which the truncated partial sums preserve the optimal
convergence rates and, once these sets are localized, to determine the N “active”
coefficients θν or τν , preferably in close to O(N) operations. In the remainder of
this section, we address i) and consider ii) in the next section.

5.3. Sparsity of the posterior density Θ. The analysis in the previous section
shows that the convergence rate of the truncated gpc-type approximations (5.10),
(5.12) on the parameterspace U is determined by the σ-summability of the corre-
sponding coefficient sequences (|θν |)ν∈F , (|τν |)ν∈F . We now show that summability
of Legendre and Taylor coefficient sequences in the expansions (5.5), (5.8) is deter-
mined by that of the sequence (‖ψj‖L∞(D))j∈N in the input’s fluctuation expansion
(3.7). Throughout, Assumptions 3.1 and 3.2 will be required to hold. We formalize
the decay of the ψj in (2.4) by

Assumption 5.2. There exists 0 < σ < 1 such that for the parametric represen-
tations (3.7), (2.4) it holds that

(5.15)
∞
∑

j=1

‖ψj‖σL∞(D) < ∞ .

2 We recall that a sequence {ΛN}N∈N ⊂ F of index sets ΛN whose cardinality does not exceed
N exhausts F if any finite Λ ⊂ F is contained in all ΛN for N ≥ N0 with N0 sufficiently large.
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5.3.1. Complex extension of the parametric problem. To estimate |θν | in (5.10), we
shall use the holomorphy of solution to the (analytic continuation of the) parametric
deterministic problem: let 0 < K < 1 be a constant such that

(5.16) K
∞
∑

j=1

‖ψj‖L∞(D) <
amin

8
.

Such a constant exists by Assumption 5.15. For K selected in this fashion, we next
choose an integer J0 such that

∑

j>J0

‖ψj‖L∞(D) <
aminK

24(1 +K)
.

Let E = {1, 2, . . . , J0} and F = N \ E. We define

|νF | =
∑

j>J0

|νj |.

For each ν ∈ F we define a ν-dependent radius vector r = (rm)m∈J with rm > 0
for all m ∈ J as follows:

(5.17) rm = K when m ≤ J0 and rm = 1 +
aminνm

4|νF |‖ψm‖L∞(D)
when m > J0,

where we make the convention that |νj |
|νF | = 0 if |νF | = 0. We consider the open

discs Um ⊂ C defined by

(5.18) [−1, 1] ⊂ Um := {zm ∈ C : |zm| < 1 + rm} ⊂ C.

We will extend the parametric deterministic problem (4.6) to parameter vectors z
in the polydiscs

(5.19) U1+r :=
⊗

m∈J

Um ⊂ CJ.

To do so, we invoke the analytic continuation of the parametric, deterministic
coefficient function a(x, y) in (3.7) to z ∈ U which is for such z formally given by

a(x, z) = ā(x) +
∑

m∈J

ψm(x)zm.

We verify that this expression is meaningful for z ∈ Ur: we have, for almost every
x ∈ D,

|a(x, z)| ≤ ā(x) +
∑

m∈J

|ψm(x)|(1 + rm)

≤ ess sup
x∈D

|ā(x)|+
J0∑

m=1

‖ψm‖L∞(D)(1 +K)

+
∑

m>J0

(

2 +
aminνm

4|νF |‖ψm‖L∞(D)

)

‖ψm‖L∞(D)

≤ ‖ā‖L∞(D) + 2
∞∑

m=1

‖ψm‖L∞(D) +
amin

4
.
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5.3.2. Estimates of the θν .

Proposition 5.3. There exists a constant C > 0 such that, with the constant
K ∈ (0, 1) in (5.16), for every ν ∈ F the following estimate holds

(5.20) |θν | ≤ C

(
∏

m∈I(ν)

2(1 +K)

K
η−νm
m

)

,

where ηm := rm +
√

1 + r2m with rm as in (5.17).

Proof For ν ∈ F , define θν by (5.6) let S = I(ν) and define S̄ = J \ S. For
S denote by US = ⊗m∈SUm and US̄ = ⊗m∈S̄Um, and by yS = {yi : i ∈ S} the
extraction from y. Let Em be the ellipse in Um with foci at ±1 and semiaxis sum
ηm > 1. Denote also ES =

∏

m∈I(ν) Em. We can then write (5.6) as

θν =
1

(2πi)|ν|0

∫

U
Lν(y)

∮

ES

Θ(zS, yS̄)

(zS − yS)1
dzSdρ(y).

