
!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
! Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Swiss Federal Institute of Technology Zurich

Linear dimension reduction for
evolutionary data

E. Kokiopoulou, D. Kressner and Y. Saad∗

Research Report No. 2010-42
December 2010

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

∗Department of Computer Science and Engineering, University of Minnesota, Min-
neapolis, MN 55455, USA. Work supported by NSF under grants DMS-0810938 and DMR-
0940218.

Linear dimension reduction for evolutionary data

E. Kokiopoulou1, D. Kressner1, Y. Saad2,∗

Abstract

We consider the problem of linear dimensionality reduction for high-dimensional evolutionary data, whose
distribution changes over time or with respect to a parameter. Supervised dimensionality reduction
methods have proven to be very successful in real-world classification problems. When dealing with
evolutionary data, we would like to perform classification that is not only robust to noise and short-term
changes, but also adaptive to long-term drifts in the data distribution. In order to capture this notion
of temporal smoothness, we propose the use of an additional penalty term in classic optimization-based
formulations of dimensionality reduction. The penalty term prevents the reduced space in one time step
to differ too much from the one in the previous time step. Experiments with synthetic and real-world
evolutionary data provide evidence that such an approach leads to improved classification performance.

Keywords: Dimensionality reduction, evolutionary data

1. Introduction

Dimensionality reduction of high-dimensional
data plays a crucial role in a variety of research
areas, including computer vision, data visualiza-
tion, and pattern recognition. The goal of di-
mensionality reduction is to simplify the data
and make it more amenable to further analysis.
For this purpose, the high-dimensional data is
mapped to a lower-dimensional space such that
certain properties, such as locality and other ge-
ometric characteristics, are preserved. Principal
component analysis (PCA) is among the most
popular reduction techniques. It belongs to the
class of linear methods, in the sense that the
mapping from the original to the reduced data
is linear. For the purpose of classifying data,
however, PCA is not well suited due to its un-
supervised nature. This observation has led to
the development of a range of supervised lin-
ear methods for dimensionality reduction, which
take into account the class labels of the training
data. We mention, for example, Linear Discrimi-
nant Analysis (LDA) (Webb 2002), Locality Pre-
serving Projections (LPP) (He and Niyogi 2003),

∗Work of Y. Saad supported by NSF under grants
DMS-0810938 and DMR-0940218

Email address:
effrosyni.kokiopoulou@sam.math.ethz.ch,

daniel.kressner@sam.math.ethz.ch, saad@cs.umn.edu

(Y. Saad)
1Seminar for Applied Mathematics, ETH, HG G J49,

Rämistrasse 101, 8092 Zürich, Switzerland.
2Department of Computer Science and Engineering;

University of Minnesota; Minneapolis, MN 55455.

Orthogonal Neighborhood Preserving Projections
(ONPP) and Orthogonal Locality Preserving Pro-
jections (OLPP) (Kokiopoulou and Saad 2007).
The reader is referred to (Kokiopoulou et al. 2010)
for a recent overview of dimensionality reduction
methods.
The focus of this paper will be on evolution-

ary data, whose distribution changes over time
or with respect to a parameter. Using individ-
ual snapshots of the data to determine the classi-
fier may not be optimal. If the classifier is based
on a single snapshot, it may be too biased and
sensitive to short-term noise, and therefore lead
to poor performance. This is conceptually illus-
trated in Figures 1(a) and 1(b), where the classi-
fier is adjusted to every snapshot and becomes too
sensitive to the particular realization of the data
set. Previous work by Chi et al. (2007) and Jia
et al. (2009) has indicated that taking previous
data snapshots into account can be rather help-
ful and be seen as a form of weak supervision.
Figure 1(c) shows an example where the classi-
fier obtained from both snapshots differs signifi-
cantly from the classifiers obtained from the indi-
vidual snapshots. To circumvent these problems
with individual snapshots, one could be tempted
to construct a classifier from the whole data tra-
jectory instead. However, such a global approach
may be infeasible in resource-constrained environ-
ments. Even if feasible, this approach suffers from
the fact that the data can be expected to undergo
significant changes over longer times, leading to
meaningless global classifiers.
There is clearly a need for flexible learning al-

