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Analytic regularity and polynomial approximation
of stochastic, parametric elliptic multiscale PDEs *

V.H. Hoang fand Ch. Schwab *

Abstract

A class of second order, elliptic PDEs in divergence form with stochastic and anisotropic con-
ductivity coefficients and n known, separated microscopic length scales €;, ¢ = 1,...,n in a bounded
domain D C R? is considered. Neither stationarity nor ergodicity of these coefficients is assumed.
Sufficient conditions are given for the random solution to converge P-a.s, as €; — 0, to a stochastic,
elliptic one-scale limit problem in a tensorized domain of dimension (n + 1)d. It is shown that this
stochastic limit problem admits best N-term “polynomial chaos” type approximations which con-
verge at a rate o > 0 that is determined by the summability of the random inputs’ Karhinen-Loeve
expansion. The convergence of the polynomial chaos expansion is shown to hold P-a.s. and uniformly
with respect to the scale parameters ;. Regularity results for the stochastic, one-scale limiting prob-
lem are established. An error bound for the approximation of the random solution at finite, positive
values of the scale parameters ¢; is established in the case of two scales, and in the case of n > 2
scales convergence is shown, albeit without giving a convergence rate in this case.

1 Problem formulation

1.1 A class of stochastic multiscale elliptic problems

In a bounded Lipschitz domain D C R? (to which we shall refer as “physical domain”), we consider
diffusion problems in D where the diffusion coefficients resp. the permeability is uncertain and exhibits
microstructure on one or several microscopic length scales. In what follows, we assume these length scales
to be separated and a priori known. To describe the periodic microstructure, let Y denote the unit cube in
R? and let Y1,Y5,...,Y, be n copies of Y which we assume to be the ranges of the n fast- or microscopic
variables (all our results generalize to the case when the Y; are nonidentical). To describe the random
permeabilities that are admissible in our analysis, we assume given a probability space (2,3, P), and a
random field

Nsw— Alw;z,y1,...,yn) € LO(D; Cx(Y1 x ... % Yn)gyxnﬁl) (1.1)
such that
A€ L®(Q,dP; L™(D; Cu(Yy x ... x Yy)4xy). (1.2)

Throughout, for 0 < p < oo and a Banach space B, we denote by LP(,dP; B) the Bochner space of
strongly P measurable mappings from (2,X) to B with the sigma-algebra of Borel sets which are p-
summable (resp. P-a.s. bounded in B in case that p = c0). In (1.1) and the following, the notation #
indicates that the functions admit Y; periodic extensions to all of R with respect to each of the variables
y; for i = 1,...,n which locally, i.e. on compact subsets of R%, belong to the same function spaces on
these sets. For notational conciseness, we denote by Y =Y; X ... x Y, and by y = (y1,...,yn) € Y. We
will write Cx(Y) in place of Cx (Y7 x ... xY,). Spaces of vector functions with each component function
belonging to a Banach space B will be denoted by B¢, and of d x d matrix functions by B?*?. Integrals
over such functions will be understood as vector functions of integrals over all component functions. To
ensure well-posedness of our problem, we impose
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Assumption 1.1 The diffusion matriz A satisfies (1.2). In particular, it is uniformly bounded and
coercive, i.e. there are positive constants o and [ such that for all w € Q, x € D and everyy € Y it
holds

VEER:  alff <ETA(wimy)E < BIEf .

We assume P-a.s. scale separation. This means that for a nondimensional scale parameter € > 0, there
are n known, deterministic, positive functions 1 > e1(¢) > ... > €,(¢) > 0 which depend continuously
and monotonically on €, and which describe the n microscopic length scales which the random diffusion
coefficient depends on. Without loss of generality, we set 1 = e. If the random coefficient (1.4) has
n > 1 fast scales, we say that the coefficient is P-a.s. scale separated if, for alli =1,...,n — 1 for P-a.s.,
there holds _

lim L = 0. (1.3)

e—0 Ei

If n =1, i.e. there is only one fast scale, we denote €; = € and the condition (1.3) is understood to be
void. For A asin (1.1) and satisfying Assumption 1.1, for a given family of scale parameters ¢; satisfying
(1.3), we define a family of n-scale, random multiscale diffusion tensors A%(w;z) € L (€2, dP; L>(D)%x4)
by

Af(w;x) == A(w;x,i,...,i) . (1.4)
€1 En
With A% (w;x) defined in this way, for given f € H=1(D), 0 < e < 1 and for w € §2, we consider in D the
n-scale stochastic Dirichlet problem:

—divA® (w; 2)Vu® = f(z) in D, ulop =0. (1.5)

For simplicity of exposition, we assume in what follows that the source term f € H~1(D) is deterministic
and independent of €. At this point we remark that stochastic homogenization problems have been
considered before; we mention only [3, 5, 12] and the references there. However, usually only two scales
were considered and an ergodic hypothesis was imposed. In this work, neither stationarity nor ergodicity
of the random coefficient will be assumed. We begin our analysis by casting problem (1.5) in variational
form:

find u® € Hy (D) such that / A (w; 2)Vu® - Vodr = / fodr V¢ € Hy(D). (1.6)

D
We equip the space HE (D) with the norm [vllz2(py = [IVVllL2(p). Then the random solution u of (1.6)
satisfies, for P — a.e. w € €,
£ ll-1(p)
lu*(W; Moy < ——— -
@

We assume that the random coefficient A in Assumption 1.1 and in (1.4) is characterized by a sequence
z(w) = (zk(w))k>1 of random variables as follows:

Aw;z,y) = Alx,y) +sz Wie(z,y), (w,z,y)€QxDxXxY, (1.7)
k=1

where WUy (z,y) € L=(D,Y)%Xd. Without any assumptions on the normalization of the zp, Wy, the

sym*
parametric representation (1.7) is nonunique. We therefore assume that the z(w) are i.i.d. and z5 ~
U(—1,1). We further denote by z the coefficient vector (21, 29, ...) € U := [~1, 1]V of realizations. For a

sequence 3 = (Bx)k>1 € £*(N), we assume the matrix functions Uy in (1.7) to satisfy
VEEN:VECR, zeD, yeY : |€TW(z, )¢ < Bilé?, (1.8)

which implies that the series (1.7) converges unconditionally, P — a.s. We also assume that the mean field
n (1.7), i.e. the matrix function A € L>(D x Y)9*?  satisfies

sym>
VEER, €D, yeY : al¢)? <&M Az, y)€ < Bolé)” . (1.9)

To ensure that the random coefficient A(w;z,y) in (1.7) is well defined and coercive, we assume that in
(1.7) the fluctuation expansion of A — A is dominated by the mean field A in the following sense:



Assumption 1.2 We assume (1.8), (1.9) and that in (1.7), the random variables zy are i.i.d. in [—1,1].
Moreover, with the ellipticity constant ag in (1.9), we assume that the matriz functions A and Uy, satisfy

for some k >0
K
E Br < T %0
k>1 K

Assumption 1.2 implies Assumption 1.1: we may choose

_ K 1 5= n
a = Qg 1+Ha0—1+nao, = Q) 1+Iia0.
From (1.8) and Assumption 1.2, we have
Proposition 1.3 The following estimate holds
K
Wil 7,00 xa < 2 .

S 0kl (pyics < 2 —ao

E>1
Proof From Assumption 1.2, for each ¢ = 1,...,d and for every k = 1,2, ..., we have

|(Wr)iill LoDy < Br-
Fix two indices ¢,j = 1,...,d, and choose in (1.8) §; =1 and §; =1, and & = 0 for [ # 4, j. Then
VeeD yeY keN: |[(Wi(z y))ii+ (Yr(z, )i + (Yr(z,y))i + (Ve(z, y))jil <28k .
From this, we deduce
VreD, YyeY VheN : |(Wyle.y))yl + |(aleu))i] < 46

This implies the assertion. O

1.2 Karhunen-Loéve expansion

We give a particular example of a parametric expansion (1.7), the Karhinen-Loéve expansion of a random
matrix function A(w;z,y). We give, in particular, sufficient conditions in order for Assumption 1.2 to
hold. We formulate these conditions in terms of the smoothness of the covariance of the matrix function
A(w; x,y), which is given by the fourth order tensor

COV[A]ij’i'j' (1'7 Y, ‘T/v y/) = /Q(A’LJ (wv xz, y) - Alj (SC, y))(AZ/]/ (wv ZL'/, y/) - A’i/j/ (ZL'/, y/))d]P)(W) )

for i,7,7,j' =1,...,d. Then Cov|[A];jirj» € L®((D xY) x (D xY),R), for all i,7,i, j" is the kernel of
the (compact and self-adjoint) covariance operator Qa : L*(D x Y)&Xd — L*(D x Y)2x? defined by

(QA(I))ij(SC,y) = / / COV[A]ijl'/j/ (z,y,z’,y’)(l)i/j/ (x’,y/)dy’d:r/ .
DJY

Let A1 > X2 > ... > 0 denote the eigenvalues of Q4 and let ®; € (L?*(D x Y))dXd denote the

corresponding eigenvectors. We assume that ||®r||p2(pxy)axe = 1 for all k. Any random field A €
L2(Q; L*(D x Y)2%4) can be represented by a Karhtinen-Logve (KL) expansion
Awi ) = A, y) + 3 Vi, 9)Z4(w), (1.10)
k=1

where Zj, are pairwise uncorrelated random variables that satisfy

1 _
= o Y(Aij — Aij)(Pp)ijdyda .
X

By Assumption 1.2, the random coefficients Zj in (1.10) are uniformly bounded, P — a.s. for all k. Note
also that, due to the normalization Assumption [ @[/ 2(pxy)axe = 1 the probability densities of the
random variables 7, are not necessarily supported in [—1,1]. To estimate the eigenvalues Ay, we will use
the following classical result (see, e.g., [16] and the references therein).

Z(w)



Lemma 1.4 Let (H,(-,-)) be a Hilbert space and let C be a symmetric, nonegative and compact linear
operator from H to H whose eigenpairs are (Am, ¢m)m>1. If m € N and C,, is an operator of rank at
most m, then

A1 <€ = Conll (i)

We then have the following bounds for the eigenvalues A\x in terms of the regularity of the covariance
function of the random diffusion matrix A in (1.1).

Proposition 1.5 Assume that the random diffusion matriz A in (1.1) satisfies

Aec L*(Q;HE .

(D xY)) (1.11)

where, fort >0, the space H},;, (D xY) is defined by H},;, (D xY) = H(D) ® Hy (Y1) ® ... ® Hy(Yy)
with ® denoting the tensor product of separable Hilbert spaces and with H? denoting, for noninteger values
of t, the fractional order Sobolev space (e.g [18]).

Then Cov]A] € H! , (D xY)® H! ..(D xY). Moreover, for all ¢ > 0, there exists a constant

m m

¢ = c(e) > 0 such that for all k > 1 holds \j, < c(e)k=!/d+e,

1z

Proof The proof is adapted from that of Proposition 2.18 in [16]. Let P” be the orthogonal projection
into VZ in the L2(D x Y) norm. Here VE denotes a sparse tensor product space in the sense of [15, 10]
of multilevel spaces in D and in Y;, ¢ = 1,...,n. The rank of the operator P*Q4 is at most dimVE.
Using results on sparse grid interpolation (see, e.g. [17] and the references there) we find that

1Qa — PEQullc(z2(pxv)or2(pxyy) < cL™?27H .