For each m ∈ N, let Γm be a copy of [−1, 1] and ym ∈ Γm. We denote by US =
∏

m∈S Γm and US̄ =
∏

m∈S̄ Γm. We then have

θν =
1

(2πi)|ν|0

∫

US̄

∮

ES

Θ(zS, yS̄)

∫

US

Lν(y)

(zS − yS)1
dρS(yS)dzSdρS̄(yS̄).

To proceed further, we recall the definitions of the Legendre functions of the second
kind

Qn(z) =

∫

[−1,1]

Ln(y)

(z − y)
dρ(y).

Let νS be the restriction of ν to S. We define

QνS (zS) =
∏

m∈I(ν)

Qνm(zm).

Under the Joukovski transformation zm = 1
2 (wm+w−1

m ), the Legendre polynomials
of the second kind take the form

Qνm(
1

2
(wm + w−1

m )) =
∞
∑

k=νm+1

qνmk

wk
m

with |qνmk| ≤ π. Therefore

|QνS (zS)| ≤
∏

m∈S

∞∑

k=νm+1

π

ηkm
=
∏

m∈S

π
η−νm−1
m

1− η−1
m

.
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We then have

|θν | =

∣
∣
∣
∣
∣

1

(2πi)|ν|0

∫

US̄

∮

ES

Θ(zS , yS̄)QνS (zS)dzSdρS̄(yS)

∣
∣
∣
∣
∣

≤ 1

(2π)|ν|0

∫

US̄

∮

ES

|Θ(zS, yS̄)|QνS (zS)dzSdρS̄(yS)

≤ 1

(2π)|ν|0
‖Θ(z)‖L∞(ES×US̄) max

ES

|QνS |
∏

m∈S

Len(Em)

≤ 1

(2π)|ν|0
‖Θ(z)‖L∞(ES×US̄)

∏

m∈S

π
η−νm−1
m

1− η−1
m

Len(Em)

≤ C
∏

m∈S

2(1 +K)

K
η−νm
m ,

as Len(Em) ≤ 4ηm, ηm ≥ 1 +K and as |Θ(z)| is uniformly bounded on ES ×US̄ by
Theorem 4.7. !

5.3.3. Summability of the θν . To show the lσ(F) summability of |θν |, we use the
following result from [5].

Proposition 5.4. For 0 < σ < 1 and for any sequence (bν)ν∈#σ(F),

( |ν|!
ν!

bν
)

ν∈F
∈ lσ(F) ⇐⇒

∑

m≥1

|bm| < 1 and (bm)m∈N ∈ lσ(N) .

We can now establish the p-summability of the sequence (θν) of Legendre coef-
ficients.

Proposition 5.5. Under Assumptions 3.1, 3.2, for 0 < σ < 1 as in Assumption
5.2,

∑

ν∈F |θν |σ is finite.

Proof We have from Proposition 5.3 that

|θν | ≤ C
∏

m∈S

2(1 +K)

K
(1 + rm)−νm

≤ C
( ∏

m∈E,νm +=0

2(1 +K)

K
ηνm

)( ∏

m∈F,νm +=0

2(1 +K)

K

(4|νF |‖ψm‖L∞(D)

aminνm

)νm)

where η = 1/(1+K) < 1 . Let FE = {ν ∈ F : I(ν) ⊂ E} and FF = F \E. From
this, we have

∑

ν∈F

|θν |σ ≤ CAEAF

where

AE =
∑

ν∈FE

∏

m∈E,νm +=0

(2(1 +K)

K

)σ
ησνm ,

and

AF =
∑

ν∈FF

∏

m∈F,νm +=0

(2(1 +K)

K

)σ(4|ν|‖ψm‖L∞(D)

aminνm

)σνm
.
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We estimate AE and AF : for AE , we have

AE =

(

1 +
(2(1 +K)

K

)σ ∑

m≥1

ηpm
)J0

,

which is finite due to η < 1. For AF , we note that for νm 7= 0,

2(1 +K)

K
≤
(2(1 +K)

K

)νm
.

Therefore

AF ≤
∑

ν∈FF

∏

m∈F

( |ν|dm
νm

)σνm
,

where

dm =
8(1 +K)‖ψm‖L∞(D)

Kamin
.

With the convention that 00 = 1 we obtain from the Stirling estimate

n!en

e
√
n
≤ nn ≤ n!en√

2πn

that |ν||ν| ≤ |ν|!e|ν|. Inserting this in the above bound for AF , we obtain

∏

m∈F

ννmm ≥ ν!e|ν|
∏

m∈F max{1, e√νm} .