Preprint submitted to Pattern Recognition November 30, 2010

gorithms that can adapt to the changes of the
data distribution. Ideally, when dealing with evo-
lutionary data, we would like to perform clas-
sification that is not only robust to noise and
short-term changes, but also adaptive to long-
term drifts in the data distribution. Since in
most real world applications the concept drift to
be learned rarely changes dramatically, classifica-
tion should be done in a temporally smooth fash-
ion; that is, the output of the classifier should not
be too far from the output of the classifier corre-
sponding to the recent history. Such temporally
smooth approaches to data analysis have been
used successfully in clustering (Chi et al. 2007)
and semi-supervised learning (Jia et al. 2009).
To the best of our knowledge, there is no pre-

vious work on dimensionality reduction for evo-
lutionary data. The aim of this work is to fill
this gap. We propose a regularization framework
for linear dimensionality reduction that imposes
temporal smoothness on the reduced space to be
learned at each time step. It is shown that the
proposed framework admits algorithmic formula-
tions based on eigenvalue problems. Our frame-
work is illustrated for the dimensionality reduc-
tion methods OLPP and ONPP. However, it is
worth emphasizing that the same regularization
framework can be applied to other linear methods
(such as PCA, LDA and so on). Finally, we would
like to stress that dealing with evolutionary data
is rather different from the scenario where parts of
the training set are updated and one is interested
in on-line or incremental algorithms that avoid
re-training from scratch. In our scenario, the dis-
tribution of the whole data set changes at every
time step.
The rest of this paper is organized as follows.

Section 2 is a review of methods for linear dimen-
sionality reduction. Section 3 is concerned with
dimensionality reduction for evolutionary data,
for which two different algorithmic formulations
are proposed. Section 4 provides experimental
results both on synthetic and on real-world evo-
lutionary data sets. Finally, some concluding re-
marks are given in Section 5.

2. Linear dimensionality reduction

In this section, we provide an overview of
the two linear dimensionality reduction methods
ONPP and OLPP that will be used as illustrative
case studies in our evolutionary framework.
Consider a data set X ∈ Rm×n. Linear di-

mensionality reduction methods derive the low-
dimensional samples Y ∈ Rd×n (where d " m)
from the high-dimensional samples X by means

of a linear transformation

Y = V #X, where V ∈ R
m×d. (1)

The matrix V is typically obtained as the solution
of an optimization problem imposing that certain
properties of the original data X are preserved
in the reduced space. In particular, OLPP and
ONPP build an affinity graph among the high-
dimensional samples xi and learn the matrix V
such that the graph is preserved among the yi.
Each xi becomes a node in the affinity graph and
edges are drawn only between data samples that
are close-by, usually in terms of the Euclidean
distance. In the supervised versions of OLPP
and ONPP, two data samples are considered ad-
jacent if and only if they belong to the same class.
Hence, in this case the affinity of samples is de-
termined from class memberships and not from
Euclidean distances.
It is common to assign weights to the edges of

the affinity graph and the two methods OLPP and
ONPP differ in the way these weights are defined.

2.1. OLPP (Orthogonal Neighborhood Preserving
Projection))

A very popular choice of weights in OLPP con-
sists of Gaussian weights

wij = e−
‖xi−xj‖

2
2

2σ2 , (2)

where σ is a free parameter determining the range
of influence between data samples. The affinity
graph defines a sparse matrix W ∈ Rn×n, whose
entries are the weights wij for adjacent nodes in
the graph and zero otherwise.
OLPP aims at preserving the data affinity un-

der reduction, that is, two close-by samples xi and
xj should be mapped to yi and yj that are also
close-by in the reduced space. For this purpose,
the criterion

Eolpp =
1

2

n
∑

i,j=1

wij‖yi − yj‖
2
2 (3)

is minimized with respect to the low dimensional
samples, enforcing yi to lie close to yj when the
weight wij is high. Defining the Laplacian matrix
L := D−W , where D is a diagonal matrix whose
diagonal entries contain the row sums of W , and
using (1), it has been shown in (Kokiopoulou and
Saad 2007) that the criterion above can be rewrit-
ten as

Eolpp = Tr [Y LY #] = Tr [V #XLX#V]. (4)

2

x
x

x

xx

x

(a) First snapshot t1

x

x x
x

x x

x
x

xx

x

(b) Second snapshot t2

x

x x
x

x x

x
x

xx

x
x

x

xx

x x

(c) Both snapshots

Figure 1: Illustration of robustness enhancement when combining data from several snapshots for constructing the classifier.

