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A HYPERBOLIC-ELLIPTIC MODEL OF TWO-PHASE FLOW IN
POROUS MEDIA – EXISTENCE OF ENTROPY SOLUTIONS

G. M. COCLITE, K. H. KARLSEN, S. MISHRA, AND N. H. RISEBRO

Dedicated to the memory of Magne S. Espedal

Abstract. We consider the flow of two-phases in a porous medium and propose a modified
version of the fractional flow model for incompressible, two-phase flow based on a Helmholtz
regularization of the Darcy phase velocities. We show the existence of global-in-time entropy
solutions for this model with suitable assumptions on the boundary conditions. Numerical
experiments demonstrating the approximation of the classical two-phase flow equations with
the new model are presented.

1. The two Phase Flow Problem

Many geophysical and industrial processes like enhanced oil recovery and carbon dioxide
sequestration involve the flow of two-phases, say oil and water, in a porous medium.

The variables of interest are the phase saturations sw and so representing the saturation
(volume fraction) of the water and oil phase respectively. We have the identity:

(1.1) sw + so ≡ 1.

Hence, we can describe the dynamics in terms of the saturation of either of the two-phases.
We denote the water saturation as sw = s in the discussion below. Assuming a constant
porosity (φ ≡ 1), the two-phases are transported by [4]

(1.2) (sr)t + divx(vr) = 0, r ∈ {w, o}.

Here, the phase velocities are denoted by vw and vo respectively. In view of the identity
(1.1), the two-phase velocities can be summed up to yield the incompressibility condition,

(1.3) divx(v) = 0, v = vw + vo.

The total velocity is denoted by v.
The phase velocities in a homogeneous isotropic medium are described by the Darcy’s

law [4]:

(1.4) vr = −λr∇xpr + λrρrgk, r ∈ {w, o}.

Here, g is the constant acceleration due to gravity, k is the direction in which gravity acts
and ρr is the (constant) density of the phase r. The quantity λr = λr(sr) is the phase
mobility and pr is the phase pressure. Assume that the capillary pressure i.e, pc = pw−po

is zero, we can sum (1.4) for both phases and obtain

(1.5) v = −λT (s)∇xp + (λwρw + λoρo)gk,
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with p = pw = po being the pressure and λT = λw + λo being the total mobility. Using
(1.5), the gradient of pressure in (1.4) can be eliminated leading to

vw =
λw(s)
λT (s)

v +
λw(s)λo(s)

λT (s)
(ρw − ρo)gk.

Denoting the fractional flow function f as

f(s) =
λw(s)
λT (s)

=
λw(s)

λw(s) + λo(s)
,

and the gravity function g as

g(s) =
λw(s)λo(s)

λT (s)
(ρw − ρo)g,

the saturation equation (1.2) for water can be written down as

(1.6) st + divx(f(s)v + g(s)k) = 0.

Combining the saturation equation with the incompressibility condition (1.3) and the pres-
sure equation, we obtain the evolution equations for two-phase flow in a porous medium:

(1.7)

st + divx(f(s)v + g(s)k) = 0,
divx(v) = 0,

v = −λT (s)∇xp + (ρwλw(s) + ρoλo(s))gk.

The above equations have to be augmented by suitable initial and boundary conditions.
The phase mobility λw : [0, 1] %→ R is a monotone increasing function with λw(0) = 0

and the phase mobility λo : [0, 1] %→ R is a monotone decreasing function with λo(1) = 0.
Furthermore, the total mobility is strictly positive i.e, λT ≥ λ∗ > 0 for some λ∗.

The above equations are a hyperbolic-elliptic system as the saturation equation in (1.7)
is a scalar hyperbolic conservation law in several space dimensions with a coefficient given
by the velocity v. The velocity can be obtained by solving an elliptic equation for the
pressure p.

It is well known that solutions of hyperbolic conservation laws can develop discontinu-
ities, even for smooth initial data, [7]. The presence of these discontinuities or shock waves
implies that solutions of conservation laws are sought in a weak sense and are augmented
with additional admissibility criteria or entropy conditions in order to ensure uniqueness.

As the two-phase flow equations involve a conservation law, we need to define a suitable
concept of entropy solutions for these equations and show that these solutions are well-
posed. The problem of proving well-posedness of global weak solutions of the two-phase
flow equations (1.7) has remained open for many decades. The main challenge in showing
existence is the fact that the velocity field v acts as a coefficient in the saturation equations.
Although conservation laws with coefficients have been studied extensively in recent years,
see [1, 10, 6, 2] and references therein, the state of the art results require that the coefficient
is a function of bounded variation. Many attempts at showing that the velocity field
v in (1.6) is sufficiently regular, for example is a BV function or has enough Sobolev
regularity, have failed. Partial results (with strong assumptions on the velocity field or
on the solution) have been obtained in [13, 17] and references therein.

Another approach is to consider a modified version of the two-phase flow equations.
Recalling that the two-phase flow equations (1.7) were derived under the assumption that
the capillary pressure was zero. Adding small but non-zero capillary pressure leads to
a viscous perturbation of the saturation equation, see [11]. The viscous problem has
been shown to be well-posed in [11] (see also [5, 15, 9] for mildly degenerate diffusion
coefficients). However, the fact that the coefficient of viscosity can be very small leads
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to difficulties in numerical approximation of these equations as the viscous scales have to
resolved. Furthermore, sharp saturation fronts might be artificially smeared due to the
added viscosity.

Herein we consider a modified version of the two-phase flow equations and show that
global weak solutions exist for this modified problem. We are motivated by the fact that
the velocity field v in (1.6) needs to be regularized but the sharp fronts in saturation
should not be diffused. Hence, we suggest the following modification of the Darcy’s law
(1.4):

(1.8)
vr = −Λr∇xp + Λrρrgk, r ∈ {w, o},

−µr∆xΛr + Λr = λr(s).

where µo, µw ∈ (0, 1) are small regularization parameters.
The system (1.8) amounts to a Helmholtz regularization of the velocity field, or more

precisely of the phase mobilities via (1− µr∆x)−1 [λr(s)]. Observe that this kind of reg-
ularization is quite different from a viscous regularization which makes the saturation
smooth by dissipating energy at small scales. With the Helmholtz regularization, the
saturation equation will still possess shock wave (discontinuous) solutions, while it is the
velocity field that becomes more regular. Consequently, the new “Helmholtz regularized”
two-phase flow model is expected to correctly predict the underlying flow phenomena. A
chief feature of this new model will be that one can prove rigorously that there exists
global-in-time solutions; this is still an open problem for (1.7).

1.0.1. Motivation for (1.8). In [16] Neumann derived Darcy’s law for single phase flow in
porous media by an averaging the potential flow (Navier-Stokes) equations

∆v = ∇xp,

where p denotes pressure. We now briefly recap Neumann’s derivation of Darcy’s law. We
assume that the flow takes place in a system of small channels (pores) in the rock. The
continuity equation

divx (v) = 0,
means that the pressure solves the Laplace equation

∆p = 0, for x ∈ the porous space.

The boundary of the porous space consists of the outer boundary, on which we can
impose boundary conditions, and the pore walls, on which it is natural to impose a no
flow condition. Let Ω denote the domain enclosed by the outer boundary, and Ωφ the
porous space.

