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ROBUST FINITE VOLUME SCHEMES FOR
SIMULATING WAVES IN THE SOLAR

ATMOSPHERE

S. MISHRA

Abstract. We present well-balanced high-resolution finite volume schemes for simulating
waves in the outer solar atmosphere. The schemes approximate the stratified MHD equations
with an upwind discretization of the Godunov-Powell source term and a locally hydrostatic
pressure reconstruction that preserves discrete steady states. The paper summarizes recent
articles [4, 5, 6].

1. Introduction

The study of the sun is of paramount importance. In particular, the solar climate is a key
determinant of climate on earth. Solar weather impacts us directly in the form of magnetic
storms that affect the electrical grid and indirectly through solar flares and prominences that
pose a hazard for satellites and space vehicles. The sun (see figure 1) consists of the following
parts: an inner core where most of the solar energy is generated, a radiative zone, a convective
zone and the outer solar atmosphere. In turn, the solar atmosphere consists of the photosphere
(the visible part of the sun), the chromosphere and the corona. It is well known that there is
a considerable variation in the temperature of the outer solar atmosphere. The temperature of
the photosphere is around 6000 K and the chromosphere is almost isothermal at about 10000 K.
However, the temperature in the corona is about 106 K (see figure 1). This massive variation in
temperature takes place in a very narrow layer (as compared to the typical solar length scale)
termed as the transition region.

Many interesting questions about the solar atmosphere remain unanswered. Examples in-
clude how the solar energy is transferred to the overlaying chromospheric and coronal plasmas
and heats them. The above issues are related to the role played by waves and oscillations in
the solar atmosphere. It is well known ([1]) that waves carry energy from the base of the solar
atmosphere (in the convection zone) upto the chromosphere and the corona. While traveling
up the atmosphere, these waves interact with the magnetic field of the sun. This complex inter-
action between waves and the magnetic field is a possible candidate for explaining the intricate
dynamics of the solar atmosphere [1].

1.1. Models of the outer solar atmosphere. Matter in the sun exists in the form of plasma
i.e., magnetized fluid. The outer solar atmosphere can be modeled by the equations of stratified

The results reported here are obtained jointly with F. G. Fuchs, A. D. McMurry, N. H. Risebro (University
of Oslo, Norway) and K . Waagan (University of Maryland, College park, U. S. A).

1



2 S. MISHRA

(a) Parts of the sun (b) Temperature distribution

Magnetohydrodynamics (sMHD):

(1.1)

ρt + div (ρu) = 0,

(ρu)t + div

(
ρu⊗ u+

(
p+

1

2

∣∣B
∣∣2
)
I −B⊗B

)
= −ρge3,

Bt + div
(
u⊗B−B⊗ u

)
= 0

Et + div

((
E + p+

1

2

∣∣B
∣∣2
)
u−

(
u ·B

)
B

)
= −ρg (u · e3) ,

div(B) = 0,

where ρ is the density, u = {u1, u2, u3} and B = {B1, B2, B3} are the velocity and magnetic
fields respectively, p is the thermal pressure, g is the constant acceleration due to gravity , e3
represents the unit vector in the vertical (z-) direction. E is the total energy, for simplicity
determined by the ideal gas equation of state:

(1.2) E =
p

γ − 1
+

1

2
ρ |u|2 + 1

2

∣∣B
∣∣2 ,

where γ > 1 is the adiabatic gas constant. The above equations need to be augmented with
suitable initial and boundary conditions.

Our primary objective is to simulate waves in the solar atmosphere. We will present robust
and highly efficient numerical schemes to simulate waves in the outer solar atmosphere in this
paper. We summarize some recent results ([4],[5],[6]) in this direction.

2. The ideal MHD equations

The first step in designing efficient schemes for the stratified MHD equations is to discretize
the ideal MHD equations obtained from (1.1) by setting the gravity g = 0. The resulting



SIMULATING WAVES IN THE SUN 3

equations are a system of conservation laws of the form,

(2.1) Ut + Fx +Gy +Hz = 0.