In addition, OLPP imposes that the matrix V
has orthonormal columns. In summary, the opti-
mization problem solved by OLPP can be formu-
lated as

min
8

<

:

V ∈ Rm×d

V # V = I

Tr
[

V #XLX#V
]

. (5)

It turns out that the solution of (5) can be ob-
tained from solving a standard eigenvalue prob-
lem. The solution V contains the eigenvectors
belonging to the d smallest eigenvalues of the
symmetric matrix XLX#, see (Kokiopoulou and
Saad 2007) for more details.

2.2. ONPP (Orthogonal Neighborhood Preserving
Projection)

ONPP constructs the weights wij of the affinity
graph in a different way, such that each xi can be
locally reconstructed from the set of its nearest
neighbors xj . This is achieved by minimizing

E(W) =
∑

i

‖xi −
∑

j

wijxj‖
2
2

with respect to wij , under the constraint that
W respects the sparsity pattern of the affinity
graph. The weights can be obtained in closed
form (Roweis and Saul 2000).
ONPP imposes that each low-dimensional sam-

ple yi is locally reconstructed from its neighbors
using exactly the same weights wij determined
above. More specifically, ONPP captures this in-
tuition using the criterion

Eonpp =
∑

i

‖yi −
∑

j

wijyj‖
2
2. (6)

Again it can be shown (Kokiopoulou and Saad
2007) that this criterion can be re-written as

Eonpp = Tr [YMY #]

= Tr [V #XMX#V], (7)

where we have used (1) and introduced the matrix
M := (I −W#)(I −W).
As for OLPP, the matrix V should have or-

thonormal columns, leading to the constrained
optimization problem

min
8

<

:

V ∈ Rm×d

V #V = I

Tr
[

V #XMX#V
]

, (8)

which is again a standard eigenvalue problem.
To summarize, both OLPP and ONPP solve an

eigenvalue problem and they determine the ma-
trix V from a few eigenvectors of the matrices
XLX# and XMX#, respectively.

3. Linear dimensionality reduction for evo-

lutionary data

In this section, we generalize the above meth-
ods to deal with evolutionary data. We attach
the subscript t in order to refer to a certain quan-
tity at time step t. For example, Xt and Vt denote
the data set and the dimensionality reduction ma-
trix respectively, at time step t. We will first use
OLPP as an illustration and then consider the ex-
tension to ONPP.
We would like to perform dimensionality reduc-

tion in a temporally smooth fashion, such that the
learned subspace is robust to short-term changes
and at the same time adaptive to long-term drifts
in the data. One way to achieve this, is to intro-
duce a penalty term in the OLPP objective func-
tion that discourages Vt from being too far from
Vt−1. Previous work (Chi et al. 2007) employed
the following penalty term:

1

2
‖VtV

#
t − Vt−1V

#
t−1‖

2
F , (9)

which compares the two subspaces spanned by the
columns of Vt and Vt−1 and is invariant to the
particular realizations of the bases Vt and Vt−1.

3

Note that this defines a notion of distance be-
tween these subspaces, termed the gap when the
2-norm is used instead of the Frobenius norm, see
e.g., (Chatelin 1993, p. 86), and (Saad 1992).
In the following, we discuss two ways of com-

bining the penalty term (9) with the OLPP ob-
jective function (4). The first approach takes
a fixed weighted linear combination of the two
terms. The second approach takes the ratio be-
tween them.

3.1. Linear combination of the two objectives
Recall from (4) that the objective function of

OLPP at time step t reads Tr [V #
t L̃tVt], where we

introduced the matrix

L̃t := XtLtX
#
t . (10)

Incorporating the penalty term (9) results in

(1 − β) Tr
[

V #
t L̃tVt

]

+
β

2
‖VtV

#
t − Vt−1V

#
t−1‖

2
F ,

(11)
where β ∈ [0, 1) is a free parameter that deter-
mines a balance between the two terms. Observe
that ‖VtV #

t − Vt−1V #
t−1‖

2
F can be re-written as

follows

Tr
[

(VtV
#
t − Vt−1V

#
t−1)(VtV

#
t − Vt−1V

#
t−1)

]

= Tr
[

VtV
#
t VtV

#
t

]

+Tr
[

Vt−1V
#
t−1Vt−1V

#
t−1

]

− 2Tr
[

VtV
#
t Vt−1V

#
t−1

]

= 2d− 2Tr
[

V #
t Vt−1V

#
t−1Vt

]

.

