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Abstract

We derive an adaptive solver for random boundary value problems, building
on adaptive wavelet algorithms for non-elliptic problems. Replacing wavelets by
polynomials of the random parameters leads to a modular solver for the parameter
dependence, which may be combined with any discretization on the spatial domain.
We show optimality properties of this solver, and present numerical computations,
including a comparison of various adaptive methods.

Introduction

Stochastic Galerkin methods approximate the solution of a boundary value problem
depending on random data by a Galerkin projection onto a finite dimensional space of
random fields. This requires the solution of a single coupled system of deterministic
equations for the coefficients of the Galerkin projection with respect to a predefined set
of basis functions on the parameter domain, see [DBO01, XK02, BTZ04, WK05, MK05,
FST05, WK06, TS07, BS09, BAS10].

The main difficulty in applying these methods is the construction of suitable spaces in
which to compute approximate solutions. In [Git11b], we suggest an adaptive method
for random elliptic boundary value problems, using techniques from the adaptive
wavelet methods [CDD01, GHS07, DSS09].

We extend this approach to more general equations, building on ideas from the
adaptive wavelet method [CDD02]. In place of wavelets, we use an orthonormal
polynomial basis on the parameter domain. The coefficients of the random solution with
respect to this basis are deterministic functions on the physical domain. An arbitrary
discretization can be used to approximate these; our method can be combined with any
solver for the deterministic counterpart of the random boundary value problem.

The resulting algorithm is quite different from that in [Git11b]. Instead of comput-
ing Galerkin projections on a sequence of subspaces, an iterative method is applied

∗Research supported in part by the Swiss National Science Foundation grant No. 200021-120290/1.
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directly to the full equation. Individual substeps of this iteration, such as applica-
tions of the stochastic operator, are replaced by approximate counterparts, realized by
suitable adaptive algorithms. These keep track of errors entering the computation, en-
suring convergence of the algorithm, and providing an upper bound on the error of the
approximate solution.

In Section 1, we present three random boundary value problems that can be solved by
our method: an elliptic equation, a saddle point problem, and a parabolic equation. An
abstract equation is introduced in Section 2, for which we derive a weak formulation.
We construct an orthonormal polynomial basis, and recast the equation as a bi-infinite
operator matrix equation for the coefficients of the solution with respect to this basis.

We present the first version of our adaptive solver in Section 3, which is essentially a
perturbed block Jacobi method. For symmetric probability distributions, we suggest a
method for reducing the computational cost while maintaining the same accuracy.

In Section 4, we add a coarsening step the the initial solver. This prevents unimportant
coefficients from accumulating in the approximate solution. We show an optimality
property for this method.

Finally, in Section 5, we apply these adaptive solvers to a simple model problem.
Numerical computations demonstrate the convergence of the algorithms, and compare
them to the adaptive method from [Git11b] and the sparse tensor product construction
in [BAS10]. We discuss the empirical convergence behavior in the light of the theoretical
approximation results in [CDS10b, CDS10a].

1 Random Boundary Value Problems

1.1 The Isotropic Diffusion Equation

As an illustrative example, we consider the isotropic diffusion equation on a bounded
Lipschitz domain G ⊂ Rd with homogeneous Dirichlet boundary conditions. For any
uniformly positive a ∈ L∞(G) and any f ∈ L2(G), we have

−∇ · (a(x)∇u(x)) = f (x) , x ∈ G ,

u(x) = 0 , x ∈ ∂G .
(1.1)

We view f as fixed, but allow a to vary.
We model the permeability a as a L∞(G)-valued random variable ã on a probability

space (Ω,F ,P), which we assume to be uniformly bounded from above and away from
0,

0 < ǎ ≤ ã(ω, x) ≤ â < ∞ ∀x ∈ G , ∀ω ∈ Ω . (1.2)

Let ā ∈ L∞(G) be some uniformly positive deterministic approximation of ã. For exam-
ple, ā can be the mean field

ā : G→ R , ā(x) !

∫

Ω
ã(ω, x) dP(ω) , (1.3)
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or simply a constant ā ! (â + ǎ)/2, ā !
√

âǎ, or ā ! 1.
Let (ϕm)∞m=1 be a frame of L2(G) with dual frame (ϕ∗m)∞m=1, which we interpret also as

a sequence in L2(G). Define the random variables

Ym(ω) !
1

αm

∫

G
(ã(ω, x) − ā(x))ϕ∗m(x) dx , m ∈N . (1.4)

Note that Ym is bounded due to Hölder’s inequality and (1.2). We assume that αm is
chosen such that Ym(Ω) ⊂ [−1, 1] for all m ∈N. For example, this holds for

αm ! sup
ω∈Ω
‖ã(ω) − ā‖L∞(G)

∥

∥

∥ϕ∗m
∥

∥

∥

L1(G)
, m ∈N . (1.5)

Abbreviating am ! αmϕm, we have

ã(ω, x) = ā(x) +
∞
∑

m=1

Ym(ω)am(x) (1.6)

for all ω ∈ Ωwith convergence in L2(G). Let Γ ! [−1, 1]∞ and

a(y, x) ! ā(x) +
∞
∑

m=1

ymam(x) , y = (ym)∞m=1 ∈ Γ . (1.7)

Then ã(ω, x) = a(Y(ω), x) for all ω ∈ Ω, where Y ! (Ym)∞m=1.
We define the parametric operator

A(y) : H1
0(G)→ H−1(G) , v ,→ −∇ ·

(

a(y)∇v
)

, y ∈ Γ . (1.8)

This leads to the parametric operator equation

A(y)u(y) = f ∀y ∈ Γ . (1.9)

The solution of the random diffusion equation is u(Y(ω)).
Due to linearity, we can expand A(y) as

A(y) = D + R(y) , R(y) !
∞
∑

m=1

ymRm ∀y ∈ Γ , (1.10)

for

D ! A0(ā) : H1
0(G)→ H−1(G) , v ,→ −∇ · (ā∇v) ,

Rm ! A0(am) : H1
0(G)→ H−1(G) , v ,→ −∇ · (am∇v) , m ∈N .

Note that ‖Rm‖H1
0
(G)→H−1(G) ≤ ‖am‖L∞(G), and thus convergence in (1.10) and (1.7) is

assured if (‖am‖L∞(G))
∞
m=1

is summable.
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1.2 The Stokes Equation

Other boundary value problems with random coefficients have a similar structure as
the isotropic diffusion equation discussed above. We consider the Stokes equation

−∇ · (a(x)∇u(x)) − ∇p(x) = f (x) , x ∈ G ,

∇ · u(x) = 0 , x ∈ G ,

u(x) = 0 , x ∈ ∂G ,
(1.11)

with a random kinematic viscosity a(x), which we expand analogously to Section 1.1 as

a(y, x) ! ā(x) +
∞
∑

m=1

ymam(x) , y = (ym)∞m=1 ∈ Γ = [−1, 1]∞ . (1.12)

We define the parametric operator

A(y) : (H1
0(G))d×L2

∗ (G)→ (H−1(G))d×L2
∗ (G) , (v, q) ,→

(

−∇ · (a(y)∇v) − ∇q,∇ · v
)

(1.13)

for y ∈ Γ. Then the Stokes equation with viscosity (1.12) is

A(y)(u(y), q) = ( f , 0) ∀y ∈ Γ . (1.14)

The operator A(y) can be expanded as in (1.10) for the deterministic operators

D : (H1
0(G))d × L2

∗ (G)→ (H−1(G))d × L2
∗ (G) , (v, q) ,→

(

−∇ · (ā∇v) − ∇q,∇ · v
)

,

Rm : (H1
0(G))d × L2

∗ (G)→ (H−1(G))d × L2
∗ (G) , (v, q) ,→ (−∇ · (am∇v), 0) , m ∈N .

Note that D is boundedly invertible, assuming that ā is bounded and uniformly positive,
and Rm is bounded with ‖Rm‖ ≤ ‖am‖L∞(G).