Hence

AF ≤
∑

ν∈FF

( |ν|!
ν!

dν
)σ( ∏

m∈F

max{1, e
√
νm}

)σ ≤
∑

ν∈FF

( |ν|!
ν!

d̄ν
)σ

,

where d̄m = edm and where we used the estimate e
√
n ≤ en. From this, we have

∑

m≥1

d̄m ≤
∑

m∈F

24(1 +K)‖ψm‖L∞(D)

Kamin
≤ 1.

Since also

‖d̄‖lσ(N) < ∞
we obtain with Proposition 5.4 the conclusion. !

We now show σ summability of the Taylor coefficients τν in (5.8). To this end,
we proceed as in the Legendre case: first we establish sharp bounds on the τν by
complex variable methods, and then show σ-summability of (τν)ν∈F by a sequence
factorization argument.

5.3.4. Bounds on the Taylor coefficients τν .

Lemma 5.6. Assume UEAC(amin, amax) and that ρ = (ρj)j≥1 is an r-admissible
sequence of disc radii for some 0 < r < amin. Then the Taylor coefficients τν of the
parametric posterior density (5.8) satisfy

(5.21) ∀ν ∈ F : |τν | ≤ exp

(

‖f‖2V ∗

r2

K
∑

k=1

‖ok‖2V ∗

)

∏

j≥1

ρ
−νj
j .
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Proof For ν = (νj)j≥1 ∈ F holds J = max{j ∈ N : νj 7= 0} < ∞. For this
J , define Θ[J](z

J) := Θ(z1, z2, ..., zJ , 0, ...), i.e. Θ[J](z
J) denotes the function of

zJ ∈ CJ obtained by setting in the posterior density Θ(z) all coordinates zj with
j > J equal to zero. Then

∂ν
zΘ(z)|z=0 =

∂|ν|Θ[J]

∂zν11 ...∂zνJJ
(0, ..., 0) .

Since the sequence ρ is r-admissible it follows with (4.22) that

(5.22) sup
(z1,...,zJ)∈Uρ,J

|Θ[J](z1, . . . , zJ)| ≤ exp

(

‖f‖2V ∗

r2

K
∑

k=1

‖ok‖2V ∗

)

.

for all (z1, . . . , zJ) in the polydisc Uρ,J := ⊗1≤j≤J{zj ∈ C : |zj | ≤ ρj} ⊂ CJ . We
now prove (5.21) by Cauchy’s integral formula. To this end, we define ρ̃ by

ρ̃j := ρj + ε if j ≤ J, ρ̃j = ρj if j > J, ε :=
r

2‖
∑

j≤J |ψj |‖L∞(D)
.

Then the sequence ρ̃ is r/2-admissible and therefore Uρ̃ ⊂ Ar/2. This implies that
for each z ∈ Uρ̃, u is holomorphic in each variable zj.

It follows that uJ is holomorphic in each variable z1, . . . , zJ on the polydisc
⊗1≤j≤J{|zj| < ρ̃j} which is an open neighbourhood of Uρ,J in CJ .

We may thus apply the Cauchy formula (e.g. Theorem 2.1.2 of [9]) in each
variable zj :

uJ(z1, . . . , zJ) = (2πi)−J

∫

|z̃1|=ρ̃1

. . .

∫

|z̃J |=ρ̃J

uJ(z̃1, . . . , z̃J)

(z1 − z̃1) . . . (zJ − z̃J)
dz̃1 . . . dz̃J .

We infer

∂|ν|

∂zν11 . . . ∂zνJJ
uJ(0, . . . , 0) = ν!(2πi)−J

∫

|z̃1|=ρ̃1

. . .

∫

|z̃J |=ρ̃J

uJ(z̃1, . . . , z̃J)

z̃ν11 . . . z̃νJJ
dz̃1 . . . dz̃J .

Bounding the integrand on {|z̃1| = ρ̃1}× . . .×{|z̃J | = ρ̃J} ⊂ Ar with (4.22) implies
(5.21). !

5.3.5. σ-summability of the τν . Proceeding in a similar fashion as in Section 3 of
[6], we can prove the σ-summability of the Taylor coefficients τν .

Proposition 5.7. Under Assumptions 3.1, 3.2 and 5.2, (‖τν‖V ) ∈ %σ(F) for 0 <
σ < 1 as in Assumption 5.2.

We remark that under the same assumptions, we also have p-summability of
(τν/(ν + 1)!)ν∈F , since

∀ν ∈ F : |τν | ≤
|τν |

(ν + 1)!
.