As dimVE = O(L™29F), we get with Lemma 1.4 the conclusion by choosing C = Q4 and C,, = P*Qa
by choosing in Lemma 1.4 m = k = O(L"24). 0
For the eigenfunctions @y, we have

Proposition 1.6 Assume that the random coefficient A in (1.1) satisfies (1.11) for some t > d/2. Then
for every d/2 < t* < t there is a constant ¢ > 0 independent of k such that

d
72 *
ST @R 12 () < X

4,J=1

Proof The proof of this proposition follows that for Proposition 2.3 of Bieri et al. [4]. We note that

0 1 0 .
81' ((I)k)l_] (:C? y) = )\k / v 81' COV[A]iji’j’ ('Ta Y, xla y/)(I)i’_j’ (:L'/a yl)dl'/d’y/ 1,] = 1) sy d
[e% Dx «

with summation over repeated indices. Therefore, with the normalization ||®k||12(pxy)ixa = 1,

VEeN:  |(Pp)] g

miz

(DXY)®L?(DXY) -

miz

1
(DxY)dxd < )\—kHCOV[A]HHt

For 0 < t* < t hold the inclusions L?(D x Y) = L*(D) ® L*(Y1) ® ... ® L*(Y,) D H., (D xY) D
H! .. (D x Y) which follow by interpolation between L? and H® on D respectively on Y; and by the
fact that the Sobolev norms of mixed highest derivative are cross norms on the tensor products of the
respective Hilbert spaces. It follows from the corresponding interpolation inequality (see, e.g., [18, Chap.

1]) that there exists a constant C'(¢*) > 0 such that

t*/t 1—t*/t
@0l oxyy < CH@ 1L pery 1R (e

Applying Holder’s inequality we then get for all k&

d d VLAV 1—t*/t
S I@5 e ey < (€ 1@051 vy S @)l ()
4,j=1 i,j=1 i,j=1

IN

)"



As t* > d/2, we deduce that exists ¢ > 0 such that

d
—ot*
Vk e N : Z H((I)k)ij||2L°°(D><Y) < ey v

ij=1

The conclusion then follows. O
In the Karhtnen-Loeve expansion (1.10), let Wy = /A Pr. We then find that there exists a constant
¢ > 0 (depending on t, t* and on d) such that for all k

d
1—2t*
ST @) 12 (pryy < Xy

i,j=1
From Proposition 1.5, we find that

d
Z H(‘I’k)in%oc(ny) < ck(Ct/dre) (12t /)

ij=1

For each vector ¢ € R?, we have

d d
[(T5)ig (2, 9)6&51 < (O 1TR)ijll7 = () (Y, &787) < ckTHHU=2E/Dg

ij=1 1,5=1

Therefore we may choose
B = ck(Tt/d+e)1/2=t"/t) (1.12)

When ¢t is sufficiently large, e.g. (t/d —)(1/2 — t*/t) > 1, this implies that 3 = {Bx}r>1 € *(N).
Assuming that the random variables Zj, in the expansion (1.10) are uniformly bounded, we can and will
in what follows assume that they are rescaled so that the support of their laws equals [—1, 1]. Assumption
1.2 holds when the constant «q is sufficiently large.

1.3 Probability space

A key tool in our analysis will be a parametric deterministic representation of the law of the random
multiscale solution u®. We shall use this representation in order to prove various convergence results
of u® as ¢ — 0. Below, we shall investigate the precise regularity of dependence of this representation
of u® on the parameter vector z. This, in turn, also allows for the proof of sharp bounds on spectral
approximations of the parametric solution u®. To this end, following [7, 8], we parametrize the law
of uf(w;z) in terms of countably many “random coordinates” zp(w) in the representation (1.7). We
collect the random coordinates (zj)r>1 in a vector z and define the parametric, deterministic multiscale
coefficient A°(z;x) as follows:

x x
Af(z,) = Al z2,—,...,— | . 1.13
()= A (a2 2 (113)
We define a probability measure on the parameter space U = [—1,1]N. To this end we introduce the

o-algebra © = (B([~1,1]))Y where B'([—1,1]) denotes the Borel o-algebra on the interval [~1,1]. On
the measurable space (U, ©) thus obtained, we define a probability measure by

p(dz) = ® d—gj (1.14)

Jjz1

For any set of the form S = [[;Z, S; with S; € B([-1,1]), it holds S € © and

p(8) = [[Plw: =) €S},



1.4 Parametric deterministic multiscale problem

For each z € U, we define the deterministic coefficient matrix A(z;z,y) by

Az;z,y) = Az, y) + Z 2,k (z, y), (1.15)
k>1

where the matrix functions A and ¥y, are those in (1.7). The convergence of the sum on the right hand
side is ensured by Proposition 1.3. For the parametric, deterministic coefficient A°(z,x) defined in (1.13),
and for given 0 < e < 1, 2 € U and f € H~ (D), we consider the deterministic multiscale problem: for
given f € H=1(D) and z € U, find u®(z,-) € H}(D) which satisfies

—divA® (z;)Vus(z;-) = f(z), u®(z;)]ap =0. (1.16)
Again, Assumption 1.1 holds with @ = a/(1 + k) and 8 = ag + kap/(1 + k), so problem (1.16) admits
a unique solution which satisfies

Vi
sup sup [|u (2, )| g (py < 2 (1.17)

0<e<1z€eU «
We first prove that the solution u®(z,-) depends on z continuously.

Proposition 1.7 Under Assumption 1.1, there exists a constant ¢ > 0 which is independent of € such
that
Vz,2' € U |lu(z;7) — (25 )l my oy < cllA(zs0) — A2 )l Lo p.o(v))-

Proof Define w® := u®(z;-) — u®(2’;-). The function w® is a weak solution of the Dirichlet problem
—divA®(z; - )Vuw® = —div[A°(2';-) — A°(2;)]Vus(2';-), w'lep =0.

Therefore, it holds for every z,2’ € U

Vw e Hy(D): /D A®(z,2)Vw (z) - Vw(z)dx = /D[Aa(z/;x) — A%(z;2)]Vu®(2';+) - Vw(z)dr .

From (1.17) and Assumption 1.1, we obtain the conclusion. 0.
To study the law of the solution u® of (1.5), we need to prove its measurability.

Proposition 1.8 For every 0 < & < 1, the solution U 5 z — u®(2;-) of (1.16) is measurable as a map
from U to HY(D).

Proof As H}(D) is separable, it is sufficient to show that u is weakly measurable, i.e. for all ¢ € H} (D),
the H}(D) innerproduct (uf(z,-),¢) is measurable as a map from U to R. For a € R we denote by
Yo={z€U : (v°(2,-),¢) > a}. From Proposition 1.7 it follows that if (u®(z), ¢) > a, then there exists
a positive constant r such that if

sup |Aij(z;2,y) — Aij(2hsz,y)| <r forall 4,57=1,....d
z.y

then (u®(z’;-),¢) > a. Let Tj be the set of z € U such that for all 2 = (z1,29,...,2k, 21, 22,...)
(us(z,-),¢) > a for all z; € [-1,1], j = 1,2,.... For each z € U, from Proposition 1.3, we deduce that
foralli,j=1,...,d,

Sup |Aij(z5 0, y) — Aij(Z2,9)] <,

for all z, Zo, ... € [—1, 1] when k is sufficiently large. Therefore each vector z € Y, belongs to a set T}, for
some constant k. Let Ry, € [—1,1]* be the set of ¢t = (t1,...,1;) such that (t1,t2,...,tx, 21, Z2,...) € T}
for all z; € [—1,1]. From Proposition 1.7, Ry is an open set, and therefore is the union of a countable
set of open rectangles. Thus T} is a countable union of sets in © and is therefore measurable, so is
Yo = UpTk. O



Remark 1.9 The random solution u®(w;-) of problem (1.5) can be recovered from the parametric, deter-
ministic solution of (1.16), for P-a.e. w € Q wia

Q3w u (W) = u(2;) e=z(w) € Hy(D)
where, for 0 < e < 1, u®(z;x) denotes the weak solution of the parametric, deterministic problem (1.16).

We shall use Remark 1.9 in what follows to homogenize (1.5). We do this by first passing to the (n+ 1)-
scale limit in the parametric, deterministic problem (1.16) and then “reinsert” z = z(w).

1.5 One-scale stochastic limiting problem

For each realization w € €, we study the limit when ¢ — 0 of the solution u® of the problem (1.5).
Multiscale convergence is an appropriate tool for this purpose. It was first introduced for two-scale
problems by Nguetseng [14] and elaborated further by Allaire [1]. The definition of n+ 1-scale convergence
we give below is due to Allaire and Briane [2]; we use their notion of multiscale convergence to study
solutions of the problem (1.5) as ¢ — 0.

Definition 1.10 A bounded sequence {uf}. in L*(D) n+ 1-scale converges to a function ug € L?(D xY)
if for all test functions ¢ € L*(D,Cx(Y)) it holds

lim ua(x)qﬁ(ac, E—xl, ce i)dw = /D /Y uo(x, y)o(x, y)dydx .

e=0 Jp
/-dy:/ / ~dyy ... dy;.
Y Y1 Yn

The use of the preceding definition in homogenization is due to the following theorem from [2].

Here and throughout, we denote

Theorem 1.11 Any bounded sequence {u®} in L*(D) contains an n + 1-scale convergent subsequence.

For the variational formulation of the limiting problem of (1.16) using n + 1-scale convergence, we intro-
duce the space
V = {v = (vo, {v;}) : vo € HY(D), v; € V;}
where
Vi = L*(D; Hi(Y1)/R), V;=L*DxYyx...xYi_;Hy(Y;)/R)}, i=2,3,....n.

We equip V; with the norm

n
|||’U||| = HVUOHLZ(D) =+ Z ||vyi’UiHL2(D><Yi) where Yz = Y1 X ... X }/z .
i=1
For each v € V, we denote by
n
Vv =V,vy + Z VUi . (1.18)
i=1
Theorem 1.12 For every fized z € U, as ¢ — 0 the solution u®(z;-) of the parametric, deterministic
multiscale problem (1.16) converges weakly in Hg (D) to a function ug(z;-); moreover, Vu(z,-) n + 1-

scale converges to Vu where u(z) = (ug,u1,...,u,) € V is the unique solution of the parametric,
deterministic elliptic one-scale limiting problem

b(z;u,v) = /D/YA(z;z,y)Vu~Vvdydx = /vaod:r, Vo = (vg,{vi}) € V. (1.19)

Here, the parametric bilinear form b(z;u,v) : V X V — R is bounded and coercive uniformly for z € U:
there exist positive constants ¢1 and ce which are independent of z € U such that

VzeU YueV : bz;u,u)>cll|ull]?, (1.20)
and
V.0 €V 5 sup oz )] < ol | ol (1.21)
zE



For each fixed z € U, this theorem is a consequence of [2]; the coefficients ¢; and ¢y only depend on «
and § in Assumption 1.1 and are, therefore, independent of z. From this, we obtain

£l z-1(p
sup [[[u(z)]]] < =2,
zeU (&)

Using this a-priori bound, one verifies that the passage to the n + 1-scale limit can be achieved uniformly
with respect to z € U. Theorem 1.12 establishes convergence of the parametric solutions u®(z;-) as
e — 0 to a solution to the high dimensional, parametric and deterministic one-scale problem for each
fixed parameter vector z € U. To establish the connection between the solution of this problem and the
laws of the random multiscale solutions u® of (1.5), we next verify measurability of the solution u(z)
with respect to p(dz).

Proposition 1.13 The solution uw(z) of (1.19) as a map from (U, O, p(dz)) to V is measurable.
Proof For any two vectors z, 2’ € U, let u(z) and u(z’) be the solutions of the problems (1.19). Define
w = u(z) —u(z’). From (1. 19) we find

YvoeV: / / (z;z,y)Vw - Vodydz —/ / (z"s2,y) — A(z;2,9))Vu(z') - Vodydz.