1.3 The Heat Equation

As a third example, we consider a parabolic version of the isotropic diffusion equation,

∂tu(t, x) − ∇ · (a(x)∇u(x)) = f (x) , (t, x) ∈ [0,T] × G ,

u(t, x) = 0 , (t, x) ∈ [0,T] × ∂G ,
u(0, x) = u0(x) , x ∈ G ,

(1.15)

with a random diffusion coefficient of the form

a(y, t, x) ! ā(t, x) +
∞
∑

m=1

ymam(t, x) , y = (ym)∞m=1 ∈ Γ = [−1, 1]∞ . (1.16)

Let I ! [0,T] and

V ! L2
(

I; H1
0(G)
)

∩H1
(

I; H−1(G)
)

,

W ! L2
(

I; H1
0(G)
)

× L2(G) .
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We define the parametric operator

A(y) : V →W∗ , v ,→
(

∂tv − ∇ · (a(y)∇v), v(0)
)

, y ∈ Γ . (1.17)

Then the heat equation (1.15) can be recast as

A(y)u(y) = ( f, u0) ∀y ∈ Γ . (1.18)

As in the previous examples, A(y) can be expanded as (1.10) with deterministic operators

D : V →W∗ , v ,→ (∂tv − ∇ · (ā∇v), v(0)) ,

Rm : V →W∗ , v ,→ (−∇ · (am∇v), 0) , m ∈N .

Again, D is boundedly invertible by [SS09, Theorem 5.1] if ā is bounded and uniformly
positive, and the operators Rm satisfy ‖Rm‖V→W∗ ≤ ‖am‖L∞(I×G).

2 Abstract Setting

2.1 Pathwise Definitions

Let K ∈ {R,C} and let V and W be separable Hilbert spaces over K. We denote by W∗

the space of all continuous antilinear functionals on W. Furthermore, L(V,W∗) is the
Banach space of bounded linear maps from V to W∗.

We consider operator equations depending on a parameter in Γ = [−1, 1]∞. Given

A : Γ→ L(V,W∗) and f : Γ→ W∗ , (2.1)

we wish to determine

u : Γ→ V , A(y)u(y) = f (y) ∀y ∈ Γ . (2.2)

Motivated by (1.10), we consider operators of the form

A(y) = D + R(y) ∀y ∈ Γ , (2.3)

where D ∈ L(V,W∗) and

R(y) =
∞
∑

m=1

ymRm ∀y = (ym)∞m=1 ∈ Γ , (2.4)

as in e.g. [BAS10, BS09, CDS10b, CDS10a, TS07]. Here, each Rm is in L(V,W∗). We
assume (Rm)m ∈ '1(N;L(V,W∗)), and we assume without loss of generality that the
sequence (‖Rm‖V→W∗)

∞
m=1 is nonincreasing.

A simple Neumann series argument shows existence and uniqueness of u(y) for all
y ∈ Γ. This uses the assumption that D is boundedly invertible, and

∥

∥

∥D−1R(y)
∥

∥

∥

V→V
≤ γ < 1 ∀y ∈ Γ . (2.5)
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Then A(y) can be decomposed as

A(y) = D(idV +D−1R(y)) , y ∈ Γ , (2.6)

and consequently, using a Neumann series inL(V) to invert the second factor,

A(y)−1 =















∞
∑

n=0

(−D−1R(y))n















D−1 , y ∈ Γ . (2.7)

In particular, (2.5) implies
∥

∥

∥A(y)
∥

∥

∥

V→W∗
≤ ‖D‖V→W∗ (1 + γ) ∀y ∈ Γ , (2.8)

∥

∥

∥A(y)−1
∥

∥

∥

W∗→V
≤

1

1 − γ
∥

∥

∥D−1
∥

∥

∥

W∗→V
∀y ∈ Γ . (2.9)

2.2 Weak Formulation

Let π be a probability measure on the parameter domain Γwith Borel σ-algebraB(Γ). In
the examples from Section 1, π could be the image of the physical probability P under
the map Y, or it may be any other probability measure. We derive a weak formulation
of (2.2) by integrating over Γwith respect to π.

Let the map Γ / y ,→ A(y)v(y) be measurable for any measurable v : Γ→ V. Then due
to (2.8),

A : L2
π(Γ; V)→ L2

π(Γ; W∗) , v ,→ [y ,→ A(y)v(y)] , (2.10)

is well-defined and continuous with norm at most (1+γ) ‖D‖V→W∗ . We assume also that
f ∈ L2

π(Γ; W∗).
We define the multiplication operators

Km : L2
π(Γ)→ L2

π(Γ) , v(y) ,→ ymv(y) , m ∈N . (2.11)

Since ym is real and
∣

∣

∣ym

∣

∣

∣ is less than one, Km is symmetric and has norm at most one.

By separability of V, the Lebesgue–Bochner space L2
π(Γ; V) is isometrically isomorphic

to the Hilbert tensor product L2
π(Γ) ⊗ V, and similarly for W∗ in place of V. Using these

identifications, we expandA asA = D + R with

D ! idL2
π(Γ) ⊗D and R !

∞
∑

m=1

Km ⊗ Rm . (2.12)

This sum converges inL(L2
π(Γ; V), L2

π(Γ; W∗)) by the assumption (Rm)m ∈ '1(N;L(V,W∗)).

Lemma 2.1.
∥

∥

∥D−1R
∥

∥

∥

L2
π(Γ;V)→L2

π(Γ;V)
≤ γ < 1.

Proof. We note thatD is invertible withD−1 = idL2
π(Γ) ⊗D−1, and as in (2.10), (D−1Rv)(y) =

D−1R(y)v(y) for all v ∈ L2
π(Γ; V) and y ∈ Γ. Therefore, using (2.5), for all v ∈ L2

π(Γ; V),

∥

∥

∥D−1Rv
∥

∥

∥

2

L2
π(Γ;V)

=

∫

Γ

∥

∥

∥D−1R(y)v(y)
∥

∥

∥

2

V
dπ(y) ≤

∫

Γ
γ2
∥

∥

∥v(y)
∥

∥

∥

2

V
dπ(y) ≤ γ2 ‖v‖2

L2
π(Γ;V)

. !
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Proposition 2.2. The operatorA from (2.10) is boundedly invertible, (A−1g)(y) = A(y)−1g(y)
for any g ∈ L2

π(Γ; W∗), and

∥

∥

∥A−1
∥

∥

∥

L2
π(Γ;W∗)→L2

π(Γ;V)
≤

1

1 − γ
∥

∥

∥D−1
∥

∥

∥

W∗→V
. (2.13)

Proof. As in (2.6), we have
A = D(idL2

π(Γ;V) +D
−1R) .

Therefore, by a Neumann series argument using Lemma 2.1, A is invertible, and A−1

can be represented as

A−1 =















∞
∑

n=0

(−D−1R)n















D−1 .

Since (D−1g)(y) = D−1g(y) by definition, and (D−1Rv)(y) = D−1R(y)v(y), this is just the
Neumann series representation of A(y)−1 from (2.7). The estimate (2.13) follows from
Lemma 2.1. !

Corollary 2.3. The solution u of (2.2) is in L2
π(Γ; V), and u is the unique element of this space

satisfying
Au = f . (2.14)

The operator equation (2.14) in L2
π(Γ; W∗) can be reformulated as

∫

Γ

〈

A(y)u(y),w(y)
〉

dπ(y) =

∫

Γ

〈

f (y),w(y)
〉

dπ(y) ∀w ∈ L2
π(Γ; W) . (2.15)

2.3 Orthonormal Polynomial Basis

In order to construct an orthonormal polynomial basis of L2
π(Γ), we assume that π is a

product measure. Let

π =
∞
⊗

m=1

πm (2.16)

for probability measuresπm on ([−1, 1],B([−1, 1])); see e.g. [Bau02, Section 9] for a general
construction of infinite products of probability measures. We assume for simplicity that
the support of πm in [−1, 1] has infinite cardinality.

For all m ∈ N, let (Pm
n )∞n=0 be an orthonormal polynomial basis of L2

πm
([−1, 1]), with

deg Pm
n = n. Such a basis is given by the three term recursion Pm

−1
! 0, Pm

0 ! 1 and

βm
n Pm

n (ξ) ! (ξ − αm
n−1)Pm

n−1(ξ) − βm
n−1Pm

n−2(ξ) , n ∈N , (2.17)

with

αm
n !