5.4. Best N-term convergence rates. With (5.9), we infer from Proposition 5.5
and from (5.11) convergence rates for “polynomial chaos” type approximations of
the posteriori density Θ.

Theorem 5.8. If Assumptions 3.1, 3.2 and 5.2 hold then there is a sequence
(ΛN )N∈N ⊂ F of index sets with cardinality not exceeding N (depending σ and
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on the data δ) such that the corresponding N -term truncated gpc Legendre expan-
sions ΘΛN in (5.10) satisfy

(5.23) ‖Θ−ΘΛN ‖L2(U,µ0(dy)) ≤ N−( 1
σ− 1

2 )‖(θν)‖#σ(F ;R) .

Likewise, for q = 1,∞ and for every N ∈ N, there exist sequences (ΛN )N∈N ⊂ F
of index sets (depending, in general, on σ, q and the data) whose cardinality does
not exceed N such that the N -term truncated Taylor sums (5.12) converge with rate
1/σ − 1, i.e.

(5.24) ‖Θ− TΛN‖Lq(U,µ0(dy)) ≤ N−( 1
σ−1)‖(τν)‖#σ(F ;R) .

Here, for q = ∞ the norm ‖ ◦ ‖L∞(U ;µ0) is the supremum over all y ∈ U .

6. Approximation of Expectations under the Posterior

Expectations under the posterior given data δ are deterministic, infinite dimen-
sional parametric integrals Z and Z ′ with respect to the prior measure µ0, i.e.
iterated integrals over the coordinates yj ∈ [−1, 1] against a countable product of
the uniform probability measures 1

2dyj . To render this practically feasible, numer-
ical evaluation of the conditional expectations

(6.1) ūδ = Eµδ [u] =

∫

y∈U
u(·, y)Θ(y)µ0(dy) ∈ X

and

(6.2) p̄δ = Eµδ [p] =

∫

y∈U
p(·, y)Θ(y)µ0(dy) ∈ V

is required. More generally, in the evaluation of the conditional expectation of some
(multilinear) functional φ(u) given the data δ, which takes the generic form

(6.3) φ(u)
δ
= Eµδ [φ(u)] =

∫

y∈U
φ(u(·, y))Θ(y)µ0(dy) ∈ S

and which takes values in a suitable state space S. We continue to concentrate
on the concrete choice φ(u) = G(u) = p so that S = V . With the techniques
developed here and with Corollary 4.8, analogous results can also be established
for expectations of m point correlations of G(u) as in (3.6).

The computationally most costly step in Bayesian inverse problems is the nu-
merical evaluation of the expectations (6.1) - (6.3). Assuming that the solution of
the forward problem (3.1) is only available approximately, these expectations need
only be evaluated to an accuracy commensurate with that of the forward solver.
One way of doing this is MC sampling of the posteriori density Θ: using N samples
of Θ, one approximates the expectations (6.1) - (6.3) by the corresponding sample
averages (with each “sample” of Θ requiring the solution of at least one forward
problem). Due to Lemma 5.1, the posteriori density has finite second moments
with respect to the prior, so that the convergence rate N−1/2 of the MC sample
averages towards the expectations (6.1) - (6.3) results.

Higher rates of convergence in terms of N may be obtained by exploting the
polynomial chaos approximation ideas introduced in the previous section. The first
option is to replace MC sampling by a sparse tensor numerical integration scheme
over U tailored to the regularity afforded by the analytic parameter dependence of
the posteriori density on y and of the integrands in (6.1) - (6.3). This approach is
not considered here. We refer to [1] for details and numerical experiments.
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We show here that the integrals (6.1) - (6.3) allow semianalytic evaluation in log-
linear complexity with respect to N , the number of terms in a polynomial chaos
approximation of the parametric solution of the forward problem (3.1), (2.4).

To this end, we proceed as follows: based on the assumption that N -term gpc
approximations of the parametric forward solutions p(x, y) of (3.1) is availabe, for
example by the algorithms in [3], we show that it is possible to construct separable
N -term approximations of the integrands in (6.1) - (6.3). The existence of such
an approximate posterior density which is “close” to Θ is ensured by Theorem 5.8,
provided the (unknown) input data u satisfies certain conditions. We prove that
sets ΛN ⊂ F of cardinality at most N which afford the truncation errors (5.23),
(5.24) can be found in log-linear complexity with respect to N and, second, that the
integrals (6.3) with the corresponding approximate posterior density can be evaluated
in such complexity and, third, we estimate the errors in the resulting conditional
expectations.