We choose v = w. From (1.20), |||u(z)]|| is bounded uniformly for all z € U. Therefore, there exists a
constant ¢ which does not depend on z, 2z’ € U such that

llu(z) — w(z)Il < c|A(z;2,y) — A2 2,9) | L= (Dxv)- (1.22)

The proof then follows the argument used in the proof of Proposition 1.8. o
We define

V= LU V) = {v = {(vo. {0} : v € LU p HYD)), v € LU p VDY) . (L23)

We note in passing that L?(U, p; V) =2 L?(U, p)®V and consider the variational parametric, deterministic
problem:
find w € V. such that B(u(z;-),v) = F(v), Yv = (vo,{vi}) € V. (1.24)

Here, the linear functional F': V. — R and the variational form B(-,-) : V. x V. — R are given by

:/U/Df(x)vo(z;x)dxdp(z), B(u,v):/Ub(z;u,v)dp(z).

Proposition 1.14 Problem (1.24) admits a unique parametric, deterministic solution u(z;-,-) € V
which belongs to L*(U, p; V). For p-a.e. z € U, this solution coincides with the solution w(z;-,-) of the
parametric problem (1.19).

Proof The existence and uniqueness of a solution to (1.24) follow from Lax-Milgram theorem.

For each z € U, the solution u(z;-,-) € V of the parametric, deterministic elliptic one-scale problem
(1.19) exists, is unique and is uniformly bounded with respect to z € U. As a mapping U 3> z +— u(z;-) €
V, it is measurable. As dp(z) is a probability measure on U, this implies that the parametric solution
u(z;-) of (1.19) coincides with the solution w € V. of (1.24).

O

Remark 1.15 The random solution u®(w;-) of problem (1.5) (n + 1)-scale converges, for P-a.e. w € €,
towards the weak solution w(w;x,y) of the random one-scale limiting problem

bwyu(w; );v) = /D/YA(w;:c,y)Vu~Vvdydx:/vaodx, Vo = (vo,{vi}) €V (1.25)

where, for w € Q, we define
Q3w b(w;v,w) = =b(z;0,W)|2—2) , w(W;z,y) =u(z;2,Y)|2=2) -

Our aim is to construct approximations of u®(w;z) which are, on the one hand, robust with respect to
e, and, on the other hand, allow for discretization of the randomness with convergence rates superior
to that of Monte Carlo Methods. To this end, we shall investigate next a spectral, “polynomial chaos”
type approximation of the solution u(z;x,y) of the (n 4 1)-scale limiting problem with respect to the
parameter vector z € U, and then investigate the rate of convergence as ¢ — 0 of u®(w; x) to the solution
of the limiting problem.



2 Galerkin Approximations in U

2.1 Orthonormal basis of L*(U, p)

We start by defining a “generalized polynomial chaos” basis of L?(U, p(dz)). Let (L, ),>0 be the univariate
Legendre polynomials normalized so that

l/1 |L,(t)?dt = 1. (2.1)

2J4

Let F be the (countable) set of all sequences v = (;);>1 of nonnegative integers such that only a finite
number of v; are non zero, i.e. F = {v € Ny : |[v||; < oo}. For v € F, we define the tensorized Legendre
polynomials as

Ly(z) =[] L, (z), veF

Jj=1

By the completeness of the Legendre polynomials (L, (t)),>0 in L?(—1,1), the family L, forms an or-
thonormal basis of L2(U, p): each function u € V can be expanded in the Legendre series

u = Z u,L,, u,€V. (2.2)
veF

2.2 Semidiscretization with respect to z

For a subset A C F of finite cardinality, we define the space

V,= {uA = Zuv(xvy)Lu(z) DUy € V} cV.
vEA

We then consider the following Galerkin semidiscretization in z:
Find uAEMA : B(uA,’UA):F(’UA) VUAEMA . (2.3)
Then the following approximation result holds.

Theorem 2.1 For all A C F, problem (2.3) admits a unique solution un € V, which satisfies the
following error estimate:

1/2
lu—wualy < (D i) (2.4)

veEF\A

Proof As V, is a Hilbert space, from (1.20) and (1.21) and from the Lax-Milgram lemma, (2.3) admits a
unique solution up € V. From Cea’s lemma and from the normalization (2.1) with Parseval’s equality,
we find that
- < inf — .
[u—usly < oot lu—vallv

Choosing va = ), o Uy Ly, we arrive at the conclusion. O

3 Best N-term approximations

From Theorem 2.1, with a fixed cardinality N, we infer that an optimal choice of the set A is to select
A corresponding to N terms wu, with largest V norms. Since these norms are not known a priori, we
establish in this section an apriori bound for them, and choose the set A according to these bounds. In
this way, we obtain a constructive approach for the choices of index sets A with the prescribed cardinality
which might be, however, suboptimal. Nevertheless, we shall prove that the sets obtained in this way will
allow for the best N-term convergence rates to be achieved. The key ingredient for obtaining the rate of
convergence in terms of the cardinality of A is the following observation, due to Stechkin.



Lemma 3.1 Let o = («,),er be a sequence in (P(F). Let ¢ > p > 0. If AN C F is the set of indices
corresponding to a set of N largest |a, |, then for every N holds

1/q
Ha“gq(]:\AN) = ( Z |aV|q) < ||04ng(_7:)]\77‘7, where o = >0.

veF\AN

’UI»—A
»QIH

The convergence rate of truncated gpc expansions therefore depends on the p-summability of the sequence
(luy ||v)ver. We show that the summability of this sequence depends on the summability of the sequence

By in (1.8).
Assumption 3.2 There exists 0 < p < 1 such that in (1.8) the sequence (Bk)r>1 € (P(N).
Remark 3.3 Assumption 3.2 holds if the constants t and t* in (1.12) satisfy

Wa=o)a-5)>1

3.1 Complex extension of the parametric deterministic problem

To bound ||u, ||v, we follow [8] and extend the parametric, deterministic limit problem (1.19) to complex
values of the parameters z. Let M be a positive constant. Let K < 1 be a positive constant such that

oo
KD Bi<
j=1
We choose a constant Jy such that

Zﬂ] 6M1+K)

3>Jo
Let E={1,2,...,Jo} and FF' =N\ E. We define
el =Y [yl.
i>Jo
For each v € F, we define

rm = K when m < Jy, and r,, = max{l,—————1} when m > Jy, (3.1)

| Iﬂm
[v;]

where we make the convention that Ve = 0 if [vp| = 0. For m > 1, we let the set U, € C be defined as

[—1,1] CUp = {¢m € C: dist(¢pm, [-1,1]) < rp} C C.

We next extend problem (1.19) to the complex parametric domain

U= UncC". (3.2)

m=1

We define the complex parametric coefficient A(¢; z,y)

Az, y) = Az, y) —I—ZCW z,y), Ce€U,xeD,yeY.

The sum on the right hand side of this definition converges uniformly for { € U, x € D and for y € Y,
as we obtain from Proposition 1.3 for every ( e U, x € D, and y € Y

Ay (Gay) < wy|+2| W )ig (@, )| (1 + 72m)

Jo

< esSSUP(, yyepry [Ais (T )+ D 1(Wm)ijll oo (pxy) (1 + K)
m=1

+ Z(2+ M |ﬂ )H( m)ijll Lo (DxY)-

j>Jo

10



From Proposition 1.3, we find that

A K 2a
|Aij (G2, y)| < Al e (pxyy +4——ao0 +

—. 3.3
1+k M’ (3.3)

In what follows, for functions taking values in C we still denote (with slight abuse of notation) by V

Hy(D) x [JL*(D x Y1 x ... x Yi_y; Hy(Yi)) .

=1

Consider the complex parametric, one-scale limiting problem: given ¢ € U, find u € V such that

b(¢u,v) = /D /YA(C;x,y)Vu-Wdydx = /D foodz Vv = (vy,{v;}) € V. (3.4)

Proposition 3.4 Problem (3.4) admits a unique solution which is uniformly bounded in 'V for all { € U.

Proof We first show that the matrix function A({;z,y) is uniformly bounded and coercive for all ¢ € U,
z € D and y € Y. To this end, we observe that for every in & € C% and every ¢ € U, we have:

Az, el < €T A y)El + D (Gl T8

m=1
< (ﬂwz (L4 K)Bm + Y (2 M|y Iﬁ )ﬂm)lfl2
m>Jg
< (ﬂo+12+ﬁoéo+ﬁ)|§|2-

To prove uniform coercivity, we note that for every ¢ € U and for every ¢ € C¢

RETAC 2 9)8) > RETA(,y)e) Z|§m||§me§|

m=1

Jo

> (ao (1+ K)B o Bm) ¢?

L0~ 3 @ gl )
> (a0 - ao—KZBm—QZﬁm—Z el
- 1+k M|I/F|

m>Jo m>Jg

a a a
N e o ave
e

a
> e (35)
if M > 4 where ao = /(1 + k). The proposition then follows from the Lax-Milgram Lemma. O

For an index v € F, we denote the support of v by supp(v), i.e. the set of j such that v; # 0. We
define the domain
Uy = Djesuppv)Uj-

The following analyticity properties of u(z;-,-) hold.

Proposition 3.5 Forv € F and { € U with fized (i, for all the indices k ¢ supp(v), the map w : U, =V
is analytic as a V-valued function.

Proof For m € N, we fix all coordinates (i for k # m and partition each vector ¢ € CN as ¢ = ({,, (m)-
It is sufficient to show that there exists a function v € V such that for all ¢ € ¢/ holds

lim U(C:;wgm + ;- ) - U(C7 % ) _
§—0 )

v(C;-,-)H =0,

v

For § > 0, define the difference quotient v° := 6~ (w((},, Cm + 05+, <) — w(C; -, -)).

11



0

The function v° is a weak solution of the parametric variational problem

/ / A(¢; z,y) VY - Vwdydr = / / (2, 9)Vu(l,, Cm + 85 2,y) - Vwdydr, Yw € V.
pJy

Let v denote the solution of the problem

/ / (¢;2,y) Vo - Vwdydr = / / (x,y)Vu(¢;x,y) - Vwdydr, Yw e V.

We deduce that for every w € V and every ¢ € U holds

| [ AGie )V o) Fwdyds = - [ [ 00009 (G G+ 352.) ~ u(, ) Veodyd

From this we obtain
I[v® = v|| < e(m)||[w(Cs Cm + 052, y) — u(C; 2, y)l] -
From (1.22),
tim [[o” ~ ||| = 0.

Hartogs’ theorem implies that for every v € F, u({) is analytic as a mapping from U, to V. This

completes the proof. O
We next investigate summability of the Legendre coefficients.

3.2 Coefficient estimates

Proposition 3.6 For every v € F, there holds

21+ K) _,
fwdv=c( T 25 w). (35

mesupp(v)
where Ny, = Ty + /1 + 12, with vy, as in (3.1).

Proof We proceed as in the proof of Lemma A.3 in Bieri, Andreev and Schwab [4] and Hoang and Schwab
[11]. For v € F, the function w, € V in (1.23) can be represented as

uV:/u(z)Ly(z)p(dz) (3.7)
U

where the integral is understood as a Bochner integral of V-valued functions. Let S = supp(v) C N and
define S := N\ S. We then denote by Us = @mesly, and Ug = ®,,clm, and by zg = {z;, i € S},
zg = {2, i € S} the extraction from z, and analogously ¢ and (g.