Hence, (11) can be simplified to

(1− β) Tr
[

V #
t L̃tVt

]

− β Tr
[

V #
t Vt−1V

#
t−1Vt

]

= Tr
[

V #
t ((1− β)L̃t − βVt−1V

#
t−1)Vt

]

.

To summarize, the optimization problem for (11),
called OLPP-E in the following, becomes

min
8

<

:

Vt ∈ R
m×d

V #
t Vt = I

Tr
h

V
#
t ((1− β)L̃t − βVt−1V

#
t−1)Vt

i

.

(12)

Again, this turns out to be an eigenvalue prob-
lem and the solution is given by the matrix
Vt containing an orthonormal basis of eigenvec-
tors associated with the smallest d eigenvalues of
(1− β)XtLtX#

t − βVt−1V #
t−1.

Remark 3.1. It is straightforward to obtain a
similar formulation for ONPP. In this case, the
corresponding optimization problem becomes

min
8

<

:

Vt ∈ R
m×d

V #
t Vt = I

Tr

h

V
#
t ((1− β)M̃t − βVt−1V

#
t−1)Vt

i

,

(13)

where M̃t = XtMtX#
t .

3.2. Ratio of the two objectives

Instead of taking a linear combination of the
two objectives, one could also take the ratio

Tr
[

V #
t L̃tVt

]

Tr
[

V #
t (Vt−1V #

t−1)Vt

] . (14)

Such an approach avoids the need of choosing a
parameter. Minimizing (14) aims at minimizing
the numerator corresponding to the OLPP objec-
tive function and at the same time maximizing
the denominator. Note that for the denominator
term to be large, the two projectors must be close.
This choice of criterion for the evolutionary

OLPP results in the optimization problem

min
8

<

:

Vt ∈ Rm×d

V #
t Vt = I

Tr
[

V #
t L̃tVt

]

Tr
[

V #
t (Vt−1V #

t−1)Vt

] . (15)

Unlike (12), this optimization problem is not
equivalent to a standard eigenvalue problem and
turns out to be much harder. More specifically,
a problem of the same form has been considered
in (Kokiopoulou and Saad 2009) and (Ngo et al.
2009), where it has been shown that (15) is equiv-
alent to minimizing the function

f(γ) := min
V ∈Rn×d, V $V=I

Tr [V #(A− γB)V], (16)

with A = L̃t = XtLtX#
t , and B = Vt−1V #

t−1.
For fixed γ, the optimal V will be denoted by

V (γ) and is an orthonormal basis of eigenvectors
associated with the smallest d eigenvalues of A−
γB. Given the following two conditions,

Null(A) ∩ Null(B) = {0}, (17)

rank(B) > m− d., (18)

it was shown in (Ngo et al. 2009) that f is a
non-increasing function and has a unique zero γ∗,
which amounts to the minimum of the trace ratio

Tr [V #AV]

Tr [V #BV]
. (19)

While condition (17) can be expected to be satis-
fied, it is rather unlikely that (18) is satisfied, as
rank(B) = d and usually m & d. This problem
can be circumvented by regularizing B, see also
Section 4.
Consequently, the trace ratio optimization

problem can be approached by solving f(γ) = 0
by using, e.g., the Newton method. For this pur-
pose, the derivative of f is needed, which – ac-
cording to (Ngo et al. 2009) – is

f ′(γ) = −Tr [V (γ)#BV (γ)],

4

with V (γ) defined above. Hence, the Newton
method takes the form

γnew = γ −
Tr [V (γ)#(A− γB)V (γ)]

−Tr [V (γ)#BV (γ)]

=
Tr [V (γ)#AV (γ)]

Tr [V (γ)#BV (γ)]
. (20)

As suggested in (Ngo et al. 2009), Algorithm 3.1
employs the Lanczos algorithm (Golub and Loan
1996) to determine V (γ).

Algorithm 3.1. Newton-Lanczos algorithm for
Trace Ratio minimization

1. Input: A,B and a dimension d.
2. Select initial m× d matrix V with orthonormal

columns.

3. Compute γ = Tr [V #AV]/Tr [V #BV].
4. Until convergence Do:
5. Call Lanczos algorithm to compute the d

smallest eigenvalues of G(γ) = A− γB and
an associated orthonormal basis of
eigenvectors V = [v1, · · · , vd].