∫ 1

−1
ξPm

n (ξ)2 dπm(ξ) and βm
n !

cm
n−1

cm
n
, (2.18)

where cm
n is the leading coefficient of Pm

n , βm
0 ! 1, and Pm

n is chosen as normalized in

L2
πm

([0, 1]). This basis is unique e.g. if cm
n is chosen to be positive.

7



We define the set of finitely supported sequences inN0 as

Λ !
{

ν ∈NN0 ; # supp ν < ∞
}

, (2.19)

where the support is defined by

supp ν ! {m ∈N ; νm " 0} , ν ∈NN0 . (2.20)

Then countably infinite tensor product polynomials are given by

P ! (Pν)ν∈Λ , Pν !
∞
⊗

m=1

Pm
νm
, ν ∈ Λ . (2.21)

Note that each of these functions depends on only finitely many dimensions,

Pν(y) =
∞
∏

m=1

Pm
νm

(ym) =
∏

m∈supp ν

Pm
νm

(ym) , ν ∈ Λ , (2.22)

since Pm
0 = 1 for all m ∈N.

By e.g. [Git11c, Theorem 2.8], P is an orthonormal basis of L2
π(Γ). By Parseval’s identity,

this is equivalent to the statement that the map

T : '2(Λ)→ L2
π(Γ) , (cν)ν∈Λ ,→

∑

ν∈Λ
cνPν , (2.23)

is a unitary isomorphism. The inverse of T is

T−1 = T∗ : L2
π(Γ)→ '2(Λ) , g ,→

(
∫

Γ
g(y)Pν(y) dπ(y)

)

ν∈Λ
. (2.24)

2.4 Bi-Infinite Operator Matrix Equation

We use the isomorphism T from (2.23) to recast the weak stochastic operator equation
(2.14) as an equivalent discrete operator equation. Since T is a unitary map from '2(Λ) to
L2
π(Γ), the tensor product operator T ⊗ idV is an isometric isomorphism from '2(Λ; V) to

L2
π(Γ; V). By definition, v ∈ L2

π(Γ; V) and v = (vµ)µ∈Λ ∈ '2(Λ; V) are related by v = T⊗idV v
if

v(y) =
∑

µ∈Λ
vµPµ(y) or vµ =

∫

Γ
v(y)Pµ(y) dπ(y) ∀µ ∈ Λ , (2.25)

and either of these properties implies the other. The series in (2.25) converges uncondi-
tionally in L2

π(Γ; V), and the integral can be interpreted as a Bochner integral in V. We
abbreviate TV ! T ⊗ idV and TW ! T ⊗ idW.

Let A ! T∗WATV and f ! T∗W f . Then u = TVu for u ∈ '2(Λ; V) with

Au = f (2.26)

8



due to (2.14).
By definition, A is a boundedly invertible linear map from '2(Λ; V) to '2(Λ; W∗). It can

be interpreted as a bi-infinite operator matrix

A = [Aνµ]ν,µ∈Λ , Aνµ : V →W∗ , (2.27)

with entries

Aµµ = D +
∞
∑

m=1

αm
µm

Rm , µ ∈ Λ ,

Aνµ = β
m
max(νm,µm)Rm , ν, µ ∈ Λ , ν − µ = ±εm ,

(2.28)

and Aνµ = 0 otherwise, where εm denotes the Kronecker sequence with (εm)n = δmn. If
πm is a symmetric measure on [−1, 1] for all m ∈ N, then αm

n = 0 for all m and n, and
thus Aνν = D. Similarly, the operator R ! T∗WRTV can be interpreted as a bi-infinite
operator matrix R = [Rνµ] with Rµµ = Aµµ − D and Rνµ = Aνµ for ν " µ. The operator
D ! T∗WDTV is just the diagonal operator matrix with D on the diagonal. We refer to
[Git11c, Git11a] for details.

Let Km = T∗KmT ∈ L('2(Λ)). Due to the three term recursion (2.17),

(Kmc)µ = β
m
µm+1cµ+εm + α

m
µm

cµ + β
m
µm

cµ−εm , µ ∈ Λ , (2.29)

for c = (cµ)µ∈Λ ∈ '2(Λ), where cµ ! 0 if µm < 0 for any m ∈ N. Furthermore, K∗m = Km

and ‖Km‖'2(Λ)→'2(Λ) ≤ 1. Using the maps Km, R can be written succinctly as

R =
∞
∑

m=1

Km ⊗ Rm , (2.30)

with unconditional convergence inL('2(Λ; V), '2(Λ; W∗)).

3 A General Iterative Procedure

3.1 Adaptive Application of the Stochastic Operator

Following [Git11b], we construct a sequence of approximations of R by truncating the
series (2.30). For all M ∈N, let

R[M] !

M
∑

m=1

Km ⊗ Rm , (3.1)

and R[0] ! 0. For all M ∈N, let ēRRR,M be given such that

∥

∥

∥R − R[M]

∥

∥

∥

'2(Λ;V)→'2(Λ;W∗)
≤ ēRRR,M . (3.2)
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For example, these bounds can be chosen as

ēRRR,M !

∞
∑

m=M+1

‖Rm‖V→W∗ . (3.3)

We assume that (ēRRR,M)∞M=0 is nonincreasing and converges to 0, and also that the sequence
of differences (ēRRR,M − ēRRR,M+1)∞M=0 is nonincreasing.

We consider the approximation of a vector w ∈ '2(Λ) by a sum w[1] + · · · + w[P] for
sections w[p] ! w|Λp , p = 1, . . . ,P, with mutually disjoint sets Λp ⊂ Λ. The section w[1]

can be thought of as containing the largest elements of w, w[2] the next largest, and so
on.

Such a partitioning can be constructed by the approximate sorting algorithm

BucketSort[w, ε] ,→
[

(w[p])
P
p=1, (Λp)P

p=1

]

, (3.4)

which, given a finitely supported w ∈ '2(Λ) and a threshold ε > 0, returns index sets

Λp !
{

µ ∈ Λ ;
∣

∣

∣vµ
∣

∣

∣ ∈ (2−p/2 ‖w‖'∞ , 2−(p−1)/2 ‖w‖'∞]
}

(3.5)

and w[p] ! w|Λp , see [Met02, Bar05, GHS07, DSS09]. The integer P is minimal with

2−P/2 ‖w‖'∞(Λ)

√

# supp w ≤ ε . (3.6)

By [GHS07, Rem. 2.3] or [DSS09, Prop. 4.4], the number of operations and storage
locations required by a call of BucketSort[w, ε] is bounded by

# supp w +max(1, 1log(‖w‖'∞(Λ)

√

# supp w/ε)2) , (3.7)

which is faster than exact comparison-based sorting algorithms.
The routine ApplyRRR[v, ε] adaptively approximates Rv in three distict steps. First, the

elements of v are grouped according to their norm. Elements smaller than a certain
tolerance are discarded. This truncation of the vector v induces an error of at most
δ ≤ ε/2.

Next, a greedy algorithm is used to assign to each segment v[p] of v an approximation
R[Mp] of R. Starting with R[Mp] = 0 for all p = 1, . . . , ', these approximations are refined
iteratively until an estimate of the error is smaller than ε − δ.

Finally, the operations determined by the previous two steps are performed. Each
multiplication Rmvµ is performed just once, and copied to the appropriate entries of z.

Proposition 3.1. For any finitely supported v ∈ '2(Λ; V) and any ε > 0, ApplyRRR[v, ε]
produces a finitely supported z ∈ '2(Λ; W∗) with

# supp z ≤ 3
'
∑

p=1

Mp#Λp (3.8)
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ApplyRRR[v, ε] ,→ z

[·, (Λp)P
p=1]←− BucketSort

[

(
∥

∥

∥vµ
∥

∥

∥

V
)µ∈Λ,

ε
2ēRRR,0

]

for p = 1, . . . ,P do v[p] ←− (vµ)µ∈Λp

Compute the minimal ' ∈ {0, 1, . . . ,P} s.t. δ ! ēRRR,0

∥

∥

∥

∥

∥

∥

∥

∥

v −
'
∑

p=1

v[p]

∥

∥

∥

∥

∥

∥

∥

∥

'2(Λ;V)

≤
ε
2

for p = 1, . . . ,P do Mp ←− 0

while
∑'

p=1 ēRRR,Mp

∥

∥

∥v[p]

∥

∥

∥

'2(Λ;V)
> ε − δ do

q←− argmaxp=1,...,'(ēRRR,Mp − ēRRR,Mp+1)
∥

∥

∥v[p]

∥

∥

∥

'2(Λ;V)
/#Λp

Mq ←−Mq + 1

z = (zν)ν∈Λ ←− 0

for p = 1, . . . , ' do

forall µ ∈ Λp do

for m = 1, . . . ,Mp do

w←− Rmvµ
zµ+εm ←− zµ+εm + β

m
µm+1

w

if µm ≥ 1 then zµ−εm ←− zµ−εm + β
m
µm

w
if αm

µm
" 0 then zµ ←− zµ + αm

µm
w

and

‖Rv − z‖'2(Λ;W∗) ≤ δ + ηMMM ≤ ε , ηMMM !