Here U = {ρ,u,B, E} and the fluxes F,G,H can be read from (1.1). The MHD equations are
hyperbolic but not strictly hyperbolic. Furthermore, the shock structure of MHD equations
is quite complicated on account of the non-strict hyperbolicity and the non-convexity of these
equations.
The absence of explicit solution formulas or theoretical results implies that numerical sim-

ulations are the main tools for studying MHD and related equations. Finite volume methods
([9]) are among the most popular frameworks for approximating conservation laws like (2.1).
We consider (2.1) in x = (x, y, z) ∈ [Xl, Xr] × [Yl, Yr] × [Zb, Zt] and discretize it by a uni-
form grid in all directions with the grid spacing ∆x,∆y and ∆z. We set xi = Xl + i∆x
, yj = Yl + j∆y and zk = Zb + k∆z. The indices are 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny and
0 ≤ k ≤ Nz. Set xi+1/2 = xi + ∆x/2, yj+1/2 = yj + ∆y/2 and zk+1/2 = zk + ∆z/2, and let
Ci,j,k = [xi−1/2, xi+1/2)× [yj−1/2, yj+1/2)× [zk−1/2, zk+1/2) denote a typical cell. The cell average
of the unknown state vector W (approximating U) over Ci,j,k at time tn is denoted Wn

i,j,k.
By integrating the conservation law over the cell Ci,j,k and the time interval [tn, tn+1) with
tn+1 = tn +∆tn, where the time-step ∆tn is determined by a suitable CFL condition results in
a standard (first-order in space and time) finite volume scheme written down as

(2.2)
Wn+1

i,j,k = Wn
i,j,k −∆tn

(
Fn

i+1/2,j,k − Fn
i−1/2,j,k

∆x
+

Gn
i,j+1/2,k −Gn

i,j−1/2,k

∆y

)

− ∆tn

∆z
(Hn

i,j,k+1/2 −Hn
i,j,k−1/2).

The numerical fluxes F, G and H are determined in terms of (approximate) Riemann solvers.
A wide variety of approximate Riemann solvers are available for the MHD system; see [8, 3]
and references therein.

A crucial issue that arises in approximating the MHD equations is a discretization of the
divergence constraint in (1.1). The standard finite volume scheme (2.2) will not preserve a
discrete version of the constraint, leading to numerical instabilities and oscillations, see [11].
Recipes for treating the divergence constraint include the projection method [2] and methods
based on staggering [11] (and references therein).
An alternative involves adding the Godunov-Powell source term to the MHD equations re-

sulting in the balance law,

(2.3)
Ut + Fx +Gy +Hz = s.

s = {−B(divB),−u(divB),−(u ·B)(divB)}.

The above equations are (formally) equivalent to the standard form of MHD equations (1.1)
without gravity. The added advantages of the Godunov-Powell form (2.3) are its Galilean in-
variance and symmetrizability. Furthermore, the magnetic field in (2.3) satisfies the divergence
transport equation:

(2.4) (divB)t + div(u(divB)) = 0.
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Hence, initial divergence errors are transported out of the domain enabling us to treat the
divergence constraint approximately in a stable manner. The method was proposed in [10]
but recent papers ([3]) show that the additional source terms in (2.3) need to discretized in a
suitable manner for numerical stability.

2.1. HLL three wave solvers and upwind discretizations of the Godunov-Powell
source terms. Following [4], we present a judicious combination of an approximate Riemann
solver and upwind source discretization for the Godunov-Powell MHD system. For simplicity,
we consider (2.3) in one space dimension and write the resulting system as,

(2.5) Ut + Fx = s1.

Here, the source s1 = s1(U, (B1)x) involves a non-conservative product and needs to be dis-
cretized carefully. The corresponding first-order finite volume scheme for (2.3) is

(2.6) Wn+1
i = Wn

i − ∆tn

∆x
(Fn

i+1/2 − Fn
i−1/2) +∆tnS1,n

i .

We will approximate the eight waves in the MHD Riemann problem with three waves, i.e, two
representing the outermost fast waves and a middle wave approximating the material contact
discontinuity. The approximate solution and fluxes are given by

(2.7) WH3 =






WL if x
t ≤ sL,

W∗
L if sL < x

t < sM ,

W∗
R if sM < x

t < sR,

WR if sR ≤ x
t ,

FH3 =






FL if x
t ≤ sL,

F∗
L if sL < x

t < sM ,

F∗
R if sM < x

t < sR,

FR if sR ≤ x
t .