Let &, be the ellipse in U, with foci at £1 and the sum of the semiaxes being 7,,; and £ =
Em. We can then write (3.7) as

- z u(Cs,25) .
e = G J, )72 (Cs - 21 10s2)

For each m € N, let T, be a copy of [-1,1] and z,, € T,,. We denote by Us = []
Us = [I,n,eg T'm- We then have

- # u za Lyi(z) z a(zz
= 2wl /US fgs (Cs» S)/US (Cs—2) dps(zs)dCsdps(2s)-

We recall the definitions of the Legendre functions of the second kind:

HmGsupp(u)

mes I'm and

Qn(é) = l/ Ln(Z) dZ, 5 S (C\[*l, 1] ,n € Ng .
[-11] & ™
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For v € F, we denote by vg the restriction of v to S. We define for ¢ € CY

Qus (CS) - H Quv,, (gm)

mesupp(v)

Under the Joukovski transformation (,, = %(wm + w,,!), the Legendre polynomials of the second kind
are written as

= q’/mk
QVm( (wm +wr) = D s

w
k=vy;,+1 m

with |g,,, k| < m. Therefore

Qnel< [T S & = [ wtn

meS k=v,, +1 mesS 1inm

We then have

1 _
v = | G [ § w(Csz6)Qu (€)itsdos(zs)
7TZ Us Jé&g v
< oo | (s 28)IvQuCs)iCsdszs)
(2 ) s Jes
1
< (%)MOH uw(Q) [z (ssts,V)maX|Qus|£SLen m)
1 —um—l
< (%)MOH (Ol o= (g5 xuis,v) };[SF —— 7 Len (&)
- o X 1+K —
meS
as Len(&p) < 4nm, N > 14+ K and u(¢) is uniformly bounded in V. O

To show the ¢P(F) summability of ||u,||v, we use the following proposition, whose proof can be found
in [7].

|
Proposition 3.7 For 0 < p < 1, ('%b”) LECF) iff (i) oz b < 1 and (id) (bn) € C7(N).
! ve -

Proposition 3.8 For 0 < p <1 as in Assumption 3.2, (||u,||v),er € CP(F).

Proof We have from the previous proposition that

1+K iy
fudy < € T 25 04 r)
meS
2(1+K) 201+ K)  M|vp|Bm\vm
< Vm
- C( H K n )( H K ( QVpm, ) )
meE v,#0 meF,v,,#0

where n =1/(1+ K). Let Fp ={v € F: supp(v) C E} and Fr = F \ E. From this, we have
D lwly < CApAp,

veF

Ap — Z H (2(1;2[())17771)%’7

vEFE mEE v,#0

where

and

e o

veFr meF, v, #0

13



We now show that both A and Ay are finite. For Ag, we have
Jo

Ag = <1 + (W)p 3 npm> ,

m>1
which is finite because n < 1. For Ar, we note that for v, # 0,
2(1+K) - (2(1 + K))Vm
K - K '

Therefore

Z/dm PVm 2M 1+K m
Ars 3T (B)™ where d,, = 2R
veEFr meF

and where we made the convention that 0° = 1. We now proceed as in [8]: from the Stirling estimate
nle™/(ey/n) <n™ < nle™/v2mn, we infer |v|I*! < |v|lel and obtain

vlelvl

VVTVL Z .
n]-;-[F m [Ihcpmax{l,e\/ v}

ar= 32 () (T mstrevmmy = - ()"

vEFFR veFp

Hence

where d,,, = ed,, and where we have used the estimate e\/n < ™. From this, we have

ngngm(lg—af‘md_

m>1 meFr
It is also obvious that
HJHZP(N) < 0.
From these estimates and from Proposition 3.7 we obtain the conclusion. O

3.3 Best N-term Approximation Rates

With Lemma 3.1, we have from Proposition 3.8 and Theorem 2.1 the following result:

Theorem 3.9 If Assumptions 1.1, 1.2 and 3.2 hold for some 0 < p < 1, there exists a sequence
(AN)Nen C F of index sets with cardinality not exceeding N such that the solutions uy, of the Galerkin
semidiscretized problems (2.3) satisfy

|~

||U7’UJANH¥§CN_U, 0=

K=

4 Regularity

To obtain convergence rates of sparse tensor finite element discretizations for the fully discretized problem
of (2.3), we introduce, following [15, 10], regularity spaces H; (i = 1,...,n). The space H; consists
of all the functions w(z,y1,...,y;) that are Yj-periodic in y; (j = 1,...,7) such that for any vectors
(g, 1, .., ;) € (NG)*! such that |a;| <1 for 0 <j <i—1and |a;| < 2 where |o;| denotes the sum
of all the components of «;,

a\a0|+...+\ai|w

ooz dory, ... D%y, €L’ (DxY; x...xY;).

The space H; is equipped with the norm

glaol+-+laily,
wlly, =
il Z H Qo x01yy ... 0%y,

laj|<2
loj|<1, j=0,...,i—1

We then define the subspace H of V as
H = {(vo, {vi}): vo € H*(D), v; € Hi, i =1,...,n}.

L2(DXY1X...xXY5)

14



4.1 Regularity of the parametric, deterministic problem (1.19)

For each index ¢ =1,...,n — 1, we denote
v, = (1,...,y;) and Y; =Yy x...xY;. (4.1)
We define by C}, i =1,...,n the space of functions w(z,y1, ..., y;) that are continuous in each variables

T,y1,...,y; and that are Y;-periodic with respect to y;, j = 1,...,4. For a vector (yo,...,7:) € {0, 1}
and the index vector (jo, j1,---,4:) € {1,...,d} "L, the strong derivative

oot FYigy,
ol 2 Yi
0x ) 0y ;, ... 0y}
exists for all (z,y1,...,y;) € D xY; x...xY; and is continuous. We define the seminorm
oot FYigy,
hole; = 2 Hagﬂ“a ooyl sy 2
(v0,---»7i)€40,1}7+1 jo 9Y1j, -+ - OYij, K

(30531 5+++533) E{Lserryd} BT

The following homogenization result is, in principle, well known (see, e.g., [2]). As we require its para-
metric version, and also use its derivation later, we present its proof.

Proposition 4.1 There exists a symmetric matriz function Ag(z;-) € LOO(D)‘SinH‘f that is uniformly bou-

unded and coercive for all z € U such that the limit function ug(z,-) € HE(D) in Theorem 1.12 is the
solution of the problem:

/ Ao(2:2)Vuo(2; 7) - Vo(z)de = / f(@)é(x)dz, Ve HL(D).
D D

Proof With u(z) = (ug, u1,....,un) € V asin (1.19), we have (with implied summation over the repeated
index I =1,...,d)
(8u0 I 8u1 I 8un,1 )
Up = Wp | =— —_— - ),
dr;  Oyu IY(n-1y1

where the functions w,; € L?(D x Y1 x ... X Y, _1; H%E (Y,,)/R) are the unique solutions of the parametric
unit-cell problems

/ Alz; 2, Y1 Yn) (€1 + Vy,wni) - Vy, dndy, =0, Yo, € H;&(Yn); (4.3)
YTI,

(here e; denotes the [th unit vector in R?). From (1.19), we have

n—1
/ / A(I+Vy, wy) - (Vzuo + Z Vykuk) “Vy,_1On—1dydz = 0, (4.4)
pJy 1

for all ¢,,_1 € L>(D x Y1 X ... X Y, _o, H;(Yn_l)), where w,, denotes the vector (wp1,...,wsq) and I is
the identity matrix. By recursion, we define the “upscaled” conductivity matrices A,,_1(z;x,y,_;) as

Ap_q :/ A(I+ VYV, wy)dyn :/ A(I+Vy,wy) - (I + Vy,wn)dyn. (4.5)
Yo Ya

We then consider the parametric unit cell problem on scale n — 1: find w,_;); such that

/ An_i(er+ Vi, w0i—1y) - V1 On-1dyn—1 =0, YVén_1 € Hy(Yn_1).
Yn-1

We then have
(auo 4 8u1 n aun_g )
Up—1 = Wip— —t — . — .
! =D Bz, "y OY(n—2y1
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With the convention that A, = A, we define recursively for i = n — 2,n — 3, ... the functions w;; €
L*(D x Yi-1; Hj,(Yi)/R) as (unique) solutions of the problems

/ Ailer + Vywi) - Vy,¢idy; =0, Ve € Hy(Y;).
Y;

For i =1,2,...,n, the scale interaction function u; is then determined as

8u0 8u1 8114;1
U =wy\ =—+—+...+
l(awz dyu 3y(i71)z)

and the “upscaled” matrix A;_ is defined in terms of A; as

Aisi(zix,y,_q) = / Ai(ziz,y;_1,y) U+ Vyw) - (I +Vyw)dy,, zeU xze€D,y,_; €Y1 (4.6)
where w; denotes the vector (w1, ..., w;q). Upon completing the upscaling recursion at ¢ = 1 the effective
diffusivity matrix Ag(z) is obtained as
Ao(z;z) = /Y Ai(zsz,y1){ 4+ Vy,wr) - (L + Vy,wi)dys
1
and the function ug(z;-) € H}(D) satisfies the homogenized, parametric limiting problem

/D Ao(2:2)Vuo(2; 7) - Vo(z)de = /D f(@)d(a)d, (4.7)

for all ¢ € Hy (D).
As the matrix A is symmetric, all matrices A; (i = 0,...,n — 1) are symmetric. Fix £ € R?. Then
(with summation over repeated indices)

Atn—1ym&eél = /Yn Ars (Er + a(g};:fk)) («Es + 5(;;:51))dyn .

For the constant o as in Assumption 1.1, and for every z € U, z € D, y,,_; € Y,,_1 and every ¢ € R?

D o,
Aoy, )66 2 o [ (6 + 252 (g o SnSyg, o i

Furthermore with summation over repeated indices,
2 Owniér) O(wn&r)
dyn,
<Z5 +Z/ Onr Oyur >
awnk
(23 () (3 [, () am) )

8ym

IN

Am—vr (252, Y,-1)8kG

IN

From (4.3), we deduce that there is a constant ¢ = ¢(d) which depends only on the dimension d such
that

c(d
IVl 20y < L sup A v

)

Therefore, there is a constant ¢ = ¢(«, d) such that

A1y (Z5 2,9, 1)Ek& < Be(a, d) (1 + sup | Akl Lo () €]

Repeating this argument for 4;(z;x,y,), i =n —1,..., 1, we deduce that for all z € U and x € D,

Ao (23 2)€1& > al€]?,
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and
Aori (23 2)65 < Be(a, d)" (14 sup | Akl Lo (pxyy)? (1 + sup A1)kl L (DY) - -

(1 4+ S;l}) [ A1kl Lo (pxyv))?IEI -

)

From (4.5), we deduce that

IN

S;l}) A1)kl Lo (Dx Y1) c(d) S;l%) | Akl Lo (Dxvy (1 + [V, Wall Lo (DxY_1,22(v,0)))

< clayd)(1+ S}?}) ||Akl||L°°(D><Y))2a

SO
1+ Slll}) A1)kl Lo (Dxyn_1) < cla,d)(1 + s;11p ||Akl||L°°(D><Y))2 )
Repeating this argument for ¢ = 2,...,n, we get
1+ S;I? A=kl Lo (Dxy,_) < cla, d)Qi_l(l + S;IF HAleL“(DXY))Qi-
Therefore )
Aot (z;2)&x& < Ble(a, d) (1 + sl?}) ||Akl||Loo(DxY)]2”+ “2¢f2. (4.8)
O

Proposition 4.2 Assume that the domain D is convex and f € L*(D). Assume further that A(z) € C,
and ||A(2)| ¢y is uniformly bounded for all z € U. Then u(z) € H and ||u(2)||3 is uniformly bounded
forall z € U.

Proof The functions w;(z;z,y;) can be expressed in terms of the functions w; = (w1, ..., w;q) as
Ui = Wy - (I+Vyi71’wi_1)"'(I+Vy1w1) 'VUO. (49)

From (4.3), for almost all (z,y,,_;) € D x Y,_1

/Y A(z;xay)vynwnl(z;xvy) - Vy, Ondyn = / (vyn ’ (A(z;xay)el)(bndyna Vo € H:;E(Yn) : (410)

n

As any function in D(R?) with a sufficiently small support can be extended to a Y;,-periodic function of
the same regularity, we see using a partition of unity, that

[ A )V waz9)- Vbudy, = [ (V- (Al g)adudy, Vo € DRY.