'
∑

p=1

ēRRR,Mp

∥

∥

∥v[p]

∥

∥

∥

'2(Λ;V)
, (3.9)

where Mp refers to the final value of this variable in the call of ApplyRRR. The total number

of products Rmvµ computed in ApplyRRR[v, ε] is σMMM !
∑'

p=1 Mp#Λp. Furthermore, the vector

M = (Mp)'
p=1

is optimal in the sense that if N = (Np)'
p=1

with σNNN ≤ σMMM then ηNNN ≥ ηMMM, and if

ηNNN ≤ ηMMM, then σNNN ≥ σMMM.

We refer to [Git11b, Proposition 2.1] for a proof of Proposition 3.1.

3.2 An Adaptive Solver

Lemma 2.1 suggests a simple iterative procedure for computing u. Beginning with
u0 ! 0 ∈ L2

π(Γ; V), we set

uk ! D−1( f − Ruk−1) , k ∈N . (3.10)

Then
u − uk = −D−1R(u − uk−1) , k ∈N , (3.11)
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and therefore

‖u − uk‖L2
π(Γ;V) ≤ γ

k ‖u‖L2
π(Γ;V) ≤ γ

k 1

1 − γ
∥

∥

∥D−1
∥

∥

∥

W∗→V

∥

∥

∥ f
∥

∥

∥

L2
π(Γ;W∗)

, k ∈N . (3.12)

We transfer this iteration to the representation u ∈ '2(Λ; V) of u, and make it computa-
tionally accessible by allowing errors in the computation of f , the evaluation ofA and
the inversion ofD.

The adaptive approximate application of R is discussed in Section 3.1, and realized
by the routine ApplyRRR. We assume that a routine

RHS fff [ε] ,→ f̃ (3.13)

is available to compute approximations f̃ = ( f̃ν)ν∈Λ of f with # supp f̃ < ∞ and
∥

∥

∥ f − f̃
∥

∥

∥

'2(Λ;W∗)
≤ ε (3.14)

for any ε > 0. Furthermore, let SolveD be a solver for D such that for any g ∈ W∗ and
any ε > 0,

SolveD[g, ε] ,→ v ,
∥

∥

∥v −D−1g
∥

∥

∥

V
≤ ε . (3.15)

For example, SolveD could be an adaptive wavelet method, see e.g. [CDD01, CDD02,
GHS07], an adaptive frame method, see e.g. [Ste03, DFR07, DRW+07], or a finite element
method with a posteriori error estimation, see e.g. [Dör96, MNS00, BDD04].

A realization of the iteration (3.10) using the above approximations is given in
SolveDirectAAA, fff . The initial values can be set to

ũ(0)
! 0 and δ0 ! (1 − γ)−1

∥

∥

∥D−1
∥

∥

∥

W∗→V

∥

∥

∥ f
∥

∥

∥

'2(Λ;W∗)
. (3.16)

Note that δ0 is an upper bound for
∥

∥

∥u − ũ(0)
∥

∥

∥

'2(Λ;V)
. Values for the other arguments are

given below.

Theorem 3.2. For any ε > 0 and any finitely supported ũ(0) ∈ '2(Λ; V), if
∥

∥

∥u − ũ(0)
∥

∥

∥

'2(Λ;V)
≤

δ0, α > 0, β0, β1 > 0 and α + β0 + β1 + γ < 1, then SolveDirectAAA, fff [ũ
(0), δ0, ε,α, β0, β1,γ]

terminates with
‖u − uε‖'2(Λ;V) ≤ ε̄ ≤ ε . (3.17)

Furthermore, for all k ∈N reached in the iteration,
∥

∥

∥u − ũ(k)
∥

∥

∥

'2(Λ;V)
≤ min(δk, δ̄k) ≤ (α + β0 + β1 + γ)kδ0 . (3.18)

Proof. We show that for all k ∈N,
∥

∥

∥u − ũ(k)
∥

∥

∥

'2(Λ;V)
≤ min(δk, δ̄k) .

Let
∥

∥

∥u − ũ(k−1)
∥

∥

∥

'2(Λ;V)
≤ min(δk−1, δ̄k−1). Since Du = f − Ru,

u − ũ(k) = D−1( f − Ru) − A−1( f − Rũ(k−1)) + A−1( f − Rũ(k−1) − g(k)) +D−1g(k) − ũ(k) .
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SolveDirectAAA, fff [ũ
(0), δ0, ε,α, β0, β1,γ] ,→ [uε, ε̄]

for k = 1, 2, . . . do

ηk ←− δk−1

∥

∥

∥D−1
∥

∥

∥

−1

W∗→V

g(k) = (g(k)
µ )µ∈Λ ←− RHS fff [β0ηk] − ApplyRRR[ũ(k−1), β1ηk]

ζk ←− αδk−1(# supp g(k))−1/2

forall µ ∈ supp g(k) do ũ(k)
µ ←− SolveD[g(k)

µ , ζk]

ũ(k) ←− (ũ(k)
µ )µ∈Λ

δ̄k−1 ←− (1 − γ)−1
(

∥

∥

∥ũ(k) − ũ(k−1)
∥

∥

∥

'2(Λ;V)
+ (α + β0 + β1)δk−1

)

δk ←− (α + β0 + β1)δk−1 + γmin(δk−1, δ̄k−1)
if δk ≤ ε then break

uε ←− ũ(k)

ε̄←− δk

By Lemma 2.1,
∥

∥

∥D−1( f − Ru) − A−1( f − Rũ(k−1))
∥

∥

∥

'2(Λ;V)
=
∥

∥

∥D−1R(u − ũ(k−1))
∥

∥

∥

'2(Λ;V)
≤ γmin(δk−1, δ̄k−1) .

Furthermore, by definition of g(k), using
∥

∥

∥D−1
∥

∥

∥

'2(Λ;W∗)→'2(Λ;V)
=
∥

∥

∥D−1
∥

∥

∥

W∗→V
,

∥

∥

∥A−1( f − Rũ(k−1) − g(k))
∥

∥

∥

'2(Λ;V)
≤
∥

∥

∥D−1
∥

∥

∥

W∗→V
(β0ηk + β1ηk) = (β0 + β1)δk−1 .

Finally, due to (3.15) and ζk = αδk−1(# supp g(k))−1/2,

∥

∥

∥D−1g(k) − ũ(k)
∥

∥

∥

'2(Λ;V)
≤



















∑

µ∈supp ggg(k)

α2δ2
k−1(# supp g(k))−1



















1/2

= αδk−1 .

By triangle inequality, the above estimates imply
∥

∥

∥u − ũ(k)
∥

∥

∥

'2(Λ;V)
≤ γmin(δk−1, δ̄k−1) + (β0 + β1)δk−1 + αδk−1 = δk .

The residual at iteration k is r(k)
! f − Aũ(k) = A(u − ũ(k)). We observe that

∥

∥

∥u − ũ(k)
∥

∥

∥

'2(Λ;V)
≤
∥

∥

∥(D−1A)−1
∥

∥

∥

∥

∥

∥D−1r(k)
∥

∥

∥

'2(Λ;V)
≤

1

1 − γ
∥

∥

∥D−1r(k)
∥

∥

∥

'2(Λ;V)
.

Furthermore, D−1r(k) can be approximated by known quantities since, similarly to above,
∥

∥

∥ũ(k+1) − ũ(k) −D−1r(k)
∥

∥

∥

'2(Λ;V)
=
∥

∥

∥ũ(k+1) −D−1( f − Rũ(k))
∥

∥

∥

'2(Λ;V)
≤ (α + β0 + β1)δk .