Let N be some averaging kernel, and let χφ denote the characteristic function of the
pore space, and set

φ =
∫

Ω
N(x− y)χφ(y) dy.

For simplicity, we assume that the porous medium is homogeneous. Hence, the porosity
φ is independent of x. Next, define the averages

〈f〉 =
∫

Ω
N(x− y)χφ(y)f(y) dy, and 〈f〉∗ =

〈f〉
φ

.

One key point in the derivation of Darcy’s law is the relation

〈∇xf〉 (x) = ∇〈f〉 (x) +
∫

∂Ωφ

N(x− y)f(y)n(y) dS(y).
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Since the pressure p solves Laplace’s equation in Ωφ, we have the solution formula

p(x) =
∫

∂Ω∩Ωφ

pb(y)∇xH(x− v) · n(y) dS(y),

where H is the Green’s function on Ωφ ∩Ω with boundary conditions as indicated above.
Now, p, and thus also v, is linearly dependent on the imposed boundary condition pb.
Neumann then uses a scaling argument to show that

v = A 〈v〉∗ ,

for some symmetric matrix A which is independent of the boundary conditions Φb. Thus

〈∆v〉∗ = 〈∆ (A 〈v〉∗)〉∗ ≈ 〈∆A〉∗ 〈v〉∗ .

From this we get

〈∆A〉∗ 〈v〉∗ = 〈∇xp〉∗ = ∇x 〈p〉∗ +
∫

∂Ωφ

N(x− y)p(y)n(y) dS(y).

It turns out that 〈∆A〉∗ is invertible, and we call its inverse, K, the permeability. Fur-
thermore, in many cases, the integral along the boundary of the porous media vanishes,
due to the many twists and turns of the pores. Then we are left with Darcy’s law

〈v〉 = K∇x 〈p〉 .

The matrix K is called the rock permeability.
For two-phase flow, it is not possible to derive Darcy’s law at this level of rigor. However,

one can motivate it by the following considerations. Assume now that we have two-phases;
oil and water. These are chemically inert, and do not dissolve in one another, but we
assume that on the scale of the pores, oil and water are mixed well enough to define
saturation. On a very small scale, much smaller that the width of the pore walls, one
phase will act similarly to the way the rock acts on the fluid in the single phase case. See
Figure 1 for an illustration of the three scales. Now we have two velocities vo and vw,

Darcy scaleSaturation scaleTwo phase scale

rock mixture

Figure 1. The three scales, in the middle scale one can define saturation.

each of which satisfies the Navier-Stokes equation. For a given phase i the other phase
will act similarly to the rock in one phase flow. Under this assumption, Darcy’s law for
each phase reads 〈

vi
〉
N

= Ki∇x 〈pi〉N , i = w, o,

where we have chosen to indicate the dependence on the averaging kernel N . Next we
assume that the two fluids are uniformly mixed in each direction, so that Ki = λiI. Thus
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on the saturation scale we have two velocities and two pressures in each point of the pore
space. The continuity equation for each phase divx

(
vi

)
= 0 now reads

divx (λ)i∇x 〈pi〉N = 0, x ∈ Ωφ,

with boundary conditions
{

λi∇x 〈pi〉N = 0, x ∈ ∂Ωφ,

λi∇x 〈pi〉N = fi, x ∈ ∂Ω ∩ Ωφ.

The phase velocities vi are linearly dependent on fi, so again scale arguments lead to the
relation 〈

vi
〉
N

= Ai
〈〈

vi
〉
N

〉∗
M

,

where M is a different averaging kernel from N . We now assume that the matrices Ao

and Aw are equal. This amounts to saying that the rock does not discriminate between
water and oil. We assume that A is invertible, and can write

〈〈
vi

〉
N

〉∗
M

=
〈
A−1λi∇x 〈pi〉N

〉∗
M

=
〈
A−1λ

〉∗
M
〈∇x 〈pi〉N 〉

∗
M (yet another assumption)

=
〈
A−1λ

〉∗
M
∇x 〈〈pi〉N 〉

∗
M +

〈
A−1λ

〉∗
M

∫

∂Ωφ

〈pi〉N (y)M(x− y)n(y) dy
︸ ︷︷ ︸

=0by twists and turns

.

Now assume that the saturation, and thus λi, changes rapidly compared with the size of
the support of M . We are interested in p̃i = 〈〈p〉N 〉M , the continuity equation for

〈
vi

〉
N

implies that

divx

(〈
A−1λ

〉∗
M
∇xp̃i

)
= 0.

For simplicity, we assume that A−1 = I. We choose M to be the Helmholtz kernel
(1− µ∆x)−1, with µ being a small parameter, and finally we end up with the usual
equations describing two-phase flow, but where the equation for the velocity (1.8) is more
regular than is commonly assumed.

1.0.2. Scope of the current paper. In this paper, we consider the two-phase flow equations
(1.7) but the modified version of the Darcy’s law (1.8). The notion of weak solutions for
this modified problem is defined and weak solutions are shown to exist. Our existence
proof proceeds in two steps. First, we define vanishing viscosity approximations of the
modified two-phase flow equations and derive a priori bounds on the approximation solu-
tions. In particular, compactness results for the pressure and velocity fields are obtained.
The second step is to obtain compactness for the approximate saturations. Here, we em-
ploy a suitably adapted form of the kinetic formulation for conservation laws (see [19] for
a related approach) and derive compactness for the saturation equation establishing the
existence of global weak solutions for the modified two-phase model.

In addition to the heuristic motivation for the modified Darcy’s law (1.8), we provide
numerical evidence for the robustness of this approximation. In particular, the numerical
experiments show that the solutions obtained with the modified problem are close to those
of (1.7). Furthermore, these modified solutions converge to the solution of the classical
two-phase flow equations as the regularization parameter µr in (1.8) vanishes.

The rest of this paper is organized as follows: in section 2, we state the modified
two-phase flow model and define weak solutions. A priori estimates on the approximate



6 G. M. COCLITE, K. H. KARLSEN, S. MISHRA, AND N. H. RISEBRO

solutions are obtained in section 3 and compactness for the saturation in terms of the ki-
netic formulation is obtained in section 4. Numerical experiments comparing the classical
and modified form of the two-phase flow equations are presented in section 5.