We set π1 = p+ B
2
2+B

2
3

2 . The outer wave speeds sL and sR model the fast magneto-sonic waves
and are defined as in [8]. In order to describe the solver, we need to determine the speed of
the middle wave sM and the intermediate states W∗

L,W
∗
R. The middle wave models a material

contact discontinuity. Hence, the velocity field and the tangential magnetic fields are assumed
to be constant across the middle wave. This allows us to define u∗ = u∗

L = u∗
R, B

∗
2 = B

∗
2L = B

∗
2R

and B
∗
3 = B

∗
3L = B

∗
3R. The normal magnetic field B1 is not assumed to be constant but jumps

only across the middle wave (modeling the linear degenerate “divergence wave” implied by
(2.4)), and B1 is constant across the outer waves. The intermediate states are determined by
local conservation across the two outermost waves and the middle wave resulting in,

(2.8) sσW
∗
σ − F∗

σ = sσWσ − Fσ, sMW∗
R − sMW∗

L = F∗
R − F∗

L + s1,∗

where σ ∈ {L,R} and

(2.9) s1,∗ =





0

−B
2
1R−B

2
1L

2 )

−
(
B

∗
2

) (
B1R − B1L

)

−
(
B

∗
3

) (
B1R − B1L

)

−u∗ (B1R − B1L

)

−u∗
1
B

2
1R−B

2
1L

2 −
(
u∗
2B

∗
2 + u∗

3B
∗
3

) (
B1R − B1L

)





.
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This amounts to integrating the source s1 across the wave fan.
Applying the conservation relations, we obtain (check [5], section 3.1.2 for details) the fol-

lowing intermediate states,

ρ∗θ = ρθ
u1θ − sθ
sM − sθ

, π∗
1θ = π1θ + ρθ(u1θ − sθ)(u1θ − sM), θ ∈ {L,R},

sM = u∗
1 =

π1R − π1L + ρRu1R(u1R − sR)− ρLu1L(u1L − sL)

ρR(u1R − sR)− ρL(u1L − sL)
,

u∗
σ =

ζcσ − ξdσ
αζ + ξ2

, B
∗
σ =

−αdσ − ξcσ
αζ + ξ2

, σ ∈ {2, 3}

E∗
θ =

1

sM − sθ

(
Eθ (u1θ − sθ) + π1θu1θ − π∗

1θsM +
B

2
1θ

2
(u1θ − sM)

+
(
B1θ

) (
B2θu2θ +B3θu3θ − B

∗
2θu

∗
2θ − B

∗
3θu

∗
3θ

))
, θ ∈ {L,R},

cσ = ρRuσR (u1R − sR)− ρLuσL (u1L − sL)−
(
B1RBσR − B1LBσL

)
,

dσ = BσR (u1R − sR)− BσL (u1L − sL)−
(
B1LuσL − B1RuσR

)
,

α = ρR (u1R − sR)− ρL (u1L − sL) , ζ = sR − sL, ξ = B1R − B1L.

.
The intermediate fluxes are obtained in terms of the intermediate states by local conservation

(2.8),

F∗
L = FL + sL(W

∗
L −WL), F∗

R = FR + sR(W
∗
R −WR).

The discrete source term takes the form,

(2.10) S1,n
i = s1,∗i−1/2χ(sM,i−1/2≥0) + s1,∗i+1/2χ(sM,i+1/2<0),

where s1,∗i±1/2 is defined in analogy to (2.9).

For the three dimensional form of the equations, the fluxes G,H and the sources S2 and S3

can be defined analogously to obtain the following finite volume scheme:

(2.11)

Wn+1
i,j,k = Wn

i,j,k −∆tn
(
Fn

i+1/2,j,k − Fn
i−1/2,j,k

∆x
+

Gn
i,j+1/2,k −Gn

i,j−1/2,k

∆y

)

−∆tn
(
Hn

i,j,k+1/2 −Hn
i,j,k−1/2

∆z
− S1,n

i,j,k − S2,n
i,j,k − S3,n

i,j,k

)
,

for the three dimensional version of the MHD equations with Godunov-Powell source term
(2.3).
The above scheme (2.11) is first-order accurate in both space and time. Second-order of

accuracy in space is obtained by using non-oscillatory piecewise linear reconstructions using
minmod, ENO and WENO limiters. Second-order accuracy in time is obtained using strong
stability preserving Runge-Kutta methods. Details of how these procedures are adapted for
the MHD equations are described in [4].
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2.2. Code. The above schemes are implemented in the form a publicly available code called
ALSVID [7]. The implementation involves a modular C++ based code with Python scripts at
both the front and back ends. The plotting routines in one and two dimensions use Matplotlib
and in three dimensions, we use Mayavi 2 for the graphics. The code is parallelized using scaled
MPI and can handle very large number of parallel cores. ALSVID is adapted to perform solar
simulations and the resulting code is termed SURYA.

2.3. Numerical experiment: Orszag-Tang Vortex. This well-known test case (see [11]
for details of the initial data and computational domain) is computed with the second-order
version of the scheme and the computed pressure on two different mesh sizes, i.e, 200 × 200
and 4000× 4000 mesh points is shown in figure 1. The figure shows that the shocks as well as
the vortices are resolved very well. In particular, the 4000 × 4000 plot shows the impressive
stability of the scheme on ultra fine meshes.