Consequently,

∥

∥

∥u − ũ(k)
∥

∥

∥

'2(Λ;V)
≤

1

1 − γ

(

∥

∥

∥ũ(k+1) − ũ(k)
∥

∥

∥

'2(Λ;V)
+ (α + β0 + β1)δk

)

= δ̄k .

Equation (3.18) follows since δk ≤ (α + β0 + β1 + γ)δk−1. !
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Remark 3.3. The error bounds in SolveDirectAAA, fff can be improved if each of the sub-
routines RHS fff , ApplyRRR and SolveD returns an estimate of the error it attaines. These
values can replace αδk−1, β0δk−1 and β1δk−1 in the definitions of δ̄k−1 and δk. For better
legibility, we refrain from making this explicit. "

3.3 Alternating Subspace Correction for Symmetric Distributions

In the case that πm is a symmetric measure for all m ∈N, i.e. if π is invariant under the
transformation y ,→ −y, we suggest an alternative to SolveDirectAAA, fff . Since αm

n = 0 for
all m and n, the operator R has the form

(Rv)ν =
∞
∑

m=1

Rm(βm
νm+1vν+εm + β

m
νm

vν−εm ) (3.19)

for any v = (vµ)µ∈Λ ∈ '2(Λ; V), where vµ ! 0 if µm < 0 for any m ∈ N. If |ν| ! ‖ν‖'1(N)

is even, then all the indices µ ∈ Λ that appear on the right hand side of (3.19) have odd
∣

∣

∣µ
∣

∣

∣; similarly,
∣

∣

∣µ
∣

∣

∣ is always even if |ν| is odd.
Let [n] ! n + 2Z denote the equivalence class modulo two of n ∈ Z, i.e. [n] = [m] if

n −m is even. We define the index sets

Λ[n]
!

{

µ ∈ Λ ; [
∣

∣

∣µ
∣

∣

∣] = [n]
}

, n ∈ Z , (3.20)

where
∣

∣

∣µ
∣

∣

∣ =
∥

∥

∥µ
∥

∥

∥

'1(N)
. Then

Λ = Λ[0] 5 Λ[1] . (3.21)

We call µ ∈ Λ even if µ ∈ Λ[0] and odd if µ ∈ Λ[1].
LetΠ[n] denote the orthogonal projection in '2(Λ; V) onto '2(Λ[n]; V); we use the same

notation also in '2(Λ; W∗). Due to (3.19), R maps even indices onto odd indices and odd
indices onto even indices, i.e.

Π[n]R = RΠ[n+1] , n ∈ Z , (3.22)

and Π[n]D = DΠ[n] by definition.
We assume that routines RHSΠ[0] fff and RHSΠ[1] fff are available similar to RHS fff from (3.13)

to construct approximations of Π[0] f and Π[1] f , and that these approximations have
supports in Λ[0] and Λ[1], respectively. The method ApplyRRR from Section 3.1 already
respects even and odd indices in the sense that (3.22) holds also with this approximate
application of the operator R.

Theorem 3.4. For any ε > 0 and any finitely supported ũ(−1) ∈ '2(Λ[−1]; V), if α + β0 + β1 +

γ < 1 and
∥

∥

∥Π[−1]u − ũ(−1)
∥

∥

∥

'2(Λ;V)
≤ δ−1, then SolveAlternateAAA, fff [ũ

(−1), δ−1, ε,α, β0, β1,γ]

terminates with
‖u − uε‖'2(Λ;V) ≤ ε̄ ≤ ε . (3.23)

Furthermore, for all k ∈N reached in the iteration,
∥

∥

∥Π[k]u − ũ(k)
∥

∥

∥

'2(Λ;V)
≤ δk ≤ (α + β0 + β1 + γ)k+1δ−1 . (3.24)
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SolveAlternateAAA, fff [ũ
(−1), δ−1, ε,α, β0, β1,γ] ,→ [uε, ε̄]

for k = 0, 1, 2, . . . do

ηk ←− δk−1

∥

∥

∥D−1
∥

∥

∥

−1

W∗→V

g(k) = (g(k)
µ )µ∈Λ[k] ←− RHSΠ[k] fff [β0ηk] − ApplyRRR[ũ(k−1), β1ηk]

ζk ←− αδk−1(# supp g(k))−1/2

forall µ ∈ supp g(k) do ũ(k)
µ ←− SolveD[g(k)

µ , ζk]

ũ(k) ←− (ũ(k)
µ )µ∈Λ[k]

δk ←− (α + β0 + β1 + γ)δk−1

if δ2
k−1
+ δ2

k
≤ ε2 then break

uε ←− ũ(k−1) + ũ(k)

ε̄←−
√

δ2
k−1
+ δ2

k

Proof. Since DΠ[k]u = Π[k] f − RΠ[k−1]u,

Π[k]u − ũ(k) = D−1(Π[k] f − RΠ[k−1]u) −D−1(Π[k] f − Rũ(k−1))

+D−1(Π[k] f − Rũ(k−1) − g(k)) +D−1g(k) − ũ(k) .

Due to Lemma 2.1,
∥

∥

∥D−1(Π[k] f − RΠ[k−1]u) −D−1(Π[k] f − Rũ(k−1))
∥

∥

∥

'2(Λ;V)
≤ γ
∥

∥

∥Π[k−1]u − ũ(k−1)
∥

∥

∥

'2(Λ;V)
.

By definition of g(k), using
∥

∥

∥D−1
∥

∥

∥

'2(Λ;W∗)→'2(Λ;V)
=
∥

∥

∥D−1
∥

∥

∥

W∗→V
,

∥

∥

∥D−1(Π[k] f − Rũ(k−1) − g(k))
∥

∥

∥

'2(Λ;V)
≤
∥

∥

∥D−1
∥

∥

∥

W∗→V
(β0ηk + β1ηk) = (β0 + β1)δk−1 .

Also, by (3.15),

∥

∥

∥D−1g(k) − ũ(k)
∥

∥

∥

'2(Λ;V)
≤



















∑

µ∈supp ggg(k)

α2δ2
k−1(# supp g(k))−1



















1/2

= αδk−1 .

Combining these estimates leads to
∥

∥

∥Π[k]u − ũ(k)
∥

∥

∥

'2(Λ;V)
≤ γ(α + β0 + β1)δk−1 +

∥

∥

∥Π[k−1]u − ũ(k−1)
∥

∥

∥

'2(Λ;V)
.

Consequently, if
∥

∥

∥Π[k−1]u − ũ(k−1)
∥

∥

∥

'2(Λ;V)
≤ δk−1, then

∥

∥

∥Π[k]u − ũ(k)
∥

∥

∥

'2(Λ;V)
≤ δk, and (3.24)

follows by induction. !

Remark 3.5. Analogousy to SolveDirectAAA, fff , the error bounds δk can be refined using
an approximation of the residual. As in the proof of Theorem 3.2, it follows that

∥

∥

∥u − (ũ(k−1) + ũ(k))
∥

∥

∥

'2(Λ;V)
≤

1

1 − γ

(

∥

∥

∥ũ(k+1) − ũ(k−1)
∥

∥

∥

'2(Λ;V)
+ (α + β0 + β1)

√

δ2
k−1
+ δ2

k

)

.

(3.25)
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This term can be used as an alternative upper bound for the errors
∥

∥

∥Π[k]u − ũ(k)
∥

∥

∥

'2(Λ;V)
and

∥

∥

∥Π[k−1]u − ũ(k−1)
∥

∥

∥

'2(Λ;V)
. However, since it applies to the total error instead of directly to

the even or odd part, we expect it to be less useful than the bound δ̄k in SolveDirectAAA, fff ."