2. Statement of problem

The modified model for two-phase flows in a porous medium leads to the following
elliptic-hyperbolic system

(2.1)






∂ts + divx (f(s)v + g(s)k(x)) = 0, t > 0, x ∈ Ω,

divx (v) = 0, t > 0, x ∈ Ω,

v = −ΛT∇xp + (ρwΛw + ρoΛo)k, t > 0, x ∈ Ω,

−µw∆xΛw + Λw = λw(s), t > 0, x ∈ Ω,

−µo∆xΛo + Λo = λo(s), t > 0, x ∈ Ω,

ΛT = Λw + Λo, t > 0, x ∈ Ω,(
f(s)v + g(s)k

)
· ν = h(t,x), t > 0, x ∈ ∂Ω,

∂νp(t,x) = π(t,x), Λw(t,x) = Λo(t,x) = λ∗
2 , t > 0, x ∈ ∂Ω,∫

Ω p(t,x)dx = 0, t > 0,

s(0,x) = s0(x), x ∈ Ω,

where
(H.1) Ω is an open connected subset of RN , N ≥ 1, with smooth boundary and ν is the

unit outer normal;
(H.2) f and g are smooth functions, k : RN → RN is a smooth vector field, µw and µo

are positive constants, and h, π : (0,∞)×∂Ω → R are smooth bounded maps such
that

f(0) = g(0) = g(1) = 0,

h(t,x) ≤ 0,

h(t,x) + λ∗f(1)
(

π(t,x)− ρw + ρo

2
k · ν

)
≥ 0,

−λ∗f
′(ξ)

(
π(t,x)− ρw + ρo

2
k · ν

)
+ g′(ξ)k(x) · ν(x) ≤ 0,

for every t ≥ 0, x ∈ ∂Ω, ξ ∈ R;
(H.3) λw and λo are smooth and non-negative, λ∗ > 0, and λw(·) + λo(·) ≥ λ∗;
(H.4) the initial datum satisfies the condition: 0 ≤ s0 ≤ 1.

If µw = µo = 0 we recover the classical two-phase problem (1.7).
The term g(s)k takes in account the gravitational effects.
Regarding the assumption (H.2) we remind that in the physical model (1.7), we have

that

ξ ∈ (0, 1) ⇒ f ′(ξ) > 0, f ′(0) = f ′(1) = 0,
g′

f ′
∈ L∞(0, 1), k constant,

hence the conditions in (H.2) are satisfied if, for example, π is big compared to h and
k · ν on (0,∞)× ∂Ω.

Definition 2.1. Let s, Λw, Λo, p : (0,∞)×Ω → R and v : (0,∞)×Ω → RN be functions.
We say that (s, Λw, Λo, p, v) is an entropy solution of (2.1) if

i) s ∈ L∞((0,∞)× Ω), Λw, Λo ∈ L∞((0,∞)× Ω) ∩ L∞(0,∞;W 2,r(Ω)), 1 ≤ r < ∞,
p ∈ L∞(0,∞; W 3,2(Ω)), v ∈ L∞(0,∞;W 2,2(Ω));
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ii) Λw, Λo, p, v are distributional solutions of the corresponding equations in (2.1) and
satisfy the corresponding initial and boundary conditions in the sense of traces;

iii) for every test function ϕ ∈ C∞([0,∞)× RN ) with compact support
∫ ∞

0

∫

Ω

(
s∂tϕ +

(
f(s)v + g(s)k(x)

)
∇xϕ

)
dtdx

−
∫ ∞

0

∫

∂Ω
hϕdtdσ +

∫

Ω
s0(x)ϕ(0,x)dx = 0;

iv) for every test function ϕ ∈ C∞([0,∞) × Ω) with compact support and any C2

convex entropy η
∫ ∞

0

∫

Ω

(
η(s)∂tϕ +

(
F(s)v + G(s)k(x)

)
∇xϕ

)
dtdx +

∫

Ω
η(s0(x))ϕ(0,x)dx ≥ 0,

where F and G are the corresponding entropy fluxes defined as follows

(2.2) F(s) =
∫ s

η′(ξ)f ′(ξ)dξ, G(s) =
∫ s

η′(ξ)g′(ξ)dξ, s ∈ R.

Let us point out the fact that the test functions considered in iii) are not supposed to
have support contained in Ω.

Our main result is the following theorem.

Theorem 2.1. Assume (H.1), (H.2), (H.3), and (H.4). The initial boundary value
problem (2.1) has a solution in the sense of Definition 2.1.

We use the following approximation of (2.1)

(2.3)






∂tsε + divx (f(sε)vε + g(sε)k) = ε∆xsε, t > 0, x ∈ Ω,

divx (vε) = 0, t > 0, x ∈ Ω,

vε = −ΛT,ε∇xpε + (ρwΛw,ε + ρoΛo,ε)k, t > 0, x ∈ Ω,

−µw∆xΛw,ε + Λw,ε = λw(sε), t > 0, x ∈ Ω,

−µo∆xΛo,ε + Λo,ε = λo(sε), t > 0, x ∈ Ω,

ΛT,ε = Λw,ε + Λo,ε, t > 0, x ∈ Ω,(
f(sε)vε + g(sε)k

)
· ν − ε∂νsε = h(t,x), t > 0, x ∈ ∂Ω,

∂νpε(t,x) = π(t,x), Λw,ε(t,x) = Λo,ε(t,x) = λ∗
2 , t > 0, x ∈ ∂Ω,∫

Ω pε(t,x)dx = 0, t > 0,

sε(0,x) = s0,ε(x), x ∈ Ω,

where ε is a positive parameter and s0,ε is a smooth approximation of s0.
The existence of a smooth solution (sε,vε,Λw,ε,Λo,ε, pε) for the approximate problem

(2.3) can be proved using the same argument of [11, 17].

3. A Priori Estimates and Basic Compactness

This section is devoted to some a priori estimates uniform with respect to ε on the
solution (sε,vε,Λw,ε,Λo,ε, pε) of (2.3).

Lemma 3.1 (L∞ estimate on {sε}ε>0). We have that

0 ≤ sε(t,x) ≤ 1 for each t > 0, x ∈ Ω.

Proof. The maps with constant values 0 and 1 are a sub and a super solution for the first
equation in (2.3). Indeed both 0 and 1 solve the equation

∂ts + divx (f(s)vε + g(s)k) = ε∆xs,
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and on the boundary (0,∞)× ∂Ω, thanks to (H.2), we have
[
ε∂νs−

(
f(s)vε + g(s)k

)
· ν + h

]∣∣∣
s=0

=h ≤ 0,
[
ε∂νs−

(
f(s)vε + g(s)k

)
· ν + h

]∣∣∣
s=1

=− f(1)vε · ν + h

=λ∗f(1)∂νpε −
λ∗
2

f(1)(ρw + ρo)k · ν + h

=λ∗f(1)
(

π − ρw + ρo

2
k · ν

)
+ h ≥ 0.

The claim follows from (H.4) and the comparison principle for parabolic equations. !
Lemma 3.2 (L∞ estimate on {Λw,ε}ε>0, {Λo,ε}ε>0, {ΛT,ε}ε>0). We have that

0 <
λ∗
2
≤ Λw,ε(t,x) ≤ ‖λw‖L∞(0,1) ,

0 <
λ∗
2
≤ Λo,ε(t,x) ≤ ‖λo‖L∞(0,1) ,

0 < λ∗ ≤ ΛT,ε(t,x) ≤ ‖λw‖L∞(0,1) + ‖λo‖L∞(0,1) ,

(3.1)

for each t > 0, x ∈ Ω.

Proof. The maps with constant values λ∗
2 and ‖λw‖L∞(0,1) are respectively sub and super

solutions for the fourth equation in (2.3): the first inequality is consequence of the mono-
tonicity of the elliptic operator −µw∆ + 1. The same argument works also for the second
inequality. The last estimate follows from the other two and the definition of ΛT,ε. !
Lemma 3.3 (Sobolev estimate on {Λw,ε}ε>0, {Λo,ε}ε>0, {ΛT,ε}ε>0). Let 1 ≤ r < ∞ be
fixed. The following inequalities hold

‖Λw,ε‖L∞(0,∞;W 2,r(Ω)) ≤ Cr

‖λw‖L∞(0,1)

µw
,

‖Λo,ε‖L∞(0,∞;W 2,r(Ω)) ≤ Cr

‖λo‖L∞(0,1)

µo
,

‖ΛT,ε‖L∞(0,∞;W 2,r(Ω)) ≤ Cr

‖λw‖L∞(0,1)

µw
+
‖λo‖L∞(0,1)

µo
,

(3.2)

where Cr is a positive constant dependent on r but not on µw, µo, and ε.