2.4. Numerical experiment: Cloud-Shock interaction. The interaction of a fast shock
with a high density bubble (see [11] for details) is computed with a second-order version of the
scheme and the total energy and magnetic pressure are shown in figure 2.

2.5. Numerical experiment: isothermal blast wave. This standard test case easily ex-
hibits spurious behavior if the equations are not properly discretized. The equation of state is
isothermal in this case, i.e, p = ρ, the computational domain is [0, 1]× [0, 1] and the initial data
are

{u, B1, B2,3}t=0 = {0, 5√
π
, 0}, ρ0 =

{
100 if |(x, y)− (0.5, 0.5)| ≤ (0.05),

0. otherwise

In order to illustrate the necessity of the upwinded Godunov-Powell source term, we also
considered the central source discretisation of [10] and schemes with the Godunov-Powell source
set to zero. The results with three schemes: no source, central source and upwind source (2.11),
with a second-order discretization, are presented in figure 3. They clearly illustrate the necessity
of using the Godunov-Powell source term as well as discretizing it in the correct manner.

3. Schemes for Stratified MHD.

We model the outer solar atmosphere in terms of the following modified stratified MHD
equations:

(3.1)

ρt + div(ρu) = 0,

(ρu)t + div

(
ρu⊗ u+

(
p+

1

2
|B|2 + B̃ ·B

)
I −B⊗B− B̃⊗B−B⊗ B̃

)

= −
(
B+ B̃

)
(divB)− ρge3,

Bt + div
(
u⊗B−B⊗ u+ u⊗ B̃− B̃⊗ u

)
= −u(divB),

Et + div

((
E + p+

1

2
|B|2 +B · B̃

)
u− (u ·B)B−

(
u · B̃

)
B

)

= −(u ·B)(divB)− ρg (u · e3) ,
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(c) 2002 mesh (d) 40002 mesh

Figure 1. Pressure for the Orszag-Tang vortex at time t = 1

(a) Total energy (b) Magnetic energy

Figure 2. Cloud-shock interaction at time t = 0.06 on a 16002 mesh.

Here, we assume that there exist a potential magnetic field B̃ satisfying the following assump-
tions,

(3.2) B̃t = 0, div(B̃) = 0, and Curl(B̃) = 0.

and solve for the perturbation B = B− B̃.
Waves in the solar atmosphere are modeled as perturbations of the steady state:

(3.3) u ≡ 0, B ≡ 0 ρ(z) =
ρ0T0

T (z)
e−

α(z)
H , p(z) = p0e

−α(z)
H .
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Here,

(3.4) α(x, y, z) = α(z) =

∫ z

0

1

T (s)
ds,

with T = T (z) being a given temperature distribution. An example for temperature distribu-
tions in the solar atmosphere is shown in figure 1. Here, ρ0, p0, H are constants.
Writing (3.1) in the condensed form, we obtain the balance law:

(3.5) Ut + f(U, B̃)x + g(U, B̃)y + h(U, B̃)z =
3∑

l=1

sl(U, B̃) + sg(U),

The unknowns U, fluxes f, g, h, co-efficient B̃, Godunov-Powell source s1,2,3 and gravity source
sg can be read from (3.1). A first-order finite volume scheme for (3.5) is given by,

(3.6)

Wn+1
i,j,k = Wn

i,j,k −∆tn
(
Fn

i+1/2,j,k − Fn
i−1/2,j,k

∆x
+

Gn
i,j+1/2,k −Gn

i,j−1/2,k

∆y

)

−∆tn
(
Hn

i,j,k+1/2 −Hn
i,j,k−1/2

∆z
− S1,n

i,j,k − S2,n
i,j,k − S3,n

i,j,k − Sg,n
i,j,k

)
.

The fluxes F,G and sources S1,2 in the x- and y-directions are computed using the procedure
outlined in section 2.

3.1. Fluxes and sources in the z-direction. The numerical flux H and discrete Godunov-
Powell source term S3 in (3.6) are described in terms of the following Riemann problem,

Wt + h(W, B̃m)z = s3(W, B̃m,Wz), W(z, 0) =

{
WT z < 0,

WB z > 0.

The natural way to specify initial data WT,B in the above problem is to use the states WB =
Wn

i,j,k and WT = Wn
i,j,k+1. However, this approach leads to a scheme that does not preserve

discrete versions of the interesting steady states (3.3). Therefore we must design suitable fluxes
in order to design well-balanced schemes.