Remark 3.6. Comparing the convergence estimates (3.18) and (3.24), it appears that
SolveDirectAAA, fff and SolveAlternateAAA, fff converge at the same rate. Therefore, since
the latter method updates only half of the solution vector in each iteration, it should
be roughly twice as efficient. However, Remark 3.5 suggests that SolveDirectAAA, fff may
provide a sharper bound for the error. It is not clear a priori which of these effects is
more significant; numerical computations presented in Section 5 indicate that the two
solvers are equally efficient. "

4 A Solver with Coarsening

4.1 Subspace Coarsening

Although the methods SolveDirectAAA, fff and SolveAlternateAAA, fff use an efficient adap-
tive routine for applying the stochastic operator, it is possible that the approximate
solution ũ(k) accumulates many small coefficients. These can be dropped periodically to
maintain as sparse a representation as possible. Instead of simply removing the smallest

coefficients ũ(k)
µ , we consider replacing these by approximations using fewer degrees of

freedom, e.g. on a coarser finite element mesh.
We assume that, for any v ∈ V constructed by SolveD, there is a finite or countable

sequence (vi)i of approximations of v. These could be projections of v onto a sequence of
subspaces of V, or intermediate approximate solutions if SolveD is an adaptive solver.
For each vi, let ni denote the number of basis functions used to represent vi. We assume
that the approximation errors

∥

∥

∥v − vi
∥

∥

∥

V
are nonincreasing and converge to zero, and the

costs ni are strictly increasing. Furthermore, we make use of the technical assumption

∥

∥

∥v − vi
∥

∥

∥

2

V
−
∥

∥

∥v − vi+1
∥

∥

∥

2

V

ni+1 − ni
≥

∥

∥

∥v − vj
∥

∥

∥

2

V
−
∥

∥

∥v − vj+1
∥

∥

∥

2

V

nj+1 − nj
∀i ≤ j . (4.1)

Also, v0 is always 0 ∈ V, with n0 = 0.

Proposition 4.1. Let w ∈ '2(Λ; V) be finitely supported. If (wi
µ)i is a sequence of approxima-

tions of wµ as above for all µ ∈ supp w, then for any ε > 0, a call of Coarsen[w, ε] constructs

a v = (w
jµ
µ )µ ∈ '2(Λ; V) satisfying

4 = ‖w − v‖'2(Λ;V) ≤ ε . (4.2)

Furthermore,
∑

µ n
jµ
µ is minimal among all sequences ( jµ)µ for which v = (w

jµ
µ )µ satisfies (4.2).

Proof. Equation (4.2) follows from the termination criterion of Coarsen; convergence is
ensured since wi

µ → wµ for all µ. For the optimality property of the greedy algorithm,
we refer to the more general statement [Git11a, Theorem 4.1.5]. !
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Coarsen[w, ε] ,→ [v, 4]

forall µ ∈ supp w do jµ ←− 0

while
∑

µ∈suppwww

∥

∥

∥

∥

wµ − w
jµ
µ

∥

∥

∥

∥

2

V
> ε2 do

µ←− argmax
µ∈supp www

∥

∥

∥

∥

wµ − w
jµ
µ

∥

∥

∥

∥

2

V
−
∥

∥

∥

∥

wµ − w
jµ+1
µ

∥

∥

∥

∥

2

V

n
jµ+1
µ − n

jµ
µ

jµ ←− jµ + 1

forall µ ∈ supp w do vµ ←− w
jµ
µ

4←−
(

∑

µ∈supp www

∥

∥

∥wµ − vµ
∥

∥

∥

2

V

)1/2

Remark 4.2. If w0
µ ! 0 and w1

µ ! wµ for all µ ∈ supp w, and n0
µ = 0, n1

µ = 1, then
Coarsen[w, ε] reduces to the restriction of w to a subset Ξ ⊂ Λ with minimal #Ξ under
the condition that the approximation error is at most ε. This simple special case of
Coarsen ignores differences in the resolution of the coefficients wµ, and forgoes the
possibility to reduce the resolution without completely truncating an index. "

4.2 A Refined Adaptive Solver

We combine SolveDirectAAA, fff with a coarsening step in the routine SolveCoarseAAA, fff .
Analogously, SolveAlternateAAA, fff could be used in place of SolveDirectAAA, fff .

SolveCoarseAAA, fff [ũ
(0), δ0, ε,α, β0, β1,γ,ϑ,χ] ,→ [uε, ε̄]

for k = 1, 2, . . . do

ηk ←− max(ϑδk−1, ε)
[w(k), ζk]←− SolveDirectAAA, fff [ũ(k−1), δk−1,χηk,α, β0, β1,γ]

[ũ(k), 4k]←− Coarsen[w(k), (χ−1 − 1)ζk]
δk ←− ζk + 4k

if δk ≤ ε then break

uε ←− ũ(k)

ε̄←− δk

Proposition 4.3. For any ε > 0, if the assumptions of Theorem 3.2 are satisfied, 0 < ϑ < 1
and 0 < χ ≤ 1, then SolveCoarseAAA, fff [ũ

(0), δ0, ε,α, β0, β1,γ,ϑ,χ] terminates with

‖u − uε‖'2(Λ;V) ≤ ε̄ ≤ ε . (4.3)

Furthermore, for all k ∈N reached in the iteration, with the possible exception of the last k,
∥

∥

∥u − ũ(k)
∥

∥

∥

'2(Λ;V)
≤ δk ≤ ϑkδ0 . (4.4)
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Proof. By Theorem 3.2,
∥

∥

∥u −w(k)
∥

∥

∥

'2(Λ;V)
≤ ζk. Proposition 4.1 implies

∥

∥

∥w(k) − ũ(k)
∥

∥

∥

'2(Λ;V)
≤

4k. Then (4.4) follows by triangle inequality using δk = ζk + 4k ≤ χ−1ζk ≤ ηk, and
ηk ≤ ϑδk−1 if k is not the last iterate. If ϑδk−1 ≤ ε, then δk ≤ ηk ≤ ε, the iteration
terminates, and (4.3) follows. !

4.3 Optimality Properties

We consider a semidiscrete version of SolveCoarseAAA, fff with no discretization in V. This
uses an idealized SolveD, which computes the exact solution of (3.15), and thus we can
set α = 0. Coarsening is done as in Remark 4.2.

For v ∈ '2(Λ; V) and N ∈ N0, let PN(v) be a best N-term approximation of v, that is,
PN(v) is an element of '2(Λ; V) that minimizes ‖v − vN‖'2(Λ;V) over vN ∈ '2(Λ; V) with
# supp vN ≤ N. For s ∈ (0,∞), we define

‖v‖As(Λ;V) ! sup
N∈N0

(N + 1)s ‖v − PN(v)‖'2(Λ;V) (4.5)

and
As(Λ; V)!

{

v ∈ '2(Λ; V) ; ‖v‖As(Λ;V) < ∞
}

. (4.6)

By definition, an optimal approximation in '2(Λ; V) of v ∈ As(Λ; V) with error tolerance
ε > 0 consists of O(ε−1/s) nonzero coefficients in V.

Proposition 4.4. Let v ∈ As(Λ; V) for an s ∈ (0,∞), and let w ∈ '2(Λ; V) with

‖v −w‖'2(Λ;V) ≤ ε (4.7)

for an ε > 0. Furthermore, let N ∈N0 be minimal with

‖w −wN‖'2(Λ;V) ≤ 4ε (4.8)

for wN ! PN(w). Then

‖v −wN‖'2(Λ;V) ≤ 5ε ≤ C ‖v‖As(Λ;V) N−s , (4.9)

‖wN‖As(Λ;V) ≤ C ‖v‖As(Λ;V) (4.10)

with a constant C depending only on s.

Proof. Equation (4.9) is a straightforward generalization of [CDD01, Corollary 5.2] to
'2(Λ; V). To show (4.10), we note that for all n ≤ N − 1,

‖wN − Pn(wN)‖'2(Λ;V) ≤ ‖wN − Pn(v)‖'2(Λ;V) ≤ ‖v −wN‖'2(Λ;V) + ‖v − Pn(v)‖'2(Λ;V)

≤ ‖v −wN‖'2(Λ;V) + (n + 1)−s ‖v‖As(Λ;V) ,

and the assertion follows using (4.9). !
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Lemma 4.5. Let the assumptions of Proposition 4.3 be satisfied, and χ = 1/5. Then if
u ∈ As(Λ; V), there is a constant C depending only on s such that for all k reached by
SolveCoarseAAA, fff ,

# supp ũ(k) ≤ C ‖u‖1/sAs(Λ;V)
δ−1/s

k
, (4.11)

∥

∥

∥ũ(k)
∥

∥

∥

As(Λ;V)
≤ C ‖u‖As(Λ;V) . (4.12)

Proof. By Remark 4.2, ũ(k) is a best N-term approximation of w(k) with N = # supp ũ(k).
Also,

∥

∥

∥u −w(k)
∥

∥

∥

'2(Λ;V)
≤ ζk by Theorem 3.2, and N is minimal with

∥

∥

∥w(k) − ũ(k)
∥

∥

∥

'2(Λ;V)
≤

4ζk. Then, using 4k ≤ 4ζk, (4.9) implies

# supp ũ(k) = N ≤ C ‖u‖1/sAs(Λ;V)
(5ζk)−1/s ≤ C ‖u‖1/sAs(Λ;V)

δ−1/s
k
.