Proof. From (2.3), we know that

−∆Λw,ε =
λw(sε)− Λw,ε

µw
, −∆Λo,ε =

λo(sε)− Λo,ε

µo
.

Thanks to [3, Theorem 8.2], Lemmas 3.1, 3.2, and (H.3)

‖Λw,ε(t, ·)‖W 2,r(Ω) ≤c1

∥∥∥∥
λw(sε(t, ·))− Λw,ε(t, ·)

µw

∥∥∥∥
L∞(Ω)

≤c1

‖λw(sε)‖L∞((0,∞)×Ω) + ‖Λw,ε‖L∞((0,∞)×Ω)

µ
≤ 2c1

‖λw‖L∞(0,1)

µw
,

‖Λo,ε(t, ·)‖W 2,r(Ω) ≤c2

∥∥∥∥
λo(sε(t, ·))− Λo,ε(t, ·)

µo

∥∥∥∥
L∞(Ω)

≤c2

‖λo(sε)‖L∞((0,∞)×Ω) + ‖Λo,ε‖L∞((0,∞)×Ω)

µo
≤ 2c

‖λo‖L∞(0,1)

µo
,
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where c! and c2 are positive constants depending only on r. That proves the first two
inequalities. The last one follows from the definition of ΛT,ε. !
Lemma 3.4 (Sobolev estimate on {pε}ε>0). There exists ρ > 2 independent on µ and ε
such that

‖pε‖L∞(0,∞;W 1,ρ(Ω)) ≤κ,(3.3)

‖pε‖L∞(0,∞;W 3,r(Ω)) ≤
Kr

min{µw, µo}
, 1 ≤ r < ρ(3.4)

for some positive constants Kr and κ independent on µw, µo, and ε.

Proof. Since ρε satisfies the equation (see (2.3))

−divx (ΛT,ε∇xpε) =− divx ((ρwΛw,ε + ρoΛo,ε)k)
=− (ρwΛw,ε + ρoΛo,ε)divx (k)− (ρw∇xΛw,ε + ρo∇xΛo,ε) · k,

(3.5)

the (µw, µo, ε)-independent estimate in Lemma 3.2, (H.2), and [14, Theorem 1] give (3.3).
Since (3.5) gives

∆pε =
1

ΛT,ε

(
(ρwΛw,ε + ρoΛo,ε)divx (k) + (ρw∇xΛw,ε + ρo∇xΛo,ε) · k−∇xΛT,ε ·∇pε

)
,

and, from (3.2) and (3.3), ∇xΛT,ε · ∇pε is uniformly bounded in L∞(0,∞;Lr(Ω)), 1
≤ r < ρ, from [3, Theorem 8.2], (3.1), and (3.2) we have

(3.6) ‖pε‖L∞(0,∞;W 2,r(Ω)) ≤
Kr

min{µw, µo}
, 1 ≤ r < ρ.

Differentiating (3.5) with respect to xi, i ∈ {1, ..., N}, we get

∆∂xipε =
1

ΛT,ε

(
(ρw∂xiΛw,ε + ρo∂xiΛo,ε)divx (k) + (ρwΛw,ε + ρoΛo,ε)divx (∂xik)

+ (ρw∇x∂xiΛw,ε + ρo∇x∂xiΛo,ε) · k + (ρw∇xΛw,ε + ρo∇xΛo,ε) · ∂xik

− ∂xiΛε∆pε −∇∂xiΛε ·∇pε −∇Λε ·∇∂xipε

)
.

Since, from (3.2) and (3.6), the right hand side is uniformly bounded in L∞(0,∞;Lr(Ω)), 1
≤ r < ρ, from [3, Theorem 8.2], (3.1), and (3.2) we have (3.4). !
Lemma 3.5 (Sobolev estimate on {vε}ε>0). The following inequality holds

‖vε‖L∞(0,∞;Lρ(Ω)) ≤ Γρ, ‖vε‖L∞(0,∞;W 2,r(Ω)) ≤
Γr

min{µw, µo}
, 1 ≤ r < ρ,

where ρ is the one introduced in Lemma 3.4 and Γr is a positive constant dependent on r
but not on µw, µo, and ε.

Proof. Since
vε = −ΛT,ε∇xpε + (ρwΛw,ε + ρoΛo,ε)k,

and, for every i, j ∈ {1, ..., N},

∂2
xixj

vε =− ∂2
xixj

ΛT,ε∇pε − ∂xiΛT,ε∇∂xjpε − ∂xjΛT,ε∇∂xipε − ΛT,ε∇∂2
xixj

pε

+ ∂2
xixj

(ρwΛw,ε + ρoΛo,ε)k + ∂xi(ρwΛw,ε + ρoΛo,ε)∂xjk

+ ∂xj (ρwΛw,ε + ρoΛo,ε)∂xik + (ρwΛw,ε + ρoΛo,ε)∂2
xixj

k,

the claim follows directly from Lemmas 3.3 and 3.4. !
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Lemma 3.6 (Entropy Dissipation). Let ε > 0 and η ∈ C2(R). The following inequality
holds

∫

Ω
η(sε(t,x))dx+ε

∫ t

0

∫

Ω
η′′(sε(τ,x))|∇xsε(τ,x)|2dτdx

≤
∫

Ω
η(s0,ε)dx +

∥∥η′
∥∥

L∞(0,1)
‖h‖L1((0,t)×∂Ω) + K(η)t,

(3.7)

for each t ≥ 0, where

K(η) =
(
‖g‖L∞(0,1)

∥∥η′
∥∥

L∞(0,1)
+

∥∥g′η′
∥∥

L1(0,1)

)
‖k‖W 1,∞(Ω) (|Ω|+ |∂Ω|)

+
(
‖f‖L∞(0,1)

∥∥η′
∥∥

L∞(0,1)
+

∥∥f ′η′
∥∥

L1(0,1)

)
×

× λ∗

(
‖π‖L∞((0,∞)×∂Ω) +

ρw + ρo

2
‖h‖L∞(Ω)

)
|∂Ω|.

In particular, if η(s) = s2

2 , we have

(3.8) ‖sε(t, ·)‖2L2(Ω) + 2ε

∫ t

0
‖∇xsε(τ, ·)‖2L2(Ω) dτ ≤ ‖s0,ε‖2L2(Ω) + 2 ‖h‖L1((0,t)×∂Ω) + K̃t,

for each t ≥ 0, where

K̃ =2
(
‖g‖W 1,1(0,1) ‖k‖W 1,∞(Ω) (|Ω|+ |∂Ω|)

+ ‖f‖W 1,1(0,1) λ∗

(
‖π‖L∞((0,∞)×∂Ω) +

ρw + ρo

2
‖h‖L∞(Ω)

)
|∂Ω|

)
.