6. Compute γ = Tr [V #AV]/Tr [V #BV].
7. EndDo

Algorithm 3.1 usually requires just a few steps
to converge. We will refer to this variant of
OLLP for evolutionary data as OLPP-ITR. A
similar variant of ONPP can be obtained by tak-
ing A = M̃t in the derivations above.

4. Experimental results

In this section, we provide experimental results
to investigate the behavior of the proposed meth-
ods, both on synthetic as well as on real-world
evolutionary data. More specifically, we consider
the following methods:

• OLPP: perform OLPP independently at each
time step.

• OLPP-N: naive evolutionary OLPP, i.e., per-
form OLPP on the data set X̃t = [Xt, Xt−1].

• OLPP-E: evolutionary OLPP; see Sec-
tion 3.1. The use of OLPP-E requires to
choose a value for the parameter β. We use
an ad hoc choice of β = 0.5 in all experi-
ments.

• OLPP-ITR: evolutionary OLPP with itera-
tive optimization; see Section 3.2. To in-
crease the robustness of OLPP-ITR, the ma-
trices A and B appearing in Algorithm 3.1

are scaled to have unit trace and are regular-
ized by adding a small number to the diago-
nal entries.

Following common practice, a preliminary PCA
is employed before any of these methods to reduce
the dimensionality of the data to n − c, where
c is the number of classes. In all methods, we
build the affinity graph in a supervised fashion,
as described in Section 2. All methods use Gaus-
sian weights (2) where the parameter σ is half
the median of pairwise Euclidean distances of a
random sample subset. In all experiments, the
data is classified in the reduced space using near-
est neighbor classification.

4.1. Synthetic evolutionary data

We generate synthetic evolutionary data of two
classes. First, n1 = 500 data samples are drawn
from the standard normal distribution N (0, 1)
and assigned to the first class, and then n2 = 500
data samples are drawn from N (−2, 1) and as-
signed to the second class. The dimension m of
the data is set to 18 and each data sample is nor-
malized to unit length. The first 10 samples from
each class are assigned to the training set and the
rest are assigned to the test set.
In order to simulate short-term noise, we add

at every time step random perturbations – dis-
tributed according to N (0, 0.1) – to the training
data. We generate data for 100 time steps. In or-
der to simulate a concept drift, we shift the sam-
ples of the first class at time step t0 = 50 by
∆x. When ∆x > 0, classification becomes eas-
ier as the first class moves away from the other.
On the contrary, when ∆x < 0, classification be-
comes harder since the first class moves closer to
the other, increasing the overlap between the two
classes. The generated data samples are normal-
ized to unit length in order to remove any dif-
ference in scale among different time steps. The
data are reduced to dimension d = 3.
We performed 20 random experiments corre-

sponding to different random realizations of the
data set. Figure 2 shows the average classifica-
tion performance. Notice the effect of the concept
drift around time step t0 = 50, which makes the
problem easier (left panel) or harder (right panel),
respectively. Figure 2 clearly demonstrates that
taking historic data into account is helpful for
classification, as all evolutionary methods outper-
form OLPP applied independently at each time
step. Notice also that the evolutionary methods
are able to adapt quickly to the concept drifts.
Furthermore, OLPP-E outperforms the naive

OLPP-N, since the latter is only using data from

5

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

Time steps

C
la

s
s
if

ic
a
ti

o
n

 e
rr

o
r

ra
te

OLPP

OLPP!N

OLPP!E

OLPP!ITR

(a) ∆x = 0.1

0 20 40 60 80 100
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time steps

C
la

s
s
if

ic
a
ti

o
n

 e
rr

o
r

ra
te

OLPP

OLPP!N

OLPP!E

OLPP!ITR

(b) ∆x = −0.1

Figure 2: Average classification performance over time for the synthetic data corresponding two different concept drifts at
time step t0 = 50.

the time steps t and t − 1. In contrast, OLPP-
E obtains weak supervision information from all
previous time steps via Vt−1. In most cases,
OLPP-ITR resulted in rather small values of γ∗

(of the order of 10−3) which explains its perfor-
mance close to OLPP independently at each time
step. This is consistent with the findings in (Ngo
et al. 2009).