6.1. Assumptions and Notation.

Assumption 6.1. Given a draw u of the data, an exact forward solve of the gov-
erning equation (3.1) for this draw of data u is available at unit cost.

This assumption is made in order to simplify the exposition. All conclusions
remain valid if this assumption is relaxed to include an additional Finite Element
discretization error; we refer to [1] for details. We shall use the notion of monotone
sets of multiindices.

Definition 6.2. A subset ΛN ⊂ F of finite cardinality N is called monotone if
(M1) {0} ⊂ ΛN and if (M2) ∀0 7= ν ∈ ΛN it holds that ν − ej ∈ ΛN for all j ∈ Iν ,
where ej ∈ {0, 1}J denotes the index vector with 1 in position j ∈ J and 0 in all
other positions i ∈ J\{j}.

Next, will assume that a stochastic Galerkin approximation of the entire forward
map of the parametric, deterministic solution with certain optimality properties is
available.

Assumption 6.3. Given a parametric representation (3.7) of the unknown data u,
a stochastic Galerkin approximation pN ∈ PΛN (U, V ) of the exact forward solution
of the governing equation (3.1) is available. Here the set ΛN ⊂ F is a finite subset of
“active” gpc Legendre coefficients whose cardinality does not exceed N . In addition,
we assume that the gpc approximation pN ∈ PΛN (U, V ) is quasi optimal in terms of
the best N -term approximation, i.e. there exists C ≥ 1 independent of N such that

(6.4) ‖p− pN‖L2(U,µ0;V ) ≤ CN−(1/σ−1/2)‖(θν)‖#σ(F) .

Here 0 < σ ≤ 1 denotes the summability exponent in Assumption 5.2. Note that
best N -term approximations satisfy (6.4) with C = 1; we may refer to (6.4) as a
quasi best N -term approximation property.

This best N -term convergence rate of sGFEM approximations follows from re-
sults in [5, 6], but these results do not indicate as to how sequences of sGFEM
approximations which converge with this rate are actually constructed. We refer
to [7, 3] and the references there for details on such sGFEM solvers, also including
space discretizations. In what follows, we work under Assumptions 6.1, 6.3.
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6.2. Best N-term based approximate conditional expectation. We first ad-
dress the rates that can be achieved by the (a-priori not accesssible) best N -term
approximations of the posterior density Θ in Theorem 5.8. These rates serve as
benchmark rates to be achieved by any constructive procedure.

To derive these rates, we let ΘN = ΘΛN denote the best N -term Legendre
approximations of the posterior density Θ in Theorem 5.8. With (6.4), we estimate

‖p̄δ − p̄δN‖V =

∥
∥
∥
∥

∫

U
(Θp−ΘNpN )µ0(dy)

∥
∥
∥
∥
V

=

∥
∥
∥
∥

∫

U
((Θ−ΘN )p+ΘN (p− pN))µ0(dy)

∥
∥
∥
∥
V

≤
∫

U
|Θ−ΘN |‖p‖V µ0(dy) + ‖ΘN‖L2(U)‖p− pN‖L2(U,µ0;,V )

≤ ‖Θ−ΘN‖L2(U)‖p‖L2(U,µ0;V ) + ‖ΘN‖L2(U)‖p− pN‖L2(U,µ0;V )

≤ CN−( 1
p−

1
2 ) .

With TN = TΛN denoting a best N -term Taylor approximation of Θ in Theorem
5.8 we obtain in the same fashion the bound

‖p̄δ − p̄δN‖V =

∥
∥
∥
∥

∫

U
(Θp− TNpN )µ0(dy)

∥
∥
∥
∥
V

=

∥
∥
∥
∥

∫

U
((Θ− TN )p+ TN (p− pN ))µ0(dy)

∥
∥
∥
∥
V

≤
∫

U
|Θ− TN |‖p‖V µ0(dy) + ‖TN‖L∞(U)‖p− pN‖L1(U,µ0;V )

≤ ‖Θ− TN‖L1(U,µ0)‖p‖L∞(U,µ0;V ) + ‖TN‖L∞(U)‖p− pN‖L2(U,µ0;V )

≤ CN−( 1
p
−1) .

We now address question ii) raised at the beginning of Section 5.2, i.e. the design
of practical algorithms for the construction of sequences (ΛN )N∈N ⊂ F such that the
best-N term convergence rates asserted in Theorem 5.8 are attained. We develop
the approximation in detail for (6.2), and state the results for (6.1), (6.3) (whose
proof is verbatim the same) later.