Proof. In light of (2.3)

∂tη(sε) + divx (F(sε)vε + G(sε)k)

+
(
g(sε)η′(sε)− G(sε)

)
divx (k) = ε∆xη(sε)− εη′′(sε)|∇xsε|2,

where F and G are defined in (2.2). Integrating on Ω, since the boundary conditions in
(2.3) say,

vε · ν = −λ∗π + λ∗
ρw + ρo

2
k · ν, on ∂Ω

using Lemmas 3.1, 3.5,
d

dt

∫

Ω
η(sε)dx =− ε

∫

Ω
η′′(sε)|∇xsε|2dx−

∫

Ω

(
g(sε)η′(sε)− G(sε)

)
divx (k) dx

+
∫

∂Ω

(
F(sε)vε + G(sε)k

)
· νdσ − ε

∫

∂Ω
∂νη(sε)dσ

=− ε

∫

Ω
η′′(sε)|∇xsε|2dx−

∫

Ω

(
g(sε)η′(sε)− G(sε)

)
divx (k) dx

+
∫

∂Ω

(
F(sε)− f(sε)η′(sε)

)
vε · νdσ +

∫

∂Ω

(
G(sε)− g(sε)η′(sε)

)
k · νdσ

+
∫

∂Ω
hη′(sε)dσ

≤− ε

∫

Ω
η′′(sε)|∇xsε|2dx

+
(
‖g‖L∞(0,1)

∥∥η′
∥∥

L∞(0,1)
+ ‖G‖L∞(0,1)

)
‖k‖W 1,∞(Ω) (|Ω|+ |∂Ω|)

+
(
‖f‖L∞(0,1)

∥∥η′
∥∥

L∞(0,1)
+ ‖F‖L∞(0,1)

)
×
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× λ∗

(
‖π‖L∞((0,∞)×∂Ω) + λ∗

ρw + ρo

2
‖k‖L∞(Ω)

)
|∂Ω|

+
∥∥η′

∥∥
L∞(0,1)

‖h(t, ·)‖L1(∂Ω) .

An integration with respect to t gives (3.7).
Finally, by choosing η(s) = s2

2 , (3.7) gives (3.8). !
As a consequence of Lemmas 3.3, 3.4, 3.5 we have the following compactness result.

Lemma 3.7. Let ρ be the exponent introduced in Lemma 3.4. There exist a subsequence
{εk}k∈N ⊂ (0,∞), εk → 0, and some functions

s ∈ L∞((0,∞)× Ω),

Λw, Λo ∈ L∞((0,∞)× Ω) ∩ L∞(0,∞;W 2,r(Ω)), 1 ≤ r < ∞,

p ∈ L∞(0,∞;W 1,ρ(Ω) ∩W 3,r(Ω)), 1 ≤ r < ρ,

v ∈ L∞(0,∞;Lρ(Ω) ∩W 2,r(Ω)), 1 ≤ r < ρ,

such that

sεk ⇀ s weakly in Lr((0,∞)× Ω), 1 ≤ r < ∞,

Λw,εk ⇀ Λw weakly in Lr((0,∞)× Ω) ∩ Lr′(0,∞;W 2,r(Ω)), 1 ≤ r′, r < ∞,

Λo,εk ⇀ Λo weakly in Lr((0,∞)× Ω) ∩ Lr′(0,∞;W 2,r(Ω)), 1 ≤ r′, r < ∞,

pεk ⇀ p weakly in Lr′(0,∞;W 1,ρ(Ω) ∩W 3,r(Ω)), 1 ≤ r′, r < ρ,

vεk ⇀ v weakly in Lr′(0,∞;Lρ(Ω) ∩W 2,r(Ω)), 1 ≤ r′, r < ρ.

4. Kinetic Formulation

Let us pass to the kinetic formulation of the first equation in (2.3).
From (2.3), we know

(4.1) ∂tsε + f ′(sε)∇xsε · vε + g′(sε)∇xsε · k + g(sε)divx (k) = ε∆xsε.

Let η be an entropy. From (4.1) we get
∂tη(sε) +∇xF(sε) · vε +∇xG(sε) · k

+ g(sε)divx (k) η′(sε)− ε∆xη(sε) = −εη′′(sε)|∇xsε|2,
(4.2)

where the entropy fluxes F and G are defined in (2.2)

Lemma 4.1. The following identity holds in the sense of distributions
∂tχε + divx

(
f ′(ξ)χεvε

)
+ divx

(
g′(ξ)χεk

)

+ ∂ξ

(
g(ξ)divx (k)χε

)
− 2g′(ξ)divx (k) χε − ε∆xχε = ∂ξmε,

(4.3)

where

(4.4) χε(t,x, ξ) = χ{ξ<sε(t,x)}, mε = εδ{ξ=sε(t,x)}|∇xsε|2, t > 0, x ∈ Ω, ξ ∈ R,

and χ{ξ<s} and δ{ξ=s} are the characteristic function and the Dirac delta associated to the
sets {ξ < s} and {ξ = s}, respectively.

Proof. Let us consider the entropy

η(s) = (s− ξ)+, s, ξ ∈ R.

Since

η′(s) = χ{ξ<s}, η′′(s) = δ{ξ=s},
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F(s) = χ{ξ<s}(f(s)− f(ξ)), G(s) = χ{ξ<s}(g(s)− g(ξ)),

(4.2) becomes

∂t(sε − ξ)+ +∇x
(
χ{ξ<sε(t,x)}(f(sε)− f(ξ))

)
· vε

+∇x
(
χ{ξ<sε(t,x)}(g(sε)− g(ξ))

)
· k

+ g(sε)divx (k) χ{ξ<sε(t,x)} − ε∆x(sε − ξ)+ = −mε.

(4.5)

Since

∂ξ∂t(sε − ξ)+ = −∂tχ{ξ<sε(t,x)} = −∂tχε,

∂ξ

(
∇x

(
χ{ξ<sε(t,x)}(f(sε)− f(ξ))

)
· vε

)

=
(
∇x∂ξ

(
χ{ξ<sε(t,x)}(f(sε)− f(ξ))

))
· vε

= −
(
∇x

(
δ{ξ=sε(t,x)}(f(sε)− f(ξ))

))
· vε

︸ ︷︷ ︸
=0

−∇x
(
χ{ξ<sε(t,x)}f

′(ξ)
)
· vε

= −f ′(ξ)∇xχε · vε = −divx
(
f ′(ξ)χεvε

)
,

∂ξ

(
∇x

(
χ{ξ<sε(t,x)}(g(sε)− g(ξ))

)
· k

)

=
(
∇x∂ξ

(
χ{ξ<sε(t,x)}(g(sε)− g(ξ))

))
· k

= −
(
∇x

(
δ{ξ=sε(t,x)}(g(sε)− g(ξ))

))
· k

︸ ︷︷ ︸
=0

−∇x
(
χ{ξ<sε(t,x)}g

′(ξ)
)
· k

= −g′(ξ)∇xχε · k,

∂ξ

(
g(sε)divx (k)χ{ξ<sε(t,x)}

)
= −g(sε)divx (k) δ{ξ=sε(t,x)} = −g(ξ)divx (k) ∂ξχε,

∂ξε∆x(sε − ξ)+ = −ε∆xχ{ξ<sε(t,x)} = −ε∆xχε,

we differentiate (4.5) with respect to ξ and get

∂tχε + divx
(
f ′(ξ)χεvε

)
+ g′(ξ)∇xχε · k + g(ξ)divx (k) ∂ξχε − ε∆xχε = ∂ξmε.