4.2. Evolutionary text data

We used a web crawler to collect paper ab-
stracts from six journals over three main subject
classes: physics, mathematics and biology. The
selected journals have twelve monthly issues per
year and the data collection period goes from
2003 to 2006. This results in an evolutionary
text data set of T = 4 · 12 = 48 time steps in
total, where each month corresponds to a time
step. Each paper abstract gives rise to a docu-
ment whose class label is the corresponding sub-
ject class, i.e., physics, mathematics and biology.
Hence, we have a multi-class classification prob-
lem with three classes in this data set.
After data collection, we used the TMG tool3

by Zeimpekis and Gallopoulos (2005, 2006) to
form the corresponding term-by-document ma-
trix. The resulting matrix is of size 14918× 3223,
where 14918 is the number of terms and 3223
is the number of documents. We used term fre-
quency weighting, i.e., the entry (i, j) of the term-
by-document matrix stores the number of occur-
rences of the ith term in the jth document.
At each time step, we use five training sam-

ples per class and the rest of the samples are

3http://scgroup20.ceid.upatras.gr:8000/tmg/

0 10 20 30 40 50
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Time steps

C
la

s
s
if

ic
a
ti

o
n

 e
rr

o
r

ra
te

OLPP

OLPP!N

OLPP!E

OLPP!ITR

Figure 3: Classification performance over time for the text
evolutionary data.

assigned to the test set. We set the dimension
of reduced space to d = 5 for all methods. We
measure the classification performance over 100
random realizations of the training and test sets.
Figure 3 shows the average performance across
time and Table 1 shows the performance in terms
of AUC, which is the area under the classifica-
tion error rate curve. AUC is an aggregate metric
that summarizes the performance of each method
across time and ideally it should be small. Ob-
serve that the conclusions from the results are
similar to those of the synthetic case. Again, the
use of historic data has a positive influence, let-
ting the evolutionary methods outperform OLPP.
Additionally, OLPP-E outperforms OLPP-N in
all time steps after some initial transition phase.
OLPP-ITR again computed small values for γ∗

6

Method AUC

OLPP 4.67
OLPP-N 3.11
OLPP-E 2.87
OLPP-ITR 4.17

Table 1: Classification performance (in terms of AUC) for
the text data set.

(with a median value about 0.2), which resulted
in a slightly better performance compared to the
previous data set but is still inferior to the other
evolutionary methods.

4.3. Brain image data

We use a data set that is publicly available
from the Internet Brain Segmentation Repository
(IBSR)4. The dataset contains five scans of a pa-
tient with a brain tumor taken at about 6 months
intervals over three and a half years. Each image
slice is of size 256×256. The scans are reasonably
registered over time and they are annotated by a
medical expert who provided the outline of the
tumor region; see the first five panels in Figure 4
and the tumor outline colored in green. At each
time step, we extract from each coronal slice sev-
eral 40× 40 patches randomly positioned around
the tumor region, as well as in the corresponding
healthy region from each slice (see Figure 4(f)).
Hence, we have a patch classification problem on
evolutionary data with two classes: healthy and
tumor.
At each time step, we use 8 training samples

per class and the rest of the samples are assigned
to the test set. We set the dimension of reduced
space to d = 10 for all methods. We work with a
fixed coronal slice along time. For each slice, we
measure the classification performance over 100
random realizations of the training and test sets.
Table 2 shows the performance in terms of AUC,
which is the area under the average classification
error rate curve, where the average is computed
across slices. Unfortunately, due to the fact that
there are only five time steps in the data set, we
cannot explore the behavior of the methods over
large intervals in time. However, even from these
few snapshots, one can see that taking historic
data into account is helpful.

5. Conclusion

We have introduced and compared a few linear
dimensionality reduction methods for the situa-

4www.cma.mgh.harvard.edu/ibsr/

Method AUC

OLPP 0.94
OLPP-N 0.92
OLPP-E 0.85

OLPP-ITR 0.94

Table 2: Classification performance (in terms of AUC) in
the brain image data set.

tion of evolutionary data. Although the discus-
sion was centered around OLPP, it should be em-
phasized that similar evolutionary approaches can
be developed for other reduction methods, such as
ONPP, PCA, LDA, and so on. The experiments
provide evidence that taking historic data into ac-
count by forcing the reduced space Vt to evolve in
a temporally smooth fashion leads to improved
classification performance.