Furthermore, (4.12) follows from (4.10). !

Proposition 4.6. Let s > 0. If either

‖Rm‖V→W∗ ≤ sδRRR,s(m + 1)−s−1 ∀m ∈N (4.13)

or














∞
∑

m=1

‖Rm‖
1

s+1

V→W∗















s+1

≤ δRRR,s , (4.14)

then
∥

∥

∥R − R[M]

∥

∥

∥

'2(Λ;V)→'2(Λ;W∗)
≤ δRRR,s(M + 1)−s ∀M ∈N0 . (4.15)

We refer to [Git11b, Proposition 4.4] for a proof of Proposition 4.6.

Remark 4.7. If the assumptions of Proposition 4.6 are satisfied for all s ∈ (0, s∗), then
the operator R is s∗-compressible with sparse approximations R[M]. In this case, R
is a bounded linear map from As(Λ; V) to As(Λ; W∗) for all s ∈ (0, s∗), see [CDD01].
This carries over to the routine ApplyRRR in that if v ∈ As(Λ; V) and z is the output of
ApplyRRR[v, ε] for an ε > 0, then

# supp z # ‖v‖1/sAs(Λ;V)
ε−1/s , (4.16)

‖z‖As(Λ;W∗) # ‖v‖As(Λ;V) (4.17)

with constants depending only on s and R. Moreover, (4.16) is an upper bound for
the total number of applications of operators Rm in ApplyRRR[v, ε]. This follows as in the
standard scalar case, see e.g. [DSS09]. "

We make additional assumptions on the routine RHS fff . If f ∈ As(Λ; W∗) and f̃ is the

output of RHS fff [ε] for an ε > 0, then f̃ should satisfy

# supp f̃ #
∥

∥

∥ f
∥

∥

∥

1/s

As(Λ;W∗)
ε−1/s . (4.18)

Note that if u ∈ As(Λ; V) and R is s∗-compressible with s < s∗, then also A is s∗-
compressible, and therefore

∥

∥

∥ f
∥

∥

∥

As(Λ;W∗)
# ‖u‖As(Λ;V).
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Lemma 4.8. Let ε > 0 and let ũ(0) ∈ '2(Λ; V) be finitely supported with

∥

∥

∥u − ũ(0)
∥

∥

∥

'2(Λ;V)
≤ δ0 , # supp ũ(0) ≤ c ‖u‖1/sAs(Λ;V)

δ−1/s
0 and

∥

∥

∥ũ(0)
∥

∥

∥

As(Λ;V)
≤ c ‖u‖As(Λ;V) .

(4.19)
If β0, β1 > 0, β0 + β1 + γ < 1, and R is s∗-compressible with s < s∗, then for all k reached by the
loop in SolveDirectAAA, fff [ũ

(0), δ0, ε, 0, β0, β1,γ],

# supp ũ(k) ≤ C ‖u‖1/sAs(Λ;V)
δ−1/s

0 , (4.20)
∥

∥

∥ũ(k)
∥

∥

∥

As(Λ;V)
≤ C ‖u‖As(Λ;V) , (4.21)

for a constant C depending only on c, s, R, D, β0, β1, γ and ε/δ0.

Proof. For k = 0, (4.20) and (4.21) hold by assumption. Let k ∈N such that

# supp ũ(k−1) ≤ Ck−1 ‖u‖1/sAs(Λ;V)
δ−1/s

0 and
∥

∥

∥ũ(k−1)
∥

∥

∥

As(Λ;V)
≤ Ck−1 ‖u‖As(Λ;V) .

Due to Remark 4.7 and (4.18), there is a constant c1 such that

# supp g(k) ≤ c1(β−1/s
0

∥

∥

∥ f
∥

∥

∥

1/s

As(Λ;W∗)
+ β−1/s

1

∥

∥

∥ũ(k−1)
∥

∥

∥

1/s

As(Λ;V)
)η−1/s

k
∥

∥

∥g(k)
∥

∥

∥

As(Λ;W∗)
≤ c1(

∥

∥

∥ f
∥

∥

∥

As(Λ;W∗)
+
∥

∥

∥ũ(k−1)
∥

∥

∥

As(Λ;V)
) .

By assumption, there is a constant c2 such that
∥

∥

∥ f
∥

∥

∥

As(Λ;W∗)
≤ c2 ‖u‖As(Λ;V). Consequently,

using supp ũ(k) = supp g(k) and
∥

∥

∥ũ(k)
∥

∥

∥

As(Λ;V)
≤
∥

∥

∥D−1
∥

∥

∥

∥

∥

∥g(k)
∥

∥

∥

As(Λ;W∗)
, it follows that

# supp ũ(k) ≤ c1(β−1/s
0 c1/s

2 + β
−1/s
1

C1/s
k−1

) ‖u‖1/sAs(Λ;V)
η−1/s

k
,

∥

∥

∥ũ(k)
∥

∥

∥

As(Λ;V)
≤ c1(c2 + Ck−1) ‖u‖As(Λ;V) .

Furthermore, δ0 ≤ (δ0/ε)
∥

∥

∥D−1
∥

∥

∥ ηk, which implies the existence of a constant Ck such that

# supp ũ(k) ≤ Ck ‖u‖1/sAs(Λ;V)
δ−1/s

0 and
∥

∥

∥ũ(k)
∥

∥

∥

As(Λ;V)
≤ Ck ‖u‖As(Λ;V) .

The assertion follows since the loop terminates after at most 1log(ε/δ0)/ log(β0+ β1 +γ)2
iterations. !

Remark 4.9. In SolveCoarseAAA, fff , the method SolveDirectAAA, fff is always called with the
same required relative error reduction χϑ, except in the last iteration, where this factor
may be closer to one. If χ = 1/5, then Lemma 4.5 implies that the constant c in (4.19) is
uniform in k. Therefore, Lemma 4.8 implies that there is a constant C such that

# supp w(k) ≤ C ‖u‖1/sAs(Λ;V)
δ−1/s

k−1
and

∥

∥

∥w(k)
∥

∥

∥

As(Λ;V)
≤ C ‖u‖As(Λ;V) ∀k . (4.22)

Note that (4.19) follows from Proposition 4.3 and Lemma 4.5. "
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Theorem 4.10. Let β0, β1 > 0, β0 + β1 + γ < 1, 0 < ϑ < 1, χ = 1/5, and let ũ(0) ∈ '2(Λ; V)
with

∥

∥

∥u − ũ(0)
∥

∥

∥

'2(Λ;V)
≤ δ0. If R is s∗-compressible and s ∈ (0, s∗) such that u ∈ As(Λ; V)

and (4.18) holds, then fora ny ε > 0, the total number of evaluations of D−1 and Rm, m ∈ N,

in SolveCoarseAAA, fff [ũ
(0), δ0, ε, 0, β0, β1,γ,ϑ,χ] is bounded by ‖u‖1/sAs(Λ;V)

ε−1/s up to a constant

factor depending only on ũ(0), δ0, s, R, D, β0, β1, ϑ and γ.

Proof. The number of calls of D−1 in SolveCoarseAAA, fff is equal to the sum of # supp ũ(k),
k ≥ 1, in all interior calls of SolveDirectAAA, fff . By Remark 4.7, this sum is also an upper
bound for the total number of applications of Rm in all calls of ApplyRRR, up to a constant
factor.