Finally, we observe that

g′(ξ)∇xχε · k + g(ξ)divx (k) ∂ξχε

=divx
(
g′(ξ)χεk

)
− g′(ξ)χεdivx (k) + ∂ξ

(
g(ξ)divx (k) χε

)
− g′(ξ)divx (k) χε

=divx
(
g′(ξ)χεk

)
+ ∂ξ

(
g(ξ)divx (k)χε

)
− 2g′(ξ)divx (k)χε,

therefore we have (4.3). !

Lemma 4.2. There exist

χ ∈ L∞((0,∞)× Ω× R), m ∈M+((0,∞)× Ω× R),

such that (using the same notation of Lemma 3.7 for the subsequence)

χεk

(
⇀ χ weakly-∗ in L∞((0,∞)× Ω× R),(4.6)

mεk ⇀ m weakly in M+((0,∞)× Ω× R),(4.7)
0 ≤ χ ≤ 1, ∂ξχ ≤ 0,(4.8)
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where M+((0,∞) × Ω × R) is the set of positive Radon measures on (0,∞) × Ω × R.
Moreover, the following identity holds in the sense of distributions

∂tχ + divx
(
f ′(ξ)χv

)
+ divx

(
g′(ξ)χk

)

+ ∂ξ

(
g(ξ)divx (k)χ

)
− 2g′(ξ)divx (k)χ = ∂ξm.

(4.9)

Proof. The existence of χ, m, (4.6), and (4.7) follow from Lemmas 3.1 and 3.6. Since,
from the definition,

(4.10) 0 ≤ χε ≤ 1, ∂ξχε = −δ{ξ=sε(t,x)} ≤ 0,

we have (4.8).
We have now to prove (4.9). Due to (4.7) we have only to show that

(4.11) χεkvεk −→ χv, in the sense of distributions on (0,∞)× Ω× R.

Observe that, from (4.10) and Lemma (3.7), we know

(4.12) χεk ⇀ χ, vεk ⇀ v, weakly in L2((0,∞)× Ω× R).

Since vεk does not depend on ξ, thanks to Lemma (3.5),

(4.13) {vεk}k is uniformly bounded in L2((0,∞);W 1,2(Ω× R)).

We claim that

(4.14) {∂tχεk}k is uniformly bounded in L1((0, T );W−1,1(Ω× (−a, a))), T, a > 0.

Indeed, from (4.3), we know that

∂tχεk =− divx
(
f ′(ξ)χεkvεk

)
− divx

(
g′(ξ)χεkk

)

− ∂ξ

(
g(ξ)divx (k) χεk

)
+ 2g′(ξ)divx (k) χεk + εk∆xχεk − ∂ξmεk ,

(4.15)

Due to (H.2), (4.10), and Lemma (3.5),

{divx
(
f ′(ξ)χεkvεk

)
}k bounded in L∞((0,∞);W−1,1(Ω× (−a, a))), a > 0,

{divx
(
g′(ξ)χεkk

)
}k bounded in L∞((0,∞);W−1,∞(Ω× (−a, a))), a > 0,

{∂ξ

(
g(ξ)divx (k) χεk

)
}k bounded in L∞((0,∞);W−1,∞(Ω× (−a, a))), a > 0,

{g′(ξ)divx (k) χεk}k bounded in L∞((0,∞)× Ω× (−a, a)), a > 0.

(4.16)

Since

εk∆xχεk − ∂ξmεk =∂ξ(εk(sεk − ξ)+∆xsεk)

=∂ξ(εkdivx ((sεk − ξ)+∇xsεk)− εkχεk |∇xsεk |
2)

=divx (εk∂ξ(sεk − ξ)+∇xsεk)− ∂ξ(εkχεk |∇xsεk |
2)

=− divx (εkχεk∇xsεk)− ∂ξ(εkχεk |∇xsεk |
2),

thanks to (3.8) and (4.4), we have that also

(4.17) {εk∆xχεk − ∂ξmεk}k bounded in L1((0, T );W−1,1(Ω× (−a, a))), T, a > 0.

Therefore (4.14) follows from (4.15), (4.16), and (4.17). Due to (4.12), (4.13), (4.14), and
[12, Lemma 5.1] we have (4.11) and the proof is concluded. !
Lemma 4.3. Let η ∈ C2(R). The following identity holds in the sense of distributions

∂tη(χ) + divx
(
f ′(ξ)η(χ)v

)
+ divx

(
g′(ξ)η(χ)k

)

+ ∂ξ

(
g(ξ)divx (k) χη′(χ)

)
− 2g′(ξ)η(χ)divx (k) = η′(χ)∂ξm.

(4.18)
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Proof. Convolving both sides of (4.9) with a family of mollifiers and the arguing as in [8,
Lemma II.1] we get

∂tη(χ)+divx
(
f ′(ξ)χv

)
η′(χ) + divx

(
g′(ξ)χk

)
η′(χ)

+ ∂ξ

(
g(ξ)divx (k) χ

)
η′(χ)− 2g′(ξ)divx (k) χη′(χ) = η′(χ)∂ξm.

Since

divx
(
f ′(ξ)χv

)
η′(χ) =f ′(ξ)∇xχ · vη′(χ)

=f ′(ξ)∇x(η(χ)) · v = divx
(
f ′(ξ)η(χ)v

)
,

divx
(
g′(ξ)χk

)
η′(χ) =g′(ξ)∇xχ · kη′(χ) + g′(ξ)χdivx (k) η′(χ)

=g′(ξ)∇xη(χ) · k + g′(ξ)χdivx (k) η′(χ)

=divx
(
g′(ξ)η(χ)k

)
+ g′(ξ)(χη′(χ)− η(χ))divx (k) ,

∂ξ

(
g(ξ)divx (k) χ

)
η′(χ) =g(ξ)divx (k) ∂ξχη′(χ) + g′(ξ)divx (k) χη′(χ)

=g(ξ)divx (k) ∂ξη(χ) + g′(ξ)divx (k) χη′(χ)

=∂ξ

(
g(ξ)divx (k) η(χ)

)
+ g′(ξ)divx (k) (χη′(χ)− η(χ)),

we have (4.18). !

Lemma 4.4. The function χ defined in Lemma 4.2 takes only values 0 and 1. In partic-
ular, there exists a function S ∈ L∞((0,∞)× Ω) such that

(4.19) χ(t,x, ξ) = χ{ξ≤S(t,x)}, a.e. (t,x, ξ) ∈ (0,∞)× Ω× R.

Proof. We use the entropy
η(χ) = χ− χ2

in (4.18) and get

∂t(χ− χ2) + divx
(
f ′(ξ)(χ− χ2)v

)
+ divx

(
g′(ξ)(χ− χ2)k

)

+ ∂ξ

(
g(ξ)divx (k) (χ− 2χ2)

)

− 2g′(ξ)(χ− χ2)divx (k) = (1− 2χ)∂ξm.