We choose a smooth domain D’ such that Y;,, € D" and 7 € D(D’) such that 7(y,) = 1 when y,, € Y,,.
For 7(yn)wni(2;2,9,,_1,yn) in D', we deduce that

lwni(25 2, Y)| a2(v) < CUIVy, - (Alzs2,9)en)l L2 v, + [[wnill L2 v)),

where the constant C' depends on the C' norm of A(z;z,y,_1,"), @, B and 7, and is in particular
independent of z € U (see, e.g., Wloka [19] page 330).

Now, we freeze all the coordinates (z,y,,_;) except the jth coordinate of the variable y;, for an index
k=1,...,n—1, and denote by (yj;,yx;) the vector y,_;. For § > 0, let

’LUnl(Z; zvyzjvykj + 5) - wnl(z; Z',y)
5 .

(22, y) =
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For all ¢, € H# (V) we have

A(z; 2,95, uky +0) — A(z 2, y)
/ A(z; z7y)vynxé ' Vynd)ndyn = */ b ! €r - Vyn¢ndyn
YTI,

Ya 0

Alzyz, 5, yk +90) — Az 2, y)
Yn

Let x(2;2,9,,_1,-) € Hy(Y,)/R denote the solution of the problem

0A(z; x,
/ Az 2,y)Vy, X - Vy, dndyn = —/ %el'vymndyn
Y, Yo Ykj
0A(z;x,
*/ nynwnl(z; z,y) ' Vyn¢ndyn (412)
Yn OYk;

From these equations, we deduce

/Y A(Z; T, y)vyn (X6 - X) “Vy, Ondyn

Y

)el Yy Sndyn

J aykj
Az, yp;, 06 +0) — Alzsz,y)  0A(z;, i}
7/ ( L - - ( y))vynwnl(z;z7yk_jaykj +57) Vyn¢ndyn
Yo d Oyrj

0A(z;x,y .
7/ van (wnl (Z, zvykja Ykj + 5) - wnl(z; zvy)) ' Vyn¢ndyn .
Y, aykj

From (4.11) (ignoring the constant ¢), we have for every z € U and x € D
lwni (252, yijo Yrs +0) — war(2z5 2, Y) | 52(v,) -

< CIA(z 2,955, ukj +0) = Az 2, )| Loe v,y + 1V, (A2 2,5k, vk +0) — Alz52,9)) | Lo (vi) -

(4.13)
Therefore,
Alzyz, 5, yk; +0) — A(z;2,y) HA
F) _ , < C H My Jkgo ] (Rl _ H
I = Mlazrym < o : s PO
Az @, Y55,y +0) — Alzyz,y)  9A
+| -
J Oyij 1= ()

Az 2, yi5 i +6) — Az 2, Y[ L (v

IV, (Al 25 iy + 6) — A(z;:c,y»uw(yn))

which converges to 0 when § tends to 0 as A € C}.,. Therefore

As y satisfies (4.12), for each z € U, x as a map from D x Y,,_1 to H(Y,,)/R is continuous, due to the
continuity of the coefficient A(z;z,vy) and due to the continuity of w,,; as a map from D X Y,,_1 (from
(4.13)).

Performing a similar procedure for the remaining functions dw,,;/dyx; and their derivatives, we find
Wy € C}hl(Hi(Yn)/R). Therefore, from (4.5), A,_1 € C._,. In the same fashion, we deduce that
wy € C%_l(Hi(Yi)/R) for all i = 1,...,n and | = 1,...,d, and [Jwu(2)|[c1_, (m2(v,)/r) is uniformly
bounded for all z. Therefore for every z € U, Ag(z) € C(D)™? and |[Ao(2)l|(c1(py)axa is uniformly
bounded for all z € U.
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Next we claim ug(z,-) € H*(D) and that its H*(D) norm is uniformly bounded for all z € U. We
have shown that for all vectors & € R?, and for every z € U

ale? < €7 Ag(z,2)¢ < B'IE%,

where o > 0 is the constant in Assumption 1.1 and 3’ is a positive constant that depends only on «, 3,
n and d. The entries of Ag(z,x) are therefore uniformly bounded by a constant depending on o and 5’
As D is convex, Theorem 3.2.1.2 of Grisvard [9] shows that for each z € U, ug(z) € H*(D). The proofs
of Lemma 3.1.3.2 and of Theorem 3.2.1.2 in [9] show that

luo(2, )l m2(p) < cllfllz2(p)
where the constant ¢ depends on the C'(D) norms of Ay, and the L°°(D) norms of the entries of the

matrix A_l/ ?(z,z) which can be bounded by « and 3. Therefore ||ug(z,-)|| m2(p) is uniformly bounded
for all z € U. As |wa(z,¥;)llct  (m2(v;)/r) 18 uniformly bounded for z € U, we get from (4.9) that

u; € H; and |Jui(2)||n, is umformly bounded for all z € U. Hence ||u(z)||3 is uniformly bounded for all
zel. |
To establish the measurability of u, we make the following assumptions.

Assumption 4.3 We assume that the matrices Uy, in (1.7) are in (CL)?*? such that for alli,j =1,...,d

o0
D Wkl g yaxa < oo
k=1

Remark 4.4 When Cov[A;jij € HHl(D)@H;;l(Yl)@. . @HYY,) for a sufficiently large constant
t; fOT’ any vectors (705715 e 77’1’1) € {05 1}n+1 and any (jO;jla s 7]71) € {15 s .,d}n+1’
5%+”'+%COV[ ]zji'j'(iﬂ»y,x/ayl)

€eH'(D)® Hy(Y1) ®...® Hy(Yy).

We then deduce that
Wkl yaxa < e(e)k(—H/a+aA=26/0), (4.14)

Assumption 4.8 holds when t is sufficiently large.
Proposition 4.5 With Assumption 4.3, the function uw as a map from U to H is measurable.

Proof We first prove that there exists a constant ¢ such that for all z, 2’ € U,
lu(z) — w(z)lla < cllA(z:- ) = A2, )ll e yaxa- (4.15)
From (4.3), we have for every fixed z ¢ U, x € Dand y,,_; € Yn_1

| Az )y (z50,9) ~ w5 9) - Vb
~ [ Vo (Aioy) - A ay)en)
Y,

_vyn((A(Z';%y) - A(z§$»y))vynwnl(zl;xay)) Ondyn, Vo € H};&(Yn)
As [lwni(2;2, Y, 1, )| H2(v,,)/r is uniformly bounded for all (z;x,y, ;) € U x D x Y,,_1, we obtain

H(wni (22, Y515 7) = wnt (2552, Y1, )l m2ovy r < cllAzs ) = A2 )l o yaxa (4.16)
Similarly, from (4.12)

/Y Az, 9) ¥y, ((Z ) — (Z52)) - Ty budyn

0A(z;z,y) — 0A(Z;2,y) l)¢ndyn
ayk]

|
+/ v, - (8Az x,y) — 0A(2'; , y)Vynwnz(z;z,y))d)ndyn
Yo
(la

ayk]

#2,y) = A'32,9)Vy, X(2'52,Y) ) dudy
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Therefore there exists a constant ¢ > 0 such that for all z,2’ € U
IX(Z5 2, Yn_1,) = X252, Yn_1, M2y m < ClA(Z; ) = A2+ )|l (o yaxa-
Performing a similar procedure for the derivatives of x, we deduce that
[wni(zi 2, y) —wu (252, 9)ler w2y, m) < CllA(zs 2, y) — A5 2,9) [ (o1 yaxa.
From this and (4.5),
[An—1(2:2, Y1) = A1 (252,90 1) (01 yaxa < CllA(z32,y) — A2 2,9) | (o1 yaxa-

Inductively, we then show that for alli =1,...,nand alll=1,...,n,

wir(z;2,9;_1,) — wil(zl;xvyi—la )l Cl  (H2(Y:)/R) = CllA(z;z,y) — A(zl;xay)”(cil)dxd-
i—1
Therefore for the homogenized coefficient Ag(z;2) holds
[Ao(z;2) — Ao(2s 2) [l (pyaxa < CllA(z5 2, y) — A(2"s 2, 9) (o1 yaxa-

From (4.7), we obtain for all z,2’ € U and every ¢ € Hj(D) that

/DAo(z;w)V(uO(Z;x) —ug(2';x)) - Vo(w)dw = / (Ao(2"s ) — Ao(z;2))Vuo (2 2) - V(a)da

D

From this identity and from the assumed H?(D) regularity for the Dirichlet problem in D we conclude

that there exists a constant C' > 0 such that for all z, 2’ € U it holds

A

< ClIV((Ao(2"s2) — Ao(252)) Vo (25 7))l 22 ()
< Csup(|Ao(z;z) — Ao(2';2)| + |[VAo(2;2) — VAe(2';2)|)

xzeD

CllA(z: ) — A5, o yana-

[uo(z;+) = uo(2"; )|l 2(p)

IN

(4.17)

From (4.9) and the uniform boundedness of w; in C}_,(H?(Y;)), we get (4.15). A similar argument as

in the proof of Proposition 1.8 shows that u as a map from U to # is measurable.

O

From Proposition 4.5, we deduce that w € L?(U, p; H), so the coefficients u, in the expansion (2.2)

are all in H.

4.2 Regularity of the complex parametric, deterministic problems (3.4)

We show that the solution w((, -, ) of the problem (3.4) belongs to # when the complex parameter ¢ is

in a subset U of the domain U defined in (3.2). We choose a constant K < 1 that satisfies

K> (85 + 195l cnyaxa) <

J=1

«
2M°
We then choose a constant Jy so that
aK
; Uil ot yaxd) < ————==.
Z (ﬂj + || ]H(Cn)d d) 6M(1 —|—K)
j>Jo
We then denote E = {1,2,...,.Jo}, F =N\ E and set
ZIED IR
i>Jo
For each index v € F, we define

QVp,

} when m > Jy,
M|”F|(ﬂm + ||\PmH(C$L)d><d)

Fm = K when m < Jp, and 7,, = max{1,

20
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where we again adopted the convention that |vp,|/|vg| = 0 if |vg| = 0. For m > 1, we define the set
U,, C C as B
[-1,1] C Uy, :={¢,, € C: dist((m, [-1,1])) <7y} CC. (4.21)

We then consider the complex parametric domain U C U defined as
= Rt c "
m=1
We consider the problem (3.4) for complex valued parameter vectors ¢ € U. For ¢ € U, we have

1Az )l enyiea < IA@Y)llenyica + Y 1P (@ y)llenyoxa(+ )

m=1
<A@ y)lleryaxa + Y 1Tmlleryaxa(l + K)
m=1
av
+ (2+ = )I\‘Pmll clL)yaxa
D G 1 7 e DA
m>Jo
— o (8]
< Ayl +2 3 MWl nyers + (122)
m=1
As in (3.3), we have
_ K 20
|4ij (G2, y)| < [ AijllL=(pxy) + 4mao +or (4.23)

Therefore A(¢;x,y) is uniformly bounded in (C})%*¢ for all ¢ € U. We show next that the solution
of the parametric problem is jointly holomorphic with respect to any finite set of parameters. For each
index v € F, we define the (finite dimensional) domain

- & .
jéesupp(v)
We have the following analyticity result.

Proposition 4.6 Forv € F and ¢ € U, fizing Ck for k ¢ supp(v), under Assumption 4.8, if the domain
D is convexr then w is analytic as a map from U — H when the constant M in (4.18) and (4.19) is
sufficiently large.