6.3. Constructive N-term Approximation of the Potential Φ. We show
that, from the quasi best N -term optimal stochastic Galerkin approximation uN ∈
PΛN (U, V ) and, in particular, from its (monotone) index set ΛN , a corresponding
N -term approximation ΦN of the potential Φ in (2.3) can be computed. We start
by observing that for monotone index sets ΛN ⊂ F properties (M1) and (M2) in
Definition 6.2 imply

(6.5) PΛN (U) = span{yν : ν ∈ ΛN} = span{Lν : ν ∈ ΛN} .

We denote the observation corresponding to the stochastic Galerkin approximation
of the system response pN by GN , i.e. the mapping

(6.6) U = y 1→ GN (u)|u=ā+
P

j∈J
yjψj

= (O ◦GN )(u)|u=ā+
P

j∈J
yjψj

where GN (u) = pN ∈ PΛN (U ;V ). By the linearity and boundedness of the observa-
tion functionalO(·) then GN ∈ PΛN (U ;RK); in the following, we assume for simplic-
ity K = 1 so that GN |u=ā+

P

j∈J
yjψj

∈ PΛN (U). We then denote by U = u 1→ Φ the

potential in (2.3) and by ΦN the potential of the stochastic Galerkin approximation
GN of the forward observation map. For notational convenience, we suppress the
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explicit dependence on the data δ in the following and assume that the Gaussian
covariance Γ of the observational noise η in (2.1) is the identity: Γ = I. Then, for
every y ∈ U , with u = ā+

∑

j∈J
yjψj the exact potential Φ and the potential ΦN

based on N -term approximation pN of the forward solution take the form

(6.7) Φ(y) =
1

2
(δ − G(u))2, ΦN (y) =

1

2
(δ − GN (u))2 .

By Lemma 4.6, these potentials admit extensions to holomorphic functions of the
variables z ∈ Sρ in the strip Sρ defined in (4.20). Since ΛN is monotone, we may
write pN ∈ PΛN (U, V ) and GN ∈ PΛN (U) in terms of their (uniquely defined) Taylor
expansions about y = 0:

(6.8) GN (u) =
∑

ν∈ΛN

gνy
ν .

This implies, for every y ∈ U , ΦN (y) = δ2 − 2δGN (y) + (GN (y))2 where

(GN (y))2 =
∑

ν,ν′∈ΛN

gνgν′yν+ν′

∈ PΛN+ΛN (U)

has a higher polynomial degree and possibly O(N2) coefficients. Therefore, an exact
evaluation of a gpc approximation of the potential ΦN might incur loss of linear
complexity with respect to N . To preserve log-linear in N complexity, we perform
a truncation [ΦN ]#N of ΦN , thereby introducing an additional error which, as we
show next, is of the same order as the error of gpc approximation of the system’s
response. The following Lemma is stated in slightly more general form than is
presently needed, since it will also be used for the error analysis of the posterior
density ahead.

Lemma 6.4. Consider two sequences (gν) ∈ %σ(F), (g′ν′) ∈ %σ(F ′), 0 < σ ≤ 1.
Then

(gνg
′
ν′)(ν,ν′)∈F×F ′ ∈ %σ(F × F ′)

and there holds

(6.9) ‖(gνg′ν′)‖p#p(F×F ′) ≤ ‖(gν)‖σ#σ(F)‖(g′ν′)‖σ#σ(F ′) .

Moreover, a best N -term truncation [◦]# of the corresponding polynomials, defined
by

(6.10)





(

∑

ν∈ΛN

gνy
ν

)



∑

ν′∈Λ′

N

g′ν′yν
′









#N

:=
∑

(ν,ν′)∈Λ1
N

gνg
′
ν′yν+ν′

∈ PΛ1
N
(U)

where Λ1
N ⊂ F × F ′ is a set of index pairs (ν, ν′) ∈ F × F ′ of at most N largest

(in absolute value) products gνgν′ , has a pointwise error in U bounded by

(6.11) N−( 1
σ−1)‖(gν)‖#σ(F)‖(g′ν′)‖#σ(F) .