Let K denote the total number of calls of SolveDirectAAA, fff . By Proposition 4.3, K ≤
1log(ε/δ0)/ logϑ2. Due to the fixed relative error reduction χϑ, the number of iterations
within SolveDirectAAA, fff is bounded independently of k. In each one, by Lemma 4.8,

the approximate solution has support size at most C ‖u‖1/sAs(Λ;V)
δ−1/s

k−1
. For all k ≤ K,

δk−1 ≥ ϑk−KδK−1. Consequently, up to a constant factor, the total number of inversions
of D and applications of Rm is bounded by

K
∑

k=1

‖u‖1/sAs(Λ;V)
δ−1/s

k−1
≤ ‖u‖1/sAs(Λ;V)

δ−1/s
K−1

K
∑

k=1

ϑ−(k−K)/s .

The sum in the second term is bounded by a constant depending only on s. Furthermore,

by definition of K, δK−1 ≥ ε, which implies δ−1/s
K−1
≤ ε−1/s. !

5 Numerical Examples

5.1 A Model Problem
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Figure 1: Realizations of a(y, x) (left) and u(y, x) (right).
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We consider as a model problem the diffusion equation (1.1) on the one dimensional
domain G = (0, 1). For two parameters k and γ, the diffusion coefficient has the form

a(y, x) = 1 +
1

c

∞
∑

m=1

ym
1

mk
sin(mπx) , x ∈ (0, 1) , y ∈ Γ = [−1, 1]∞ , (5.1)

where c is chosen as

c = γ
∞
∑

m=1

1

mk
, (5.2)

such that
∣

∣

∣a(y, x) − 1
∣

∣

∣ is always less than γ. We set the parameters to k = 2 and γ = 1/2.
For the distribution of y ∈ Γ, we consider the countable product of uniform distribu-

tions on [−1, 1]; the corresponding family of orthonormal polynomials is the Legendre
polynomial basis. A few realizations of a(y) and the resulting solutions u(y) of (1.1) are
plotted in Figure 1.

We use a multilevel finite element discretization with piecewise linear basis functions
on uniform meshes. The residual-based a posteriori error estimator from [Git11b] is used
to estimate the error in SolveD. In order to isolate the stochastic discretization, we also
consider a fixed spatial discretization, using linear finite elements on a uniform mesh
of (0, 1) with 1024 elements to approximate all coefficients. We refer to these simpler
versions of the numerical methods as single level discretizations. All computations were
performed in Matlab on a workstation with an AMD Athlon™ 64 X2 5200+ processor
and 4GB of memory.

5.2 Comparison of Solvers

We set the parameters ofSolveDirectAAA, fff , SolveAlternateAAA, fff andSolveCoarseAAA, fff toα =
1/20, β0 = 0, β1 = 1/10 and, for the last method,ϑ = 1/4 andχ = 1/2. The assumptions of
Theorem 4.10 are not satisfied; however, SolveCoarseAAA, fff performs substantially better
with χ = 1/2 than with χ = 1/5.

These solvers are compared with SolveGalerkinAAA, fff from [Git11b], with parameters
χ = 1/8, ϑ = 0.57, ω = 1/4, σ = 0.01114, α = 1/20 and β = 0. These values were
determined experimentally to maximize the efficiency of the solver. The optimality
properties of SolveGalerkinAAA, fff are not proven to hold for these parameters.

We compare the discretizations generated adaptively by the above methods to the
heuristic a priori adapted sparse tensor product construction from [BAS10]. Using the

notation of [SG11, Section 4], we set γ = 2 and ηm = 1/(rm +
√

1 + r2
m) for rm = cm2/2 and

c from (5.2). These values are similar to those used in the computational examples of
[BAS10]. The coarsest spatial discretization used in the sparse tensor product contains
16 elements.

Figures 2 and 3 show the convergence of SolveDirectAAA, fff and SolveCoarseAAA, fff , re-
spectively. On the left, the errors are plotted against the total number of basis functions
used in the discretization. On the right, we plot the errors against an estimate of the
computational cost. This estimate takes scalar products, matrix-vector multiplications
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Figure 2: Convergence of SolveDirectAAA, fff .
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Figure 3: Convergence of SolveCoarseAAA, fff .
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Figure 4: Comparison of numerical solvers.

and linear solves into account. The total number of each of these operations on each
discretization level is tabulated during the computation, weighted by the number of
degrees of freedom on the discretization level, and summed over all levels. The esti-
mate is equal to seven times the resulting sum for linear solves, plus three times the
value for matrix-vector multiplications, plus the sum for scalar products. These weights
were determined empirically by timing the operations for tridiagonal sparse matrices
in Matlab. The errors were computed by comparison with a reference solution, which
has an error of approximately 5 · 10−5.

We note that, for both methods, the error estimate δk is an upper bound for the
error in L2

π(Γ; V). However, this bound is much sharper for SolveCoarseAAA, fff than for
SolveDirectAAA, fff . Also, the convergence of SolveCoarseAAA, fff with respect to the number
of degrees of freedom is faster than with respect to the computational cost. A similar
observation was made in [Git11b] for SolveGalerkinAAA, fff .

The convergence behavior of all of the above methods is compared in Figure 4.
There are two distinct pairs of solvers. The convergence behavior of the two meth-
ods with some form of coarsening, SolveCoarseAAA, fff and SolveGalerkinAAA, fff , is almost
identical. Furthermore, the convergence of SolveAlternateAAA, fff is very similar to that
of SolveDirectAAA, fff , though less regular. Also, the error estimate δk seems to be even
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Figure 5: Convergence of single level methods.

coarser for SolveAlternateAAA, fff than for SolveDirectAAA, fff , as anticipated by Remark 3.5.
The methods with coarsening steps converge faster than those without coarsening

with respect to the number of degrees of freedom in the approximate solution. How-
ever, the methods without coarsening are more efficient with respect to the estimated
computational cost. The latter effect is most pronounced for the actual error, since it is
partially offset by the sharper error bound δk of the methods with coarsening. All of the
adaptive methods generate discretizations that are more efficient than the sparse tensor
product construction.

Figure 5 shows the convergence of the single level versions of the above solvers. The
flattening of the convergence curves at an error of 2 · 10−4 is due to the finite element
discretization error, which begins to dominate at this point.

Again, the convergence of the adaptive methods seems to depend most on whether
or not they have a coarsening step. The difference between the two classes seems
more pronounced than with multilevel discretizations. In particular, the discretizations
generated by the methods without coarsening are significantly less efficient than thos
with coarsening. This is not surprising, since the superfluous coefficients, which are
truncated in the other methods, are all discretized on the same fine grid. With a
multilevel discretization, many of these would be approximated only on a coarse mesh.

In the single level setting, the sparse tensor product discretization is clearly more
efficient than the discretizations generated adaptively without coarsening. The solvers
with coarsening are only able to surpass the sparse tensor construction by a small
margin. This suggests that the adaptive solvers are most useful in combination with a
multilevel discretization, as opposed to a fixed spatial discretization.

5.3 Empirical Convergence Rates

We use the above convergence plots to empirically determine convergence rates of the
adaptive solvers. For the methods without coarsening, the convergence rate with respect
to the total number of degrees of freedom is 1/2. This is equal to the approximation
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rate shown in [CDS10b, CDS10a], and to the convergence rate of the sparse tensor
construction. With a coarsening step, this convergence rate improves to 2/3. However,
in both cases, the convergence with respect to the estimated computational cost is just
slightly under 1/2.

The solvers with fixed finite element meshes simulate semi-discrete methods with
no spatial discretization. In this setting, [CDS10b, CDS10a] show an approximation
rate of 3/2 with respect to the number of active indices in Λ. We observe a rate of
slightly above 1 for the adaptive methods with coarsening, and for the sparse tensor
construction. The solvers without coarsening have a convergence rate of only 1/2—the
same rate as with a multilevel discretization, although with a larger error, and a positive
spatial discretization error. The convergence rate of the single level methods without
coarsening with respect to the estimated computational cost is also approximately 1/2,
and that with coarsening is 2/3.

In principle, it is possible that SolveCoarseAAA, fff and SolveGalerkinAAA, fff do not con-
verge with the optimal rate in this example since the parameters used in the com-
putations do not satisfy the conditions of Theorem 4.10, and the analogous result for
SolveGalerkinAAA, fff . Alternatively, due to large constants in the approximation estimates,
the asymptotic rate may not be perceivable for computationally accessible tolerances in
this example.
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