Proof Let wy;(€) be the solution of problem (4.3) for the complex valued coefficient A(¢;z,y). We show
that w,;(¢) is holomorphic as a mapping from U, to CL,_, (H?(Y;,)/R). To this end, we establish complex
differentiability by showing that certain difference quotient have limits.

For any m, we fix all coordinates (i for k # m, and partition ¢ € CY as ¢ = ({},,(m). Let further
0 € C denote the step size of the difference quotients

nfnnl(c, Bl ) = 571 (wnl(gij Cm + 5, Bl ) - wnl(c, Bl )) .

The function nfnnl satisfies

/ A(C;Ly)vynnfmz@;fc,y) : Vyn¢n(yn)dyn = */ Yonep Vyn¢n(yn)dyn
Y, Yan

- / UV w01 (G o + 652,9) - Vi G )i, Vb € HL(Y,).

n

Let 7imni(¢; 2, y) denote the solution of the problem

/ A(C;xvy)vynnmnl(c; z,y) ' Vyn¢n(yn)dyn = */ Ve - vyn¢n (yn)dyn
Y, Yo

*/ \pmvynwnl(c;zvy) : vynd)n(yn)dynv V(bn S H:;E(Yn)

n
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We then have, for every ¢ € U,

/ A(C;z7y)vyn (nfnnlfnmnl)'vynd)ndyn = - / \Ilnvyn (wnl(gsw<m+5;xvy)fwnl(c;xvy))'vyn¢ndyn .
Yo

n

Proceeding in the same fashion as in the proof of Proposition 4.2 we obtain
1t = Mnillor_ (mr2v,y/m) < €ll Vg, - (‘Ijnvyn(wnl(thva +850) —wn (s, '))) ler 2o

which converges to 0 when § — 0 as w,; is continuous as a map from U, to C}_, (H?(Y,)/R) (which
can be shown as in the proof of Proposition 4.5). Therefore w,,; is complex differentiable with respect to
(m and therefore an analytic function of ¢,, taking values in C,_,(H?(Y,,)/R). From Hartogs’ theorem,
we conclude that w,, is analytic as a function from U, to C._,(H?*(Y;,)/R). By (4.5), Ap_1(¢;2,9,_1)
is an analytic, C}hl—valued function of ¢ in U,.

Next we consider w(,,—1)(¢; ¢, ¥y, _1). Again, we verify analyticity by showing complex differentiability
via the difference quotients

b o w(nfl)l(g:;ow"i‘(s;'v') _w(nfl)l(C;'v')
Mm(n—1)1 = 5 :

For these difference quotients, we have for parameter vectors ¢ as above the equation

/Y An—l (C? €, yn—l)vynflnfn(n—l)l (C? €, yn—l) ) vyn—l ¢n—1 (yn—l)dyn—l

B _/ An—l( ;aCm—i_é;xaynfl)_An_l(c;xvynfl)
Y1

) er Vi, 1 Gn—1(Yn—1)dy,, 1

An—l C:;ow + 6;$7yn— ) - An—l C;wvyn— *
- /Y ( 5 - ( 1)vyn,—1w(n71)l(cma<m + 6;.%',’!,[”_1)

Vyn71 Dn—1 (ynq)dynq,

forall ¢,,—1 € Hy(Y—1). We next let mp(n—1)1(2; 2, Y5 —o, Yn—1) € Hy(Y—1)/R satisfy

/ An—l(c;xvyn—l)vyn 177mn 1 (C7$ yn 1) yn,71¢n—1(yn—1)dyn—1
Yn 1

aAn—l
=— er-Vy, 1 On—1Yn—1)dyn—
/Yn T T Gn-1(Yn—1)dYn-1

0A,, _
_/ 1vyn 1W(n (C7$ Yn— 1) yn,71¢n—1(yn—1)dyn—1-
Yn 1

ICm,
We deduce

/Y An_1(C;$,yn,1)vyn 1(77mn 1)1 (er y) Nm(n—1)1 (er Y)) - yn,71¢n—1(yn—1)dyn—1

_/ (Anfl(qmaCm + 5;x7yn71) B Anfl(C;xvynfl) _ aAn—l
Yn 1

)61 : vynﬂ(bn—l(yn—l)dyn—l

0 Do
_/ (Anil(c;?cm+5;x7y"*1) 7An—1(c;z7yn71) _
Yn 1 5
0A, —
Tml)Vyn 1W(n (Cm’Cm +6;7,Y) - Vo 1 On—1(Yn—1)dYn—1
0A,, _ )
_ / 1 (Ca €, ynfl)vyn—1 (w(nfl)l(gma C’m + (S, x, ynfl) — (w(nﬂ)z(C, x, ynfl)))
Yn—l agm

Vyn71 Grn—1 (ynfl)dynq .
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Therefore
H77§sn(n_1)z(C;SC,y) - nm(n—l)l(c;xvy)||C}172(H2(Yn,1)/R) <

\VA (An—l(@tw C’m + 6; xvyn—l) - An—l(c;x’yn—l) o aAn—l
Yn—1" 5 agm
(Anfl(g:rwcm +5;1‘7yn71) 7An*1(C;x7ynfl) aAn—l

5 — aC )Vynflw(n—l)l(c:;wé.’m + 5;z7yn71)

(C;xayn—l))el +

_ aAn— 1
I

?

02—2(L2(Yn71))

(C? w»yn—l)vynﬂ (w(nfl)l(c:;w Cn+0;2,Y, 1) — (w(nfl)l(c; $»yn—1)))]

which converges to 0 as A,,_1 is holomorphic as a mapping from U,, to C7lz—1 and w,_1); is continuous
as a mapping from U, to C._,(H*(Y,_1)/R).

Similarly, w;; is analytic as a map from U, to C?_,(H?(Y;)) for other values of i. To show that u; is
analytic from U, to H; and w is analytic from U, to H, it remains to establish the analyticity of ug as a
map from U to H?(D) where the domain D is convex. We note that Theorem 3.2.1.2 of Grisvard [9] is
not readily applicable to elliptic equations with complex coefficients in a convex domain.

As wjy; are holomorphic as a map from U, to C7_|(H?(Y;)), the coefficient Ag((;x) of the complex
parametric homogenized equation is analytic. As U C U, from (3.5), R(EFA(C;z,y)€) > al€]?/2 for all
¢ €U,z € D and y €Y. Following the proof of Proposition 4.1, we deduce that

veeClcelU,zeD: RETA(G)E) > %I&IQ,

which implies that for all £ € R,
«

£ RA(G2)E = S
Further, there is a positive constant 4" that depends only on «, sup; ; [|Ai;(¢;2)| =Dy, d and n such
that

€ RA (G )€ < B¢,
From (3.3). 8" can be chosen independently of M (i.e. independently of the complex parametric domain
U when M is sufficiently large; here we choose M > 4). Let D,, be a sequence of convex subdomains of D

with smooth boundary such that dist(9D,,,, D) — 0 as in the proof of Theorem 3.2.1.2 in [9]. Consider
the Dirichet problems

-V (Ao(C,SC)V(ﬁm(g,ZE)) = f(x)v dm € H&(Dm)v
ie.
=V (RA(¢;2))Vom) = f(x) +1V - ((SAe(C:2)) V) -
As the boundary of D,, is smooth, ¢,, € H?(D,,) ([19], Section 20). Applying the proof of Lemma

3.1.3.2 in [9] for R, and J¢,, respectively, we find that there is a constant ¢; which depends on
[RAo(z;7)||(c1(py)yaxa, the diameter of D, o and B” such that

[6mll 20,y < e1 (|| - (Ao(G:2) Ve (G 2)| (4:24)

+ ||V (S40(G2)Vom)

L2(Du) L2(Dm)) '
We note that 5
IVémll2(p,) = —IIV - (Ao(G ) Vom (G )Lz (p,0) -

Further, from (4.6), [|Ao(z; @)||(c1(p))axa has an upper bound depending on an upper bound of || A(¢; z, y)|| (1 yaxa,
which can be chosen independently of M (from (4.22)). Therefore

[6ml720,y < 1 (2|7 (A0(G:2) V(G5 0)|

¢ 3D |3 Agi; (G )| (D) IV Vbl 2,004 ),

L2(Dy) %,]

where the constants ¢; and ¢y are independent of M, and c3 only depends on the dimension d. Assume
that sup; ; [|3Aoi; ((; )| L= (p) is sufficiently small so that

¢z sup [ Aoij (G5 )| Loe 0y < 1/(2¢1), (4.25)
i,
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we then have
[6mll 2,0y < 261629 - (A0(C )V (G 2))|

Therefore, ¢, is uniformly bounded in H(D,,) N H?(D,,). Arguing as in the proof of Theorem 3.2.1.2
in Grisvard [9], ¢,, (extended to 0 outside D,,) converges weakly to ug in H}(D); and the weak limit in

L?(D) of the second derivatives of ¢,, (again extended to 0 outside D,,) must be the second derivative
of ug; thus ug € Hi (D) N H%(D), and

L2(Dpm)

¥ (Ao(G:) Vuo G 0))|

< .
luollar=p) < ¢ L2(D)

It remains to show that we can find the a constant M in (4.18) and (4.19) so that (4.25) holds. We note
that

oo Jo
_ QU
9451 <Y Pl Wiy £ >0 K28+ Y (14 )28
J mZ:l J (D) mZ:l m;(’ M|ve|(Bm + ||’L/Jm||(ci)d><d)

< oz+oz+204
- M 3M M

which is small when M is large.
Using the cell problem (4.10) for the complex parametric problem, with ¢, = Swy, taking the
imaginary part of both sides, we have

/%A(C;x,y)vyﬁwnz(é;x,y)~Vyn%wnz(c;w,y): */ SA(Gz,y)er - VSwnidyn
Ya Yo
—/ SA(C 2, y) VRWy - VSwidyy, .
Yn

Therefore,

”vc‘\ywnl(g;1'7')HL“’(DXYn,l,L?(Yn))d < C(Oévd)s_up||3Aij||L°°(DxY)(1+HV?anl||L°°(DxYn,1,L2(Yn))d)-
2,7

We note from (4.10) that

||V§anlHLw(DxYn,l,LZ(Yn))d < ca,d)(1 + sup ||Aij||L°°(D><Y))v
2,7
SO

IVSwn (¢ 2, ')HL@O(DxYn,l,N(Yn))d < c(a,d) sup ”SAij”L‘X’(DXY)(l + sup ||Aij||L°°(DxY))-
1,] ]

From (4.5), we have

IN

sup [|SAm-1yijllL=(pxv, 1) sup [[SAij || L (pxyy + e(d)(sup | Aij|| Lo (D) ISV Wn | Lo (Dx v, _y L2 (v,))ax
1,] 2,7 ,7

=+ Sup ||SAZJ ||L00(D><Y) ||3%v’u)nHLoc(DXYn717L2(Yn))d><d>
]

< efa, d)sup | SA || Lo (pxwy (14 sup | Asjl| oo (pxv) )
2,7 2,7

Repeating this argument we have

sup [|[SAoijllLepy < ela, d)" sup [SAij || Loe(pscy) (1 + 5up | Aijll oo (v - (14 sup [[An—1yij | Lo (Dxv, 1)
1,] 2,7 1,7 Y

(1 +sup | Ay Lo (Dxv))?
7

n+1 __
< sup [ Al e (v [e(e, d) (1 + sup [|Aijl| oo ()T 72
,] 1,7

)

where the last estimate is obtained in a similar fashion as for (4.8). Thus, when the constant M in (4.18)
and (4.19) is sufficiently large, the condition (4.25) holds. a
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4.3 Summability of u,
We now study the summability of the H norms of u,. First, we have the following estimate

Proposition 4.7 The Legendre coefficients w, in (3.7) of the parametric, deterministic solution (z;x,y)
satisfy the estimate

20+K) ,
Ve F ||uy||ﬂgc( 11 %nmm),

mesupp(v)
where Ny, 1= Ty + /1 + 72, with T, defined in (4.20).