3.1.1. Local Hydrostatic pressure reconstructions. Instead of just using the cell averages below
and above the interface as data in the Riemann problem, we follow [5, 6] and utilize the special
structure of the steady states (3.3) to perform a local hydrostatic reconstruction of the pressure
inside the cell and use the local primitive variables,

VB = {ρni.j,k,un
i,j,k,B

n
i,j,k, p

n,−
i,j,k+1/2}

VT = {ρni,j,k+1,u
n
i,j,k+1,B

n
i,j,k+1, p

n,+
i,j+1/2},

where the reconstructed pressure is given in terms of extrapolated cell averages by first defining
the local temperature,

(3.7) T n
i,j,k =

pni,j,k
gHρni,j,k

.
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The piecewise constant temperature defines the scaling function α by (3.4). We can compute
the differences in α and use it to define the reconstructed local pressure,

(3.8) pn,−i,j,k+1/2 = pni,j,ke
−∆z

2HTn
i,j,k , pn,+i,j,k+1/2 = pni,j,k+1e

∆z
2HTn

i,j,k+1 ,

(a) No source (b) Central source (c) Upwind source

Figure 3. Density in the isothermal blast wave problem.

(a) Weak field (b) Strong field

Figure 4. Velocity in the direction of the magnetic field, computed with a
second-order well-balanced scheme for the lower chromosphere.

The data WB and WT (in terms of conservative variables) are easily obtained from the
primitive variables VB, VT . The coefficient B̃m is given by the average,

(3.9) B̃m = B̃i,j,k+1/2 =
B̃i,j,k + B̃i,j,k+1

2
.

The HLL three wave solver of the previous section is easily obtained for the z-direction by
repeating the approach of describing the solver in the x- direction.
We discretize the gravitational source term as

(3.10) Sg,n
i,j,k =

{
0, 0,

pn,−i,j,k+1/2 − pn,+i,j,k−1/2

∆z
, 0, 0, 0, 0,−ρni,j,k(u

n
3 )i,j,k g

}
.

where pn,−i,j,k+1/2, p
n,+
i,j,k−1/2 are defined in (3.8).
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(a) Weak field (b) Strong field

Figure 5. Velocity in the direction of the magnetic field, computed with a
second-order well-balanced scheme for both the chromosphere-corona.

(a) t=0.6 (b) t=1.2 (c) t=1.8

Figure 6. Velocity in the direction of the magnetic field, computed with a
second-order well-balanced scheme for the lower chromosphere with realistic mag-
netic field and velocity forcing.
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Periodic boundary conditions are used in the x and y directions and we use the following
non-reflecting Neumann type boundary conditions in the vertical direction:

(3.11) Wn
i,j,0 = Wn

i,j,1e
∆z

Ti,j,1H , Wn
i,j,Nz+1 = Wn

i,j,Nz
e
− ∆z

Ti,j,NzH .

The resulting scheme satisfies the following properties.

Theorem 3.1. Consider the scheme (3.6) approximating the system (3.5). This scheme has
the following properties,

(i.) The scheme (3.6) is consistent with (3.5), and it is first order accurate in both space
and time (for smooth solutions).

(ii.) The scheme (3.6) is well-balanced and preserves discrete versions of the steady states
(3.3),

The proof of the above theorem is presented in [6].

Remark 3.2. The finite volume scheme (3.6) is first-order accurate. For second-order accu-
racy, we need to employ locally hydrostatic piecewise linear non-oscillatory reconstructions as
designed in [5, 6].

3.2. Numerical experiments.

3.2.1. Waves in a two dimensional model solar atmosphere. We consider a synthetic potential
magnetic field B̃ given in [4] and plot the velocity (in the direction of the magnetic field) in two
cases: first, with an isothermal atmosphere (modeling the lower chromosphere) and then with
a realistic temperature distribution similar to the one shown in figure 1. Two magnetic field
configurations are shown: one is a weak magnetic field and the other is a stronger magnetic
field.

In figure 4, we plot the results for the lower chromosphere and in figure 5, we plot the
results for the whole atmosphere, including the transition region and the corona. Both are
computed with the second-order version of the well-balanced scheme (3.6). The results show
the effectiveness of the schemes in resolving complex physical phenomena, in particular, the
focusing of waves due to the magnetic field and the wave acceleration at the transition layer.

3.3. Waves in a realistic solar chromosphere. Finally, we consider a background magnetic
field measured from the MDI instrument on SOHO and bottom velocity measurements, also
from SOHO and present the velocity (in the direction of magnetic field) in figure 6. The results
demonstrate how the well-balanced schemes are robust and effective in simulating realistic
scenarios in the solar atmosphere.
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