(4.20)

Since from (4.8) and the definitions of χ and m, we know

(1− 2χ)∂ξm = ∂ξ((1− 2χ)m) + 2m∂ξχ ≤ ∂ξ((1− 2χ)m),

χ− χ2 ≥ 0,(4.21)
ξ ∈ (−∞, 0) ∪ (1,∞) =⇒ χ(t,x, ξ) = m(t,x, ξ) = 0.(4.22)

The identity (4.20) gives

∂t(χ− χ2) + divx
(
f ′(ξ)(χ− χ2)v + g′(ξ)(χ− χ2)k

)

+ ∂ξ

(
g(ξ)divx (k) (χ− 2χ2) + (2χ− 1)m

)

≤ 2
∥∥g′

∥∥
L∞(0,1)

‖divx (k)‖L∞(Ω)︸ ︷︷ ︸
κ

(χ− χ2).
(4.23)

Moreover, in light of (4.22),
∫

R
∂ξ

(
g(ξ)divx (k) (χ− 2χ2) + (2χ− 1)m

)
dξ = 0,
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therefore, integrating (4.23) with respect to x and ξ and using (H.2)

d

dt

∫

Ω×R
(χ− χ2)dxdξ

≤−
∫

Ω×R
divx

(
f ′(ξ)(χ− χ2)v + g′(ξ)(χ− χ2)k

)
dxdξ

+ κ

∫

Ω×R
(χ− χ2)dxdξ

=
∫

∂Ω×R

(
f ′(ξ)(χ− χ2)v + g′(ξ)(χ− χ2)k

)
· νdσdξ

+ κ

∫

Ω×R
(χ− χ2)dxdξ

=
∫

∂Ω×R

(
− λ∗f

′(ξ)
(

π − ρw + ρo

2
k · ν

)
+ g′(ξ)k · ν

)

︸ ︷︷ ︸
≤0 (cf. (H.2))

(χ− χ2)︸ ︷︷ ︸
≥0 (cf. (4.21))

dσdξ

+ κ

∫

Ω×R
(χ− χ2)dxdξ

≤κ

∫

Ω×R
(χ− χ2)dxdξ.

Thanks to the Gronwall’s inequality and the fact that (χ− χ2)
∣∣
t=0

= 0, we have

χ− χ2 = 0 a.e. (0,∞)Ω× R,

and then χ takes only values 0 and 1.
Finally, (4.19) follows from [18]. !

Proof of Theorem 2.1. Let {εk}k∈N and s be the one of Lemma 3.7. Due to the the weak
convergences Lemmas 3.7 and 4.2, we have S = s, where S is the one introduced in
Lemma 4.4, we have

sεk → s strongly in Lr((0, T )× Ω), T > 0, 1 ≤ r < ∞,

indeed

sε(t,x) =
∫

R
χε(t,x, ξ)dξ, s(t,x) =

∫

R
χ(t,x, ξ)dξ.

!

5. Numerical experiments

In order to test how close the model with µw > 0 and µo > 0 are to the model with
µw = µo = 0, we have performed several numerical experiments.

We have simplified the equations to read

v = ΛT∇p + (ρwΛw + ρoΛo)k, t > 0, x ∈ Ω,(5.1)
divx (vε) = q, t > 0, x ∈ Ω,(5.2)

st + divx

(
λw(s)
λT (s)

(v + (ρw − ρo)λo(s)k)
)

= q, t > 0, x ∈ Ω,(5.3)

Λw,o − µw,o∆Λw,o = λw,o(s), t > 0, x ∈ Ω,(5.4)
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where ΛT = Λo + Λw, λT = λw + λo, k is the vector (0, 1) and the domain Ω is the
rectangle [0, a]× [0, b]. The boundary conditions are

(
λw(s)
κT(s)

(vε + (ρw − ρo) λo(s)k)
)
· ν = 0, t > 0, x ∈ ∂Ω,

v · ν = 0, t > 0, x ∈ ∂Ω,(5.5)
Λr,o = λr,o(s), t > 0, x ∈ ∂Ω (in the trace sense),(5.6)

s(0,x) = s0(x), x ∈ Ω.(5.7)

The relative permeabilities of water and oil, λw and λo, are given by

λw,o (sw,o) = s2
w,o,

so that λo(s) = (1−s)2. The source term q accounts for injection of water and production
of oil. Numerically, we model this term as a sum of “delta-functions” located at the
relevant wells.

We now specify the numerical scheme used to approximate (5.1)–(5.7). Let

D±
x kij = ± 1

hx
(ki±1,j − kij) , D±

y kij = ± 1
hy

(ki,j±1, − kij) .

We divide Ω into N×M rectangles, such that hx = a/N , hy = b/M . As an approximation
to (5.4), (5.6) we use the scheme

(5.8)

{
Λij − ε

(
D+

x D−
x + D+

y D−
y

)
Λij = λ (sij) , 1 < i < N, 1 < j < M,

Λij = λ (sij) , i = 1, N , 1 ≤ j ≤ M and j = 1, N , 1 ≤ i ≤ N .

This scheme is used both for Λw
ij ≈ Λw and Λo

ij ≈ Λo. To solve the “pressure equation”,
(5.2) with boundary conditions given by (5.5) we use a finite volume scheme similar to
(5.8). Set

Λi+1/2,j =

{
2 ΛijΛi+1,j

Λij+Λi+1,j
, 1 ≤ i < N, 1 ≤ j ≤ M,

0 i = 0 or i = N, 1 ≤ j ≤ M,

Λi,j+1/2 =

{
2 ΛijΛi,j+1

Λij+Λi,j+1
, 1 ≤ j < M, 1 ≤ i ≤ N,

0 j = 0 or j = M, 1 ≤ i ≤ N.

Then the discrete analogue of (5.2) reads

(5.9) D−
x ΛT

i+1/2,jD
+
x pij + D−

y ΛT
i,j+1/2D

+
y pij = qij −D−

y γij+1/2,

for 1 ≤ i ≤ N and 1 ≤ j ≤ M . Here the gravitational source term is defined by

γi,j+1/2 = ρoΛo
i,j+1/2 + ρwΛw

i,j+1/2.

Given sij , the total velocity is then found by solving (5.8) and (5.9), and defined by

vx
i+1/2,j = ΛT

i+1/2,jD
+
x pij , vy

i+1/2,j = ΛT
i,j+1/2D

+
y pij + gi,j+1/2.

Once we have a total velocity on the cell edges, we can use a finite volume scheme to
advance the saturation in time

(5.10) sn+1
ij = sn

ij − h
(
D−

x F x
i+1/2,j + D−

y

(
F y

i,j+1/2 + F y,grav
i,j+1/2

))
+ hqij .

We have split the numerical flux into the part multiplied by the total velocity, and the
gravitational part. Set f(s) = λw(s)/λT (s) and g(s) = λo(s)f(s). Then the inter cell
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fluxes read

F x
i+1/2,j (sij , si+1,j) =

{
vx
i+1/2,jf (sij) vx

i+1/2,j > 0,

vx
i+1/2,jf (si+1,j) otherwise,

F y
i,j+1/2 (sij , si,j+1) =

{
vy
i,j+1/2f (sij) vy

i,j+1/2 > 0,

vy
i,j+1/2f (si,j+1) otherwise,

F y,grav
i,j+1/2 (sij , si,j+1) = (ρw − ρo) (g (min (si,j+1, 1/2)) + g (max (si,j , 1/2))) .