The proof of this Proposition is identical to that for Proposition 3.6.
To study the summability of the sequence (||u,||#)ver, we make the following

Assumption 4.8 There is a constant 0 < p < 1 such that

oo
Z H\I/kllz()ci)dxd < 0.
k=1

Remark 4.9 Assumption 4.8 holds when in estimate (4.14),

(o)1)

We note that if 5y is taken as an upper bound for |[trace Wy | r(pxy), then Assumption 4.8 implies
Assumption 3.2.

Proposition 4.10 Under Assumption 4.8, (||uy|2)ver € P(F).

The proof of this Proposition is identical to that of Proposition 3.8 except that we use K, E, F, in places
of K, F and F.

Remark 4.11 All of the above results hold if the domain D is not convex but has a smooth boundary.

5 Correctors

5.1 Correctors for two scale problems

For two scale problems where the coefficient A does not depend on the slow variable x, an estimate of
the solution u® in terms of the solution wg and the corrector u; of the homogenized, high dimensional
one-scale problem (4.7) has been established under the provision of sufficient regularity. Specifically,
assuming that ug € C?(D) and wy; € WH(Y) (see e.g. Jikov et al. [12] page 28), we will now prove
this result, under slightly weaker regularity requirements for ug than what was required in [12]. We give
its full proof here to verify the regularity requirements and, more importantly, to show that the error
estimate for the two scale parametric problem (1.16) holds uniformly for all z € U. As for two length
scales there is only one fast variable, we denote in this case y by y and Y simply by Y. For two scale
problems we denote by w'(z;x,y) the functions wy;(z;z,y).

Proposition 5.1 For the parametric two scale problem (1.16), assume that A(z; x,y) € L>(U; C*(D; CL(Y))),
that the function ug(z;x) € L=(U; H*(D)), w'(z;2,y) € L>(U; CH(D; HL(Y))) N L=(U x D; CL(Y)),
and that the domain D has a Lipschitz boundary. Then there exists a constant ¢ > 0 such that for every
0<e<,

sug lu®(z; 2) — [uo(z; x) + eur(2; x, g)]HHl(D) < cel/?. (5.1)

zeE

Proof For z € U, define
us(z; 1) = ug(z; ) + ew'(z; 2, g)%;’x)

We first show that
| divA®Vui — divAeVugl| g1 (py < e,
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where ¢ is independent of z. We adapt the argument of [12] page 28 for the case where ug € H?*(D) (but
not in C?(D)). We note that

(A% (z;2)Vui(z; 7))

ow? z \ Oug & . 0%ug
= € (z: € ) ——(zpr. 2 ) — (2 A (z: e 2 .
(AU (z;2) + A5 (25 x) m (z;z, s)) oz, (z;2) + eAj; (25 2)w™ (25 2, 6)8:cj8zk (z;2)
= Agi(z )%( . )+(A5( . 2) + A5 (; )8_wj(z_x Iy 4 .,(z.x))%(z.x)
— 0ij (23 T 81'] zZT ij zZT k25T 8yk 3 35 017 3 81'] 3

82
+  edj(z; :I:)wk(z;x, g)azjgik (z;x)

. 82
= Aoy (z;x)—au(? (z;2) + gl (z; 2, E)_ﬁu? (z52) + e Af; (2 z)wk (z; x, E) ‘uo (z;2),
Ox; e’ O0x; e’ 0x;0xy,

where the functions gf (z;2,y) (which are Y-periodic with respect to y) are defined as

ow’

gl (z 2, y) = Agj(z2,y) + A2 w,y)a—yk(z; z,y) — Agij(z;2) .

By definition, for all z € U and every € D holds

_ o .
/gi(z;:v,y)dy=0 and gl(z;2,y)=0.
Y

Ay
Therefore, there exist functions afj (z;2,y) which are Y-periodic in y such that afj = —aé?i and
k 9k
9; (z32,y) = 2—a;;(z;7,y). (5.2)
8yj

As wi € L®(U;CHD; HL(Y))) and A € L=(U;CH(D; CL(YV))&d), gl (w,y) € L(U; C1(D; Hy(Y))).
The functions afj

a Fourier series as

in (5.2) are constructed as follows (see Jikov et al [12] page 7). We write g* = (gF) as
g (z;2,y) = Z gr(z;2)exp(vV—1l-y) .
1€Z4,1£0
As gF(z;2,9) € LOO(U;Cl(D;H#(Y)))d, we have gf € L°>°(U;CY(D))¢ and, for all r = 1,....d, there

exists a constant C,. such that

supsup > gl (z,2)*} < G, (5.3)

k are defined as

The functions o}

k Z,))5l; — k Z.T))ili
afi(z ) =vV-1 Z o1z, ))le“'?(gl( 2))ily exp(v/—11 - y).

From this definition and (5.3), it is then obvious that for r,s =1,...,d

k . 1. — k(.. zl 2
sup sup Z (g7 (2;2)),li |l|4(gl (z52))ily] lzlg <C., .

Therefore af;(z; z,y) € L= (U; C'(D; H3(Y')) and, by the embedding theorem, for d < 3 holds of;(z;,y) €
L>(U; CY(D; Cx(Y))). Next, we observe that

(A*Vui(z;2) — AoVue(z;x)); = Eai (afj(z; x, E)%;k’x)) + (re)i(z; ),

T 3
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where

aafj(z;x,y) Ouo(z; ) ok

(TE) (Z .T) 896]- y=x/e 8zk

As af; € L®(U; CH(D; C(Y))), (re)i(z, )L2(py < ce for all z € U. As of; = —ak,;
|divA*Vu(z; ) — divAeVuo(z; 7)|| g1 (p) < ce,

where the constant ¢ does not depend on z. As divAgVuy = divA*Vu®, we find that
|divA*Vu(z; ) — divA*Vu®(z;2) || g-1(p) < ce,

where the constant ¢ does not depend on z. Let 7¢ € C§°(D) such that 7 = 1 outside an € neighbourbood
of D and such that |V7¢(x)| < ¢ for all € > 0. We consider the function

E(a. _ . € k(... L dug . _ € _ € k(... L 8u0(z;z)
wi(z;x) = uo(z;x) + e7° (2)w"(z; , )axk (z;2) =uf(z) —e(l —7°(z))w"(z; x, 5)783% )
We then get
O oy o k. T 0uo(z; ) . M - w Oup,
(05 — ) (z:) = —eg (o) i, HPGED 1 (107 (0) G (i, P ) +

0ug(z;x)

1—7°¢ k . E )

E( T (1'))1‘0 (Z,ZL',E) axkaxj

For € > 0 sufficiently small, let D® C D be an € neighbourhood of dD. As 0D is Lipschitz, for all functions
¢ € C>(D ) it holds |\(]§||L2 pey < 052H¢|| )+ C€H¢||L2(6D so for all ¢ € HY(D) we have 16l 2(pey <

ce'/?||¢|| 1 (py- Therefore, since ug(z;z) € L"O(U H?(D)) and w!(z;z,y) € L>®(U x D;C(Y))

sup [[ug(z;-) = wi(z; )|l (py < ee'/?,
zeU

where the constant ¢ does not depend on . Thus,

sup ||div(A®(Vui(z;-) — Vwi(z;)llg-1p) < ce'/?,
zeU

SO

sup [[div(A® (Vu? (i) — Vak (23)) -1 () < /2.
zeU

From Assumption 1.1, we get

sup [[u (2 ) — (23 )| g3y < =M/,
zeU

Hence we have proved that there exists ¢ > 0 such that for every 0 < ¢ <1 holds

sup |[u®(z;+) —uj(z; ~)||H1(D) < cel/?.
zeU

O
We then have the following estimate of the homogenization error for the two scale problems (1.5).

Theorem 5.2 Assume that A(z;xz,y) € L>(U; C1(D; CL(Y))4xd), that f € L?(D) and that the domain

sym
D is convex. There ezists a constant ¢ > 0 independent of z € U such that

|

< cel/? .
L2(U;HY (D)) —

u(z) = [Vuo (=) + Vyu (=3, 2)]|
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Proof Under the assumptions of the theorem, we have shown that ug(z;-) € L*(U;H?*(D)) and
wh(z;2,+) € L>(U;CN(D, HZ(Y)/R)) C L>(U;CY(D;Cx(Y))). To apply Proposition 5.1 we show
that w!(z;x,-) € L=¥(U x D, C;E(Y))) The functions w' satisfy

/YA(z;w,y)Vywl(Z;x,y)~Vy¢(y)dy:/yv~(A(Z;w,y)ez)aﬁ(y)dy, Vo € Hy(Y). (5.4)

As d < 3, we have the continuous embedding
w' € L°(U; CY(D; H*(Y))) € L*°(U; CH(D; WH3(Y))) .
Therefore, there exists a constant ¢ > 0 independent of z € U and of x € D such that
VzeUVzeD: |uw(zz, Mwrsevyr < c.

Let D' be a smooth and bounded domain that contains the unit cube Y and let 7 € D(D’) be such that
7(y) =1 when y € Y. Applying Theorem 6 of [13, pg. 177], we find that there is a constant ¢ > 0 (which
only depends on the Lipschitz constant of A, «, § and 7) such that

[wH[wes vy < e(||divy (A(z, z, e | s vy + [l lwrsp) -

As d < 3 implies the embedding W??(Y) € C(Y), it holds w'(z;z,-) € L>(U; L (D; C4(Y))). There-
fore Proposition 5.1 holds.

It remains to show that V,uy(z;z,2/¢) as a function from U to L?(D) is measurable. To this end,
we note that for every z, 2z’ € U holds

/YA(z;z,y)Vy(wl(z;z,y) —w'(2;2,y))  Vyo(y)dy :/YV ((A(zs 2, y) — A(2's 2, y))e)d(y)dy

n / (A(2's2,9) — Alzi2,9)Vyu (2 2,9) - Vyo(y)dy
Y
Thus for all 2 € D and every z,2’ € U

[w! (252, ) — w'(z's 2, ) lw2svy/r < cll Az -) — A(Z'5 Vo (pxryaxa(l + [0 (2) lwzs vy r) -
Therefore,
w! (2, ) = w' (25, ) L (p,or (7)) < ellA(zi ) = A5 )l e (pxyyaxa-
From (4.17),

V(i D) = Fyun (s, Dllaemy = 19yl G2 ) = Wyl (5, 5 G2 611 0)|

HA(Z; o) = A(ZI; ) ')HCl(Dx?) :

As in the proof of Proposition 1.8, this shows that for every 0 < & < 1, the function Vyui(2;z,y)|y—z/.
as a map from U to L?(D) is strongly measurable. This completes the proof. O
Following [6, Def. 2.16], we define a “folding” or averaging operator

Definition 5.3 For ® € L'(D x Y), we define

U () () :/Y@(g[a +5t,{§})dt,

where [x /€] denotes the “integer” part of x/e with respect to the periodY and {x/e} = x/e — [x /], where
®(x) =0 when x ¢ D.

IN

We shall use the following result from [6, Prop. 2.18]. As we will use it later, we present its proof.
Lemma 5.4 For ® € L}(D xY),

U (D) (x)de = / O (z,y)dyde,

D= DxY

where D¢ denotes the 2e neighbourhood of D and where ®(x) =0 when x ¢ D.