Proof. We calculate

‖gνg′ν′‖σ#σ(F×F) =
∑

ν∈F

∑

ν′∈F

|gνg′ν′ |σ =
∑

ν∈F

(

|gν |σ
∑

ν′∈F

|g′ν′ |σ
)

= ‖(gν)‖σ#σ(F)‖(g′ν′)‖σ#σ(F) .
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Since (gνg′ν′) ∈ %σ(F × F), we may apply (5.9) with (6.9) as follows.
∥
∥
∥
∥
∥
∥
∥





∑

ν∈ΛN

∑

ν′∈Λ′

N

gνg
′
ν′yν

′+ν



−





∑

ν∈ΛN

∑

ν′∈Λ′

N

gνg
′
ν′yν

′+ν





#N

∥
∥
∥
∥
∥
∥
∥
L∞(U)

≤
∑

(ν,ν′)∈F×F\Λ1
N

|gνg′ν′ | ≤ N−( 1
σ−1)‖(gν)‖#σ(F)‖(g′ν′)‖#σ(F) .

!

Applying Lemma 6.4 with F ′ = F and with (g′ν′)ν′∈F ′ = (gν)ν∈F , we find

(6.12)
sup
y∈U

∣
∣
∣ΦN (y)− [ΦN(y)]#N

∣
∣
∣ = sup

y∈U

∣
∣
∣(GN (y))2 −

[

(GN (y))2
]

#N

∣
∣
∣

≤ N−( 1
σ−1)‖(gν)‖2#σ(F) .

6.4. Constructive N-term approximation of Θ = exp(−Φ). With the N -term
approximation [ΦN ]#N , we now define the constructive approximation ΘN of the
posterior density as follows. We continue to work under Assumption 6.3, i.e. that
N -term truncated gpc-approximations pN of the forward solution p(y) = G(u(y)) of
the parametric problem are available which satisfy (6.4). For an integer K(N) ∈ N

to be selected below, we define

(6.13) ΘN =
K(N)
∑

k=0

(−1)k

k!

[

([ΦN ]#N ])k
]

#N
.

We then estimate (all integrals are understood with respect to µ0(dy))

‖Θ−ΘN‖L1(U) =

∥
∥
∥
∥
∥
∥

e−Φ − e−[ΦN ]#N + e−[ΦN ]#N −
K(N)
∑

k=0

(−1)k

k!

[

([ΦN ]#N ])k
]

#N

∥
∥
∥
∥
∥
∥
L1(U)

≤
∥
∥
∥e−Φ − e−[ΦN ]#N

∥
∥
∥
L1(U)

+

∥
∥
∥
∥
∥
∥

e−[ΦN ]#N −
K(N)
∑

k=0

(−1)k

k!

[

([ΦN ]#N ])k
]

#N

∥
∥
∥
∥
∥
∥
L1(U)

=: I + II .

We estimate both terms separately.
For term I, we observe that due to x = [ΦN ]#N − Φ ≥ 0 for sufficiently large

values of N , it holds 0 ≤ 1 − e−x ≤ x, so that by the triangle inequality and the
bound (6.12)

I =
∥
∥
∥e−Φ(1− eΦ−[ΦN ]#N )

∥
∥
∥
L1(U)

≤ ‖Θ‖L∞(U)

∥
∥
∥1− e−([ΦN ]#N−Φ)

∥
∥
∥
L1(U)

≤ ‖Θ‖L∞(U) ‖Φ− [ΦN ]#N‖L1(U) ≤ C
(

‖Φ− ΦN‖L1(U) + ‖ΦN − [ΦN ]#N‖L1(U)

)

≤ ‖p− pN‖L2(U,V ) + CN−( 1
xσ−1) ≤ CN−( 1

σ−1)

where C depends on δ, but is independent of N . In the preceding estimate, we used
that Φ > 0 and 0 ≤ Θ = exp(−Φ) < 1 imply

‖Φ− ΦN‖L1(U) ≤ ‖O‖V ∗‖p− pN‖L2(U,V )

(

2|δ|+ ‖O‖V ∗‖p+ pN‖L2(U,V )

)

.
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We turn to term II. Using the (globally convergent) series expansion of the expo-
nential function, we may estimate with the triangle inequality

(6.14) II ≤
∥
∥RK(N)

∥
∥
L1(U)

+

K(N)
∑

k=0

1

k!

∥
∥
∥([ΦN ]#N)k −

[

([ΦN ]#N)k
]

#N

∥
∥
∥
L1(U)

where the remainder RK(N) is
(6.15)

RK(N) := e−[ΦN ]#N −
K(N)
∑

k=0

(−1)k

k!
([ΦN ]#N ])k =

∞
∑

k=K(N)+1

(−1)k

k!
([ΦN ]#N ])k .