References

A. Webb, Statistical Pattern Recognition, 2nd edn, Wiley,
2002.

X. He, P. Niyogi, Locality Preserving Projections, Ad-
vances in Neural Information Processing Systems 16
(NIPS) .

E. Kokiopoulou, Y. Saad, Orthogonal Neighborhood Pre-
serving Projections: A projection-based dimensional-
ity reduction technique, IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 29 (12) (2007)
2143–2156.

E. Kokiopoulou, J. Chen, Y. Saad, Trace optimization and
eigenproblems in dimension reduction methods, Nu-
merical Linear Algebra with Applications In press.

Y. Chi, X. Song, D. Zhou, K. Hino, B. L. Tseng, Evolu-
tionary spectral clustering by incorporating temporal
smoothness, KDD (2007) 153–162.

Y. Jia, S. Yan, C. Zhang, Semi-supervised classification on
evolutionary data, International Joint Conferences
on Artificial Intelligence (IJCAI) (2009) 1083–1088.

S. Roweis, L. Saul, Nonlinear Dimensionality Reduction by
Locally Linear Embedding, Science 290 (2000) 2323–
2326.

F. Chatelin, Eigenvalues of matrices, John Wiley & Sons
Ltd., Chichester, 1993.

Y. Saad, Numerical Methods for Large Eigenvalue Prob-
lems: Theory and Algorithms, John Wiley, New
York, 1992.

E. Kokiopoulou, Y. Saad, Enhanced graph-based dimen-
sionality reduction with repulsion Laplaceans, Pat-
tern Recognition 42 (11) (2009) 2392–2402.

T. T. Ngo, M. Bellalij, Y. Saad, The trace ratio optimiza-
tion problem, Tech. Rep., UMN, to appear in SIAM
J. Mat. Anal., 2009.

G. H. Golub, C. V. Loan, Matrix Computations, 3rd edn,
The John Hopkins University Press, Baltimore, 1996.

D. Zeimpekis, E. Gallopoulos, Design of a MATLAB tool-
box for term-document matrix generation, In Proc.
Workshop on Clustering High Dimensional Data and
its Applications, (held in conjunction with 5th SIAM
Int’l Conf. Data Mining) (2005) 38–48.

D. Zeimpekis, E. Gallopoulos, TMG: A MATLAB toolbox
for generating term document matrices from text col-
lections, Grouping Multidimensional Data: Recent
Advances in Clustering, Springer (2006) 187–210.

7

(a) t = 1 (b) t = 2 (c) t = 3

(d) t = 4 (e) t = 5 (f)

Figure 4: MRI brain image data. (a)-(e): fixed coronal level over time and corresponding tumor annotation; (f): sample
random patches extracted from tumor (left) and healthy (right) region.

8

Research Reports

No. Authors/Title

10-42 E. Kokiopoulou, D. Kressner and Y. Saad
Linear dimension reduction for evolutionary data

10-41 U.S. Fjordholm
Energy conservative and -stable schemes for the two-layer shallow water
equations

10-40 R. Andreev and Ch. Schwab
Sparse tensor approximation of parametric eigenvalue problems

10-39 R. Hiptmair, A. Moiola and I. Perugia
Stability results for the time-harmonic Maxwell equations with
impedance boundary conditions

10-38 I. Hnětynková, M. Plešinger, D.M. Sima, Z. Strakoš and S. Van Huffel
The total least squares problem in AX ≈ B. A new classification with
the relationship to the classical works

10-37 S. Mishra
Robust finite volume schemes for simulating waves in the solar
atmosphere

10-36 C. Effenberger, D. Kressner and C. Engström
Linearization techniques for band structure calculations in absorbing
photonic crystals

10-35 R. Hiptmair and C. Jerez-Hanckes
Multiple traces boundary integral formulation for Helmholtz transmission
problems

10-34 H. Harbrecht and Ch. Schwab
Sparse tensor finite elements for elliptic multiple scale problems

10-33 K. Grella and C. Schwab
Sparse tensor spherical harmonics approximation in radiative transfer

10-32 P. Kauf, M. Torrilhon and M. Junk
Scale-induced closure for approximations of kinetic equations

10-31 M. Hansen
On tensor products of quasi-Banach spaces

10-30 P. Corti
Stable numerical scheme for the magnetic induction equation with Hall
effect