28



Proof Let I be a subset of Z< such that D C |, ., e(m +Y). Then

mel

x
/5/ +5t { dtdx— E //(ery)(I)(am—i—Et,{g})dxdt
_ d _
= g / / (em + et,y)dzdy = /DXY O(x, y)dxdy.

mel

For the corrector function uq(z;x,y), we have the following result.

Lemma 5.5 Ifug € L°(U; H*(D)) and w' € L=(U;C}) for alll = 1,...,d, then there exists a constant
¢ independent of z such that for every 0 < e <1

sup/ }Vyul(z;x,g) — U (Vy (ur(2;-, ) ()| da < ce?.

zeU JD

Proof As

d
1(z7,y) Z w!(z;2,y),
1=
d

it is sufficient to show that for each [ =1,...,

/ ‘ZZ? (z:0)Vyu (50, 2) _L%(Z;EE} +et) Vyu' (ze[ ] +st,§)dt‘2d:c < e,
The expression on the left hand side is bounded by
[ e ) - 2] s (] )
R A
2ol (o 2) o2 )

As w! € L°(U; C7), there exists a constant ¢ independent of z € U such that for ¢ sufficiently small

. T . x x
ess sup sup |Vyw (z;:c, —) - Vyw (z;s[—} + et, —)‘ < ce.
zeU teY € € €

Therefore for all z € U

/ ‘8% (z;2)Vyw (z;:c, g) fus(g—l;j(z, IV wt(z; -, ))(z)rd:r

<o f [0 28 e[ 2] ) e

Next we claim that for all z € U

//’(21;:(; . Zj(z 5[ ]+€t)‘2dtdx§052

29



where ¢ is independent of z. To prove this, let ¢(z) be a smooth function. Then

[ -wowre < [ [ low-o([2]+)fa
< Z//’gf) +€t1,...,5{%}+€ti,1,zi,...,xd)—
(b(s[—} +5t1,...,5[%} +5ti,xi+1,...,xd)‘2dtdx
< Z//‘ /{z o 68:2 }+et1,..., [?}ﬂg,xiﬂ,...,xd)dg  dtdz
< 2Z/// ‘5301 +€t1,..., {“?}+s<i,zi+1,...,a:d)fdgdtdx

= 22/’8,@1

The last inequality is derived from Lemma 5.4, freezing the variables z;i+1,...,2q. Fix 2 € U and
0 < e < 1 arbitrary, and consider a sequence {¢,}, C C°°(D) which converges to dug(z;z)/dz; in
H'(D). As n — o,

[ Jeton —ur (P9E D) @ dw < [ wr((onte) - 295ZD) ) i

< /D (6a2) - %jf”))% 0.

Therefore

| (Ganteio - (M52 o)
<3 / (‘;1;‘; ¢n) dx+3/(¢nu€(¢n))2da:+3/D(u€(¢n)u%%)f@
36/17(‘;—1;;% dx+3€22/ ‘aa‘i"

As n — oo, we have

R R TS oy A P

Thus 5 5 )
/ ’81;? z;x)Vyw (z;x,g) —Uu° (%l’x)vywl(z;x,y)) (x)’ dx < c£?,
for a constant ¢ which does not depend on z € U. O

Lemma 5.6 With Assumption 4.3, U¢(Vyui(2;-,-)) as a map from U to L*(D) is measurable.
Proof First we note that (U°(®)(x))? < U (®?)(x) for a.e. x for all functions ® € L?(2 x Y). Thus
VaeU: U (Vyur(z;-) = Vyui(2', ) )llizp) < [IVyui(zs -, ) = Vyur (2’55 )2 (oxov)-
From the proof of Proposition 4.5, there exists ¢ > 0 independent of z € U such that
U= (Vyua (25, ) () = Vyur (s, ) ()llrzpy < cllAlzs-, ) — A2, )l cgyaxa -
An argument similar to that in the proof of Proposition 1.8 shows that U*(V,u1) as a map from U to

L?(D) is measurable. O
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Proposition 5.7 If A(z;z,y) € L®(U;C}), f € L*(D) and if the domain D is convez, then there is a
constant ¢ > 0 such that, for e > 0 sufficiently small, there holds

2

|V (52, D) = 2Ty (23, @)

<ce
L2(U;L%(D))

Proof We need to show that w' € L_°°(U; C %) We will do this by analyzing a suitable difference quotient.
To define it, we introduce for 2 € D and for § € R, the translation operator

ms(x) =z +J€D.
We then have

/YA(Z;x,y)Vy(wl(z;Té(x)’?T()ﬂ_ wl(z;x’y)) - Vyd(y)dy

A(Z;Té(w),y)_—A(Z;:c,y)

A B
,/ A(z;75(2),y) — Az 2,9)
Y 9]

1) o(y)dy

Vyw'(z;75(x), y) - Vydly)dy, (5.5)

for all ¢ € Hy(Y). Let ¢(2;z,-) € Hy(Y)/R denote the solution of

0A(z;x,y)

[ Vi Viomd = [ 9, () o)y

K2

0A(z;
_/Y%Vywl(z;%y)-quﬁ(y)dy Vo € Hu(Y) . (5.6)

We have

wl zZ,T5\ T —’LUl zZ,T
[ Azszav,( =il )’% B2 y(ziam) - V00

:/Yvy , ((A(z;fg(w),z@l— Alzizy) 8A(g;jc,y))el)¢(y)dy

7/ (A(Z;Tg(w),y)—A(Z;x,y) OA(z,z,vy)
Y

9 - BN (2 7a(w). ) - ¥, 0()dy

B / ((:jA (Z; , y)vy(wl (Z; Té(‘r)’ y) - wl(za z, y)) : vy¢(y)dy
y 0%

Therefore

w!(z;75(x), ) — w'(z;2, )
5 B o -
H 9] ¥(z 2, )HW2’5(Y)/]R -
A(z;7s(x), ) — A(z; 2, ) B 0A(z;x,-) ‘
|§| 0x;
+ellw! (z;75(2), y) —w'(z5 2, 9)lw2s (v) m- (5.7)

From (5.5), we find

(1 + [[w' (23 75(2), lw2 vy /m)

cr(yY)

lw' (=3 75(x), y) —w' (22, 9) |w2svy/m < el Az 75(2), 5) = A= 2, 9)llor (pxer) (L[0! (2 75(), ) lwas vy,
which converges to 0 when § — 0. Thus the right hand side of (5.7) converges to 0 as § — 0. Therefore

o' (z;z,y)
&ri

From (5.6), we deduce that [|1)[|yy2.5(y) /g is uniformly bounded for all z € U and is continuous with respect
to x € D due to the continuity of VA4 and w! in W25(Y)/R so w!(z;z,y) € L>=(U,C*(D,W?25(Y))) C
L>*(U,C7). Therefore Lemma 5.5 holds uniformly for all z € U. Lemma 5.6 implies the assertion. O

For the solution uy ,, of the semidiscrete Galerkin approximation (2.3), we denote up,, = (Uoay, U1Ay )-
We have the following corrector result for the approximation (2.3).

= (z;2,y) in W25(Y)/R c CH(Y).
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Theorem 5.8 Assume that A € L™(U; (C1)%*?), f € L*(D) and that D is convex. If Assumptions 1.1,
1.2 and 8.2 hold for some 0 < p < 1, there exists a constant ¢ > 0 (independent of € and of N ) such that
for e > 0 sufficiently small and for N sufficiently large, it holds that

lu® = [Vuo + U (Vyuian 2@z oy < e/ + N7,
where o =1/p—1/2>1/2 and the sets Ay are as in Theorem 3.9
Proof From Theorem 5.2 and Proposition 5.7, we get
lu® = [Vuo + U (Vyun)]ll Lo 2(py) < ce'/?.

We note that

| T () = 9y (x:-,0) Pdado()
UJD

IN

[, [0z = D ez
U JD

< [ [ ] Wuuntzag) - Vo (o) dydadpz)
uJpJy
< N7,
where the last estimate is deduced from Theorem 3.9. We then get the conclusion. a.

5.2 Correctors for multiple scale problems

For problems with more than two scales, an error estimate analogous to (5.1) appears not to be available.
For such problems we will now prove a corrector result; however, we will not give an explicit order of
convergence. Moreover, this result does not require any extra regularity beyond the smoothness required
for the existence of the n + 1-scale limit. We start our analysis with the definition of a corrector.

Definition 5.9 The n + 1-scale “unfolding” operator T : LY(D) — L*(D x Y) is defined by (see also
[6]),

Te@)wy) = o(a | =] + e

where the function ¢ is understood as 0 outside D.

Yn—1
En/‘c«‘nfl

}+...+an[ }—l—anyn),

Denoting for € > 0 sufficiently small by D¢ the 2e neighbourbood of D, we have

/D bz = /D E /Y T=(6)dyds . (5.8)

Fixing z € U, as ¢ — 0, we can show that
TE(Vus(z)) = Vu in L*(D x Y), (5.9)
where w is as defined in Theorem 1.12. Following [6], we next define the “folding” operator UZ by

Definition 5.10 For ® € LY(D x Y) (understood to vanish when x ¢ D) and for € > 0 sufficiently
small, the “folding” operator US(®) € LY (D) is defined as

UE (D) (2) = /Y .../an>(51 [;J +51t1,i—j[i—;{:—lﬂ + i—jtg,...,

o R R E AT
En—1 En En—1 En—1 En

We have the following measurability result.

Lemma 5.11 Under Assumption 1.2, for the solution w(z) of the parametric, deterministic problem
(1.19), the function U (Vu(z))(x) (with Vu as in (1.18)) as a map from U to L*(D)? is measurable.
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Proof For the functions ® € L'(D x Y) (which are understood as 0 when x ¢ D),

[ @)@ - /D /Y Bdydz.

We note further that for a.e. z € D,
(U (®)(2))? < Up (9%) ().

From this we obtain, for every z € U and with Vu as in (1.18),

/ U (Vu(z) — Vu(2))(x)]*dr < / U (|Vu(z) — Vu(2)]?)(x)dr < / / |Vu(z) — Vu(2')|*dydz.
D D DJY
We then get from (1.22) that there exists a constant ¢ such that

U (Vu(2z) = Vu(2))| 2 ) < ellA(zi- ) = A2 ) lL=(pxv)-

The proof then follows along the lines of the proof of Proposition 1.8. O

We are now in position to prove a corrector result for the best N term approximation. It states
that the gpc approximation of the high dimensional limit problem describes P-a.s. all oscillations of the
physical solution at small €.

Theorem 5.12 Under Assumption 1.2,

lim [ Vu® — U (Vuny)| 2wz ) =0,

N — o0
where Ay is a subset of F corresponding to N largest terms of the sequence (|uy||v)ver-

Proof We consider
/D /Y T (4) (T2 (Vs (2)) (2, ) — Vulz:2,) - (T2 (Vs (2)) (@) — V(e 2, ))dyde.

From (1.5), (1.19), (5.8), (5.9), this expression converges to 0. Therefore the convergence in (5.9) is
indeed strong. Fixing z € U, we obtain as ¢ — 0

[Vu (2) U, (Vu(z))l| L2(p) = U, (T, (Ve (2)) U (Vu(z))l 20) < ([T (Vu'(2))=Vu(2)|[ L2 (pxy) = 0.
As [|[Vu®(z) — U (Vu(z))| 12(py is uniformly bounded for all z € U, we conclude that

i € - € 2 T2 == B

lim [|Vo® = Uy, (V)| 2w:22(p)) = 0
Furthermore, for each z € U

145 (V (uay (2) = w(2))]L2(p) < IV (uay (2) — u(2))llL2(Dxv)-
Therefore from Theorem 2.1
i (1 (V (uay = w)ll 2 w;z2(py) = 0

uniformly for all . Thus

lim [|Vu® — U5 (Vuny )l 22 m)) =0 -

N — o0
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