Having numerical methods for (5.1) – (5.4), we can formulate an “IMPES” method to
find the pressure and saturation as functions of time. As is commonly believed in the
reservoir simulation community, it is sufficient to update the total velocity less frequently
than the saturation. Hence, an algorithm for solving (5.1) – (5.4) reads as follows:

Algorithm 1 Simple reservoir simulation

given sij , qij , T , N , ε
dt ← T/N
for k = 1 to N do

solve (5.8) to get Λw
ij and Λo

ij

solve (5.9) to get vx
i+1/2,j and vy

i,j+1/2
t ← 0
while t < dt do

determine h by a CFL-condition
t ← t + h
update sij by (5.10)

end while
end for

Experiment 1. Our first test is a so-called “quarter five spot”, modeling injection of
water into a oil filled homogeneous horizontal reservoir, with one injection well in the
lower left corner, and one production well in the upper right hand corner. In this case

ρo = ρw = 0, qij =






1 if i = j = 1,
−1 if i = N and j = M ,
0 otherwise,

T = 0.7, N = 25, sij = 0, for all i, j.

We set a = b = 1 and M = N .
We compute the approximate solutions for the unregularized version of the two-phase

flow equations (1.6) and the regularized version (2.1) by varying the regularization pa-
rameter µo = µw = µ in (2.1). We consider two different values of µ namely µ = 0
(unregularized problem) and µ = 0.01 and show the water saturation, computed on a
200× 200 mesh at time T = 0.7 in figure 2. The figure shows that the saturation consists
of sharp fronts and including a finger at the upper right hand corner near the production
well. Furthermore, there are very few visible differences between the saturations for the
unregularized and regularized problems.

In order to obtain quantitative comparison of the two models, we vary the regularization
parameter µ by orders of magnitude and compute the L1 norm of the difference between
the regularized and unregularized saturations and pressure. The relative errors are shown
in figure 3. The figure shows that the errors in pressure are very small and converge
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(b) µ = 0.01

Figure 2. Solutions to the unregularized and regularized versions of the two-
phase flow equations (2.1) without gravity. The plotted quantity is the saturation
of water. Left: µ = 0 and Right: µ = 0.01 with µ being the regularization
parameter in (2.1). Both solutions are computed with the IMPES scheme on a
200× 200 mesh.

to zero as the regularization parameter goes to zero. Furthermore, the pressure errors
are lower on the finer 200 × 200 mesh than the 100 × 100 mesh. The saturation errors
are larger than the pressure errors. The saturation errors do converge to zero for both
the coarse and the fine meshes as the regularization parameter tends to zero. However,
the saturation errors are slightly larger on the finer mesh than on the coarser mesh due
to interaction between the discretization error and the regularization error. The figure
illustrates that the regularized model (2.1) is quite close to the original two-phase flow
equations (1.7) with the difference being very small when the regularization parameter is
close to zero.

Experiment 2. The second test case is intended to test the possible effects of gravitation.
The setup is supposed to model injection of water into a vertical reservoir initially filled
with oil. The injection point is in the top left corner and the production is in the top right
one. Since water is heavier than oil, water will tend to sink to the bottom of the reservoir,
where it will pile up since we impose no-flow boundary conditions. The parameters for
this set up is

ρo = 5.5, ρw = 7, qij =






1 if i = 1, j = M ,
−1 if i = N and j = M ,
0 otherwise,

T = 1.4, N = 50, sij = 0, for all i, j.

We have used a = 2, b = 1, and M = N/2.
We compute the approximate solutions for the unregularized version of the two-phase

flow equations (1.6) and the regularized version (2.1) by varying the regularization pa-
rameter µ in (2.1). We consider two different values of µ namely µ = 0 (unregularized
problem) and µ = 0.01 and show the water saturation, computed on a 200× 200 mesh at
time T = 0.7 in figure 4. In contrast to the previous experiment, there are qualitative dif-
ferences between the unregularized and regularized versions. These differences are visible
near the production well. The regularized version seems to include a finger whereas the
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Figure 3. The difference in L1 between unregularized and regularized versions
of the two-phase flow equations (2.1) without gravity. The plotted quantity is
the log of 1

µ vs. the log of the relative error. Left: Saturation error and Right:
Pressure. We consider solutions computed with the IMPES scheme on a 100×100
and 200× 200 mesh.
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Figure 4. Solutions to the unregularized and regularized versions of the two-
phase flow equations (2.1) with gravity. The plotted quantity is the saturation of
water. Left: µ = 0 and Right: µ = 0.01 with µ being the regularization parameter
in (2.1). Both solutions are computed with the IMPES scheme on a 200 × 200
mesh.

unregularized version is yet to form a finger near the production well. There is a roll-up at
the bottom right corner in the regularized version that is not visible in the unregularized
version.

A quantitative comparison in terms of the L1 norm of the differences between the
unregularized and regularized versions is shown in figure 5. The differences in pressure
are very small and tend to zero as µ is reduced. As expected from the saturation plots,
the difference in saturation is greater than in the non-gravitational case (compare with
figure 3). However, the errors tend to zero as µ → 0 showing that the regularized model
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leads to a solution very close to the two-phase flow equations (1.7), even when gravity
effects are included.
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Figure 5. The difference in L1 between unregularized and regularized versions
of the two-phase flow equations (2.1) with gravity. The plotted quantity is the log
of 1

µ vs. the log of the relative error. Left: Saturation error and Right: Pressure.
We consider solutions computed with the IMPES scheme on a 100 × 100 and
200× 200 mesh.

6. Conclusion

We consider the flow of two-phases, say oil and water, in a porous medium. The classical
model of this flow involves a elliptic-hyperbolic system, based on the Darcy’s law. The
saturation is governed by a hyperbolic conservation law and pressure obeys an elliptic
equation. The problem of existence of global weak solutions for this model is still open.
The main difficulty being the lack of regularity of the velocity field.

We propose a modified version of the Darcy’s law via a Helmholtz regularization of the
phase velocities. The resulting model is a hyperbolic-elliptic system with more regular
velocity field. The kinetic formulation of scalar conservation laws is modified to show
compactness of approximating solutions. The limit is shown to be weak solution of the
modified system.

We perform numerical experiments and show that the solutions resulting from the
modified version of the Darcy’s law are very close to those obtained from a classical two-
phase flow system. Furthermore, these approximations converge to the corresponding
classical two-phase flow solution as the regularization parameter tends to zero. Thus, the
numerical experiments provide an a posteriori justification for the proposed model.

Since the problem of proving existence for the classical version of the two-phase flow
equations presents formidable difficulties, we propose that this modified version of the
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Darcy’s law be used. It can be motivated by scaling arguments and we are able to
provide rigorous proof of existence. The main advantage of the proposed model over non-
zero capillary pressure models lies in the fact that the saturation fronts are not diffused
by this model. We plan to conduct more intensive numerical study of the proposed model
and compare it with the classical model in a future paper.
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