To estimate the second term in the bound (6.14) we claim
(6.16)

∀k ∈ N, N ∈ N :
∥
∥
∥([ΦN ]#N)k −

[

([ΦN ]#N)k
]

#N

∥
∥
∥
L∞(U)

≤ N−( 1
σ−1)‖(gν)‖2kσ#σ(F) .

We prove (6.16) for arbitrary, fixed N ∈ N by induction with respect to k. For k =
0, 1, the bound is obvious. Assume now that the bound has been established for all
powers up to some k ≥ 2. Writing ([ΦN ]#N )k+1 = ([ΦN ]#N )k[ΦN ]#N and denoting
the sequence of Taylor coefficients of [ΦN ]k by g′ν′ with ν′ ∈ (F × F)k , F2k, we
note that by k-fold application of (6.9) it follows ‖(g′ν′)‖σ#σ(F2k) ≤ ‖(gν)‖2kσ#σ(F).

By the definition of [ΦN ]#N , the same bound also holds for the coefficients of
([ΦN ]#N)k, for every k ∈ N. We may therefore apply Lemma 6.4 to the product
([ΦN ]#N)k[ΦN ]#N and obtain the estimate (6.16) with k + 1 in place of k from
(6.11). Inserting (6.16) into (6.14), we find
(6.17)
K(N)
∑

k=0

1

k!

∥
∥
∥([ΦN ]#N)k −

[

([ΦN ]#N)k
]

#N

∥
∥
∥
L1(U)

≤ N−( 1
σ−1)

K(N)
∑

k=0

1

k!
‖(gν)‖2kσ#σ(F)

≤ N−( 1
σ−1) exp(‖(gν)‖2σ#σ(F)) .

In a similar fashion, we estimate the remainder RK(N) in (6.14): as the truncated
Taylor expansion [ΦN ]#N converges pointwise to ΦN and to Φ > 0, for sufficiently
large N , we have [ΦN ]#N > 0 for all y ∈ U , so that the series (6.15) is alternating
and converges pointwise. Hence its truncation error is bounded by the leading term
of the tail sum:

(6.18) ‖RK(N)‖L∞(U) ≤
‖[ΦN ]#N‖K(N)+1

L∞(U)

(K(N) + 1)!
≤

‖(gν)‖2(K(N)+1)
#1(F)

(K(N) + 1)!

Now, given N sufficiently large, we chooseK(N) so that the bound (6.18) is smaller
than (6.17), which leads with Stirling’s formula in (6.18) to the requirement

(6.19) (K + 1) ln

(
Ae

K

)

≤ lnB − (
1

σ
− 1) lnN

for some constants A,B > 0 independent of K and N (depending on p and on
(gν)). One verifies that (6.19) is satisfied by selecting K(N) , lnN .

Therefore, under Assumptions 6.1 and 6.3, we have shown how to construct
an N -term approximate posterior density ΘN by summing K = O(lnN) many
terms in (6.13). The approximate posterior density has at most O(N) nontrivial
terms, which can be integrated exactly against the separable prior µ0 over U in
complexity that behaves log-linearly with respect to N , under Assumptions 6.1,
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6.3: the construction of ΘN requires K-fold performance of the [·]#N -truncation
operation in (6.10) of products of Taylor expansions, with each factor having at
most N nontrivial entries, amounting altogether to

O(KN lnN) = O(N(lnN)2)

operations.

7. Conclusion

So far, our results on sparsity and complexity of the the evaluation of conditional
expectations of the unknown response p(x) to the system’s input u(x), given the
data δ, were based on the assumption that exact system responses p, for given
u, were available. In computational practice, however, the response p given u is
not exactly available, but only approximations of it by means of, for example, a
Finite Element discretization. Based on the results in the present work we will, in
[1], present a corresponding analysis including the error due to a Finite Element
discretization of the forward problem, under slightly stronger hypotheses on the
data u and f , however.

Next, we assumed in the present paper that the observation functional O(·) ∈ V ∗

which precludes, in space dimensions 2 and higher, point observations. Once again,
results which are completely analogous to those in the present paper hold also for
such O, albeit again under stronger hypotheses on u and on f . This will also be
elaborated on in [1].

As indicated in [5, 6, 7, 3], the gpc parametrization of the laws of these quantities
allow a choice of discretization of each gpc coeffcient of the quantity of interest
by sparse tensorization of hierarchic bases in the physical domain D and the gpc
basis functions Lν(y) resp. yν so that the additional discretization error incurred
by the discretization in D can be kept of the order of the gpc truncation error
with an overall computational complexity which does not exceed that of a single,
deterministic solve of the forward problem. These issues will be addressed in [1] as
well.
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